Sample records for vacuum evaporation system

  1. Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System

    NASA Astrophysics Data System (ADS)

    Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.

    2018-01-01

    The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.

  2. Evaporation in equilibrium, in vacuum, and in hydrogen gas

    NASA Technical Reports Server (NTRS)

    Nagahara, Hiroko

    1993-01-01

    Evaporation experiments were conducted for SiO2 in three different conditions: in equilibrium, in vacuum, and in hydrogen gas. Evaporation rate in vacuum is about two orders of magnitude smaller than that in equilibrium, which is consistent with previous works. The rate in hydrogen gas changes depending on hydrogen pressure. The rate at 10 exp -7 bar of hydrogen pressure is as small as that of free evaporation, but at 10 exp -5 bar of hydrogen pressure it is larger than that in equilibrium. In equilibrium and in vacuum, the evaporation rate is limited by decomposition of SiO2 on the crystal surface, but it is limited by a diffusion process for evaporation in hydrogen gas. Therefore, evaporation rate of minerals in the solar nebula can be shown neither by that in equilibrium nor by that in vacuum. The maximum temperature of the solar nebula at the midplane at 2-3 AU where chondrites are believed to have originated is calculated to be as low as 150 K, 1500 K, or in between them. The temperature is, in any case, not high enough for total evaporation of the interstellar materials. Therefore, evaporation of interstellar materials is one of the most important processes for the origin and fractionation of solid materials. The fundamental process of evaporation of minerals has been intensively studied for these several years. Those experiments were carried out either in equilibrium or in vacuum; however, evaporation in the solar nebula is in hydrogen (and much smaller amount of helium) gas. In order to investigate evaporation rate and compositional (including isotopic) fractionation during evaporation, vaporization experiments for various minerals in various conditions are conducted. At first, SiO2 was adopted for a starting material, because thermochemical data and its nature of congruent vaporization are well known. Experiments were carried out in a vacuum furnace system.

  3. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  4. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  5. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  6. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  7. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. ...

  8. 7 CFR 58.217 - Evaporators and/or vacuum pans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....217 Evaporators and/or vacuum pans. Evaporators or vacuum pans or both, with open type condensers shall be equipped with an automatic condenser water level control, barometric leg, or so constructed so... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. When enclosed type condensers...

  9. CFD Analysis of Evaporation-Condensation Phenomenon In an Evaporation Chamber of Natural Vacuum Solar Desalination

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.

    2018-01-01

    Desalination technologies is one of solutions for water scarcity. With using renewable energy, like solar energy, wind energy, and geothermal energy, expected will reduce the energy demand. This required study on the modeling and transport parameters determination of natural vacuum solar desalination by using computational fluid dynamics (CFD) method to simulate the model. A three-dimensional case, two-phase model was developed for evaporation-condensation phenomenon in natural vacuum solar desalination. The CFD simulation results were compared with the avalaible experimental data. The simulation results shows inthat there is a phenomenon of evaporation-condensation in an evaporation chamber. From the simulation, the fresh water productivity is 2.21 litre, and from the experimental is 2.1 litre. This study shows there’s an error of magnitude 0.4%. The CFD results also show that, vacuum pressure will degrade the saturation temperature of sea water.

  10. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  11. Moduli vacuum bubbles produced by evaporating black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, J. R.

    2007-10-15

    We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4D effective potential with one-loop contributions due to the Casimir effect, along with a 5D cosmological constant. The forms of the effective potential at low and high temperatures indicate a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys.more » Rev. D 74, 024004 (2006)]. The black hole bubble can be highly opaque to lower-energy particles and photons, and thereby entrap them within. For high-temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I. G. Moss, Phys. Rev. D 32, 1333 (1985)], tending to reflect low-energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.« less

  12. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films depositedmore » by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.« less

  13. Theoretical and experimental researches of the liquid evaporation during thermal vacuum influences

    NASA Astrophysics Data System (ADS)

    Trushlyakov, V.; Panichkin, A.; Prusova, O.; Zharikov, K.; Dron, M.

    2018-01-01

    The mathematical model of the evaporation process of model liquid with the free surface boundary conditions of the "mirror" type under thermal vacuum influence and the numerical estimates of the evaporation process parameters are developed. An experimental stand, comprising a vacuum chamber, an experimental model tank with a heating element is designed; the experimental data are obtained. A comparative analysis of numerical and experimental results showed their close match.

  14. Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, K; Kita, N; Mendybaev, R

    2009-06-18

    Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquidsmore » (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites

  15. Preparation of Mirror Coatings for the Vacuum Ultraviolet in a 2-m Evaporator.

    PubMed

    Bradford, A P; Hass, G; Osantowski, J F; Toft, A R

    1969-06-01

    The design and features of a 2-m evaporator suitable for coating large mirrors uniformly with Al + MgF(2) and Al + LiF films of high reflectance in the vacuum uv are described. The techniques used for monitoring film thicknesses during the film deposition and for producing films of uniform thicknesses over large areas are discussed. It is shown that the Al films for MgF(2)_ and LiF-protected mirrors of highest reflectance in the vacuum uv down to 1000 A should be 700-800 A thick. Data on the vacuum uv reflectance of Al coated with MgF(2) films of various thicknesses are presented. It was found that mirror coatings prepared in a large evaporator have a higher reflectance in the vacuum uv than those deposited under the same vacuum and deposition conditions in a small vacuum unit. At lambda = 1216 A, the reflectance of Al overcoated with 250 A of MgF(2) was measured to be about 85%.

  16. Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum

    NASA Astrophysics Data System (ADS)

    Frezzotti, A.; Gibelli, L.; Lockerby, D. A.; Sprittles, J. E.

    2018-05-01

    Evaporation of a binary liquid into near-vacuum conditions has been studied using numerical solutions of a system of two coupled Enskog-Vlasov equations. Liquid-vapor coexistence curves have been mapped out for different liquid compositions. The evaporation process has been investigated at a range of liquid temperatures sufficiently lower than the critical one for the vapor not to significantly deviate from the ideal behavior. It is found that the shape of the distribution functions of evaporating atoms is well approximated by an anisotropic Maxwellian distribution with different characteristic temperatures for velocity components normal and parallel to the liquid-vapor interface. The anisotropy reduces as the evaporation temperature decreases. Evaporation coefficients are computed based on the separation temperature and the maximum concentration of the less volatile component close to the liquid-vapor interface. This choice leads to values which are almost constant in the simulation conditions.

  17. Oxygen Isotopic Fractionation During Evaporation of SiO2 in Vacuum and in H Gas

    NASA Astrophysics Data System (ADS)

    Nagahara, H.; Young, E. D.; Hoering, T. C.; Mysen, B. O.

    1993-07-01

    Chondritic components, chondrules, CAIs, and some parts of the matrix are believed to have formed and/or thermally processed in the solar nebula. If this scenario is the case, they should be fractionated for major and minor elements and isotopes according to the formation temperature. This is true for major and trace elements, but is not the case for isotopes. Differences in oxygen isotopic composition among meteorite groups are interpreted to be the results of mixing of gas and dust from different oxygen reservoirs, and the effect of isotopic fractionation is negligible for most meteorites except for rare CAIs. Davis et al. [1] studied the isotopic fractionation of SiO2, MgO, and forsterite and showed that oxygen isotopic fractionation from solid materials is very small, but that from liquid is significant. Evaporation in the solar nebula should, however, be in hydrogen gas, which is reactive with silicates. Therefore, the effect of hydrogen gas on the evaporation behaviors of silicates, including mode of evaporation, evaporation rate, and compositional and isotopic fractionation, should be studied. Nagahara [2] studied the evaporation rate of SiO2 in equilibrium, in constant evacuation (free evaporation), and in hydrogen, and showed that the rate in hydrogen gas is orders of magnitude larger than that in vacuum; the mode of evaporation also differs from that in vacuum. Oxygen isotopic fractionation during evaporation of SiO2 in constant evacuation and in hydrogen gas at two different total pressures are studied in the present study. The starting material is a single crystal of natural quartz, which should transform into high cristobalite at experimental conditions. The powdered starting material was kept in a graphite capsule without a cap and set in a vacuum chamber with and without hydrogen gas flow. Experimental temperature was 1600 degrees C. Oxygen isotopic compositions (^18O/^16O) were measured with the CO2laser heating fluorination technique. Oxygen

  18. Thermal Vacuum Testing of a Proto-flight Miniature Loop Heat Pipe with Two Evaporators and Two Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura

    2011-01-01

    This paper describes thermal vacuum testing of a proto-flight miniature loop heat pipe (MLHP) with two evaporators and two condensers designed for future small systems applications requiring low mass, low power and compactness. Each evaporator contains a wick with an outer diameter of 6.35 mm, and each has its own integral compensation chamber (CC). Miniaturization of the loop components reduces the volume and mass of the thermal system. Multiple evaporators provide flexibility for placement of instruments that need to be maintained at the same temperature, and facilitate heat load sharing among instruments, reducing the auxiliary heater power requirement. A flow regulator is used to regulate heat dissipations between the two condensers, allowing flexible placement of radiators on the spacecraft. A thermoelectric converter (TEC) is attached to each CC for control of the operating temperature and enhancement of start-up success. Tests performed include start-up, power cycle, sink temperature cycle, high power and low power operation, heat load sharing, and operating temperature control. The proto-flight MLHP demonstrated excellent performance in the thermal vacuum test. The loop started successfully and operated stably under various evaporator heat loads and condenser sink temperatures. The TECs were able to maintain the loop operating temperature within b1K of the desired set point temperature at all power levels and all sink temperatures. The un-powered evaporator would automatically share heat from the other powered evaporator. The flow regulator was able to regulate the heat dissipation among the radiators and prevent vapor from flowing into the liquid line.

  19. Internal motion in high vacuum systems

    NASA Astrophysics Data System (ADS)

    Frank, J. M.

    Three transfer and positioning mechanisms have been developed for the non-air exposed, multistep processing of components in vacuum chambers. The functions to be performed in all of the systems include ultraviolet/ozone cleaning, vacuum baking, deposition of thin films, and thermocompression sealing of the enclosures. Precise positioning of the components is required during the evaporation and sealing processes. The three methods of transporting and positioning the components were developed to accommodate the design criteria and goals of each individual system. The design philosophy, goals, and operation of the three mechanisms are discussed.

  20. Thermal Vacuum Testing of a Multi-Evaporator Miniature Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Nagano, Hosei

    2008-01-01

    Under NASA's New Millennium Program Space Technology 8 Project, four experiments are being developed for future small system applications requiring low mass, low power, and compactness. GSFC is responsible for developing the Thermal Loop experiment, which is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and condensers. The objective is to validate the operation of an MLHP, including reliable start-ups, steady operation, heat load sharing, and tight temperature control over the range of 273K to 308K. An MLHP Breadboard has been built and tested for 1200 hours under the laboratory environment and 500 hours in a thermal vacuum chamber. Results of the TV tests are presented here.

  1. Three stage vacuum system for ultralow temperature installation

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.

  2. Seedless Growth of Bismuth Nanowire Array via Vacuum Thermal Evaporation

    PubMed Central

    Liu, Mingzhao; Nam, Chang-Yong; Zhang, Lihua

    2015-01-01

    Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts. PMID:26709727

  3. Analysis of the moisture evaporation process during vacuum freeze-drying of koumiss and shubat

    NASA Astrophysics Data System (ADS)

    Shingisov, Azret Utebaevich; Alibekov, Ravshanbek Sultanbekovich

    2017-05-01

    The equation for the calculating of a moisture evaporation rate in the vacuum freeze-drying, wherein as a driving force instead of the generally accepted in the drying theory of Δt temperature difference, Δp pressure difference, Δc concentration difference, a difference of water activity in the product and the relative air humidity (a_{{w}} - \\varphi) is suggested. By using the proposed equation, the processes of vacuum freeze-drying of koumiss and shubat were analyzed, and it was found two drying periods: constant and falling. On the first drying period, a moisture evaporation rate of koumiss is j = 2.75 × 10-3 kg/(m2 h) and of shubat is j = 2.37 × 10-3 kg/(m2 h). On the second period, values decrease for koumiss from j = 2.65 × 10-3 kg/(m2 h) to j = 1.60 × 10-3 kg/(m2 h), and for shubat from j = 2.25 × 10-3 kg/(m2 h) to j = 1.62 × 10-3 kg/(m2 h). Specific humidity for koumiss is ueq = 0.61 kg/kg and for shubat is ueq = 0.58 kg/kg. The comparative analyze of the experimental data of the moisture evaporation rate versus the theoretical calculation shows that the approximation reliability is R2 = 0.99. Consequently, the proposed equation is useful for the analyzing a moisture evaporation rate during a vacuum freeze-drying of dairy products, including cultured milk foods.

  4. Thermodynamic performance testing of the orbiter flash evaporator system

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  5. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    NASA Technical Reports Server (NTRS)

    Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.

    1985-01-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  6. Treatment of a waste oil-in-water emulsion from a copper-rolling process by ultrafiltration and vacuum evaporation.

    PubMed

    Gutiérrez, Gemma; Lobo, Alberto; Benito, José M; Coca, José; Pazos, Carmen

    2011-01-30

    A process is proposed for the treatment of a waste oil-in-water (O/W) emulsion generated in an industrial copper-rolling operation. The use of demulsifier agents improves the subsequent treatment by techniques such as ultrafiltration (UF) or evaporation. The effluent COD is reduced up to 50% when the O/W emulsion is treated by UF using a flat 30 nm TiO(2) ceramic membrane (ΔP = 0.1 MPa) and up to 70% when it is treated by vacuum evaporation, after an emulsion destabilization pretreatment in both cases. Increases in the UF permeate flux and in the evaporation rate are observed when a chemical demulsifier is used in the pretreatment step. A combined process consisting of destabilization/settling, UF, and vacuum evaporation can yield a very high-quality aqueous effluent that could be used for process cooling or emulsion reformulation. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. The Radial Distribution Function (RDF) of Amorphous Selenium Obtained through the Vacuum Evaporator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guda, Bardhyl; Dede, Marie

    2010-01-21

    After the amorphous selenium obtained through the vacuum evaporator, the relevant diffraction intensity is taken and its processing is made. Further on the interferential function is calculated and the radial density function is defined. For determining these functions are used two methods, which were compared with each other and finally are received results for amorphous selenium RDF.

  8. Friction, Wear, and Evaporation Rates of Various Materials in Vacuum to 10(exp -7) mm Hg

    NASA Technical Reports Server (NTRS)

    Buckley, Donald H.; Swikert, Max; Johnson, Robert L.

    1961-01-01

    The requirements for bearings and seals to operate in the environment of space dictate a new area for lubrication research. The low ambient pressures encountered in space can be expected to influence the behavior of oil, grease, and solid-film lubricants. The property of these materials most significantly affected by low ambient pressures is the evaporation rate. Various investigators have therefore measured the evaporation rates of oils and greases in vacuum as one method of establishing their relative merit for space applications (1-3). The results of this work have given some indication as to the oils and greases with the greatest stability at reduced ambient pressures. Only limited experimental work, however, has been reported in the literature for inorganic solids and soft metals which have potential use as solid lubricant films or coatings for hard alloy substrates [e.g. Reference ( 4 )]. In general, the evaporation rates of these materials would be lower than those of oils and greases. These films might therefore be very attractive as lubricants for high vacuum service.

  9. Representative shuttle evaporative heat sink

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  10. Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrailh, P.; LAPLACE, CNRS, F-31062 Toulouse; Schneider Electric, Centre de Recherche 38 TEC, 38050 Grenoble Cedex 09

    2009-09-01

    During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion inmore » this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.« less

  11. Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.; Sandolache, G.; Rowe, S.

    2009-09-01

    During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion in this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.

  12. Vapor-crystal phase transition in synthesis of paracetamol films by vacuum evaporation and condensation

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.

    2014-03-01

    We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.

  13. Formation of Cadmium-Sulfide Nanowhiskers via Vacuum Evaporation and Condensation in a Quasi-Closed Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, A. P., E-mail: Alexei.Belyaev@pharminnotech.com; Antipov, V. V.; Rubets, V. P.

    Structural and technological studies of processes in which cadmium-sulfide nanowhiskers are synthesized in a quasi-closed volume by the method of vacuum evaporation and condensation are reported. It is demonstrated that the processes are in agreement with the classical vapor–liquid–crystal model. Micrographs of the objects in different formation stages are presented.

  14. Deposition and characterization of ZnS/Si heterojunctions produced by vacuum evaporation

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland

    1988-01-01

    Isotype heterojunctions of ZnS (lattice constant 5.41 A) were grown on silicon (lattice constant 5.43 A) p-n junctions to form a minority-carrier mirror. The deposition process was vacuum evaporation from a ZnS powder source onto a heated (450 C) substrate. Both planar (100) and textured (111) surfaces were used. A reduction of the minority-carrier recombination at the surface was seen from increased short-wavelength quantum response and increased illuminated open-circuit voltage. The minority-carrier diffusion length was not degraded by the process.

  15. Construction of vacuum system for Tristan accumulation ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishimaru, H.; Horikoshi, G.; Kobayashi, M.

    1983-08-01

    An all aluminum-alloy vacuum system for the TRISTAN accumulation ring is now under construction. Aluminum and aluminum alloys are preferred materials for ultrahigh vacuum systems of large electron storage rings because of their good thermal conductivity, extremely low outgassing rate, and low residual radioactivity. Vacuum beam chambers for the dipole and quadrupole magnets are extruded using porthole dies. The aluminum alloy 6063-T6 provides superior performance in extrusion. For ultrahigh vacuum performance, a special extrusion technique is applied which, along with the outgassing procedure used, is described in detail. Aluminum alloy 3004 seamless elliptical bellows are inserted between the dipole andmore » quadrupole magnet chambers. These bellows are produced by the hydraulic forming of a seamless tube. The seamless bellows and the beam chambers are joined by fully automatic welding. The ceramic chambers for the kicker magnets, the fast bump magnets, and the slow beam intensity monitor are inserted in the aluminum alloy beam chambers. The ceramic chamber (98% alumina) and elliptical bellows are brazed with brazing sheets (4003-3003-4003) in a vacuum furnace. The brazing technique is described. The inner surface of the ceramic chamber is coated with a TiMo alloy by vacuum evaporation to permit a smooth flow of the RF wall current. Other suitable aluminum alloy components, including fittings, feedthroughs, gauges, optical windows, sputter ion pumps, turbomolecular pumps, and valves have been developed; their fabrication is described.« less

  16. Vacuum distillation: vapor filtered-catalytic oxidation water reclamation system utilizing radioisotopes

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Kurg, E. K.

    1971-01-01

    The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.

  17. Characterization and Evaluation of Ti-Zr-V Non-evaporable Getter Films Used in Vacuum Systems

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J.; Seraphim, R. M.; Ramirez, A. J.; Tabacniks, M. H.; Nascente, P. A. P.

    Among several methods used to obtain ultra-high vacuum (UHV) for particles accelerators chambers, it stands out the internal coating with metallic films capable of absorbing gases, called NEG (non-evaporable getter). Usually these materials are constituted by elements of great chemical reactivity and solubility (such as Ti, Zr, and V), at room temperature for oxygen and other gases typically found in UHV, such as H2, CO, and CO2. Gold and ternary Ti-Zr-V films were produced by magnetron sputtering, and their composition, structure, morphology, and aging characteristics were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission gun sc anning electronmicroscopy (FEG-SEM), atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM). The comparison between the produced films and commercial samples indicated that the desirable characteristics depend on the nanometric structure of the films and that this structure is sensitive to the heat treatments.

  18. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenz, M.; Babutzka, M.; Bahr, M.

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less

  19. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    DOE PAGES

    Arenz, M.; Babutzka, M.; Bahr, M.; ...

    2016-04-07

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less

  20. Method for producing evaporation inhibiting coating for protection of silicon--germanium and silicon--molybdenum alloys at high temperatures in vacuum

    DOEpatents

    Chao, P.J.

    1974-01-01

    A method is given for protecting Si--Ge and Si-- Mo alloys for use in thermocouples. The alloys are coated with silicon to inhibit the evaporation of the alloys at high tempenatures in a vacuum. Specific means and methods are provided. (5 fig) (Official Gazette)

  1. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  2. Characterization of the CEBAF 100 kV DC GaAs Photoelectron Gun Vacuum System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutzman, M L; Adderley, P; Brittian, J

    A vacuum system with pressure in the low ultra-high vacuum (UHV) range is essential for long photocathode lifetimes in DC high voltage GaAs photoguns. A discrepancy between predicted and measured base pressure in the CEBAF photoguns motivated this study of outgassing rates of three 304 stainless steel chambers with different pretreatments and pump speed measurements of non-evaporable getter (NEG) pumps. Outgassing rates were measured using two independent techniques. Lower outgassing rates were achieved by electropolishing and vacuum firing the chamber. The second part of the paper describes NEG pump speed measurements as a function of pressure through the lower partmore » of the UHV range. Measured NEG pump speed is high at pressures above 5×10 -11 Torr, but may decrease at lower pressures depending on the interpretation of the data. The final section investigates the pump speed of a locally produced NEG coating applied to the vacuum chamber walls. These studies represent the first detailed vacuum measurements of CEBAF photogun vacuum chambers.« less

  3. Vacuum system of the compact Energy Recovery Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gasmore » interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.« less

  4. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  5. Well logging evaporative thermal protection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamers, M.D.; Martelli, V.P.

    1981-02-03

    An evaporative thermal protection system for use in hostile environment well logging applications, the system including a downhole thermal protection cartridge disposed within a well logging sonde or tool to keep a payload such as sensors and support electronics cool, the cartridge carrying either an active evaporative system for refrigeration or a passive evaporative system, both exhausting to the surface through an armored flexible fluidic communication mechanical cable.

  6. Purfication kinetics of beryllium during vacuum induction melting

    NASA Technical Reports Server (NTRS)

    Mukherjee, J. L.; Gupta, K. P.; Li, C. H.

    1972-01-01

    The kinetics of evaporation in binary alloys were quantitatively treated. The formalism so developed works well for several systems studied. The kinetics of purification of beryllium was studied through evaporation data actually acquired during vacuum induction melting. Normal evaporation equations are shown to be generally valid and useful for understanding the kinetics of beryllium purification. The normal evaporation analysis has been extended to cover cases of limited liquid diffusion. It was shown that under steady-state evaporation, the solute concentration near the surface may be up to six orders of magnitude different from the bulk concentration. Corrections for limited liquid diffusion are definitely needed for the highly evaporative solute elements, such as Zn, Mg, and Na, for which the computed evaporation times are improved by five orders of magnitude. The commonly observed logarithmic relation between evaporation time and final concentration further supports the validity of the normal evaporation equations.

  7. Advanced performance of small diaphragm vacuum pumps through the use of mechatronics

    NASA Astrophysics Data System (ADS)

    Lachenmann, R.; Dirscherl, J.

    Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .

  8. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  9. Evaporator Development for an Evaporative Heat Pipe System

    NASA Technical Reports Server (NTRS)

    Peters, Leigh C.

    2004-01-01

    As fossil fuel resources continue to deplete, research for alternate power sources continues to develop. One of these alternate technologies is fuel cells. They are a practical fuel source able to provide significant amounts of power for applications from laptops to automobiles and their only byproduct is water. However, although this technology is over a century old and NASA has been working with it since the early 1960 s there is still room for improvement. The research I am involved in at NASA's Glenn Research Center is focusing on what is called a regenerative fuel cell system. The unique characteristic of this type of system is that it used an outside power source to create electrolysis of the water it produces and it then reuses the hydrogen and oxygen to continue producing power. The advantage of this type of system is that, for example, on space missions it can use solar power to recharge its gas supplies between periods when the object being orbited blocks out the sun. This particular system however is far from completion. This is because of the many components that are required to make up a fuel cell that need to be tested individually. The specific part of the system that is being worked on this summer of 2004 is the cooling system. The fuel cell stack, that is the part that actually creates the power, also produces a lot of heat. When not properly cooled, it has been known to cause fires which, needless to say are not conducive to the type of power that is trying to be created. In order to cool the fuel cell stack in this system we are developing a heat pipe cooling system. One of the main components of a heat pipe cooling system is what is known as the evaporator, and that is what happens to be the part of the system we are developing this summer. In most heat pipe systems the evaporator is a tube in which the working fluid is cooled and then re-circulated through the system to absorb more heat energy from the fuel cell stack. For this system, instead

  10. Tubular sublimatory evaporator heat sink

    NASA Technical Reports Server (NTRS)

    Webbon, B. W. (Inventor)

    1977-01-01

    An evaporative refrigerator or cooler comprising a bundle of spaced, porous walled tubes closed at one of their ends and vented to a vacuum at the other end is disclosed. The tube bundle is surrounded by a water jacket having a hot water inlet distribution manifold and a cooled water outlet through a plenum chamber. Hot water is pumped into the jacket to circulate around the tubes, and when this water meets the vacuum existing inside the tubes, it evaporates thereby cooling the water in the jacket. If cooling proceeds to the point where water penetrating or surrounding all or part of the tubes freezes, operation continues with local sublimation of the ice on the tubes while the circulating water attempts to melt the ice. Both sublimation and evaporation may take place simultaneously in different regions of the device.

  11. NSLS II Vacuum System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, M.; Doom, L.; Hseuh, H.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning andmore » mounting the chambers are given.« less

  12. Analysis of plasma-controlled laser evaporation of Al target in vacuum

    NASA Astrophysics Data System (ADS)

    Mazhukin, Vladimir I.; Nossov, Vadim V.; Smurov, Igor Y.

    2004-04-01

    The plasma-controlled evaporation of the Al target induced by the laser pulse with intensity of 8 x 108 W/cm2 and wavelength of 1.06 μm is analyzed with account for the two-dimensional effects. The self consistent model is applied, consisting of the heat transfer equation in condensed medium, the system of radiation gas dynamics in evaporated substance, and the Knudsen layer model at the two media boundary. It is established that the phase transition of the target surface is controlled by the two factors: the surface temperature that depends on the transmitted radiation intensity and the plasma pressure, governed by the expansion regime. The process comes through three characteristics stages -- the sonic evaporation at the beginning, the condensation during the period of plasma formation and initial expansion and, finally, the recommence of evaporation in subsonic regime after the partial brightening of the plasma. During the subsonic evaporation stage the vapor flow and the mass removal rate is much higher near the beam boundaries than in the center due to smaller plasma counter-pressure. The vapor plasma pattern is characterized by the dense hot zone near the surface where the deposition of laser energy occurs, and rapid decrease of density outside the zone due to three-dimensional expansion. The application of the laser beam of smaller radius at the same intensity leads to the formation of more rarefied and more transparent plasma, that allows to improve the mass removal efficiency.

  13. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  14. Switching Circuit for Shop Vacuum System

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1987-01-01

    No internal connections to machine tools required. Switching circuit controls vacuum system draws debris from grinders and sanders in machine shop. Circuit automatically turns on vacuum system whenever at least one sander or grinder operating. Debris safely removed, even when operator neglects to turn on vacuum system manually. Pickup coils sense alternating magnetic fields just outside operating machines. Signal from any coil or combination of coils causes vacuum system to be turned on.

  15. Technical specification for vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaw, J.

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing andmore » designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)« less

  16. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  17. An ultrahigh vacuum, low-energy ion-assisted deposition system for III-V semiconductor film growth

    NASA Astrophysics Data System (ADS)

    Rohde, S.; Barnett, S. A.; Choi, C.-H.

    1989-06-01

    A novel ion-assisted deposition system is described in which the substrate and growing film can be bombarded with high current densities (greater than 1 mA/sq cm) of very low energy (10-200 eV) ions. The system design philosophy is similar to that used in III-V semiconductor molecular-beam epitaxy systems: the chamber is an all-metal ultrahigh vacuum system with liquid-nitrogen-cooled shrouds, Knudsen-cell evaporation sources, a sample insertion load-lock, and a 30-kV reflection high-energy electron diffraction system. III-V semiconductor film growth is achieved using evaporated group-V fluxes and group-III elemental fluxes sputtered from high-purity targets using ions extracted from a triode glow discharge. Using an In target and an As effusion cell, InAs deposition rates R of 2 microns/h have been obtained. Epitaxial growth of InAs was observed on both GaSb(100) and Si(100) substrates.

  18. Vacuum testing of high efficiency AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuller, M.; Phillips, P.H.; Sievers, R.

    1996-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), in cooperation with JPL, AMPS, Creare, and ORION, is performing vacuum testing of high performance Alkali Metal Thermal to Electric Conversion (AMTEC) cells, including the Micro-Machined Evaporator (MME) and PL-9A cells. The MME cell was designed to test an improved evaporator, which should allow long term operation at evaporator temperatures as high as 1,100 K. The PL-9A cell was designed and built by AMPS under contract to ORION to test an improved heat shield assembly. The testing at Phillips Lab is done in a vacuum test stand which simulates the environmentmore » of an AMTEC cell operating as part of a spacecraft power system. The test configuration consists of the MME cell (later replaced by by the PL-9A cell) in the center of an array of six other AMTEC cells. The seven cells are encased in multifoil insulation. Testing shows that there is little difference between cell current/voltage performance when measured in vacuum tests compared to guard heater tests. The author are also examining the differences between fast I-V curve sweeps, recorded manually, with the cell operating at constant heat input, over a period of five minutes or less, and equilibrium I-V curve sweeps, in which the cell reaches thermal equilibrium at each data point.« less

  19. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  20. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  1. Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation.

    PubMed

    Zhu, Xuejie; Yang, Dong; Yang, Ruixia; Yang, Bin; Yang, Zhou; Ren, Xiaodong; Zhang, Jian; Niu, Jinzhi; Feng, Jiangshan; Liu, Shengzhong Frank

    2017-08-31

    Chemical composition and film quality are two key figures of merit for large-area high-efficiency perovskite solar cells. To date, all studies on mixed perovskites have used solution-processing, which results in imperfect surface coverage and pin-holes generated during solvent evaporation, execrably influencing the stability and efficiency of perovskite solar cells. Herein, we report our development using a vacuum co-evaporation deposition method to fabricate pin-hole-free cesium (Cs)-substituted perovskite films with complete surface coverage. Apart from the simplified procedure, the present method also promises tunable band gap, reduced trap-state density and longer carrier lifetime, leading to solar cell efficiency as high as 20.13%, which is among the highest reported for planar perovskite solar cells. The splendid performance is attributed to superior merits of the Cs-substituted perovskite film including tunable band gap, reduced trap-state density and longer carrier lifetime. Moreover, the Cs-substituted perovskite device without encapsulation exhibits significantly higher stability in ambient air compared with the single-component counterpart. When the Cs-substituted perovskite solar cells are stored in dark for one year, the PCE remains at 19.25%, degrading only 4.37% of the initial efficiency. The excellent stability originates from reduced lattice constant and relaxed strain in perovskite lattice by incorporating Cs cations into the crystal lattice, as demonstrated by the positive peak shifts and reduced peak width in X-ray diffraction analysis.

  2. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a.... (b) Each vacuum air system line and fitting on the discharge side of the pump that might contain...

  3. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    NASA Astrophysics Data System (ADS)

    Amiotti, M.

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The

  4. Troubleshooting crude vacuum tower overhead ejector systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, J.R.; Frens, L.L.

    1995-03-01

    Routinely surveying tower overhead vacuum systems can improve performance and product quality. These vacuum systems normally provide reliable and consistent operation. However, process conditions, supplied utilities, corrosion, erosion and fouling all have an impact on ejector system performance. Refinery vacuum distillation towers use ejector systems to maintain tower top pressure and remove overhead gases. However, as with virtually all refinery equipment, performance may be affected by a number of variables. These variables may act independently or concurrently. It is important to understand basic operating principles of vacuum systems and how performance is affected by: utilities, corrosion and erosion, fouling, andmore » process conditions. Reputable vacuum-system suppliers have service engineers that will come to a refinery to survey the system and troubleshoot performance or offer suggestions for improvement. A skilled vacuum-system engineer may be needed to diagnose and remedy system problems. The affect of these variables on performance is discussed. A case history is described of a vacuum system on a crude tower in a South American refinery.« less

  5. Solar cells for lunar applications by vacuum evaporation of lunar regolith materials

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex

    1991-01-01

    The National Space Exploration Initiative, specifically the Lunar component, has major requirements for technology development of critical systems, one of which is electrical power. The availability of significant electrical power on the surface of the Moon is a principal driver defining the complexity of the lunar base. Proposals to generate power on the Moon include both nuclear and solar (photovoltaic) systems. A more efficient approach is to attempt utilization of the existing lunar resources to generate the power systems. Synergism may occur from the fact that there have already been lunar materials processing techniques proposed for the extraction of oxygen that would have, as by-products, materials that could be specifically used to generate solar cells. The lunar environment is a vacuum with pressures generally in the 1 x 10(exp -10) torr range. Such conditions provide an ideal environment for direct vacuum deposition of thin film solar cells using the waste silicon, iron, and TiO2 available from the lunar regolith processing meant to extract oxygen. It is proposed, therefore, to grow by vacuum deposition, thin film silicon solar cells from the improved regolith processing by-products.

  6. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... The following requirements apply to vehicles with vacuum brake assist units and vacuum brake systems. (a) Vacuum brake assist unit integrity. The vacuum brake assist unit shall demonstrate integrity as... maintained on the pedal. (1) Inspection procedure. Stop the engine and apply service brake several times to...

  7. Numerical Study on Natural Vacuum Solar Desalination System with Varying Heat Source Temperature

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2017-03-01

    A natural vacuum desalination unit with varying low grade heat source temperature is investigated numerically. The objective is to explore the effects of the variable temperature of the low grade heat source on performances and characteristics of the desalination unit. The specifications of the desalination unit are naturally vacuumed with surface area of seawater in evaporator and heating coil are 0.2 m2 and 0.188 m2, respectively. Temperature of the heating coil is simulated based on the solar radiation in the Medan city. A program to solve the governing equations in forward time step marching technique is developed. Temperature of the evaporator, fresh water production rate, and thermal efficiency of the desalination unit are analysed. Simulation is performed for 9 hours, it starts from 8.00 and finishes at 17.00 of local time. The results show that, the desalination unit with operation time of 9 hours can produce 5.705 L of freshwater and thermal efficiency is 81.8 %. This reveals that varying temperature of the heat source of natural vacuum desalination unit shows better performance in comparison with constant temperature of the heat source.

  8. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. (b) Each vacuum air system line and fitting on the discharge side of the pump that might contain...

  9. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  10. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott

    2011-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  11. Evaporation of Lennard-Jones fluids.

    PubMed

    Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S

    2011-06-14

    Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.

  12. Vacuum ultraviolet coatings of Al protected with MgF(2) prepared both by ion-beam sputtering and by evaporation.

    PubMed

    Fernández-Perea, Mónica; Larruquert, Juan I; Aznárez, José A; Pons, Alicia; Méndez, José A

    2007-08-01

    Ion-beam sputtering (IBS) and evaporation are the two deposition techniques that have been used to deposit coatings of Al protected with MgF(2) with high reflectance in the vacuum ultraviolet down to 115 nm. Evaporation deposited (ED) Al protected with IBS MgF(2) resulted in a larger (smaller) reflectance below (above) 125 nm than the well-known all-evaporated coatings. A similar comparison is obtained when the Al film is deposited by IBS instead of evaporation. The lower reflectance of the coatings protected with IBS versus ED MgF(2) above 125 nm is because of larger absorption of the former. Both nonprotected IBS Al, as well as IBS Al protected with ED MgF(2), resulted in a band of reflectance loss that was peaked at 127 and 157 nm, respectively. This result was attributed to the excitation of surface plasmons due to the enhancement of surface roughness with large spatial wave vectors in the sputter deposition. This reflectance loss for IBS Al protected with MgF(2) is small at the short (lambda~120 nm) and long (lambda<350 nm) wavelengths investigated. IBS Al protected with ED MgF(2) is thus a promising coating for these two spectral regions. Coatings protected with IBS MgF(2) resulted in a reflectance as high as coatings protected with ED MgF(2) at wavelengths longer than 550 nm, whereas the former had a lower reflectance below this wavelength.

  13. Normal evaporation of binary alloys

    NASA Technical Reports Server (NTRS)

    Li, C. H.

    1972-01-01

    In the study of normal evaporation, it is assumed that the evaporating alloy is homogeneous, that the vapor is instantly removed, and that the alloy follows Raoult's law. The differential equation of normal evaporation relating the evaporating time to the final solute concentration is given and solved for several important special cases. Uses of the derived equations are exemplified with a Ni-Al alloy and some binary iron alloys. The accuracy of the predicted results are checked by analyses of actual experimental data on Fe-Ni and Ni-Cr alloys evaporated at 1600 C, and also on the vacuum purification of beryllium. These analyses suggest that the normal evaporation equations presented here give satisfactory results that are accurate to within an order of magnitude of the correct values, even for some highly concentrated solutions. Limited diffusion and the resultant surface solute depletion or enrichment appear important in the extension of this normal evaporation approach.

  14. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  15. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  16. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  17. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  18. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  19. Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation.

    PubMed

    Díaz, Víctor Hugo Grisales; Tost, Gerard Olivar

    2016-10-01

    Techno-economic study of acetone, butanol and ethanol (ABE) fermentation from lignocellulose was performed. Simultaneous saccharification, fermentation and vacuum evaporation (SFS-V) or pervaporation (SFS-P) were proposed. A kinetic model of metabolic pathways for ABE fermentation with the effect of phenolics and furans in the growth was proposed based on published laboratory results. The processes were optimized in Matlab®. The end ABE purification was carried out by heat-integrated distillation. The objective function of the minimization was the total annualized cost (TAC). Fuel consumption of SFS-P using poly[1-(trimethylsilyl)-1-propyne] membrane was between 13.8 and 19.6% lower than SFS-V. Recovery of furans and phenolics for the hybrid reactors was difficult for its high boiling point. TAC of SFS-P was increased 1.9 times with supplementation of phenolics and furans to 3g/l each one for its high toxicity. Therefore, an additional detoxification method or an efficient pretreatment process will be necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Safe and Efficient Evaporation of a Solvent from Solution

    NASA Astrophysics Data System (ADS)

    Mahon, Andrew R.

    1997-02-01

    The process of evaporating a solvent from a solution can cause problems for many students. By using a water-vacuum aspirator, backflashes of water can flood the sample tube and be detrimental to the experiment. This type of apparatus can also cause problems by drawing the solution it is evaporating back into the vacuum hose, causing the student to lose part or all of the products of their experiment. Macroscale and Microscale Organic Experiments, 2nd edition (1), suggested two techniques to dissolve solvents from a mixture. It suggested blowing a stream of air over the solution from a Pasteur pipet, or attaching a Pasteur pipet to an aspirator and drawing air over the surface of the liquid. Again, the danger of blowing air over the solution leaves the risk of splattering the solution, and drawing air over the surface of the liquid as described further endangers the products of the experiment through the risk of sucking the products up into the pipet aspirator. In an effort to eliminate these problems, a new technique has been developed. By inverting an ordinary 200-mL vacuum flask and pulling a steady current of air from the vacuum apparatus through it, any type of small container can be placed under it, allowing the solvent to be evaporated in a steady, mistake-free manner . By evaporating the solvent from the container that the products will be submitted in, no sample is lost through the process of transferring it from a vacuum flask or beaker to the final container.

  1. Realization of single-phase BaSi2 films by vacuum evaporation with suitable optical properties and carrier lifetime for solar cell applications

    NASA Astrophysics Data System (ADS)

    Hara, Kosuke O.; Nakagawa, Yoshihiko; Suemasu, Takashi; Usami, Noritaka

    2015-07-01

    We have realized BaSi2 films by a simple vacuum evaporation technique for solar cell applications. X-ray diffraction analysis shows that single-phase BaSi2 films are formed on alkali-free glass substrates at 500 and 600 °C while impurity phases coexist on quartz or soda-lime glass substrates or at a substrate temperature of 400 °C. The mechanism of film growth is discussed by analyzing the residue on the evaporation boat. An issue on the fabricated films is cracking due to thermal mismatch, as observed by secondary electron microscopy. Optical characterizations by transmittance and reflectance spectroscopy show that the evaporated films have high absorption coefficients, reaching 2 × 104 cm-1 for a photon energy of 1.5 eV, and have indirect absorption edges of 1.14-1.21 eV, which are suitable for solar cells. The microwave-detected photoconductivity decay measurement reveals that the carrier lifetime is approximately 0.027 µs, corresponding to the diffusion length of 0.84 µm, which suggests the potential effective usage of photoexcited carriers.

  2. Cryogenic Insulation System for Soft Vacuum

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.

    1999-01-01

    The development of a cryogenic insulation system for operation under soft vacuum is presented in this paper. Conventional insulation materials for cryogenic applications can be divided into three levels of thermal performance, in terms of apparent thermal conductivity [k-value in milliwatt per meter-kelvin (mW/m-K)]. System k-values below 0.1 can be achieved for multilayer insulation operating at a vacuum level below 1 x 10(exp -4) torr. For fiberglass or powder operating below 1 x 10(exp -3) torr, k-values of about 2 are obtained. For foam and other materials at ambient pressure, k-values around 30 are typical. New industry and aerospace applications require a versatile, robust, low-cost thermal insulation with performance in the intermediate range. The target for the new composite insulation system is a k-value below 4.8 mW/m-K (R-30) at a soft vacuum level (from 1 to 10 torr) and boundary temperatures of approximately 77 and 293 kelvin (K). Many combinations of radiation shields, spacers, and composite materials were tested from high vacuum to ambient pressure using cryostat boiloff methods. Significant improvement over conventional systems in the soft vacuum range was demonstrated. The new layered composite insulation system was also shown to provide key benefits for high vacuum applications as well.

  3. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  4. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 25.1433 Section 25.1433 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There...

  5. Vapor pressures and evaporation coefficients for melts of ferromagnesian chondrule-like compositions

    NASA Astrophysics Data System (ADS)

    Fedkin, A. V.; Grossman, L.; Ghiorso, M. S.

    2006-01-01

    To determine evaporation coefficients for the major gaseous species that evaporate from silicate melts, the Hertz-Knudsen equation was used to model the compositions of residues of chondrule analogs produced by evaporation in vacuum by Hashimoto [Hashimoto A. (1983) Evaporation metamorphism in the early solar nebula-evaporation experiments on the melt FeO-MgO-SiO 2-CaO-Al 2O 3 and chemical fractionations of primitive materials. Geochem. J. 17, 111-145] and Wang et al. [Wang J., Davis A. M., Clayton R. N., Mayeda T. K., Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO 2-CaO-Al 2O 3-TiO 2 rare earth element melt system. Geochim. Cosmochim. Acta 65, 479-494], in vacuum and in H 2 by Yu et al. [Yu Y., Hewins R. H., Alexander C. M. O'D., Wang J. (2003) Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta 67, 773-786], and in H 2 by Cohen et al. [Cohen B. A., Hewins R. H., Alexander C. M. O'D. (2004) The formation of chondrules by open-system melting of nebular condensates. Geochim. Cosmochim. Acta 68, 1661-1675]. Vapor pressures were calculated using the thermodynamic model of Ghiorso and Sack [Ghiorso M. S., Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197-212], except for the late, FeO-free stages of the Wang et al. (2001) and Cohen et al. (2004) experiments, where the CMAS activity model of Berman [Berman R. G. (1983) A thermodynamic model for multicomponent melts, with application to the system CaO-MgO-Al 2O 3-SiO 2. Ph.D. thesis, University of British Columbia] was used. From these vapor pressures, evaporation coefficients ( α) were obtained that give the best fits to the time variation of the residue compositions

  6. Development and fabrication of the vacuum systems for an elliptically polarized undulator at Taiwan Photon Source

    NASA Astrophysics Data System (ADS)

    Chang, Chin-Chun; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen

    2017-05-01

    Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10-8 Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.

  7. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  8. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  9. New evaporator station for the center for accelerator target science

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Labib, Mina

    2018-05-01

    As part of an equipment grant provided by DOE-NP for the Center for Accelerator Target Science (CATS) initiative, the procurement of a new, electron beam, high-vacuum deposition system was identified as a priority to insure reliable and continued availability of high-purity targets. The apparatus is designed to contain TWO electron beam guns; a standard 4-pocket 270° geometry source as well as an electron bombardment source. The acquisition of this new system allows for the replacement of TWO outdated and aging vacuum evaporators. Also included is an additional thermal boat source, enhancing our capability within this deposition unit. Recommended specifications for this system included an automated, high-vacuum pumping station, a deposition chamber with a rotating and heated substrate holder for uniform coating capabilities and incorporating computer-controlled state-of-the-art thin film technologies. Design specifications, enhanced capabilities and the necessary mechanical modifications for our target work are discussed.

  10. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, G.W.; Bushman, J.F.; Alger, T.W.

    1996-07-23

    A vacuum housing and pumping system is described for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof. 7 figs.

  11. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, Gerald W.; Bushman, John F.; Alger, Terry W.

    1996-01-01

    A vacuum housing and pumping system for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof.

  12. Ultralight Fabric Reflux Tube (UFRT) Thermal/Vacuum Test

    NASA Technical Reports Server (NTRS)

    Hurlbert, K. M.; Ewert, M. K.; Graf, J. P.; Keller, J. R.; Pauley, K. A.; Guenther, R. J.; Antoniak, Z. I.

    1996-01-01

    Spacecraft thermal control systems are essential to provide the necessary environment for the crew and equipment to function adequately on space missions. The Ultralight Fabric Reflux Tube (UFRT) was developed by Pacific Northwest Laboratory (PNL) as a lightweight radiator concept to be used on planetary-type missions (e.g., Moon, Mars). The UFRT consists of a thin-walled tube (acting as the fluid boundary), overwrapped with a low-mass ceramic fabric (acting as the primary pressure boundary). The tubes are placed in an array in the vertical position with the evaporators at the lower end. Heat is added to the evaporators, which vaporizes the working fluid. The vapor travels to the condenser end above and cools as heat is radiated to the environment. The fluid condensed on the tube wall is then returned to the evaporator by gravity. The primary objectives for the fiscal year 1994 program included the design and fabrication of prototype UFRTs and thermal/vacuum chamber testing of these test articles. Six UFRTS, with improved titanium liners, were successfully manufactured and provided to the Johnson Space Center in July 1994. Five were tested in a thermal/vacuum chamber in September 1994. Data obtained to characterize the performance of the UFRTs under simulated lunar conditions demonstrated the design concept successfully. In addition, a trade study showed that an optimized/improved UFRT could achieve as much as a 25% mass savings in the heat rejection subsystem of future planetary-type thermal control systems.

  13. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CORBETT JE; TEDESCH AR; WILSON RA

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal.more » This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.« less

  14. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. [Doc. No...

  15. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum to...

  16. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum to...

  17. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum to...

  18. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum to...

  19. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum to...

  20. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  1. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems.

    PubMed

    Han, Young Keun; Miller, Kevin M

    2009-08-01

    To compare vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification machines. Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. The vacuum rise time under normal and enhanced aspiration modes, vacuum limit accuracy, and occlusion break surge of the Infiniti Vision System, Stellaris Vision Enhancement System, and WhiteStar Signature Phacoemulsification System were tested. Vacuum rise time and limit accuracy were measured at limit settings of 400 mm Hg and 600 mm Hg. Surge area was recorded at vacuum limit settings of 200 mm Hg, 300 mm Hg, 400 mm Hg, and 500 mm Hg. The Infiniti had the fastest vacuum rise times under normal and enhanced aspiration modes. At 4 seconds, the vacuum limit accuracy was greatest with the Infiniti at the 400 mm Hg limit and the Signature at the 600 mm Hg limit. The Stellaris did not reach either vacuum target. The Infiniti performed better than the other 2 machines during testing of occlusion break surge at all vacuum limit settings above 200 mm Hg. Under controlled laboratory test conditions, the Infiniti had the fastest vacuum rise time, greatest vacuum limit accuracy at 400 mm Hg, and least occlusion break surge. These results can be explained by the lower compliance of the Infiniti system.

  2. Vacuum system of the cyclotrons in VECC, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anindya; Bhole, R.B.; Akhtar, J.

    2011-07-01

    The vacuum system of the K=130 Room Temperature Cyclotron (RTC) (operational since 1978) has been recently modernized and the same of the K{sub bend}=520 Superconducting Cyclotron (SCC), currently under commissioning, is being deployed for remote monitoring and control. The vacuum system of RTC is designed to achieve and maintain vacuum level of 2 X 10{sup -6} mbar inside 23 m{sup 3} volume of Resonator tank and DEE tank. This has been upgraded by replacing several valves, Freon units, gauges and pumps. The relay based manual control system has been replaced by PLC based automated system. The SCC vacuum system alsomore » has an elaborate arrangement comprising of turbo molecular pumping modules with associated isolation valves and characteristic gauges. This paper describes essential elements, typically used to obtain high (1X10{sup -7} mbar) vacuum using rotary pumps, diffusion pumps and cold traps/turbo-molecular pumps and other system components such as valves, gauges and baffles. The supervisory control methodology/scheme of both the vacuum systems, developed in-house using EPICS (Experimental Physics and Industrial Control System), a standard open-source software tool for designing distributed control system, is also elaborated here. (author)« less

  3. Vacuum transfer system increases sugar maple sap yield

    Treesearch

    Russell S. Walters

    1978-01-01

    Yields of sugar maple sap collected from three plastic pipeline systems by gravity, vacuum pump, and a vacuum pump with a transfer tank were compared during 2 years in northern Vermont. The transfer system yielded 27 percent more sap one year and 17 percent more the next year. Higher vacuum levels at the tapholes were observed in the transfer system.

  4. Fabrication of a Quartz-Crystal-Microbalance/Optical-Waveguide Hybrid Sensor and In situ Evaluation of Vacuum-Evaporated Lead Phthalocyanine Thin Film

    NASA Astrophysics Data System (ADS)

    Shinbo, Kazunari; Uno, Akihiro; Hirakawa, Ryo; Baba, Akira; Ohdaira, Yasuo; Kato, Keizo; Kaneko, Futao

    2013-05-01

    In this study, we fabricated a novel quartz-crystal-microbalance (QCM)/optical-waveguide hybrid sensor. An in situ observation of a lead phthalocyanine (PbPc) thin-film deposition was conducted during vacuum evaporation, and the effectiveness of the sensor was demonstrated. The film thickness was obtained from the QCM frequency, and the optical absorption of the film was observed by optical waveguide spectroscopy using part of the QCM substrate without the electrode. The film absorption depends on the polarization direction, substrate temperature and deposition rate, owing to aggregate formation. The thickness dependence of the absorption property was also investigated.

  5. Transfer-arm evaporator cell for rapid loading and deposition of organic thin films.

    PubMed

    Greiner, M T; Helander, M G; Wang, Z B; Lu, Z H

    2009-12-01

    Described herein is a transfer-arm evaporator cell (TAE-cell), which allows for rapid loading of materials into vacuum for low-temperature sublimation deposition of thin films. This design can be incorporated with an existing analysis system for convenient in situ thin film characterization. This evaporator is especially well suited for photoemission characterization of organic semiconductor interfaces. Photoemission is one of the most important techniques for characterizing such, however, it generally requires in situ sample preparation. The ease with which materials can be loaded and evaporated with this design increases the throughput of in situ photoemission characterization, and broadens the research scope of the technique. Here, we describe the design, operation, and performance of the TAE-cell.

  6. Vacuum system for the SAMURAI spectrometer

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Otsu, H.; Kobayashi, T.; Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K.

    2013-12-01

    The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  7. Membrane-Based Water Evaporator for a Space Suit

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; McCann, Charles J.; O'Connell, Mary K.; Andrea, Scott

    2004-01-01

    A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.

  8. Evaluation of evaporation coefficient for micro-droplets exposed to low pressure: A semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Chakraborty, Prodyut R.; Hiremath, Kirankumar R.; Sharma, Manvendra

    2017-02-01

    Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.

  9. A highly miniaturized vacuum package for a trapped ion atomic clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it wasmore » sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.« less

  10. A highly miniaturized vacuum package for a trapped ion atomic clock

    DOE PAGES

    Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; ...

    2016-05-12

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm 3 in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, the packagemore » was sealed with a copper pinch-off and was then pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of 171Yb +. The fractional frequency stability of the clock was measured to be 2 × 10 -11 / τ 1/2.« less

  11. Wireless Integrated Microelectronic Vacuum Sensor System

    NASA Technical Reports Server (NTRS)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  12. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  13. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  14. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  15. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    condensable matter (see Chapter 1.08; Grossman, 1973; Wänke et al., 1974; Grossman and Ganapathy, 1976; Grossman et al., 1977), where CI chondrites are taken to represent total condensable matter.Elemental abundance patterns ordered by volatility certainly could have been produced by partial condensation, but they could also have been caused by partial evaporation. The relative importance of these opposite processes is still subject to debate and uncertainty. It should be remembered that condensation calculations typically assume chemical equilibrium in a closed system, in which case the system has no memory of the path by which it arrived at a given state, and thus the chemical and isotopic composition of the condensed phase cannot be used to distinguish between partial condensation and partial evaporation. Humayun and Clayton (1995) have taken a somewhat different view by arguing that condensation and evaporation are distinguishable, in that evaporation, but not condensation, will produce isotopically fractionated residues. With this idea in mind, they carefully measured the potassium isotopic compositions of a broad range of solar system materials with different degrees of potassium depletion and found them to be indistinguishable. This they took as evidence that evaporation could not have been a significant process in determining the diverse elemental abundance patterns of the various solar system materials they measured, because had evaporation been important in fractionating potassium it would have also fractionated the potassium isotopes. We will qualify this line of reasoning by arguing that evaporation and condensation can under certain conditions produce isotopically fractionated condensed phases (i.e., that partial evaporation can produce isotopically heavy residues and that partial condensation can produce isotopically light condensates) but that under other conditions both can produce elemental fractionations without significant isotopic fractionation. The

  16. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chander, Subhash, E-mail: sckhurdra@gmail.com; Purohit, A.; Lal, C.

    2016-05-06

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays anmore » important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.« less

  17. Vacuum system transient simulator and its application to TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sredniawski, J.

    The vacuum system transient simulator (VSTS) models transient gas transport throughout complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. VSTS is capable of treating gas models of up to 10 species, for all flow regimes from pure molecular to continuum. Viscous interactions between species are considered as well as non-uniform temperature of a system. Although this program was specifically developed for use on the Tokamak Fusion Test Reactor (TFTR) project at Princeton, it is a generalized tool capable of handling a broad range of vacuum system problems. During the TFTR engineering design phase, VSTSmore » has been used in many applications. Two applications selected for presentation are: torus vacuum pumping system performance between 400 Ci tritium pulses and tritium backstreaming to neutral beams during pulses.« less

  18. Evaporation Source for Deposition of Protective Layers inside Tubes

    NASA Astrophysics Data System (ADS)

    Musa, Geavit; Mustata, Ion; Dinescu, Gheorghe; Bajeu, George; Raiciu, Elena

    1992-09-01

    A heated cathode arc can be ignited in vacuum in the vapours of the anode material due to the accelerated electron beam from the cathode. A small assembly, consisting of an electron gun as the cathode and a refractory metal crucible, containing the material to be evaporated, as the anode, can be moved along the axis of the tube whose inside wall is to be covered with a protective layer. The vacuum arc ignited between the electrodes in the vapours of the evaporating anode material ensures a high deposition rate with low thermal energy transport to the tube wall. This new method can be used for the deposition of various metal layers inside different kinds of tubes (metallic, glass, ceramics or plastics).

  19. Characteristics of the Self-evaporation Behavior of Sprinkled Water near the Triple Point

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuo; Hayashi, Kanetoshi; Ogoshi, Hidemasa; Maeyama, Katsuya; Yonezawa, Noriyuki

    For the sake of capturing the basic data in concern with the designing of vacuum evaporation apparatus, characteristics of the self-evaporation behavior of sprinkled water near the triple point has been investigated experimentally. The relationship between the amount of the vaporized water and the pressure in the vessel was elucidated quantitatively on the condition that over-heated water was sprinkled from water supplying nozzles of diameter of 4 mm into the center of the steam area in the heat insulation glass evaporation vessel having diameter of 200 mm and height of 1100 mm. Even under the mild water sprinkling conditions such as no small particle formation, small Reynolds number, and small Weber number, the temperature effectiveness of the self-evaporation in the center of the steam was as high as 80%, which clearly shows the effectiveness of this water-sprinkling method. In addition, the basic data for system designing such as water evaporation coefficient from water layer surface and temperature effectiveness of self-evaporation during the f1ight in the steam space were obtained.

  20. Accelerator Vacuum Protection System

    NASA Astrophysics Data System (ADS)

    Barua, Pradip; Kothari, Ashok; Archunan, M.; Joshi, Rajan

    2012-11-01

    A new and elaborate automatic vacuum protection system using fast acting valve has been installed to avoid accidental venting of accelerator from experimental chamber side. To cover all the beam lines and to reduce the system cost, it has been installed at a common point from where all the seven beam lines originate. The signals are obtained by placing fast response pressure sensing gauges (HV SENSOR) near all the experimental stations. The closing time of the fast valve is 10 milli-second. The fast closing system protects only one vacuum line at a time. At IUAC, we have seven beam lines so one sensor was placed in each of the beam lines near experimental chamber and a multiplexer was incorporated into the fast closing system. At the time of experiment, the sensor of the active beam line is selected through the multiplexer and the Fast closing valve is interlocked with the selected sensor. As soon as the pressure sensor senses the pressure rise beyond a selected pressure, the signal is transferred and the fast valve closes within 10 to 12 millisecond.

  1. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  2. Laboratory simulation of processes of evaporation, condensation, and sputtering taking place on the surface of the moon

    NASA Technical Reports Server (NTRS)

    Nusinov, M. D.; Kochnev, V. A.; Chernyak, Y. B.; Kuznetsov, A. V.; Kosolapov, A. I.; Yakovlev, O. I.

    1974-01-01

    Study of evaporation, condensation and sputtering on the moon can provide information on the same processes on other planets, and reveal details of the formation of the lunar regolith. Simulation methods include vacuum evaporation, laser evaporation, and bubbling gas through melts.

  3. Increasing the Efficiency of a Thermoelectric Generator Using an Evaporative Cooling System

    NASA Astrophysics Data System (ADS)

    Boonyasri, M.; Jamradloedluk, J.; Lertsatitthanakorn, C.; Therdyothin, A.; Soponronnarit, S.

    2017-05-01

    A system for reducing heat from the cold side of a thermoelectric (TE) power generator, based on the principle of evaporative cooling, is presented. An evaporative cooling system could increase the conversion efficiency of a TE generator. To this end, two sets of TE generators were constructed. Both TE generators were composed of five TE power modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The hot side heat sinks were inserted in a hot gas duct. The cold side of one set was cooled by the cooling air from a counter flow evaporative cooling system, whereas the other set was cooled by the parallel flow evaporative cooling system. The counter flow pattern had better performance than the parallel flow pattern. A comparison between the TE generator with and without an evaporative cooling system was made. Experimental results show that the power output increased by using the evaporative cooling system. This can significantly increase the TE conversion efficiency. The evaporative cooling system increased the power output of the TE generator from 22.9 W of ambient air flowing through the heat sinks to 28.6 W at the hot gas temperature of 350°C (an increase of about 24.8%). The present study shows the promising potential of using TE generators with evaporative cooling for waste heat recovery.

  4. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    NASA Technical Reports Server (NTRS)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  5. Niobium tunnel junction fabrication using e-gun evaporation and SNAP

    NASA Astrophysics Data System (ADS)

    Kortlandt, J.; van der Zant, H. S. J.; Schellingerhout, A. J. G.; Mooij, J. E.

    1990-11-01

    We have fabricated high quality small area Nb-Al-Al 2O 3-Nb junctions with SNAP, making use of e-beam evaporation in a 10 -5 Pa diffusion pumped vacuum system. Nominal dimensions of the junctions are 8x8, 4x4 and 2x2 μm 2. We obtain typical current densities of 5-6 × 10 +2A/cm 2 and (critical current) x (subgap resistance) products of 40 mV.

  6. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  7. Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  8. Thermal Vacuum Integrated System Test at B-2

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  9. Thermal Vacuum Control Systems Options for Test Facilities

    NASA Technical Reports Server (NTRS)

    Marchetti, John

    2008-01-01

    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  10. Analysis of high vacuum systems using SINDA'85

    NASA Technical Reports Server (NTRS)

    Spivey, R. A.; Clanton, S. E.; Moore, J. D.

    1993-01-01

    The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.

  11. GLOBAL INSTABILITY OF THE EXO-MOON SYSTEM TRIGGERED BY PHOTO-EVAPORATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ming; Xie, Ji-Wei; Zhou, Ji-Lin

    2016-12-10

    Many exoplanets have been found in orbits close to their host stars and thus they are subject to the effects of photo-evaporation. Previous studies have shown that a large portion of exoplanets detected by the Kepler mission have been significantly eroded by photo-evaporation. In this paper, we numerically study the effects of photo-evaporation on the orbital evolution of a hypothesized moon system around a planet. We find that photo-evaporation is crucial to the stability of the moon system. Photo-evaporation can erode the atmosphere of the planet thus leading to significant mass loss. As the planet loses mass, its Hill radiusmore » shrinks and its moons increase their orbital semimajor axes and eccentricities. When some moons approach their critical semimajor axes, global instability of the moon system would be triggered, which usually ends up with two, one or even zero surviving moons. Some lost moons could escape from the moon system to become a new planet orbiting the star or run away further to become a free-floating object in the Galaxy. Given the destructive role of photo-evaporation, we speculate that exomoons are less common for close-in planets (<0.1 au), especially those around M-type stars, because they are more X-ray luminous and thus enhancing photo-evaporation. The lessons we learn in this study may be helpful for the target selection of on-going/future exomoon searching programs.« less

  12. Optical investigation of vacuum evaporated Se80-xTe20Sbx (x = 0, 6, 12) amorphous thin films

    NASA Astrophysics Data System (ADS)

    Deepika; Singh, Hukum

    2017-09-01

    Amorphous thin films of Se80-xTe20Sbx (x = 0, 6, 12) chalcogenide glasses has been deposited onto pre-cleaned glass substrate using thermal evaporation technique under a vacuum of 10-5 Torr. The absorption and transmission spectra of these thin films have been recorded using UV spectrophotometer in the spectral range 400-2500 nm at room temperature. Swanepoel envelope method has been employed to obtain film thickness and optical constants such as refractive index, extinction coefficient and dielectric constant. The optical band gap of the samples has been calculated using Tauc relation. The study reveals that optical band gap decreases on increase in Sb content. This is due to decrease in average single bond energy calculated using chemical bond approach. The values of urbach energy has also been computed to support the above observation. Variation of refractive index has also been studies in terms of wavelength and energy using WDD model and values of single oscillator energy and dispersion energy has been obtained.

  13. Experimental and Numerical Study of the Evaporation of Water at Low Pressures.

    PubMed

    Kazemi, Mohammad Amin; Nobes, David S; Elliott, Janet A W

    2017-05-09

    Although evaporation is considered to be a surface phenomenon, the rate of molecular transport across a liquid-vapor boundary is strongly dependent on the coupled fluid dynamics and heat transfer in the bulk fluids. Recent experimental thermocouple measurements of the temperature field near the interface of evaporating water into its vapor have begun to show the role of heat transfer in evaporation. However, the role of fluid dynamics has not been explored sufficiently. Here, we have developed a mathematical model to describe the coupling of the heat, mass, and momentum transfer in the fluids with the transport phenomena at the interface. The model was used to understand the experimentally obtained velocity field in the liquid and temperature profiles in the liquid and vapor, in evaporation from a concave meniscus for various vacuum pressures. By using the model, we have shown that an opposing buoyancy flow suppressed the thermocapillary flow in the liquid during evaporation at low pressures in our experiments. As such, in the absence of thermocapillary convection, the evaporation is controlled by heat transfer to the interface, and the predicted behavior of the system is independent of choosing between the existing theoretical expressions for evaporation flux. Furthermore, we investigated the temperature discontinuity at the interface and confirmed that the discontinuity strongly depends on the heat flux from the vapor side, which depends on the geometrical shape of the interface.

  14. Testing of the Multi-Fluid Evaporator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Quinn, Gregory; O'Connor, Ed; Riga, Ken; Anderson, Molly; Westheimer, David

    2007-01-01

    Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. The current Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. The MFE system combines both functions into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. The full scale MFE prototype will be constructed with four core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A sub-scale MFE engineering development unit (EDU) has been built, and is identical to one of the four sections of a full scale prototype. The EDU has completed testing at Hamilton Sundstrand. The overall test objective was to determine the thermal performance of the EDU. The first set of tests simulated how each of the four sections of the prototype would perform by varying the chamber pressure, evaporant flow rate, coolant flow rate and coolant temperature. A second set of tests was conducted with an outlet steam header in place to verify that the outlet steam orifices prevent freeze-up in the core while also allowing the desired thermal turn-down ratio. This paper discusses the EDU tests and results.

  15. Effective Porosity Measurements by Wet- and Dry-type Vacuum Saturations using Process-Programmable Vacuum Saturation System

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Lee, K. S., , Dr; Lee, S. K.

    2017-12-01

    One of the most important factors in measuring effective porosity by vacuum saturation method is that the air in the pore space can be fully substituted by water during the vacuum saturation process. International Society of Rock Mechanics (ISRM) suggests vacuuming a rock sample submerged in the water, while American Society of Test and Materials (ASTM) vacuuming the sample and water separately and then pour the water to the sample. In this study, we call the former wet-type vacuum saturation (WVS) method and the latter dry-type vacuum saturation (DVS) method, and compare the effective porosity measured by the two different vacuum saturation processes. For that purpose, a vacuum saturation system has been developed, which can support both WVS and DVS by only changing the process by programming. Comparison of effective porosity has been made for a cement mortar and rock samples. As a result, DVS can substitute more void volume to water than WVS, which in turn insists that DVS can provide more exact value of effective porosity than WVS.

  16. Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system II. Vacuum energy

    NASA Astrophysics Data System (ADS)

    Davydov, A.; Sveshnikov, K.; Voronina, Yu.

    2018-01-01

    Nonperturbative vacuum polarization effects are explored for a supercritical Dirac-Coulomb system with Z > Zcr,1 in 2+1D, based on the original combination of analytical methods, computer algebra and numerical calculations, proposed recently in Refs. 1-3. Both the vacuum charge density ρV P(r→) and vacuum energy ℰV P are considered. Due to a lot of details of calculation the whole work is divided into two parts I and II. Taking account of results, obtained in the part I4 for ρV P, in the present part II, the evaluation of the vacuum energy ℰV P is investigated with emphasis on the renormalization and convergence of the partial expansion for ℰV P. It is shown that the renormalization via fermionic loop turns out to be the universal tool, which removes the divergence of the theory both in the purely perturbative and essentially nonperturbative regimes of the vacuum polarization. The main result of calculation is that for a wide range of the system parameters in the overcritical region ℰV P turns out to be a rapidly decreasing function ˜-ηeffZ3/R with ηeff > 0 and R being the size of the external Coulomb source. To the end the similarity in calculations of ℰV P in 2+1 and 3+1D is discussed, and qualitative arguments are presented in favor of the possibility for complete screening of the classical electrostatic energy of the Coulomb source by the vacuum polarization effects for Z ≫ Zcr,1 in 3+1D.

  17. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  18. Upgrade of The Thermal Vacuum Data System at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Palmer, John; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center's new thermal vacuum data acquisition system is a networked client-sever application that enables lab operations crews to monitor all tests from a central location. The GSFC thermal vacuum lab consists of eleven chambers in Building 7 and one chamber in Building 10. The new data system was implemented for several reasons. These included the need for centralized data collection, more flexible and easier to use operator interface, greater data accessibility, a reduction in testing time and cost, and increased payload and personnel safety. Additionally, a new data system was needed for year-2000 compliance. This paper discusses the incorporation of the Thermal Vacuum Data System (TVDS) within the thermal vacuum lab at GSFC, its features and capabilities and lessons learned in its implementation. Additional topics include off-center (Internet) capability for remote monitoring and the role of TVDS in the efforts to automate thermal vacuum chamber operations.

  19. Upgrade of the Thermal Vacuum Data System at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Palmer, John

    2000-01-01

    The Goddard Space Flight Center's new thermal vacuum data acquisition system is a networked client-sever application that enables lab operations crews to monitor all tests from a central location. The GSFC thermal vacuum lab consists of eleven chambers in Building 7 and one chamber in Building 10. The new data system was implemented for several reasons. These included the need for centralized data collection, more flexible and easier to use operator interface, greater data accessibility, a reduction in testing time and cost, and increased payload and personnel safety. Additionally, a new data system was needed for year-2000 compliance. This paper discusses the incorporation of the Thermal Vacuum Data System (TVDS) within the thermal vacuum lab at GSFC, its features and capabilities and lessons learned in its implementation. Additional topics include off-center (Internet) capability for remote monitoring and the role of TVDS in the efforts to automate thermal vacuum chamber operations.

  20. Using evaporation to control capillary instabilities in micro-systems.

    PubMed

    Ledesma-Aguilar, Rodrigo; Laghezza, Gianluca; Yeomans, Julia M; Vella, Dominic

    2017-12-06

    The instabilities of fluid interfaces represent both a limitation and an opportunity for the fabrication of small-scale devices. Just as non-uniform capillary pressures can destroy micro-electrical mechanical systems (MEMS), so they can guide the assembly of novel solid and fluid structures. In many such applications the interface appears during an evaporation process and is therefore only present temporarily. It is commonly assumed that this evaporation simply guides the interface through a sequence of equilibrium configurations, and that the rate of evaporation only sets the timescale of this sequence. Here, we use Lattice-Boltzmann simulations and a theoretical analysis to show that, in fact, the rate of evaporation can be a factor in determining the onset and form of dynamical capillary instabilities. Our results shed light on the role of evaporation in previous experiments, and open the possibility of exploiting diffusive mass transfer to directly control capillary flows in MEMS applications.

  1. Evaporation behavior of lithium, potassium, uranium and rare earth chlorides in pyroprocessing

    NASA Astrophysics Data System (ADS)

    Jang, Junhyuk; Kim, Tackjin; Park, Sungbin; Kim, Gha-Young; Kim, Sihyoung; Lee, Sungjai

    2017-12-01

    The evaporation behaviors of Li, K, U, and rare earth (RE) chlorides were examined for the cathode process in pyroprocessing. The evaporation temperatures of the chlorides were evaluated in vacuum by measuring the weight decrease. In addition, an evaporation test up to 1473 K of the cathode process using a surrogate mixture of uranium and chlorides was conducted. It was found that LiCl evaporated more readily than the other chlorides. The weight of LiCl was rapidly decreased at temperatures above 981 K, while that of KCl was decreased above 1035 K, indicating the evaporation. UCl3 evaporated at temperatures above 1103 K. RE chlorides showed a similar evaporation behavior, evaporating first at 1158 K then rapidly evaporating at temperatures above 1230 K. Thus, the order of evaporation with increasing temperature was found to be LiCl < KCl < UCl3 < RE chlorides, with different RE chlorides evaporating at similar temperature. The surrogate test confirmed the observed evaporation trend of the chlorides during the cathode process, and revealed that the contamination of uranium remains by the back-reaction of RE chlorides is negligible.

  2. Design and performance of vacuum system for high heat flux test facility

    NASA Astrophysics Data System (ADS)

    Swamy Kidambi, Rajamannar; Mokaria, Prakash; Khirwadkar, Samir; Belsare, Sunil; Khan, M. S.; Patel, Tushar; Krishnan, Deepu S.

    2017-04-01

    High heat flux test facility (HHFTF) at IPR is used for testing thermal performance of plasma facing materials or components. It consists of various subsystems like vacuum system, high power electron beam system, diagnostic and calibration system, data acquisition and control system and high pressure high temperature water circulation system. Vacuum system consists of large D-shaped chamber, target handling system, pumping systems and support structure. The net volume of vacuum chamber is 5 m3 was maintained at the base pressure of the order of 10-6 mbar for operation of electron gun with minimum beam diameter which is achieved with turbo-molecular pump (TMP) and cryo pump. A variable conductance gate valve is used for maintaining required vacuum in the chamber. Initial pumping of the chamber was carried out by using suitable rotary and root pumps. PXI and PLC based faster real time data acquisition and control system is implemented for performing the various operations like remote operation, online vacuum data measurements, display and status indication of all vacuum equipments. This paper describes in detail the design and implementation of various vacuum system for HHFTF.

  3. Isotope mass fractionation during evaporation of Mg2SiO4

    NASA Technical Reports Server (NTRS)

    Davis, Andrew M.; Clayton, Robert N.; Mayeda, Toshiko K.; Hashimoto, Akihiko

    1990-01-01

    Synthetic forsterite (Mg2SiO4) was partially evaporated in vacuum for various durations and at different temperatures. The residual charges obtained when molten Mg2SiO4 was evaporated to 12 percent of its initial mass were enriched in heavy isotopes by about 20, 30, and 15 per mil/amu for O, Mg, and Si, respectively, whereas solid forsterite evaporated to a similar residual mass fraction showed negligible fractionations. These results imply that calcium and aluminum-rich refractory inclusions in carbonaceous chondrites must have been at least partially molten in the primordial solar nebula if the observed large mass fractionation effects were caused by evaporation processes in the nebula.

  4. Evaluation of an In-Situ, Liquid Lubrication System for Space Mechanisms Using a Vacuum Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Pepper, Stephen V.

    2002-01-01

    Many moving mechanical assemblies (MMAs) for space applications rely on a small, initial charge of lubricant for the entire mission lifetime, often in excess of five years. In many cases, the premature failure of a lubricated component can result in mission failure. If lubricant could be resupplied to the contact in-situ, the life of the MMA could be extended. A vacuum spiral orbit tribometer (SOT) was modified to accept a device to supply re-lubrication during testing. It was successfully demonstrated that a liquid lubricant (Pennzane (Registered Trademark)/Nye 2001A) could be evaporated into a contact during operation, lowering the friction coefficient and therefore extending the life of the system.

  5. Low-Cost, Rugged High-Vacuum System

    NASA Technical Reports Server (NTRS)

    Sorensen, Paul; Kline-Schoder, Robert

    2012-01-01

    A need exists for miniaturized, rugged, low-cost high-vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other analytical instruments such as scanning electron microscopes. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was developed based on a very small, rugged, and inexpensive-to-manufacture molecular drag pump (MDP). The MDP is enabled by a miniature, very-high-speed (200,000 rpm), rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. The key advantages of the pump are reduced cost and improved ruggedness compared to other mechanical hig-hvacuum pumps. The machining of the rotor and stators is very simple compared to that necessary to fabricate rotor and stator blades for other pump designs. Also, the symmetry of the rotor is such that dynamic balancing of the rotor will likely not be necessary. Finally, the number of parts in the unit is cut by nearly a factor of three over competing designs. The new pump forms the heart of a complete vacuum system optimized to support analytical instruments in terrestrial applications and on spacecraft and planetary landers. The MDP achieves high vacuum coupled to a ruggedized diaphragm rough pump. Instead of the relatively complicated rotor and stator blades used in turbomolecular pumps, the rotor in the MDP consists of a simple, smooth cylinder of aluminum. This will turn at approximately 200,000 rpm inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the

  6. Quantifying Evaporation and Evaluating Runoff Estimation Methods in a Permeable Pavement System - abstract

    EPA Science Inventory

    Studies on quantifying evaporation in permeable pavement systems are limited to few laboratory studies that used a scale to weigh evaporative losses and a field application with a tunnel-evaporation gauge. A primary objective of this research was to quantify evaporation for a la...

  7. The impact of surface chemistry on the performance of localized solar-driven evaporation system

    PubMed Central

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation. PMID:26337561

  8. The impact of surface chemistry on the performance of localized solar-driven evaporation system.

    PubMed

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-04

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  9. Venturi vacuum systems for hypobaric chamber operations.

    PubMed

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  10. Deriving properties of low-volatile substances from isothermal evaporation curves

    NASA Astrophysics Data System (ADS)

    Ralys, Ricardas V.; Uspenskiy, Alexander A.; Slobodov, Alexander A.

    2016-01-01

    Mass flux occurring when a substance evaporates from an open surface is proportional to its saturated vapor pressure at a given temperature. The proportionality coefficient that relates this flux to the vapor pressure shows how far a system is from equilibrium and is called the accommodation coefficient. Under vacuum, when a system deviates from equilibrium to the greatest extent possible, the accommodation coefficient equals unity. Under finite pressure, however, the accommodation coefficient is no longer equal to unity, and in fact, it is much less than unity. In this article, we consider the isothermal evaporation or sublimation of low-volatile individual substances under conditions of thermogravimetric analysis, when the external pressure of the purging gas is equal to the atmospheric pressure and the purging gas rate varies. When properly treated, the dependence of sample mass over time provides us with various information on the properties of the examined compound, such as saturated vapor pressure, diffusion coefficient, and density of the condensed (liquid or solid) phase at the temperature of experiment. We propose here the model describing the accommodation coefficient as a function of both substance properties and experimental conditions. This model gives the final expression for evaporation rate, and thus for mass dependence over time, with approximation parameters resulting in the properties being sought.

  11. Hollow-Fiber Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  12. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    PubMed

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  13. EVA space suit Evaporative Cooling/Heating Glove System (ECHGS)

    NASA Technical Reports Server (NTRS)

    Coss, F. A.

    1976-01-01

    A new astronaut glove, the Evaporative Cooling/Heating Glove System (ECHGS), was designed and developed to allow the handling of objects between -200 F and +200 F. Active heating elements, positioned at each finger pad, provide additional heat to the finger pads from the rest of the finger. A water evaporative cooling system provides cooling by the injection of water to the finger areas and the subsequent direct evaporation to space. Thin, flexible insulation has been developed for the finger areas to limit thermal conductivity. Component and full glove tests have shown that the glove meets and exceeds the requirements to hold a 11/2 inch diameter bar at + or - 200 F for three minutes within comfort limits. The ECHGS is flexible, lightweight and comfortable. Tactility is reasonable and small objects can be identified especially by the fingertips beyond the one half width active elements.

  14. Vacuum Pump System Optimization Saves Energy at a Dairy Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 1998, S&S Dairy optimized the vacuum pumping system at their dairy farm in Modesto, California. In an effort to reduce energy costs, S&S Dairy evaluated their vacuum pumping system to determine if efficiency gains and energy savings were possible.

  15. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  16. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  17. National Synchrotron Light Source II storage ring vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  18. MEANS AND METHOD FOR PRODUCING A VACUUM

    DOEpatents

    Otavka, M.A.

    1960-08-01

    A new method is given for starting the operation of evapor-ion vacuum pumps. Ordinarily this type of pump is started by inducing an electric field with the vacuum chamber; however, by placing such an electric field in the chamber at the outset, a glow discharge may be initiated which is harmful to the pump. The procedure consists of using a negative electric field during which time only gettering action takes place; subsequently when the field reverses after a sufficient reduction of the number of gaseous particles in the chamber both gettering and ionizing takes place.

  19. Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems

    PubMed Central

    Ströbel, Ulrich; Rose-Meierhöfer, Sandra; Öz, Hülya; Brunsch, Reiner

    2013-01-01

    Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated. PMID:23765272

  20. Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system I. Vacuum charge density

    NASA Astrophysics Data System (ADS)

    Davydov, A.; Sveshnikov, K.; Voronina, Yu.

    2018-01-01

    Based on the original combination of analytical methods, computer algebra tools and numerical calculations, proposed recently in Refs. 1-3, the nonperturbative vacuum polarization effects in the 2+1D supercritical Dirac-Coulomb system with Z > Zcr,1 are explored. Both the vacuum charge density ρV P(r→) and vacuum energy ℰV P are considered. The main result of the work is that in the overcritical region ℰV P turns out to be a rapidly decreasing function ˜-ηeffZ3/R with ηeff > 0 and R being the size of the external Coulomb source. Due to a lot of details of calculation the whole work is divided into two parts I and II. In the present part I, we consider the evaluation and behavior of the vacuum density ρV P, which further is used in part II for evaluation of the vacuum energy, with emphasis on the renormalization, convergence of the partial expansion for ρV P and behavior of the integral induced charge QV P in the overcritical region.

  1. Wind systems the driving force of evaporation at the Dead Sea

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Corsmeier, Ulrich; Alpert, Pinhas

    2017-04-01

    The Dead Sea is a unique place on earth. It is located in the Eastern Mediterranean at the lowest point of the Jordan Rift valley and its water level is currently at 429 m below mean sea level. The region is located in a transition zone of semi-arid to arid climate conditions and endangered by severe environmental problems, especially the rapid lake level decline (>1m/year), causing the shifting of fresh/saline groundwater interfaces and the drying up of the lake. Two key features are relevant for these environmental changes: the evaporation from the water surface and its driving mechanisms. The main driver of evaporation at the Dead Sea is the wind velocity and hence the governing wind systems with different scales in space and time. In the framework of the Virtual Institute DEad SEa Research Venue (DESERVE) an extensive field campaign was conducted to study the governing wind systems in the valley and the energy balance of the water and land surface simultaneously. The combination of several in-situ and remote sensing instruments allowed temporally and spatially high-resolution measurements to investigate the frequency of occurrence of the wind systems, their three-dimensional structure, associated wind velocities and their impact on evaporation. The characteristics of the three local wind systems governing the valley's wind field, as well as their impact on evaporation, will be presented. Mostly decoupled from the large scale flow a local lake breeze determines the conditions during the day. Strong downslope winds drive the evaporation in the afternoon, and down valley flows with wind velocities of over 10 m s-1 dominate during the night causing unusually high evaporation rates after sunset.

  2. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems.

    PubMed

    Sharif-Kashani, Pooria; Fanney, Douglas; Injev, Val

    2014-07-30

    Occlusion break surge during phacoemulsification cataract surgery can lead to potential surgical complications. The purpose of this study was to quantify occlusion break surge and vacuum rise time of current phacoemulsification systems used in cataract surgery. Occlusion break surge at vacuum pressures between 200 and 600 mmHg was assessed with the Infiniti® Vision System, the WhiteStar Signature® Phacoemulsification System, and the Centurion® Vision System using gravity-fed fluidics. Centurion Active FluidicsTM were also tested at multiple intraoperative pressure target settings. Vacuum rise time was evaluated for Infiniti, WhiteStar Signature, Centurion, and Stellaris® Vision Enhancement systems. Rise time to vacuum limits of 400 and 600 mmHg was assessed at flow rates of 30 and 60 cc/minute. Occlusion break surge was analyzed by 2-way analysis of variance. The Centurion system exhibited substantially less occlusion break surge than the other systems tested. Surge area with Centurion Active Fluidics was similar to gravity fluidics at an equivalent bottle height. At all Centurion Active Fluidics intraoperative pressure target settings tested, surge was smaller than with Infiniti and WhiteStar Signature. Infiniti had the fastest vacuum rise time and Stellaris had the slowest. No system tested reached the 600-mmHg vacuum limit. In this laboratory study, Centurion had the least occlusion break surge and similar vacuum rise times compared with the other systems tested. Reducing occlusion break surge may increase safety of phacoemulsification cataract surgery.

  3. Vacuum pumps and systems: A review of current practice

    NASA Technical Reports Server (NTRS)

    Giles, Stuart

    1986-01-01

    A review of the fundamental characteristics of the many types of vacuum pumps and vacuum pumping systems is given. The optimum pumping range, relative cost, performance limitations, maintenance problems, system operating costs and similar subjects are discussed. Experiences from the thin film deposition, chemical processing, material handling, food processing and other industries, as well as space simulation are used to support conclusions and recommendations.

  4. Hydrogen capacity and absorption rate of the SAES St707 non-evaporable getter at various temperatures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Irving; Mills, Bernice E.

    2010-08-01

    A prototype of a tritium thermoelectric generator (TTG) is currently being developed at Sandia. In the TTG, a vacuum jacket reduces the amount of heat lost from the high temperature source via convection. However, outgassing presents challenges to maintaining a vacuum for many years. Getters are chemically active substances that scavenge residual gases in a vacuum system. In order to maintain the vacuum jacket at approximately 1.0 x 10{sup -4} torr for decades, nonevaporable getters that can operate from -55 C to 60 C are going to be used. This paper focuses on the hydrogen capacity and absorption rate ofmore » the St707{trademark} non-evaporable getter by SAES. Using a getter testing manifold, we have carried out experiments to test these characteristics of the getter over the temperature range of -77 C to 60 C. The results from this study can be used to size the getter appropriately.« less

  5. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  6. Novel desiccant cooling system using indirect evaporative cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belding, W.A.; Delmas, M.P.F.

    1997-12-31

    An effective desiccant cooling system must efficiently reject adsorption and carryover heat from the process airstream. Rotary heat exchangers are typically used to remove this heat in currently available desiccant equipment, but these devices can leak humid air from the regeneration side of the process into the dry process side, degrading performance. Using a different approach, high cooling capacities and coefficients of performance (COPs) have been achieved in a desiccant cooling system without a heat wheel or bulky stationary heat exchanger. Using a desiccant wheel in conjunction with a compact indirect evaporative cooler and a small air-to-air heat exchanger, amore » cooling system has been developed that eliminates the need for deep dehumidification by the desiccant wheel and at the same time provides 25% to 35% ventilation air to the conditioned space. Using a 0.68 m (27 in.) diameter by 0.2 m (8 in.) deep type 1 M desiccant wheel regenerated at 175 C (347 F), 15.0 kW (4.3 tons) of cooling were achieved with a thermal COP of 0.72. With the addition of a direct evaporative cooler, humidity control over a broad range can be offered by the system. The low desiccant wheel volume and the compact nature of the indirect evaporative coolers result in equipment with a low potential first cost, assuming economies of scale. Equipment presently under development is expected to exceed a gross cooling COP of 0.9.« less

  7. Apollo telescope mount thermal systems unit thermal vacuum test

    NASA Technical Reports Server (NTRS)

    Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.

    1971-01-01

    The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.

  8. A theoretical analysis of vacuum arc thruster performance

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Sekerak, Mike; Ziemer, John K.; Schein, Jochen; Qi, Niansheng; Binder, Robert; Anders, Andre

    2001-01-01

    In vacuum arc discharges the current is conducted through vapor evaporated from the cathode surface. In these devices very dense, highly ionized plasmas can be created from any metallic or conducting solid used as the cathode. This paper describes theoretical models of performance for several thruster configurations which use vacuum arc plasma sources. This analysis suggests that thrusters using vacuum arc sources can be operated efficiently with a range of propellant options that gives great flexibility in specific impulse. In addition, the efficiency of plasma production in these devices appears to be largely independent of scale because the metal vapor is ionized within a few microns of the cathode electron emission sites, so this approach is well-suited for micropropulsion.

  9. Sealing Materials for Use in Vacuum at High Temperatures

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Camarda, Charles J.; Lee Vaughn, Wallace

    2012-01-01

    Sealing materials that can be applied and left in place in vacuum over a wide range of temperatures (especially temperatures of a few thousand degrees Celsius) have been conceived and investigated for potential utility in repairing thermal-protection tiles on the space shuttles in orbit before returning to Earth. These materials are also adaptable to numerous terrestrial applications that involve vacuum processing and/or repair of structures that must withstand high temperatures. These materials can be formulated to have mechanical handling characteristics ranging from almost freely flowing liquid-like consistency through paste-like consistency to stiff puttylike consistency, and to retain these characteristics in vacuum until heated to high curing temperatures. A sealing material of this type can be formulated to be used in any of several different ways for example, to be impregnated into a high-temperature-fabric patch, impregnated into a high-temperature-fabric gasket for sealing a patch, applied under a patch, or applied alone in the manner of putty or wallboard compound. The sealing material must be formulated to be compatible with, and adhere to, the structural material(s) to be repaired. In general, the material consists of a vacuum-compatible liquid containing one or more dissolved compound(s) and/or mixed with suspended solid particles. Depending on the intended application, the liquid can be chosen to be of a compound that can remain in place in vacuum for a time long enough to be useful, and/or to evaporate or decompose in a controlled way to leave a useful solid residue behind. The evaporation rate is determined by proper choice of vapor pressure, application of heat, and/or application of ultraviolet light or other optical radiation. The liquid chosen for the original space shuttle application is a commercial silicone vacuum-pump oil.

  10. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems

    PubMed Central

    2014-01-01

    Background Occlusion break surge during phacoemulsification cataract surgery can lead to potential surgical complications. The purpose of this study was to quantify occlusion break surge and vacuum rise time of current phacoemulsification systems used in cataract surgery. Methods Occlusion break surge at vacuum pressures between 200 and 600 mmHg was assessed with the Infiniti® Vision System, the WhiteStar Signature® Phacoemulsification System, and the Centurion® Vision System using gravity-fed fluidics. Centurion Active FluidicsTM were also tested at multiple intraoperative pressure target settings. Vacuum rise time was evaluated for Infiniti, WhiteStar Signature, Centurion, and Stellaris® Vision Enhancement systems. Rise time to vacuum limits of 400 and 600 mmHg was assessed at flow rates of 30 and 60 cc/minute. Occlusion break surge was analyzed by 2-way analysis of variance. Results The Centurion system exhibited substantially less occlusion break surge than the other systems tested. Surge area with Centurion Active Fluidics was similar to gravity fluidics at an equivalent bottle height. At all Centurion Active Fluidics intraoperative pressure target settings tested, surge was smaller than with Infiniti and WhiteStar Signature. Infiniti had the fastest vacuum rise time and Stellaris had the slowest. No system tested reached the 600-mmHg vacuum limit. Conclusions In this laboratory study, Centurion had the least occlusion break surge and similar vacuum rise times compared with the other systems tested. Reducing occlusion break surge may increase safety of phacoemulsification cataract surgery. PMID:25074069

  11. Very-Low-Cost, Rugged Vacuum System

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert; Sorensen, Paul; Passow, Christian; Bilski, Steve

    2013-01-01

    NASA, DoD, DHS, and commercial industry have a need for miniaturized, rugged, low-cost vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other miniature analytical instruments. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was created based on a very small, rugged, and inexpensive- to-manufacture molecular drag pump (MDP). The MDP is enabled by the development of a miniature, veryhigh- speed, rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. Such a pump represents an order-of-magnitude reduction in mass, volume, and cost over current, commercially available, state-ofthe- art vacuum pumps. The vacuum system consists of the MDP coupled to a ruggedized rough pump (for terrestrial applications or for planets with substantial atmospheres). The rotor in the MDP consists of a simple smooth cylinder of aluminum spinning at approximately 200,000 RPM inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the motor. The compressed gas then flows down channels in the motor housing to the exhaust port of the pump. The exhaust port of the pump is connected to a diaphragm or scroll pump. This pump delivers very high performance in a very small envelope. The design was simplified so that a smaller compression ratio, easier manufacturing process, and enhanced ruggedness can be achieved at the lowest possible cost. The machining of the rotor and stators is very simple compared to that necessary to fabricate TMP

  12. Testing of Commercial Hollow Fiber Membranes for Space Suit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Hanford, Anthony

    2009-01-01

    Three commercial-off-the-shelf (COTS) hollow fiber (HoFi) membrane evaporators, modified for low pressure, were tested in a vacuum chamber at pressures below 33 pascals as potential space suit water membrane evaporator (SWME) heat rejection technologies. Water quality was controlled in a series of 25 tests, first simulating potable water reclaimed from waste water and then changing periodically to simulate the ever concentrating make-up of the circulating coolant over that is predicted over the course of 100 EVAs. Two of the systems, comprised of non-porous tubes with hydrophilic molecular channels as the water vapor transport mechanism, were severely impacted by the increasing concentrations of cations in the water. One of the systems, based on hydrophobic porous polypropylene tubes was not affected by the degrading water quality, or the presence of microbes. The polypropylene system, called SWME 1, was selected for further testing. An inverse flow configuration was also tested with SWME 1, with vacuum exposure on the inside of the tubes, provided only 20% of the performance of the standard configuration. SWME 1 was also modified to block 50% and 90% of the central tube layers, and tested to investigate performance efficiency. Performance curves were also developed in back-pressure regulation tests, and revealed important design considerations arising from the fully closed valve. SWME 1 was shown to be insensitive to air bubbles injected into the coolant loop. Development and testing of a full-scale prototype based on this technology and these test results is in progress.

  13. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher [Williamsburg, VA

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  14. Performance characteristic of hybrid cooling system based on cooling pad and evaporator

    NASA Astrophysics Data System (ADS)

    Yoon, J. I.; Son, C. H.; Choi, K. H.; Kim, Y. B.; Sung, Y. H.; Roh, S. J.; Kim, Y. M.; Seol, S. H.

    2018-01-01

    In South Korea, most of domestic animals such as pigs and chickens might die due to thermal diseases if they are exposed to the high temperature consistently. In order to save them from the heat wave, numerous efforts have been carried out: installing a shade net, adjusting time of feeding, spraying mist and setting up a circulation fan. However, these methods have not shown significant improvements. Thus, this study proposes a hybrid cooling system combining evaporative cooler and air-conditioner in order to resolve the conventional problems caused by the high temperature in the livestock industry. The problem of cooling systems using evaporative cooling pads is that they are not effective for eliminating huge heat load due to their limited capacity. And, temperature of the supplied air cannot be low enough compared to conventional air-conditioning systems. On the other hand, conventional air-conditioning systems require relatively expensive installation cost, and high operating cost compared to evaporative cooling system. The hybrid cooling system makes up for the lack of cooling capacity of the evaporative cooler by employing the conventional air-conditioner. Additionally, temperature of supplied air can be lowered enough. In the hybrid cooling system, induced air by a fan is cooled by the evaporation of water in the cooling pad, and it is cooled again by an evaporator in the air-conditioner. Therefore, the more economical operation is possible due to additionally obtained cooling capacity from the cooling pads. Major results of experimental analysis of hybrid cooling system are as follows. The compressor power consumption of the hybrid cooling system is about 23% lower, and its COP is 17% higher than that of the conventional air-conditioners. Regarding the condition of changing ambient temperature, the total power consumption decreased by about 5% as the ambient temperature changed from 28.7°C to 31.7°C. Cooling capacity and COP also presented about 3% and 1

  15. Thermoelectric integrated membrane evaporation water recovery technology

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  16. Vacuum system design and tritium inventory for the TFTR charge exchange diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S.S.

    The charge exchange diagnostic for the TFTR is comprised of two analyzer systems which contain a total of twenty independent mass/energy analyzers and one diagnostic neutral beam tentatively rated at 80 keV, 15 A. The associated vacuum systems were analyzed using the Vacuum System Transient Simulator (VSTS) computer program which models the transient transport of multi-gas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced cost, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and ofmore » the diagnostic working gases to the torus.« less

  17. Prospects for Ultra-Stable Timekeeping with Sealed Vacuum Operation in Multi-Pole Linear Ion Trap Standards

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Tjoelker, R. L.

    2007-01-01

    A recent long-term comparison between the compensated multi-pole Linear Ion Trap Standard (LITS) and the laser-cooled primary standards via GPS carrier phase time transfer showed a deviation of less than 2.7x10(exp -17)/day. A subsequent evaluation of potential drift contributors in the LITS showed that the leading candidates are fluctuations in background gases and the neon buffer gas. The current vacuum system employs a "flow-through" turbomolecular pump and a diaphragm fore pump. Here we consider the viability of a "sealed" vacuum system pumped by a non-evaporable getter for long-term ultra-stable clock operation. Initial tests suggests that both further stability improvement and longer mean-time-between-maintenance can be achieved using this approach

  18. [Laser-induced breakdown spectroscopy system for elements analysis in high-temperature and vacuum environment].

    PubMed

    Pan, Cong-Yuan; Du, Xue-Wei; An, Ning; Han, Zhen-Yu; Wang, Sheng-Bo; Wei, Wei; Wang, Qiu-Ping

    2013-12-01

    Laser-induced breakdown spectroscopy (LIBS) is one of the most promising technologies to be applied to metallurgical composition online monitoring in these days. In order to study the spectral characters of LIBS spectrum and to investigate the quantitative analysis method of material composition under vacuum and high temperature environment, a LIBS measurement system was designed and set up which can be used for conducting experiments with high-temperature or molten samples in different vacuum environment. The system consists of a Q-switched Nd : YAG laser used as the light source, lens with different focus lengths used for laser focusing and spectrum signal collecting, a spectrometer used for detecting the signal of LIBS spectrums, and a vacuum system for holding and heating the samples while supplying a vacuum environment. The vacuum was achieved and maintained by a vacuum pump and an electric induction furnace was used for heating the system. The induction coil was integrated to the vacuum system by attaching to a ceramic sealing flange. The system was installed and testified, and the results indicate that the vacuum of the system can reach 1X 10(-4) Pa without heating, while the heating temperature could be about 1 600 degreeC, the system can be used for melting metal samples such as steel and aluminum and get the LIBS spectrum of the samples at the same time. Utilizing this system, LIBS experiments were conducted using standard steel samples under different vacuum or high-temperature conditions. Results of comparison between LIBS spectrums of solid steel samples under different vacuum were achieved, and so are the spectrums of molten and solid steel samples under vacuum environment. Through data processing and theoretical analyzing of these spectrums, the initial results of those experiments are in good agreement with the results that are presently reported, which indicates that the whole system functions well and is available for molten metal LIBS experiment

  19. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  20. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata.

    PubMed

    Roy, Anindya; Bhole, R B; Nandy, Partha P; Yadav, R C; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  1. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    NASA Astrophysics Data System (ADS)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  2. Electrical and optical properties of C46H22N8O4KM (M=Co, Fe, Pb) molecular-material thin films prepared by the vacuum thermal evaporation technique.

    PubMed

    Sánchez-Vergara, M E; Ruiz Farfán, M A; Alvarez, J R; Ponce Pedraza, A; Ortiz, A; Alvarez Toledano, C

    2007-03-01

    In this work, the synthesis of new materials formed from metallic phthalocyanines (Pcs) and double potassium salt from 1,8-dihydroxianthraquinone is reported. The newly synthesized materials were characterized by scanning electron microscope (SEM), atomic force microscopy (AFM), infrared (IR) and Ultraviolet-visible (UV-vis) spectroscopy. The powder and thin-film samples of the synthesized materials, deposited by vacuum thermal evaporation, show the same intra-molecular bonds as in the IR spectroscopy studies, which suggests that the thermal evaporation process does not alter these bonds. The effect of temperature on conductivity and electrical conduction mechanism was measured in the thin films (approximately 137 nm thickness). They showed a semiconductor-like behaviour with an optical activation energy arising from indirect transitions of 2.15, 2.13 and 3.6eV for the C(46)H(22)N(8)O(4)KFe, C(46)H(22)N(8)O(4)KPb and C(46)H(22)N(8)O(4)KCo thin films.

  3. Systems and methods for analyzing liquids under vacuum

    DOEpatents

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua

    2013-10-15

    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  4. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya

    2008-01-01

    This paper presents the development of the Thermal Loop experiment under NASA's New Millennium Program Space Technology 8 (ST8) Project. The Thermal Loop experiment was originally planned for validating in space an advanced heat transport system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers. Details of the thermal loop concept, technical advances and benefits, Level 1 requirements and the technology validation approach are described. An MLHP breadboard has been built and tested in the laboratory and thermal vacuum environments, and has demonstrated excellent performance that met or exceeded the design requirements. The MLHP retains all features of state-of-the-art loop heat pipes and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. In addition, an analytical model has been developed to simulate the steady state and transient operation of the MHLP, and the model predictions agreed very well with experimental results. A protoflight MLHP has been built and is being tested in a thermal vacuum chamber to validate its performance and technical readiness for a flight experiment.

  5. A study on the evaporation process with multiple point-sources

    NASA Astrophysics Data System (ADS)

    Jun, Sunghoon; Kim, Minseok; Kim, Suk Han; Lee, Moon Yong; Lee, Eung Ki

    2013-10-01

    In Organic Light Emitting Display (OLED) manufacturing processes, there is a need to enlarge the mother glass substrate to raise its productivity and enable OLED TV. The larger the size of the glass substrate, the more difficult it is to establish a uniform thickness profile of the organic thin-film layer in the vacuum evaporation process. In this paper, a multiple point-source evaporation process is proposed to deposit a uniform organic layer uniformly. Using this method, a uniformity of 3.75% was achieved along a 1,300 mm length of Gen. 5.5 glass substrate (1300 × 1500 mm2).

  6. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    DOE PAGES

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; ...

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  7. New baking system for the RFX vacuum vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collarin, P.; Luchetta, A.; Sonato, P.

    A heating system based on eddy currents has been developed for the vacuum vessel of the RFX Reversed Field Pinch device. After a testing phase, carried out at low power, the final power supply system has been designed and installed. It has been used during last year to bake out the vessel and the graphite first wall up to 320{degree}C. Recently the heating system has been completed with a control system that allows for baking sessions with an automatic control of the vacuum vessel temperature and for pulse sessions with a heated first wall. After the description of the preliminarymore » analyses and tests, and of the main characteristics of the power supply and control systems, the experimental results of the baking sessions performed during last year are presented. 6 refs., 7 figs.« less

  8. Development and parametric evaluation of the prototype 2 and 3 flash evaporators

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.; Dietz, J. B.

    1975-01-01

    Development of the Prototype 2 and 3 flash evaporator heat sinks which vaporize an expendable fluid to cool a heat transport fluid loop is reported. The units utilize Freon 21 as the heat transport fluid and water as the expendable fluid to meet the projected performance requirements of the space shuttle for both on-orbit and ascent/reentry operations. The evaporant is pulse-sprayed by on-off control onto heat transfer surfaces containing the transport fluid and exhausted to the vacuum environment through fixed area exhaust ducts.

  9. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  10. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anindya, E-mail: r-ani@vecc.gov.in; Bhole, R. B.; Nandy, Partha P.

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A setmore » of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.« less

  11. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  12. Production and characterization of thin film group IIIB, IVB and rare earth hydrides by reactive evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provo, James L., E-mail: jlprovo@verizon.net

    2015-07-15

    A recent short history of reactive evaporation by D. M. Mattox [History Corner—A Short History of Reactive Evaporation, SVC Bulletin (Society of Vacuum Coaters, Spring 2014), p. 50–51] describes various methods for producing oxides, nitrides, carbides, and some compounds, but hydrides were not mentioned. A study was performed in the mid-1970s at the General Electric Company Neutron Devices Department in Largo, FL, by the author to study preparation of thin film hydrides using reactive evaporation and to determine their unique characteristics and properties. Films were produced of scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), and the rare earth praseodymiummore » (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy), and erbium (Er) hydrides by hot crucible filament and electron beam evaporation in atmospheres of deuterium and tritium gases. All-metal vacuum systems were used and those used with tritium were dedicated for this processing. Thin film test samples 1000 nm thick were prepared on 1.27 cm diameter molybdenum disk substrates for each occluder (i.e., an element that can react with hydrogen to form a hydride) material. Loading characteristics as determined by gas-to-metal atomic ratios, oxidation characteristics as determined by argon–sputter Auger analysis, film structure as determined by scanning electron microscope analysis, and film stress properties as determined by a double resonator technique were used to define properties of interest. Results showed hydrogen-to-metal atomic ratios varied from 1.5 to 2.0 with near maximum loading for all but Pr and Nd occluders which correlated with the oxidation levels observed, with all occluder oxidation levels being variable due to vacuum system internal processing conditions and the materials used. Surface oxide levels varied from ∼80 Å to over 1000 Å. For most films studied, results showed that a maximum loading ratio of near 2.0 and a minimum surface oxide level of ∼80

  13. Design of evaporator of spacelab refrigerator/freezer

    NASA Technical Reports Server (NTRS)

    Hye, A.

    1985-01-01

    An Evaporator has been designed for NASA-Johnson Space Center Life Sciences to conduct experiments in Spacelab mission SLS-1 using different samples such as blood, urine, human tissues etc. Two units will fly - one as a Refrigerator (4 C) and the other as a Freezer (-22 C). The evaporator tube is dip brazed on a grooved flat plate. Aluminum heat sink is dip brazed on the other side of the plate. Freon R5O2 is pumped through the tube and air is circulated over the finned surface to transfer heat. As freon 5O2 is considered toxic, the whole freon tube is covered with an evaporator cover to contain any freon leakage to avoid exposure to crew members. This containment is under vacuum and this pressure is monitored along with the freon pressure to determine freon leakage so that necessary steps can be taken to stop contamination of the spacelab air. An stress analysis has been done and it is found to have adequate safety margin to meet the requirements of NASA safety and reliability standards.

  14. Analysis of RFQ vacuum system for HINS tests at MDB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piekarz, Henryk; /Fermilab

    The arrangement of RFQ vacuum system is briefly described. The projections of the vacuum level using standard out-gassing rates for the RFQ major components are compared with measurements. The permeation of water through the Viton O-rings of the LCW manifold inside the RFQ vacuum vessel is analyzed and compared with RGA data. A model where the out-gassing water from the vanes inner surfaces affects seriously RFQ operation is devised and compared with RFQ performance. The rate of a hydrogen gas spill from the LEBT into the RFQ vacuum space is also projected. Suggestions to correct and improve RFQ operation aremore » presented.« less

  15. David Florida Laboratory Thermal Vacuum Data Processing System

    NASA Technical Reports Server (NTRS)

    Choueiry, Elie

    1994-01-01

    During 1991, the Space Simulation Facility conducted a survey to assess the requirements and analyze the merits for purchasing a new thermal vacuum data processing system for its facilities. A new, integrated, cost effective PC-based system was purchased which uses commercial off-the-shelf software for operation and control. This system can be easily reconfigured and allows its users to access a local area network. In addition, it provides superior performance compared to that of the former system which used an outdated mini-computer and peripheral hardware. This paper provides essential background on the old data processing system's features, capabilities, and the performance criteria that drove the genesis of its successor. This paper concludes with a detailed discussion of the thermal vacuum data processing system's components, features, and its important role in supporting our space-simulation environment and our capabilities for spacecraft testing. The new system was tested during the ANIK E spacecraft test, and was fully operational in November 1991.

  16. 14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM VAPORS TO DEPOSIT TITANIUM COATING ONTO URANIUM PARTS UNDER A VACUUM. (1/11/83) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  17. Influence of three different concentration techniques on evaporation rate, color and phenolics content of blueberry juice.

    PubMed

    Elik, Aysel; Yanık, Derya Koçak; Maskan, Medeni; Göğüş, Fahrettin

    2016-05-01

    The present study was undertaken to assess the effects of three different concentration processes open-pan, rotary vacuum evaporator and microwave heating on evaporation rate, the color and phenolics content of blueberry juice. Kinetics model study for changes in soluble solids content (°Brix), color parameters and phenolics content during evaporation was also performed. The final juice concentration of 65° Brix was achieved in 12, 15, 45 and 77 min, for microwave at 250 and 200 W, rotary vacuum and open-pan evaporation processes, respectively. Color changes associated with heat treatment were monitored using Hunter colorimeter (L*, a* and b*). All Hunter color parameters decreased with time and dependently studied concentration techniques caused color degradation. It was observed that the severity of color loss was higher in open-pan technique than the others. Evaporation also affected total phenolics content in blueberry juice. Total phenolics loss during concentration was highest in open-pan technique (36.54 %) and lowest in microwave heating at 200 W (34.20 %). So, the use of microwave technique could be advantageous in food industry because of production of blueberry juice concentrate with a better quality and short time of operation. A first-order kinetics model was applied to modeling changes in soluble solids content. A zero-order kinetics model was used to modeling changes in color parameters and phenolics content.

  18. Relationship between microstructural and magnetic properties of PrCo-based films prepared by the vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Fersi, R.; Bouzidi, W.; Bezergheanu, A.; Cizmas, C. B.; Bessais, L.; Mliki, N.

    2018-04-01

    In this work, Ce2Ni7 type structural PrCo-based films were deposited on Si(1 0 0) substrate by ultra-high (UHV) vacuum evaporation process. The structural and magnetic properties of these films have been performed using X-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM) and magnetic force microscopy (MFM) techniques. Two effects on structural and magnetic properties of PrCo films have been investigated: the effect of the annealing temperature (Ta) and the effect of the variation of the magnetic X-layer thickness. The as deposited PrCo films have a magnetic coercivity (Hc) of about 40-100 Oe. But after annealing at 600 °C, Hc has increased hight about 9.5 kOe for PrCo(X = 20 nm) and 10.2 kOe for PrCo(X = 50 nm) were observed. The magnetic properties were affected by the thickness due to the morphology, also the relationship between the intergrain exchange coupling (IEC), the size and quantity of the PrCo grains. The hight extrinsic properties of Hc = 10.2 kOe, maximum energy product (BH)max of 5.12 MGOe and remanence ratio Mr /Ms = 0.53 are reported for the PrCo(X = 50 nm) films. These properties are highly desirable for extremely high-density magnetic recording media applications.

  19. Quantifying Evaporation in a Permeable Pavement System ...

    EPA Pesticide Factsheets

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. The U.S. Environmental Protection Agency (USEPA) constructed a 0.4-ha parking lot in Edison, NJ, that incorporated three different permeable pavement types in the parking lanes – permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). An impermeable liner installed 0.4 m below the driving surface in four 11.6-m by 4.74-m sections per each pavement type captures all infiltrating water and routes it to collection tanks that can contain events up to 38 mm. Each section has a design impervious area to permeable pavement area ratio of 0.66:1. Pressure transducers installed in the underdrain collection tanks measured water level for 24 months. Level was converted to volume using depth-to-volume ratios for individual collection tanks. Using a water balance approach, the measured infiltrate volume was compared to rainfall volume on an event-basis to determine the rainfall retained in the pavement strata and underlying aggregate. Evaporation since the previous event created additional storage in the pavement and aggregate layers. Events were divided into three groups based on antecedent dry period (ADP) and three, four-month categories of potential e

  20. Vacuum-deposited polymer/silver reflector material

    NASA Astrophysics Data System (ADS)

    Affinito, John D.; Martin, Peter M.; Gross, Mark E.; Bennett, Wendy D.

    1994-09-01

    Weatherable, low cost, front surface, solar reflectors on flexible substrates would be highly desirable for lamination to solar concentrator panels. The method to be described in this paper may permit such reflector material to be fabricated for less the 50$CNT per square foot. Vacuum deposited Polymer/Silver/Polymer reflectors and Fabry-Perot interference filters were fabricated in a vacuum web coating operation on polyester substrates. Reflectivities were measured in the wavelength range from .4 micrometers to .8 micrometers . It is hoped that a low cost substrate can be used with the substrate laminated to the concentrator and the weatherable acrylic polymer coating facing the sun. This technique should be capable of deposition line speeds approaching 1500 linear feet/minute2. Central to this technique is a new vacuum deposition process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process- for Polymer Multi- Layer.

  1. Miniaturized transportable evaporator for molecule deposition inside cryogenic scanning probe microscopes.

    PubMed

    Lämmle, K; Schwarz, A; Wiesendanger, R

    2010-05-01

    Here, we present a very small evaporator unit suitable to deposit molecules onto a sample in a cryogenic environment. It can be transported in an ultrahigh vacuum system and loaded into Omicron-type cantilever stages. Thus, molecule deposition inside a low temperature force microscope is possible. The design features an insulating base plate with two embedded electrical contacts and a crucible with low power consumption, which is thermally well isolated from the surrounding. The current is supplied via a removable power clip. Details of the manufacturing process as well as the used material are described. Finally, the performance of the whole setup is demonstrated.

  2. Comparison of vacuum and non-vacuum urine tubes for urinary sediment analysis.

    PubMed

    Topcuoglu, Canan; Sezer, Sevilay; Kosem, Arzu; Ercan, Mujgan; Turhan, Turan

    2017-12-01

    Urine collection systems with aspiration system for vacuum tubes are becoming increasingly common for urinalysis, especially for microscopic examination of the urine. In this study, we aimed to examine whether vacuum aspiration of the urine sample has any adverse effect on sediment analysis by comparing results from vacuum and non-vacuum urine tubes. The study included totally 213 urine samples obtained from inpatients and outpatients in our hospital. Urine samples were collected to containers with aspiration system for vacuum tubes. Each sample was aliquoted to both vacuum and non-vacuum urine tubes. Urinary sediment analysis was performed using manual microscope. Results were evaluated using chi-square test. Comparison of the sediment analysis results from vacuum and non-vacuum urine tubes showed that results were highly concordant for erythrocyte, leukocyte and epithelial cells (gamma values 1, 0.997, and 0.994, respectively; p < .001). Results were also concordant for urinary casts, crystals and yeast (kappa values 0.815, 0.945 and 1, respectively; p < .001). The results show that in urinary sediment analysis, vacuum aspiration has no adverse effect on the cellular components except on casts.

  3. Vacuum System and Modeling for the Materials Plasma Exposure Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsdaine, Arnold; Meitner, Steve; Graves, Van

    Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less

  4. Vacuum System and Modeling for the Materials Plasma Exposure Experiment

    DOE PAGES

    Lumsdaine, Arnold; Meitner, Steve; Graves, Van; ...

    2017-08-07

    Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less

  5. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

    PubMed

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A

    2004-10-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

  6. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner

  7. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has

  8. Highly Controlled Codeposition Rate of Organolead Halide Perovskite by Laser Evaporation Method.

    PubMed

    Miyadera, Tetsuhiko; Sugita, Takeshi; Tampo, Hitoshi; Matsubara, Koji; Chikamatsu, Masayuki

    2016-10-05

    Organolead-halide perovskites can be promising materials for next-generation solar cells because of its high power conversion efficiency. The method of precise fabrication is required because both solution-process and vacuum-process fabrication of the perovskite have problems of controllability and reproducibility. Vacuum deposition process was expected to achieve precise control; however, vaporization of amine compound significantly degrades the controllability of deposition rate. Here we achieved the reduction of the vaporization by implementing the laser evaporation system for the codeposition of perovskite. Locally irradiated continuous-wave lasers on the source materials realized the reduced vaporization of CH 3 NH 3 I. The deposition rate was stabilized for several hours by adjusting the duty ratio of modulated laser based on proportional-integral control. Organic-photovoltaic-type perovskite solar cells were fabricated by codeposition of PbI 2 and CH 3 NH 3 I. A power-conversion efficiency of 16.0% with reduced hysteresis was achieved.

  9. On the link between potential evaporation and regional evaporation from a CBL perspective

    NASA Astrophysics Data System (ADS)

    Lhomme, J. P.; Guilioni, L.

    2010-07-01

    The relationship between potential evaporation and actual evaporation was first examined by Bouchet (Proc Berkeley Calif Symp IAHS Publ, 62:134-142, 1963) who considered potential evaporation as the consequence of regional evaporation due to atmospheric feedbacks. Using a heuristic approach, he derived a complementary relationship which, despite no real theoretical background, has proven to be very useful in interpreting many experimental data under various climatic conditions. Here, the relationship between actual and potential evaporation is reinterpreted in the context of the development of the convective boundary layer (CBL): first, with a closed-box approach, where the CBL has an impermeable lid; and then with an open system, where air is exchanged between the CBL and its external environment. By applying steady forcing to these systems, it is shown that an equilibrium state is reached, where potential evaporation has a specific equilibrium formulation as a function of two parameters: one representing large-scale advection and the other the feedback effect of regional evaporation on potential evaporation, i.e. a kind of “medium-scale advection”. It is also shown that the original form of Bouchet’s complementary relationship is not verified in the equilibrium state. This analysis leads us to propose a new and more rational approach of the relationship between potential and actual evaporation through the effective surface resistance of the region.

  10. Ion evaporation from the surface of a Taylor cone.

    PubMed

    Higuera, F J

    2003-07-01

    An analysis is carried out of the electric field-induced evaporation of ions from the surface of a polar liquid that is being electrosprayed in a vacuum. The high-field cone-to-jet transition region of the electrospray, where ion evaporation occurs, is studied taking advantage of its small size and neglecting the inertia of the liquid and the space charge around the liquid. Evaporated ions and charged drops coexist in a range of flow rates, which is investigated numerically. The structure of the cone-to-jet transition comprises: a hydrodynamic region where the nearly equipotential surface of the liquid departs from a Taylor cone and becomes a jet; a slender region where the radius of the jet decreases and the electric field increases while the pressure and the viscous stress balance the electric stress at the surface; the ion evaporation region of high, nearly constant field; and a charged, continuously strained jet that will eventually break into drops. Estimates of the ion and drop contributions to the total, conduction-limited current show that the first of these contributions dominates for small flow rates, while most of the mass is still carried by the drops.

  11. Performance of a Multifunctional Space Evaporator- Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Bue, Grant; Quinn, Gregory

    2013-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 sq ft prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable heat rejection from the LCAR.

  12. Geoscience Laser Altimeter System (GLAS) Instrument: Flight Loop Heat Pipe (LHP) Acceptance Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with

  13. Vacuum packing: a model system for laboratory-scale silage fermentations.

    PubMed

    Johnson, H E; Merry, R J; Davies, D R; Kell, D B; Theodorou, M K; Griffith, G W

    2005-01-01

    To determine the utility of vacuum-packed polythene bags as a convenient, flexible and cost-effective alternative to fixed volume glass vessels for lab-scale silage studies. Using perennial ryegrass or red clover forage, similar fermentations (as assessed by pH measurement) occurred in glass tube and vacuum-packed silos over a 35-day period. As vacuum-packing devices allow modification of initial packing density, the effect of four different settings (initial packing densities of 0.397, 0.435, 0.492 and 0.534 g cm(-3)) on the silage fermentation over 16 days was examined. Significant differences in pH decline and lactate accumulation were observed at different vacuum settings. Gas accumulation was apparent within all bags and changes in bag volume with time was observed to vary according to initial packing density. Vacuum-packed silos do provide a realistic model system for lab-scale silage fermentations. Use of vacuum-packed silos holds potential for lab-scale evaluations of silage fermentations, allowing higher throughput of samples, more consistent packing as well as the possibility of investigating the effects of different initial packing densities and use of different wrapping materials.

  14. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  15. MINERVA: A facility to study Microstructure and INterface Evolution in Realtime under VAcuum

    NASA Astrophysics Data System (ADS)

    Nicklin, Chris; Martinez-Hardigree, Josue; Warne, Adam; Green, Stephen; Burt, Martin; Naylor, John; Dorman, Adam; Wicks, Dean; Din, Salahud; Riede, Moritz

    2017-10-01

    A sample environment to enable real-time X-ray scattering measurements to be recorded during the growth of materials by thermal evaporation in vacuum is presented. The in situ capabilities include studying microstructure development with time or during exposure to different environmental conditions, such as temperature and gas pressure. The chamber provides internal slits and a beam stop, to reduce the background scattering from the X-rays passing through the entrance and exit windows, together with highly controllable flux rates of the evaporants. Initial experiments demonstrate some of the possibilities by monitoring the growth of bathophenanthroline (BPhen), a common molecule used in organic solar cells and organic light emitting diodes, including the development of the microstructure with time and depth within the film. The results show how BPhen nanocrystal structures coarsen at room temperature under vacuum, highlighting the importance of using real time measurements to understand the as-deposited pristine film structure and its development with time. More generally, this sample environment is versatile and can be used for investigation of structure-property relationships in a wide range of vacuum deposited materials and their applications in, for example, optoelectronic devices and energy storage.

  16. Next-Generation Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2012-01-01

    The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling

  17. Evaporation and air-stripping to assess and reduce ethanolamines toxicity in oily wastewater.

    PubMed

    Libralato, G; Ghirardini, A Volpi; Avezzù, F

    2008-05-30

    Toxicity from industrial oily wastewater remains a problem even after conventional activated sludge treatment process, because of the persistence of some toxicant compounds. This work verified the removal efficiency of organic and inorganic pollutants and the effects of evaporation and air-stripping techniques on oily wastewater toxicity reduction. In a lab-scale plant, a vacuum evaporation procedure at three different temperatures and an air-stripping stage were tested on oily wastewater. Toxicity reduction/removal was observed at each treatment step via Microtox bioassay. A case study monitoring real scale evaporation was also done in a full-size wastewater treatment plant (WWTP). To implement part of a general project of toxicity reduction evaluation, additional investigations took into account the monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) role in toxicity definition after the evaporation phase, both as pure substances and mixtures. Only MEA and TEA appeared to contribute towards effluent toxicity.

  18. Investigations on Structural, Optical and X-Radiation Responsive Properties of a-Se Thin Films Fabricated by Thermal Evaporation Method at Low Vacuum Degree.

    PubMed

    Li, Jitao; Zhu, Xinghua; Yang, Dingyu; Gu, Peng; Wu, Haihua

    2018-03-02

    Amorphous selenium (a-Se) thin films with a thickness of 1200 nm were successfully fabricated by thermal evaporation at a low vacuum degree of 10 -2 Pa. The structural properties involving phase and morphology showed that a-Se thin films could be resistant to 60 °C in air. Also, a transformation to polycrystalline Selenium (p-Se) was shown as the annealing temperature rose to 62 °C and 65 °C, with obvious changes in color and surface morphology. Moreover, as the a-Se transformed to p-Se, the samples' transmittance decreased significantly, and the band gap declined dramatically from 2.15 eV to 1.92 eV. Finally, the X-radiation response of a-Se was investigated as an important property, revealing there is a remarkable response speed of photogeneration current both X-ray on and X-ray off, with a requirement of only a very small electrical field.

  19. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOERSTER,C.

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas aftermore » a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream

  20. Accurate evaporation rates of pure and doped water clusters in vacuum: A statistico-dynamical approach

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Douady, J.; Spiegelman, F.

    2010-01-01

    Unimolecular evaporation of selected pure (H2O)n and heterogeneous (H2O)n-1X+ water clusters containing a single hydronium or ammonium impurity is investigated in the framework of phase space theory (PST) in its orbiting transition state version. Using the many-body polarizable Kozack-Jordan potential and its extensions for X+=H3O+ and NH4+, the thermal evaporation of clusters containing 21 and 50 molecules is simulated at several total energies. Numerous molecular dynamics (MD) trajectories at high internal energies provide estimates of the decay rate constant, as well as the kinetic energy and angular momentum released upon dissociation. Additional Monte Carlo simulations are carried out to determine the anharmonic densities of vibrational states, which combined with suitable forms for the rotational densities of states provide expressions for the energy-resolved differential rates. Successful comparison between the MD results and the independent predictions of PST for the distributions of kinetic energy and angular momentum released shows that the latter statistical approach is quantitative. Using MD data as a reference, the absolute evaporation rates are calculated from PST over broad energy and temperature ranges. Based on these results, the presence of an ionic impurity is generally found to decrease the rate, however the effect is much more significant in the 21-molecule clusters. Our calculations also suggest that due to backbendings in the microcanonical densities of states the variations of the evaporation rates may not be strictly increasing with energy or temperature.

  1. Treatment of evaporator condensates by pervaporation

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  2. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  3. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids

    PubMed Central

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface. PMID:25254114

  4. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    PubMed

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  5. A miniature single element effusion cell for the vacuum deposition of transition-metal and rare-earth elements

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.

    1997-08-01

    A miniature single element effusion cell has been fabricated and tested that allows for the high-vacuum deposition of a variety of transition-metal and rare-earth elements. The cell is designed to operate under high-vacuum conditions, ≈10-9 Torr, with low power demands, <200 W. The virtues of this evaporator are the simplicity of design and ease of fabrication, assembly, maintenance, and operation.

  6. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    NASA Astrophysics Data System (ADS)

    Chan, C. K.; Chang, C. C.; Shueh, C.; Yang, I. C.; Wu, L. H.; Chen, B. Y.; Cheng, C. M.; Huang, Y. T.; Chuang, J. Y.; Cheng, Y. T.; Hsiao, Y. M.; Sheng, Albert

    2017-04-01

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  7. Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.

    PubMed

    Levi, Adam; Eilon, Ehud; Ori, Amos; van de Meent, Maarten

    2017-04-07

    We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.

  8. Note: A microfluidic freezer based on evaporative cooling of atomized aqueous microdroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jin; Kim, Dohyun, E-mail: dohyun.kim@mju.ac.kr; Chung, Minsub

    2015-01-15

    We report for the first time water-based evaporative cooling integrated into a microfluidic chip for temperature control and freezing of biological solution. We opt for water as a nontoxic, effective refrigerant. Aqueous solutions are atomized in our device and evaporation of microdroplets under vacuum removes heat effectively. We achieve rapid cooling (−5.1 °C/s) and a low freezing temperature (−14.1 °C). Using this approach, we demonstrate freezing of deionized water and protein solution. Our simple, yet effective cooling device may improve many microfluidic applications currently relying on external power-hungry instruments for cooling and freezing.

  9. Experimental system for drilling simulated lunar rock in ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Roepke, W. W.

    1975-01-01

    An experimental apparatus designed for studying drillability of hard volcanic rock in a simulated lunar vacuum of 5 x 10 to the minus 10th power torr is described. The engineering techniques used to provide suitable drilling torque inside the ultrahigh vacuum chamber while excluding all hydrocarbon are detailed. Totally unlubricated bearings and gears were used to better approximate the true lunar surface conditions within the ultrahigh vacuum system. The drilling system has a starting torque of 30 in-lb with an unloaded running torque of 4 in-lb. Nominal torque increase during drilling is 4.5 in-lb or a total drilling torque of 8.5 in-lb with a 100-lb load on the drill bit at 210 rpm. The research shows conclusively that it is possible to design operational equipment for moderate loads operating under UHV conditions without the use of sealed bearings or any need of lubricants whatsoever.

  10. Laboratory prototype flash evaporator

    NASA Technical Reports Server (NTRS)

    Gaddis, J. L.

    1972-01-01

    A laboratory prototype flash evaporator that is being developed as a candidate for the space shuttle environmental control system expendable heat sink is described. The single evaporator configuration uses water as an evaporant to accommodate reentry and on-orbit peak heat loads, and Freon 22 for terrestrial flight phases below 120,000 feet altitude. The design features, fabrication techniques used for the prototype unit, redundancy considerations, and the fluid temperature control arrangement are reported in detail. The results of an extensive test program to determine the evaporator operational characteristics under a wide variety of conditions are presented.

  11. Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes

    PubMed Central

    Fujimoto, Hiroshi; Suekane, Takashi; Imanishi, Katsuya; Yukiwaki, Satoshi; Wei, Hong; Nagayoshi, Kaori; Yahiro, Masayuki; Adachi, Chihaya

    2016-01-01

    We evaluated the influence of impurities in the vacuum chamber used for the fabrication of organic light-emitting diodes on the lifetime of the fabricated devices and found a correlation between lifetime and the device fabrication time. The contact angle of the ITO substrates stored the chamber under vacuum were used to evaluate chamber cleanliness. Liquid chromatography-mass spectrometry was performed on Si wafers stored in the vacuum chamber before device fabrication to examine the impurities in the chamber. Surprisingly, despite the chamber and evaporation sources being at room temperature, a variety of materials were detected, including previously deposited materials and plasticizers from the vacuum chamber components. We show that the impurities, and not differences in water content, in the chamber were the source of lifetime variations even when the duration of exposure to impurities only varied before and after deposition of the emitter layer. These results suggest that the impurities floating in the vacuum chamber significantly impact lifetime values and reproducibility. PMID:27958304

  12. Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroshi; Suekane, Takashi; Imanishi, Katsuya; Yukiwaki, Satoshi; Wei, Hong; Nagayoshi, Kaori; Yahiro, Masayuki; Adachi, Chihaya

    2016-12-01

    We evaluated the influence of impurities in the vacuum chamber used for the fabrication of organic light-emitting diodes on the lifetime of the fabricated devices and found a correlation between lifetime and the device fabrication time. The contact angle of the ITO substrates stored the chamber under vacuum were used to evaluate chamber cleanliness. Liquid chromatography-mass spectrometry was performed on Si wafers stored in the vacuum chamber before device fabrication to examine the impurities in the chamber. Surprisingly, despite the chamber and evaporation sources being at room temperature, a variety of materials were detected, including previously deposited materials and plasticizers from the vacuum chamber components. We show that the impurities, and not differences in water content, in the chamber were the source of lifetime variations even when the duration of exposure to impurities only varied before and after deposition of the emitter layer. These results suggest that the impurities floating in the vacuum chamber significantly impact lifetime values and reproducibility.

  13. Water supply rates for recirculating evaporative cooling systems in poultry housing

    USDA-ARS?s Scientific Manuscript database

    Evaporative cooling (EC) is an important tool to reduce heat stress in animal housing systems. Expansion of ventilation capacity in tunnel ventilated poultry facilities has resulted in increased water demand for EC systems. As water resources become more limited and costly, proper planning and des...

  14. Thermal and chemical evolution in the early Solar System as recorded by FUN CAIs: Part II - Laboratory evaporation of potential CMS-1 precursor material

    NASA Astrophysics Data System (ADS)

    Mendybaev, Ruslan A.; Williams, Curtis D.; Spicuzza, Michael J.; Richter, Frank M.; Valley, John W.; Fedkin, Alexei V.; Wadhwa, Meenakshi

    2017-03-01

    We present the results of laboratory experiments in which a forsterite-rich melt estimated to be a potential precursor of Allende CMS-1 FUN CAI was evaporated into vacuum for different lengths of time at 1900 °C. The evaporation of this melt resulted in residues that define trajectories in chemical as well as magnesium, silicon and oxygen isotopic composition space and come very close to the measured properties of CMS-1. The isotopic composition of the evaporation residues was also used to determine the kinetic isotopic fractionation factors [α2,1 (vapor-melt) defined as the ratio of isotopes 2 and 1 of a given element in the evaporating gas divided by their ratio in the evaporating source] for evaporation of magnesium (α25,24 for 25Mg/24Mg), silicon (α29,28 for 29Si/28Si) and oxygen (α18,16 for 18O/16O) from the forsterite-rich melt at 1900 °C. The values of α25,24 = 0.98383 ± 0.00033 and α29,28 = 0.99010 ± 0.00038 are essentially independent of change in the melt composition as evaporation proceeds. In contrast, α18,16 changes from 0.9815 ± 0.0016 to ∼0.9911 when the residual melt composition changes from forsteritic to melilitic. Using the determined values of α25,24 and α29,28 and present-day bulk chemical composition of the CMS-1, the composition of the precursor of the inclusion was estimated to be close to the clinopyroxene + spinel + forsterite assemblage condensed from a solar composition gas. The correspondence between the chemical composition and isotopic fractionation of experimental evaporation residues and the present-day bulk chemical and isotopic compositions of CMS-1 is evidence that evaporation played a major role in the chemical evolution of CMS-1.

  15. A thermal vacuum-UV solar simulator test system for assessing microbiological viability

    NASA Technical Reports Server (NTRS)

    Ross, D. S.; Wardle, M. D.; Taylor, D. M.

    1975-01-01

    Microorganisms were exposed to a simulated space environment in order to assess the photobiological effect of broad spectrum, nonionizing solar electromagnetic radiation in terms of viability. A thermal vacuum chamber capable of maintaining a vacuum of 0.000133n/sq m and an ultraviolet rich solar simulator were the main ingredients of the test system. Results to date indicate the system to be capable of providing reliable microbiological data.

  16. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  17. Apparatus and method for evaporator defrosting

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.

    2001-01-01

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  18. Growth of BaSi2 film on Ge(100) by vacuum evaporation and its photoresponse properties

    NASA Astrophysics Data System (ADS)

    Trinh, Cham Thi; Nakagawa, Yoshihiko; Hara, Kosuke O.; Kurokawa, Yasuyoshi; Takabe, Ryota; Suemasu, Takashi; Usami, Noritaka

    2017-05-01

    We have successfully grown a polycrystalline orthorhombic BaSi2 film on a Ge(100) substrate by an evaporation method. Deposition of an amorphous Si (a-Si) film on the Ge substrate prior to BaSi2 evaporation plays a critical role in obtaining a high-quality BaSi2 film. By controlling substrate temperature and the thickness of the a-Si film, a crack-free and single-phase polycrystalline orthorhombic BaSi2 film with a long carrier lifetime of 1.5 µs was obtained on Ge substrates. The photoresponse property of the ITO/BaSi2/Ge/Al structure was clearly observed, and photoresponsivity was found to increase with increasing substrate temperature during deposition of a-Si. Furthermore, the BaSi2 film grown on Ge showed a higher photoresponsivity than that grown on Si, indicating the potential application of evaporated BaSi2 on Ge to thin-film solar cells.

  19. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    NASA Astrophysics Data System (ADS)

    Naidu, M. C. A.; Nolakha, Dinesh; Saharkar, B. S.; Kavani, K. M.; Patel, D. R.

    2012-11-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of "Open loop, auto reversing liquid nitrogen based thermal system". System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  20. Sulfur in vacuum - Sublimation effects on frozen melts, and applications to Io's surface and torus

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.

    1987-01-01

    Vacuum sublimation effects on solid sulfur yield a form of the element that is white at room temperature, is fluffy in texture, and forms on frozen sulfur in vacuum through differential evaporation of molecular species in the solid. This vacuum sulfur should exist in large quantity on Io, if the solid free sulfur there has solidified from a melt; a sulfur volcanism model for Io is accordingly developed on this basis which implies that the color and spectra of different sulfur regions of Io could indicate their relative crystallization ages and cooling histories. The flux of sublimating hotspot sulfur appears consistent with estimated turnover rates of the Io surface.

  1. Example of a Fluid-Phase Change Examined with MD Simulation: Evaporative Cooling of a Nanoscale Droplet.

    PubMed

    Ao, Takashi; Matsumoto, Mitsuhiro

    2017-10-24

    We carried out a series of molecular dynamics simulations in order to examine the evaporative cooling of a nanoscale droplet of a Lennard-Jones liquid. After thermally equilibrating a droplet at a temperature T ini /T t ≃ 1.2 (T t is the triple-point temperature), we started the evaporation into vacuum by removing vaporized particles and monitoring the change in droplet size and the temperature inside. As free evaporation proceeds, the droplet reaches a deep supercooled liquid state of T/T t ≃ 0.7. The temperature was found to be uniform in spite of the fast evaporative cooling on the surface. The time evolution of the evaporating droplet properties was satisfactorily explained with a simple one-dimensional phase-change model. After a sufficiently long run, the supercooled droplet was crystallized into a polycrystalline fcc structure. The crystallization is a stochastic nucleation process. The time and the temperature of inception were evaluated over 42 samples, which indicate the existence of a stability limit.

  2. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-16

    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.

  3. Vacuum-induced coherence in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  4. Systems and Methods for Fabricating Carbon Nanotube-Based Vacuum Electronic Devices

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Toda, Risaku (Inventor); Del Castillo, Linda Y. (Inventor); Murthy, Rakesh (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container.

  5. Determining the virtual surface in the thermal evaporation process of magnesium fluoride from a tungsten boat for different deposition rates, to be used in precision optical components

    NASA Astrophysics Data System (ADS)

    Tejada Esteves, A.; Gálvez de la Puente, G.

    2013-11-01

    Vacuum thermal evaporation has, for some time now, been the principal method for the deposition of thin films, given, among other aspects, its simplicity, flexibility, and relatively low cost. Therefore, the development of models attempting to predict the deposition patterns of given thin film materials in different locations of a vacuum evaporation chamber are arguably important. With this in mind, we have designed one of such models for the thermal evaporation process of magnesium fluoride (MgF2), a common material used in optical thin films, originating from a tungsten boat source. For this we took several deposition samples in glass slide substrates at different locations in the vacuum chamber, considering as independent variables the mean deposition rate, and the axial and vertical distances of the source to the substrate. After a careful analysis by matrix method from the spectral transmittance data of the samples, while providing as output data the spectral transmittance, as well as the physical thickness of the films, both as functions of the aforementioned variables, the virtual surface of the source was determined.

  6. Investigation of Slag Compositions and Pressure Ranges Suitable for Electroslag Remelting under Vacuum Conditions

    NASA Astrophysics Data System (ADS)

    Radwitz, S.; Scholz, H.; Friedrich, B.

    It is well known that high contents of oxygen and hydrogen in creep resistant structural steels like 21CrMoV5-7 have negative influence on a variety of material properties. To investigate the refining ability of various slag compositions under reduced pressure multiple experiments were performed in a 40 kW vacuum-induction furnace with the aim to ensure minimal oxygen and hydrogen contents. With regard to slag evaporation, different mixtures of fluorides and oxides as well as pure oxide systems were utilized. The pressure was varied in the range of 5 and 700 mbar.

  7. Design of the Brine Evaporation Bag for Increased Water Recovery in Microgravity

    NASA Technical Reports Server (NTRS)

    Hayden, Anna L.; Delzeit, Lance D.

    2015-01-01

    The existing water recovery system on the International Space Station (ISS) is limited to 75% reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS that can to increase water recovery to 99%. The largest barrier to high water recovery is mineral scaling inside the water recovery equipment, which leads to equipment failure; therefore, some water must remain to keep the minerals dissolved. This waste stream is liquid brine containing salts, acids, organics, and water. The BEB is designed to recover this remaining water while protecting the equipment from scale. The BEB consists of a sealed bag containing a hydrophobic membrane that allows water vapor and gas to pass through. It is operated under vacuum, heated, and continuously filled with brine to boil away the water. The water vapor is recovered and the solids are contained inside the bag for disposal. The BEB can dry the brine to a solid block. Ongoing work includes improving the design of the BEB and the evaporator to prevent leaks, maximize the rate of water removal, and minimize energy use and weight. Additional testing will determine whether designs are heat- or mass-transfer limited and the optimal water recovery rate.

  8. The vacuum system reform and test of the super-critical 600mw unit

    NASA Astrophysics Data System (ADS)

    Yan, Tao; Wan, Zhonghai; Lu, Jin; Chen, Wen; Cai, Wen

    2017-11-01

    The deficiencies of the designed vacuum system of the super-critical unit is pointed out in this paper, and then it is reformed by the steam ejector. The experimental results show that the vacuum of the condenser can be improved, the coal consumption can be reduced and the plant electricity consumption can be lowered dramatically at a small cost of the steam energy consumption. Meanwhile, the water-ring vacuum pumps cavitation problems can be solved.

  9. Long term measurement of lake evaporation using a pontoon mounted Eddy Covariance system

    NASA Astrophysics Data System (ADS)

    McGowan, H. A.; McGloin, R.; McJannet, D.; Burn, S.

    2011-12-01

    Accurate quantification of evaporation from water storages is essential for design of water management and allocation policy that aims to balance demands for water without compromising the sustainability of future water resources, particularly during periods of prolonged and severe drought. Precise measurement of evaporation from lakes and dams however, presents significant research challenges. These include design and installation of measurement platforms that can withstand a range of wind and wave conditions; accurate determination of the evaporation measurement footprint and the influence of changing water levels. In this paper we present results from a two year long deployment of a pontoon mounted Eddy Covariance (EC) system on a 17.2ha irrigation reservoir in southeast Queensland, Australia. The EC unit included a CSAT-3 sonic anemometer (Campbell Scientific, Utah, United States) and a Li-Cor CS7500 open-path H2O/CO2 infrared gas analyzer (LiCor, Nebraska, United States) at a height of 2.2m, a net radiometer (CNR1, Kipp & Zonen, Netherlands) at a height of 1.2m and a humidity and temperature probe (HMP45C,Vaisala, Finland) at 2.3m. The EC unit was controlled by a Campbell Scientific CR3000 data logger with flux measurements made at 10 Hz and block averaged values logged every 15 minutes. Power to the EC system was from mounted solar panels that charged deep cycle lead-acid batteries while communication was via a cellphone data link. The pontoon was fitted with a weighted central beam and gimbal ring system that allowed self-levelling of the instrumentation and minimized dynamic influences on measurements (McGowan et al 2010; Wiebe et al 2011). EC measurements were corrected for tilt errors using the double rotation method for coordinate rotation described by Wilczak et al. (2001). High and low frequency attenuation of the measured co-spectrum was corrected using Massman's (2000) method for estimating frequency response corrections, while measurements were

  10. In situ calibration of the foil detector for an infrared imaging video bolometer using a carbon evaporation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukai, K., E-mail: mukai.kiyofumi@LHD.nifs.ac.jp; Peterson, B. J.; SOKENDAI

    The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.

  11. Evaporative cooling system for storage of fruits and vegetables - a review.

    PubMed

    Lal Basediya, Amrat; Samuel, D V K; Beera, Vimala

    2013-06-01

    Horticultural produce are stored at lower temperature because of their highly perishable nature. There are many methods to cool the environment. Hence, preserving these types of foods in their fresh form demands that the chemical, bio-chemical and physiological changes are restricted to a minimum by close control of space temperature and humidity. The high cost involved in developing cold storage or controlled atmosphere storage is a pressing problem in several developing countries. Evaporative cooling is a well-known system to be an efficient and economical means for reducing the temperature and increasing the relative humidity in an enclosure and this effect has been extensively tried for increasing the shelf life of horticultural produce in some tropical and subtropical countries. In this review paper, basic concept and principle, methods of evaporative cooling and their application for the preservation of fruits and vegetables and economy are also reported. Thus, the evaporative cooler has prospect for use for short term preservation of vegetables and fruits soon after harvest. Zero energy cooling system could be used effectively for short-duration storage of fruits and vegetables even in hilly region. It not only reduces the storage temperature but also increases the relative humidity of the storage which is essential for maintaining the freshness of the commodities.

  12. Note: A simple sample transfer alignment for ultra-high vacuum systems.

    PubMed

    Tamtögl, A; Carter, E A; Ward, D J; Avidor, N; Kole, P R; Jardine, A P; Allison, W

    2016-06-01

    The alignment of ultra-high-vacuum sample transfer systems can be problematic when there is no direct line of sight to assist the user. We present the design of a simple and cheap system which greatly simplifies the alignment of sample transfer devices. Our method is based on the adaptation of a commercial digital camera which provides live views from within the vacuum chamber. The images of the camera are further processed using an image recognition and processing code which determines any misalignments and reports them to the user. Installation has proven to be extremely useful in order to align the sample with respect to the transfer mechanism. Furthermore, the alignment software can be easily adapted for other systems.

  13. Design of on line detection system for static evaporation rate of LNG vehicle cylinders

    NASA Astrophysics Data System (ADS)

    Tang, P.; Wang, M.; Tan, W. H.; Ling, Z. W.; Li, F.

    2017-06-01

    In order to solve the problems existing in the regular inspection of LNG vehicle cylinders, the static evaporation rate on line detection system of LNG cylinders is discussed in this paper. A non-disassembling, short-term and high-efficiency on line detection system for LNG vehicle cylinders is proposed, which can meet the requirement of evaporation rate test under different media and different test pressures. And then test methods under the experimental conditions, atmospheric pressure and pressure are given respectively. This online detection system designed in this paper can effectively solve the technical problems during the inspection of the cylinder.

  14. Method and apparatus for scientific analysis under low temperature vacuum conditions

    DOEpatents

    Winefordner, James D.; Jones, Bradley T.

    1990-01-01

    A method and apparatus for scientific analysis of a sample under low temperature vacuum conditions uses a vacuum chamber with a conveyor belt disposed therein. One end of the conveyor belt is a cool end in thermal contact with the cold stage of a refrigerator, whereas the other end of the conveyor belt is a warm end spaced from the refrigerator. A septum allows injection of a sample into the vacuum chamber on top of the conveyor belt for spectroscopic or other analysis. The sample freezes on the conveyor belt at the cold end. One or more windows in the vacuum chamber housing allow spectroscopic analysis of the sample. Following the spectroscopic analysis, the conveyor belt may be moved such that the sample moves toward the warm end of the conveyor belt where upon it evaporates, thereby cleaning the conveyor belt. Instead of injecting the sample by way of a septum and use of a syringe and needle, the present device may be used in series with capillary-column gas chromatography or micro-bore high performance liquid chromatography.

  15. Thermal deposition of intact tetrairon(III) single-molecule magnets in high-vacuum conditions.

    PubMed

    Margheriti, Ludovica; Mannini, Matteo; Sorace, Lorenzo; Gorini, Lapo; Gatteschi, Dante; Caneschi, Andrea; Chiappe, Daniele; Moroni, Riccardo; de Mongeot, Francesco Buatier; Cornia, Andrea; Piras, Federica M; Magnani, Agnese; Sessoli, Roberta

    2009-06-01

    A tetrairon(III) single-molecule magnet is deposited using a thermal evaporation technique in high vacuum. The chemical integrity is demonstrated by time-of-flight secondary ion mass spectrometry on a film deposited on Al foil, while superconducting quantum interference device magnetometry and alternating current susceptometry of a film deposited on a kapton substrate show magnetic properties identical to the pristine powder. High-frequency electron paramagnetic resonance spectra confirm the characteristic behavior for a system with S = 5 and a large Ising-type magnetic anisotropy. All these results indicate that the molecules are not damaged during the deposition procedure keeping intact the single-molecule magnet behavior.

  16. Miniature Loop Heat Pipe with Multiple Evaporators for Thermal Control of Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Denya; Pauken, Michael; Birur, Gajanana

    2005-01-01

    This paper presents an advanced miniature heat transport system for thermal control of small spacecraft. The thermal system consists of a loop heat pipe (LHP) with multiple evaporators and multiple deployable radiators for heat transfer, and variable emittance coatings on the radiators for performance enhancement. Thermoelectric coolers are used to control the loop operating temperature. The thermal system combines the functions of variable conductance heat pipes, thermal switches, thermal diodes, and the state-of-the-art LHPs into a single integrated thermal system. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Steady state and transient analytical models have been developed, and scaling criteria have also been established. A breadboard unit has been built for functional testing in laboratory and thermal vacuum environments. Experimental results show excellent performance of the thermal system and correlate very well with theoretical predictions.

  17. Thermal Vacuum Facility for Testing Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.

    2002-01-01

    A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.

  18. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 2)].

    PubMed

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Yamada, Kyohei; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using heptane as a food-simulating solvent for oily or fatty foods, based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. In the official method, heating for evaporation was done with a water bath. In the modified method, a hot plate was used for evaporation, and/or a vacuum concentration procedure was skipped. In most laboratories, the test solutions were heated until just prior to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method. Furthermore, an interlaboratory study was performed to evaluate and compare two leaching solutions (95% ethanol and isooctane) used as food-simulating solvents for oily or fatty foods in the EU. The results demonstrated that there was no significant difference between heptane and these two leaching solutions.

  19. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  20. Overall behaviour of PFC integrated SST-1 vacuum system

    NASA Astrophysics Data System (ADS)

    Khan, Ziauddin; Raval, Dilip C.; Paravasu, Yuvakiran; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; George, Siju; Shoaib, Mohammad; Prakash, Arun; Babu, Gattu R.; Thankey, Prashant; Pathan, Firozkhan S.; Pradhan, Subrata

    2017-04-01

    As a part of phase-I up-gradation of Steady-state Superconducting Tokamak (SST-1), Graphite Plasma Facing Components (PFCs) have been integrated inside SST-1 vacuum vessel as a first wall (FW) during Nov 14 and May 2015. The SST-1 FW has a total surface area of the installed PFCs exposed to plasma is ∼ 40 m2 which is nearly 50% of the total surface area of stainless steel vacuum chamber (∼75 m2). The volume of the vessel within the PFCs is ∼ 16 m3. After the integration of PFCs, the entire vessel as well as the PFC cooling/baking circuits has been qualified with an integrated helium leak tightness of < 1.0 x 10-8 mbar 1/s. The pumping system of the SST-1 vacuum vessel comprises of one number of Roots’ pump, four numbers of turbomolecular pumps and a cryopump. After the initial pump down, the PFCs were baked at 250 °C for nearly 20 hours employing hot nitrogen gas to remove the absorbed water vapours. Thereafter, Helium glow discharges cleaning were carried out towards the removal of surface impurities. The pump down characteristics of SST-1 vacuum chamber and the changes in the residual gaseous impurities after the installation of the PFCs will be discussed in this paper.

  1. Beam vacuum system of Brookhaven`s muon storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuth, H.C.; Snydstrup, L.; Mapes, M.

    1995-11-01

    A storage ring with a circumference of 45 m is being built at Brookhaven to measure the g-2 value of the muons to an accuracy of 0.35 ppm.. The beam vacuum system of the storage ring will operate at 10{sup -7} Torr and has to be completely non-magnetic. It consists of twelve sector chambers. The chambers are constructed of aluminum and are approximately 3.5 m in length with a rectangular cross-section of 16.5 cm high by 45 cm at the widest point. The design features, fabrication techniques and cleaning methods for these chambers are described. The beam vacuum system willmore » be pumped by forty eight non-magnetic distributed ion pumps with a total pumping speed of over 2000 {ell}/sec. Monte Carlo simulations of the pressure distribution in the muon storage region are presented.« less

  2. A Computer Model of the Evaporator for the Development of an Automatic Control System

    NASA Astrophysics Data System (ADS)

    Kozin, K. A.; Efremov, E. V.; Kabrysheva, O. P.; Grachev, M. I.

    2016-08-01

    For the implementation of a closed nuclear fuel cycle it is necessary to carry out a series of experimental studies to justify the choice of technology. In addition, the operation of the radiochemical plant is impossible without high-quality automatic control systems. In the technologies of spent nuclear fuel reprocessing, the method of continuous evaporation is often used for a solution conditioning. Therefore, the effective continuous technological process will depend on the operation of the evaporation equipment. Its essential difference from similar devices is a small size. In this paper the method of mathematic simulation is applied for the investigation of one-effect evaporator with an external heating chamber. Detailed modelling is quite difficult because the phase equilibrium dynamics of the evaporation process is not described. Moreover, there is a relationship with the other process units. The results proved that the study subject is a MIMO plant, nonlinear over separate control channels and not selfbalancing. Adequacy was tested using the experimental data obtained at the laboratory evaporation unit.

  3. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    NASA Astrophysics Data System (ADS)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  4. Fluoride coatings for vacuum ultraviolet reflection filters.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Li, Bincheng

    2015-12-10

    LaF3/MgF2 reflection filters with a high spectral-discrimination capacity of the atomic-oxygen lines at 130.4 and 135.6 nm, which were employed in vacuum ultraviolet imagers, were prepared by molybdenum-boat thermal evaporation. The optical properties of reflection filters were characterized by a high-precision vacuum ultraviolet spectrophotometer. The vulnerability of the filter's microstructures to environmental contamination and the recovery of the optical properties of the stored filter samples with ultraviolet ozone cleaning were experimentally demonstrated. For reflection filters with the optimized nonquarter-wave multilayer structures, the reflectance ratios R135.6 nm/R130.4 nm of 92.7 and 20.6 were achieved for 7° and 45° angles of incidence, respectively. On the contrary, R135.6 nm/R130.4 nm ratio of 12.4 was obtained for a reflection filter with a standard π-stack multilayer structure with H/L=1/4 at 7° AOI.

  5. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  6. Dew-point hygrometry system for measurement of evaporative water loss in infants.

    PubMed

    Ariagno, R L; Glotzbach, S F; Baldwin, R B; Rector, D M; Bowley, S M; Moffat, R J

    1997-03-01

    Evaporation of water from the skin is an important mechanism in thermal homeostasis. Resistance hygrometry, in which the water vapor pressure gradient above the skin surface is calculated, has been the measurement method of choice in the majority of pediatric investigations. However, resistance hygrometry is influenced by changes in ambient conditions such as relative humidity, surface temperature, and convection currents. We have developed a ventilated capsule method that minimized these potential sources of measurement error and that allowed second-by-second, long-term, continuous measurements of evaporative water loss in sleeping infants. Air with a controlled reference humidity (dew-point temperature = 0 degree C) is delivered to a small, lightweight skin capsule and mixed with the vapor on the surface of the skin. The dew point of the resulting mixture is measured by using a chilled mirror dew-point hygrometer. The system indicates leaks, is mobile, and is accurate within 2%, as determined by gravimetric calibration. Examples from a recording of a 13-wk-old full-term infant obtained by using the system give evaporative water loss rates of approximately 0.02 mgH2O.cm-2.min-1 for normothermic baseline conditions and values up to 0.4 mgH2O.cm-2. min-1 when the subject was being warmed. The system is effective for clinical investigations that require dynamic measurements of water loss.

  7. PREFACE: International Symposium on `Vacuum Science and Technology' (IVS 2007)

    NASA Astrophysics Data System (ADS)

    Mittal, K. C.; Gupta, S. K.

    2008-03-01

    The Indian Vacuum Society (established in 1970) has organized a symposium every alternate year on various aspects of vacuum science and technology. There has been considerable participation from R & D establishments, universities and Indian industry in this event. In view of the current global scenario and emerging trends in vacuum technology, this year, the executive committee of IVS felt it appropriate to organize an international symposium at Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 from 29-30 November 2007. This symposium provided a forum for exchange of information among vacuum scientists, technologists and industrialists on recent advances made in the areas of large vacuum systems, vacuum production, its measurement and applications in industry, and material processing in vacuum. Vacuum science and technology has made vital contributions in high tech areas like space, high energy particle accelerators, large plasma systems, electronics, thin films, melting and refining of metals, extraction and processing of advanced materials etc. The main areas covered in the symposium were the production and measurement of vacuums, leak detection, large vacuum systems, vacuum metallurgy, vacuum materials and processing inclusive of applications of vacuum in industry. Large vacuum systems for high energy particle accelerators, plasma devices and light sources are of special significance for this symposium. Vacuum evaporation, hard coatings, thin films, joining techniques, sintering, melting and heat treatment, furnaces and thermo dynamics are also covered in this symposium. There were eighteen invited talks from the best experts in the respective fields and more than one hundred contributed papers. This fact itself indicates the interest that has been generated amongst the scientists, technologists and industrialists in this field. In view of the industrial significance of the vacuum technology, an exhibition of vacuum and vacuum processing related

  8. Hot air drum evaporator

    DOEpatents

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  9. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source

    NASA Astrophysics Data System (ADS)

    Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de

    2017-06-01

    A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.

  10. Reflectance of evaporated rhenium and tungsten films in the vacuum ultraviolet from 300 to 2000 A.

    NASA Technical Reports Server (NTRS)

    Cox, J. T.; Hass, G.; Ramsey, J. B.; Hunter, W. R.

    1972-01-01

    Discussion of the dependence of the reflectance of Re and W on the substrate temperature during deposition, film thickness, and aging during exposure to air. Re and W of 99.99% purity were evaporated with a 6-kW fine-focused electron gun and deposited on glass and fused quartz plates of various temperatures ranging from 40 to 500 C. With Re, films of highest reflectance were obtained by evaporation onto unheated substrates, whereas with W, heating of the substrate greatly increased the reflectance of the deposited films. For both metals, the reflectance losses during extended exposure to air remained rather small, indicating that the oxide films formed on both film materials at room temperature were very thin.

  11. Controlling water evaporation through self-assembly

    PubMed Central

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-01-01

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation. PMID:27573848

  12. Controlling water evaporation through self-assembly.

    PubMed

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  13. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems.

    PubMed

    Chimeli, Talita Baumgratz Cachapuz; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega; Hilgert, Leandro Augusto; Di Hipólito, Vinicius; Garcia, Fernanda Cristina Pimentel

    2014-01-01

    To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  14. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    PubMed Central

    CHIMELI, Talita Baumgratz Cachapuz; D'ALPINO, Paulo Henrique Perlatti; PEREIRA, Patrícia Nóbrega; HILGERT, Leandro Augusto; DI HIPÓLITO, Vinicius; GARCIA, Fernanda Cristina Pimentel

    2014-01-01

    Objective To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Material and Methods Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated. PMID:25141201

  15. 40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) Evaporative Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1207-96 Sampling and analytical systems..., the enclosure shall be gas tight in accordance with § 86.1217-96. Interior surfaces must be...

  16. 40 CFR 86.1207-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) Evaporative Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1207-96 Sampling and analytical systems..., the enclosure shall be gas tight in accordance with § 86.1217-96. Interior surfaces must be...

  17. Vacuum status-display and sector-conditioning programs

    NASA Astrophysics Data System (ADS)

    Skelly, J.; Yen, S.

    1990-08-01

    Two programs have been developed for observation and control of the AGS vacuum system, which include the following notable features: (1) they incorporate a graphical user interface and (2) they are driven by a relational database which describes the vacuum system. The vacuum system comprises some 440 devices organized into 28 vacuum sectors. The status-display program invites menu selection of a sector, interrogates the relational database for relevant vacuum devices, acquires live readbacks and posts a graphical display of their status. The sector-conditioning program likewise invites sector selection, produces the same status display and also implements process control logic on the sector devices to pump the sector down from atmospheric pressure to high vacuum over a period extending several hours. As additional devices are installed in the vacuum system, the devices are added to the relational database; these programs then automatically include the new devices.

  18. New Directions for Evaporative Cooling Systems.

    ERIC Educational Resources Information Center

    Robison, Rita

    1981-01-01

    New energy saving technology can be applied to older cooling towers; in addition, evaporative chilling, a process that links a cooling tower to the chilling equipment, can reduce energy use by 80 percent. (Author/MLF)

  19. Evaluation of a Prototype Hybrid Vacuum Pump to Provide Vacuum-Assisted Suspension for Above-Knee Prostheses

    PubMed Central

    Major, Matthew J.; Caldwell, Ryan; Fatone, Stefania

    2015-01-01

    Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels. PMID:27462383

  20. Vehicle-Level Oxygen/Methane Propulsion System Hotfire Testing at Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.; Desai, Pooja; Werlink, Rudy

    2017-01-01

    A prototype integrated liquid oxygen/liquid methane propulsion system was hot-fire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). This test campaign served two purposes: 1) Characterize the performance of the Plum Brook facility in vacuum accumulator mode and 2) Collect the unique data set of an integrated LOX/Methane propulsion system operating in high altitude and thermal vacuum environments (a first). Data from this propulsion system prototype could inform the design of future spacecraft in-space propulsion systems, including landers. The test vehicle for this campaign was the Integrated Cryogenic Propulsion Test Article (ICPTA), which was constructed for this project using assets from the former Morpheus Project rebuilt and outfitted with additional new hardware. The ICPTA utilizes one 2,800 lbf main engine, two 28 lbf and two 7 lbf reaction control engines mounted in two pods, four 48-inch propellant tanks (two each for liquid oxygen and liquid methane), and a cold helium system for propellant tank pressurization. Several hundred sensors on the ICPTA and many more in the test cell collected data to characterize the operation of the vehicle and facility. Multiple notable experiments were performed during this test campaign, many for the first time, including pressure-fed cryogenic reaction control system characterization over a wide range of conditions, coil-on-plug ignition system demonstration at the vehicle level, integrated main engine/RCS operation, and a non-intrusive propellant mass gauging system. The test data includes water-hammer and thermal heat leak data critical to validating models for use in future vehicle design activities. This successful test campaign demonstrated the performance of the updated Plum Brook In-Space Propulsion thermal vacuum chamber and incrementally advanced the state of LOX/Methane propulsion

  1. Paraformaldehyde pellet not necessary in vacuum-pumped maple sap system

    Treesearch

    H. Clay Smith; Carter B. Gibbs

    1970-01-01

    In a study of sugar maple sap collection through a vacuum-pumped plastic tubing system, yields were compared between tapholes in which paraformaldehyde pellets were used and tapholes without pellets, Use of the pellets did not increase yield.

  2. Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casimir-Rabi Splittings

    NASA Astrophysics Data System (ADS)

    Macrı, Vincenzo; Ridolfo, Alessandro; Di Stefano, Omar; Kockum, Anton Frisk; Nori, Franco; Savasta, Salvatore

    2018-01-01

    We study the dynamical Casimir effect using a fully quantum-mechanical description of both the cavity field and the oscillating mirror. We do not linearize the dynamics, nor do we adopt any parametric or perturbative approximation. By numerically diagonalizing the full optomechanical Hamiltonian, we show that the resonant generation of photons from the vacuum is determined by a ladder of mirror-field vacuum Rabi splittings. We find that vacuum emission can originate from the free evolution of an initial pure mechanical excited state, in analogy with the spontaneous emission from excited atoms. By considering a coherent drive of the mirror, using a master-equation approach to take losses into account, we are able to study the dynamical Casimir effect for optomechanical coupling strengths ranging from weak to ultrastrong. We find that a resonant production of photons out of the vacuum can be observed even for mechanical frequencies lower than the cavity-mode frequency. Since high mechanical frequencies, which are hard to achieve experimentally, were thought to be imperative for realizing the dynamical Casimir effect, this result removes one of the major obstacles for the observation of this long-sought effect. We also find that the dynamical Casimir effect can create entanglement between the oscillating mirror and the radiation produced by its motion in the vacuum field, and that vacuum Casimir-Rabi oscillations can occur. Finally, we also show that all these findings apply not only to optomechanical systems, but also to parametric amplifiers operating in the fully quantum regime.

  3. Organic ferroelectric evaporator with substrate cooling and in situ transport capabilities.

    PubMed

    Foreman, K; Labedz, C; Shearer, M; Adenwalla, S

    2014-04-01

    We report on the design, operation, and performance of a thermal evaporation chamber capable of evaporating organic thin films. Organic thin films are employed in a diverse range of devices and can provide insight into fundamental physical phenomena. However, growing organic thin films is often challenging and requires very specific deposition parameters. The chamber presented here is capable of cooling sample substrates to temperatures below 130 K and allows for the detachment of the sample from the cooling stage and in situ transport. This permits the use of multiple deposition techniques in separate, but connected, deposition chambers without breaking vacuum and therefore provides clean, well characterized interfaces between the organic thin film and any adjoining layers. We also demonstrate a successful thin film deposition of an organic material with a demanding set of deposition parameters, showcasing the success of this design.

  4. Comparative Emissions of Random Orbital Sanding between Conventional and Self-Generated Vacuum Systems

    PubMed Central

    Liverseed, David R.

    2013-01-01

    Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects. PMID:23065674

  5. Comparative emissions of random orbital sanding between conventional and self-generated vacuum systems.

    PubMed

    Liverseed, David R; Logan, Perry W; Johnson, Carl E; Morey, Sandy Z; Raynor, Peter C

    2013-03-01

    Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects.

  6. Development of High Interruption Capability Vacuum Circuit Breaker -Technology of Vacuum Arc Control-

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshimitsu; Kaneko, Eiji

    Vacuum circuit breakers (VCB) have been widely used for power distribution systems. Vacuum Interrupters, which are the current interruption unit, have been increased its interruption capability with the development of vacuum arc control technology by magnetic field. There are three major type electrodes: disk shaped electrodes, radial magnetic field electrodes, axial magnetic field (AMF) electrodes. In the disk shaped electrode, the vacuum arc between the electrodes is not controlled. In the AMF electrode, the vacuum arc is diffused and stabilized by an axial magnetic field, which is parallel to the arc current. In the last type of electrodes, the vacuum arc column is rotated by magnetic force generated by the current flowing in the electrodes. The interruption current and the voltage of one break VCB is increased to 100 kA, 144 kV respectively. This paper describes basic configurations and functions of VCB, vacuum arc control technology in vacuum interrupters, recent researches and applications of VCB.

  7. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  8. Studies of Lubricating Materials in Vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Johnson, R. L.; Swikert, M. A.

    1964-01-01

    Lubricating materials for use in a vacuum environment have been the subject of a series of experimental investigations. Evaporation properties were evaluated for solid polymeric compositions. Friction and wear studies explored the behavior during sliding contact for series of polymeric compositions, binary alloys containing soft film-forming phases, complex alloys with film-forming materials, and a burnished MoS2 film. Friction and wear experiments were conducted at 10(exp-9)mm Hg with a 3/16-inch-radius-hemisphere rider specimen sliding on the flat surface of a rotating 2-1/2-inch-diameter disk specimen with materials that had low rates of evaporation. The influence of fillers in polytetrafluoroethylene (PTFE) on decomposition during vacuum friction studies was determined with a mass spectrometer. A real advantage in reducing decomposition and improving friction wear properties is gained by adding fillers (e.g., copper) that improve thermal conductivity through the composite materials. A polyimide and an epoxy-MoS2 composition material were found to have better friction and wear properties than PTFE compositions. A series of alloys (cast binary as well as more complex alloys) that contained microinclusions of potential film-forming material was studied. These materials replaced the normal surface oxides as they were worn away on sliding contact. Iron sulfide, nickel oxide, and tin are typical film-forming materials employed and were demonstrated to be effective in inhibiting surface welding and reducing friction. A burnished MoS2 film applied to type 440-C stainless steel in argon with a rotating soft wire brush had good endurance properties but somewhat higher friction than commercially available bonded films. An oil film applied to the burnished MoS2 markedly reduced its endurance life.

  9. Preparation of AgInSe2 thin films grown by vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Yoshino, K.; Ikari, T.

    2006-09-01

    Polycrystalline AgInSe2 thin films were successfully grown on glass substrates by an evaporation method. The starting materials were stoichiometrically mixed Ag2Se and In2Se3 powders. X-ray diffraction revealed that the sample annealed at 600 °C consisted of AgInSe2 single phase, with (112) orientation and a large grain size. The lattice constant (a axis) was close to JCPDS values. From optical transmittance and reflectance measurements, the bandgap energy was estimated to be 1.17 eV.

  10. Partial liquid ventilation: effects of closed breathing systems, heat-and-moisture-exchangers and sodalime absorbers on perfluorocarbon evaporation.

    PubMed

    Wilms, C T; Schober, P; Kalb, R; Loer, S A

    2006-01-01

    During partial liquid ventilation perfluorocarbons are instilled into the airways from where they subsequently evaporate via the bronchial system. This process is influenced by multiple factors, such as the vapour pressure of the perfluorocarbons, the instilled volume, intrapulmonary perfluorocarbon distribution, postural positioning and ventilatory settings. In our study we compared the effects of open and closed breathing systems, a heat-and-moisture-exchanger and a sodalime absorber on perfluorocarbon evaporation during partial liquid ventilation. Isolated rat lungs were suspended from a force transducer. After intratracheal perfluorocarbon instillation (10 mL kg(-1)) the lungs were either ventilated with an open breathing system (n = 6), a closed breathing system (n = 6), an open breathing system with an integrated heat-and-moisture-exchanger (n = 6), an open breathing system with an integrated sodalime absorber (n = 6), or a closed breathing system with an integrated heat-and-moisture-exchanger and a sodalime absorber (n = 6). Evaporative perfluorocarbon elimination was determined gravimetrically. When compared to the elimination half-life in an open breathing system (1.2 +/- 0.07 h), elimination half-life was longer with a closed system (6.4 +/- 0.9 h, P 0.05) when compared to a closed system. Evaporative perfluorocarbon loss can be reduced effectively with closed breathing systems, followed by the use of sodalime absorbers and heat-and-moisture-exchangers.

  11. A low cost imaging displacement measurement system for spacecraft thermal vacuum testing

    NASA Technical Reports Server (NTRS)

    Dempsey, Brian

    2006-01-01

    A low cost imaging displacement technique suitable for use in thermal vacuum testing was built and tested during thermal vacuum testing of the space infrared telescope facility (SIRTF, later renamed Spitzer infrared telescope facility). The problem was to measure the relative displacement of different portions of the spacecraft due to thermal expansion or contraction. Standard displacement measuring instrumentation could not be used because of the widely varying temperatures on the spacecraft and for fear of invalidating the thermal vacuum testing. The imaging system was conceived, designed, purchased, and installed in approximately 2 months at very low cost. The system performed beyond expectations proving that sub millimeter displacements could be measured from over 2 meters away. Using commercial optics it was possible to make displacement measurements down to 10 (mu)m. An automated image processing tool was used to process the data, which not only speeded up data reduction, but showed that velocities and accelerations could also be measured. Details of the design and capabilities of the system are discussed along with the results of the test on the observatory. Several images from the actual test are presented.

  12. Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-10-01

    The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.

  13. Control methods and systems for indirect evaporative coolers

    DOEpatents

    Woods, Jason; Kozubal, Erik

    2015-09-22

    A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.

  14. A simple method to determine evaporation and compensate for liquid losses in small-scale cell culture systems.

    PubMed

    Wiegmann, Vincent; Martinez, Cristina Bernal; Baganz, Frank

    2018-04-24

    Establish a method to indirectly measure evaporation in microwell-based cell culture systems and show that the proposed method allows compensating for liquid losses in fed-batch processes. A correlation between evaporation and the concentration of Na + was found (R 2  = 0.95) when using the 24-well-based miniature bioreactor system (micro-Matrix) for a batch culture with GS-CHO. Based on these results, a method was developed to counteract evaporation with periodic water additions based on measurements of the Na + concentration. Implementation of this method resulted in a reduction of the relative liquid loss after 15 days of a fed-batch cultivation from 36.7 ± 6.7% without volume corrections to 6.9 ± 6.5% with volume corrections. A procedure was established to indirectly measure evaporation through a correlation with the level of Na + ions in solution and deriving a simple formula to account for liquid losses.

  15. Terra Vac In Situ Vacuum Extraction System: Applications Analysis Report

    EPA Science Inventory

    This document is an evaluation of the Terra Vac in situ vacuum extraction system and its applicability as a treatment method for waste site cleanup. This report analyzes the results from the Superfund Innovative Technology Evaluation (SITE) Program’s 56-day demonstration at t...

  16. Metals purification by improved vacuum arc remelting

    DOEpatents

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  17. Remote vacuum or pressure sealing device and method for critical isolated systems

    DOEpatents

    Brock, James David [Newport News, VA; Keith, Christopher D [Newport News, VA

    2012-07-10

    A remote vacuum or pressure sealing apparatus and method for making a radiation tolerant, remotely prepared seal that maintains a vacuum or pressure tight seal throughout a wide temperature range. The remote sealing apparatus includes a fixed threaded sealing surface on an isolated system, a gasket, and an insert consisting of a plug with a protruding sample holder. An insert coupling device, provided for inserting samples within the isolated system, includes a threaded fastener for cooperating with the fixed threaded sealing surface on the isolated system. The insert coupling device includes a locating pin for azimuthal orientation, coupling pins, a tooted coaxial socket wrench, and an insert coupling actuator for actuating the coupling pins. The remote aspect of the sealing apparatus maintains the isolation of the system from the user's environment, safely preserving the user and the system from detrimental effect from each respectively.

  18. Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    2016-05-15

    A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation inmore » the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.« less

  19. Vacuum system design and tritium inventory for the charge exchange diagnostic on the Tokamak Fusion Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S.S.

    The application of charge exchange analyzers for the measurement of ion temperature in fusion plasma experiments requires a direct connection between the diagnostic and plasma-discharge vacuum chambers. Differential pumping of the gas load from the diagnostic stripping cell operated at > or approx. = 10/sup -3/ Torr is required to maintain the analyzer chamber at a pressure of < or approx. = 10/sup -6/ Torr. The migration of gases between the diagnostic and plasma vacuum chambers must be minimized. In particular, introduction of the analyzer stripping cell gas into the plasma chamber having a base pressure of < or approx.more » = 10/sup -8/ Torr must be suppressed. The charge exchange diagnostic for the Tokamak Fusion Test Reactor (TFTR) is comprised of two analyzer systems designed to contain a total of 18 independent mass/energy analyzers and one diagnostic neutral beam rated at 80 keV, 15 A. The associated arrays of multiple, interconnected vacuum systems were analyzed using the Vacuum System Transient Simulator (Vsts) computer program which models the transient transport of multigas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced costs, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and of the diagnostic working gases to the torus.« less

  20. Non-reclosing pressure relief device for vacuum systems

    DOEpatents

    Swansiger, William A.

    1994-01-01

    A non-reclosing overpressure protection device such as a rupture disc provides a non-reclosing opening upon forcible contact with a knife blade. A bellows, having an inlet capable of being sealably connected to a source of pressure (the vacuum system) and an outlet containing the rupture disc, transmits the pressure in the system to the disc. The bellows maintains the disc away from the knife when the pressure is below an overpressure amount, and carries the disc to a position when the pressure is above an overpressure amount where the disc is ruptured by the knife.

  1. Non-reclosing pressure relief device for vacuum systems

    DOEpatents

    Swansiger, W.A.

    1994-02-08

    A non-reclosing overpressure protection device such as a rupture disc provides a non-reclosing opening upon forcible contact with a knife blade. A bellows, having an inlet capable of being sealably connected to a source of pressure (the vacuum system) and an outlet containing the rupture disc, transmits the pressure in the system to the disc. The bellows maintains the disc away from the knife when the pressure is below an overpressure amount, and carries the disc to a position when the pressure is above an overpressure amount where the disc is ruptured by the knife. 6 figures.

  2. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism.

    PubMed

    Li, Xingang; Gao, Yujie; Ding, Hui

    2013-10-01

    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. 40 CFR 1042.107 - Evaporative emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuels (for example, natural gas). (b) If an engine uses a volatile liquid fuel, such as methanol, the engine's fuel system and the vessel in which the engine is installed must meet the evaporative emission... emissions are controlled. (2) Present test data to show that fuel systems and vessels meet the evaporative...

  4. 40 CFR 1042.107 - Evaporative emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fuels (for example, natural gas). (b) If an engine uses a volatile liquid fuel, such as methanol, the engine's fuel system and the vessel in which the engine is installed must meet the evaporative emission... emissions are controlled. (2) Present test data to show that fuel systems and vessels meet the evaporative...

  5. Improvements of vacuum system in J-PARC 3 GeV synchrotron

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Hikichi, Y.; Namekawa, Y.; Takeishi, K.; Yanagibashi, T.; Kinsho, M.; Yamamoto, K.; Sato, A.

    2017-07-01

    The RCS vacuum system has been upgraded since the completion of its construction towards the objectives of both better vacuum quality and higher reliability of the components. For the better vacuum quality, (1) pressure of the injection beam line was improved to prevent the H-beam from converting to H0; (2) leakage in the beam injection area due to the thermal expansion was eliminated by applying the adequate torque amount for the clamps; (3) new in-situ degassing method of the kicker magnet was developed. For the reliability increase of the components, (1) A considerable number of fluoroelastmer seal was exchanged to metal seal with the low spring constant bellows and the light clamps; (2) TMP controller for the long cable was developed to prevent the controller failure by the severe electrical noise; (3) A number of TMP were installed instead of ion pumps in the RF cavity section as an insurance for the case of pump trouble.

  6. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    Grant Bue and Matthew Vogel presented the two types of Spacesuit Water Membrane Evaporators (SWME) that were developed based on hydrophobic microporous membranes. One type, the Sheet Membrane (SaM) SWME, is composed of six concentric Teflon sheet membranes fixed on cylindrical-supporting screens to form three concentric annular water channels. Those water channels are surrounded by vacuum passages to draw off the water vapor that passes through the membrane. The other type, the Hollow Fiber (HoFi) SWME, is composed of more than 14,000 tubes. Water flows through the tubes and water vapor passes through the tube wall to the shell side that vents to the vacuum of space. Both SWME types have undergone testing to baseline the performance at predicted operating temperatures and flow rates; the units also have been subjected to contamination testing and other conditions to test resiliency.

  7. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    expert members on the subject to deliver lectures and take part in devising courses in the universities. IVS publishes a quarterly called the `Bulletin of Indian Vacuum Society' since its inception, in which articles on vacuum and related topics are published. NIRVAT, news, announcements, and reports are the other features of the Bulletin. The articles in the Bulletin are internationally abstracted. The Bulletin is distributed free to all the members of the society. The society also publishes proceedings of national/international symposia and seminars, manuals, lecture notes etc. It has published a `Vacuum Directory' containing very useful information on vacuum technology. IVS has also set up its own website http://www.ivsnet.org in January 2002. The website contains information about IVS, list of members, list of EC members, events and news, abstracts of articles published in the `Bulletin of Indian Vacuum Society', utilities, announcements, reports, membership and other forms which can be completed online and also gives links to other vacuum societies. Our Society has been a member of the executive council of the International Union of Vacuum Science, Techniques and Applications (IUVSTA) and its various committees since 1970. In 1983 IVS conducted an International Symposium on Vacuum Technology and Nuclear Applications in BARC, Mumbai, under the sponsorship of IUVSTA. In 1987 IVS arranged the Triennial International Conference on Thin Films in New Delhi, where more than 200 foreign delegates participated. IVS also hosted the IUVSTA Executive Council Meeting along with the conference. The society organized yet again an International Conference on Vacuum Science and Technology and SRS Vacuum Systems at CAT, Indore in1995. IVS arranges the prestigious Professor Balakrishnan Memorial Lecture in memory of its founder vice-president. Leading scientists from India and abroad in the field are invited to deliver the talks. So far 23 lectures have been held in this series. IVS

  8. Introduction to the magnet and vacuum systems of an electron storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, W.T.

    An accelerator or storage ring complex is a concerted interplay of various functional systems. For the convenience of discussion we can divide it into the following systems: injector, magnet, RF, vacuum, instrumentation and control. In addition, the conventional construction of the building and radiation safety consideration are also needed and finally the beam lines, detector, data acquisition and analysis set-ups for research programs. Dr. L. Teng has given a comprehensive review of the whole complex and the operation of such a facility. I concentrate on the description of magnet and vacuum systems. Only the general function of each system andmore » the basic design concepts will be introduced, no detailed engineering practice will be given which will be best done after a machine design is produced. For further understanding and references a table of bibliography is provided at the end of the paper.« less

  9. TFTR diagnostic vacuum controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  10. A Vibration Isolation System for Use in a Large Thermal Vacuum Test Facility

    NASA Technical Reports Server (NTRS)

    Hershfeld, Donald; VanCampen, Julie

    2002-01-01

    A thermal vacuum payload platform that is isolated from background vibration is required to support the development of future instruments for Hubble Space Telescope (HST) and the Next Generation Space Telescope (NGST) at the Goddard Space Flight Center (GSFC). Because of the size and weight of the thermal/vacuum facility in which the instruments are tested, it is not practical to isolate the entire facility externally. Therefore, a vibration isolation system has been designed and fabricated to be installed inside the chamber. The isolation system provides a payload interface of 3.05 m (10 feet) in diameter and is capable of supporting a maximum payload weight of 4536 kg (10,000 Lbs). A counterweight system has been included to insure stability of payloads having high centers of gravity. The vibration isolation system poses a potential problem in that leakage into the chamber could compromise the ability to maintain vacuum. Strict specifications were imposed on the isolation system design to minimize leakage. Vibration measurements, obtained inside the chamber, prior to installing the vibration isolation system, indicated levels in all axes of approximately 1 milli-g at about 20 Hz. The vibration isolation system was designed to provide a minimum attenuation of 40 dB to these levels. This paper describes the design and testing of this unique vibration isolation system. Problems with leakage and corrective methods are presented. Isolation performance results are also presented.

  11. Violations of the equivalence principle by a nonlocally reconstructed vacuum at the black hole horizon.

    PubMed

    Bousso, Raphael

    2014-01-31

    If information escapes from an evaporating black hole, then field modes just outside the horizon must be thermally entangled with distant Hawking radiation. But for an infalling observer to find empty space at the horizon, the same modes would have to be entangled with the black hole interior. Thus, unitarity appears to require a "firewall" at the horizon. Identifying the interior with the distant radiation promises to resolve the entanglement conflict and restore the vacuum. But the map must adjust for any interactions, or else the firewall will reappear if the Hawking radiation scatters off the cosmic microwave background. Such a map produces a "frozen vacuum," a phenomenon that is arguably worse than a firewall. An infalling observer is unable to excite the vacuum near the horizon. This allows the horizon to be locally detected and so violates the equivalence principle.

  12. Special treatment reduces helium permeation of glass in vacuum systems

    NASA Technical Reports Server (NTRS)

    Bryant, P. J.; Gosselin, C. M.

    1966-01-01

    Internal surfaces of the glass component of a vacuum system are exposed to cesium in gaseous form to reduce helium permeation. The cesium gas is derived from decomposition of cesium nitrate through heating. Several minutes of exposure of the internal surfaces of the glass vessel are sufficient to complete the treatment.

  13. Electrical insulation system for the shell-vacuum vessel and poloidal field gap in the ZTH machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reass, W.A.; Ballard, E.O.

    1989-01-01

    The electrical insulation systems for the ZTH machine have many unusual design problems. The poloidal field gap insulation must be capable of conforming to poloidal and toroidal contours, provide a 25 kV hold off, and sufficiently adhere to the epoxy back fill between the overlapping conductors. The shell-vacuum vessel system will use stretchable and flexible insulation along with protective hats, boots and sleeves. The shell-vacuum vessel system must be able to withstand a 12.5 kV pulse with provision for thermal insulation to limit the effects of the 300{degrees}C vacuum vessel during operation and bakeout. Methodology required to provide the electricalmore » protection along with testing data and material characteristics will be presented. 7 figs.« less

  14. Dephosphorization of complexly alloyed nickel melts under vacuum induction melting conditions: I. Thermodynamics of dephosphorization

    NASA Astrophysics Data System (ADS)

    Burtsev, V. T.; Anuchkin, S. N.; Sidorov, V. V.; Rigin, V. E.

    2013-01-01

    A thermodynamic computer simulation of the oxidation potential of a gas-melt-ceramic (80 wt% MgO, 20 wt % Al2O3) system under vacuum induction furnace conditions is used to find that the major contribution to this potential at temperatures ranging from 1673 to 2273 K is made by a nickel melt with additives of nickel protoxide. This provides the possibility of oxidative dephosphorization of the metallic melt. The computation of the saturated vapor pressure of phosphorus compounds with the IIA group elements shows that the data obtained for magnesium, calcium, and barium metaphosphates and europium orthophosphate at 1873 K indicate the principal possibility of melt dephosphorization by the evaporation of these compounds under oxidative conditions.

  15. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    DOE PAGES

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-02-24

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems in this paper. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion–molecule reactionsmore » and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. Finally, new directions in coupling VUV radiation to interrogate complex chemical systems are discussed.« less

  16. Low-cost insulation system for cryostats eliminates need for a vacuum

    NASA Technical Reports Server (NTRS)

    Calvert, H. F.

    1964-01-01

    In order to eliminate the hazard caused by residual air trapped between the concentric shells of a cryostat, these annular spaces are pressurized with helium gas. This system is more economical than the use of powdered insulation maintained at low vacuums.

  17. Condensed milk storage and evaporation affect the flavor of nonfat dry milk.

    PubMed

    Park, Curtis W; Drake, MaryAnne

    2016-12-01

    Unit operations in nonfat dry milk (NFDM) manufacture influence sensory properties, and consequently, its use and acceptance in ingredient applications. Condensed skim milk may be stored at refrigeration temperatures for extended periods before spray drying due to shipping or lack of drying capacity. Currently, NFDM processors have 2 options for milk concentration up to 30% solids: evaporation (E) or reverse osmosis (RO). The objective of this study was to determine the effect of condensed milk storage and milk concentration method (E vs. RO) on the flavor of NFDM and investigate mechanisms behind flavor differences. For experiment 1, skim milk was pasteurized and concentrated to 30% solids by E or RO and then either stored for 24h at 4°C or concentrated to 50% solids by E and spray dried immediately. To investigate mechanisms behind the results from experiment 1, experiment 2 was constructed. In experiment 2, pasteurized skim milk was subjected to 1 of 4 treatments: control (no E), heated in the evaporator without vacuum, E concentration to 30% solids, or E concentration to 40% solids. The milks were then diluted to the same solids content and evaluated. Volatile compounds were also measured during concentration in the vapor separator of the evaporator. Sensory properties were evaluated by descriptive sensory analysis and instrumental volatile compound analysis was conducted to evaluate volatile compounds. Interaction effects between storage and method of concentration were investigated. In experiment 1, E decreased sweet aromatic flavor and many characteristic milk flavor compounds and increased cardboard and cooked flavors in NFDM compared with RO. Liquid storage increased cardboard flavor and hexanal and octanal and decreased sweet aromatic flavors and vanillin concentration. Results from experiment 2 indicated that the characteristic milk flavors and their associated volatile compounds were removed by the vapor separator in the evaporator due to the heat and

  18. IMPEDANCE MEASUREMENT OF VACUUM CHAMBER COMPONENTS FOR THE ADVANCE PHOTON SOURCE (APS) UPGRADE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangroula, M.; Lindberg, R.; Lill, R.

    2017-06-16

    The proposed Advance Photon Source Upgrade (APS-U) employs a multi-bend achromat (MBA) lattice to increase the photon brightness by two to three orders of magnitude. One of the main design challenges of the upgrade is to minimize rf heating and collective instabilities associated with the impedance of small-aperture vacuum components. As part of this effort, my research focuses on impedance measurement and simulation of various MBA vacuum components. Here, we present the summary of the impedance contributions for the APS-U and describe our planned impedance measurement technique, including some measurement results for the non-evaporative getter (NEG)-coated copper chamber and simulationmore » results for other critical components using a novel Goubau line (G-line) set up.« less

  19. Impedance measurement of vacuum chamber components for the Advance Photon Source(APS) Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangroula, M.; Lindberg, R.; Lill, R.

    2017-01-01

    The proposed Advance Photon Source Upgrade (APS-U) employs a multi-bend achromat (MBA) lattice to increase the photon brightness by two to three orders of magnitude. One of the main design challenges of the upgrade is to minimize rf heating and collective instabilities associated with the impedance of small-aperture vacuum components. As part of this effort, my research focuses on impedance measurement and simulation of various MBA vacuum components. Here, we present the summary of the impedance contributions for the APS-U and describe our planned impedance measurement technique, including some measurement results for the non-evaporative getter (NEG)-coated copper chamber and simulationmore » results for other critical components using a novel Goubau line (G-line) set up.« less

  20. Experimental investigation of interfacial energy transport in an evaporating sessile droplet for evaporative cooling applications

    NASA Astrophysics Data System (ADS)

    Mahmud, Md. Almostasim; MacDonald, Brendan D.

    2017-01-01

    In this paper we experimentally examine evaporation flux distributions and modes of interfacial energy transport for continuously fed evaporating spherical sessile water droplets in a regime that is relevant for applications, particularly for evaporative cooling systems. The contribution of the thermal conduction through the vapor phase was found to be insignificant compared to the thermal conduction through the liquid phase for the conditions we investigated. The local evaporation flux distributions associated with thermal conduction were found to vary along the surface of the droplet. Thermal conduction provided a majority of the energy required for evaporation but did not account for all of the energy transport, contributing 64 ±3 % , 77 ±3 % , and 77 ±4 % of the energy required for the three cases we examined. Based on the temperature profiles measured along the interface we found that thermocapillary flow was predicted to occur in our experiments, and two convection cells were consistent with the temperature distributions for higher substrate temperatures while a single convection cell was consistent with the temperature distributions for a lower substrate temperature.

  1. Electric Propulsion Laboratory Vacuum Chamber

    NASA Image and Video Library

    1964-06-21

    Engineer Paul Reader and his colleagues take environmental measurements during testing of a 20-inch diameter ion engine in a vacuum tank at the Electric Propulsion Laboratory (EPL). Researchers at the Lewis Research Center were investigating the use of a permanent-magnet circuit to create the magnetic field required power electron bombardment ion engines. Typical ion engines use a solenoid coil to create this magnetic field. It was thought that the substitution of a permanent magnet would create a comparable magnetic field with a lower weight. Testing of the magnet system in the EPL vacuum tanks revealed no significant operational problems. Reader found the weight of the two systems was similar, but that the thruster’s efficiency increased with the magnet. The EPL contained a series of large vacuum tanks that could be used to simulate conditions in space. Large vacuum pumps reduced the internal air pressure, and a refrigeration system created the cryogenic temperatures found in space.

  2. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

    PubMed

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef

    2016-08-02

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  3. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NASA Astrophysics Data System (ADS)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  4. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    PubMed Central

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601

  5. 2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.

  6. Spin distribution of evaporation residues formed in complete and incomplete fusion in 16O+154Sm system

    NASA Astrophysics Data System (ADS)

    Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Afzal Ansari, M.; Sathik, N. P. M.; Ali, Rahbar; Kumar, Rakesh; Muralithar, S.; Singh, R. P.

    2017-11-01

    Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle-γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with 'fast' α and 2α-emission channels are found to be entirely different from fusion-evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.

  7. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  8. Lightweight Vacuum Jacket for Cryogenic Insulation. Volume 1

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility of producing a lightweight vacuum jacket using state-of-the-art technology and materials was examined. Design and analytical studies were made on a full-scale, orbital maneuvering system fuel tank. Preliminary design details were made for the tank assembly, including an optimized vacuum jacket and multilayer insulation system. A half-scale LH2 test model was designed and fabricated, and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of .000001 atmosphere ml of helium per second was measured, approximately 1500 hours of vacuum pressure were sustained, and 29 vacuum-pressure cycles were experienced prior to failure.

  9. The influence of a central vacuum system on quality life in patients with house dust-associated allergic rhinitis.

    PubMed

    Naguwa, S M; Gershwin, M E

    2001-01-01

    Indoor pollution is one of the most common problems addressed by allergists and troublesome for their patients. Although a large variety of products are available for removing such pollutants, including house dust, there is a relative paucity of data on the effectiveness of such devices. In many cases, central vacuum systems are recommended, particularly in new homes. To specifically address the question of whether a central vacuum system produces an improvement in the well characterized domains of Juniper Rhinoconjunctivitis Quality of Life Questionnaire, we selected 25 individuals with a history of documented type I hypersensitivity to house dust. Each of these individuals used either a Beam Central Vacuum System or their own conventional vacuum for a period of 3 months. At the end of this period, the individual switched over to the opposite limb of the study for 3 additional months. Interestingly, in all seven domains of the evaluation, including activity, sleep, nonnasal symptoms, practical problems, nasal symptoms, eye symptoms and emotions, use of the central vacuum proved to be superior.

  10. A high-vacuum wound drainage system reduces pain and length of treatment for pediatric soft tissue abscesses.

    PubMed

    Yang, Chao; Wang, Shan; Li, Chang-Chun; Kong, Xiang-Ru; Zhao, Zhenzhen; Deng, Xiao-Bin; Peng, Liang; Zhang, Jun

    2017-02-01

    Open incision and drainage (I&D) and wound packing is accepted as the standard treatment for soft tissue abscesses. However, conventional I&D has a number of problems in practice which prompt us to improve the I&D methods that would minimize the pain associated with packing during dressing changes. In order to compare the pain associated with dressing changes in the conventional I&D group to the vacuum system group and the treatment time of both groups, we performed a randomized trial in pediatric patients between 0 and 18 years of age who are undergoing abscess drainage in the operating room from April 2011 to April 2015. Patients treated with open I&D (n = 648) were compared to those treated with placement of high-vacuum wound drainage system (n = 776) through the abscess cavities. Both groups received equivalent antibiotic treatment, and all patients were followed up in the outpatient clinics until the infection has been resolved. The mean FACES scale pain scores were significantly higher in the open I&D group than in the vacuum system group. The vacuum system group had a shorter length of stay and less need for community doctor or outpatient dressing changes than the open I&D group (p < 0.001). No recurrent abscesses were observed in the vacuum system group, and 10 patients in the open I&D group required another drainage at the exact same location. High-vacuum wound drainage system was an efficient and safe alternative to the traditional I&D for community-acquired soft tissue abscesses with few complications in short term. What is Known: • Open incision and drainage (I&D) followed by irrigation and wound packing is the standard treatment for soft tissue abscesses. • The painful daily packing may cause emotional trauma to the child and lead to an unwelcoming challenge to the caretakers and health care providers. What is New: • We modified the method of I&D by adding primary suturing of the wound and placement of a high-vacuum wound drainage system

  11. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    NASA Astrophysics Data System (ADS)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  12. Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillwell, B.; Billett, B.; Brajuskovic, B.

    2017-06-20

    Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction and rf cavity straight sections. An overview of progress in these areas is presented.

  13. Sol-to-Gel Transition in Fast Evaporating Systems Observed by in Situ Time-Resolved Infrared Spectroscopy.

    PubMed

    Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide

    2015-06-22

    The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Status of NSLS-II Storage Ring Vacuum Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doom,L.; Hseuh,H.; Ferreira, M.

    2009-05-04

    National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3-GeV, high-flux and high- brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system will have extruded aluminium chambers with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers will be used to intercept the un-used bending magnet radiation. In-situ bakeout will be implemented to achieve fast conditioning during initial commissioning and after interventions.

  15. Evaporative Cooling and Dehumidification Garment for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Bue, Grant

    2013-01-01

    This paper describes the design and development of an innovative thermal and humidity control system for future space suits. The system comprises an evaporation cooling and dehumidification garment (ECDG) and a lithium chloride absorber radiator (LCAR). The ECDG absorbs heat and water vapor from inside the suit pressure garment, while the LCAR rejects heat to space without venting water vapor. The ECDG is built from thin, flexible patches with coversheets made of non-porous, water-permeable membranes that -enclose arrays of vapor flow passages. Water vapor from inside the spacesuit diffuses across the water permeable membranes, enters the vapor flow channels, and then flows to the LCAR, thus dehumidifying the internal volume of the space suit pressure garment. Additional water evaporation inside the ECDG provides cooling for sensible heat loads. -The heat released from condensation and absorption in the LCAR is rejected to the environment by thermal radiation. We have assembled lightweight and flexible ECDG pouches from prototypical materials and measured their performance in a series of separate effects tests under well-controlled, prototypical conditions. Sweating hot plate tests at typical space suit pressures show that ECDG pouches can absorb over 60 W/ft of latent heat and 20 W/ft of sensible heat from the pressure garment environment. These results are in good agreement with the predictions of our analysis models.

  16. Application of Modular Modeling System to Predict Evaporation, Infiltration, Air Temperature, and Soil Moisture

    NASA Technical Reports Server (NTRS)

    Boggs, Johnny; Birgan, Latricia J.; Tsegaye, Teferi; Coleman, Tommy; Soman, Vishwas

    1997-01-01

    Models are used for numerous application including hydrology. The Modular Modeling System (MMS) is one of the few that can simulate a hydrology process. MMS was tested and used to compare infiltration, soil moisture, daily temperature, and potential and actual evaporation for the Elinsboro sandy loam soil and the Mattapex silty loam soil in the Microwave Radiometer Experiment of Soil Moisture Sensing at Beltsville Agriculture Research Test Site in Maryland. An input file for each location was created to nut the model. Graphs were plotted, and it was observed that the model gave a good representation for evaporation for both plots. In comparing the two plots, it was noted that infiltration and soil moisture tend to peak around the same time, temperature peaks in July and August and the peak evaporation was observed on September 15 and July 4 for the Elinsboro Mattapex plot respectively. MMS can be used successfully to predict hydrological processes as long as the proper input parameters are available.

  17. Robot design for a vacuum environment

    NASA Technical Reports Server (NTRS)

    Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.

    1987-01-01

    The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.

  18. Caps Seal Boltholes On Vacuum-System Flanges

    NASA Technical Reports Server (NTRS)

    Roman, Robert F.

    1993-01-01

    Sealing caps devised for boltholes on vacuum-system flanges. Used in place of leak-prone gaskets, and provide solid metal-to-metal interfaces. Each sealing cap contains square-cut circular groove in which O-ring placed. Mounted on studs protruding into access ports, providing positive seal around each bolthole. Each cap mates directly with surface of flange, in solid metal-to-metal fit, with O-ring completely captured in groove. Assembly immune to misalignment, leakage caused by vibration, and creeping distortion caused by weight of port. O-ring material chosen for resistance to high temperature; with appropriate choice of material, temperature raised to as much as 315 degrees C.

  19. Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2016-12-15

    The evaporation along the surface of pinned, sessile droplets is investigated numerically by using the combined field approach. In the present model, the evaporative cooling at the droplet surface which leads to a reduction in the evaporation is taken into account. Simple, yet accurate analytical expressions for the local evaporation flux and for the total evaporation rate of sessile droplets are obtained. The theoretical analyses indicate that the reduction in the evaporation becomes more pronounced as the evaporative cooling number Ec increases. The results also reveal that the variation of total evaporation rate with contact angle will change its trend as the intensity of the evaporative cooling changes. For small values of Ec, the total evaporation rate increases with the contact angle, the same as predicted by Deegan et al. and by Hu and Larson in their isothermal models in which the evaporative cooling is neglected. Contrarily, when the evaporative cooling effect is strong enough, the total evaporation rate will decrease as the contact angle increases. The present theory is corroborated experimentally, and found in good agreement with the expressions proposed by Hu and Larson in the limiting isothermal case. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NASA Astrophysics Data System (ADS)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-11-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  1. The localized quantum vacuum field

    NASA Astrophysics Data System (ADS)

    Dragoman, D.

    2008-03-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  2. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this Ph

  3. Structural, morphological, gas sensing and photocatalytic characterization of MoO3 and WO3 thin films prepared by the thermal vacuum evaporation technique

    NASA Astrophysics Data System (ADS)

    Arfaoui, A.; Touihri, S.; Mhamdi, A.; Labidi, A.; Manoubi, T.

    2015-12-01

    Thin films of molybdenum trioxide and tungsten trioxide were deposited on glass substrates using a simplified thermal evaporation under vacuum method monitored by heat treatment in flowing oxygen at 500 °C for 1 h. The structural and morphological properties of the films were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The X-ray diffraction analysis shows that the films of MoO3 and WO3 were well crystallized in orthorhombic and monoclinic phase respectively with the crystallites preferentially oriented toward (2 0 0) direction parallel a-axis for both samples. In literature, we have shown in previous papers that structural and surface morphology of metal thin films play an important role in the gas detection mechanism. In this article, we have studied the response evolution of MoO3 and WO3 thin films sensors ethanol versus time, working temperature and the concentration of the ethanol. It was found that these films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. Finally, the photocatalytic activity of the samples was evaluated with respect to the degradation reaction of a wastewater containing methylene blue (MB) under UV-visible light irradiation. The molybdenum trioxide exhibits a higher degradation rate than the tungsten trioxide thin films under similar experimental conditions.

  4. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, Rointan; Nath, Prem

    1982-01-01

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment.

  5. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2001-01-01

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  6. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2003-04-08

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  7. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2003-04-15

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  8. Hot air drum evaporator. [Patent application

    DOEpatents

    Black, R.L.

    1980-11-12

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  9. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 2; Validation Results

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.

  10. Cold Vacuum Drying facility civil structural system design description (SYS 06)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PITKOFF, C.C.

    This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document.

  11. Evaporation Rate Study and NDMA Formation from UDMH/NO2 Reaction Products

    NASA Technical Reports Server (NTRS)

    Buchanan, Vanessa D.; Dee, Louis A.; Baker, David L.

    2003-01-01

    Laboratory samples of uns-dimethylhydrazine (UDMH) fuel/oxidizer (nitrogen dioxide) non-combustion reaction products (UFORP) were prepared using a unique permeation tube technology. Also, a synthetic UFORP was prepared from UDMH, N-nitrosodimethylamine (NDMA), dimethylammonium nitrate, sodium nitrite and purified water. The evaporation rate of UFORP and synthetic UFORP was determined under space vacuum (approx 10(exp -3) Torr) at -40 ?C and 0 ?C. The material remaining was analyzed and showed that the UFORP weight and NDMA concentration decreased over time; however, NDMA had not completely evaporated. Over 85% of the weight was removed by subjecting the UFORP to 10(-3) Torr for 7 hours at -40 ?C and 4 hours at 0 ?C. A mixture of dimethylammonium nitrate and sodium nitrite formed NDMA at a rapid rate in a moist air environment. A sample of UFORP residue was analyzed for formation of NDMA under various conditions. It was found that NDMA was not formed unless nitrite was added.

  12. Film evaporation MEMS thruster array for micropropulsion

    NASA Astrophysics Data System (ADS)

    Cofer, Anthony G.

    Current small sat propulsion systems require a substantial mass fraction of the vehicle involving tradeoffs between useful payload mass and maneuverability. This is also an issue with available attitude control systems which are either quickly saturated reaction wheels or movable high drag surfaces with long response times. What is needed is a low mass low power self-contained propulsion unit that can be easily installed and modeled. The proposed Film-Evaporation MEMS Tunable Array (FEMTA), exploits the small scale surface tension effect in conjunction with temperature dependent vapor pressure to realize a thermal valving system. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in the nozzle inducing vacuum boiling which provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. The heat of vaporization is drawn from the bulk fluid and is replaced by either an integrated heater or waste heat from the vehicle. Proof of concept was initially achieved with a macroscale device made possible by using ethylene glycol, which has a low vapor pressure and high surface tension, as the working fluid. Both the thermal valving effect and cooling feature were demonstrated though at reduced performance than would be expected for water. Three generations of prototype FEMTA devices have been fabricated at Birck Nanotechnology Center on 200 and 500 micrometer thick silicon wafers. Preliminary testing on first generation models had tenuously demonstrated behavior consistent with the macroscale tests but there was not enough data for solid confirmation. Some reliability issues had arisen with the integrated heaters which were only partially alleviated in the second generation of FEMTAs. This led to a third generation and two changes in heater material until a chemically resilient material was found. The third generation of microthrusters were tested on the microNewton thrust stand at Purdue

  13. Two year operational experience with the TPS vacuum system

    NASA Astrophysics Data System (ADS)

    Yang, Y. C.; Chan, C. K.; Sheng, I. C.; Huang, I. T.; Y Chung, J.; Liang, C. C.

    2017-07-01

    The Taiwan Photon Source (TPS), a 3-GeV third generation synchrotron light source, was commissioned in 2014 December and is now currently operated in top-up mode at 300mA for users. During the past two years, the machine was completed to meet design goals with among others the installation of superconducting cavities (SRF), the installation of insertion devices (ID) and the correction of vacuum chamber structure downstream from the IDs. The design goal of 500mA beam current was achieved with a total accumulated beam dose of more than 1000Ah, resulting in three orders of magnitude reduction of out-gassing. As the beam current was increased, a few vacuum problems were encountered, including vacuum leaks, unexpected pressure bursts, etc. Vacuum related issues including high pressure events, lessons learned and operational experience will be presented and discussed in this paper.

  14. [The evolution of vacuum extraction in obstetrics].

    PubMed

    Nikolov, A

    2010-01-01

    Vacuum extraction is one of the methods for assisted vaginal delivery. In this article the evolution of vacuum extraction in obstetrics is been discussed. Historical facts and data from the invention up to state-of-the-art vacuum systems in modern obstetrics are presented.

  15. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning ofmore » glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.« less

  16. Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds

    NASA Astrophysics Data System (ADS)

    Li, Ting; Li, Jingfeng

    2017-12-01

    Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.

  17. VACUUM TRAP AND VALVE COMBINATION

    DOEpatents

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  18. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling

    2017-05-01

    Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.

  19. Droplet evaporation and combustion in a liquid-gas multiphase system

    NASA Astrophysics Data System (ADS)

    Muradoglu, Metin; Irfan, Muhammad

    2017-11-01

    Droplet evaporation and combustion in a liquid-gas multiphase system are studied computationally using a front-tracking method. One field formulation is used to solve the flow, energy and species equations with suitable jump conditions. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase change at the interface. Both temperature and species gradient driven phase change processes are simulated. Extensive validation studies are performed using the benchmark cases: The Stefan and the sucking interface problems, d2 law and wet bulb temperature comparison with the psychrometric chart values. The phase change solver is then extended to incorporate the burning process following the evaporation as a first step towards the development of a computational framework for spray combustion. We used detailed chemistry, variable transport properties and ideal gas behaviour for a n-heptane droplet combustion; the chemical kinetics being handled by the CHEMKIN. An operator-splitting approach is used to advance temperature and species mass fraction in time. The numerical results of the droplet burning rate, flame temperature and flame standoff ratio show good agreement with the experimental and previous numeric.

  20. Evaporation From Soil Containers With Irregular Shapes

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  1. Vacuum chamber-free centrifuge with magnetic bearings.

    PubMed

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  2. 2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation.

    PubMed

    Jeon, Sangjun; Kim, Duk-Ki; Song, Hyohak; Lee, Hee Jong; Park, Sunghoon; Seung, Doyoung; Chang, Yong Keun

    2014-04-01

    This study presents a new and effective downstream process to recover 2,3-butanediol (2,3-BD) from fermentation broth which is produced by a recombinant Klebsiella pneumoniae strain. The ldhA-deficient K. pneumoniae strain yielded about 90 g/L of 2,3-BD, along with a number of by-products, such as organic acids and alcohols, in a 65 h fed-batch fermentation. The pH-adjusted cell-free fermentation broth was firstly concentrated until 2,3-BD reached around 500 g/L by vacuum evaporation at 50°C and 50 mbar vacuum pressure. The concentrated solution was further treated using light alcohols, including methanol, ethanol, and isopropanol, for the precipitation of organic acids and inorganic salts. Isopropanol showed the highest removal efficiency, in which 92.5% and 99.8% of organic acids and inorganic salts were precipitated, respectively. At a final step, a vacuum distillation process enabled the recovery of 76.2% of the treated 2,3-BD, with 96.1% purity, indicating that fermentatively produced 2,3-BD is effectively recovered by a simple alcohol precipitation and vacuum distillation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Vacuum system for room temperature X-ray lithography source (XLS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuchman, J.C.

    1988-09-30

    A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)

  4. Vacuum system for room temperature X-ray lithography source (XLS)

    NASA Astrophysics Data System (ADS)

    Schuchman, J. C.

    1988-09-01

    A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)

  5. Micromachined evaporators for AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izenson, M.G.; Crowley, C.J.

    1996-12-31

    To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads tomore » very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.« less

  6. Effect of Nd:YAG laser on the solvent evaporation of adhesive systems.

    PubMed

    Batista, Graziela Ribeiro; Barcellos, Daphne Câmara; Rocha Gomes Torres, Carlos; Damião, Álvaro José; de Oliveira, Hueder Paulo Moisés; de Paiva Gonçalves, Sérgio Eduardo

    2015-01-01

    This study evaluated the influence of Nd:YAG laser on the evaporation degree (ED) of the solvent components in total-etch and self-etch adhesives. The ED of Gluma Comfort Bond (Heraeus-Kulzer) one-step self-etch adhesive, and Adper Single Bond 2 (3M ESPE), and XP Bond (Dentsply) total-etch adhesives was determined by weight alterations using two techniques: Control--spontaneous evaporation of the solvent for 5 min; Experimental--Nd:YAG laser irradiation for 1 min, followed by spontaneous evaporation for 4 min. The weight loss due to evaporation of the volatile components was measured at baseline and after 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 70 s, 80 s, 90 s, 100 s, 110 s, 2 min, 3 min, 4 min, and 5 min. Evaporation of solvent components significantly increased with Nd:YAG laser irradiation for all adhesives investigated. Gluma Comfort Bond showed significantly higher evaporation of solvent components than Adper Single Bond 2 and XP Bond. All the adhesives lost weight quickly during the first min of Nd:YAG laser irradiation. The application of Nd:YAG laser on adhesives before light curing had a significant effect on the evaporation of the solvent components, and the ED of Gluma Comfort Bond one-step self-etch adhesive was significantly higher than with Adper Single Bond 2 and XP Bond total-etch adhesives. The use of the Nd:YAG laser on the uncured adhesive technique can promote a greater ED of solvents, optimizing the longevity of the adhesive restorations.

  7. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  8. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  9. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  10. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  11. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  12. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  13. Porous fiber formation in polymer-solvent system undergoing solvent evaporation

    NASA Astrophysics Data System (ADS)

    Dayal, Pratyush; Kyu, Thein

    2006-08-01

    Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.

  14. Versatile, low-cost, computer-controlled, sample positioning system for vacuum applications

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos; Liff, Dale R.

    1991-01-01

    A versatile, low-cost, easy to implement, microprocessor-based motorized positioning system (MPS) suitable for accurate sample manipulation in a Second Ion Mass Spectrometry (SIMS) system, and for other ultra-high vacuum (UHV) applications was designed and built at NASA LeRC. The system can be operated manually or under computer control. In the latter case, local, as well as remote operation is possible via the IEEE-488 bus. The position of the sample can be controlled in three linear orthogonal and one angular coordinates.

  15. Transparent electrical conducting films by activated reactive evaporation

    DOEpatents

    Bunshah, R.; Nath, P.

    1982-06-22

    Process and apparatus for producing transparent electrical conducting thin films by activated reactive evaporation is disclosed. Thin films of low melting point metals and alloys, such as indium oxide and indium oxide doped with tin, are produced by physical vapor deposition. The metal or alloy is vaporized by electrical resistance heating in a vacuum chamber, oxygen and an inert gas such as argon are introduced into the chamber, and vapor and gas are ionized by a beam of low energy electrons in a reaction zone between the resistance heater and the substrate. There is a reaction between the ionized oxygen and the metal vapor resulting in the metal oxide which deposits on the substrate as a thin film which is ready for use without requiring post deposition heat treatment. 1 fig.

  16. Vacuum generation in pneumatic artificial heart drives with a specially designed ejector system.

    PubMed

    Schima, H; Huber, L; Spitaler, F

    1990-06-01

    To improve the filling characteristics of pneumatically driven membrane artificial hearts (AHs), a vacuum is applied during diastole. This paper describes an ejector system for AH-drivers based on the Venturi effect, which was designed for this purpose. It provides vacuums of more than -40 mmHg at flow rates up to 50 l/min requiring a supplying primary gas pressure of less than 150 kPa (1140 mmHg). Under normal working conditions, the necessary supply flow was less than 5l/min. The device is small, cheap, quiet and fail-safe, and has been evaluated successfully in experimental and clinical use.

  17. Fabrication and characterization of silver- and copper-coated Nylon 6 forcespun nanofibers by thermal evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihut, Dorina M., E-mail: dorinamm@yahoo.com; Lozano, Karen; Foltz, Heinrich

    2014-11-01

    Silver and copper nanoparticles were deposited as thin films onto substrates consisting of Nylon 6 nanofibers manufactured using forcespinning{sup ®} equipment. Different rotational speeds were used to obtain continuous nanofibers of various diameters arranged as nonwoven mats. The Nylon 6 nanofibers were collected as successive layers on frames, and a high-vacuum thermal evaporation method was used to deposit the silver and copper thin films on the nanofibers. The structures were investigated using scanning electron microscopy–scanning transmission electron microscopy, atomic force microscopy, x-ray diffraction, and electrical resistance measurements. The results indicate that evaporated silver and copper nanoparticles were successfully deposited onmore » Nylon 6 nanofibers as thin films that adhered well to the polymer substrate while the native morphology of the nanofibers were preserved, and electrically conductive nanostructures were achieved.« less

  18. Enhancement of water removing and the quality of fried purple-fleshed sweet potato in the vacuum frying by combined power ultrasound and microwave technology.

    PubMed

    Su, Ya; Zhang, Min; Bhandari, Bhesh; Zhang, Weiming

    2018-06-01

    The combination of ultrasound and microwave in vacuum frying system was investigated to achieve higher drying efficiency and quality attributes of fried products. Purple-fleshed potato were used as test specimen and different power levels of microwave (0 W, 600 W, 800 W) and ultrasound (0 W, 300 W, 600 W) during vacuum frying. Drying kinetics, dielectric properties, moisture state variation and quality attributes of fried samples were measured in a vacuum frying (VF), and an innovatively designed ultrasound and microwave assisted vacuum frying (USMVF) equipment. The USMVF process markedly increased the moisture evaporation rate and effective moisture diffusivity compared to VF process. The oil uptake was reduced by about 16-34%, the water activity and the shrinkage was lowered, the texture (crispness) and the color of fried samples were greatly improved. The higher ultrasound and microwave power level in USMVF made a greater improvement. The total anthocyanin levels and retention of fried purple-fleshed potato chips was the highest (123.52 mg/100 g solids and 79.51% retention, respectively) among all treatments in US600M800VF process. The SEM analysis revealed a more porous and disruption microstructure in USMVF sample. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Design and development of low pressure evaporator/condenser unit for water-based adsorption type climate control systems

    NASA Astrophysics Data System (ADS)

    Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.

    2016-11-01

    Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.

  20. Photoluminescence and anti-deliquesce of cesium iodide and its sodium-doped films deposited by thermal evaporation at high deposition rates

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Cherng; Chiang, Yueh-Sheng; Ma, Yu-Sheng

    2013-03-01

    Cesium iodide (CsI) and sodium iodide (NaI) are good scintillators due to their high luminescence efficiency. These alkali halides can be excited by ultra-violet or by ionizing radiation. In this study, CsI and its Na-doped films about 8 μm thick were deposited by thermal evaporation boat without heating substrates at high deposition rates of 30, 50, 70, 90, and 110 nm/sec, respectively. The as-deposited films were sequentially deposited a silicon dioxide film to protect from deliquesce. And, the films were also post-annealed in vacuum at 150, 200, 250, and 300 °C, respectively. We calculated the packing densities of the samples according to the measurements of Fourier transform infrared spectroscopy (FTIR) and observed the luminescence properties by photoluminescence (PL) system. The surfaces and cross sections of the films were investigated by scanning electron microscope (SEM). From the above measurements we can find the optimal deposition rate of 90 nm/sec and post-annealing temperature of 250 °C in vacuum for the asdeposited cesium iodide and its sodium-doped films.

  1. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  2. Solid sulfur in vacuum: Sublimation effects on surface microtexture, color and spectral reflectance, and applications to planetary surfaces

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1987-01-01

    A form of sulfur that is white at room temperature and very fluffy in texture has been found in laboratory experiments on the effects of vacuum sublimation (evaporation) on solid sulfur. This work is an outgrowth of proton sputtering experiments on sulfur directed toward understanding Jovian magnetospheric effects on the surface of Io. Fluffy white sulfur is formed on the surface of solid yellow, tan, or brown sulfur melt freezes in vacuum by differential (fractional) evaporation of two or more sulfur molecular species present in the original sulfur; S(8) ring sulfur is thought to be the dominant sublimination phase lost to the vacuum sink, and polymeric chain sulfur S(u) the dominant residual phase that remains in place, forming the residual fluffy surface layer. The reflectance spectrum of the original sulfur surface is greaty modified by formation of the fluffy layer: the blue absorption band-edge and shoulder move 0.05 to 0.06 microns toward shorter wavelengths resulting in a permanent increase in reflectivity near 0.42 to 0.46 microns; the UV reflectivity below 0.40 microns is reduced. This form of sulfur should exist in large quantity on the surface of Io, especially in hotspot regions if there is solid free sulfur there that has solidified from a melt. Its color and spectra will indicate relative crystallization age on a scale of days to months and/or surface temperature distribution history.

  3. Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System

    NASA Astrophysics Data System (ADS)

    Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon

    2016-01-01

    In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.

  4. Thermally evaporated conformal thin films on non-traditional/non-planar substrates

    NASA Astrophysics Data System (ADS)

    Pulsifer, Drew Patrick

    Conformal thin films have a wide variety of uses in the microelectronics, optics, and coatings industries. The ever-increasing capabilities of these conformal thin films have enabled tremendous technological advancement in the last half century. During this period, new thin-film deposition techniques have been developed and refined. While these techniques have remarkable performance for traditional applications which utilize planar substrates such as silicon wafers, they are not suitable for the conformal coating of non-traditional substrates such as biological material. The process of thermally evaporating a material under vacuum conditions is one of the oldest thin-film deposition techniques which is able to produce functional film morphologies. A drawback of thermally evaporated thin films is that they are not intrinsically conformal. To overcome this, while maintaining the advantages of thermal evaporation, a procedure for varying the substrates orientation with respect to the incident vapor flux during deposition was developed immediately prior to the research undertaken for this doctoral dissertation. This process was shown to greatly improve the conformality of thermally evaporated thin films. This development allows for several applications of thermally evaporated conformal thin films on non-planar/non-traditional substrates. Three settings in which to evaluate the improved conformal deposition of thermally evaporated thin films were investigated for this dissertation. In these settings the thin-film morphologies are of different types. In the first setting, a bioreplication approach was used to fabricate artificial visual decoys for the invasive species Agrilus planipennis, commonly known as the emerald ash borer (EAB). The mating behavior of this species involves an overflying EAB male pouncing on an EAB female at rest on an ash leaflet before copulation. The male spots the female on the leaflet by visually detecting the iridescent green color of the

  5. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  6. Performance evaluation of an evaporative pad greenhouse system for utilization of power plant reject heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, M.; Trezek, G.J.

    1976-01-01

    The overall performance of an evaporative pad greenhouse is considered in terms of the pad heat and mass transfer, the energy budget of the vegetation, and the performance of the power plant. An analytical predictive model for the pad performance was developed utilizing the Merkel total heat approximation. Data obtained from actual greenhouse performance provides an experimental verification of the pad model. Energy balance considerations on the vegetation provide a means of viewing optimal plant growth in terms of the power plant energy dissipation. In general, the results indicate that when an evaporative pad greenhouse system is used for wastemore » heat dispersal, the vegetation can be maintained within its thermal requirement zone, crop irrigation requirements are significantly reduced, and the power plant performance is comparable with conventional closed loop heat rejection systems.« less

  7. Development of a laboratory prototype spraying flash evaporator.

    NASA Technical Reports Server (NTRS)

    Gaddis, J. L.

    1972-01-01

    A functional description of the flash evaporator that is being developed as a candidate for the Space Shuttle Environmental Control System thermal control is presented. A single evaporator configuration uses water as an evaporant to accommodate on-orbit peak heat loads and Freon 22 for terrestrial flight phases below 120,000 ft altitude. Development history, test plans, and operational characteristics are described. Detailed information is included to show: design features, fabrication techniques used for a prototype unit, redundancy considerations, and the control arrangement.

  8. Material Total Mass Loss in Vacuum Obtained From Various Outgassing Systems

    NASA Technical Reports Server (NTRS)

    Scialdone, John; Isaac, Peggy; Clatterbuck, Carroll; Hunkeler, Ronald

    2000-01-01

    Several instruments including the Cahn Microbalance, the Knudsen Cell, the micro-CVCM, and the vacuum Thermogravimetric Analyzer (TGA) were used in the testing of a graphite/epoxy (GR/EP) composite that is proposed for use as a rigidizing element of an inflatable deployment system. This GR/EP will be cured in situ. The purpose of this testing is to estimate the gaseous production resulting from the curing of the GR/EP composite, to predict the resulting pressure, and to calculate the required venting. Every test was conducted under vacuum at 125 degrees C for 24 hours. Upon comparison of the results, the ASTM E-595 was noted to have given readings that were consistently lower than those obtained using the other instruments, which otherwise provided similar results. The GR/EP was tested using several different geometric arrangements. This paper describes the analysis evaluating the molecular and continuum flow of the outgassing products issuing from the exit port of the ASTM E-595 system. The effective flow conductance provided by the physical dimensions of the vent passage of the ASTM E-595 system and that of the material sample among other factors were investigated to explain the reduced amount of outgassing released during the 24-hour test period.

  9. Fast and selective cell isolation from blood sample by microfiber fabric system with vacuum aspiration

    NASA Astrophysics Data System (ADS)

    Ueki, Takayuki; Yoshihara, Akifumi; Teramura, Yuji; Takai, Madoka

    2016-01-01

    Since circulating tumor cells (CTCs) are tumor cells which are found in the blood of cancer patients, CTCs are potential tumor markers, so a rapid isolation of CTCs is desirable for clinical applications. In this paper, a three-dimensional polystyrene (PS) microfiber fabric with vacuum aspiration system was developed for capturing CTCs within a short time. Various microfiber fabrics with different diameters were prepared by the electrospinning method and optimized for contact frequency with cells. Vacuum aspiration utilizing these microfiber fabrics could filter all cells within seconds without mechanical damage. The microfiber fabric with immobilized anti-EpCAM antibodies was able to specifically capture MCF-7 cells that express EpCAM on their surfaces. The specificity of the system was confirmed by monitoring the ability to isolate MCF-7 cells from a mixture containing CCRF-CEM cells that do not express EpCAM. Furthermore, the selective capture ability of the microfiber was retained even when the microfiber was exposed to the whole blood of pigs spiked with MCF-7 cells. The specific cell capture ratio of the vacuum aspiration system utilizing microfiber fabric could be improved by increasing the thickness of the microfiber fabric through electrospinning time.

  10. Duplex Tear Film Evaporation Analysis.

    PubMed

    Stapf, M R; Braun, R J; King-Smith, P E

    2017-12-01

    Tear film thinning, hyperosmolarity, and breakup can cause irritation and damage to the human eye, and these form an area of active investigation for dry eye syndrome research. Recent research demonstrates that deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. In this paper, we explore the conditions for tear film breakup by considering a model for tear film dynamics with two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of osmosis, evaporation as modified by the lipid, and the polar portion of the lipid layer. We solve the system numerically for reasonable parameter values and initial conditions and analyze how shifts in these cause changes to the system's dynamics.

  11. Study the Effect of Substrate Temperature on Structural and Electrical Properties of Electron Beam Evaporated In{sub 1−x}Sb{sub x} Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahul, E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com; Vishwakarma, S. R., E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com; Verma, Aneet Kumar, E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com

    2011-10-20

    Indium Antimonide (InSb) is a promising materials for mid and long wavelength infrared and high speed devices applications because of its small band gap. The Indium Antimonide (InSb) thin films have been deposited onto well cleaned glass substrate at different substrate temperatures (300 K, 323 K, 373 K) by electron beam evaporation technique in the high vacuum chamber at vacuum pressure ∼10{sup −5} torr using prepared non‐stoichiometric InSb powder using formula In{sub 1−x}Sb{sub x}(0.2

  12. Vacuum-induced quantum memory in an opto-electromechanical system

    NASA Astrophysics Data System (ADS)

    Qin, Li-Guo; Wang, Zhong-Yang; Wu, Shi-Chao; Gong, Shang-Qing; Ma, Hong-Yang; Jing, Jun

    2018-03-01

    We propose a scheme to implement electrically controlled quantum memory based on vacuum-induced transparency (VIT) in a high-Q tunable cavity, which is capacitively coupled to a mechanically variable capacitor by a charged mechanical cavity mirror as an interface. We analyze the changes of the cavity photons arising from vacuum-induced-Raman process and discuss VIT in an atomic ensemble trapped in the cavity. By slowly adjusting the voltage on the capacitor, the VIT can be adiabatically switched on or off, meanwhile, the transfer between the probe photon state and the atomic spin state can be electrically and adiabatically modulated. Therefore, we demonstrate a vacuum-induced quantum memory by electrically manipulating the mechanical mirror of the cavity based on electromagnetically induced transparency mechanism.

  13. Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.

    PubMed

    Dehbani, Maryam; Rahimi, Masoud

    2018-04-01

    In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  15. Venting of a Water/Inhibited Propylene Glycol Mixture in a Vacuum Environment-Characterization and Representative Test Results

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Erickson, Lisa R.

    2011-01-01

    A planned use of the Orion space vehicle involves its residence at the International Space Station for six months at a time. One concept of operations involves temporarily venting portions of the idle Orion active thermal control system (ATCS) during the docked phase, preventing freezing. The venting would have to be reasonably complete with few, if any, completely filled pockets of frozen liquid. Even if pockets of frozen liquid did not damage the hardware during the freezing process, they could prevent the system from filling completely prior to its reactivation. The venting of single component systems in a space environment has been performed numerous times and is well understood. Local nucleation occurs at warm, relatively massive parts of the system, which creates vapor and forces the bulk liquid out of the system. The remnants of the liquid will freeze, then evaporate over time through local heating. Because the Orion ATCS working fluid is a 50/50 mixture of water and inhibited propylene glycol, its boiling behavior was expected to differ from that of a pure fluid. It was thought that the relatively high vapor pressure water might evaporate preferentially, leaving behind a mixture enriched with the low vapor pressure propylene glycol, which would be vaporization ]resistant. Owing to this concern, a test was developed to compare the evaporation behavior of pure water, a 50/50 mixture of water and inhibited propylene glycol, and inhibited propylene glycol. The test was performed using room temperature fluids in an instrumented thin walled stainless steel vertical tube. The 1 in x 0.035 in wall tube was instrumented with surface thermocouples and encased in closed cell polyurethane foam. Reticulated polyurethane foam was placed inside the tube to reduce the convection currents. A vacuum system connected to the top of the tube set the pressure boundary condition. Tests were run for the three fluids at back pressures ranging from 1 to 18 torr. During each test

  16. Safety shield for vacuum/pressure-chamber windows

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Spencer, R.

    1980-01-01

    Optically-clear shatter-resistant safety shield protects workers from implosion and explosion of vacuum and pressure windows. Plastic shield is inexpensive and may be added to vacuum chambers, pressure chambers, and gas-filling systems.

  17. Waveguide quantum electrodynamics in squeezed vacuum

    NASA Astrophysics Data System (ADS)

    You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail

    2018-02-01

    We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.

  18. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high T/sub c/ bulk material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dijkkamp, D.; Venkatesan, T.; Wu, X.D.

    We report the first successful preparation of thin films of Y-Ba-Cu-O superconductors using pulsed excimer laser evaporation of a single bulk material target in vacuum. Rutherford backscattering spectrometry showed the composition of these films to be close to that of the bulk material. Growth rates were typically 0.1 nm per laser shot. After an annealing treatment in oxygen the films exhibited superconductivity with an onset at 95 K and zero resistance at 85 and 75 K on SrTiO/sub 3/ and Al/sub 2/O/sub 3/ substrates, respectively. This new deposition method is relatively simple, very versatile, and does not require the usemore » of ultrahigh vacuum techniques.« less

  19. Modeling evaporation from spent nuclear fuel storage pools: A diffusion approach

    NASA Astrophysics Data System (ADS)

    Hugo, Bruce Robert

    Accurate prediction of evaporative losses from light water reactor nuclear power plant (NPP) spent fuel storage pools (SFPs) is important for activities ranging from sizing of water makeup systems during NPP design to predicting the time available to supply emergency makeup water following severe accidents. Existing correlations for predicting evaporation from water surfaces are only optimized for conditions typical of swimming pools. This new approach modeling evaporation as a diffusion process has yielded an evaporation rate model that provided a better fit of published high temperature evaporation data and measurements from two SFPs than other published evaporation correlations. Insights from treating evaporation as a diffusion process include correcting for the effects of air flow and solutes on evaporation rate. An accurate modeling of the effects of air flow on evaporation rate is required to explain the observed temperature data from the Fukushima Daiichi Unit 4 SFP during the 2011 loss of cooling event; the diffusion model of evaporation provides a significantly better fit to this data than existing evaporation models.

  20. The effect of vacuum devices on penile hemodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, P.G.; Haden, H.T.; Mulligan, T.

    1990-01-01

    External vacuum devices are being used increasingly for the management of erectile dysfunction. There is limited information regarding the effect of vacuum devices on penile blood flow and potential for ischemic penile injury. The penile xenon washout rate was measured before and after application of 2 vacuum systems in 15 subjects. Compared to flaccid state measurements the xenon washout rate did not change significantly with the Synergist Erection System but it was significantly reduced with the Osbon ErecAid System. However, the degree and duration of decrease in penile blood flow that may result in ischemic changes are unknown.

  1. THERMAL DESIGN OF THE ITER VACUUM VESSEL COOLING SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H

    RELAP5-3D models of the ITER Vacuum Vessel (VV) Primary Heat Transfer System (PHTS) have been developed. The design of the cooling system is described in detail, and RELAP5 results are presented. Two parallel pump/heat exchanger trains comprise the design one train is for full-power operation and the other is for emergency operation or operation at decay heat levels. All the components are located inside the Tokamak building (a significant change from the original configurations). The results presented include operation at full power, decay heat operation, and baking operation. The RELAP5-3D results confirm that the design can operate satisfactorily during bothmore » normal pulsed power operation and decay heat operation. All the temperatures in the coolant and in the different system components are maintained within acceptable operating limits.« less

  2. Generation of a medium vacuum pressure by using two different pumping methods in the KRISS dynamic flow-control system

    NASA Astrophysics Data System (ADS)

    Hong, S. S.; Lim, J. Y.; Khan, W.

    2014-02-01

    Pumping systems with large vacuum chambers have numerous applications in the process industry: for example, mixing of various types of gases as in the semiconductor industry, the calibration of vacuum gauges, the measurement of outgassing rates of various materials in the field of space technology, etc. Most often, these systems are used in the medium vacuum range (10-1 Pa-102 Pa) and in the dynamically-generated pressure mode. We have designed and developed a new dynamic flow system at the KRISS (Korea Research Institute of Standards and Science) that can be used for such applications with reliability in the range from 0.1 Pa - 133 Pa. In this report, the design philosophy, operational procedure and experimental data for the generated stable pressure points in the chamber of the system are discussed. The data consist the pressure points generated in the medium vacuum range while pumping the chamber of the system by using two different methods: first by using a dry scroll pump and then by using a combination of a turbomolecular pump backed by the same scroll pump. The relative standard deviations in the pressure points were calculated and were found to be greater than 1.5% for the scroll pump and less than 0.5% for the turbomolecular pump.

  3. Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations

    NASA Astrophysics Data System (ADS)

    Hołyst, R.; Litniewski, M.; Jakubczyk, D.; Kolwas, K.; Kolwas, M.; Kowalski, K.; Migacz, S.; Palesa, S.; Zientara, M.

    2013-03-01

    Evaporation is ubiquitous in nature. This process influences the climate, the formation of clouds, transpiration in plants, the survival of arctic organisms, the efficiency of car engines, the structure of dried materials and many other phenomena. Recent experiments discovered two novel mechanisms accompanying evaporation: temperature discontinuity at the liquid-vapour interface during evaporation and equilibration of pressures in the whole system during evaporation. None of these effects has been predicted previously by existing theories despite the fact that after 130 years of investigation the theory of evaporation was believed to be mature. These two effects call for reanalysis of existing experimental data and such is the goal of this review. In this article we analyse the experimental and the computational simulation data on the droplet evaporation of several different systems: water into its own vapour, water into the air, diethylene glycol into nitrogen and argon into its own vapour. We show that the temperature discontinuity at the liquid-vapour interface discovered by Fang and Ward (1999 Phys. Rev. E 59 417-28) is a rule rather than an exception. We show in computer simulations for a single-component system (argon) that this discontinuity is due to the constraint of momentum/pressure equilibrium during evaporation. For high vapour pressure the temperature is continuous across the liquid-vapour interface, while for small vapour pressures the temperature is discontinuous. The temperature jump at the interface is inversely proportional to the vapour density close to the interface. We have also found that all analysed data are described by the following equation: da/dt = P1/(a + P2), where a is the radius of the evaporating droplet, t is time and P1 and P2 are two parameters. P1 = -λΔT/(qeffρL), where λ is the thermal conductivity coefficient in the vapour at the interface, ΔT is the temperature difference between the liquid droplet and the vapour far

  4. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...

  5. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...

  6. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...

  7. Two stage indirect evaporative cooling system

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan

    2005-08-23

    A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.

  8. Vacuum Pyrolysis and Related ISRU Techniques

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Pomeroy, Brian R.; Banks, Ian S.; Benz, Alexis

    2007-01-01

    A number of ISRU-related techniques have been developed at NASA Goddard Space Flight Center. The focus of the team has been on development of the vacuum pyrolysis technique for the production of oxygen from the lunar regolith. However, a number of related techniques have also been developed, including solar concentration, solar heating of regolith, resistive heating of regolith, sintering, regolith boiling, process modeling, parts manufacturing, and instrumentation development. An initial prototype system was developed to vaporize regolith simulants using a approx. l square meter Fresnel lens. This system was successfully used to vaporize quantities of approx. lg, and both mass spectroscopy of the gasses produced and Scanning Electron Microscopy (SEM) of the slag were done to show that oxygen was produced. Subsequent tests have demonstrated the use of a larger system With a 3.8m diameter reflective mirror to vaporize the regolith. These results and modeling of the vacuum pyrolysis reaction have indicated that the vaporization of the oxides in the regolith will occur at lower temperature for stronger vacuums. The chemical modeling was validated by testing of a resistive heating system that vaporized quantities of approx. 10g of MLS-1A. This system was also used to demonstrate the sintering of regolith simulants at reduced temperatures in high vacuum. This reduction in the required temperature prompted the development of a small-scale resistive heating system for application as a scientific instrument as well as a proof-of principle experiment for oxygen production.

  9. The benefits of using a vacuum-assisted socket system to improve balance and gait in elderly transtibial amputees.

    PubMed

    Samitier, C Beatriz; Guirao, Lluis; Costea, Maria; Camós, Josep M; Pleguezuelos, Eulogio

    2016-02-01

    Lower limb amputation leads to impaired balance, ambulation, and transfers. Proper fit of the prosthesis is a determining factor for successful ambulation. Vacuum-assisted socket systems extract air from the socket, which decreases pistoning and probability of soft-tissue injuries and increases proprioception and socket comfort. To investigate the effect of vacuum-assisted socket system on transtibial amputees' performance-based and perceived balance, transfers, and gait. Quasi-experimental before-and-after study. Subjects were initially assessed using their prosthesis with the regular socket and re-evaluated 4 weeks after fitting including the vacuum-assisted socket system. We evaluated the mobility grade using Medicare Functional Classification Level, Berg Balance Scale, Four Square Step Test, Timed Up and Go Test, the 6-Min Walk Test, the Locomotor Capabilities Index, Satisfaction with Prosthesis (SAT-PRO questionnaire), and Houghton Scale. A total of 16 unilateral transtibial dysvascular amputees, mean age 65.12 (standard deviation = 10.15) years. Using the vacuum-assisted socket system, the patients significantly improved in balance, gait, and transfers: scores of the Berg Balance Scale increased from 45.75 (standard deviation = 6.91) to 49.06 (standard deviation = 5.62) (p < 0.01), Four Square Step Test decreased from 18.18 (standard deviation = 3.84) s to 14.97 (3.9) s (p < 0.01), Timed Up and Go Test decreased from 14.3 (standard deviation = 3.29) s to 11.56 (2.46) s (p < 0.01). The distance walked in the 6-Min Walk Test increased from 288.53 (standard deviation = 59.57) m to 321.38 (standard deviation = 72.81) m (p < 0.01). Vacuum-assisted socket systems are useful for improving balance, gait, and transfers in over-50-year-old dysvascular transtibial amputees. This study gives more insight into the use of vacuum-assisted socket systems to improve elderly transtibial dysvascular amputees

  10. A microscopic description of black hole evaporation via holography

    DOE PAGES

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    2016-07-19

    Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.

  11. A microscopic description of black hole evaporation via holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkowitz, Evan; Hanada, Masanori; Maltz, Jonathan

    Here, we propose a description of how a large, cold black hole (black zero-brane) in type IIA superstring theory evaporates into freely propagating D0-branes, by solving the dual gauge theory quantitatively. The energy spectrum of emitted D0-branes is parametrically close to thermal when the black hole is large. The black hole, while initially cold, gradually becomes an extremely hot and stringy object as it evaporates. As it emits D0-branes, its emission rate speeds up and it evaporates completely without leaving any remnant. Hence this system provides us with a concrete holographic description of black hole evaporation without information loss.

  12. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  13. Numerical modelling and experimental study of liquid evaporation during gel formation

    NASA Astrophysics Data System (ADS)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  14. Role of ocean evaporation in California droughts and floods

    NASA Astrophysics Data System (ADS)

    Wei, Jiangfeng; Jin, Qinjian; Yang, Zong-Liang; Dirmeyer, Paul A.

    2016-06-01

    Since winter 2011, a record-breaking drought has occurred in California. Studies found that the drought is mainly caused by a persistent high-pressure system off the U.S. West Coast, which is linked to Pacific sea surface temperature anomalies. The water cycles associated with the droughts and floods are still not clearly understood. Here we show that the atmospheric circulation off the West Coast not only controls the atmospheric convergence and formation of precipitation but also largely determines surface wind speed, which further affects the evaporation over the eastern North Pacific, the major evaporative moisture source for California precipitation. Because of this mechanism, the ocean evaporation over the eastern North Pacific has been reduced during the recent drought. However, the ocean evaporation anomalies have little direct influence on California precipitation, especially during dry years, mainly because of their weak amplitudes. The California droughts cannot be readily attributed to the reduced ocean evaporation. The association between increased Pacific evaporation and floods over California is somewhat stronger.

  15. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    PubMed

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Membrane evaporator/sublimator investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    Data are presented on a new evaporator/sublimator concept using a hollow fiber membrane unit with a high permeability to liquid water. The aim of the program was to obtain a more reliable, lightweight and simpler Extra Vehicular Life Support System (EVLSS) cooling concept than is currently being used.

  17. Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors

    PubMed Central

    Kanbur, Yasin; Irimia-Vladu, Mihai; Głowacki, Eric D.; Voss, Gundula; Baumgartner, Melanie; Schwabegger, Günther; Leonat, Lucia; Ullah, Mujeeb; Sarica, Hizir; Erten-Ela, Sule; Schwödiauer, Reinhard; Sitter, Helmut; Küçükyavuz, Zuhal; Bauer, Siegfried; Sariciftci, Niyazi Serdar

    2012-01-01

    We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm2/Vs. Devices with pentacene showed a mobility of 0.16 cm2/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of ∼0.3 cm2/Vs. These devices demonstrate low hysteresis and operational stability over at least several months. Grazing-angle infrared spectroscopy of evaporated thin films shows that the structure of the polyethylene is similar to solution-cast films. We report also on the morphological and dielectric properties of these films. Our experiments demonstrate that polyethylene is a stable dielectric supporting both hole and electron channels. PMID:23483783

  18. Do lipids retard the evaporation of the tear fluid?

    PubMed

    Rantamäki, Antti H; Javanainen, Matti; Vattulainen, Ilpo; Holopainen, Juha M

    2012-09-21

    We examined in vitro the potential evaporation-retarding effect of the tear film lipid layer (TFLL). The artificial TFLL compositions used here were based on the present knowledge of TFLL composition. A custom-built system was developed to measure evaporation rates at 35°C. Lipids were applied to an air-water interface, and the evaporation rate through the lipid layer was defined as water loss from the interface. A thick layer of olive oil and a monolayer of long-chain alcohol were used as controls. The artificial TFLLs were composed of 1 to 4 lipid species: polar phosphatidylcholine (PC), nonpolar cholesteryl ester, triglycerides, and wax ester (WE). Brewster angle microscopy (BAM) and interfacial shear rheometry (ISR) were used to assess the lateral structure and shear stress response of the lipid layers, respectively. Olive oil and long-chain alcohol decreased evaporation by 54% and 45%, respectively. The PC monolayer and the four-component mixtures did not retard evaporation. WE was the most important evaporation-retardant TFLL lipid (∼20% decrease). In PC/WE mixtures, an ∼90% proportion of WE was required for evaporation retardation. Based on BAM and ISR, WE resulted in more condensed layers than the non-retardant layers. Highly condensed, solid-like lipid layers, such as those containing high proportions of WEs, are evaporation-retardant. In multi-component lipid layers, the evaporation-retardant interactions between carbon chains decrease and, therefore, these lipid layers do not retard evaporation.

  19. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  20. O-Ring sealing arrangements for ultra-high vacuum systems

    DOEpatents

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  1. [Dynamics of Irreversible Evaporation of a Water-Protein Droplet and a Problem of Structural and Dynamical Experiments with Single Molecules].

    PubMed

    Shaitan, K V; Armeev, G A; Shaytan, A K

    2016-01-01

    We discuss the effect of isothermal and adiabatic evaporation of water on the state of a water-protein droplet. The discussed problem is of current importance due to development of techniques to perform single molecule experiments using free electron lasers. In such structure-dynamic experiments the delivery of a sample into the X-ray beam is performed using the microdroplet injector. The time between the injection and delivery is in the order of microseconds. In this paper we developed a specialized variant of all-atom molecular dynamics simulations for the study of irreversible isothermal evaporation of the droplet. Using in silico experiments we determined the parameters of isothermal evaporation of the water-protein droplet with the sodium and chloride ions in the concentration range of 0.3 M at different temperatures. The energy of irreversible evaporation determined from in silico experiments at the initial stages of evaporation virtually coincides with the specific heat of evaporation for water. For the kinetics of irreversible adiabatic evaporation an exact analytical solution was obtained in the limit of high thermal conductivity of the droplet (or up to the droplet size of -100 Å). This analytical solution incorporates parameters that are determined using in silico. experiments on isothermal droplet evaporation. We show that the kinetics of adiabatic evaporation and cooling of the droplet scales with the droplet size. Our estimates of the water-protemi droplet. freezing rate in the adiabatic regime in a vacuum chamber show that additional techniques for stabilizing the temperature inside the droplet should be used in order to study the conformational transitions of the protein in single molecules. Isothermal and quasi-isothermal conditions are most suitable for studying the conformational transitions upon object functioning. However, in this case it is necessary to take into account the effects of dehydration and rapid increase of ionic strength in an

  2. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  3. Measurement System of Surface Electrostatic Potential on Insulation Board in Vacuum and its Application

    NASA Astrophysics Data System (ADS)

    Morita, Hiroshi; Hatanaka, Ayumu; Yokosuka, Toshiyuki; Seki, Yoshitaka; Tsumuraya, Yoshiaki; Doi, Motomichi

    The measurement system of the surface electrostatic potential on a solid insulation board in vacuum has been developed. We used this system to measure the electrostatic potential distribution of the surface of a borosilicate glass plate applied a high voltage. A local increase in the electric field was observed. It is considered that this phenomenon is caused by a positive electrostatic charge generated by a secondary emission of field emission electrons from an electrode. On the other hand, a local increase in the electric field was not observed on a glass plate coated with silica particles and a glass plate roughened by sandblast. We reasoned that this could be because the electrons were trapped by the roughness of the surface. It is considered that these phenomena make many types of equipment using the vacuum insulation more reliable.

  4. Outgassing Total Mass Loss Obtained with Micro-CVCM and Other Vacuum Systems

    NASA Technical Reports Server (NTRS)

    Scialdone, John; Isaac, Peggy; Clatterbuck, Carroll; Hunkeler, Ronald; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Several instruments including the Cahn Microbalance, the Knudsen Cell, the micro-CVCM, and the vacuum Thermogravimetric Analyzer (TGA) were used in the testing of a graphite epoxy (GR/EP) composite that is proposed for use as a rigidizing element of an inflatable deployment system. This GR/EP will be cured in situ. The purpose of this testing is to estimate the gaseous production resulting from the curing of the GR/EP composite, to predict the resulting pressure, and to calculate the required venting. Every test was conducted under vacuum at 125 C for 24 hours. Upon comparison of the results, the ASTM E-595 was noted to have given readings that were consistently lower than those obtained using the other instruments, which otherwise provided similar results. The GR/EP was tested using several different geometric arrangements. This paper describes the analysis evaluating the molecular and continuum flow of the outgassing products issuing from the exit port of the ASTM E-595 system. The effective flow conductance provided by the physical dimensions of the vent passage of the ASTM E-595 system and that of the material sample among other factors were investigated to explain the reduced amount of outgassing released during the 24-hour test period,

  5. Outgassing Total Mass Loss Obtained with Micro-CVCM and other Vacuum Systems

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Isaac, Peggy A.; Clatterbuck, Carroll H.; Hunkeler, Ronald E.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Several instruments including the Cahn Microbalance the Knudsen Cell, the micro-CVCM, and the vacuum Thermogravimetric Analyzer (TGA) were used in the testing of a graphite epoxy (GR/EP) composite that is proposed for use as a rigidizing element of an inflatable deployment system. This GR/EP will be cured in situ. The purpose of this testing is to estimate the gaseous production resulting from the curing of the GR/EP composite, to predict the resulting pressure, and to calculate the required venting. Every test was conducted under vacuum at 125 C for 24 hours. Upon comparison of the results, the ASTM E-595 was noted to have given readings that were consistently lower than those obtained using the other instruments, which otherwise provided similar results. The GR/EP was tested using several different geometric arrangements. This paper describes the analysis evaluating the molecular and continuum flow of the outgassing products issuing from the exit port of the ASTM E-595 system. The effective flow conductance provided by the physical dimensions of the vent passage of the ASTM E-595 system and that of the material sample among other factors were investigated to explain the reduced amount of outgassing released during the 24-hour test period

  6. Dynamics of contact line depinning during droplet evaporation based on thermodynamics.

    PubMed

    Yu, Dong In; Kwak, Ho Jae; Doh, Seung Woo; Ahn, Ho Seon; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan

    2015-02-17

    For several decades, evaporation phenomena have been intensively investigated for a broad range of applications. However, the dynamics of contact line depinning during droplet evaporation has only been inductively inferred on the basis of experimental data and remains unclear. This study focuses on the dynamics of contact line depinning during droplet evaporation based on thermodynamics. Considering the decrease in the Gibbs free energy of a system with different evaporation modes, a theoretical model was developed to estimate the receding contact angle during contact line depinning as a function of surface conditions. Comparison of experimentally measured and theoretically modeled receding contact angles indicated that the dynamics of contact line depinning during droplet evaporation was caused by the most favorable thermodynamic process encountered during constant contact radius (CCR mode) and constant contact angle (CCA mode) evaporation to rapidly reach an equilibrium state during droplet evaporation.

  7. Method and apparatus for in-cell vacuuming of radiologically contaminated materials

    DOEpatents

    Spadaro, Peter R.; Smith, Jay E.; Speer, Elmer L.; Cecconi, Arnold L.

    1987-01-01

    A vacuum air flow operated cyclone separator arrangement for collecting, handling and packaging loose contaminated material in accordance with acceptable radiological and criticality control requirements. The vacuum air flow system includes a specially designed fail-safe prefilter installed upstream of the vacuum air flow power supply. The fail-safe prefilter provides in-cell vacuum system flow visualization and automatically reduces or shuts off the vacuum air flow in the event of an upstream prefilter failure. The system is effective for collecting and handling highly contaminated radiological waste in the form of dust, dirt, fuel element fines, metal chips and similar loose material in accordance with radiological and criticality control requirements for disposal by means of shipment and burial.

  8. Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    NASA Astrophysics Data System (ADS)

    Stiff-Roberts, Adrienne D.; Ge, Wangyao

    2017-12-01

    Some of the most exciting materials research in the 21st century attempts to resolve the challenge of simulating, synthesizing, and characterizing new materials with unique properties designed from first principles. Achievements in such development for organic and organic-inorganic hybrid materials make them important options for electronic and/or photonic devices because they can impart multi-functionality, flexibility, transparency, and sustainability to emerging systems, such as wearable electronics. Functional organic materials include small molecules, oligomers, and polymers, while hybrid materials include inorganic nanomaterials (such as zero-dimensional quantum dots, one-dimensional carbon nanotubes, or two-dimensional nanosheets) combined with organic matrices. A critically important step to implementing new electronic and photonic devices using such materials is the processing of thin films. While solution-based processing is the most common laboratory technique for organic and hybrid materials, vacuum-based deposition has been critical to the commercialization of organic light emitting diodes based on small molecules, for example. Therefore, it is desirable to explore vacuum-based deposition of organic and hybrid materials that include larger macromolecules, such as polymers. This review article motivates the need for physical vapor deposition of polymeric and hybrid thin films using matrix-assisted pulsed laser evaporation (MAPLE), which is a type of pulsed laser deposition. This review describes the development of variations in the MAPLE technique, discusses the current understanding of laser-target interactions and growth mechanisms for different MAPLE variations, surveys demonstrations of MAPLE-deposited organic and hybrid materials for electronic and photonic devices, and provides a future outlook for the technique.

  9. A fixed collector employing reversible vee-trough concentrator and a vacuum tube receiver for high temperature solar energy systems

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1976-01-01

    A solar heat collection system employing non-tracking reflectors integrated with a fixed vacuum tube receiver which achieves modest year-round concentration (about 2) of the sunlight at low capital costs is discussed. The axis of the vee-trough reflector lies in a east-west direction and requires reversal of the reflector surfaces only twice a year without disturbing the receiver tubes and associated plumbing. It collects most of the diffuse flux. The vacuum tube receiver with selective absorber has no convection losses while radiation and conduction losses are minimal. Significant cost reductions are offered since the vee-trough can be fabricated from inexpensive polished or plastic reflector laminated sheet metal covering 2/3 of the collection area, and only about 1/3 of the area is covered with the more expensive vacuum tube receivers. Thermal and economic performance of the vee-trough vacuum tube system, year-round variation of the concentration factor, incident flux, useful heat per unit area at various operation temperatures and energy cost estimates are presented. The electrical energy cost is estimated to be 77 mills/kWh, and the system construction cost is estimated to be $1140/kWe.

  10. Hollow Fiber Space Water Membrane Evaporator Flight Prototype Design and Testing

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice; Vogel, Mtthew; Honas, Matt; Dillon, Paul; Colunga, Aaron; Truong, Lily; Porwitz, Darwin; Tsioulos, Gus

    2011-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, eliminated the spacers, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. A number of tests were performed in order to improve the strength of the polyurethane header that holds the fibers in place while the system is pressurized. Vacuum chamber testing showed similar heat rejection as a function of inlet water temperature and water vapor backpressure was similar to the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated acceptable performance decline.

  11. Comparison of the properties of Pb thin films deposited on Nb substrate using thermal evaporation and pulsed laser deposition techniques

    NASA Astrophysics Data System (ADS)

    Perrone, A.; Gontad, F.; Lorusso, A.; Di Giulio, M.; Broitman, E.; Ferrario, M.

    2013-11-01

    Pb thin films were prepared at room temperature and in high vacuum by thermal evaporation and pulsed laser deposition techniques. Films deposited by both the techniques were investigated by scanning electron microscopy to determine their surface topology. The structure of the films was studied by X-ray diffraction in θ-2θ geometry. The photoelectron performances in terms of quantum efficiency were deduced by a high vacuum photodiode cell before and after laser cleaning procedures. Relatively high quantum efficiency (>10-5) was obtained for all the deposited films, comparable to that of corresponding bulk. Finally, film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Weak and strong points of these two competitive techniques are illustrated and discussed.

  12. Airborne exposure to trihalomethanes from tap water in homes with refrigeration-type and evaporative cooling systems.

    PubMed

    Kerger, Brent D; Suder, David R; Schmidt, Chuck E; Paustenbach, Dennis J

    2005-03-26

    This study evaluates airborne concentrations of common trihalomethane compounds (THM) in selected living spaces of homes supplied with chlorinated tap water containing >85 ppb total THM. Three small homes in an arid urban area were selected, each having three bedrooms, a full bath, and approximately 1000 square feet; two homes had standard (refrigeration-type) central air conditioning and the third had a central evaporative cooling system ("swamp cooler"). A high-end water-use pattern was used at each home in this exposure simulation. THM were concurrently measured on 4 separate test days in tap water and air in the bathroom, living room, the bedroom closest to the bathroom, and outside using Summa canisters. Chloroform (trichloromethane, TCM), bromodichloromethane (BDCM), and dibromochloromethane (DBCM) concentrations were quantified using U.S. EPA Method TO-14. The apparent volatilization fraction consistently followed the order: TCM > BDCM > DBCM. Relatively low airborne THM concentrations (similar to outdoors) were found in the living room and bedroom samples for the home with evaporative cooling, while the refrigeration-cooled homes showed significantly higher THM levels (three- to fourfold). This differential remained after normalizing the air concentrations based on estimated THM throughput or water concentrations. These findings indicate that, despite higher throughput of THM-containing water in homes using evaporative coolers, the higher air exchange rates associated with these systems rapidly clears THM to levels similar to ambient outdoor concentrations.

  13. Evaporation, diffusion and self-assembly at drying interfaces.

    PubMed

    Roger, K; Sparr, E; Wennerström, H

    2018-04-18

    Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.

  14. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    PubMed

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  15. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first majormore » recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated

  16. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    ERIC Educational Resources Information Center

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  17. Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Crawford, C. L.; Jackson, D. G.

    2016-06-17

    The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.

  18. Fluid leakage detector for vacuum applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich Ngoc (Inventor); Farkas, Tibor (Inventor); Kim, Brian Byungkyu (Inventor)

    2002-01-01

    A leak detection system for use with a fluid conducting system in a vacuum environment, such as space, is described. The system preferably includes a mesh-like member substantially disposed about the fluid conducting system, and at least one sensor disposed within the mesh-like member. The sensor is capable of detecting a decrease in temperature of the mesh-like member when a leak condition causes the fluid of the fluid conducting system to freeze when exposed to the vacuum environment. Additionally, a signal processor in preferably in communication with the sensor. The sensor transmits an electrical signal to the signal processor such that the signal processor is capable of indicating the location of the fluid leak in the fluid conducting system.

  19. Quantum vacuum noise in physics and cosmology.

    PubMed

    Davies, P. C. W.

    2001-09-01

    The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. (c) 2001 American Institute of Physics.

  20. Observing quantum vacuum lensing in a neutron star binary system.

    PubMed

    Dupays, Arnaud; Robilliard, Cécile; Rizzo, Carlo; Bignami, Giovanni F

    2005-04-29

    In this Letter we study the propagation of light in the neighborhood of magnetized neutron stars. Because of the optical properties of quantum vacuum in the presence of a magnetic field, the light emitted by background astronomical objects is deviated, giving rise to a phenomenon of the same kind as the gravitational one. We give a quantitative estimation of this effect, and we discuss the possibility of its observation. We show that this effect could be detected by monitoring the evolution of the recently discovered double neutron star system J0737-3039.

  1. Pre-packed vacuum bone cement mixing systems. A further step in reducing methylmethacrylate exposure in surgery.

    PubMed

    Schlegel, Ulf J; Sturm, Michael; Eysel, Peer; Breusch, Steffen J

    2010-11-01

    Polymethylmethacrylate bone cements are widely used in orthopaedic and trauma surgery as well as in dentistry. The toxic side effects of inhaled methylmethacrylate (MMA) fumes generated during mixing have been well studied. Vacuum cement mixing systems have been shown to reduce the risk of airborne MMA significantly compared to handmixing. In an effort to further reduce MMA exposure, the latest generation of mixing devices are pre-packed with the ingredients and thus allow preparation in nearly closed circuits. Until now, there has been no study proofing the efficacy of those systems in protecting theatre staff from MMA vapours. A pre-packed vacuum mixing system (Optipac®) was compared with two standard systems (Palamix® and Easymix®) regarding MMA emission. The latter systems require loading with the bone cement compounds prior to mixing. Following a standardized procedure, 10 mixes were performed with each system and the emission of MMA vapours in the breathing zone was recorded using photoionization detection over a period of 3 min. The mean MMA exposure was reduced when using the pre-packed system compared to the devices that require filling with the components. The highest emission peaks were recorded during the mixing and preparation steps in all systems. Modern pre-packed vacuum mixing systems further help to reduce the occupational hazards created by bone cement preparation. However, MMA fumes can still be detected using this technique. Although this is an important step in reducing MMA exposure in the operating theatre, further technical effort has to be taken to eliminate the continuous leakage of monomer from the devices while mixing and to minimize necessary manipulation for final delivery.

  2. Giant vacuum forces via transmission lines

    PubMed Central

    Shahmoon, Ephraim; Mazets, Igor; Kurizki, Gershon

    2014-01-01

    Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry and in emerging technologies involving, e.g., microelectromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension, we find a much stronger and longer-range interaction than in free space. This enhancement may have profound implications on many-particle and bulk systems and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line. PMID:25002503

  3. Introduction to total- and partial-pressure measurements in vacuum systems

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Kern, F. A.

    1989-01-01

    An introduction to the fundamentals of total and partial pressure measurement in the vacuum regime (760 x 10 to the -16th power Torr) is presented. The instrument most often used in scientific fields requiring vacuum measurement are discussed with special emphasis on ionization type gauges and quadrupole mass spectrometers. Some attention is also given to potential errors in measurement as well as calibration techniques.

  4. Analysis of Evaporative On-Board Diagnostic (OBD) Readiness and DTCs Using I/M Data

    EPA Science Inventory

    Gasoline vehicles are equipped with evaporative emissions control systems that control vapor from the fuel storage system while a vehicle is sitting or driving. When these systems or the vehicle’s gasoline delivery system malfunction, excessive evaporative emissions can be emitte...

  5. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur

    2015-06-01

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.

  6. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    PubMed Central

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; DeLay, Michael; Driks, Adam; Sahin, Ozgur

    2015-01-01

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment. PMID:26079632

  7. Theoretical and testing performance of an innovative indirect evaporative chiller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yi; Xie, Xiaoyun

    2010-12-15

    An indirect evaporative chiller is a device used to produce chilled water at a temperature between the wet bulb temperature and dew point of the outdoor air, which can be used in building HVAC systems. This article presents a theoretical analysis and practical performance of an innovative indirect evaporative chiller. First, the process of the indirect evaporative chiller is introduced; then, the matching characteristics of the process are presented and analyzed. It can be shown that the process that produces cold water by using dry air is a nearly-reversible process, so the ideal produced chilled water temperature of the indirectmore » evaporative chiller can be set close to the dew point temperature of the chiller's inlet air. After the indirect evaporative chiller was designed, simulations were done to analyze the output water temperature, the cooling efficiency relative to the inlet dew point temperature, and the COP that the chiller can performance. The first installation of the indirect evaporative chiller of this kind has been run for 5 years in a building in the city of Shihezi. The tested output water temperature of the chiller is around 14-20 C, which is just in between of the outdoor wet bulb temperature and dew point. The tested COP{sub r,s} of the developed indirect evaporative chiller reaches 9.1. Compared with ordinary air conditioning systems, the indirect evaporative chiller can save more than 40% in energy consumption due to the fact that the only energy consumed is from pumps and fans. An added bonus is that the indirect evaporative chiller uses no CFCs that pollute to the aerosphere. The tested internal parameters, such as the water-air flow rate ratio and heat transfer area for each heat transfer process inside the chiller, were analyzed and compared with designed values. The tested indoor air conditions, with a room temperature of 23-27 C and relative humidity of 50-70%, proved that the developed practical indirect evaporative chiller

  8. Structure and optical properties of evaporated films of the Cr- and V-group metals

    NASA Technical Reports Server (NTRS)

    Nestell, J. E., Jr.; Christy, R. W.; Cohen, M. H.; Ruben, G. C.

    1980-01-01

    Thin films of Cr, Mo, and W rapidly evaporated in high vacuum (5 x 10 to the -7th torr) onto room-temperature substrates show anomalously low reflectance (compared to bulk samples). From electron and X-ray diffraction and electron microscopy, the normal bcc crystal structure is found, but with very fine grains. Columnar grains about 100 A in diameter were separated by a less dense grain-boundary network about 10-A wide. The measured optical conductivity agrees with an inhomogeneous-medium model that assumes the normal crystalline conductivity for the grain interiors, with model parameters that correlate to the observed columnar grain size. In contrast, V and Nb films rapidly evaporated onto room-temperature substrates have the reflectance of bulk crystalline material. On liquid-nitrogen temperature substrates, however, V and Nb have normal bcc crystal structure but with small flat-plate grains, and the same model, with appropriate parameters, accounts for the optical conductivity. The difference between these two groups apparently depends on residual gases segregated at the grain boundaries in the Cr-group films.

  9. Fatal youth of the Universe: black hole threat for the electroweak vacuum during preheating

    NASA Astrophysics Data System (ADS)

    Gorbunov, Dmitry; Levkov, Dmitry; Panin, Alexander

    2017-10-01

    Small evaporating black holes were proposed to be dangerous inducing fast decay of the electroweak false vacuum. We observe that the flat-spectrum matter perturbations growing at the post-inflationary matter dominated stage can produce such black holes in a tiny amount which may nevertheless be sufficient to destroy the vacuum in the visible part of the Universe via the induced process. If the decay probability in the vicinity of Planck-mass black holes was of order one as suggested in literature, the absence of such objects in the early Universe would put severe constraints on inflation and subsequent stages thus excluding many well-motivated models (e.g. the R2-inflation) and supporting the need of new physics in the Higgs sector. We give a qualitative argument, however, that exponential suppression of the probability should persist in the limit of small black hole masses. This suppression relaxes our cosmological constraints, and, if sufficiently strong, may cancel them.

  10. Fatal youth of the Universe: black hole threat for the electroweak vacuum during preheating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbunov, Dmitry; Levkov, Dmitry; Panin, Alexander, E-mail: gorby@ms2.inr.ac.ru, E-mail: levkov@ms2.inr.ac.ru, E-mail: panin@ms2.inr.ac.ru

    Small evaporating black holes were proposed to be dangerous inducing fast decay of the electroweak false vacuum. We observe that the flat-spectrum matter perturbations growing at the post-inflationary matter dominated stage can produce such black holes in a tiny amount which may nevertheless be sufficient to destroy the vacuum in the visible part of the Universe via the induced process. If the decay probability in the vicinity of Planck-mass black holes was of order one as suggested in literature, the absence of such objects in the early Universe would put severe constraints on inflation and subsequent stages thus excluding manymore » well-motivated models (e.g. the R {sup 2}-inflation) and supporting the need of new physics in the Higgs sector. We give a qualitative argument, however, that exponential suppression of the probability should persist in the limit of small black hole masses. This suppression relaxes our cosmological constraints, and, if sufficiently strong, may cancel them.« less

  11. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstratedmore » by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.« less

  12. Morphology, Structural and Dielectric Properties of Vacuum Evaporated V2O5 Thin Films

    NASA Astrophysics Data System (ADS)

    Sengodan, R.; Shekar, B. Chandar; Sathish, S.

    Vanadium pentoxide (V2O5) thin films were deposited on well cleaned glass substrate using evaporation technique under the pressure of 10-5 Torr. The thickness of the films was measured by the multiple beam interferometry technique and cross checked by using capacitance method. Metal-Insulator-Metal (MIM) structure was fabricated by using suitable masks to study dielectric properties. The dielectric properties were studied by employing LCR meter in the frequency range 12 Hz to 100 kHz for various temperatures. The temperature co- efficient of permittivity (TCP), temperature co-efficient of capacitance (TCC) and dielectric constant (ɛ) were calculated. The activation energy was calculated and found to be very low. The activation energy was found to be increasing with increase in frequency. The obtained low value of activation energy suggested that the hopping conduction may be due to electrons rather than ions.

  13. Lightweight Vacuum Jacket for Cryogenic Insulation - Appendices to Final Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility is demonstrated of producing a lightweight vacuum jacket using state-of-the-art technology and materials. Design and analytical studies were made on an orbital maneuvering system fuel tank. Preliminary design details were completed for the tank assembly which included an optimized vacuum jacket and multilayered insulation system. A half-scale LH2 test model was designed and fabricated and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of 0.00001 was measured, approximately 1500 hours of vacuum pressure was sustained, and 29 vacuum pressure cycles were experienced prior to failure. For vol. 1, see N75-26192.

  14. PROCESS WATER BUILDING, TRA605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), AND STEAM EJECTOR (ALONG REAR WALL). INL NEGATIVE NO. 4377. M.H. Bartz, Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Production of Sn/SnO2/MWCNT composites by plasma oxidation after thermal evaporation from pure Sn targets onto buckypapers.

    PubMed

    Alaf, M; Gultekin, D; Akbulut, H

    2012-12-01

    In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).

  16. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets.

    PubMed

    Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-03-04

    The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory.

  17. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  18. Isotope fractionation of sandy-soil water during evaporation - an experimental study.

    PubMed

    Rao, Wen-Bo; Han, Liang-Feng; Tan, Hong-Bing; Wang, Shuai

    2017-06-01

    Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ 18 O and δ 2 H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100 %. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ 2 H and δ 18 O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ 2 H and δ 18 O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.

  19. Building micro-soccer-balls with evaporating colloidal fakir drops

    NASA Astrophysics Data System (ADS)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.

    2013-11-01

    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  20. An Ultrathin Nanoporous Membrane Evaporator.

    PubMed

    Lu, Zhengmao; Wilke, Kyle L; Preston, Daniel J; Kinefuchi, Ikuya; Chang-Davidson, Elizabeth; Wang, Evelyn N

    2017-10-11

    Evaporation is a ubiquitous phenomenon found in nature and widely used in industry. Yet a fundamental understanding of interfacial transport during evaporation remains limited to date owing to the difficulty of characterizing the heat and mass transfer at the interface, especially at high heat fluxes (>100 W/cm 2 ). In this work, we elucidated evaporation into an air ambient with an ultrathin (≈200 nm thick) nanoporous (≈130 nm pore diameter) membrane. With our evaporator design, we accurately monitored the temperature of the liquid-vapor interface, reduced the thermal-fluidic transport resistance, and mitigated the clogging risk associated with contamination. At a steady state, we demonstrated heat fluxes of ≈500 W/cm 2 across the interface over a total evaporation area of 0.20 mm 2 . In the high flux regime, we showed the importance of convective transport caused by evaporation itself and that Fick's first law of diffusion no longer applies. This work improves our fundamental understanding of evaporation and paves the way for high flux phase-change devices.

  1. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    DOE PAGES

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; ...

    2015-06-16

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less

  2. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less

  3. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less

  4. Resolving the vacuum fluctuations of an optomechanical system using an artificial atom

    NASA Astrophysics Data System (ADS)

    Lecocq, F.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W.

    2015-08-01

    Heisenberg’s uncertainty principle results in one of the strangest quantum behaviours: a mechanical oscillator can never truly be at rest. Even at a temperature of absolute zero, its position and momentum are still subject to quantum fluctuations. However, direct energy detection of the oscillator in its ground state makes it seem motionless, and in linear position measurements detector noise can masquerade as mechanical fluctuations. Thus, how can we resolve quantum fluctuations? Here, we parametrically couple a micromechanical oscillator to a microwave cavity to prepare the system in its quantum ground state and then amplify the remaining vacuum fluctuations into real energy quanta. We monitor the photon/phonon-number distributions using a superconducting qubit, allowing us to resolve the quantum vacuum fluctuations of the macroscopic oscillator’s motion. Our results further demonstrate the ability to control a long-lived mechanical oscillator using a non-Gaussian resource, directly enabling applications in quantum information processing and enhanced detection of displacement and forces.

  5. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  6. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study

    PubMed Central

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-01-01

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system. PMID:28880207

  7. Outgassing of solid material into vacuum thermal insulation spaces

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1994-01-01

    Many cryogenic storage tanks use vacuum between inner and outer tank for thermal insulation. These cryogenic tanks also use a radiation shield barrier in the vacuum space to prevent radiation heat transfer. This shield is usually constructed by using multiple wraps of aluminized mylar and glass paper as inserts. For obtaining maximum thermal performance, a good vacuum level must be maintained with the insulation system. It has been found that over a period of time solid insulation materials will vaporize into the vacuum space and the vacuum will degrade. In order to determine the degradation of vacuum, the rate of outgassing of the insulation materials must be determined. Outgassing rate of several insulation materials obtained from literature search were listed in tabular form.

  8. Control of Vacuum Induction Brazing System for Sealing of Instrumentation Feedthrough

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Ho; Hong, Jintae; Joung, Chang Young; Heo, Sung Ho

    2017-04-01

    The integrity of instrumentation cables is an important performance parameter in the brazing process, along with the sealing performance. In this paper, an accurate control scheme for brazing of the instrumentation feedthrough in a vacuum induction brazing system was developed. The experimental results show that the accurate brazing temperature control performance is achieved by the developed control scheme. It is demonstrated that the sealing performances of the instrumentation feedthrough and the integrity of the instrumentation cables are to be acceptable after brazing.

  9. Vertical counterflow evaporative cooler

    DOEpatents

    Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan

    2005-01-25

    An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.

  10. Modelling sub-daily evaporation from a small reservoir.

    NASA Astrophysics Data System (ADS)

    McGloin, Ryan; McGowan, Hamish; McJannet, David; Burn, Stewart

    2013-04-01

    . Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack and J. J. Middelburg (2006), The global abundance and size distribution of lakes, ponds, and impoundments, Limnology and Oceanography, 51, 2388-2397. Granger, R.J. and N. Hedstrom (2011), Modelling hourly rates of evaporation from small lakes, Hydrological and Earth System Sciences, 15, doi:10.5194/hess-15-267-2011. Imberger, J. and J.C. Patterson (1981), Dynamic Reservoir Simulation Model - DYRESM: 5, In: Transport Models for Inland and Coastal Waters. H.B. Fischer (Ed.). Academic Press, New York, 310-361.

  11. Tokamak DEMO-FNS: Concept of magnet system and vacuum chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azizov, E. A., E-mail: Azizov-EA@nrcki.ru; Ananyev, S. S.; Belyakov, V. A.

    The level of knowledge accumulated to date in the physics and technologies of controlled thermonuclear fusion (CTF) makes it possible to begin designing fusion—fission hybrid systems that would involve a fusion neutron source (FNS) and which would admit employment for the production of fissile materials and for the transmutation of spent nuclear fuel. Modern Russian strategies for CTF development plan the construction to 2023 of tokamak-based demonstration hybrid FNS for implementing steady-state plasma burning, testing hybrid blankets, and evolving nuclear technologies. Work on designing the DEMO-FNS facility is still in its infancy. The Efremov Institute began designing its magnet systemmore » and vacuum chamber, while the Kurchatov Institute developed plasma-physics design aspects and determined basic parameters of the facility. The major radius of the plasma in the DEMO-FNS facility is R = 2.75 m, while its minor radius is a = 1 m; the plasma elongation is k{sub 95} = 2. The fusion power is P{sub FUS} = 40 MW. The toroidal magnetic field on the plasma-filament axis is B{sub t0} = 5 T. The plasma current is I{sub p} = 5 MA. The application of superconductors in the magnet system permits drastically reducing the power consumed by its magnets but requires arranging a thick radiation shield between the plasma and magnet system. The central solenoid, toroidal-field coils, and poloidal-field coils are manufactured from, respectively, Nb{sub 3}Sn, NbTi and Nb{sub 3}Sn, and NbTi. The vacuum chamber is a double-wall vessel. The space between the walls manufactured from 316L austenitic steel is filled with an iron—water radiation shield (70% of stainless steel and 30% of water).« less

  12. Study on convection improvement of standard vacuum tube

    NASA Astrophysics Data System (ADS)

    He, J. H.; Du, W. P.; Qi, R. R.; He, J. X.

    2017-11-01

    For the standard all-glass vacuum tube collector, enhancing the vacuum tube axial natural convection can improve its thermal efficiency. According to the study of the standard all-glass vacuum tube, three kinds of guide plates which can inhibit the radial convection and increase axial natural convection are designed, and theory model is established. Experiments were carried out on vacuum tubes with three types of baffles and standard vacuum tubes without the improvement. The results show that T-type guide plate is better than that of Y-type guide plate on restraining convection and increasing axial radial convection effect, Y type is better than that of flat plate type, all guide plates are better than no change; the thermal efficiency of the tube was 2.6% higher than that of the unmodified standard vacuum tube. The efficiency of the system in the experiment can be increased by 3.1%.

  13. Partitioning evaporation and transpiration in a maize field with heat-pulse sensors used for evaporation

    USDA-ARS?s Scientific Manuscript database

    Evaporation (E) and transpiration (T) occur simultaneously in many systems with varying levels of importance, yet terms are typically lumped as evapotranspiration (ET) due to difficulty with distinguishing component fluxes. Few studies have measured all three terms (ET, E, and T), and in the few cas...

  14. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates.

    PubMed

    Pan, Zhenhai; Dash, Susmita; Weibel, Justin A; Garimella, Suresh V

    2013-12-23

    Evaporation rates are predicted and important transport mechanisms identified for evaporation of water droplets on hydrophobic (contact angle ~110°) and superhydrophobic (contact angle ~160°) substrates. Analytical models for droplet evaporation in the literature are usually simplified to include only vapor diffusion in the gas domain, and the system is assumed to be isothermal. In the comprehensive model developed in this study, evaporative cooling of the interface is accounted for, and vapor concentration is coupled to local temperature at the interface. Conjugate heat and mass transfer are solved in the solid substrate, liquid droplet, and surrounding gas. Buoyancy-driven convective flows in the droplet and vapor domains are also simulated. The influences of evaporative cooling and convection on the evaporation characteristics are determined quantitatively. The liquid-vapor interface temperature drop induced by evaporative cooling suppresses evaporation, while gas-phase natural convection acts to enhance evaporation. While the effects of these competing transport mechanisms are observed to counterbalance for evaporation on a hydrophobic surface, the stronger influence of evaporative cooling on a superhydrophobic surface accounts for an overprediction of experimental evaporation rates by ~20% with vapor diffusion-based models. The local evaporation fluxes along the liquid-vapor interface for both hydrophobic and superhydrophobic substrates are investigated. The highest local evaporation flux occurs at the three-phase contact line region due to proximity to the higher temperature substrate, rather than at the relatively colder droplet top; vapor diffusion-based models predict the opposite. The numerically calculated evaporation rates agree with experimental results to within 2% for superhydrophobic substrates and 3% for hydrophobic substrates. The large deviations between past analytical models and the experimental data are therefore reconciled with the

  15. 242-A Evaporator quality assurance plan. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basra, T.S.

    1995-05-04

    The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (calledmore » process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks.« less

  16. Comparison of Total Evaporation (TE) and Direct Total Evaporation (DTE) methods in TIMS by using NBL CRMs

    NASA Astrophysics Data System (ADS)

    Hasözbek, Altug; Mathew, Kattathu; Wegener, Michael

    2013-04-01

    The total evaporation (TE) is a well-established analytical method for safeguards measurement of uranium and plutonium isotope-amount ratios using the thermal ionization mass spectrometry (TIMS). High accuracy and precision isotopic measurements find many applications in nuclear safeguards, for e.g. assay measurements using isotope dilution mass spectrometry. To achieve high accuracy and precision in TIMS measurements, mass dependent fractionation effects are minimized by either the measurement technique or changes in the hardware components that are used to control sample heating and evaporation process. At NBL, direct total evaporation (DTE) method on the modified MAT261 instrument, uses the data system to read the ion signal intensity and its difference from a pre-determined target intensity, is used to control the incremental step at which the evaporation filament is heated. The feedback and control is achieved by proprietary hardware from SPECTROMAT that uses an analog regulator in the filament power supply with direct feedback of the detector intensity. Compared to traditional TE method on this instrument, DTE provides better precision (relative standard deviation, expressed as a percent) and accuracy (relative difference, expressed as a percent) of 0.05 to 0.08 % for low enriched and high enriched NBL uranium certified reference materials.

  17. The proposal of recommendations for the operation of vacuum sewerage

    NASA Astrophysics Data System (ADS)

    Mazák, J.; Dvorský, T.; Václavík, V.; Zajac, R.; Hluštík, P.

    2017-10-01

    This article deals with a comparison of vacuum sewerage system and gravity based sewerage system. It also includes the results of the comparison of both of these systems from various cities, and there are measures suggested on the basis of the findings focused on increasing the efficiency and reducing the operational costs of the selected vacuum sewerage system.

  18. Milking performance evaluation and factors affecting milking claw vacuum levels with flow simulator.

    PubMed

    Enokidani, Masafumi; Kawai, Kazuhiro; Shinozuka, Yasunori; Watanabe, Aiko

    2017-08-01

    Milking performance of milking machines that matches the production capability of dairy cows is important in reducing the risk of mastitis, particularly in high-producing cows. This study used a simulated milking device to examine the milking performance of the milking system of 73 dairy farms and to analyze the factors affecting claw vacuum. Mean claw vacuum and range of fluctuation of claw vacuum (claw vacuum range) were measured at three different flow rates: 5.7, 7.6 and 8.7 kg/min. At the highest flow rate, only 16 farms (21.9%) met both standards of mean claw vacuum ≥35 kPa and claw vacuum range ≤ 7 kPa, showing that milking systems currently have poor milking performance. The factors affecting mean claw vacuum were claw type, milk-meter and vacuum shut-off device; the factor affecting claw vacuum range was claw type. Examination of the milking performance of the milking system using a simulated milking device allows an examination of the performance that can cope with high producing cows, indicating the possibility of reducing the risk of mastitis caused by inappropriate claw vacuum. © 2016 Japanese Society of Animal Science.

  19. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…

  20. Freezing of Water Droplet due to Evaporation

    NASA Astrophysics Data System (ADS)

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  1. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  2. Thermal Management Optimization of a Thermoelectric-Integrated Methanol Evaporator Using a Compact CFD Modeling Approach

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Chen, Min; Snyder, G. Jeffrey; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2013-07-01

    To better manage the magnitude and direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat exchange structure. The structure transfers the fuel cell exhaust heat to the evaporation chamber to evaporate the methanol, where TE modules are installed in between to facilitate the heat regulation. In this work, firstly, a numerical study is conducted to determine the working currents and working modes of the TERs under the system working condition fluctuations and during the system cold start. A three-dimensional evaporator model is generated in ANSYS FLUENT® by combining a compact TE model with various heat exchange structure geometries. The compact TE model can dramatically improve the computational efficiency, and uses a different material property acquisition method based on module manufacturers' datasheets. Secondly, a simulation study is carried out on the novel evaporator to minimize its thermal resistance and to assess the evaporator pressure drop. The factors studied include the type of fins in the heat exchange structure, the thickness of the fins, the axial conduction penalty, etc. Results show that the TE-integrated evaporator can work more efficiently and smoothly during both load fluctuations and system cold start, offering superior performance.

  3. Rubber-coated bellows improves vibration damping in vacuum lines

    NASA Technical Reports Server (NTRS)

    Hegland, D. E.; Smith, R. J.

    1966-01-01

    Compact-vibration damping systems, consisting of rubber-coated metal bellows with a sliding O-ring connector, are used in vacuum lines. The device presents a metallic surface to the vacuum system and combines flexibility with the necessary stiffness. It protects against physical damage, reduces fatigue failure, and provides easy mating of nonparallel lines.

  4. Evaporation of inclined water droplets.

    PubMed

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-16

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  5. Evaporation of inclined water droplets

    PubMed Central

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  6. Multi-leg heat pipe evaporator

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Haslett, R. A. (Inventor)

    1986-01-01

    A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.

  7. Partitioning evaporation and transpiration in a maize field using heat pulse sensors for evaporation measurement

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) is the sum of soil water evaporation (E) and plant transpiration (T). E and T occur simultaneously in many systems with varying levels of importance, yet it is often very challenging to distinguish these fluxes separately in the field. Few studies have measured all three term...

  8. Main Vacuum Technical Issues of Evacuated Tube Transportation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. P.; Li, S. S.; Wang, M. X.

    In the future, Evacuated Tube Transportation (ETT) would be built and faster than jets. ETT tube with diameter 2∼4m and length over 1000 km will be the largest scale vacuum equipment on earth. This paper listed some main vacuum technical issues to be solved in ETT as follow. How to build ultra-large-scale vacuum chamber like ETT tube with low cost and high reliability? How to pump gas out off the ETT tube in short time? How to release heat or reduce temperature in the vacuum tube? Hot to avoid vacuum electricity discharge? How to manufacture vehicles with airproof shells and equip the life support system? How to detect leakage and find leakage position efficiently and fast as possible? Some relative solutions and suggestions are put up.

  9. Evaporation control research, 1959-60

    USGS Publications Warehouse

    ,

    1963-01-01

    Two hundred and forty-five dispersions of long-chain alkanols were formulated by using various emulsifiers and alkanols. The dispensing and spreading ability of each of these formulations was tested. The most promising emulsifier that could be used with any of the alkanols was glyceryl monostearate (self-emulsifying). However, the concentration of the alkanol in the dispersion form varied somewhat: with the length of the carbon chain. A maximum concentration of 16 percent was obtained using the longer chain alkanols in the dispersion form without losing any of the properties of a fluid. Nine field tests were undertaken on small stock tanks. The retardant materials used in these tests were dodecanol, hexadecanol, and octadecanol. These materials were applied in either liquid or dispersion form. Four types of dispensing equipment were tested. The first type used a pressure system which sprayed a liquid onto the surface of the water. An anemometer and wind-controlled vane, operated by an electrical system, determined the length End frequency of application. The second type was similar to the first except that gravity was utilized to force the liquid onto the surface. The third type. used a drip system with rates of about 10 drops per minute. The fourth type used a gravity feed and a wind-controlled valve which allowed the dispersion material to flow onto the surface of the water when the wind was in the proper direction. In the field tests, the best reduction in evaporation was obtained using octadecanol in dispersion form and dispensed with the wind-controlled valve and gravity feed system. The maximum reduction in evaporation for a 2-week period was 27 percent. However, the economics of suppressing evaporation from stock tanks is questionable because of the short travel time across the tank by the film. There are still many problems unsolved. Some of these can be resolved in the laboratory whereas others can be resolved only in the field. Some of the more serious

  10. Improved Vacuum Bazooka

    NASA Astrophysics Data System (ADS)

    Cockman, John

    2003-04-01

    This apparatus is a modification to the well-known "vacuum bazooka" (PIRA 2B30.70). My vacuum bazooka is easy to construct and demonstrate, requires no precise fittings, foil, or vacuum grease, and propels ping-pong balls at a tremendous velocity!

  11. Study of Vacuum Energy Physics for Breakthrough Propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G. (Technical Monitor); Maclay, G. Jordan; Hammer, Jay; Clark, Rod; George, Michael; Kim, Yeong; Kir, Asit

    2004-01-01

    This report summarizes the accomplishments during a three year research project to investigate the use of surfaces, particularly in microelectromechanical systems (MEMS), to exploit quantum vacuum forces. During this project, we developed AFM instrumentation to repeatably measure Casimir forces in the nanoNewton range at 10 6 torr, designed an experiment to measure attractive and repulsive quantum vacuum forces, developed a QED based theory of Casimir forces that includes non-ideal material properties for rectangular cavities and for multilayer slabs, developed theoretical models for a variety of microdevices utilizing vacuum forces, applied vacuum physics to a gedanken spacecraft, and investigated a new material with a negative index of refraction.

  12. Ejector/liquid ring pump provides <0. 30 mm Hg vacuum for polymerization vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockwood, A.; Gaines, A.

    1982-03-01

    Firestone Fibers and Textiles Company, a division of Firestone Tire and Rubber Company, manufactures tire and industrial yarns of polyester and nylon-6. Nylon-6 molding and extrusion resins are also produced at the plant in Hopewell, Virginia. The process for making polyester requires an extremely low vacuum on the polymerization reactor. A consistent polymerization vessel vacuum of 0.3 mm Hg is needed, but the existing vacuum source, a five-stage steam jet ejector, could only provide a 0.5 mm Hg level. Two options were considered when the company decided to replace the original system with a system designed for 0.15 mm Hgmore » with a non-condensible gas load of 10.8 lb/hr. A new five-stage jet ejector system to meet these requirements would use 1395 lb/hr of 100 psig steam. The other option was a hybrid vacuum source composed of a three-stage steam ejector system and a liquid ring vacuum pump that is more energy efficient than ejectors for low vacuum applications. The hybrid system was selected because the three-stage jet ejector would use only 1240 lb/hr of 100 psig steam. The liquid ring vacuum pump would increase the material and installation cost of the system by about $4000, but the savings in steam consumption would pay back the added cost in less than two years. The jet ejector/liquid ring vacuum pump system has provided both the capacity and the extremely low vacuum needed for the polyester polymerization vessel, after making a small modification. The hybrid vacuum source is reliable, requires only routine maintenance, and will contiue to save substantial amounts of steam each year compared to the five-stage steam jet ejector.« less

  13. Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation-Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles.

    PubMed

    Shou, Wan; Mahajan, Bikram K; Ludwig, Brandon; Yu, Xiaowei; Staggs, Joshua; Huang, Xian; Pan, Heng

    2017-07-01

    Currently, bioresorbable electronic devices are predominantly fabricated by complex and expensive vacuum-based integrated circuit (IC) processes. Here, a low-cost manufacturing approach for bioresorbable conductors on bioresorbable polymer substrates by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticle is reported. Laser sintering of Zn nanoparticles has been technically difficult due to the surface oxide on nanoparticles. To circumvent the surface oxide, a novel approach is discovered to print and sinter Zn nanoparticle facilitated by evaporation-condensation in confined domains. The printing process can be performed on low-temperature substrates in ambient environment allowing easy integration on a roll-to-roll platform for economical manufacturing of bioresorbable electronics. The fabricated Zn conductors show excellent electrical conductivity (≈1.124 × 10 6 S m -1 ), mechanical durability, and water dissolvability. Successful demonstration of strain gauges confirms the potential application in various environmentally friendly sensors and circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  15. Evaporation from Lake Mead, Arizona and Nevada, 1997-99

    USGS Publications Warehouse

    Westenburg, Craig L.; DeMeo, Guy A.; Tanko, Daron J.

    2006-01-01

    Lake Mead is one of a series of large Colorado River reservoirs operated and maintained by the Bureau of Reclamation. The Colorado River system of reservoirs and diversions is an important source of water for millions of people in seven Western States and Mexico. The U.S. Geological Survey, in cooperation with the Bureau of Reclamation, conducted a study from 1997 to 1999 to estimate evaporation from Lake Mead. For this study, micrometeorological and hydrologic data were collected continually from instrumented platforms deployed at four locations on the lake, open-water areas of Boulder Basin, Virgin Basin, and Overton Arm and a protected cove in Boulder Basin. Data collected at the platforms were used to estimate Lake Mead evaporation by solving an energy-budget equation. The average annual evaporation rate at open-water stations from January 1998 to December 1999 was 7.5 feet. Because the spatial variation of monthly and annual evaporation rates was minimal for the open-water stations, a single open-water station in Boulder Basin would provide data that are adequate to estimate evaporation from Lake Mead.

  16. Control of stain geometry by drop evaporation of surfactant containing dispersions.

    PubMed

    Erbil, H Yildirim

    2015-08-01

    Control of stain geometry by drop evaporation of surfactant containing dispersions is an important topic of interest because it plays a crucial role in many applications such as forming templates on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials. This paper presents a review of the published articles on the diffusive drop evaporation of pure liquids (water), the surfactant stains obtained from evaporating drops that do not contain dispersed particles and deposits obtained from drops containing polymer colloids and carbon based particles such as carbon nanotubes, graphite and fullerenes. Experimental results of specific systems and modeling attempts are discussed. This review also has some special subtopics such as suppression of coffee-rings by surfactant addition and "stick-slip" behavior of evaporating nanosuspension drops. In general, the drop evaporation process of a surfactant/particle/substrate system is very complex since dissolved surfactants adsorb on both the insoluble organic/inorganic micro/nanoparticles in the drop, on the air/solution interface and on the substrate surface in different extends. Meanwhile, surfactant adsorbed particles interact with the substrate giving a specific contact angle, and free surfactants create a solutal Marangoni flow in the drop which controls the location of the particle deposition together with the rate of evaporation. In some cases, the presence of a surfactant monolayer at the air/solution interface alters the rate of evaporation. At present, the magnitude of each effect cannot be predicted adequately in advance and consequently they should be carefully studied for any system in order to control the shape and size of the final deposit. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Microbubble-Triggered Spontaneous Separation of Transparent Thin Films from Substrates Using Evaporable Core-Shell Nanocapsules.

    PubMed

    Son, Intae; Lee, Byungsun; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Ahn, Byung Wook; Hwang, Jeongho; Lee, Jonghyuk; Lee, Jun Hyup

    2018-05-23

    The spontaneous separation of a polymer thin film from a substrate is an innovative technology that will enable material recycling and reduce manufacturing cost in the film industry, and this can be applied in a wide range of applications, from optical films to wearable devices. Here, we present an unprecedented spontaneous strategy for separating transparent polymer films from substrates on the basis of microbubble generation using nanocapsules containing an evaporable material. The core-shell nanocapsules are prepared from poly(methyl methacrylate)-polyethyleneimine nanoparticles via the encapsulation of methylcyclohexane (MCH). A spherical nanostructure with a vaporizable core is obtained, with the heat-triggered gas release ability leading to the formation of microbubbles. Our separation method applied to transparent polymer films doped with a small amount of the nanocapsules encapsulating evaporable MCH enables spontaneous detachment of thin films from substrates via vacuum-assisted rapid vaporization of MCH over a short separation time, and clear detachment of the film is achieved with no deterioration of the inherent optical transparency and adhesive property compared to a pristine film.

  18. Reduction, partial evaporation, and spattering - Possible chemical and physical processes in fluid drop chondrule formation

    NASA Technical Reports Server (NTRS)

    King, E. A.

    1983-01-01

    The major chemical differences between fluid drop chondrules and their probable parent materials may have resulted from the loss of volatiles such as S, H2O, Fe, and volatile siderophile elements by partial evaporation during the chondrule-forming process. Vertical access solar furnace experiments in vacuum and hydrogen have demonstrated such chemical fractionation trends using standard rock samples. The formation of immiscible iron droplets and spherules by in situ reduction of iron from silicate melt and the subsequent evaporation of the iron have been observed directly. During the time that the main sample bead is molten, many small spatter spherules are thrown off the main bead, thereby producing many additional chondrule-like melt spherules that cool rapidly and generate a population of spherules with size frequency distribution characteristics that closely approximate some populations of fluid drop chondrules in chondrites. It is possible that spatter-produced fluid drop chondrules dominate the meteoritic fluid drop chondrule populations. Such meteoritic chondrule populations should be chemically related by various relative amounts of iron and other volatile loss by vapor fractionation.

  19. GLEAM v3: updated land evaporation and root-zone soil moisture datasets

    NASA Astrophysics Data System (ADS)

    Martens, Brecht; Miralles, Diego; Lievens, Hans; van der Schalie, Robin; de Jeu, Richard; Fernández-Prieto, Diego; Verhoest, Niko

    2016-04-01

    Evaporation determines the availability of surface water resources and the requirements for irrigation. In addition, through its impacts on the water, carbon and energy budgets, evaporation influences the occurrence of rainfall and the dynamics of air temperature. Therefore, reliable estimates of this flux at regional to global scales are of major importance for water management and meteorological forecasting of extreme events. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to the limited global coverage of in situ measurements. Remote sensing techniques can help to overcome the lack of ground data. However, evaporation is not directly observable from satellite systems. As a result, recent efforts have focussed on combining the observable drivers of evaporation within process-based models. The Global Land Evaporation Amsterdam Model (GLEAM, www.gleam.eu) estimates terrestrial evaporation based on daily satellite observations of meteorological drivers of terrestrial evaporation, vegetation characteristics and soil moisture. Since the publication of the first version of the model in 2011, GLEAM has been widely applied for the study of trends in the water cycle, interactions between land and atmosphere and hydrometeorological extreme events. A third version of the GLEAM global datasets will be available from the beginning of 2016 and will be distributed using www.gleam.eu as gateway. The updated datasets include separate estimates for the different components of the evaporative flux (i.e. transpiration, bare-soil evaporation, interception loss, open-water evaporation and snow sublimation), as well as variables like the evaporative stress, potential evaporation, root-zone soil moisture and surface soil moisture. A new dataset using SMOS-based input data of surface soil moisture and vegetation optical depth will also be

  20. Droplet bubbling evaporatively cools a blowfly.

    PubMed

    Gomes, Guilherme; Köberle, Roland; Von Zuben, Claudio J; Andrade, Denis V

    2018-04-19

    Terrestrial animals often use evaporative cooling to lower body temperature. Evaporation can occur from humid body surfaces or from fluids interfaced to the environment through a number of different mechanisms, such as sweating or panting. In Diptera, some flies move tidally a droplet of fluid out and then back in the buccopharyngeal cavity for a repeated number of cycles before eventually ingesting it. This is referred to as the bubbling behaviour. The droplet fluid consists of a mix of liquids from the ingested food, enzymes from the salivary glands, and antimicrobials, associated to the crop organ system, with evidence pointing to a role in liquid meal dehydration. Herein, we demonstrate that the bubbling behaviour also serves as an effective thermoregulatory mechanism to lower body temperature by means of evaporative cooling. In the blowfly, Chrysomya megacephala, infrared imaging revealed that as the droplet is extruded, evaporation lowers the fluid´s temperature, which, upon its re-ingestion, lowers the blowfly's body temperature. This effect is most prominent at the cephalic region, less in the thorax, and then in the abdomen. Bubbling frequency increases with ambient temperature, while its cooling efficiency decreases at high air humidities. Heat transfer calculations show that droplet cooling depends on a special heat-exchange dynamic, which result in the exponential activation of the cooling effect.