Sample records for vacuum extraction technology

  1. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  2. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  3. Preliminary results of sugar maple carbohydrate and growth response under vacuum and gravity sap extraction

    Treesearch

    Mark L. Isselhardt; Timothy D. Perkins; Abby K. van den Berg; Paul G. Schaberg

    2016-01-01

    Recent technological advancements have increased the amount of sugar-enriched sap that can be extracted from sugar maple (Acer saccharum). This pilot study quantified overall sugar removal and the impacts of vacuum (60 cm Hg) and gravity sap extraction on residual nonstructural carbohydrate (NSC) concentrations and on stem and twig growth. Vacuum...

  4. Terra Vac In Situ Vacuum Extraction System: Applications Analysis Report

    EPA Science Inventory

    This document is an evaluation of the Terra Vac in situ vacuum extraction system and its applicability as a treatment method for waste site cleanup. This report analyzes the results from the Superfund Innovative Technology Evaluation (SITE) Program’s 56-day demonstration at t...

  5. EPA SITE DEMONSTRATION OF THE TERRA VAC IN SITU VACUUM EXTRACTION PROCESS IN GROVELAND, MASSACHUSETTS

    EPA Science Inventory

    This paper presents an EPA evaluation of the patented Terra Vac, Inc.'s in situ vacuum extraction process that was field-demonstrated on a trichloroethylene (TCE) contaminated soil in Groveland, MA, under the EPA Superfund Innovative Technology Evaluation (SITE) program. he Terra...

  6. SEMINAR PROCEEDINGS: RCRA CORRECTIVE ACTION STABILIZATION TECHNOLOGIES

    EPA Science Inventory

    The seminar publication provides an overview of many technologies that can be used in applying the stabilization concept to RCRA cleanup activities. Technologies discussed include covers, grouting, slurry walls, hydrofracture, horizontal well drilling, a vacuum extraction, and b...

  7. DEMONSTRATION BULLETIN: IN-SITU VACUUM EXRACTION: TERRA VAC, INC.

    EPA Science Inventory

    This in-situ vacuum extraction technology is a process for the removal and venting of volatile organic compounds (VOCs) from the vadose or unsaturated zone of soils. Often, these compounds can be removed from the vadose zone before they have a chance to contaminate groundwater. ...

  8. In Situ Biodegradation of MTBE and TBA

    EPA Science Inventory

    Ground water at most UST spills sites in Kansas contains both MTBE and benzene, and both contaminants must be effectively treated to close the sites. Soil vacuum extraction, and air sparging are common treatment technologies in Kansas. The technologies supply oxygen to support ...

  9. Power and Thermal Technologies for Air and Space -- Scientific Research Program. Delivery Order 0016: Developing and Processing High Energy Density Polymer Film Dielectrics for High Temperature Air Force Power Electronic Applications

    DTIC Science & Technology

    2010-01-01

    a vacuum controller. A vacuum of < 1 µ torr was achieved with a combination of a turbo pump and a scroll pump system. The sample probing is...the polymer was reprecipitated in heptane non-solvent. The filtered polymer was washed with heptane and was finally dried in vacuum at 100ºC for three...solution was added to a large excess of methanol to precipitate the polymer. After soxhlet extraction with methanol and vacuum drying, the polymer was

  10. Quantum Field Energy Sensor based on the Casimir Effect

    NASA Astrophysics Data System (ADS)

    Ludwig, Thorsten

    The Casimir effect converts vacuum fluctuations into a measurable force. Some new energy technologies aim to utilize these vacuum fluctuations in commonly used forms of energy like electricity or mechanical motion. In order to study these energy technologies it is helpful to have sensors for the energy density of vacuum fluctuations. In today's scientific instrumentation and scanning microscope technologies there are several common methods to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with silicon cantilevers, there are a large number of reports on the use of quartz tuning forks to get high-resolution force measurements or to create new force sensors. Both methods have certain advantages and disadvantages over the other. In this report the two methods are described and compared towards their usability for Casimir force measurements. Furthermore a design for a quantum field energy sensor based on the Casimir force measurement will be described. In addition some general considerations on extracting energy from vacuum fluctuations will be given.

  11. SITE TECHNOLOGY CAPSULE: IN SITU STEAM ENHANCED RECOVERY PROCESS

    EPA Science Inventory

    The SERP technology is designed to treat soils contaminated with VOCs and SVOCs in situ. Steam injection and vacuum extraction are used to remove the organic compounds from the soil and concentrate them for disposal or recycling. A full-scale demonstration of SERP was conducted a...

  12. JPRS Report, Science and Technology, Europe.

    DTIC Science & Technology

    1991-02-15

    VIDP furnace is a further development of the conventional vacuum induction melter (VIM). It has an independent smelting and processing unit, to...which various casting systems can be linked according to the modular principle. Unlike the conventional vacuum induction melter, the VIDP furnace does... induction coil and the crucible. The furnace body can be extracted for relining or replacement with another, ready-lined, fur- nace body. This

  13. PERFORMANCE OF CONVENTIONAL REMEDIAL TECHNOLOGY FOR TREATMENT OF MTBE AND BENZENE AT UST SITES IN KANSAS

    EPA Science Inventory

    Ground water at most UST spills sites in Kansas contains both MTBE and benzene, and both contaminants must be effectively treated to close the sites. Soil vacuum extraction, air sparging, and excavation are the most common treatment technologies in Kansas. To compare the relati...

  14. Vacuum extraction failure is associated with a large head circumference.

    PubMed

    Kabiri, Doron; Lipschuetz, Michal; Cohen, Sarah M; Yagel, Oren; Levitt, Lorinne; Herzberg, Shmuel; Ezra, Yossef; Yagel, Simcha; Amsalem, Hagai

    2018-04-24

    To determine whether large head circumference increases the risk of vacuum extraction failure. This EMR-based study included all attempted vacuum extractions performed in a tertiary center between January 2010 and June 2015. All term singleton live births were eligible. Cases were divided into four groups: head circumference ≥90th percentile both with birth weight ≥90th percentile and <90th percentile and fetal head circumference <90th percentile with birth weight ≥90th and <90th percentile. Risk of failed vacuum extraction was compared among these groups. Other neonatal and maternal parameters were also evaluated as potential risk factors. Multinomial multivariable regression provided adjusted odds ratio for vacuum extraction failure while controlling for potential confounders. During the study period, 48,007 deliveries met inclusion criteria, of which 3835 had an attempt at vacuum extraction. We identified 215 (5.6%) cases of vacuum extraction failure. The adjusted odds ratios (aOR) for vacuum extraction failure in cases of large fetal head circumference was 2.31 (95%CI, 1.7-3.15, p < .001). Primiparity, prolonged second stage and occipito-posterior presentation were also found to be significant risk factors for failed vacuum extraction. In this study, we found that large head circumference was associated with vacuum extraction failure rather than high birth weight.

  15. Self-powered switch-controlled nucleic acid extraction system.

    PubMed

    Han, Kyungsup; Yoon, Yong-Jin; Shin, Yong; Park, Mi Kyoung

    2016-01-07

    Over the past few decades, lab-on-a-chip (LOC) technologies have played a great role in revolutionizing the way in vitro medical diagnostics are conducted and transforming bulky and expensive laboratory instruments and labour-intensive tests into easy to use, cost-effective miniaturized systems with faster analysis time, which can be used for near-patient or point-of-care (POC) tests. Fluidic pumps and valves are among the key components for LOC systems; however, they often require on-line electrical power or batteries and make the whole system bulky and complex, therefore limiting its application to POC testing especially in low-resource setting. This is particularly problematic for molecular diagnostics where multi-step sample processing (e.g. lysing, washing, elution) is necessary. In this work, we have developed a self-powered switch-controlled nucleic acid extraction system (SSNES). The main components of SSNES are a powerless vacuum actuator using two disposable syringes and a switchgear made of PMMA blocks and an O-ring. In the vacuum actuator, an opened syringe and a blocked syringe are bound together and act as a working syringe and an actuating syringe, respectively. The negative pressure in the opened syringe is generated by a restoring force of the compressed air inside the blocked syringe and utilized as the vacuum source. The Venus symbol shape of the switchgear provides multiple functions including being a reagent reservoir, a push-button for the vacuum actuator, and an on-off valve. The SSNES consists of three sets of vacuum actuators, switchgears and microfluidic components. The entire system can be easily fabricated and is fully disposable. We have successfully demonstrated DNA extraction from a urine sample using a dimethyl adipimidate (DMA)-based extraction method and the performance of the DNA extraction has been confirmed by genetic (HRAS) analysis of DNA biomarkers from the extracted DNAs using the SSNES. Therefore, the SSNES can be widely used as a powerless and disposable system for DNA extraction and the syringe-based vacuum actuator would be easily utilized for diverse applications with various microchannels as a powerless fluidic pump.

  16. [The evolution of vacuum extraction in obstetrics].

    PubMed

    Nikolov, A

    2010-01-01

    Vacuum extraction is one of the methods for assisted vaginal delivery. In this article the evolution of vacuum extraction in obstetrics is been discussed. Historical facts and data from the invention up to state-of-the-art vacuum systems in modern obstetrics are presented.

  17. Traction force during vacuum extraction: a prospective observational study.

    PubMed

    Pettersson, K; Ajne, J; Yousaf, K; Sturm, D; Westgren, M; Ajne, G

    2015-12-01

    To investigate the traction force employed during vacuum extractions. Observational cross-sectional study. Obstetric Department, Karolinska University Hospital, Sweden, and the Swedish National Congress of Obstetrics and Gynaecology, 2013. Two hundred women with vacuum extraction at term and 130 obstetricians participating in a simulated setting. In a normal clinical setting, we used a specially adapted device to measure and record the force used to undertake vacuum extraction. In a subsequent part of the study, the force employed for vacuum extraction by a group of obstetricians in a fictive setting was estimated and objectively measured. Applied force during vacuum extraction in relation to the estimated level of difficulty in the delivery; perinatal diagnoses of asphyxia or head trauma; estimated force compared with objectively measured force employed in the fictive setting. The median (minimum-maximum) peak forces for minimum, average and excessive vacuum extraction in the clinical setting were 176 N (5-360 N), 225 N (115-436 N), and 241 N (164-452 N), respectively. In 34% of cases a force in excess of 216 N was employed. There was no correlation between the umbilical arterial pH at delivery and the traction force employed during extraction. Four cases of mild hypoxic ischaemic encephalopathy were observed, three of which were associated with a delivery whereby excessive traction force was employed during the vacuum extraction. In the fictive setting, the actual exerted force was twice the quantitative estimation. The measured forces in the clinical setting were four times higher than that estimated in the fictive setting. Higher than expected levels of traction force were used for vacuum extraction delivery. As obstetricians tend to underestimate the force applied during vacuum extraction, objective measurement with instantaneous feedback may be valuable in raising awareness. © 2015 Royal College of Obstetricians and Gynaecologists.

  18. Fast filtration sampling protocol for mammalian suspension cells tailored for phosphometabolome profiling by capillary ion chromatography - tandem mass spectrometry.

    PubMed

    Kvitvang, Hans F N; Bruheim, Per

    2015-08-15

    Capillary ion chromatography (capIC) is the premium separation technology for low molecular phosphometabolites and nucleotides in biological extracts. Removal of excessive amounts of salt during sample preparation stages is a prerequisite to enable high quality capIC separation in combination with reproducible and sensitive MS detection. Existing sampling protocols for mammalian cells used for GC-MS and LC-MS metabolic profiling can therefore not be directly applied to capIC separations. Here, the development of a fast filtration sampling protocol for mammalian suspension cells tailored for quantitative profiling of the phosphometabolome on capIC-MS/MS is presented. The whole procedure from sampling the culture to transfer of filter to quenching and extraction solution takes less than 10s. To prevent leakage it is critical that a low vacuum pressure is applied, and satisfactorily reproducibility was only obtained by usage of a vacuum pressure controlling device. A vacuum of 60mbar was optimal for filtration of multiple myeloma Jjn-3 cell cultures through 5μm polyvinylidene (PVDF) filters. A quick deionized water (DI-water) rinse step prior to extraction was tested, and significantly higher metabolite yields were obtained during capIC-MS/MS analyses in this extract compared to extracts prepared by saline and reduced saline (25%) washing steps only. In addition, chromatographic performance was dramatically improved. Thus, it was verified that a quick DI-water rinse is tolerated by the cells and can be included as the final stage during filtration. Over 30 metabolites were quantitated in JJN-3 cell extracts by using the optimized sampling protocol with subsequent capIC-MS/MS analysis, and up to 2 million cells can be used in a single filtration step for the chosen filter and vacuum pressure. The technical set-up is also highly advantageous for microbial metabolome filtration protocols after optimization of vacuum pressure and washing solutions, and the reduced salt content of the extract will also improve the quality of LC-MS analysis due to lower salt adduct ion formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Solar cells for lunar applications by vacuum evaporation of lunar regolith materials

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex

    1991-01-01

    The National Space Exploration Initiative, specifically the Lunar component, has major requirements for technology development of critical systems, one of which is electrical power. The availability of significant electrical power on the surface of the Moon is a principal driver defining the complexity of the lunar base. Proposals to generate power on the Moon include both nuclear and solar (photovoltaic) systems. A more efficient approach is to attempt utilization of the existing lunar resources to generate the power systems. Synergism may occur from the fact that there have already been lunar materials processing techniques proposed for the extraction of oxygen that would have, as by-products, materials that could be specifically used to generate solar cells. The lunar environment is a vacuum with pressures generally in the 1 x 10(exp -10) torr range. Such conditions provide an ideal environment for direct vacuum deposition of thin film solar cells using the waste silicon, iron, and TiO2 available from the lunar regolith processing meant to extract oxygen. It is proposed, therefore, to grow by vacuum deposition, thin film silicon solar cells from the improved regolith processing by-products.

  20. PERFORMANCE OF AIR SPARGING AND SOIL VACUUM EXTRACTION FOR TREATMENT OF MTBE AND BENZENE AT UST SITES IN KANSAS

    EPA Science Inventory

    The efficacy of soil vacuum extraction or air sparging and soil vacuum extraction for remediation of ground water contamination with MTBE was compared to remediation of contamination with benzene. There was no practical difference.
    Sites were identified that met the followin...

  1. [Learning curve of vacuum extraction in residency: a preliminary study].

    PubMed

    Velemir, L; Vendittelli, F; Bonnefoy, C; Accoceberry, M; Savary, D; Gallot, D

    2009-09-01

    The aim of this study was to assess the lurning curve of young residents for vacuum extraction. All vacuum extractions performed in our department by five residents (< or =5th semester) during a study period of nine months were systematically supervised by a senior who fulfilled an assessment questionnaire from which was calculated a score reflecting the quality of the extraction. Fifty-four vacuum extractions were assessed with a mean of 10.8+/-2.9 (range, 10-13) procedures by resident. We compared the group including the six first procedures performed by each resident (group 1, n = 30) with the group including the following procedures (group 2, n = 24). We observed in the group 2 compared to the group 1, a significant improvement of the scores mean (12.3+/-5.4 vs 8.4+/-6.2, p = 0.016) and a significant reduction of the need for manual assistance by the senior (12.5% vs 40%, p = 0.034). We report a method for the learning and assessment of vacuum extraction feasible at "the bed" of the patient. This approach allows to observe a significant progression of the resident for the technique of vacuum extraction on a dozen of procedures.

  2. Fetal macrosomia as a risk factor for shoulder dystocia during vacuum extraction.

    PubMed

    Herzberg, Shmuel; Kabiri, Doron; Mordechai, Tzlil; Haj Yahya, Rani; Chill, Henry; Levitt, Lorinne; Amsalem, Hagai; Ezra, Yossef

    2017-08-01

    Vacuum extraction of a macrosomic fetus is considered a risk factor for shoulder dystocia (SD). We evaluated maternal and fetal outcomes following vacuum extraction of macrosomic infants. A retrospective cohort study conducted in two large teaching hospitals. All deliveries of macrosomic infants by vacuum extraction and vaginal delivery were compared. The primary outcome measure was SD. Secondary outcome measures were severe perineal lacerations and postpartum hemorrhage. For statistical analysis, we used McNemar's test and χ 2 or Fisher's exact tests. Odds ratios were analyzed via a logistic regression model. From 2003 to 2013, there were 6019 (5.45%) deliveries of macrosomic fetuses, and 230 (0.21%) were delivered by vacuum extraction. There were 23 (10%) and seven (3.04%) cases of SD in the study and control groups, respectively. The risk of SD was significantly higher in the study group (p > 0.05). We found a significant association between SD and vacuum delivery [p = 0.003; OR = 3.54 (95% CI: 1.49-8.42)]. The composite adverse neonatal outcome rate was 6.5% (15/230) and 1.7% (4/230) in the study and control groups, respectively (p = 0.009). Vacuum extraction of a macrosomic infant is a risk factor for shoulder dystocia but not for postpartum hemorrhage or severe vaginal tears.

  3. [Assessment of vacuum-assisted vaginal delivery in a frank breech presentation].

    PubMed

    Bleu, G; Deruelle, P; Demetz, J; Michel, S; Dufour, P; Depret, S; Subtil, D

    2015-02-01

    After verification of the eligibility criteria and with an obstetrician familiar with the specific maneuvers likely to be needed, vaginal delivery of breech presentations is possible. If problems arise during the active pushing phase of labor, vacuum extraction has been described in the literature for this uncommon condition with limited series. The aim of this study is to assess retrospectively vacuum extraction in frank breech presentation in our center. This retrospective study of trials of vaginal delivery of fetuses in breech presentation at term compares cases according to whether they did or did not use a vacuum extraction. During a two-year period, 83 patients, whom had trials of vaginal delivery in breech presentations, reached the active pushing/bearing down stage after complete cervical dilatation. Vacuum assistance was applied in six of these (7.2 %). The failure rate for vaginal delivery was significantly higher in the group with compared to without vacuum extraction (33.3 % versus 6.5 %, P<0.05). Moreover, the mean pH at birth was significantly lower in the group with vacuum extraction (7.12±0.11 versus 7.20±0.08, P<0.05), and these infants more frequently had deep cutaneous injuries (66.7 % versus 26.0 %, P<0.05). In fetuses in breech presentation, when vaginal delivery failed, it seems to be safer for the fetuses to perform caesarean section rather than attempt vacuum extraction. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. PREFACE: International Symposium on `Vacuum Science and Technology' (IVS 2007)

    NASA Astrophysics Data System (ADS)

    Mittal, K. C.; Gupta, S. K.

    2008-03-01

    The Indian Vacuum Society (established in 1970) has organized a symposium every alternate year on various aspects of vacuum science and technology. There has been considerable participation from R & D establishments, universities and Indian industry in this event. In view of the current global scenario and emerging trends in vacuum technology, this year, the executive committee of IVS felt it appropriate to organize an international symposium at Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 from 29-30 November 2007. This symposium provided a forum for exchange of information among vacuum scientists, technologists and industrialists on recent advances made in the areas of large vacuum systems, vacuum production, its measurement and applications in industry, and material processing in vacuum. Vacuum science and technology has made vital contributions in high tech areas like space, high energy particle accelerators, large plasma systems, electronics, thin films, melting and refining of metals, extraction and processing of advanced materials etc. The main areas covered in the symposium were the production and measurement of vacuums, leak detection, large vacuum systems, vacuum metallurgy, vacuum materials and processing inclusive of applications of vacuum in industry. Large vacuum systems for high energy particle accelerators, plasma devices and light sources are of special significance for this symposium. Vacuum evaporation, hard coatings, thin films, joining techniques, sintering, melting and heat treatment, furnaces and thermo dynamics are also covered in this symposium. There were eighteen invited talks from the best experts in the respective fields and more than one hundred contributed papers. This fact itself indicates the interest that has been generated amongst the scientists, technologists and industrialists in this field. In view of the industrial significance of the vacuum technology, an exhibition of vacuum and vacuum processing related equipments, accessories, products etc by different manufacturers and suppliers has been organized at the venue of the symposium hall for the benefit of the participants. The interest shown by the exhibitors reveals that the industry has come of age and the advances that have taken place over the years is quite significant. During the symposium, the Indian Vacuum Society felicitated two distinguished personalities who have contributed significantly for the development of vacuum science and technology in the country. The C AMBASANKARAN memorial and Smt SHAKUNTALABAI VYAWAHARE memorial Awards were also conferred on the two best contributed papers. A committee constituted by the Symposium Organizing Committee evaluated the relevance, scientific content, and clarity of presentation to decide the award winning papers. It is hoped that the discussion generated by the delegates at the symposium will help in a better understanding vacuum science and technology. K C Mittal Convener S K Gupta Co Convener International Advisory Committee Kakodkar, Anil DAE/India, Chairman Badve, Cdr A.V.(IN Retd.) Pfeiffer Vac India Banerjee, S. BARC/India Bhandari, R.K. BRNS/India Chander, Shekhar CEERI/India Chopra, K.L. IIT Delhi/India Day, Chris ITER Grover, R.B DAE,BARC/India Jakub, Szajman VSA/ Australia Jayaraj, R.N. NFC/India Kamath, H.S. BARC/India Kaw, P.K. IPR/India Kobayashi, M. VSJ/Japan Kumar, Lalit MTRDC, India Kumar, Vikram NPL., India Langley, Robert AVS, USA Larour, Jean Ecole/France Mendonsa, R.H. Lawrence and Mayo Myneni, Ganapatirao Jlab/USA Narsaiah, S.V. HHV Padamsee, Hasan Cornell/USA Pillay, R.G. TIFR Raj, Baldev IGCAR/India Raju, P.T. IVS/India Ramasami, T. DST/India Ray, A.K. BARC/India Reid, RJ IUVSTA/UK Roy, Amit IUAC/india Sahni, V.C. RRCAT, BARC/India Schamiloglu, E. UNM/USA Shankara, K.N. VSSC,ISRO/India Sinha, Bikash VEC,SINP/India Strubin, P. CERN/Switzerland Local Organizing Committee Ray, A.K. BARC (Chairman) Kailas, S. BARC, (Co Chairman) Chakravarty, D.P. BARC Chandrachoodan, P.P. BRNS Desai, Tushar Mumbai Univ. Dhamija, Lokesh BOC Edwards Dixit, Anand New Poona Ind. Gadkari, S.C. BARC Gantayet, L.M BARC Gupta, A.C. NPL Gupta, S.K. BARC (Co Convener) Handu, V.K. BARC Jathar, Rajendra Varian Joshi, S.N. CEERI Korgaonkar, A.V. IVS Kotaiah, S. CAT Kumar, Vijay BARC Matkar, A.W. BARC Mittal, K.C. BARC (Convener) Nema, P.K. BRNS Pandit, V.S. VEC Puranik, S.G. Ashwani Enterprises Puri, R.R. BARC Ranga Rao, Y. Vac. Techniques Sabharwal, Rajat Alcatel Sakhamuri, Prashant HHV Bangalore Sanyal, T. NFC Sarkar, S.K. TIFR Sarma, K.R. Atomic Vacuum Saxena, Y.C. IPR Sharma, B.P. BARC Shukla, S.K. RRCAT Singh, R.P. BARC Suri, A.K. BARC Suthar ,R.L. BARC Venugopa,l V. BARC Vyavahare, Mohan Ultimate Technologies Yakhmi, J.V. BARC

  5. Final Report - Energy Reduction and Advanced Water Removal via Membrane Solvent Extraction Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, John; Fanselow, Dan; Abbas, Charles

    2014-08-06

    3M and Archer Daniels Midland (ADM) collaborated with the U.S. Department of Energy (DOE) to develop and demonstrate a novel membrane solvent extraction (MSE) process that can substantially reduce energy and water consumption in ethanol production, and accelerate the fermentation process. A cross-flow membrane module was developed, using porous membrane manufactured by 3M. A pilot process was developed that integrates fermentation, MSE and vacuum distillation. Extended experiments of 48-72 hours each were conducted to develop the process, verify its performance and begin establishing commercial viability.

  6. 1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Strathdee, A.

    1985-10-01

    The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.

  7. Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters

    PubMed Central

    Calfee, M. Worth; Rose, Laura J.; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal

    2016-01-01

    The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37 mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p ≤ 0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p > 0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident. PMID:24184312

  8. Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters.

    PubMed

    Calfee, M Worth; Rose, Laura J; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal

    2014-01-01

    The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p≤0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p>0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident. Published by Elsevier B.V.

  9. Clinical impact of the disposable ventouse iCup® versus a metallic vacuum cup: a multicenter randomized controlled trial.

    PubMed

    Equy, Véronique; David-Tchouda, Sandra; Dreyfus, Michel; Riethmuller, Didier; Vendittelli, Françoise; Cabaud, Victoire; Langer, Bruno; Margier, Jennifer; Bosson, Jean-Luc; Schaal, Jean-Patrick

    2015-12-15

    Assisted vaginal delivery by vacuum extraction is frequent. Metallic resterilizible metallic vacuum cups have been routinely used in France. In the last few years a new disposable semi-soft vacuum extraction cup, the iCup, has been introduced. Our objective was to compare maternal and new-born outcomes between this disposable cup and the commonly used Drapier-Faure metallic cup. This was a multicenter prospective randomized controlled open clinical trial performed in the maternity units of five university hospitals and one community hospital in France from October 2009 to February 2013. We included consecutive eligible women with a singleton gestation of at least 37 weeks who required vacuum assisted delivery. Women were randomized to vacuum extraction using the iCup or usual Drapier-Faure metallic cup. The primary outcome was a composite criterion including both the risk of cup dysfunction and the most frequent maternal and neonatal harms: the use of other instruments after attempted vacuum extraction, caesarean section after attempted vacuum extraction, three detachments of the cup, caput succedaneum, cephalohaematoma, episiotomy and perineal tears. 335 women were randomized to the disposable cup and 333 to extraction using the metallic cup. There was no significant difference between the two groups for the primary outcome. However, failed instrumental delivery was more frequent in the disposable cup group, mainly due to detachment: 35.6 % vs 7.1 %, p < 0.0001. Conversely, perineal tears were more frequent in the metallic cup group, especially third or fourth grade perineal tears: 1.7 % versus 5.0 %, p = 0.003. There were no significant differences between the two groups concerning post-partum haemorrhage, transfer to a neonatal intensive care unit (NICU) or serious adverse events. While the disposable cup had more detachments and extraction failures than the standard metallic cup, this innovative disposable device had the advantage of fewer perineal injuries. www.clinicaltrials.gov : NCT01058200 on Jan. 27 2010.

  10. Processing of extraterrestrial materials by high temperature vacuum vaporization

    NASA Technical Reports Server (NTRS)

    Grimley, R. T.; Lipschutz, M. E.

    1983-01-01

    It is noted that problems associated with the extraction and concentration of elements and commpounds important for the construction and operation of space habitats have received little attention. High temperature vacuum vaporization is considered a promising approach; this is a technique for which the space environment offers advantages in the form of low ambient pressures and temperatures and the possibility of sustained high temperatures via solar thermal energy. To establish and refine this new technology, experimental determinations must be made of the material release profiles as a function of temperature, of the release kinetics and chemical forms of material being transported, and of the various means of altering release kinetics. Trace element data determined by neutron activation analysis of meteorites heated to 1400 C in vacuum is summarized. The principal tool, high temperature spectrometry, is used to examine the vaporization thermodynamics and kinetics of major and minor elements from complex multicomponent extraterrestrial materials.

  11. Risk factors for anal sphincter tears in vacuum-assisted delivery.

    PubMed

    Ryman, P; Ahlberg, M; Ekéus, C

    2015-10-01

    The aim of the present study was to describe the prevalence of anal sphincter tears (AST) in relation to obstetric management and technique during vacuum extraction deliveries (VE) (re: indications, the station of the fetal head at application of the cup, number of tractions, the length for the extraction, cup detachments, pain relief, episiotomy, fetal presentation, and experience of the operator) as well as maternal and infant anthropometrics. Descriptive study. Data on six hundred vacuum extraction deliveries were consecutively collected from six different delivery units in Sweden. Each unit contributed with data on 100 deliveries. The final study population included 596 women who delivered by vacuum extraction. There was no correlation between the management of the vacuum extraction and risk for anal sphincter tear. Women from Africa had nearly a fourfold risk for anal sphincter tear during vacuum-assisted delivery compared with Swedish-born women (OR 3.82 CI 1.47-9.89). Compared with infants with birth weight less than 4000 g, birth weight above 4000 g was associated with increased risk of AST (OR 1.87 CI 1.06-3.28). In this study, the obstetric management in VE-assisted deliveries did not impact the risk of AST. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Ultrasound-assisted extraction coupled with under vacuum distillation of flavour compounds from spearmint (carvone-rich) plants: Comparison with conventional hydrodistillation.

    PubMed

    Da Porto, Carla; Decorti, Deborha

    2009-08-01

    Ultrasonically assisted extraction of flavour compounds from different varieties of Mentha spicata, using 70% ethanol, have been carried out for 5, 10 and 15min and coupled with under vacuum distillation. The ultrasound distilled extracts have been analysed by GC-MS and compared with essential oils obtained by hydrodistillation. The results have showed that ultrasonically assisted extraction in combination with under vacuum distillation have provided extracts with higher flavouring strength due to the increased concentration of desirable oxygenated compounds (from 5 to 8 times) compared with hydrodistillation. Extraction yields of flavour volatiles have been calculated giving a range 0.04-0.13% by ultrasound and 0.01-0.02% by hydrodistillation.

  13. A vacuum-operated pore-water extractor for estuarine and freshwater sediments

    USGS Publications Warehouse

    Winger, Parley V.; Lasier, Peter J.

    1991-01-01

    A vacuum-operated pore-water extractor for estuarine and freshwater sediments was developed and constructed from a fused-glass air stone attached with aquarium airline tubing to a 30 or 60 cc polypropylene syringe. Pore water is extracted by inserting the air stone into the sediment and creating a vacuum by retracting and bracing the syringe plunger. A hand-operated vacuum pump attached to a filtration flask was also evaluated as an alternative vacuum source. The volume and time to extract pore water varies with the number of devices and the sediment particle size. Extraction time is longer for fine sediments than for sandy sediments. Four liters of sediment generally yield between 500 and 1,500 mL of pore water. The sediment that surrounds and accumulates on the air stone acts as a filter, and, except for the first few milliliters, the collected pore water is clear. Because there is no exposure to air or avenue for escape, volatile compounds andin situ characteristics are retained in the extracted pore water.

  14. [Caesarean section with vacuum extraction of the head].

    PubMed

    Dimitrov, A; Pavlova, E; Krŭsteva, K; Nikolov, A

    2008-01-01

    The aim of the study is to investigate the benefits and the limits in using the soft cup vacuum extractor on the fetal scalp during the caesarean section. The prospective study includes 19 cases of caesarean sections (group A), with vacuum assisted delivery using the soft cup vacuum extractor on the fetal scalp (diameter 6 cm) and 25 cases (group B) of caesarean sections with usual, manual extraction of the head assisted by fundal compression. All of the patients had undergone a planned caesarean section on term in absence of uterine activity and preserved amniotic membranes. Our results doesn't show differences in the Apgar score on the first and 5-th minute in the newborns of the two groups. The duration of the scalp traction was significantly shorter (30 +/- 4 sec) in comparison to the classical manual extraction (53 +/- 21 sec). The mean duration for applying the vacuum cup was 10 sec and 25 sec for tractions. The total blood loose and total duration of the caesarean sections were shorter than in the control group. The applied traction with the vacuum cup was sufficient for head extraction and there was no need for additional fundal compression. In conclusion we consider that the extraction of the fetal head in high position in caesarean section with vacuum extractor is an easy, non traumatic and rapid method which can put away the need of rough and prolonged fundal compression and its consequences.

  15. Faster extraction of heavy metals from soils using vacuum and ultrasonic energy.

    PubMed

    Pontes, Fernanda V M; Carneiro, Manuel C; de da Souza, Evelyn M F; da Silva, Lílian I D; Monteiro, Maria Inês C; Neto, Arnaldo A

    2013-01-01

    A fast vacuum- and ultrasound-assisted acid extraction of Co, Cu, Fe, Mn, Pb, and Zn from soils using a homemade system has been investigated. Preliminarily, a full factorial design with two levels and three variables (extracting agent, extraction temperature, and sonication time) was applied to optimize the extraction conditions (without vacuum) for some heavy metals (Cu, Mn, Pb, and Zn). The best results were obtained with a 3:1 HCI extraction solution, temperature of 80 degrees C, and time of 2 h. As this sonication time was too long, a vacuum pump was used to produce air bubbles in order to increase the contact between the sample and the extracting agent and to prevent the sample sedimentation. This improvement drastically reduced the sonication time to 2 min. Under these conditions, Co, Cu, Mn, and Zn were totally extracted (recoveries of 86-99%), while recoveries of 73-76 and 74% were obtained for Fe and Pb, respectively. The LOD values using flame atomic absorption spectrometry for determination of Co, Cu, Fe, Mn, Pb, and Zn were 3.2, 7.5, 37.5, 7.5, 22.5, and 3.8 micro glg, respectively. The RSDs were lower than 11% (n = 3).

  16. An effective vacuum assisted extraction method for the optimization of labdane diterpenoids from Andrographis paniculata by response surface methodology.

    PubMed

    Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming

    2014-12-31

    An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  17. Calculation of parameters of technological equipment for deep-sea mining

    NASA Astrophysics Data System (ADS)

    Yungmeister, D. A.; Ivanov, S. E.; Isaev, A. I.

    2018-03-01

    The actual problem of extracting minerals from the bottom of the world ocean is considered. On the ocean floor, three types of minerals are of interest: iron-manganese concretions (IMC), cobalt-manganese crusts (CMC) and sulphides. The analysis of known designs of machines and complexes for the extraction of IMC is performed. These machines are based on the principle of excavating the bottom surface; however such methods do not always correspond to “gentle” methods of mining. The ecological purity of such mining methods does not meet the necessary requirements. Such machines require the transmission of high electric power through the water column, which in some cases is a significant challenge. The authors analyzed the options of transportation of the extracted mineral from the bottom. The paper describes the design of machines that collect IMC by the method of vacuum suction. In this method, the gripping plates or drums are provided with cavities in which a vacuum is created and individual IMC are attracted to the devices by a pressure drop. The work of such machines can be called “gentle” processing technology of the bottom areas. Their environmental impact is significantly lower than mechanical devices that carry out the raking of IMC. The parameters of the device for lifting the IMC collected on the bottom are calculated. With the use of Kevlar ropes of serial production up to 0.06 meters in diameter, with a cycle time of up to 2 hours and a lifting speed of up to 3 meters per second, a productivity of about 400,000 tons per year can be realized for IMC. The development of machines based on the calculated parameters and approbation of their designs will create a unique complex for the extraction of minerals at oceanic deposits.

  18. Vacuum Technology Considerations For Mass Metrology

    PubMed Central

    Abbott, Patrick J.; Jabour, Zeina J.

    2011-01-01

    Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593

  19. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURKE CA; LANDON MR; HANSON CE

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are beinglhave been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.« less

  20. Development and Deployment of the Mobile Arm Retrieval System (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Christopher A.; Landon, Matthew R.; Hanson, Carl E.

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012. (authors)« less

  1. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURKE CA; LANDON MR; HANSON CE

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.« less

  2. Special Technology Area Review on Vacuum Electronics Technology for RF Applications

    DTIC Science & Technology

    2000-12-12

    systems. QUESTIONS TO BE ADDRESSED AT THE STAR: 1. What are the RF applications and systems that will benefit from advances in Vacuum Electronic...technologies? What are the status and prospects of early insertion efforts? What is the impact if technology efforts are successful? 2. What are the RF...technical barriers best addressed by Vacuum Electronic technologies? What are the technology advancement needs and opportunities? Can the barriers

  3. [Noncollagen bone proteins use in the composition of osteoplactic material Gapkol modified by vacuum].

    PubMed

    Volozhin, A I; Grigor'ian, A S; Desiatnichenko, K S; Ozhelevskaia, S A; Doktorov, A A; Kurdiumov, S G; Fionova, E V; Gurin, A N; Karakov, K G

    2008-01-01

    In rat experiments the ability of noncollagen bone proteins (NCBP) in the composition of osteoplactic modified material Gapkol (not tanned in formalin and subjected to vacuum extraction) to increase bone reparation in comparison with traditional Gapkol was studied. Quantitative evaluation was performed on rat parietal bone and qualitative evaluation was performed on rat mandible. It was shown that Gapkol with NCBP (not tanned in formalin and subjected to vacuum extraction) increased reparative osteogenesis.

  4. Development of High Interruption Capability Vacuum Circuit Breaker -Technology of Vacuum Arc Control-

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshimitsu; Kaneko, Eiji

    Vacuum circuit breakers (VCB) have been widely used for power distribution systems. Vacuum Interrupters, which are the current interruption unit, have been increased its interruption capability with the development of vacuum arc control technology by magnetic field. There are three major type electrodes: disk shaped electrodes, radial magnetic field electrodes, axial magnetic field (AMF) electrodes. In the disk shaped electrode, the vacuum arc between the electrodes is not controlled. In the AMF electrode, the vacuum arc is diffused and stabilized by an axial magnetic field, which is parallel to the arc current. In the last type of electrodes, the vacuum arc column is rotated by magnetic force generated by the current flowing in the electrodes. The interruption current and the voltage of one break VCB is increased to 100 kA, 144 kV respectively. This paper describes basic configurations and functions of VCB, vacuum arc control technology in vacuum interrupters, recent researches and applications of VCB.

  5. Evaluating operational vacuum for landfill biogas extraction.

    PubMed

    Fabbricino, Massimiliano

    2007-01-01

    This manuscript proposes a practical methodology for estimating the operational vacuum for landfill biogas extraction from municipal landfills. The procedure is based on two sub-models which simulate landfill gas production from organic waste decomposition and distribution of gas pressure and gas movement induced by suction at a blower station. The two models are coupled in a single mass balance equation, obtaining a relationship between the operational vacuum and the amount of landfill gas that can be extracted from an assigned system of vertical wells. To better illustrate the procedure, it is applied to a case study, where a good agreement between simulated and measured data, within +/- 30%, is obtained.

  6. Multi-mode ultra-strong coupling (I): spectroscopic experiments using a vacuum-gap transmon circuit architecture

    NASA Astrophysics Data System (ADS)

    Bosman, Sal J.; Gely, Mario F.; Singh, Vibhor; Bruno, Alessandro; Bothner, Daniel; Steele, Gary A.

    In circuit QED, multi-mode extensions of the quantum Rabi model suffer from divergence problems. Here, we spectroscopically study multi-mode ultra-strong coupling using a transmon circuit architecture, which provides no clear guidelines on how many modes play a role in the dynamics of the system. As our transmon qubit, we employ a suspended island above the voltage anti-node of a λ / 4 coplanar microwave resonator, thereby realising a circuit where 88% of the qubit capacitance is formed by a vacuum-gap capacitor with the center conductor of the resonator. We measure vacuum Rabi splitting over multiple modes up to 2 GHz, reaching coupling ratios of g / ω = 0 . 18 , well within the ultra-strong coupling regime. We observe a qubit-mediated mode coupling, measurable up to the fifth mode at 38 GHz. Using a novel analytical quantum circuit model of this architecture, which includes all modes without introducing divergencies, we are able to fit the full spectrum and extract a vacuum fluctuations induced Bloch-Siegert shift of up to 62 MHz. This circuit architecture expands the versatility of the transmon technology platform and opens many possibilities in multi-mode physics in the ultra-strong coupling regime.

  7. Latest Trends of Vacuum Circuit Breaker and Related Technologies

    NASA Astrophysics Data System (ADS)

    Kozono, Hideaki; Tanimizu, Toru

    Vacuum Circuit Breakers (VCBs) have been widely used for medium voltage level, because of their performance: compact size, light weight, maintenance free operations and environment-friendly characteristics. They become most comfortable breakers for our needs from other breakers: oil, air, magnetic blast and gas. In this paper the history of vacuum, and latest trends of circuit breakers and related technologies are described, as well as merits or demerits of using vacuum technologies.

  8. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereasmore » for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.« less

  9. Application of ionic liquids in vacuum microwave-assisted extraction followed by macroporous resin isolation of three flavonoids rutin, hyperoside and hesperidin from Sorbus tianschanica leaves.

    PubMed

    Gu, Huiyan; Chen, Fengli; Zhang, Qiang; Zang, Jing

    2016-03-01

    Rutin, hyperoside and hesperidin were effectively extracted from Sorbus tianschanica leaves by an ionic liquid vacuum microwave-assisted method. A series of ionic liquids with various anions and alkyl chain length of the cations were studied and the extraction was performed in [C6mim][BF4] aqueous solution. After optimization by a factorial design and response surface methodology, total extraction yield of 2.37mg/g with an error of 0.12mg/g (0.71±0.04mg/g, 1.18±0.06mg/g and 0.48±0.02 for rutin, hyperoside and hesperidin, respectively) was achieved under -0.08MPa for vacuum, 19min and 420W for microwave irradiation time and power, and 15mL/g for liquid-solid ratio. The proposed method here is more efficient and needs a shorter extraction time for rutin, hyperoside and hesperidin from S. tianschanica leaves than reference extraction techniques. In stability studies performed with standard rutin, hyperoside and hesperidin, the target analytes were stable under the optimum conditions. The proposed method had a high reproducibility and precision. In addition, separation of rutin, hyperoside and hesperidin from [C6mim][BF4] extraction solution was completed effectively by AB-8 macroporous resin adsorption and desorption process. Ionic liquid vacuum microwave-assisted extraction is a simple, rapid and efficient sample extraction technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development and testing of a double length pets for the CLIC experimental area

    NASA Astrophysics Data System (ADS)

    Sánchez, L.; Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J. L.; Calero, J.; Toral, F.; Samoshkin, A.; Gudkov, D.; Riddone, G.

    2014-05-01

    CLIC (compact linear collider) is a future e+e- collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.

  11. Homogenate-assisted Vacuum-powered Bubble Extraction of Moso Bamboo Flavonoids for On-line Scavenging Free Radical Capacity Analysis.

    PubMed

    Sun, Yinnan; Yang, Kui; Cao, Qin; Sun, Jinde; Xia, Yu; Wang, Yinhang; Li, Wei; Ma, Chunhui; Liu, Shouxin

    2017-07-11

    A homogenate-assisted vacuum-powered bubble extraction (HVBE) method using ethanol was applied for extraction of flavonoids from Phyllostachys pubescens (P. pubescens) leaves. The mechanisms of homogenate-assisted extraction and vacuum-powered bubble generation were discussed in detail. Furthermore, a method for the rapid determination of flavonoids by HPLC was established. HVBE followed by HPLC was successfully applied for the extraction and quantification of four flavonoids in P. pubescens , including orientin, isoorientin, vitexin, and isovitexin. This method provides a fast and effective means for the preparation and determination of plant active components. Moreover, the on-line antioxidant capacity, including scavenging positive ion and negative ion free radical capacity of different fractions from the bamboo flavonoid extract was evaluated. Results showed that the scavenging DPPH ˙ free radical capacity of vitexin and isovitexin was larger than that of isoorientin and orientin. On the contrary, the scavenging ABTS⁺ ˙ free radical capacity of isoorientin and orientin was larger than that of vitexin and isovitexin.

  12. Apparent Endless Extraction of Energy from the Vacuum by Cyclic Manipulation of Casimir Cavity Dimensions

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1999-01-01

    In 1983, Ambjorn and Wolfram produced plots of the energy density of the quantum mechanical electromagnetic fluctuations in a volume of vacuum bounded by perfectly conducting walls in the shape of a rectangular cavity of dimensions a(1), a(2), and a(3), as a function of the ratios a(2)/a(1) and a(3)/a(1). Portions of these plots are double-valued, in that they allow rectangular cavities with the same, value of a(2)/a(1), but different values of a(3)/a(1), to have the saint total energy. Using these double-valued regions of the plots, I show that it is possible to define a "Casimir Vacuum Energy Extraction Cycle" which apparently would allow for the endless extraction of energy from the vacuum in the Casimir cavity by cyclic manipulation of the Casimir cavity dimensions.

  13. Removal of caffeine from green tea by microwave-enhanced vacuum ice water extraction.

    PubMed

    Lou, Zaixiang; Er, Chaojuan; Li, Jing; Wang, Hongxin; Zhu, Song; Sun, Juntao

    2012-02-24

    In order to selectively remove caffeine from green tea, a microwave-enhanced vacuum ice water extraction (MVIE) method was proposed. The effects of MVIE variables including extraction time, microwave power, and solvent to solid radio on the removal yield of caffeine and the loss of total phenolics (TP) from green tea were investigated. The optimized conditions were as follows: solvent (mL) to solid (g) ratio was 10:1, microwave extraction time was 6 min, microwave power was 350 W and 2.5 h of vacuum ice water extraction. The removal yield of caffeine by MVIE was 87.6%, which was significantly higher than that by hot water extraction, indicating a significant improvement of removal efficiency. Moreover, the loss of TP of green tea in the proposed method was much lower than that in the hot water extraction. After decaffeination by MVIE, the removal yield of TP tea was 36.2%, and the content of TP in green tea was still higher than 170 mg g(-1). Therefore, the proposed microwave-enhanced vacuum ice water extraction was selective, more efficient for the removal of caffeine. The main phenolic compounds of green tea were also determined, and the results indicated that the contents of several catechins were almost not changed in MVIE. This study suggests that MVIE is a new and good alternative for the removal of caffeine from green tea, with a great potential for industrial application. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. EVALUATION OF MASS FLUX TO AND FROM GROUND WATER USING A VERTICAL FLUX MODEL (VFLUX): APPLICATION TO THE SOIL VACUUM EXTRACTION CLOSURE PROBLEM

    EPA Science Inventory

    Site closure for soil vacuum extraction (SVE) application typically requires attainment of specified soil concentration standards based on the premise that mass flux from the vadose zone to ground water not result in levels exceeding maximum contaminant levels (MCLSs). Unfortuna...

  15. FOREWORD: 7th Symposium on Vacuum-based Science and Technology (SVBST2013)

    NASA Astrophysics Data System (ADS)

    Gulbiński, W.

    2014-11-01

    These are the proceedings of the 7th Symposium on Vacuum based Science and Technology organized in Kołobrzeg (PL) on November 19-21, 2013 by the Institute of Technology and Education, Koszalin University of Technology and the Clausius Tower Society under auspices of the Polish Vacuum Society (PTP) and the German Vacuum Society (DVG) and in collaboration with the BalticNet PlasmaTec and the Society of Vacuum Coaters (SVC). It was accompanied by the 12-th Annual Meeting of the German Vacuum Society. The mission of the Symposium is to provide a forum for presentation and exchange of expertise and research results in the field of vacuum and plasma science. After already six successful meetings organized alternately in Poland and Germany our goal is to continue and foster cooperation within the vacuum and plasma science community. This year, the Rudolf-Jaeckel Prize, awarded by the DVG for outstanding achievements in the field of vacuum based sciences, was presented to Dr Ute Bergner, president of the VACOM Vakuum Komponenten & Messtechnik GmbH and a member of our community. The full-day course organized in the framework of the Educational Program by the Society of Vacuum Coaters (SVC) and entitled: An Introduction to Physical Vapor Deposition (PVD) Processes was held on November 18, 2013 as a satellite event of the Symposium. The instructor was Prof. Ismat Shah from Delaware University (US). The Clausius Session, already traditionally organized during the Symposium was addressed this year to young generation. We invited our young colleagues to attend a series of educational lectures reporting on achievements in graphene science, scanning probe microscopy and plasma science. Lectures were given by: Prof. Jacek Baranowski from the Institute of Electronic Materials Technology in Warsaw, Prof. Teodor Gotszalk from the Wroclaw University of Technology and Prof. Holger Kersten from the Christian Albrechts University in Kiel. The Symposium was accompanied by an industry exhibition attended by the representatives of leading companies offering vacuum equipment, complete solutions for plasma based technology as well as advanced research equipment. Witold Gulbiński Michael Kopnarski Frank Richter Jan Walkowicz

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Restivo, M.

    SRNL Environmental and Chemical Process Technology (E&CPT) was requested to perform testing of vacuum pumps per a verbal request from the Customer, SRNL Hydrogen Processing Technology. Tritium Operations is currently having difficulties procuring the Normetex™® Model 15 m 3/hr (9 CFM) vacuum pump (formerly Normetex Pompes, now Eumeca SARL). One possible solution proposed by Hydrogen Processing Technology personnel is to use two Senior Aerospace Metal Bellows MB-601 vacuum pumps piped with the heads in series, and the pumps in series (Figure 1 below). This memorandum documents the ultimate vacuum testing that was performed to determine if this concept was amore » viable alternate vacuum pump strategy. This testing dovetails with previous pump evaluations documented in references 1 and 2.« less

  17. Mode of delivery and the probability of subsequent childbearing: a population-based register study.

    PubMed

    Elvander, C; Dahlberg, J; Andersson, G; Cnattingius, S

    2015-11-01

    To investigate the relationship between mode of first delivery and probability of subsequent childbearing. Population-based study. Nationwide study in Sweden. A cohort of 771 690 women who delivered their first singleton infant in Sweden between 1992 and 2010. Using Cox's proportional-hazards regression models, risks of subsequent childbearing were compared across four modes of delivery. Hazard ratios (HRs) were calculated, using 95% confidence intervals (95% CIs). Probability of having a second and third child; interpregnancy interval. Compared with women who had a spontaneous vaginal first delivery, women who delivered by vacuum extraction were less likely to have a second pregnancy (HR 0.96, 95% CI 0.95-0.97), and the probabilities of a second childbirth were substantially lower among women with a previous emergency caesarean section (HR 0.85, 95% CI 0.84-0.86) or an elective caesarean section (HR 0.82, 95% CI 0.80-0.83). There were no clinically important differences in the median time between first and second pregnancy by mode of first delivery. Compared with women younger than 30 years of age, older women were more negatively affected by a vacuum extraction with respect to the probability of having a second child. A primary vacuum extraction decreased the probability of having a third child by 4%, but having two consecutive vacuum extraction deliveries did not further alter the probability. A first delivery by vacuum extraction does not reduce the probability of subsequent childbearing to the same extent as a first delivery by emergency or elective caesarean section. © 2014 Royal College of Obstetricians and Gynaecologists.

  18. Enhanced yield of phenolic extracts from banana peels (Musa acuminata Colla AAA) and cinnamon barks (Cinnamomum varum) and their antioxidative potentials in fish oil.

    PubMed

    Anal, Anil Kumar; Jaisanti, Sirorat; Noomhorm, Athapol

    2014-10-01

    The bioactive compounds of banana peels and cinnamon barks were extracted by vacuum microwave and ultrasonic-assisted extraction methods at pre-determined temperatures and times. These methods enhance the yield extracts in shorter time. The highest yields of both extracts were obtained from the conditions which employed the highest temperature and the longest time. The extracts' yield from cinnamon bark method was higher by ultrasonic than vacuum microwave method, while vacuum microwave method gave higher extraction yield from banana peel than ultrasonic method. The phenolic contents of cinnamon bark and banana peel extracts were 467 and 35 mg gallic acid equivalent/g extract, respectively. The flavonoid content found in banana peel and cinnamon bark extracts were 196 and 428 mg/g quercetin equivalent, respectively. In addition, it was found that cinnamon bark gave higher 2,2-Diphenyl-1-1 picryhydrazyl (DPPH) radical scavenging activity and total antioxidant activity (TAA). The antioxidant activity of the extracts was analyzed by measuring the peroxide and p-anisidine values after oxidation of fish oils, stored for a month (30 days) at 25 °C and showed lesser peroxide and p-anisidine values in the fish oils containing the sample extracts in comparison to the fish oil without containing any extract. The banana peel and cinnamon extracts had shown the ability as antioxidants to prevent the oxidation of fish oil and might be considered as rich sources of natural antioxidant.

  19. Microwave-assisted extraction performed in low temperature and in vacuo for the extraction of labile compounds in food samples.

    PubMed

    Xiao, Xiaohua; Song, Wei; Wang, Jiayue; Li, Gongke

    2012-01-27

    In this study, low temperature vacuum microwave-assisted extraction, which simultaneous performed microwave-assisted extraction (MAE) in low temperature and in vacuo environment, was proposed. The influencing parameters including solid/liquid ratio, extraction temperature, extraction time, degree of vacuum and microwave power were discussed. The predominance of low temperature vacuum microwave-assisted extraction was investigated by comparing the extraction yields of vitamin C, β-carotene, aloin A and astaxanthin in different foods with that in MAE and solvent extraction, and 5.2-243% increments were obtained. On the other hand, the chemical kinetics of vitamin C and aloin A, which composed two different steps including the extraction step of analyte transferred from matrix into solvent and the decomposition step of analyte degraded in the extraction solvent, were proposed. All of the decomposition rates (K(2)) for the selected analyte in low temperature, in vacuo and in nitrogen atmosphere decreased significantly comparing with that in conventional MAE, which are in agreement with that obtained from experiments. Consequently, the present method was successfully applied to extract labile compound from different food samples. These results showed that low temperature and/or in vacuo environment in microwave-assisted extraction system was especially important to prevent the degradation of labile components and have good potential on the extraction of labile compound in foods, pharmaceutical and natural products. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, P.; Nickelson, D.; Hyde, R.

    1999-05-01

    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advancedmore » oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.« less

  1. [Optimization of vacuum belt drying process of Gardeniae Fructus in Reduning injection by Box-Behnken design-response surface methodology].

    PubMed

    Huang, Dao-sheng; Shi, Wei; Han, Lei; Sun, Ke; Chen, Guang-bo; Wu Jian-xiong; Xu, Gui-hong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    To optimize the belt drying process conditions optimization of Gardeniae Fructus extract from Reduning injection by Box-Behnken design-response surface methodology, on the basis of single factor experiment, a three-factor and three-level Box-Behnken experimental design was employed to optimize the drying technology of Gardeniae Fructus extract from Reduning injection. With drying temperature, drying time, feeding speed as independent variables and the content of geniposide as dependent variable, the experimental data were fitted to a second order polynomial equation, establishing the mathematical relationship between the content of geniposide and respective variables. With the experimental data analyzed by Design-Expert 8. 0. 6, the optimal drying parameter was as follows: the drying temperature was 98.5 degrees C , the drying time was 89 min, the feeding speed was 99.8 r x min(-1). Three verification experiments were taked under this technology and the measured average content of geniposide was 564. 108 mg x g(-1), which was close to the model prediction: 563. 307 mg x g(-1). According to the verification test, the Gardeniae Fructus belt drying process is steady and feasible. So single factor experiments combined with response surface method (RSM) could be used to optimize the drying technology of Reduning injection Gardenia extract.

  2. Vacuum Flushing of Sewer Solids

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  3. Vacuum Flushing of Sewer Solids (Slides)

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  4. Recycling of waste lead storage battery by vacuum methods.

    PubMed

    Lin, Deqiang; Qiu, Keqiang

    2011-07-01

    Waste lead storage battery is the most important recyclable lead material not only in various European and other OECD countries but also in China. Pollution control of lead has become the focus of people's attention in the world. A vacuum process for recycling waste lead storage battery was developed in this work. The experimental results showed that all the valuable materials in waste lead storage battery could be satisfactorily recycled by vacuum technologies. The vacuum melting of lead grids and the vacuum reduction of lead pastes produce the lead bullion with the direct recovery ratio of 96.29% and 98.98%, respectively. The vacuum pyrolysis of plastics can produce pyrolysis oil with yield of more than 93 wt.%. These vacuum recycling technologies offer improvements in metallurgical and environmental performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Assembly of a Vacuum Chamber: A Hands-On Approach to Introduce Mass Spectrometry

    ERIC Educational Resources Information Center

    Bussie`re, Guillaume; Stoodley, Robin; Yajima, Kano; Bagai, Abhimanyu; Popowich, Aleksandra K.; Matthews, Nicholas E.

    2014-01-01

    Although vacuum technology is essential to many aspects of modern physical and analytical chemistry, vacuum experiments are rarely the focus of undergraduate laboratories. We describe an experiment that introduces students to vacuum science and mass spectrometry. The students first assemble a vacuum system, including a mass spectrometer. While…

  6. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOEpatents

    Lindgren, Eric R.; Mattson, Earl D.

    1995-01-01

    There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.

  7. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOEpatents

    Lindgren, E.R.; Mattson, E.D.

    1995-07-25

    An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.

  8. Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates.

    PubMed

    Wang, Gou-Jen; Lin, Yan-Cheng; Li, Ching-Wen; Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan

    2009-08-01

    In this research, two simple fabrication methods to fabricate orderly nanostructured PLGA scaffolds using anodic aluminum oxide (AAO) template were conducted. In the vacuum air-extraction approach, the PLGA solution was cast on an AAO template first. The vacuum air-extraction process was then applied to suck the semi-congealed PLGA into the nanopores of the AAO template to form a bamboo sprouts array of PLGA. The surface roughness of the nanostructured scaffolds, ranging from 20 nm to 76 nm, can be controlled by the sucking time of the vacuum air-extraction process. In the replica molding approach, the PLGA solution was cast on the orderly scraggy barrier-layer surface of an AAO membrane to fabricate a PLGA scaffold of concave nanostructure. Cell culture experiments using the bovine endothelial cells (BEC) demonstrated that the nanostructured PLGA membrane can increase the cell growing rate, especially for the bamboo sprouts array scaffolds with smaller surface roughness.

  9. Complex technology of vacuum-arc processing of structural material surface

    NASA Astrophysics Data System (ADS)

    Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.

    2015-08-01

    The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.

  10. A feasibility study for high-temperature titanium reduction from TiCl4 using a magnesiothermic process

    NASA Astrophysics Data System (ADS)

    Ivanov, S. L.; Zablotsky, D.

    2018-05-01

    The current industrial practice for titanium extraction is a complex procedure, which produces a porous reaction mass of sintered titanium particulates fused to a steel retort wall with magnesium and MgCl2 trapped in the interstices. The reactor temperature is limited to approx. 900 °C due to the formation of fusible TiFe eutectic, which corrodes the retort and degrades the quality of titanium sponge. Here we examine the theoretical foundations and technological possibilities to design a shielded retort of niobium-zirconium alloy NbZr(1%), which is resistant to corrosion by titanium at high temperature. We consider the reactor at a temperature of approx. 1150 °C. Supplying stoichiometric quantities of reagents enables the reaction in the gas phase, whereas the exothermic process sustains the combustion of the reaction zone. When the pathway to the condenser is open, vacuum separation and evacuation of vaporized magnesium dichloride and excess magnesium into the water-cooled condenser take place. As both the reaction and the evacuation occur within seconds, the yield of the extraction is improved. We anticipate new possibilities for designing a device combining the retort function to conduct the reduction in the gas phase with fast vacuum separation of the reaction products and distillation of magnesium dichloride.

  11. Intrapartum translabial ultrasound with pushing used to predict the difficulty in vacuum-assisted delivery of fetuses in non-occiput posterior position.

    PubMed

    Antonio Sainz, José; Borrero, Carlota; Aquise, Adriana; García-Mejido, José Antonio; Gutierrez, Laura; Fernández-Palacín, Ana

    2016-10-01

    Our aim is to evaluate the capacity of intrapartum translabial ultrasound (ITU) with pushing in the prediction of difficulty of fetal extraction in vacuum assisted deliveries. Prospective, observational study performed (2/2015-8/2015) on 75 nulliparous women, ≥37 weeks with singleton pregnancies at full dilatation who had ITU-with-pushing performed, previous to vacuum-placement for fetal extraction. Working on the translabial sagittal-plane, we assessed: Angle-Progression (AoP), Progression-Distance (PD) and Head-Direction (HD); in the axial plane we evaluated: Midline-Angle (MLA) and Head-Perineum-Distance (HPD). Vacuum extractions were classified as easy-difficulty (ED) (≤3 vacuum-pulls), difficult-unsuccessful (DD) (>3 vacuum-pulls). We did not assess occipito-posterior-presentations. Seventy nulliparous were studied (44-ED,26-DD). We observed no differences in obstetric, neonatal or intrapartum characteristics between the two study groups, with the following exceptions: newborn weight (3272 ± 438 g versus 3540 ± 372 g; p = 0.011) and number of vacuum-pulls (1.4-ED-vs-4.4-DD; p < 0.0005). AoP-pushing was 143.9° ± 14.6° in ED and 115.1°± 12.9° in DD (p < 0.0005); Head-Up was 79.5% versus 38.4% (p < 0.0005); PD-Pushing was 42.7 ± 11.3 mm versus 30.4 ± 9.8 mm (p < 0.0005); MLA-Pushing was 27.6°± 26.6° versus 57.5°±26.5°(p=0.025); HPD-Pushing was 40.8 ± 10.0 mm versus 47.4 ± 10.9 mm (p = 0.039). We identified that the presence of an AoP-Pushing > 128° predicts an Easy-Vacuum-Delivery (≤3 Vacuum-Pulls) in  >85% of cases (Sen 80%-FPR 9.3%).

  12. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak's extracts

    NASA Astrophysics Data System (ADS)

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat, Suzery, Meiny

    2015-12-01

    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak's extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r2=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak's extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.

  13. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of expert members on the subject to deliver lectures and take part in devising courses in the universities. IVS publishes a quarterly called the `Bulletin of Indian Vacuum Society' since its inception, in which articles on vacuum and related topics are published. NIRVAT, news, announcements, and reports are the other features of the Bulletin. The articles in the Bulletin are internationally abstracted. The Bulletin is distributed free to all the members of the society. The society also publishes proceedings of national/international symposia and seminars, manuals, lecture notes etc. It has published a `Vacuum Directory' containing very useful information on vacuum technology. IVS has also set up its own website http://www.ivsnet.org in January 2002. The website contains information about IVS, list of members, list of EC members, events and news, abstracts of articles published in the `Bulletin of Indian Vacuum Society', utilities, announcements, reports, membership and other forms which can be completed online and also gives links to other vacuum societies. Our Society has been a member of the executive council of the International Union of Vacuum Science, Techniques and Applications (IUVSTA) and its various committees since 1970. In 1983 IVS conducted an International Symposium on Vacuum Technology and Nuclear Applications in BARC, Mumbai, under the sponsorship of IUVSTA. In 1987 IVS arranged the Triennial International Conference on Thin Films in New Delhi, where more than 200 foreign delegates participated. IVS also hosted the IUVSTA Executive Council Meeting along with the conference. The society organized yet again an International Conference on Vacuum Science and Technology and SRS Vacuum Systems at CAT, Indore in1995. IVS arranges the prestigious Professor Balakrishnan Memorial Lecture in memory of its founder vice-president. Leading scientists from India and abroad in the field are invited to deliver the talks. So far 23 lectures have been held in this series. IVS has instituted the `IVS- Professor D Y Phadke Memorial Prize' in memory of our founder president, the late Professor D Y Phadke at the University of Mumbai. The prize is given every year to the student ranked top in the MSc (PHY.) examination conducted by the university. The IVS Kolkata Chapter has established the Dr A S Divatia Memorial Trust with the objective of organizing the Dr A S Divatia Memorial Lecture and a seminar once a year and to set up a vacuum testing and calibration facility. IVS has instituted an award in memory of the late Shri C Ambasankaran, its past president and pioneer of vacuum technology in India. This award is given to one of the best papers presented in the national symposium conducted by IVS. One more best paper award `Smt. Shakuntalabai Vyawahare Memorial Prize' is established from a donation given by Shri Mohan R Vyawahare, a life member and a present EC member of the society, in memory of his mother. During the symposia, IVS felicitates two of its members, one from Industry and one from an R & D Institution for their lifetime contribution to vacuum science and technology. Dr A K Gupta, Ex BARC, Ex Generla Manager, IBP, Head, Energy Group, Shapoorji Pallonji & Co Ltd (Industry), and Dr S R Gowariker, Ex BARC, Ex Director, CSIO, Chandigarh, Director, Tolani Education Foundation (R & D) are being honoured this year. T K Saha Geneneral Secretary, IVS

  14. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  15. InP Transferred Electron Cathodes: Basic to Manufacturing Methods

    DTIC Science & Technology

    2007-08-29

    Source: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films ; January/February 2003; v.21, no.1, p.219-225 Optimization and...Vacuum, Surfaces and Films ; Sept/Oct 2007 V. 25, No. 5 List of papers submitted or published that acknowledge ARO support during this reporting period...technologies. Night vision devices gather existing ambient light (starlight, moonlight or infra-red light) through a front lens. This light goes into a

  16. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries

    NASA Astrophysics Data System (ADS)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  17. Wafer-level vacuum/hermetic packaging technologies for MEMS

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil

    2010-02-01

    An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.

  18. Physical sciences: Thermodynamics, cryogenics, and vacuum technology: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technological developments which have potential application outside the aerospace community are reported. A variety of thermodynamic devices including heat pipes and cooling systems are described along with methods of handling cryogenic fluids. Vacuum devices are also described. Pata et information is included.

  19. Flow Visualization Proposed for Vacuum Cleaner Nozzle Designs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In 1995, the NASA Lewis Research Center and the Kirby Company (a major vacuum cleaner company) began negotiations for a Space Act Agreement to conduct research, technology development, and testing involving the flow behavior of airborne particulate flow behavior. Through these research efforts, we hope to identify ways to improve suction, flow rate, and surface agitation characteristics of nozzles used in vacuum cleaner nozzles. We plan to apply an advanced visualization technology, known as Stereoscopic Imaging Velocimetry (SIV), to a Kirby G-4 vacuum cleaner. Resultant data will be analyzed with a high-speed digital motion analysis system. We also plan to evaluate alternative vacuum cleaner nozzle designs. The overall goal of this project is to quantify both velocity fields and particle trajectories throughout the vacuum cleaner nozzle to optimize its "cleanability"--its ability to disturb and remove embedded dirt and other particulates from carpeting or hard surfaces. Reference

  20. [Dual chamber safety vacuum--initial experiences with a new suction cup].

    PubMed

    Korell, M; King, S; Hepp, H

    1994-06-01

    The main problem with vacuum extraction methods, alongside the cephalhaematoma produced, is the premature separation of the suction cup under traction, since the resulting sudden change in pressure can lead to severe intra-cerebral damage to the child. To reduce the risk of vaginal operative delivery, a new double-chamber safety vacuum extractor has been developed by Hepp/King. The basic feature of this instrument is an additional chamber with a thin overlapping area, which surrounds the actual suction cup and serves as a safety vacuum. If the suction cup starts to slip, the external vacuum is released and sounds an alarm. In addition, the inner vacuum has been designed to be convex and to reduce the volume of scalp, which is sucked into the vacuum, thus reducing the size of the cephalhaematoma produced. First experiences in clinical use demonstrated the reliability of the early warning signal, if the direction of traction is false or the applied traction is too strong. The inner vacuum remains constant at 0.8 atu, so that with care, the extraction can continue without interruption. We have used the new instrument in 18 deliveries. In 15 cases, the indication was failure to progress into the second stage of labour; in one case history of retinal detachment and in two cases signs of foetal asphyxia. In all cases, the child was delivered following one or two contractions with traction, without losing the vacuum. The average weight of the newborn was 3566 g. As expected, the cephalohaematoma produced was very much smaller than usual. Further clinical trials are necessary before the value of this new instrument can be assessed.

  1. Characterization of the Heat Extraction Capability of a Compliant, Sliding, Thermal Interface for Use in a High Temperature, Vacuum, Microgravity Furnace

    NASA Technical Reports Server (NTRS)

    Bellomy-Ezell, Jenny; Farmer, Jeff; Breeding, Shawn; Spivey, Reggie

    2001-01-01

    A compliant, thermal interface material is tested to evaluate its thermal behavior at elevated temperatures, in vacuum conditions, and under varying levels of compression. Preliminary results indicate that the thermal performance of this polymer fiber-based, felt-like material is sufficient to meet thermal extraction requirements for the Quench Module Insert, a Bridgman furnace for microgravity material science investigation. This paper discusses testing and modeling approaches employed, gives of a status of characterization activities and provides preliminary test results.

  2. Delivering Advanced Technical Education Using Online, Immersive Classroom Technology

    ERIC Educational Resources Information Center

    Smith, Delmer; Louwagie, Nancy

    2017-01-01

    Vacuum and thin film technologies are critical to advanced manufacturing industries. With a grant from the National Science Foundation (DUE #14004080), Normandale Community College has developed courses that are delivered online and via telepresence to provide a formal education to vacuum technician students around the country. Telepresence…

  3. Automatic Vacuum Flushing Technology for Combined Sewer Solids: Laboratory Testing and Proposed Improvements (WERF Report INFR7SG09)

    EPA Science Inventory

    This research study included an extensive literature review on existing sewer sediment flushing technologies. An innovative vacuum flush system previously developed by the U.S. EPA was tested under laboratory conditions. The tests revealed a strong correlation between the strengt...

  4. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.

    PubMed

    Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos

    2017-07-01

    Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50  ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.

  5. 320 x 240 uncooled IRFPA with pixel wise thin film vacuum packaging

    NASA Astrophysics Data System (ADS)

    Yon, J.-J.; Dumont, G.; Rabaud, W.; Becker, S.; Carle, L.; Goudon, V.; Vialle, C.; Hamelin, A.; Arnaud, A.

    2012-10-01

    Silicon based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) as required by the promising mass market for very low cost IR applications, such as automotive driving assistance, energy loss monitoring in buildings, motion sensors… Among the various approaches studied worldwide, the CEA, LETI is developing a unique technology where each bolometer pixel is sealed under vacuum at the wafer level, using an IR transparent thin film deposition. This technology referred to as PLP (Pixel Level Packaging), leads to an array of hermetic micro-caps each containing a single microbolometer. Since the successful demonstration that the PLP technology, when applied on a single microbolometer pixel, can provide the required vacuum < 10-3 mbar, the authors have pushed forward the development of the technology on fully operational QVGA readout circuits CMOS base wafers (320 x 240 pixels). In this outlook, the article reports on the electro optical performance obtained from this preliminary PLP based QVGA demonstrator. Apart from the response, noise and NETD distributions, the paper also puts emphasis on additional key features such as thermal time constant, image quality, and ageing properties.

  6. Antilisterial activity and consumer acceptance of irradiated chicken breast meat vacuum-infused with grape seed and green tea extracts and tartaric acid.

    PubMed

    Over, K F; Hettiarachchy, N S; Perumalla, A V S; Johnson, M G; Meullenet, J-F; Dickson, J S; Holtzbauer, M J; Niebuhr, S E; Davis, B

    2010-09-01

    Contamination of poultry with pathogenic bacteria contributes to human foodborne disease, causes damage to industry brand names, and has a significant economic impact on the food industry in the form of both damage to industry brand names and losses associated with recalls. Irradiation is a safe and effective means of decontaminating poultry products, but the maximum dose strengths allowed negatively impact poultry sensory quality characteristics. The 1st objective of this study was to investigate the potential interactive inhibitory effects of natural antimicrobials as components of a vacuum-marination in addition to various dose levels of irradiation. Tartaric acid (TA) at 2 levels and grape seed (GS) and green tea (GT) extracts were combined, vacuum-infused into chicken breast fillets, and irradiated at 1, 2, and 3 kGy by electron beam irradiation. The 2nd objective was to use a consumer test group to evaluate TA and plant extract infusion into chicken breast fillets with and without irradiation at 2 kGy on overall impression, flavor, texture, appearance, and tenderness. The results showed that samples vacuum-infused with TA at 37.5 and 75.0 mM and irradiated at 1 kGy significantly reduced Listeria monocytogenes (L.m.) levels by 2 and 3 log CFU/g compared to the control after 12 d of refrigerated storage. Vacuum-infusion of TA at 37.5 and 75.0 mM at 2 and 3 kGy irradiation, reduced L.m. to near nondetectable levels. The addition of TA and GS and GT to chicken breast fillets with and without irradiation did not significantly impact consumer preference, tenderness, appearance, or flavor. The addition of tartaric acid and natural plant extracts to chicken marinades could contribute to the prevention of L.m. contamination.

  7. Regenerated silica gel as stationary phase on vacuum column chromatography to purify temulawak’s extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat,

    Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak’s extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gelsmore » were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r{sup 2}=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak’s extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.« less

  8. The Use of the Molecular Adsorber Coating Technology to Mitigate Vacuum Chamber Contamination During Pathfinder Testing for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.

    2016-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.

  9. The use of the Molecular Adsorber Coating technology to mitigate vacuum chamber contamination during Pathfinder testing for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.

    2016-09-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.

  10. Space Technology for Crop Drying

    NASA Technical Reports Server (NTRS)

    1980-01-01

    McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.

  11. Retention of antioxidant capacity of vacuum microwave dried cranberry.

    PubMed

    Leusink, Gwen J; Kitts, David D; Yaghmaee, Parastoo; Durance, Tim

    2010-04-01

    In this study, cranberries were dried by vacuum-microwave drying (VMD), freeze-drying (FD), or hot air-drying (AD), to compare the effects of different drying processes on both physical changes as well as the retention of bioactive components in dried samples. Total porosity (%) and average pore radius of dehydrated cranberries were greater using VMD compared to FD and AD (P < 0.05). Crude methanol cranberry powdered extracts were fractionated by solid phase extraction (SPE) into organic acid-, total phenolics-, anthocyanin-, or proanthocyanidin-enriched extracts, respectively. The chemical composition of the 60% acidified methanol fractions contained cyanidin-3-galactoside, cyanidin-3-arabinoside, peonidin-3-galactoside, and peonidin-3-arabinoside, as assessed by HPLC. Antioxidant activities of cranberry fractions were measured using chemical ORAC and ABTS methods. The 60% acidified methanol fraction had a significantly higher (P < 0.05) antioxidant potential than the other chemical fractions, which was largely attributed to the relatively higher anthocyanin content. In general, vacuum-microwave drying and freeze-drying resulted in similar retention of anthocyanins and antioxidant activity, which were both relatively higher (P < 0.05) than that recovered from cranberries dried by hot air drying.

  12. Lightweight Vacuum Jacket for Cryogenic Insulation. Volume 1

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility of producing a lightweight vacuum jacket using state-of-the-art technology and materials was examined. Design and analytical studies were made on a full-scale, orbital maneuvering system fuel tank. Preliminary design details were made for the tank assembly, including an optimized vacuum jacket and multilayer insulation system. A half-scale LH2 test model was designed and fabricated, and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of .000001 atmosphere ml of helium per second was measured, approximately 1500 hours of vacuum pressure were sustained, and 29 vacuum-pressure cycles were experienced prior to failure.

  13. Lightweight Vacuum Jacket for Cryogenic Insulation - Appendices to Final Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility is demonstrated of producing a lightweight vacuum jacket using state-of-the-art technology and materials. Design and analytical studies were made on an orbital maneuvering system fuel tank. Preliminary design details were completed for the tank assembly which included an optimized vacuum jacket and multilayered insulation system. A half-scale LH2 test model was designed and fabricated and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of 0.00001 was measured, approximately 1500 hours of vacuum pressure was sustained, and 29 vacuum pressure cycles were experienced prior to failure. For vol. 1, see N75-26192.

  14. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  15. Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2017-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.

  16. Amine Swingbed Payload Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Sweterlitsch, Jeffrey

    2014-01-01

    The Amine Swingbed is an amine-based, vacuum-regenerated adsorption technology for removing carbon dioxide and humidity from a habitable spacecraft environment, and is the baseline technology for the Orion Program’s Multi-Purpose Crew Vehicle (MPCV). It uses a pair of interleaved-layer beds filled with SA9T, the amine sorbent, and a linear multiball valve rotates 270° back and forth to control the flow of air and vacuum to adsorbing and desorbing beds. One bed adsorbs CO2 and H2O from cabin air while the other bed is exposed to vacuum for regeneration by venting the CO2 and H2O. The two beds are thermally linked, so no additional heating or cooling is required. The technology can be applied to habitable environments where recycling CO2 and H2O is not required such as short duration missions.

  17. Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillwell, B.; Billett, B.; Brajuskovic, B.

    2017-06-20

    Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction and rf cavity straight sections. An overview of progress in these areas is presented.

  18. Assessment of penetration through vacuum cleaners and recommendation of wet cyclone technology.

    PubMed

    Seo, Youngjin; Han, Taewon

    2013-04-01

    In many commercial vacuum cleaners, the captured aerosol particles contained in the dust collector may accidentally release from the exhaust filtration owing to leakage or penetration. Vacuum cleaners may cause dust to become airborne by exhausting air that is not completely filtered. This may cause the operator to inhale dust, in turn causing health problems. This study aimed to investigate the dust penetration rates from three commercial vacuum cleaners and suggest the best technique for completely filtering exhaust air using a combination of cyclonic separation and water filtration. The commercial vacuum cleaners were tested inside a custom-built hood, and the exhausted particles were monitored using a sampling probe in conjunction with an aerosol particle sizer Quartzose mineral dusts were added to each vacuum cleaner through the dust transport line. A 2400 L/min wet cyclone was employed as the proposed vacuum cleaner It was designed using Stokes scaling, and its collection characteristics were evaluated using polystyrene latex beads. Surprisingly, the conventional vacuum cleaners failed to capture an overall average of approximately 14% of the particles in the given size range. However, only approximately 3.8% of the collected particles escaped from the vacuum cleaner that used the wet cyclone technology. Thus, the proposed vacuum cleaner should potentially be an effective method for vacuuming household dust. The successful investigation of conventional vacuum cleaners is useful for both manufacturers and users. As an effective vacuum cleaning mechanism, household dust is able to migrate along the thin water, film that forms on the inner walls of the cyclone vacuum cleaner. It collects dust in a small water inflow (3 mL/min), which allows it to capture a higher percentage of contaminants than most of the currently available vacuum cleaners. The significantly low accidental exposure rates achieved by this new vacuum cleaner enable healthy conditions in various environments, including indoors.

  19. Research on influence of different cover to the characteristic of FBG reflectance spectrum in vacuum thermal environment

    NASA Astrophysics Data System (ADS)

    Pei, Yifei; Zhang, Jingchuan; Zhang, Luosha; Liu, Yang; Zhang, Lina; Chen, Shiyu

    2018-01-01

    To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, two different kinds of sleeve compactly single model fiber covered by acrylate and polyimide are researched. Influence of the cover to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, transmission characteristic of single model fiber in high vacuum thermal environment is analyzed by solve the equation of heat conduction. Then, experimental program of influence on FBG reflection spectrum characteristics is designed and a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG in different coating single-mode transmission fiber under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different coating single-mode transmission fiber dropped to -196 ° from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the theoretical and experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 ° 25 ° temperature cycle) .

  20. Vacuum decay container/closure integrity testing technology. Part 2. Comparison to dye ingress tests.

    PubMed

    Wolf, Heinz; Stauffer, Tony; Chen, Shu-Chen Y; Lee, Yoojin; Forster, Ronald; Ludzinski, Miron; Kamat, Madhav; Mulhall, Brian; Guazzo, Dana Morton

    2009-01-01

    Part 1 of this series demonstrated that a container closure integrity test performed according to ASTM F2338-09 Standard Test Method for Nondestructive Detection of Leaks in Packages by Vacuum Decay Method using a VeriPac 325/LV vacuum decay leak tester by Packaging Technologies & Inspection, LLC (PTI) is capable of detecting leaks > or = 5.0 microm (nominal diameter) in rigid, nonporous package systems, such as prefilled glass syringes. The current study compared USP, Ph.Eur. and ISO dye ingress integrity test methods to PTI's vacuum decay technology for the detection of these same 5-, 10-, and 15-microm laser-drilled hole defects in 1-mL glass prefilled syringes. The study was performed at three test sites using several inspectors and a variety of inspection conditions. No standard dye ingress method was found to reliably identify all holed syringes. Modifications to these standard dye tests' challenge conditions increased the potential for dye ingress, and adjustments to the visual inspection environment improved dye ingress detection. However, the risk of false positive test results with dye ingress tests remained. In contrast, the nondestructive vacuum decay leak test method reliably identified syringes with holes > or = 5.0 microm.

  1. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  2. Analysis on the impact of FBG reflectance spectrum with different optical fiber connection in vacuum thermal environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jingchuan; Zhang, Wen; Lv, Jianfeng; Liang, Shuo; Wang, Lei; Li, Xiyuan

    2018-01-01

    To satisfy the application of fiber grating sensor technology in high vacuum thermal environment, FBG on sleeve compactly single model fiber with two typical different kind of connection such as fiber splicing and optical fiber connector are researched. Influence of the different connection to the characteristic of FBG reflectance spectrum in high vacuum thermal environment is analyzed and verified. First, experimental program of influence on FBG reflection spectrum characteristics is designed. Then, a hardware-in-the-loop detection platform is set up. Finally, the influence of temperature and vacuum on the reflection peak power of FBG with two typical different connections under high vacuum thermal environment is studied and verified. Experimental results indicate that: when vacuum varied from normal pressure to 10-4Pa level and then return to normal pressure, temperature of two different single-mode optical fiber connection dropped to -196 °C from room temperature and then returned to room temperature, after 224 hours, the peak power of the FBG reflectance spectrum did not change. It provided the experimental basis for the application of optical fiber sensing technology in high vacuum (pressure about 10-4Pa level) and thermal environment (-196 °C temperature cycle).

  3. EVALUATION OF METHODS USED TO DESORB THE CONSTITUENTS ADSORBED ON THE CHARCOAL CONTAINED IN AUTOMOTIVE EVAPORATIVE CANISTERS

    EPA Science Inventory

    This report presents the conclusion of a two-part study with evaluated current extraction methods for anaylizing in automobiles. The second part of this study investigated the use of solvent-free extraction methods such as high pressure C02 soxhlet extraction and vacuum transfer ...

  4. EVALUATION OF METHODS USED TO DESORB THE CONSTITUENTS ADSORBED ON THE CHARCOAL CONTAINED IN AUTOMOTIVE EVAPORATIVE CANISTERS--PART II

    EPA Science Inventory

    This report presents the conclusion of a two-part study with evaluated current extraction methods for anaylizing in automobiles. The second part of this study investigated the use of solvent-free extraction methods such as high pressure C02 soxhlet extraction and vacuum transfer ...

  5. The influence of fetal head circumference on labor outcome: a population-based register study.

    PubMed

    Elvander, Charlotte; Högberg, Ulf; Ekéus, Cecilia

    2012-04-01

    To investigate the association between postnatal head circumference and the occurrence of the three main indications for instrumental delivery, namely prolonged labor, signs of fetal distress and maternal distress. We also studied the association between postnatal fetal head circumference and the use of vacuum extraction and emergency cesarean section. Population-based register study. Nationwide study in Sweden. A total of 265 456 singleton neonates born to nulliparous women at term between 1999 and 2008 in Sweden. Register study with data from the Swedish Medical Birth Register. Prolonged labor, signs of fetal distress, maternal distress, use of vacuum extraction and emergency cesarean section. The prevalence of each outcome increased gradually as the head circumference increased. Compared with women giving birth to a neonate with average size head circumference (35 cm), women giving birth to an infant with a very large head circumference (39-41 cm) had significantly higher odds of being diagnosed with prolonged labor [odds ratio (OR) 1.49, 95% confidence interval (CI) 1.33-1.67], signs of fetal distress (OR 1.73, 95% CI 1.49-2.03) and maternal distress (OR 2.40, 95% CI 1.96-2.95). The odds ratios for vacuum extraction and cesarean section were thereby elevated to 3.47 (95% CI 3.10-3.88) and 1.22 (95% CI 1.04-1.42), respectively. The attributable risk proportion percentages associated with vacuum extraction and cesarean section were 46 and 39%, respectively among the cases exposed to a head circumference of 37-41 cm. Large fetal head circumference is associated with complicated labor and is etiological to a considerable proportion of assisted vaginal births and emergency cesarean sections. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  6. Reception and study of lunar surface material in inert gas medium. [considering laboratory vacuum receiving chamber

    NASA Technical Reports Server (NTRS)

    Surkov, Y. A.; Rudnitskiy, Y. M.; Glotov, V. A.

    1974-01-01

    The reception and study of lunar material returned by the Luna 16 space station is described. The layout of a vacuum receiving chamber for working with material in a helium atmosphere is examined along with the main operations involved in extracting the material from the ampule and drill.

  7. Realization of MEMS-IC Vertical Integration Utilizing Smart Bumpless Bonding

    NASA Astrophysics Data System (ADS)

    Shiozaki, Masayoshi; Moriguchi, Makoto; Sasaki, Sho; Oba, Masatoshi

    This paper reports fundamental technologies, properties, and new experimental results of SBB (Smart Bumpless Bonding) to realize MEMS-IC vertical integration. Although conventional bonding technologies have had difficulties integrating MEMS and its processing circuit because of their rough bonding surfaces, fragile structures, and thermal restriction, SBB technology realized the vertical integration without thermal treatment, any adhesive materials including bumps, and chemical mechanical polishing. The SBB technology bonds sealing parts for vacuum sealing and electrodes for electrical connection simultaneously as published in previous experimental study. The plasma CVD SiO2 is utilized to realize vacuum sealing as sealing material. And Au projection studs are formed on each electrode and connected electrically between two wafers by compressive plastic deformation and surface activation. In this paper, new experimental results including vacuum sealing properties, electrical improvement, IC bonding results on the described fundamental concept and properties are reported.

  8. A comparison study on a sulfonated graphene-polyaniline nanocomposite coated fiber for analysis of nicotine in solid samples through the traditional and vacuum-assisted HS-SPME.

    PubMed

    Ghiasvand, Alireza; Koonani, Samira; Yazdankhah, Fatemeh; Farhadi, Saeid

    2018-02-05

    A simple, rapid, and reliable headspace solid-phase microextraction (HS-SPME) procedure, reinforced by applying vacuum in the extraction vial, was developed. It was applied for the extraction of nicotine in solid samples prior to determination by gas chromatography-flame ionization detection (GC-FID). First, the surface of a narrow stainless steel wire was made porous and adhesive by platinization to obtain a durable, higher surface area, and resistant fiber. Then, a thin film of sulfonated graphene/polyaniline (Sulf-G/PANI) nanocomposite was synthesized and simultaneously coated on the platinized fiber using the electrophoretic deposition (EPD) method. It was demonstrated that the extraction efficiency remarkably increased by applying the reduced-pressure condition in the extraction vial. To evaluate the conventional HS-SPME and vacuum-assisted HS-SPME (VA-HS-SPME) platforms, all experimental parameters affecting the extraction efficiency including desorption time and temperature, extraction time and temperature and moisture content of sample matrix were optimized. The highest extraction efficiency was obtained at 60°C, 10min (extraction temperature and time) and 280°C, 2min (desorption condition), for VA-HS-SPME strategy, while for conventional HS-SPME the extraction and desorption conditions found to be 100°C, 30min and 280°C, 2min, respectively. The Sulf-G/PANI coated fiber showed high thermal stability, good chemical/mechanical resistance, and long lifetime. For analysis of nicotine in solid samples using VA-HS-SPME-GC-FID, linear dynamic range (LDR) was 0.01-30μgg -1 (R 2 =0.996), the relative standard deviation (RSD%, n=6), for analyses of 1μgg -1 nicotine was calculated 3.4% and limit of detection (LOD) found to be 0.002μgg -1 . The VA-HS-SPME-GC-FID strategy was successfully carried out for quantitation of nicotine in hair and tobacco real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evaluation of vacuum technology to kill larvae of the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae), and the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), in wood

    Treesearch

    Zhangjing Chen; Marshall S. White; Melody A. Keena; Therese M. Poland; Erin L. Clark

    2008-01-01

    The potential for using vacuum technology to kill larvae of the Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), and emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in solid-wood packing materials (SWPM) and other wood products was assessed. Current...

  10. Antimicrobial activity of several herb and spice extracts in culture medium and in vacuum-packaged pork.

    PubMed

    Kong, Baohua; Wang, Jinzhi; Xiong, Youling L

    2007-03-01

    Extracts prepared from honeysuckle, Scutellaria, Forsythia suspensa (Thunb), cinnamon, and rosemary with 75% ethanol and from clove oil dissolved in 75% ethanol were applied to inoculated agar media to observe their inhibitory effects on the growth of Escherichia coli, Pseudomonas fluorescens, and Lactobacillus plantarum. All the extracts suppressed the growth of these bacteria; Scutellaria exhibited the strongest effect against E. coli. An orthogonal test revealed that the most effective antimicrobial composite extracts were equal-volume mixtures of 0.125 g/ml Scutellaria + 0.5 g/ml honeysuckle + 0.125 g/ml Forsythia + 0.25 g/ml cinnamon and 0.25 g/ml cinnamon + 0.125 g/ml rosemary + 0.25% clove oil. These mixed extracts also produced strong antimicrobial effects in vacuum-packaged fresh pork, with 1.81- to 2.32-log reductions in microbial counts compared with the control when stored for up to 28 days. The sensory panel detected minimal differences in surface color and off-odors between meat samples treated with herb-spice extracts and the control. These results indicate that combined herb and spice extracts can be used as natural antimicrobials for food preservation.

  11. Instrumental delivery: clinical practice guidelines from the French College of Gynaecologists and Obstetricians.

    PubMed

    Vayssière, Christophe; Beucher, Gael; Dupuis, Olivier; Feraud, Olivia; Simon-Toulza, Caroline; Sentilhes, Loïc; Meunier, Emmanuelle; Parant, Olivier; Schmitz, Thomas; Riethmuller, Didier; Baud, Olivier; Galley-Raulin, Fabienne; Diemunsch, Pierre; Pierre, Fabrice; Schaal, Jean-Patrick; Fournié, Alain; Oury, Jean François

    2011-11-01

    Routine use of a partograph is associated with a reduction in the use of forceps, but is not associated with a reduction in the use of vacuum extraction (Level A). Early artificial rupture of the membranes, associated with oxytocin perfusion, does not reduce the number of operative vaginal deliveries (Level A), but does increase the rate of fetal heart rate abnormalities (Level B). Early correction of lack of progress in dilatation by oxytocin perfusion can reduce the number of operative vaginal deliveries (Level B). The use of low-concentration epidural infusions of bupivacaine potentiated by morphinomimetics reduces the number of operative interventions compared with larger doses (Level A). Placement of an epidural before 3-cm dilatation does not increase the number of operative vaginal deliveries (Level A). Posterior positions of the fetus result in more operative vaginal deliveries (Level B). Manual rotation of the fetus from a posterior position to an anterior position may reduce the number of operative deliveries (Level C). Walking during labour is not associated with a reduction in the number of operative vaginal deliveries (Level A). Continuous support of the parturient by a midwife or partner/family member during labour reduces the number of operative vaginal deliveries (Level A). Under epidural analgesia, delayed pushing (2h after full dilatation) reduces the number of difficult operative vaginal deliveries (Level A). Ultrasound is recommended if there is any clinical doubt about the presentation of the fetus (Level B). The available scientific data are insufficient to contra-indicate attempted midoperative delivery (professional consensus). The duration of the operative intervention is slightly shorter with forceps than with a vacuum extractor (Level C). Nonetheless, the urgency of operative delivery is not a reason to choose one instrument over another (professional consensus). The cup-shaped vacuum extractor seems to be the instrument of choice for operative deliveries of fetuses in a cephalic transverse position, and may also be preferred for fetuses in a posterior position (professional consensus). Vacuum extraction deliveries fail more often than forceps deliveries (Level B). Overall, immediate maternal complications are more common for forceps deliveries than vacuum extraction deliveries (Level B). Compared with forceps, operative vaginal delivery using a vacuum extractor appears to reduce the number of episiotomies (Level B), first- and second-degree perineal lesions, and damage to the anal sphincter (Level B). Among the long-term complications, the rate of urinary incontinence is similar following forceps, vacuum extraction and spontaneous vaginal deliveries (Level B). Anal incontinence is more common following forceps delivery (Level B). Persistent anal incontinence has a similar prevalence regardless of the mode of delivery (caesarean or vaginal, instrumental or non-instrumental), suggesting the involvement of other factors (Level B). Rates of immediate neonatal mortality and morbidity are similar for forceps and vacuum extraction deliveries (Level B). It appears that difficult instrumental delivery may lead to psychological sequelae that may result in a decision not to have more children (Level C). The rates of neonatal convulsions, intracranial haemorrhage and jaundice do not differ between forceps and vacuum extraction deliveries (Levels B and C). Rapid sequence induction with a Sellick manoeuvre (pressure to the cricoid cartilage) and tracheal intubation with a balloon catheter is recommended for any general anaesthesia (Level B). Training must ensure that obstetricians can identify indications and contra-indications, choose the appropriate instrument, use the instruments correctly, and know the principles of quality control applied to operative vaginal delivery. Nowadays, traditional training can be accompanied by simulations. Training should be individualized and extended for some students. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Optical Analysis of Power Distribution in Top-Emitting Organic Light Emitting Diodes Integrated with Nanolens Array Using Finite Difference Time Domain.

    PubMed

    Han, Kyung-Hoon; Park, Young-Sam; Cho, Doo-Hee; Han, Yoonjay; Lee, Jonghee; Yu, Byounggon; Cho, Nam Sung; Lee, Jeong-Ik; Kim, Jang-Joo

    2018-06-06

    Recently, we have addressed that a formation mechanism of a nanolens array (NLA) fabricated by using a maskless vacuum deposition is explained as the increase in surface tension of organic molecules induced by their crystallization. Here, as another research using finite difference time domain simulations, not electric field intensities but transmitted energies of electromagnetic waves inside and outside top-emitting blue organic light-emitting diodes (TOLEDs), without and with NLAs, are obtained, to easily grasp the effect of NLA formation on the light extraction of TOLEDs. Interestingly, the calculations show that NLA acts as an efficient light extraction structure. With NLA, larger transmitted energies in the direction from emitting layer to air are observed, indicating that NLAs send more light to air otherwise trapped in the devices by reducing the losses by waveguide and absorption. This is more significant for higher refractive index of NLA. Simulation and measurement results are consistent. A successful increase in both light extraction efficiency and color stability of blue TOLEDs, rarely reported before, is accomplished by introducing the highly process-compatible NLA technology using the one-step dry process. Blue TOLEDs integrated with a N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine NLA with a refractive index of 1.8 show a 1.55-times-higher light extraction efficiency, compared to those without it. In addition, viewing angle characteristics are enhanced and image blurring is reduced, indicating that the manufacturer-adaptable technology satisfies the requirements of highly efficient and color-stable top-emission displays.

  13. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    NASA Astrophysics Data System (ADS)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors clearly indicates that industry has advanced quite significantly. During the symposium, the Indian Vacuum Society honoured two distinguished personalities for their remarkable and significant contributions to the field of vacuum science and development of technology in the country. Awards were presented for both oral and poster papers during the symposium. A committee evaluated the scientific content and clarity of presentation of contributed papers. We believe that deliberations and discussions at the symposium will help gain a better understanding of the complicated and involved technology of vacuum science and be of benefit to scientists and technologists. Subimal Saha Convener Gautam Pal Co-Convener V S Pandit Secretary Surajit Pal Treasurer Conference photograph International Advisory Committee National Advisory Committee S BanerjeeDAE/IndiaR K Bhandari (Chairman)VECC Rockett AngusAVS/USAD L BandyopadhyayIVS A V Dadve CdrPfeiffer Vac /IndiaS B BhattIPR M Barma TIFR/IndiaK G BhushanBARC R K BhandariVECC/IndiaAlok ChakrabartiVECC R C BudhaniNPL, IndiaD P ChakravartyBARC Shekhar ChanderCEERI/IndiaTushar DesaiMumbai Univ S C ChetalIGCAR/IndiaR DeyVECC K L ChopraIIT Delhi/IndiaS C GadkariBARC Christian DayKIT/GermanyS K GuptaIUVSTA/India Kraemer DieterFAIR/GermanyShrikrishna GuptaBARC L M GantayatBARC/IndiaRajendra JatharAgilent Technologies R B GroverDAE, BARC/IndiaS N JoshiCEERI P D Gupta RRCAT/IndiaD KanjilalIUAC Szajman JakubVSA/AustraliaC MallikVECC R N JayarajNFC/IndiaS G MarkandeyaBRNS S KailasBARC/IndiaK C MittalBARC P K KawIPR/IndiaS NagarjunHHV Bangalore Lalit KumarMTRDC/IndiaK G M NairIGCAR Jean Larour Ecole/FranceGautam Pal (Co-convener)VECC Marminga LiaTRIUMF/CanadaSurajit Pal (Treasurer)VECC Shekhar MishraFermilab/USA V S Pandit (Secretary)VECC Ganapatirao MyneniJlab/USaR G PillayTIFR S V NarasaiahHHV/IndiaMohan PradeepNPL K RadhakrishnanISRO/IndiaY Ranga RaoVac Techniques A S Raja RaoIVS/IndiaR RanganathanSINP T RamasamiDST/IndiaSubimal Saha (Convener)VECC A K RayBARC/IndiaT K Saha BARC R Reid IUVSTA/UKVikrant SanglikarEdwards India Amit Roy IUAC/IndiaD SarkarVECC Milan SanyalSINP/IndiaY C SaxenaIPR V K SaraswantDRDO/IndiaS K ShuklaRRCAT E SchamilogluUNM/USAGurnam SinghRRCAT R K SinhaBARC/IndiaP SinghBARC P StrubinCERN/SwitzerlandA K SinhaIUC-DAEF T OkanoVSJ/JapanS K ThakurVECC Local Organizing Committee Dr R K BhandariShri Subimal Saha ChairmanCo-chairman Scientific ProgrammeReception & Registration 1. Dr V S Pandit, Convener1. Shri C Mallik, Convener 2. Dr K C Mittal2. Shri P Y Nabhiraj 3. Shri S K Gupta3. Shri Manas Dutta 4. Shri Gautam Pal4. Kum Ranjini Menon 5. Dr Arup Bandyopadhyay5. Shri Malay Kanti Dey 6. Shri Anjan Duttagupta6. Shri Samit Bandyopadhyay 7. Shri Chinmay Nandi7. Miss. Swantana Kumari 8. Shri Anindya Roy8. Smt Sudeshna Seth 9. Shri R C Yadav9. Shri Anirban De Transport & AccommodationPublication 1. Shri N V S V Prasad, Convener1. Shri Subimal Saha, Convener 2. Shri S K Thakur2. Dr V S Pandit 3. Shri Sumantra Bhattacharyya3. Shri C D Dutta 4. Shri Debjit Gupta4. Dr Tapas Bandyopadhyay 5. Shri S R Gupta5. Dr Vaishali Naik 6. Shri Jayanta Sur6. Shri Anirban De 7. Shri Sujit SahaCatering Auditorium 1. Dr Arup Bandyopadhyay, Convener 1. Shri Gautam Pal, Convener2. Shri Asis Polley 2. Shri Tamal Bhattacharyya3. Shri S. Chattopadhayay 3. Shri Tanmay Das4. Shri Debjit Gupta 4. Smt. Seema Bhattacharyya, SINP5. Shri Tanmay Das 5. Shri Susanta Chakroborti, SINP6. Shri R L Singh 6. Shri S C JenaFinance Exhibition/Souvenir1. Shri S Sambath, Convener 1. Shri R. Dey, Convener2. Dr Surajit Pal 2. Smt Seema Bhattacharyya, SINP3. Shri Asis Dey 3. Shri S K Thakur4. Shri V K Khare 4. Shri N DuttaCultural 5. Shri S K Pati1. Dr Alok Chakrabarti, Convener 6. Shri Yashwant Kumar2. Dr Vaishali Naik Website3. Shri Dirtha Sanyal 1. Shri Tapas Samanta, Convener4. Shri Suman Guha 2. Dr Surajit Pal 3. Shri Gaurav Saxena Indian Vacuum Society The Indian Vacuum Society (IVS) was established in 1970. It has over 900 members including many from Industry and R&D Institutions spread over the country. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in the country. In order to achieve this aim it has been conducting a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum. So far it has conducted 47 such courses in different parts of the country and imparted training to more than 1500 people in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. Recently such a course was conducted at the Nuclear Fuel Complex, Hyderabad and Fundamentals of Vacuum Technology in general and Large Vacuum Furnaces, Vacuum Metallurgy in particular were the themes of the workshop. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on themes related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of expert members on the subject to deliver lectures and take part in devising courses in the universities. IVS has published the 'Bulletin of Indian Vacuum Society' quarterly since its inception, in which articles on Vacuum and related topics are published. NIRVAT, news, announcements, and reports are the other features of the Bulletin. The articles in the Bulletin are internationally abstracted. The Bulletin is distributed free to all members of the society. The society also publishes the proceedings of National, International Symposia/Seminars, manuals, lecture notes etc. It has published 'Vacuum Directory' containing very useful information on vacuum technology and it is in the process of updating this. The IVS has also set up its own website (http://www.ivsnet.org) in January 2002. The website contains information about IVS, lists of EC members, events and news, abstracts of articles published in the Bulletin of Indian Vacuum Society, utilities, technical data, announcements, reports, membership and other forms including advertisements. Our Society is a member society of the International Union of Vacuum Science, Techniques and Applications (IUVSTA) and many IVS members are nominated in its various committees since 1970. In 1983, IVS conducted an International Symposium on Vacuum Technology and Nuclear Applications in BARC, Mumbai under the sponsorship of IUVSTA. In 1987, IVS arranged, the Triennial International Conference on Thin Films in New Delhi, where more than 200 foreign delegates participated. IVS also hosted the IUVSTA Executive Council Meeting along with the conference. The society organized yet again an International Conference on Vacuum Science and Technology (IVS-2007) during 28-30 November 2007 at TIFR, Colaba Camups, Mumbai. IVS organizes the prestigious Professor Balakrishnan Memorial Lecture in memory of its founder vice-president. Leading scientists in the field from India and abroad are invited to deliver the talk. So far 24 lectures have been held in this series. IVS has instituted the 'IVS- Professor D Y Phadke Memorial Prize' in memory of our founder President the late Professor D Y Phadke in the University of Mumbai. The prize is given every year to the top ranker in the MSc (Physics) examination conducted by the Mumbai University. IVS Kolkata Chapter has established the Dr A S Divatia Memorial Trust with the objective to organize the Dr A S Divatia Memorial Lecture and a seminar once a year and to set up a vacuum testing and calibration facility. IVS has instituted an award in memory of late Shri C. Ambasankaran, its past president and pioneer of vacuum technology in India. This award is given to one of the best papers presented in the national symposium conducted by IVS. One more best Poster award 'Smt Shakuntalabai Vyawahare Memorial Prize' is established from the donation given by Shri. Mohan R. Vyawahare, a life member, in memory of his mother. Recently, The IVS has decided to offer financial support to cover travel, registration fees and accommodation charges for a few selected students and participants (preferably IVS life members) for attending conferences in the country. Shrikrishna Gupta Gen. Secretary, IVS

  14. System for high throughput water extraction from soil material for stable isotope analysis of water

    USDA-ARS?s Scientific Manuscript database

    A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process m...

  15. The influence of extraction procedure on ion concentrations in sediment pore water

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1998-01-01

    Sediment pore water has the potential to yield important information on sediment quality, but the influence of isolation procedures on the chemistry and toxicity are not completely known and consensus on methods used for the isolation from sediment has not been reached. To provide additional insight into the influence of collection procedures on pore water chemistry, anion (filtered only) and cation concentrations were measured in filtered and unfiltered pore water isolated from four sediments using three different procedures: dialysis, centrifugation and vacuum. Peepers were constructed using 24-cell culture plates and cellulose membranes, and vacuum extractors consisted of fused-glass air stones attached with airline tubing to 60cc syringes. Centrifugation was accomplished at two speeds (2,500 and 10,000 x g) for 30 min in a refrigerated centrifuge maintained at 4?C. Only minor differences in chemical characteristics and cation and anion concentrations were found among the different collecting methods with differences being sediment specific. Filtering of the pore water did not appreciably reduce major cation concentrations, but trace metals (Cu and Pb) were markedly reduced. Although the extraction methods evaluated produced pore waters of similar chemistries, the vacuum extractor provided the following advantages over the other methods: (1) ease of extraction, (2) volumes of pore water isolated, (3) minimal preparation time and (4) least time required for extraction of pore water from multiple samples at one time.

  16. Optimization of pectin extraction and antioxidant activities from Jerusalem artichoke

    NASA Astrophysics Data System (ADS)

    Liu, Shengyi; Shi, Xuejie; Xu, Lanlan; Yi, Yuetao

    2016-03-01

    Jerusalem artichoke is an economic crop widely planted in saline-alkaline soil. The use of Jerusalem artichoke is of great significance. In this study, the response surface method was employed to optimize the effects of processing variables (extraction temperature, pH, extraction time, and liquid-to-solid ratio) on the yield of Jerusalem artichoke pectin. Under the optimal extraction conditions: pH 1.52, 63.62 min, 100°C and a liquid-to-solid ratio of 44.4 mL/g, the maximum pectin yield was predicted to be 18.76%. Experiments were conducted under these optimal conditions and a pectin yield of 18.52±0.90% was obtained, which validated the model prediction. The effects of diff erent drying methods (freeze drying, spray drying and vacuum drying) on the properties of Jerusalem artichoke pectin were evaluated and they were compared with apple pectin. FTIR spectral analysis showed no major structural diff erences in Jerusalem artichoke pectin samples produced by various drying treatments. The antioxidant activities of pectin dried by diff erent methods were investigated using in vitro hydroxyl and DPPH radical scavenging systems. The results revealed that the activities of spray dried pectin (SDP) and apple pectin (AP) were stronger than those of vacuum oven dried pectin (ODP) and vacuum freeze dried pectin (FDP). Therefore compared with the other two drying methods, the spray drying method was the best.

  17. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications.

    PubMed

    Sortais, P; Lamy, T; Médard, J; Angot, J; Latrasse, L; Thuillier, T

    2010-02-01

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm(2) (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 microA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 pi mm mrad at 15 kV (1sigma) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams generation.

  18. Random numbers from vacuum fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com; Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  19. Present Status of Power Circuit Breaker and its Future

    NASA Astrophysics Data System (ADS)

    Yoshioka, Yoshio

    Gas circuit breaker and vacuum circuit breaker are the 2 main types of circuit breaker used in extra high voltage and medium voltage networks. After reviewing the history of these circuit breakers, their present status and technologies are described. As for future technology, computation of interrupting phenomena, SF6 gas less apparatus and expectation of the high voltage vacuum circuit breaker are discussed.

  20. ON-SITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery: atmospheric batch distillation, vacuum heat-pump distillation, and low-emission vapor degreasing. The atmospheric and vacuum ...

  1. Giant vacuum forces via transmission lines

    PubMed Central

    Shahmoon, Ephraim; Mazets, Igor; Kurizki, Gershon

    2014-01-01

    Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry and in emerging technologies involving, e.g., microelectromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension, we find a much stronger and longer-range interaction than in free space. This enhancement may have profound implications on many-particle and bulk systems and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line. PMID:25002503

  2. Use of vacuum-steam-vacuum and ionizing radiation to eliminate Listeria innocua from ham.

    PubMed

    Sommers, Christopher; Kozempel, Michael; Fan, Xuetong; Radewonuk, E Richard

    2002-12-01

    Listeria spp. are a frequent postprocess contaminant of ready-to-eat (RTE) meat products, including ham. Vacuum-steam-vacuum (VSV) technology has been used successfully to eliminate Listeria innocua from hot dogs. Ionizing radiation can eliminate Listeria spp. from RTE meats. However, the excessive application of either technology can cause changes in product quality, including structural changes, changes in cure color (redness), and lipid oxidation. In this study, two cycles of VSV were combined with 2.0 kGy of ionizing radiation to obtain 4.40- and 4.85-log10 reductions of L. innocua on ham meat and skin, respectively. The use of both treatments resulted in an additive, as opposed to synergistic, reduction of L. innocua on ham. The combination treatment did not cause statistically significant changes in product structure, color (redness), or lipid oxidation.

  3. Better vacuum by removal of diffusion-pump-oil contaminants

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1975-01-01

    The complex problem of why large space simulation chambers do not realize true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance were identified, and some advances in vacuum distillation-fractionation technology were achieved which resulted in a two-decade-or-more lower ultimate pressure. Data are presented to show the overall or individual contaminating effects of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and for reclaiming contaminated oil by high-vacuum molecular distillation are described. Conceptual self-cleansing designs and operating procedures are proposed for modifying large diffusion pumps into high-efficiency distillation devices. The potential exists for application of these technological advancements to other disciplines, such as medicine, biomedical materials, metallurgy, refining, and chemical (diffusion-enrichment) processing.

  4. Sensor for the working surface cleanliness definition in vacuum

    NASA Astrophysics Data System (ADS)

    Deulin, E. A.; Mashurov, S. S.; Gatsenko, A. A.

    2016-07-01

    Modern development of nanotechnology as one of the modern science priority directions is impossible to imagine without the use of vacuum systems and technologies. And the better the vacuum (lower the pressure), the “cleaner” we get a surface, which is very important for nanotechnology. Determination of the cleanliness of the surface or the amount of molecular layers of adsorbed gases on the working surface of the products especially in industry, where the cleanliness of the working surface is a key parameter of the technological process and has a significant influence on the output parameters of the final product is the main goal of this work.

  5. Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes

    PubMed Central

    Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

    2015-01-01

    Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

  6. Vacuum and the electron tube industry

    NASA Astrophysics Data System (ADS)

    Redhead, P. A.

    2005-07-01

    The electron tube industry started with the patenting of the thermionic diode by John Ambrose Fleming in 1904. The vacuum technology used by the infant tube industry was copied from the existing incandescent lamp industry. The growing demands for electron tubes for the military in the first world war led to major improvements in pumps and processing methods. By the 1920s, mass production methods were developing to satisfy the demands for receiving tubes by the burgeoning radio industry. Further expansion in the 1930s and 1940s resulted in improvements in automatic equipment for pumping vacuum tubes leading to the massive production rates of electron tubes in the second world war and the following two decades. The demand for radar during the war resulted in the development of techniques for large-scale production of microwave tubes and CRTs, the latter technology being put to good use later in TV picture tube production. The commercial introduction of the transistor ended the massive demand for receiving tubes. This review concentrates on the vacuum technology developed for receiving tube production.

  7. Bioactive compounds and quality parameters of avocado oil obtained by different processes.

    PubMed

    Krumreich, Fernanda D; Borges, Caroline D; Mendonça, Carla Rosane B; Jansen-Alves, Cristina; Zambiazi, Rui C

    2018-08-15

    The objective of this study was to evaluate the quality of avocado oil whose pulp was processed through different drying and oil extraction methods. The physicochemical characteristics of avocados cv. Breda were determined after drying the pulp in an oven under ventilation (40 °C and 60 °C) and vacuum oven (60 °C), followed by the oil extracted by mechanical pressing or the Soxhlet method. From the approximately 72% pulp found in the avocado fruit, the 16% fraction is lipids. The quality indices evaluated in avocado oil showed better results when the pulp was dried at 60 °C under vacuum and oil extraction was done by the Soxhlet method with petroleum ether, whereas the bioactive compounds were better preserved when the avocado pulp was dried at 60 °C under ventilation and mechanical pressing was used for the oil extraction. Among the fatty acids found, oleic acid was the main. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. An analytical model for in situ extraction of organic vapors

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1991-01-01

    This paper introduces a simple convective-flow model that can be used as a screening tool and for conducting sensitivity analyses for in situ vapor extraction of organic compounds from porous media. An assumption basic to this model was that the total mass of volatile organic chemicals (VOC) exists in three forms: as vapors, in the soil solution, and adsorbed to soil particles. The equilibrium partitioning between the vapor-liquid phase was described by Henry's law constants (K(H)) and between the liquid-soil phase by soil adsorption constants (K(d)) derived from soil organic carbon-water partition coefficients (K(oc)). The model was used to assess the extractability of 36 VOCs from a hypothetical site. Most of the VOCs appeared to be removable from soil by this technology, although modeling results suggested that rates for the alcohols and ketones may be very slow. In general, rates for weakly adsorbed compounds (K(oc) < 100 mL/g) were significantly higher when K(H) was greater than 10-4 atm??m3??mol-1. When K(oc) was greater than about 100 mL/g, the rates of extraction were sensitive to the amount of organic carbon present in the soil. The air permeability of the soil material (k) was a critical factor. In situ extraction needs careful evaluation when k is less than 10 millidarcies to determine its applicability. An increase in the vacuum applied to an extraction well accelerated removal rates but the diameter of the well had little effect. However, an increase in the length of the well screen open to the contaminated zone significantly affected removal rates, especially in low-permeability materials.This paper introduces a simple convective-flow model that can be used as a screening tool and for conducting sensitivity analyses for in situ vapor extraction of organic compounds from porous media. An assumption basic to this model was that the total mass of volatile organic chemicals (VOC) exists in three forms: as vapors, in the soil solution, and adsorbed to soil particles. The equilibrium partitioning between the vapor-liquid phase was described by Henry's law constants (KH) and between the liquid-soil phase by soil adsorption constants (Kd) derived from soil organic carbon-water partition coefficients (Koc). The model was used to assess the extractability of 36 VOCs from a hypothetical site. Most of the VOCs appeared to be removable from soil by this technology, although modeling results suggested that rates for the alcohols and ketones may be very slow. In general, rates for weakly adsorbed compounds (Koc < 100 mL/g) were significantly higher when KH was greater than 10-4atm-m3-mol-1. When Koc was greater than about 100 mL/g, the rates of extraction were sensitive to the amount of organic carbon present in the soil. The air permeability of the soil material (k) was a critical factor. In situ extraction needs careful evaluation when k is less than 10 millidarcies to determine its applicability. An increase in the vacuum applied to an extraction well accelerated removal rates but the diameter of the well had little effect. However, an increase in the length of the well screen open to the contaminated zone significantly affected removal rates, especially in low-permeability materials.

  9. Terahertz Science & Technology: Sensing Bio-Molecular Nanostructures & Photoinduces Transitions Between Metastable States

    DTIC Science & Technology

    2012-07-31

    differences between species, and to show the response of spores to vacuum and response of cultured cells to heat . The results of this work confirmed...06_01_2012 (Accepted). Technology Transfer - 1 - Report Type: Final Technical Report Proposal Number: 54518EL Agreement Number...the response of spores to vacuum and response of cultured cells to heat . The results of this work confirmed that observed spectroscopic features

  10. Venting test analysis using Jacob`s approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, K.B.

    1996-03-01

    There are many sites contaminated by volatile organic compounds (VOCs) in the US and worldwide. Several technologies are available for remediation of these sites, including excavation, pump and treat, biological treatment, air sparging, steam injection, bioventing, and soil vapor extraction (SVE). SVE is also known as soil venting or vacuum extraction. Field venting tests were conducted in alluvial sands residing between the water table and a clay layer. Flow rate, barometric pressure, and well-pressure data were recorded using pressure transmitters and a personal computer. Data were logged as frequently as every second during periods of rapid change in pressure. Testsmore » were conducted at various extraction rates. The data from several tests were analyzed concurrently by normalizing the well pressures with respect to extraction rate. The normalized pressures vary logarithmically with time and fall on one line allowing a single match of the Jacob approximation to all tests. Though the Jacob approximation was originally developed for hydraulic pump test analysis, it is now commonly used for venting test analysis. Only recently, however, has it been used to analyze several transient tests simultaneously. For the field venting tests conducted in the alluvial sands, the air permeability and effective porosity determined from the concurrent analysis are 8.2 {times} 10{sup {minus}7} cm{sup 2} and 20%, respectively.« less

  11. Analysis of Selected Enhancements for Soil Vapor Extraction

    DTIC Science & Technology

    1997-09-01

    Inches per second ACRONYMS AND ABBREVIATIONS (Continued) xiii ISB In situ bioremediation JFK John F. Kennedy Airport K Hydraulic conductivity KAI KAI...wells by an applied vacuum. RFH is effective for treating VOCs in low-permeability soil in the vadose zone. Electrical Resistance Heating : This... applied vacuum. However, application of steam injection/stripping systems is limited to medium- to high-permeability soils. ER heating is more

  12. Pseudo ribbon metal ion beam source.

    PubMed

    Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A

    2014-02-01

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  13. Design and fabrication of the vacuum systems for TPS pulsed septum magnets

    NASA Astrophysics Data System (ADS)

    Chan, C. K.; Chang, C. C.; Chen, C. L.; Yang, C. S.; Chen, C. S.; Lin, F. Y.; Chen, J. R.

    2014-11-01

    Three in-air pulsed septum magnets were developed to inject and extract electron beams for the 3 GeV synchrotron facility, the Taiwan Photon Source (TPS). The vacuum chamber is a novel combined aluminium-stainless steel design, using a bimetallic flange to connect the two material types. To evaluate the vacuum performances of these vacuum chambers, we set up a test bench at which we simultaneously measure the rates of thermal outgassing of the aluminium chamber and the septum tube with a throughput method. The test result indicates that the rate q72 of thermal outgassing measured after 1 day from baking at 150 °C was 1×10-13 mbar L s-1 cm-2. The magnetic leakage measurements show the combination of conductor slitting, magnetic shielding and the aluminium vacuum chamber reduce the peak value of the leakage field integral to ~10 G cm along the trajectory of the stored beam.

  14. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1997-08-19

    Spacers are disclosed for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate. 3 figs.

  15. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1997-01-01

    Spacers for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate.

  16. Use of Vacuum Degreasing for Precision Cleaning

    NASA Technical Reports Server (NTRS)

    Fox, Eric; Edwards, Kevin; Mitchell, Mark; Boothe, Richard

    2017-01-01

    Increasingly strict environmental regulations and the consequent phase out of many effective cleaning solvents has necessitated the development of novel cleaning chemistries and technologies. Among these is vacuum degreasing, a fully enclosed process that eliminates fugitive solvent emissions, thereby reducing cost, environmental, and health related exposure impacts. The effectiveness of vacuum degreasing using modified alcohol for common aerospace contaminants is reported and compared to current and legacy solvents.

  17. [Evaluation of the quality of poultry meat and its processing for vacuum packaging].

    PubMed

    Swiderski, F; Russel, S; Waszkiewicz-Robak, B; Cholewińska, E

    1997-01-01

    The aim of study was to evaluate the quality of poultry meat, roasted and smoked chicken and poultry pie packing under low and high vacuum. All investigated products were stored at +4 degrees C and evaluated by microbiological analysis. It was showed that packing under low and high vacuum inhibited development of aerobic microorganisms, proteolytic bacteria, yeasts and moulds. Vacuum-packaged storage of poultry meat and its products stimulated activity of anaerobic, nonsporeforming bacteria. The fast spoilage of fresh poultry meat was observed both under vacuum and conventional storage. The microbiology quality of poultry products depended on technology of production and microbiological quality of raw material.

  18. Effect of surface polishing and vacuum firing on electron stimulated desorption from 316LN stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyshev, Oleg B., E-mail: oleg.malyshev@stfc.ac.uk; Hogan, Benjamin T.; Pendleton, Mark

    2014-09-01

    The reduction of thermal outgassing from stainless steel by surface polishing or vacuum firing is well-known in vacuum technology, and the consequent use of both techniques allows an even further reduction of outgassing. The aim of this study was to identify the effectiveness of surface polishing and vacuum firing for reducing electron-stimulated desorption (ESD) from 316LN stainless steel, which is a frequently used material for particle accelerator vacuum chambers and components. It was found that, unlike for thermal outgassing, surface polishing does not reduce the ESD yield and may even increase it, while vacuum firing of nonpolished sample reduces onlymore » the H{sub 2} ESD yield by a factor 2.« less

  19. Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities.

    PubMed

    Michelin, Michele; Ximenes, Eduardo; de Lourdes Teixeira de Moraes Polizeli, Maria; Ladisch, Michael R

    2016-01-01

    This work shows both cellulases and hemicellulases are inhibited and deactivated by water-soluble and acetone extracted phenolics from sugarcane bagasse pretreated at 10% (w/v) for 30 min in liquid hot water at 180 or 200°C. The dissolved phenolics in vacuum filtrate increased from 1.4 to 2.4 g/L as temperature increased from 180 to 200°C. The suppression of cellulose and hemicellulose hydrolysis by phenolics is dominated by deactivation of the β-glucosidase or β-xylosidase components of cellulase and hemicellulase enzyme by acetone extract at 0.2-0.65 mg phenolics/mg enzyme protein and deactivation of cellulases and hemicellulases by the water soluble components in vacuum filtrate at 0.05-2mg/mg. Inhibition was a function of the type of enzyme and the manner in which the phenolics were extracted from the bagasse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization.

    PubMed

    Shao, Yuyu; Gao, Shuran; Guo, Huiling; Zhang, Heping

    2014-03-01

    The cryotolerance of Lactobacillus delbrueckii ssp. bulgaricus is weak during vacuum freeze-drying. Many factors affect cryoresistance of these bacteria, such as cryoprotectant composition, the lyophilization technology used, and the intrinsic characteristics of the bacteria. In this research, we explored the fermentation technology and other preconditioning treatments of cells in improving the cryoresistance of Lactobacillus delbrueckii ssp. bulgaricus strains during lyophilization. The addition of yeast extract in the propagation medium exerted a negative effect on the cryotolerance of these bacteria and decreased survival during lyophilization. The count of the freeze-dried cells from medium containing a high level (4%) of yeast extract was only 4.1 × 10(9) cfu/g, indicating a death rate as high as 88%, compared with the culture medium without yeast extract, with a lower death rate of 44.7%. When Lactobacillus delbrueckii ssp. bulgaricus ND02 was propagated in yeast extract-free de Man, Rogosa, and Sharpe broth at a set pH value of 5.1, the cells showed unexpectedly higher survival after freeze-drying. Viable counts of the lyophilized cell of strain ND02 cultivated at pH 5.1 could reach 1.05 × 10(11)cfu/g and survival of the freeze-drying process was 68.3%, whereas at pH 5.7, survival was only 51.2%. We also examined the effects of pretreatment of cells on survival of the bacteria after vacuum freeze-drying. By analyzing the effect of pretreatment conditions on the expression of cold- and heat-shock genes, we established 2 pretreatments that improved survival of cells after lyophilization. Optimal fermentation conditions and pretreatment of the cell-cryoprotectant mixture at 10°C for 2h or 37°C for 30 min improved the cryoresistance of 4 strains of Lactobacillus delbrueckii ssp. bulgaricus to varying degrees. Cells of IMAU20269 and IMAU20291 that were pretreated showed enhanced survival of 16.06 and 16.82%, respectively, after lyophilization. Expression of cold- and heat-shock genes for pretreated strains ND02, IMAU80423, IMAU20269, and IMAU20291 was analyzed by using quantitative PCR. From the expression of 2 cold shock-induced genes (cspA and cspB) and 6 heat shock-induced genes (groES, hsp, hsp20, hsp40, hsp60, and hsp70), strain ND02 showed a higher relative quantity of gene expression and displayed superior resistance to cold-induced stress during the freeze-drying process. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Pilot study of a novel vacuum-assisted method for decellularization of tracheae for clinical tissue engineering applications.

    PubMed

    Lange, P; Greco, K; Partington, L; Carvalho, C; Oliani, S; Birchall, M A; Sibbons, P D; Lowdell, M W; Ansari, T

    2017-03-01

    Tissue engineered tracheae have been successfully implanted to treat a small number of patients on compassionate grounds. The treatment has not become mainstream due to the time taken to produce the scaffold and the resultant financial costs. We have developed a method for decellularization (DC) based on vacuum technology, which when combined with an enzyme/detergent protocol significantly reduces the time required to create clinically suitable scaffolds. We have applied this technology to prepare porcine tracheal scaffolds and compared the results to scaffolds produced under normal atmospheric pressures. The principal outcome measures were the reduction in time (9 days to prepare the scaffold) followed by a reduction in residual DNA levels (DC no-vac: 137.8±48.82 ng/mg vs. DC vac 36.83±18.45 ng/mg, p<0.05.). Our approach did not impact on the collagen or glycosaminoglycan content or on the biomechanical properties of the scaffolds. We applied the vacuum technology to human tracheae, which, when implanted in vivo showed no significant adverse immunological response. The addition of a vacuum to a conventional decellularization protocol significantly reduces production time, whilst providing a suitable scaffold. This increases clinical utility and lowers production costs. To our knowledge this is the first time that vacuum assisted decellularization has been explored. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    NASA Astrophysics Data System (ADS)

    Amiotti, M.

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The development of Micro Electro Mechanical Systems (MEMS) with moving parts in a vacuum environment required the development of a new generation of getter film, few microns thick, that can be selectively patterned onto a silicon or glass wafer (usually 4'' or 8''). This wafer with patterned getter film can be used directly as the cap wafer of a wafer to wafer bonded MEMS structure, assuring long life and reliability to the moving MEMS structure especially in automotive applications where thermal cycles are required for qualification.

  3. Status of the Development of Low Cost Radiator for Surface Fission Power - II

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Maxwell, Taylor; Anderson, William G.; Wagner, Corey; Wrosch, Matthew; Briggs, Maxwell H.

    2016-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar and Martian surface power applications. The systems are envisioned in the 10 to 100kWe range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kWe non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. The paper reports on the development of the heat pipe radiator to reject the waste heat from the Stirling convertors. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water Variable Conductance Heat Pipes (VCHPs). By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POCO"TM" foam saddles, aluminum honeycomb, and a second facesheet. As mentioned in previous papers by the authors, the final design of the waste heat radiator is described as being modular with independent GFRC panels for each heat pipe. The present paper reports on test results for a single radiator module as well as a radiator cluster consisting of eight integral modules. These tests were carried out in both ambient and vacuum conditions. While the vacuum testing of the single radiator module was performed in the ACT's vacuum chamber, the vacuum testing of the eight heat pipe radiator cluster took place in NASA GRC's vacuum chamber to accommodate the larger size of the cluster. The results for both articles show good agreement with the predictions and are presented in the paper.

  4. Evaluation of Vacuum Blasting and Heat Guns as Methods for Abating Lead- Based Paint on Buildings

    DTIC Science & Technology

    1993-09-01

    INCOMPATIBILITY - Contact with powerful oxidizing agents such as FLUORINE, CHLORINE TRIFLUORIDE , MANGANESE TRIOXIDE, OXYGEN DIFLUORIDE, MANGANESE...investigating new technologies for lead-based paint abatement. This research evaluates the effectiveness , safety, LEC1L•.T• and cost of vacuum abrasive...paint abatement. This research evaluates the effectiveness , safety, and cost of vacuum abrasive units and heat guns as methods of removing lead-based

  5. EVALUATION OF A VACUUM DISTILLER FOR PERFORMING METHOD 8261 ANALYSES

    EPA Science Inventory

    Vacuum distillation uses a specialized apparatus. This apparatus has been developed and patented by the EPA. Through the Federal Technology Transfer Act this invention has been made available for commercialization. Available vendors for this instrumentation are being evaluated. ...

  6. Process Options for Nominal 2-K Helium Refrigeration System Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Knudsen, Venkatarao Ganni

    Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).

  7. Obstetric management in vacuum-extraction deliveries.

    PubMed

    Ahlberg, Mia; Saltvedt, Sissel; Ekéus, Cecilia

    2016-06-01

    The aim of this observational study was to describe the obstetric management in vacuum extraction (VE) deliveries and to compare these findings to instructions in clinical guidelines on VE. In 2013, detailed data on management of 600 VE cases were consecutively collected from six different delivery units in Sweden. Each unit also contributed their own clinical VE guideline. In total, 93% of the VEs ended with a vaginal delivery while 7% failed and were converted to an emergency cesarean section. In 2.3% extraction time exceeded 20 minutes, and in 6% more than six pulls were used to deliver the fetus. Cup detachment occurred in 14.6%, and fundal pressure was used in 11% of the deliveries. In 2.3%, fetal station was assessed as above the level of the maternal ischial spines. The clinical guidelines on VE varied in scope and content between units, and were often incomplete according to best practice. The vast majority of the VEs were conducted in accordance with safety recommendations. However, in a few extractions, safety rules were disregarded and more than six pulls or an extraction time of more than 20 minutes were used to complete the delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. [Surgical methods for delivery in modern obstetrics and their influence on maternal and infant health].

    PubMed

    Kokhanevych, Ie V; Mitsoda, R M; Konoplianko, T V; Konoplianko, V V

    2000-03-01

    The article addresses issues of comparative characterization of deliveries involving surgery and impact thereof on the health of the mother and her child. Risk factors are identified that the mother and her child run in sectio cesarea, in application of obstetrical forceps, and in vacuum-extraction of the fetus. Cesarean section was found out to be the most acceptable mode of delivery in origination of organic and functional nervous system involvement in children but the most ill-chosen and unpropitious one in the mother, especially so in those groups at risk for bleeding, septic complications, and genital endometriosis. Among those surgical methods of delivery being the least traumatic to the mother are obstetrical forceps and vacuum-extraction of the fetus.

  9. Modern Microwave and Millimeter-Wave Power Electronics

    NASA Astrophysics Data System (ADS)

    Barker, Robert J.; Luhmann, Neville C.; Booske, John H.; Nusinovich, Gregory S.

    2005-04-01

    A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: * Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems * Microfabricated MVEDs and advanced electron beam sources * Klystrons, gyro-amplifiers, and crossed-field devices * "Virtual prototyping" of MVEDs via advanced 3-D computational models * High-Power Microwave (HPM) sources * Next-generation microwave structures and circuits * How to achieve linear amplification * Advanced materials technologies for MVEDs * A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from the sale of this book will fund the future research and publication activities of graduate students in the vacuum electronics field.

  10. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-16

    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.

  11. Comparison of methods for conducting marine and estuarine sediment porewater toxicity tests—extraction, storage, and handling techniques

    USGS Publications Warehouse

    Carr, R.S.; Chapman, D.C.

    1995-01-01

    A series of studies was conducted to compare different porewater extraction techniques and to evaluate the effects of sediment and porewater storage conditions on the toxicity of pore water, using assays with the sea urchin Arbacia punctulata. If care is taken in the selection of materials, several different porewater extraction techniques (pressurized squeezing, centrifugation, vacuum) yield samples with similar toxicity. Where the primary contaminants of concern are highly hydrophobic organic compounds, centrifugation is the method of choice for minimizing the loss of contaminants during the extraction procedure. No difference was found in the toxicity of pore water obtained with the Teflon® and polyvinyl chloride pressurized extraction devices. Different types of filters in the squeeze extraction devices apparently adsorbed soluble contaminants to varying degrees. The amount of fine suspended particulate material remaining in the pore water after the initial extraction varied among the methods. For most of the sediments tested, freezing and thawing did not affect the toxicity of porewater samples obtained by the pressurized squeeze extraction method. Pore water obtained by other methods (centrifugation, vacuum) and frozen without additional removal of suspended particulates by centrifugation may exhibit increased toxicity compared with the unfrozen sample.The toxicity of pore water extracted from refrigerated (4°C) sediments exhibited substantial short-term (days, weeks) changes. Similarly, sediment pore water extracted over time from a simulated amphipod solid-phase toxicity test changed substantially in toxicity. For the sediments tested, the direction and magnitude of change in toxicity of pore water extracted from both refrigerated and solid-phase test sediments was unpredictable.

  12. Treatment of resistant port wine stains (PWS) with pulsed dye laser and non-contact vacuum: a pilot study.

    PubMed

    Kautz, Gerd; Kautz, Ingrid; Segal, Jenny; Zehren, Sabrina

    2010-07-01

    The blanching of resistant port wine stains (PWS) with a pulsed dye laser (PDL) requires a large number of treatments, resulting in substantial discomfort to patients, many of them children. Pneumatic skin flattening (PSF - Serenity Pro) is a new technology that generates a vacuum over the skin and reduces pain in laser-based treatments of the skin, while creating contact between the skin and an upper window. The same technology can be utilized to increase skin blood fraction while operated in a non-contact mode. The objective of this study was to test the enhancement in the efficacy of PWS treatment with PDL and Serenity Pro while vacuum is being utilized in the non-contact, blood-enrichment mode. Fifteen patients with resistant PWS underwent 1-4 treatments (interval of 5-20 weeks) under general anesthesia with a 595-nm PDL at 10-14 J/cm(2), 1.5-3 ms pulse duration, and 7-mm spot size. Lesion blanching with DCD chilling and with vacuum were photographed and compared. Better blanching of various degrees was observed on resistant PWS with the blood-enrichment technique in seven out of 11 patients who returned for follow-up. There were no cases of decrease in efficacy. Blood enrichment with the Serenity Pro non-contact vacuum technology has the potential of enhancing the capability of treating resistant port wine stains in over 50% of cases. Further studies will better quantify the number of treatments necessary for better lesion clearance. The vacuum-assisted technique may be of particular importance in view of the fact that achieving complete lesion clearance remains a challenge in PWS treatments.

  13. Life-Cycle Cost Database. Volume II. Appendices E, F, and G. Sample Data Development.

    DTIC Science & Technology

    1983-01-01

    Bendix Field Engineering Corporation Columbia, Maryland 21045 5 CONTENTS Page GENERAL 8 Introduction Objective Engineering Survey SYSTEM DESCRIPTION...in a typical administrative type building over a 25-year period. 1.3 ENGINEERING SURVEY An on-site survey was conducted by Bendix Field Engineering...Damp Mop and Buff Buff Routine Vacuum Strip and Refinish Heavy Duty Vacuum Machine, Scrub and Surface Shampoo Pick Up Extraction Clean Repair Location

  14. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  15. Lonely GPFUTV-the movement of water under the action of unknown vacuum

    NASA Astrophysics Data System (ADS)

    Lin, Weiyi

    2013-11-01

    In this paper, firstly, the experiment on the flow resistance of the aerated pipe flow is introduced. The experimental research on comparison between different volumes of air entrained is presented. Secondly, the characteristics of gravity pipe flow under the action of Torricelli's vacuum, shortly called as GPFUTV are dissertated, including creative and functional design, fundamental principle, etc. Under the joint action of an unknown vacuum energy and the formation of non-aerated flow the water flow is full-pipe and continuous, high-speed and non-rotational as distinguished from turbulent flow. Thirdly, an appeal in relation to the experimental research, the applied studies and basic theory research is given. For instance, experimental study of Torricelli's experiment phenomenon in the vacuum environment, applied study of the potential for GPFUTV to be developed for deep seawater suction technology and lifting technology for deep ocean mining, theoretical study of flow stability and flow resistance under GPFUTV condition, etc. At last, the famous GPFUTV project is illustrated. 12 years of rigorous and independent survey research.

  16. Design and Fabrication of a Stirling Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Schreiber, Jeffrey G.

    2004-01-01

    A Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA space science missions. The development effort is being conducted by Lockheed Martin under contract to the Department of Energy (DOE). The Stirling Technology Company supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to the currently used alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been conceived at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG, however the requirement for low mass was not considered. This test will demonstrate the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The analysis, design, and fabrication of the test article will be described in this paper.

  17. Practical quantum random number generator based on measuring the shot noise of vacuum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yong; Zou Hongxin; Tian Liang

    2010-06-15

    The shot noise of vacuum states is a kind of quantum noise and is totally random. In this paper a nondeterministic random number generation scheme based on measuring the shot noise of vacuum states is presented and experimentally demonstrated. We use a homodyne detector to measure the shot noise of vacuum states. Considering that the frequency bandwidth of our detector is limited, we derive the optimal sampling rate so that sampling points have the least correlation with each other. We also choose a method to extract random numbers from sampling values, and prove that the influence of classical noise canmore » be avoided with this method so that the detector does not have to be shot-noise limited. The random numbers generated with this scheme have passed ent and diehard tests.« less

  18. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  19. Evaluation of two cleaning methods for the removal of asbestos fibers from carpet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kominsky, J.R.; Freyberg, R.W.; Chesson, J.

    The research study examined the effectiveness of dry vacuuming and wet cleaning for the removal of asbestos fibers from carpet, and evaluated the potential for fiber reentrainment during carpet cleaning activities. Routine carpet cleaning operations using high-efficiency particulate air (HEPA) filtered dry vacuum cleaners and HEPA-filtered hot-water extraction cleaners were simulated on carpet artificially contaminated with asbestos fibers. Overall, wet cleaning the carpet with a hot-water extraction cleaner reduced the level of asbestos contamination by approximately 70 percent. There was no significant evidence of either an increase or a decrease in the asbestos concentration after dry vacuuming. The level ofmore » asbestos contamination had no significant effect on the difference between the carpet asbestos concentrations before and after cleaning. Airborne asbestos concentrations were between two and four times greater during the carpet cleaning activities. The level of asbestos contamination in the carpet cleaning activities. The level of asbestos contamination in the carpet and the type of cleaning method used had no statistically significant effect on the difference between the airborne asbestos concentrations before and during cleaning.« less

  20. SITE TECHNOLOGY CAPSULE; MULTI-VENDOR BIOREMEDIATION DEMONSTRATION PROJECT: ENVIRONMENTAL LABORATORIES/SBP TECHNOLOGIES' UVB VACUUM VAPORIZATION WELL PROCESS

    EPA Science Inventory

    This technology capsule summarizes the findings of an evaluation of the Unterdruck-Verdampfer-Brunnen (UVB) technology developed by IEG Technologies (IEG) and licensed in the eastern United States by Environmental Laboratories, Inc. (ELI) and SBP Technologies, Inc. (SBP). This e...

  1. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to operate the near-infrared spectrometer and GC-MS instruments during ETU testing. Ray will be working with Modified Commercial off the Shelf (MCOTS) instruments and characterizing their analytical behavior for optimization. Ray will be offered the opportunity to suggest testing modifications or configuration changes at any time to improve the experimental effectiveness. He will gain many skills needed for working in a technical team setting requiring flexibility and critical thinking.

  2. Spinoff from a Moon Tool

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Portable self-contained drill capable of extracting core samples as much as 10 feet below the surface was needed for the astronauts. Black & Decker used a specially developed computer program to optimize the design of the drill's motor and insure minimal power consumption. Refinement of the original technology led to the development of a cordless miniature vacuum cleaner called the Dustbuster. It has no hose, no cord, is 14 inches long, and also comes with a storage bracket that also serves as a recharger; plugs into a home outlet that charges the nickel cadmium batteries when not in use. Other home use cordless instruments include drills, shrub trimmers and grass shears. Company also manufactures a number of cordless tools used in the sheet metal automobile and construction industries, and a line of cordless orthopedic instruments.

  3. 40Ar/36Ar geochronology on a quadrupole mass spectrometer: Where are we going?

    NASA Astrophysics Data System (ADS)

    Schneider, B.; Wijbrans, J. R.; Kuiper, K. F.; Fenton, C. R.; Williams, A. J.

    2009-04-01

    40Ar/39Ar analysis has passed many milestones since its first application (Wänke & König, 1959). From the early all-glass Reynolds-type vacuum system to today's high quality, bakeable all-metal piping and valve systems, the evolution of ultra high vacuum systems has been considerable. Extraction systems have faced similar changes over time. Early furnaces made partially of glass were later replaced by full metal constructs containing a high temperature resistant molybdenum alloy tube and heating mechanism, sometimes contained within an insulating secondary vacuum chamber. Laser extraction techniques further refined the approach allowing very small samples or sample parts to be analyzed. The principal type of mass spectrometer used for 40Ar/36Ar geochronology is the magnetic sector instrument, which has the resolution and sensitivity necessary for measuring argon isotopes and achieving high precision over a large age range. We present 40Ar/39Ar data from basalt samples collected from a number of different locations, all obtained using the Hiden HAL Series 1000 quadrupole mass spectrometer at Vrije University, Amsterdam. We show that quadrupole technology is not only a viable option in K-Ar geochronology (Rouchon et al., 2008) but also in 40Ar/39Ar geochronology. The data was obtained from groundmass hand-picked from 200-500 um size fractions. Sample amounts of 200 to 500 mg were used for incremental heating experiments. The quality of the data is demonstrated by convergence of plateau and isochron ages, replicate analyses and by comparison to results of independent studies. Sample ages range from 40 ka to 400 ka, demonstrating the potential of quadrupole instruments for dating even very young rocks using the 40Ar/39Ar incremental heating technique. Rouchon, V., Lefevre, J.-C., Quidelleur, X., Guerin, G., Gillot, P.-Y. (2008): Nonspiked 40Ar and 36Ar quantification using a quadrupole mass spectrometer: A potential for K-Ar geochronology. International Journal of Mass Spectrometry 270, 52-61. Wänke H., König H. (1959): Eine neue Methode zur Kalium-Argon-Altersbestimmung und ihre Anwendung auf Steinmeteorite. Z. Naturforschung, 14a, 860 - 866.

  4. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels.

    PubMed

    Ma, En; Xu, Zhenming

    2013-12-15

    In this study, a technology process including vacuum pyrolysis and vacuum chlorinated separation was proposed to convert waste liquid crystal display (LCD) panels into useful resources using self-design apparatuses. The suitable pyrolysis temperature and pressure are determined as 300°C and 50 Pa at first. The organic parts of the panels were converted to oil (79.10 wt%) and gas (2.93 wt%). Then the technology of separating indium was optimized by central composite design (CCD) under response surface methodology (RSM). The results indicated the indium recovery ratio was 99.97% when the particle size is less than 0.16 mm, the weight percentage of NH4Cl to glass powder is 50 wt% and temperature is 450°C. The research results show that the organic materials, indium and glass of LCD panel can be recovered during the recovery process efficiently and eco-friendly. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. SITE TECHNOLOGY CAPSULE: UNTERDRUCK-VERDAMPFER- BRUNNEN TECHNOLOGY (UVB) VACUUM VAPORIZING WELL

    EPA Science Inventory

    The UVB technology is an in situ groundwater remediation technology for aquifers contaminated with compounds amenable to air stripping, and is an alternative method to pump-and-treat remediation of groundwater. The UVB technology is designed to remove VOCs from groundwater by tra...

  6. The Low-Temperature Vibrational Behavior of Pentaerythritol Tetranitrate

    DTIC Science & Technology

    2008-06-01

    light is extracted from the vacuum ultraviolet storage ring in a 40- × 40-mrad solid angle. The collimated beam is delivered through a vacuum pipe ...a role in the stabilization of the D2 conformer. It is suspect that the presence of the shear planes stabilizes the D2 conformer at such extreme...findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

  7. Effect of Addition of Natural Antioxidants on the Shelf-Life of “Chorizo”, a Spanish Dry-Cured Sausage

    PubMed Central

    Pateiro, Mirian; Bermúdez, Roberto; Lorenzo, José Manuel; Franco, Daniel

    2015-01-01

    The dose effect of the addition of natural antioxidants (tea, chestnut, grape seed and beer extracts) on physicochemical, microbiological changes and on oxidative stability of dry-cured “chorizo”, as well as their effect during the storage under vacuum conditions was evaluated. Color parameters were significantly (p < 0.05) affected by the addition of antioxidants so that samples that contained antioxidants were more effective in maintaining color. The improving effects were dose-dependent with highest values with the dose of 50 mg/kg during ripening and depend on the extract during vacuum packaging. Addition of antioxidants decreased (p < 0.05) the oxidation, showing thiobarbituric acid reactive substances (TBARS) values below 0.4 mg MDA/kg. Natural antioxidants matched or even improved the results obtained for butylated hydroxytoluene (BHT). Regarding texture profile analysis (TPA) analysis, hardness values significantly (p < 0.001) decreased with the addition of antioxidants, obtaining the lower results with the dose of 200 mg/kg both during ripening and vacuum packaging. Antioxidants reduced the counts of total viable counts (TVC), lactic acid bacteria (LAB), mold and yeast. Free fatty acid content during ripening and under vacuum conditions showed a gradual and significant (p < 0.05) release as a result of lipolysis. At the end of ripening, the addition of GRA1000 protected chorizos from oxidative degradation. PMID:26785337

  8. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our contrast assessment and the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. Tbe VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We discuss the development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(exp 8), 10(exp 9) and ideally 10(exp 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the laboratory results, optical configuration, critical technologies and the null sensing and control approach.

  9. Vacuum insulation of the high energy negative ion source for fusion application.

    PubMed

    Kojima, A; Hanada, M; Hilmi, A; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Kobayashi, S; Yamano, Y; Grisham, L R

    2012-02-01

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of ∼2 m(2). The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D(-) ion beams for 100 s.

  10. Flux tubes in the SU(3) vacuum: London penetration depth and coherence length

    NASA Astrophysics Data System (ADS)

    Cea, Paolo; Cosmai, Leonardo; Cuteri, Francesca; Papa, Alessandro

    2014-05-01

    Within the dual superconductor scenario for the QCD confining vacuum, the chromoelectric field generated by a static qq¯ pair can be fitted by a function derived, by dual analogy, from a simple variational model for the magnitude of the normalized order parameter of an isolated Abrikosov vortex. Previous results for the SU(3) vacuum are revisited, but here the transverse chromoelectric field is measured by means of the connected correlator of two Polyakov loops and, in order to reduce noise, the smearing procedure is used instead of cooling. The penetration and coherence lengths of the flux tube are then extracted from the fit and compared with previous results.

  11. Effects of grape seed extract on the oxidative and microbial stability of restructured mutton slices.

    PubMed

    Reddy, G V Bhaskar; Sen, A R; Nair, Pramod N; Reddy, K Sudhakar; Reddy, K Kondal; Kondaiah, N

    2013-10-01

    The antioxidant and antimicrobial efficacy of grape seed extract (GSE) was studied in restructured mutton slices (RMS) under aerobic and vacuum packaging conditions during refrigerated storage. The RMS treated with grape seed extract (GSE) had significantly (P<0.05) lower thiobarbituric acid reactive substance (TBARS) values and free fatty acids (FFA) % compared to control (C) and butylated hydroxy anisole (BHA) treated RMS during storage at 4±1°C. Addition of GSE significantly (P<0.05) reduced the total psychrophilic and coliform counts in RMS during refrigerated storage. The GSE treated mutton slices recorded significantly (P<0.05) superior scores of color, flavor, juiciness and overall palatability than C and BHA treated RMS. The TBARS values, FFA % and microbial counts increased significantly (P<0.05) during storage. It can be concluded that GSE has excellent antioxidant and antimicrobial properties compared to control and BHA treated RMS during refrigerated storage under aerobic and vacuum conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Advanced CIGS Photovoltaic Technology: Annual Technical Report--Phase II, 15 November 2002--14 November 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delahoy, A. E.; Chen, L.

    2004-05-01

    The objective of this subcontract is to develop and integrate the various pieces of new technology that EPV considers enabling for cost-effective production of CIGS modules. EPV has conducted research to help generate a technology base for production of CIGS PV modules using vacuum deposition of CIGS onto glass. This strategy is consistent with the observation that, despite there being several approaches to forming device-quality CIGS, vacuum deposition has maintained the world record for the highest-efficiency CIGS device. A record thin-film solar cell efficiency of 19.2% (with Ni-Al grid and MgF2 ARC) for a 0.41-cm2 device was achieved by NRELmore » in 2003 using vacuum-deposited CIGS. The deposition employed four point sources and detection of the Cu-poor to Cu-rich transition for process control. To extend this type of processing to the realm of large-area substrates, EPV developed vacuum equipment designed for heating and coating 0.43-m2 moving substrates, with a projected further scale up to 0.79 m2. The substrates are typically low-cost, soda-lime glass, and the materials are supplied to the moving substrates using novel linear-source technology developed by EPV. The use of elemental selenium rather than toxic H2Se gas helps make for a safe manufacturing environment. These choices concerning film deposition, substrates, and source materials help to minimize the processing costs of CIGS.« less

  13. Changes in14c activity over time during vacuum distillation of carbon from rock pore water

    USGS Publications Warehouse

    Davidson, G.R.; Yang, I.C.

    1999-01-01

    The radiocarbon activity of carbon collected by vacuum distillation from a single partially saturated tuff began to decline after approximately 60% of the water and carbon had been extracted. Disproportionate changes in 14C activity and ??13C during distillation rule out simple isotopic fractionation as a causative explanation. Additional phenomena such as matrix diffusion and ion exclusion in micropores may play a role in altering the isotopic value of extracted carbon, but neither can fully account for the observed changes. The most plausible explanation is that distillation recovers carbon from an adsorbed phase that is depleted in 14C relative to DIC in the bulk pore water. ?? 1999 by the Arizona Board of Regents on behalf of the University of Arizona.

  14. Ethanol production from food waste at high solid contents with vacuum recovery technology

    USDA-ARS?s Scientific Manuscript database

    Ethanol production from food wastes does not only solve the environmental issues but also provide renewable biofuel to partially substitute fossil fuels. This study investigated the feasibility of utilization of food wastes for producing ethanol at high solid contents (35%, w/w). Vacuum recovery sys...

  15. Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation

    USDA-ARS?s Scientific Manuscript database

    Butanol fermentation is product limiting due to butanol toxicity to microbial cells. Butanol (boiling point: 118 deg C) boils at a greater temperature than water (boiling point: 100 deg C) and application of vacuum technology to integrated acetone-butanol-ethanol (ABE) fermentation and recovery may ...

  16. Planned Experiments on the Princeton Advanced Test Stand

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.

    2010-11-01

    The Princeton Advanced Test Stand (PATS) device is an experimental facility based on the STS-100 high voltage test stand transferred from LBNL. It consists of a multicusp RF ion source, a pulsed extraction system capable of forming high-perveance 100keV ion beams, and a large six-foot-long vacuum with convenient access for beam diagnostics. This results in a flexible system for studying high perveance ion beams relevant to NDCX-I/II, including experiments on beam neutralization by ferroelectric plasma sources (FEPS) being developed at PPPL. Research on PATS will concern the basic physics of beam-plasma interactions, such as the effects of volume neutralization on beam emittance, as well as optimizing technology of the FEPS. PATS combines the advantage of an ion beam source and a large-volume plasma source in a chamber with ample access for diagnostics, resulting in a robust setup for investigating and improving relevant aspects of neutralized drift. There are also plans for running the ion source with strongly electro-negative gases such as chlorine, making it possible to extract positive or negative ion beams.

  17. The Roles of Beneficiation in Lunar Work

    NASA Technical Reports Server (NTRS)

    Rickman, Doug L.

    2010-01-01

    Natural feedstocks used for any process are intrinsically variable. They may also contain deleterious components or low concentrations of desired fractions. For these three reasons it is standard industrial practice to beneficiate feedstocks. This is true across all industries which trans-form raw materials into standardized units. On the Moon there are three natural resources: vacuum, radiation and regolith. To utilize in situ resources on the Moon it is reasonable to presume some beneficiation of the regolith (ground rock) resource will be desirable if not essential. As on Earth, this will require fundamental understanding of the physics and chemistry of the relevant processes, which are exceeding complex in detail. Further, simulants are essential test articles for evaluation of components and systems planned for lunar deployment. Simulants are of course made from geologic feedstocks. Therefore, there is variation, deleterious components and incorrect concentrations of desired fractions in the feedstocks used for simulants. Thus, simulant production can benefit from beneficiation of the input feedstocks. Beneficiation of geologic feedstocks is the subject of extractive metallurgy. Clearly, NASA has two discrete interests pertaining to the science and technology of extractive metallurgy.

  18. Vacuum-assisted drainage in cardiopulmonary bypass: advantages and disadvantages.

    PubMed

    Carvalho Filho, Elio Barreto de; Marson, Fernando Augusto de Lima; Costa, Loredana Nilkenes Gomes da; Antunes, Nilson

    2014-01-01

    Systematic review of vacuum assisted drainage in cardiopulmonary bypass, demonstrating its advantages and disadvantages, by case reports and evidence about its effects on microcirculation. We conducted a systematic search on the period 1997-2012, in the databases PubMed, Medline, Lilacs and SciELO. Of the 70 selected articles, 26 were included in the review. Although the vacuum assisted drainage has significant potential for complications and requires appropriate technology and professionalism, prevailed in literature reviewed the concept that vacuum assisted drainage contributed in reducing the rate of transfusions, hemodilutions, better operative field, no significant increase in hemolysis, reduced complications surgical, use of lower prime and of smaller diameter cannulas.

  19. A squeezed light source operated under high vacuum

    PubMed Central

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  20. A squeezed light source operated under high vacuum

    NASA Astrophysics Data System (ADS)

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-12-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.

  1. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, Timothy W.; Schmidt, Frederick A.

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  2. Simulations of the HIE-ISOLDE radio frequency quadrupole cooler and buncher vacuum using the Monte Carlo test particle code Molflow+

    NASA Astrophysics Data System (ADS)

    Hermann, M.; Vandoni, G.; Kersevan, R.; Babcock, C.

    2013-12-01

    The existing ISOLDE radio frequency quadrupole cooler and buncher (RFQCB) will be upgraded in the framework of the HIE-ISOLDE design study. In order to improve beam properties, the upgrade includes vacuum optimization with the aim of tayloring the overall pressure profile: increasing gas pressure at the injection to enhance cooling and reducing it at the extraction to avoid emittance blow up while the beam is being bunched. This paper describes the vacuum modelling of the present RFQCB using Test Particle Monte Carlo (Molflow+). In order to benchmark the simulation results, real pressure profiles along the existing RFQCB are measured using variable helium flux in the cooling section and compared with the pressure profiles obtained with Molflow+. Vacuum conditions of the improved future RFQCB can then be simulated to validate its design.

  3. Researches on Position Detection for Vacuum Switch Electrode

    NASA Astrophysics Data System (ADS)

    Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan

    2018-03-01

    Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.

  4. Development of high purity large forgings for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-10-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  5. Simultaneous determination of thirteen organophosphate esters in settled indoor house dust and a comparison between two sampling techniques.

    PubMed

    Fan, Xinghua; Kubwabo, Cariton; Rasmussen, Pat E; Wu, Fang

    2014-09-01

    An analytical method for the simultaneous determination of 13 organophosphate esters (OPEs) in house dust was developed. The method is based on solvent extraction by sonication, sample cleanup by solid phase extraction (SPE), and analysis by gas chromatography-positive chemical ionization-tandem mass spectrometry (GC/PCI-MS/MS). Method detection limits (MDLs) ranged from 0.03 to 0.43 μg/g and recoveries from 60% to 118%. The inter- and intra-day variations ranged from 3% to 23%. The method was applied to dust samples collected using two vacuum sampling techniques from 134 urban Canadian homes: a sample of fresh or "active" dust (FD) collected by technicians and a composite sample taken from the household vacuum cleaner (HD). Results show that the two sampling methods (i.e., FD vs HD) provided comparable results. Tributoxyethyl phosphate (TBEP), triphenyl phosphate (TPhP), tris(chloropropyl) phosphate (TCPP), tri(2-chloroethyl) phosphate (TCEP), tris(dichloro-isopropyl) phosphate (TDCPP), tricresyl phosphate (TCrP), and tri-n-butyl phosphate (TnBP) were detected in the majority of samples. The most predominant OPE was TBEP, with median concentrations of 31.9 μg/g and 22.8 μg/g in FD and HD samples, respectively, 1 to 2 orders of magnitude higher than other OPEs. The method was also applied to the analysis of OPEs in the National Institute of Standards and Technology (NIST) standard reference material (NIST SRM 2585, organic contaminants in house dust). The results from SRM 2585 may contribute to the certification of OPE concentration values in this SRM. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. Extraction and preparation of high-aroma and low-caffeine instant green teas by the novel column chromatographic extraction method with gradient elution.

    PubMed

    Li, Qing-Rong; Wu, Min; Huang, Rui-Jie; Chen, Ya-Fei; Chen, Chan-Jian; Li, Hui; Ni, He; Li, Hai-Hang

    2017-06-01

    The lack of aroma and natural taste is a critical problem in production and consumption of instant green teas. A method to prepare instant green teas high in-natural-aroma and low-caffeine by the novel column chromatographic extraction with gradient elution is reported. This method simultaneously extracted aroma (or volatile) and non-aroma compounds from green tea. Green tea was loaded into columns with 2.0-fold of petroleum ether (PE): ethanol (8:2). After standing for 3 h until the aroma compounds dissolved, the column was sequentially eluted with 3.0-fold 40% ethanol and 3.5-fold water. The eluant was collected together and automatically separated into PE and ethanol aqueous phases. The aroma extracts was obtained by vacuum-evaporation of PE phase at 45 °C. The ethanol aqueous phase was vacuum-concentrated to aqueous and partially or fully decaffeinated with 4% or 9% charcoal at 70 °C. A regular instant green tea with epigallocatechin-3-gallate: caffeine of 3.5:1 and a low-caffeine instant green tea (less than 1% caffeine) with excellent aroma and taste were prepared, by combining the aroma and non-aroma extracts at a 1:10 ratio. This work provides a practical approach to solve the low-aroma and low-taste problems in the production of high quality instant green teas.

  7. The thin-wall tube drift chamber operating in vacuum (prototype)

    NASA Astrophysics Data System (ADS)

    Alexeev, G. D.; Glonti, L. N.; Kekelidze, V. D.; Malyshev, V. L.; Piskun, A. A.; Potrbenikov, Yu. K.; Rodionov, V. K.; Samsonov, V. A.; Tokmenin, V. V.; Shkarovskiy, S. N.

    2013-08-01

    The goal of this work was to design drift tubes and a chamber operating in vacuum, and to develop technologies for tubes independent assembly and mounting in the chamber. These design and technology were tested on the prototype. The main features of the chamber are the following: the drift tubes are made of flexible mylar film (wall thickness 36 μm, diameter 9.80 mm, length 2160 mm) using ultrasonic welding along the generatrix; the welding device and methods were developed at JINR. Drift tubes with end plugs, anode wires and spacers were completely assembled outside the chamber. "Self-centering" spacers and bushes were used for precise setting of the anode wires and tubes. The assembled tubes were sealed with O-rings in their seats in the chamber which simplified the chamber assembling. Moreover the tube assembly and the chamber manufacture can be performed independently and in parallel; this sufficiently reduces the total time of chamber manufacture and assembling, its cost and allows tubes to be tested outside the chamber. The technology of independent tube assembling is suitable for a chamber of any shape but a round chamber is preferable for operation in vacuum. Single channel amplifier-discriminator boards which are more stable against cross talks were used for testing the tubes. Independently assembled tubes were mounted into the chamber prototype and its performance characteristic measured under the vacuum conditions. The results showed that both the structure and the tubes themselves normally operate. They are suitable for making a full-scale drift chamber for vacuum.

  8. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are splitmore » between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.« less

  9. An assessment of the hardness of miniature vacuum tubes to high-voltage transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orvis, W.J.

    1990-03-01

    Miniature vacuum tubes are vacuum switching and control devices fabricated on a silicon wafer, using the same technology as is used to make integrated circuits. They operate in much the same manner as conventional vacuum tubes, but with two important differences: they are micron sized devices, and they employ field emission instead of thermionic emission as the electron source. As these devices have a vacuum as their active region, they will be extremely hard to nuclear radiation and relatively insensitive to temperature effects, they are also expected to be extremely fast devices. We have estimated here that their hardness tomore » high-voltage transients will be at least as good as existing semiconductor devices and possibly better. 5 figs.« less

  10. DEMONSTRATION BULLETIN: AQUADETOX®/ SVE SYSTEM and AWD Technologies, Inc.

    EPA Science Inventory

    The AWD technology simultaneously treats groundwater and soil-gas contaminated with volatile or ganic compounds (VOC), such as trichloroethylene (TCE) and tetrachloroethylene (PCE). This technology integrates two processes: (1) AquaDetox®, a moderate vacuum (pressure about 50 ...

  11. Quantitative Evaluation of E1 Endoglucanase Recovery from Tobacco Leaves Using the Vacuum Infiltration-Centrifugation Method

    PubMed Central

    Kingsbury, Nathaniel J.; McDonald, Karen A.

    2014-01-01

    As a production platform for recombinant proteins, plant leaf tissue has many advantages, but commercialization of this technology has been hindered by high recovery and purification costs. Vacuum infiltration-centrifugation (VI-C) is a technique to obtain extracellularly-targeted products from the apoplast wash fluid (AWF). Because of its selective recovery of secreted proteins without homogenizing the whole tissue, VI-C can potentially reduce downstream production costs. Lab scale experiments were conducted to quantitatively evaluate the VI-C method and compared to homogenization techniques in terms of product purity, concentration, and other desirable characteristics. From agroinfiltrated Nicotiana benthamiana leaves, up to 81% of a truncated version of E1 endoglucanase from Acidothermus cellulolyticus was recovered with VI-C versus homogenate extraction, and average purity and concentration increases of 4.2-fold and 3.1-fold, respectively, were observed. Formulas were developed to predict recovery yields of secreted protein obtained by performing multiple rounds of VI-C on the same leaf tissue. From this, it was determined that three rounds of VI-C recovered 97% of the total active recombinant protein accessible to the VI-C procedure. The results suggest that AWF recovery is an efficient process that could reduce downstream processing steps and costs for plant-made recombinant proteins. PMID:24971334

  12. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  13. Wafer-Level Vacuum Packaging of Smart Sensors.

    PubMed

    Hilton, Allan; Temple, Dorota S

    2016-10-31

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  14. Wafer-Level Vacuum Packaging of Smart Sensors

    PubMed Central

    Hilton, Allan; Temple, Dorota S.

    2016-01-01

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology. PMID:27809249

  15. Vacuum microelectronics for beam power and rectennas

    NASA Technical Reports Server (NTRS)

    Gray, Henry F.

    1989-01-01

    Vacuum Microelectronic devices can be described as vacuum transistors or micro-miniature vacuum tubes, as one chooses. The fundamental reason behind this new technology is the very large current densities available from field emitters, namely as high as 10(8) A/sq cm. Array current densities as high as 1000 A/sq cm have been measured. Total electron transit times from source to drain for 1 micron feature size devices have been predicted to be about 150fs. This very short transit time implies the possibility of submillimeter wave transmitters and rectennas in devices which can operate with reasonably high voltages and which are small in size and are lightweight. In addition, they are expected to be extremely radiation hard and very temperature insensitive. That is, they are expected to have radiation hardness characteristics similar to vacuum tubes, and both the high temperature and low temperature limits should be determined by the package. That is, there should be no practical intrinsic temperature or carrier freezeout problems for devices based on metals or composites. But the technology is difficult to implement at the present time because it is based on 300 to 500 angstrom radius field emitters which must be relatively uniform. There is also the need to understand the non-equilibrium transport physics in the near-surface regions of the field emitters.

  16. Additive manufacturing of magnetic shielding and ultra-high vacuum flange for cold atom sensors.

    PubMed

    Vovrosh, Jamie; Voulazeris, Georgios; Petrov, Plamen G; Zou, Ji; Gaber, Youssef; Benn, Laura; Woolger, David; Attallah, Moataz M; Boyer, Vincent; Bongs, Kai; Holynski, Michael

    2018-01-31

    Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological performance. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique relevant to the manufacture of quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of 5 ± 0.5 × 10 -10 mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.

  17. Pump and treat in low permeability media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackay, D.M.

    1996-08-01

    Pump and Treat (P&T) is a commonly applied technology whose primary promise for the low permeability environments of interest to these technology reviews is almost certainly containment of the problem. Conventional P&T would be expected to offer little promise of complete restoration in such environments, unless very long time frames (decades or centuries) are considered. A variety of approaches have been proposed to enhance the efficiency of P&T; some appear to offer little promise in low or mixed permeability environments, while others may offer more promise (e.g. hydro- or pneumatic-fracturing, which are described elsewhere in this document, and application ofmore » vacuum to the extraction well(s), which is a proprietary technology whose promise is currently difficult to assess objectively). Understanding the potential advantages and means of optimizing these enhancement approaches requires more understanding of the basic processes limiting P&T performance in low or mixed permeability media. These efforts are probably also necessary to understand the advantages and means of optimizing many of the very different remedial technologies that may be applicable to low or mixed permeability environments. Finally, since a reasonably certain capability of P&T is containment (i.e. prevention of further migration of contaminants), P&T may generally be required as a sort of safety net around sites at which the alternative technologies are being tested or applied. 23 refs.« less

  18. Color and polyphenolic stability in extracts produced from muscadine grape (Vitis rotundifolia) pomace.

    PubMed

    Cardona, Jorge A; Lee, Joon-Hee; Talcott, Stephen T

    2009-09-23

    The muscadine grape ( Vitis rotundifolia ) industry of the southern United States is largely devoid of value-added processes that capture the phytochemical content of wine and juice byproducts. Methods to recover and stabilize polyphenolics from muscadine grape pomace following juice manufacture were evaluated in laboratory-scale and pilot-scale trials. In laboratory-scale trials using osmotic equilibration, water-based extracts from juice pomace initially extracted 31-42% of total polyphenolics, 26-32% of total ellagic acid, and 36-62% of total anthocyanins. When adsorbed onto Amberlite XAD-4 resin to concentrate polyphenolics, these extracts lost 10.5% of their total ellagic acid from inefficient adsorption to the solid phase support. Subsequent pilot-scale trials were evaluated using hot water extracts from grape juice pomace followed by aerobic yeast fermentation to remove sugars and comparison to reversed phase C(18) and Amberlite XAD-4. Extracts were also concentrated using spray-drying and vacuum evaporation. Fermentation had a minor impact on the retention of most polyphenolic compounds evaluated, yet resulted in a 16.3% decrease in antioxidant capacity. Spray-drying resulted in a 30.3% loss in total anthocyanins, a 21.5% loss in total phenolics, and a 23.3% decrease in antioxidant activity, whereas vacuum evaporation had no deleterious impact on these parameters. The physiology of the muscadine grape and its unique phytochemical composition has limited utilization of pomace from wine and juice manufacture. However, these studies demonstrated the potential to extract and concentrate polyphenolic-rich extracts for use in value-added applications.

  19. A vacuum spark ion source: High charge state metal ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P.

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less thanmore » 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.« less

  20. Vacuum insulation of the high energy negative ion source for fusion application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Inoue, T.

    2012-02-15

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A,more » 500 keV D{sup -} ion beams for 100 s.« less

  1. ELI/SBP'S UVB (VACUUM VAPORIZATION WELL) SYSTEM FOR TREATMENT OF VOC-CONTAMINATED SOILS; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the findings of an evaluation of the Unterdruck-Verdampfer-Brunnen (UVB) technology developed by IEG Technologies (IEG) and licensed in the eastern United States by Environmental Laboratories, Inc. (ELI) and SBP Technologies (SBP). This evaluation was cond...

  2. DEMONSTRATION BULLETIN: UNTERDUCK-VERDAMPFER- BRUNNEN TECHNOLOGY (UVB) VACUUM VAPORIZING WELL - ROY F. WESTON, INC./IEG TECHNOLOGIES CORPORATION

    EPA Science Inventory

    The Weston/IEG UVB technology is an in situ groundwater remediation technology that combines air-lift pumping and air stripping to clean aquifers contaminated with volatile organic compounds. A UVB system consists of a single well with two hydraulically separated screened interva...

  3. Vacuum-assisted drainage in cardiopulmonary bypass: advantages and disadvantages

    PubMed Central

    de Carvalho Filho, Élio Barreto; Marson, Fernando Augusto de Lima; da Costa, Loredana Nilkenes Gomes; Antunes, Nilson

    2014-01-01

    Systematic review of vacuum assisted drainage in cardiopulmonary bypass, demonstrating its advantages and disadvantages, by case reports and evidence about its effects on microcirculation. We conducted a systematic search on the period 1997-2012, in the databases PubMed, Medline, Lilacs and SciELO. Of the 70 selected articles, 26 were included in the review. Although the vacuum assisted drainage has significant potential for complications and requires appropriate technology and professionalism, prevailed in literature reviewed the concept that vacuum assisted drainage contributed in reducing the rate of transfusions, hemodilutions, better operative field, no significant increase in hemolysis, reduced complications surgical, use of lower prime and of smaller diameter cannulas. PMID:25140478

  4. Electron stripping processes of H⁻ ion beam in the 80 kV high voltage extraction column and low energy beam transport line at LANSCE.

    PubMed

    Draganic, I N

    2016-02-01

    Basic vacuum calculations were performed for various operating conditions of the Los Alamos National Neutron Science H(-) Cockcroft-Walton (CW) injector and the Ion Source Test Stand (ISTS). The vacuum pressure was estimated for both the CW and ISTS at five different points: (1) inside the H(-) ion source, (2) in front of the Pierce electrode, (3) at the extraction electrode, (4) at the column electrode, and (5) at the ground electrode. A static vacuum analysis of residual gases and the working hydrogen gas was completed for the normal ion source working regime. Gas density and partial pressure were estimated for the injected hydrogen gas. The attenuation of H(-) beam current and generation of electron current in the high voltage acceleration columns and low energy beam transport lines were calculated. The interaction of H(-) ions on molecular hydrogen (H2) is discussed as a dominant collision process in describing electron stripping rates. These results are used to estimate the observed increase in the ratio of electrons to H(-) ion beam in the ISTS beam transport line.

  5. Turning the Moon into a Solar Photovoltaic Paradise

    NASA Technical Reports Server (NTRS)

    Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter

    2006-01-01

    Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.

  6. Rapid Bedside Inactivation of Ebola Virus for Safe Nucleic Acid Tests.

    PubMed

    Rosenstierne, Maiken Worsøe; Karlberg, Helen; Bragstad, Karoline; Lindegren, Gunnel; Stoltz, Malin Lundahl; Salata, Cristiano; Kran, Anne-Marte Bakken; Dudman, Susanne Gjeruldsen; Mirazimi, Ali; Fomsgaard, Anders

    2016-10-01

    Rapid bedside inactivation of Ebola virus would be a solution for the safety of medical and technical staff, risk containment, sample transport, and high-throughput or rapid diagnostic testing during an outbreak. We show that the commercially available Magna Pure lysis/binding buffer used for nucleic acid extraction inactivates Ebola virus. A rapid bedside inactivation method for nucleic acid tests is obtained by simply adding Magna Pure lysis/binding buffer directly into vacuum blood collection EDTA tubes using a thin needle and syringe prior to sampling. The ready-to-use inactivation vacuum tubes are stable for more than 4 months, and Ebola virus RNA is preserved in the Magna Pure lysis/binding buffer for at least 5 weeks independent of the storage temperature. We also show that Ebola virus RNA can be manually extracted from Magna Pure lysis/binding buffer-inactivated samples using the QIAamp viral RNA minikit. We present an easy and convenient method for bedside inactivation using available blood collection vacuum tubes and reagents. We propose to use this simple method for fast, safe, and easy bedside inactivation of Ebola virus for safe transport and routine nucleic acid detection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Effects of four different drying methods on the carotenoid composition and antioxidant capacity of dried Gac peel.

    PubMed

    Chuyen, Hoang V; Roach, Paul D; Golding, John B; Parks, Sophie E; Nguyen, Minh H

    2017-03-01

    Gac fruit (Momordica cochinchinensis Spreng.) is a rich source of carotenoids for the manufacture of powder, oil and capsules for food, cosmetic and pharmaceutical uses. Currently, only the aril of the Gac fruit is processed and the peel, similar to the other components, is discarded, although it contains high level of carotenoids, which could be extracted for commercial use. In the present study, four different drying methods (hot-air, vacuum, heat pump and freeze drying), different temperatures and drying times were investigated for producing dried Gac peel suitable for carotenoid extraction. The drying methods and drying temperatures significantly affected the drying time, carotenoid content and antioxidant capacity of the dried Gac peel. Among the investigated drying methods, hot-air drying at 80  o C and vacuum drying at 50  o C produced dried Gac peel that exhibited the highest retention of carotenoids and the strongest antioxidant capacity. Hot-air drying at 80  o C and vacuum drying at 50  o C are recommended for the drying of Gac peel. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Evaluation of natural antimicrobials on typical meat spoilage bacteria in vitro and in vacuum-packed pork meat.

    PubMed

    Schirmer, Bjørn Christian; Langsrud, Solveig

    2010-03-01

    The aim of this study was to investigate the inhibitory effect of natural antimicrobials on the growth of typical spoilage bacteria from marinated pork. Minimum inhibitory concentrations (MIC) of thymol, cinnamaldehyde, allyl isothiocyanate, citric acid, ascorbic acid, a rosemary extract, and a grapefruit seed extract against Lactobacillus algidus, Leuconostoc mesenteroides, Leuconostoc carnosum, Carnobacterium maltaromaticum, Carnobacterium divergens, Brochothrix thermosphacta, and Serratia proteamaculans were determined in a microplate assay. Combinations of antimicrobials were tested and several combinations showed synergistic effects in inhibiting bacterial growth. Single and combined antimicrobials were added to vacuum-packed pork meat to evaluate preserving effects. Antimicrobial concentrations of up to 10 times the MIC values showed no effect on total bacterial growth in vacuum packed pork meaning that although most antimicrobials inhibited the growth of spoilage bacteria in vitro, results from the microplate assay could not be transferred to the meat system. Most natural antimicrobials possess strong odor and flavor that limit their use as a food preservative. In conclusion, this study showed that the use of natural antimicrobials in meat products is limited and that bacterial quality and shelf life was not enhanced under the chosen conditions.

  9. Vacuum Nuller Testbed (VNT) Performance, Characterization and Null Control: Progress Report

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.; Noecker, M. Charley; Kendrick, Stephen; Helmbrecht, Michael

    2011-01-01

    Herein we report on the development. sensing and control and our first results with the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraph (VNC) for exoplanet coronagraphy. The VNC is one of the few approaches that works with filled. segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be Hown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies. and has developed an incremental sequence of VNC testbeds to advance this approach and the enabling technologies associated with it. We discuss the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). Tbe VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(sup 8), 10(sup 9) and ideally 10(sup 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the initial laboratory results, the optical configuration, critical technologies and the null sensing and control approach.

  10. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  11. Technology Development of Salak (Salacca Zalacca) Chips With Vacuum Frying Machine Base On Expert System In Kramat-Bangkalan Regency

    NASA Astrophysics Data System (ADS)

    Rosida, D. F.; Happyanto; Anggraeni; Sugiarto; Hapsari

    2018-01-01

    Agropolitan Program is one form of regional development to improve agribusiness system and effort to improve the welfare of the community. One of the leading commodities in Bangkalan agroclimates is salak which is a potentially very large commodity to be developed. Salak commodities in Kramat Bangkalan Indonesia have developed varous salak produced such as dates of salak, syrup and dodol salak. Salak chips was the target of innovation from processed salak. The Production of salak chips using frying technology with vacuum system to obtain crunchy chips. To get the results need to be developed synergy technology to combine the process conditions and the right system in producing good quality salak chips. Bangkalan Regency is the potential to continue to develop products using a variety of salak to the processed form of vacuum frying machine based on expert system so that the resulting product would be great texture, aroma and taste. This will make the area of Bangkalan, Indonesia be more independent in producing and increasing revenue.

  12. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE AND CHLORIDE FROM LEGACY FISSILE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Peters, T.

    2011-11-01

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO{sub 2}). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl{sub 2}), calcium fluoride (CaF{sub 2}), and plutonium fluoride (PuF{sub 3}) were of particular concern. To enable the use of the same operating conditions for themore » distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl{sub 2}, CaF{sub 2} and PuF{sub 3} below 1000 C using VSD technology.« less

  13. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  14. Calculation of a vacuum system of the installation for cleaning the surface of metal rolling by a cathode spot of a vacuum arc

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. G.; Kurbanov, T. A.; Kostrin, D. K.

    2017-07-01

    In this work are presented the installations for cleaning the surface of rolled products (wire and ribbon) from scale and technological lubricant with gateway systems of open type. The calculation of gateway devices and the optimal selection of pumping systems are shown.

  15. Space Research Results Purify Semiconductor Materials

    NASA Technical Reports Server (NTRS)

    2010-01-01

    While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.

  16. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery. The technologies were (1) atmospheric batch distillation, (2) vacuum heat-pump distillation, and (3) low-emission vapor degreas...

  17. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  18. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  19. Vacuum cooling of meat products: current state-of-the-art research advances.

    PubMed

    Feng, Chaohui; Drummond, Liana; Zhang, Zhihang; Sun, Da-Wen; Wang, Qijun

    2012-01-01

    Vacuum cooling (VC) is commonly applied for cooling of several foodstuffs, to provide exceptionally rapid cooling rates with low energy consumption and resulting in high-quality food products. However, for products such as meat and cooked meat products, the higher cooling loss of vacuum cooling compared with established methods still means lower yields, and important meat quality parameters can be negatively affected. Substantial efforts during the past ten years have aimed to improve the technology in order to offer the meat industry, especially the cooked meat industry, optimized production in terms of safety regulations and guidelines, as well as meat quality. This review presents and discusses recent VC developments directed to the cooked meat industry. The principles of VC, and the basis for improvements of this technology, are firstly discussed; future prospects for research and development in this area are later explored, particularly in relation to cooling of cooked meat and meat products.

  20. Second Generation Novel High Temperature Commercial Receiver & Low Cost High Performance Mirror Collector for Parabolic Solar Trough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stettenheim, Joel

    Norwich Technologies (NT) is developing a disruptively superior solar field for trough concentrating solar power (CSP). Troughs are the leading CSP technology (85% of installed capacity), being highly deployable and similar to photovoltaic (PV) systems for siting. NT has developed the SunTrap receiver, a disruptive alternative to vacuum-tube concentrating solar power (CSP) receivers, a market currently dominated by the Schott PTR-70. The SunTrap receiver will (1) operate at higher temperature (T) by using an insulated, recessed radiation-collection system to overcome the energy losses that plague vacuum-tube receivers at high T, (2) decrease acquisition costs via simpler structure, and (3) dramaticallymore » increase reliability by eliminating vacuum. It offers comparable optical efficiency with thermal loss reduction from ≥ 26% (at presently standard T) to ≥ 55% (at high T), lower acquisition costs, and near-zero O&M costs.« less

  1. 21 CFR 884.1175 - Endometrial suction curette and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... uterus by scraping and vacuum suction. This device is used to obtain tissue for biopsy or for menstrual extraction. This generic type of device may include catheters, syringes, and tissue filters or traps. (b...

  2. 21 CFR 884.1175 - Endometrial suction curette and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... uterus by scraping and vacuum suction. This device is used to obtain tissue for biopsy or for menstrual extraction. This generic type of device may include catheters, syringes, and tissue filters or traps. (b...

  3. An improved gas extraction furnace

    NASA Technical Reports Server (NTRS)

    Wilkin, R. B.

    1972-01-01

    Design of glass furnace for analysis of rocks to determine nature and amount of trapped gas is described. Furnace heats specimen in vacuum conditions by radio frequency induction. Diagram of apparatus to show construction and operation is provided.

  4. On thermionic emission and the use of vacuum tubes in the advanced physics laboratory

    NASA Astrophysics Data System (ADS)

    Angiolillo, Paul J.

    2009-12-01

    Two methods are outlined for measuring the charge-to-mass ratio e /me of the electron using thermionic emission as exploited in vacuum tube technology. One method employs the notion of the space charge in the vacuum tube diode as described by the Child-Langmuir equation; the other method uses the electron trajectories in vacuum tube pentodes with cylindrical electrodes under conditions of orthogonally related electric and magnetic fields (the Hull magnetron method). The vacuum diode method gave e /me=1.782±0.166×10+11 C/kg (averaged over the vacuum diodes studied), and the Hull magnetron method gave e /me=1.779±0.208×10+11 C/kg (averaged over both pentodes and the anode voltages studied). These methods afford opportunities for students to determine the e /me ratio without using the Bainbridge tube method and to become familiar with phenomena not normally covered in a typical experimental methods curriculum.

  5. Impact of vacuum frying on quality of potato crisps and frying oil.

    PubMed

    Belkova, Beverly; Hradecky, Jaromir; Hurkova, Kamila; Forstova, Veronika; Vaclavik, Lukas; Hajslova, Jana

    2018-02-15

    This research was focused on a critical assessment of vacuum frying as a technology enabling minimization of acrylamide formation in potato crisps and reducing undesirable chemical changes that occur in frying oil at high temperatures. The potato slices were fried in rapeseed oil under vacuum at 125°C and atmospheric pressure at 165°C. The experiments were performed on two potato varieties, Saturna and Impala. Vacuum frying reduced the formation of acrylamide by 98% and also other Maillard reaction products, specifically alkylpyrazines. Concurrently a lower extent of oxidative changes was observed in the frying oil, while 3-MCPD esters decreased fairly quickly during conventional frying. Sensory characteristics of the vacuum and conventionally fried potato crisps were evaluated by a 23-member panel. The majority of panellists preferred the flavour of 'conventional crisps', while only a few of them appreciated potato-like fresh flavour of 'vacuum crisps' and classified this product as 'tasty'. Copyright © 2017. Published by Elsevier Ltd.

  6. G-38, 39 and 40: An artist's exploration of space. [using the space environment to create orbiting sphere configurations

    NASA Technical Reports Server (NTRS)

    Mcshane, J. W.; Coursen, C. D.

    1984-01-01

    Three experiments are described which use space processing technology in the formation of and coating of bubbles and spheres to be orbited as sculptures visible from Earth. In one experiment, a 22,000 m1 sphere is to ride into orbit containing a 15 psi Earth atmosphere. Once in orbit, a controller directs a valve to open, linking the sphere to a vacuum of space. Technologies used in the fabrication of these art forms include vacuum film deposition and large bubble formation in the space environment.

  7. Development of an efficient fungal DNA extraction method to be used in random amplified polymorphic DNA-PCR analysis to differentiate cyclopiazonic acid mold producers.

    PubMed

    Sánchez, Beatriz; Rodríguez, Mar; Casado, Eva M; Martín, Alberto; Córdoba, Juan J

    2008-12-01

    A variety of previously established mechanical and chemical treatments to achieve fungal cell lysis combined with a semiautomatic system operated by a vacuum pump were tested to obtain DNA extract to be directly used in randomly amplified polymorphic DNA (RAPD)-PCR to differentiate cyclopiazonic acid-producing and -nonproducing mold strains. A DNA extraction method that includes digestion with proteinase K and lyticase prior to using a mortar and pestle grinding and a semiautomatic vacuum system yielded DNA of high quality in all the fungal strains and species tested, at concentrations ranging from 17 to 89 ng/microl in 150 microl of the final DNA extract. Two microliters of DNA extracted with this method was directly used for RAPD-PCR using primer (GACA)4. Reproducible RAPD fingerprints showing high differences between producer and nonproducer strains were observed. These differences in the RAPD patterns did not differentiate all the strains tested in clusters by cyclopiazonic acid production but may be very useful to distinguish cyclopiazonic acid producer strains from nonproducer strains by a simple RAPD analysis. Thus, the DNA extracts obtained could be used directly without previous purification and quantification for RAPD analysis to differentiate cyclopiazonic acid producer from nonproducer mold strains. This combined analysis could be adaptable to other toxigenic fungal species to enable differentiation of toxigenic and non-toxigenic molds, a procedure of great interest in food safety.

  8. Study on vacuum packaging reliability of micromachined quartz tuning fork gyroscopes

    NASA Astrophysics Data System (ADS)

    Fan, Maoyan; Zhang, Lifang

    2017-09-01

    Packaging technology of the micromachined quartz tuning fork gyroscopes by vacuum welding has been experimentally studied. The performance of quartz tuning fork is influenced by the encapsulation shell, encapsulation method and fixation of forks. Alloy solder thick film is widely used in the package to avoid the damage of the chip structure by the heat resistance and hot temperature, and this can improve the device performance and welding reliability. The results show that the bases and the lids plated with gold and nickel can significantly improve the airtightness and reliability of the vacuum package. Vacuum packaging is an effective method to reduce the vibration damping, improve the quality factor and further enhance the performance. The threshold can be improved nearly by 10 times.

  9. Commercial aspects of epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.

  10. Vacuum birefringence detection in all-optical scenarios

    NASA Astrophysics Data System (ADS)

    Ataman, Stefan

    2018-06-01

    In this paper we propose an all-optical vacuum birefringence experiment and evaluate its feasibility for various scenarios. Many petawatt-class lasers became operational and many more are expected to enter operation in the near future, therefore unprecedented electromagnetic fields (EL˜1014-1015 V/m and intensities IL˜1021-1023W/cm 2 ) will become available for experiments. In our proposal a petawatt-class laser disturbs the quantum vacuum and creates a delay in a counterpropagating probe laser beam. Placing this delayed beam in one arm of a Mach-Zehnder interferometer (MZI), allows the measurement of the vacuum refraction coefficient via a phase shift. Coherent as well as squeezed light are both considered and the minimum phase sensitivity evaluated. We show that using existing technology with some moderately optimistic assumptions, at least part of the discussed scenarios are feasible for a vacuum birefringence detection experiment.

  11. Possible signals of vacuum dynamics in the Universe

    NASA Astrophysics Data System (ADS)

    Peracaula, Joan Solà; de Cruz Pérez, Javier; Gómez-Valent, Adrià

    2018-05-01

    We study a generic class of time-evolving vacuum models which can provide a better phenomenological account of the overall cosmological observations as compared to the ΛCDM. Among these models, the running vacuum model (RVM) appears to be the most motivated and favored one, at a confidence level of ˜3σ. We further support these results by computing the Akaike and Bayesian information criteria. Our analysis also shows that we can extract fair signals of dynamical dark energy (DDE) by confronting the same set of data to the generic XCDM and CPL parametrizations. In all cases we confirm that the combined triad of modern observations on Baryonic Acoustic Oscillations, Large Scale Structure formation, and the Cosmic Microwave Background, provide the bulk of the signal sustaining a possible vacuum dynamics. In the absence of any of these three crucial data sources, the DDE signal can not be perceived at a significant confidence level. Its possible existence could be a cure for some of the tensions existing in the ΛCDM when confronted to observations.

  12. Paving asphalt products exhibit a lack of carcinogenic and mutagenic activity.

    PubMed

    Goyak, Katy O; McKee, Richard H; Minsavage, Gary D; McGowan, Claude; Daughtrey, Wayne C; Freeman, James J

    2011-10-01

    A paving asphalt and a vacuum residuum (derived from crude oil by atmospheric and subsequent vacuum distillation and used as a blend stock for asphalt) were tested in skin carcinogenesis assays in mice and in optimized Ames assays for mutagenic activity. In the skin cancer tests, each substance was applied twice weekly for 104 weeks to the clipped backs of groups of 50 male C3H mice. Neither the paving asphalt nor the vacuum residuum (30% weight/volume and 75% weight/weight in US Pharmacopeia mineral oil, respectively) produced any tumors. The positive control benzo[a]pyrene (0.05% w/v in toluene) induced tumors in 46 of 50 mice, demonstrating the effectiveness of the test method. Salmonella typhimurium tester strain TA98 was used in the optimized Ames assay to evaluate mutagenic potential. Dimethylsulfoxide (DMSO) extractions of the substances were not mutagenic when tested up to toxic limits. Thus, under the conditions of these studies, neither the paving asphalt nor the vacuum residuum was carcinogenic or mutagenic.

  13. The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Sharma, H. N.; McLean, W.; Maxwell, R. S.; Dinh, L. N.

    2016-09-01

    A silica-filled polydimethylsiloxane (PDMS) composite M9787 was investigated for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environment applications at room temperature (˜300 K). The main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (˜30 ppm by volume of H2O) for even a couple of days was the formation, on the silica surface fillers, of ˜60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. The presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, H. N.; McLean, W.; Maxwell, R. S.

    We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less

  15. The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane

    DOE PAGES

    Sharma, H. N.; McLean, W.; Maxwell, R. S.; ...

    2016-09-21

    We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less

  16. Report to DHS on Summer Internship 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckwith, R H

    2006-07-26

    This summer I worked at Lawrence Livermore National Laboratory in a bioforensics collection and extraction research group under David Camp. The group is involved with researching efficiencies of various methods for collecting bioforensic evidence from crime scenes. The different methods under examination are a wipe, swab, HVAC filter and a vacuum. The vacuum is something that has particularly gone uncharacterized. My time was spent mostly on modeling and calculations work, but at the end of the summer I completed my internship with a few experiments to supplement my calculations. I had two major projects this summer. My first major projectmore » this summer involved fluid mechanics modeling of collection and extraction situations. This work examines different fluid dynamic models for the case of a micron spore attached to a fiber. The second project I was involved with was a statistical analysis of the different sampling techniques.« less

  17. Formation of Cadmium-Sulfide Nanowhiskers via Vacuum Evaporation and Condensation in a Quasi-Closed Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, A. P., E-mail: Alexei.Belyaev@pharminnotech.com; Antipov, V. V.; Rubets, V. P.

    Structural and technological studies of processes in which cadmium-sulfide nanowhiskers are synthesized in a quasi-closed volume by the method of vacuum evaporation and condensation are reported. It is demonstrated that the processes are in agreement with the classical vapor–liquid–crystal model. Micrographs of the objects in different formation stages are presented.

  18. Indications for Emergency Intervention, Mode of Delivery, and the Childbirth Experience.

    PubMed

    Handelzalts, Jonathan E; Waldman Peyser, Avigail; Krissi, Haim; Levy, Sigal; Wiznitzer, Arnon; Peled, Yoav

    2017-01-01

    Although the impact of emergency procedures on the childbirth experience has been studied extensively, a possible association of childbirth experience with indications for emergency interventions has not been reported. To compare the impacts on childbirth experience of 'planned' delivery (elective cesarean section and vaginal delivery) versus 'unplanned' delivery (vacuum extraction or emergency cesarean section); the intervention itself (vacuum extraction versus emergency cesarean section); and indications for intervention (arrest of labor versus risk to the mother or fetus). A total of 469 women, up to 72 hours post-partum, in the maternity ward of one tertiary health care institute completed the Subjective Childbirth Experience Questionnaire (score: 0-4, a higher score indicated a more negative experience) and a Personal Information Questionnaire. Intra-partum information was retrieved from the medical records. One-way analysis of variance and two-way analysis of variance, followed by analysis of covariance, to test the unique contribution of variables, were used to examine differences between groups in outcome. Tukey's Post-Hoc analysis was used when appropriate. Planned delivery, either vaginal or elective cesarean section, was associated with a more positive experience than unplanned delivery, either vacuum or emergency cesarean section (mean respective Subjective Childbirth Experience scores: 1.58 and 1.49 vs. 2.02 and 2.07, P <0.01). The difference in mean Subjective Childbirth Experience scores following elective cesarean section and vaginal delivery was not significant; nor was the difference following vacuum extraction and emergency cesarean section. Interventions due to immediate risk to mother or fetus resulted in a more positive birth experience than interventions due to arrest of labor (Subjective Childbirth Experience: 1.9 vs. 2.2, P <0.01). Compared to planned interventions, unplanned interventions were shown to be associated with a more negative maternal childbirth experience. However, the indication for unplanned intervention appears to have a greater effect than the nature of the intervention on the birth experience. Women who underwent emergency interventions due to delay of birth (arrest of labor) perceived their birth experience more negatively than those who underwent interventions due to risk for the mother or fetus, regardless of the nature of the intervention (vacuum or emergency cesarean section). The results indicate the importance of follow-up after unexpected emergency interventions, especially following arrest of labor, as negative birth experience may have repercussions in a woman's psychosocial life and well-being.

  19. Requisite Skills and Knowledge Principals Perceive Necessary to Successfully Integrate Technology at the Middle School Level

    ERIC Educational Resources Information Center

    Kennedy, Kateri Tekakwitha

    2015-01-01

    Technology integration does not happen in a vacuum. It needs a plan. School leaders must oversee this plan and combine best practices for implementing effective instructional practices, sound curricula, and educational technology. Just as instructional leaders need to have a command of curriculum and instruction, educational technology leaders…

  20. Horror, happenings and highlights in the history of vacuum physics

    NASA Astrophysics Data System (ADS)

    Kleint, Christian

    1998-12-01

    The origin of vacuum physics can be traced back to a statement of Aristotle that a vacuum cannot exist, which was questioned by Otto von Guericke. He tried to answer the question by experiment and was one of the most successful personalities to overcome medieval thought, and to pave the way to a new vistas for science and technology. His life and his famous demonstrations are described and a short account of the development of his apparatus and the impact on research in various countries is discussed. A list of old and newer reviews concludes the article.

  1. Metal vapor arc switch electromagnetic accelerator technology

    NASA Technical Reports Server (NTRS)

    Mongeau, P. P.

    1984-01-01

    A multielectrode device housed in an insulator vacuum vessel, the metal vapor vacuum switch has high power capability and can hold off voltages up to the 100 kilovolt level. Such switches can be electronically triggered and can interrupt or commutate at a zero current crossing. The physics of arc initiation, arc conduction, and interruption are examined, including material considerations; inefficiencies; arc modes; magnetic field effects; passive and forced extinction; and voltage recovery. Heating, electrode lifetime, device configuration, and external circuit configuration are discussed. The metal vapor vacuum switch is compared with SCRs, GTOs, spark gaps, ignitrons, and mechanical breakers.

  2. Method for calculating the duration of vacuum drying of a metal-concrete container for spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Karyakin, Yu. E.; Nekhozhin, M. A.; Pletnev, A. A.

    2013-07-01

    A method for calculating the quantity of moisture in a metal-concrete container in the process of its charging with spent nuclear fuel is proposed. A computing method and results obtained by it for conservative estimation of the time of vacuum drying of a container charged with spent nuclear fuel by technologies with quantization and without quantization of the lower fuel element cluster are presented. It has been shown that the absence of quantization in loading spent fuel increases several times the time of vacuum drying of the metal-concrete container.

  3. PREFACE: 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6)

    NASA Astrophysics Data System (ADS)

    Ahsan Bhatti, Javaid; Hussain, Talib; Khan, Wakil

    2013-06-01

    The Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA) conference series has been organized to create a new forum in Asia and Australia to discuss vacuum, surface and related sciences, techniques and applications. The conference series is officially endorsed by the International Union for Vacuum Science, Technique and Application (IUVSTA). The International Steering Committee of VASSCAA is comprised of Vacuum Societies in seven countries: Australia, China, India, Iran, Japan, South Korea and Pakistan. VASSCAA-1 was organized by the Vacuum Society of Japan in 1999 in Tokyo, Japan. VASSCAA-2 was held in 2002 in Hong Kong, VASSCAA-3 in Singapore in 2005. VASSCAA-4 was held in Matsue, Japan in 2008 and VASSCAA-5 in 2010 in Beijing, China. The 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6) was held from 9-13 October 2012 in the beautiful city of Islamabad, Pakistan. The venue of the conference was the Pak-China Friendship Centre, Islamabad. More than six hundred local delgates and around seventy delegates from different countries participated in this mega event. These delegates included scientists, researchers, engineers, professors, plant operators, designers, vendors, industrialists, businessmen and students from various research organizations, technical institutions, universities, industries and companies from Pakistan and abroad. The focal point of the event was to enhance cooperation between Pakistan and the international community in the fields of vacuum, surface science and other applied technologies. At VASSCAA-6 85 oral presentations were delivered by local and foreign speakers. These were divided into different sessions according to their fields. A poster session was organized at which over 70 researchers and students displayed their posters. The best three posters won prizes. In parallel to the main conference sessions four technical short courses were held. The participants showed keen interest in all these courses. The most significant part of this event was an international exhibition of science, technology, energy and industry. In this international exhibition over 60 prominent international as well as local industrialists and vendors displayed their products. For the recreation of conference participants a cultural program and dinner was arranged. This entertaining program was fully enjoyed by all the participants especially the foreign guests. Recreational trips were also arranged for the foreign delegates. This mega event provided a unique opportunity to our scientific community to benefit from the rich international experience. The conference was a major forum for the exchange of knowledge and provided numerous scientific, technical and social opportunities for meeting leading experts. Editors Dr Javaid Ahsan Bhatti, Dr Talib Hussain, Dr Suleman Qaiser and Dr Wakil Khan National Institute of Vacuum Science and Technology (NINVAST) NCP Complex, Quaid-e-Azam University, Islamabad, Pakistan The PDF also contains a list of delegates.

  4. Electron stripping processes of H{sup −} ion beam in the 80 kV high voltage extraction column and low energy beam transport line at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draganic, I. N., E-mail: draganic@lanl.gov

    Basic vacuum calculations were performed for various operating conditions of the Los Alamos National Neutron Science H{sup −} Cockcroft-Walton (CW) injector and the Ion Source Test Stand (ISTS). The vacuum pressure was estimated for both the CW and ISTS at five different points: (1) inside the H{sup −} ion source, (2) in front of the Pierce electrode, (3) at the extraction electrode, (4) at the column electrode, and (5) at the ground electrode. A static vacuum analysis of residual gases and the working hydrogen gas was completed for the normal ion source working regime. Gas density and partial pressure weremore » estimated for the injected hydrogen gas. The attenuation of H{sup −} beam current and generation of electron current in the high voltage acceleration columns and low energy beam transport lines were calculated. The interaction of H{sup −} ions on molecular hydrogen (H{sub 2}) is discussed as a dominant collision process in describing electron stripping rates. These results are used to estimate the observed increase in the ratio of electrons to H{sup −} ion beam in the ISTS beam transport line.« less

  5. Laser Shearography Inspection of TPS (Thermal Protection System) Cork on RSRM (Reusable Solid Rocket Motors)

    NASA Technical Reports Server (NTRS)

    Lingbloom, Mike; Plaia, Jim; Newman, John

    2006-01-01

    Laser Shearography is a viable inspection method for detection of de-bonds and voids within the external TPS (thermal protection system) on to the Space Shuttle RSRM (reusable solid rocket motors). Cork samples with thicknesses up to 1 inch were tested at the LTI (Laser Technology Incorporated) laboratory using vacuum-applied stress in a vacuum chamber. The testing proved that the technology could detect cork to steel un-bonds using vacuum stress techniques in the laboratory environment. The next logical step was to inspect the TPS on a RSRM. Although detailed post flight inspection has confirmed that ATK Thiokol's cork bonding technique provides a reliable cork to case bond, due to the Space Shuttle Columbia incident there is a great interest in verifying bond-lines on the external TPS. This interest provided and opportunity to inspect a RSRM motor with Laser Shearography. This paper will describe the laboratory testing and RSRM testing that has been performed to date. Descriptions of the test equipment setup and techniques for data collection and detailed results will be given. The data from the test show that Laser Shearography is an effective technology and readily adaptable to inspect a RSRM.

  6. Titanium dioxide nanostructure synthesized by sol-gel for organic solar cells using natural dyes extracted from black and red sticky rice

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Harjana, H.; Sakti, L. S.

    2012-06-01

    Nanocrystalline semiconductor metal oxides have achieved a great importance in our industrial world today. They may be defined as metal oxides with crystal size between 1 and 100 nm. TiO2 nanosize particles have attracted significant interest of materials scientists and physicists due to their special properties and have attained a great importance in several technological applications such as photocatalysis, sensors, solar cells and memory devices. TiO2 nanoparticles can be produced by a variety of techniques ranging from simple chemical to mechanical to vacuum methods, including many variants of physical and chemical vapour deposition techniques. In the present research work we report the synthesis of TiO2 nanoparticles by Sol-Gel technique. The characterization of particles was carried out by XRD and XRF techniques. The importance and applications of these nanoparticles for solar cells are also discussed in this work.

  7. Historical Perspective on Technology and Music.

    ERIC Educational Resources Information Center

    Webster, Peter

    2002-01-01

    Explores the historical developments in technology that affected music education. Describes the developments in hardware, such as gears and levers, electricity, vacuum tubes, transistors, and integrated circuits. Discusses the changes in computer software from the 1950s to the present. (CMK)

  8. Lightweight thermally efficient composite feedlines, preliminary design and evaluation. [for the space tug propulsion system

    NASA Technical Reports Server (NTRS)

    Spond, D. E.; Holzworth, R. E.; Hall, C. A.

    1974-01-01

    Six liquid hydrogen feedline design concepts were developed for the cryogenic space tug. The feedlines include composite and all-metal vacuum jacketed and non-vacuum jacketed concepts, and incorporate the latest technology developments in the areas of thermally efficient vacuum jacket end closures and standoffs, radiation shields in the vacuum annulus, thermal coatings, and lightweight dissimilar metal flanged joints. The feedline design concepts were evaluated on the basis of thermal performance, weight, cost, reliability, and reusability. It is shown that composite tubing provides improved thermal performance and reduced weight for each design concept considered. Approximately 12 kg (26 lb.) can be saved by the use of composite tubing for the LH2 feedline and the other propulsion lines in the space tug.

  9. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  10. Vacuum system for room temperature X-ray lithography source (XLS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuchman, J.C.

    1988-09-30

    A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)

  11. Vacuum system for room temperature X-ray lithography source (XLS)

    NASA Astrophysics Data System (ADS)

    Schuchman, J. C.

    1988-09-01

    A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)

  12. Liquefaction and Storage of In-Situ Oxygen on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.; Johnson, Wesley L.; Sutherlin, Steven G.

    2016-01-01

    ISRU is currently base-lined for the production of oxygen on the Martian surface in the Evolvable Mars Campaign Over 50 of return vehicle mass is oxygen for propulsion. There are two key cryogenic fluid-thermal technologies that need to be investigated to enable these architectures. High lift refrigeration systems. Thermal Insulation systems, either lightweight vacuum jackets of soft vacuum insulation systems.

  13. Ethanol production from food waste at high solids content with vacuum recovery technology.

    PubMed

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  14. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species.

    PubMed

    López-Portillo, Jorge; Ewers, Frank W; Méndez-Alonzo, Rodrigo; Paredes López, Claudia L; Angeles, Guillermo; Alarcón Jiménez, Ana Luisa; Lara-Domínguez, Ana Laura; Torres Barrera, María Del Carmen

    2014-06-01

    • Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na + , K + , and Cl - ), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution. © 2014 Botanical Society of America, Inc.

  15. Maintaining Your Threads.

    ERIC Educational Resources Information Center

    Delack, Renee J.

    1996-01-01

    Describes how keeping carpets in good condition depends not only on proper maintenance but also on careful carpet selection at the outset. Offers advice for restoring a carpet's new appearance through vacuuming and hot-water extraction and suggests ways to manage spots and stains. (RJM)

  16. PNEUMATIC PUMP TEST FOR DESIGN OF SOIL VACUUM EXTRACTION

    EPA Science Inventory

    In-situ pneumatic pumping tests were performed to estimate the pneumatic permeability at a site containing soils contaminated with aviation gasoline. Determination of pneumatic permeability was necessary to evaluate soil-air discharge or pore volume exchange rates. Pressure propa...

  17. Effects of Three Typical Resistivity Models on Pulsed Inductive Plasma Acceleration Modeling

    NASA Astrophysics Data System (ADS)

    Sun, Xin-Feng; Jia, Yan-Hui; Zhang, Tian-Ping; Wu, Chen-Chen; Wen, Xiao-Dong; Guo, Ning; Jin, Hai; Ke, Yu-Jun; Guo, Wei-Long

    2017-12-01

    Not Available Supported by the Fund of Science and Technology on Vacuum Technology and Physics Laboratory of Lanzhou Institute of Physics under Grant No YSC0715, the National Natural Science Foundation of China under Grant No 62601210, and the Civil Aerospace Technology Research Project under Grant No D010509.

  18. New vision in fractional radiofrequency technology with switching, vacuum and cooling.

    PubMed

    Elman, Monica; Gauthier, Nelly; Belenky, Inna

    2015-04-01

    Since the introduction of fractional technology, various systems were launched to the market. The first generation of fractional RF systems created epidermal ablation with coagulative/necrosis of the dermis with sufficient clinical outcomes, but with some limitations. The aim of this study was to evaluate the efficacy and safety of SVC technology, based on the principle of separate biological responses. Fifty-two patients were treated for 3-6 sessions using fractional RF handpiece and eight patients received combination treatments with non-invasive RF handpiece. All volunteers showed notable to significant improvement in the photoageing symptoms, without any significant complications or adverse events. Due to its wide spectrum of parameters, the SVC technology can promote different biological responses. Owing to the "Switching" technology, the control of energy depth penetration enables delivery of the necessary thermal dose to the targeted skin layer. In addition, this novel technology includes the "Vacuum" and "Cooling" mechanisms, each contributing to the safety of the treatment. The Smart Heat function reduces the necessary energy levels and thereby reduces the pain level and risks for side effects.

  19. Lightweight thermally efficient composite feedlines for the space tug cryogenic propulsion system

    NASA Technical Reports Server (NTRS)

    Spond, D. E.

    1975-01-01

    Six liquid hydrogen feedline design concepts were developed for the cryogenic space tug. The feedlines include composite and all-metal vacuum jacketed and nonvacuum jacketed concepts, and incorporate the latest technological developments in the areas of thermally efficient vacuum jacket end closures and standoffs, radiation shields in the vacuum annulus, thermal coatings, and lightweight dissimilar metal flanged joints. The feedline design concepts are evaluated on the basis of thermal performance, weight, cost, reliability, and reusability. Design concepts were proved in a subscale test program. Detail design was completed on the most promising composite feedline concept and an all-metal feedline. Three full scale curved composite feedlines and one all-metal feedline assembly were fabricated and subjected to a test program representative of flight hardware qualification. The test results show that composite feedline technology is fully developed. Composite feedlines are ready for space vehicle application and offer significant reduction in weights over the conventional all-metal feedlines presently used.

  20. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  1. Vacuum Permeator Analysis for Extraction of Tritium from DCLL Blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humrickhouse, Paul Weston; Merrill, Brad Johnson

    2014-11-01

    It is envisioned that tritium will be extracted from DCLL blankets using a vacuum permeator. We derive here an analytical solution for the extraction efficiency of a permeator tube, which is a function of only two dimensionless numbers: one that indicates whether radial transport is limited in the PbLi or in the solid membrane, and another that is the ratio of axial and radial transport times in the PbLi. The permeator efficiency is maximized by decreasing the velocity and tube diameter, and increasing the tube length. This is true regardless of the mass transport correlation used; we review several heremore » and find that they differ little, and the choice of correlation is not a source of significant uncertainty here. The PbLi solubility, on the other hand, is a large source of uncertainty, and we identify upper and lower bounds from the literature data. Under the most optimistic assumptions, we find that a ferritic steel permeator operating at 550 °C will need to be at least an order of magnitude larger in volume than previous conceptual designs using niobium and operating at higher temperatures.« less

  2. Space simulation ultimate pressure lowered two decades by removal of diffusion pump oil contaminants during operation

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1973-01-01

    The complex problem why large space simulation chambers do not realize the true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance have been identified and some advances in vacuum/distillation/fractionation technology have been achieved which resulted in a two decade or more lower ultimate pressure. Data are presented to show the overall or individual contaminating effect of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and reclaiming contaminated oil by high vacuum molecular distillation are described.

  3. Application of Vacuum Swing Adsorption for Carbon Dioxide and Water Vapor Removal from Manned Spacecraft Atmospheres

    NASA Technical Reports Server (NTRS)

    Knox, J.; Fulda, P.; Howard, D.; Ritter, J.; Levan, M.

    2007-01-01

    The design and testing of a vacuum-swing adsorption process to remove metabolic 'water and carbon dioxide gases from NASA's Orion crew exploration vehicle atmosphere is presented. For the Orion spacecraft, the sorbent-based atmosphere revitalization (SBAR) system must remove all metabolic water, a technology approach 1Lhathas not been used in previous spacecraft life support systems. Design and testing of a prototype SBAR in sub-scale and full-scale configurations is discussed. Experimental and analytical investigations of dual-ended and single-ended vacuum desorption are presented. An experimental investigation of thermal linking between adsorbing and desorbing columns is also presented.

  4. Development of secondary chamber for tar cracking-improvement of wood pyrolysis performance in pre-vacuum chamber

    NASA Astrophysics Data System (ADS)

    Siahaan, S.; Homma, H.; Homma, H.

    2018-02-01

    Energy crisis and global warming, in other words, climate change are critical topics discussed in various parts of the world. Global warming primarily result from too much emission of carbon dioxide (CO2) in the atmosphere. To mitigate global warming, or climate change and improve electrification in rural areas, wood pyrolysis technology is developed in a laboratory scale, of which gases are directly applicable to the gas engine generator. Our laboratory has developed a prototype of wood pyrolysis plant with a pre-vacuum chamber. However, tar yield was around 40 wt% of feedstock. This research aims to reduce tar yield by secondary tar cracking. For the secondary tar cracking, a secondary pre-vacuum chamber is installed after primary pre-vacuum chamber. Gases generated in the primary pre-vacuum chamber are lead into the secondary chamber that is heated up to 1000 K. This paper reports performance of the secondary chamber for secondary tar cracking in homogeneous mode and heterogeneous mode with char.

  5. "Physics Stories": How the Early Technologies of High Voltage and High Vacuum Led to "Modern Physics"

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2018-05-01

    Some of you may remember the 1979 television series "Connections" that was written and narrated by James Burke, a British science writer. Burke's technique was to choose a number of seemingly unrelated ideas and show how they led to developments in science and technology. This is an enjoyable business, even if some of the connections seem to be stretched at times, and led to a book by Burke. In a number of talks that I have given over the years, I have made somewhat less fanciful connections that suggest how the technologies of high vacuum and high voltage led to what used to be called "modern physics." Today we might limit the "modern" era to the years from 1890 to 1920 that gave the first workable theories of small-scale physics.

  6. Planetary Atmosphere and Surfaces Chamber (PASC): A Platform to Address Various Challenges in Astrobiology

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, Eva

    2014-08-01

    The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.

  7. Making Microscopic Cubes Of Boron

    NASA Technical Reports Server (NTRS)

    Faulkner, Joseph M.

    1993-01-01

    Production of finely divided cubes of boron involves vacuum-deposition technology and requires making of template. Template supports pattern of checkered squares 25 micrometers on side, which are etched 25 micrometers into template material. Template coasted uniformly with paralyene or some similar vacuum coating with low coefficient of adhesion. Intended application to solid rocket fuels, explosives, and pyrotechnics; process used for other applications, from manufacture of pharmaceuticals to processing of nuclear materials.

  8. Precision and accuracy of nuclear asphalt content gauges in determining asphalt content in asphaltic concrete pavement.

    DOT National Transportation Integrated Search

    1988-06-17

    Use of nuclear asphalt content gauges for determining asphalt content of asphaltic concrete pavement are gaining acceptance as an alternative method to the vacuum extraction process. The reasons nuclear asphalt content gauges are considered promising...

  9. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  10. Vacuum field-effect transistor with a deep submicron channel fabricated by electro-forming

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Shen, Zhihua; Wu, Shengli; Zhang, Jintao

    2017-06-01

    Vacuum field-effect transistors (VFETs) with channel lengths down to 500 nm (i.e., the deep submicron scale) were fabricated with the mature technology of the surface conduction electron emitter fabrication process in our former experiments. The vacuum channel of this new VFET was generated by using the electro-forming process. During electro-forming, the joule heat cracks the conductive film and then generates the submicron scale gap that serves as the vacuum channel. The gap separates the conductive film into two plane-to-plane electrodes, which serve as a source (cathode) electrode and a drain (anode) electrode of the VFET, respectively. Experimental results reveal that the fabricated device demonstrates a clear triode behavior of the gate modulation. Fowler-Nordheim theory was used to analyze the electron emission mechanism and operating principle of the device.

  11. Micrometer-thickness liquid sheet jets flowing in vacuum

    NASA Astrophysics Data System (ADS)

    Galinis, Gediminas; Strucka, Jergus; Barnard, Jonathan C. T.; Braun, Avi; Smith, Roland A.; Marangos, Jon P.

    2017-08-01

    Thin liquid sheet jet flows in vacuum provide a new platform for performing experiments in the liquid phase, for example X-ray spectroscopy. Micrometer thickness, high stability, and optical flatness are the key characteristics required for successful exploitation of these targets. A novel strategy for generating sheet jets in vacuum is presented in this article. Precision nozzles were designed and fabricated using high resolution (0.2 μm) 2-photon 3D printing and generated 1.49 ± 0.04 μm thickness, stable, and <λ /20-flat jets in isopropanol under normal atmosphere and under vacuum at 5 × 10-1 mbar. The thin sheet technology also holds great promise for advancing the fields of high harmonic generation in liquids, laser acceleration of ions as well as other fields requiring precision and high repetition rate targets.

  12. Wireless Integrated Microelectronic Vacuum Sensor System

    NASA Technical Reports Server (NTRS)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum-gauge measurements automatically and wirelessly, in near-real time - using a low-maintenance, lowpower sensor mesh network. The WIMVSS operates by using a self-configuring mesh network of wireless sensor units. Mesh networking is a type of networking where each sensor or node can capture and disseminate its own data, but also serve as a relay to receive and transmit data from other sensors. Each sensor node can synchronize with adjacent sensors, and propagate data from one sensor to the next, until the destination is reached. In this case, the destination is a Network Interface Unit (NIU). The WIMVSS sensors are mounted on the existing vacuum gauges. Information gathered by the sensors is sent to the NIU. Because of the mesh networking, if a sensor cannot directly send the data to the NIU, it can be propagated through the network of sensors. The NIU requires antenna access to the sensor units, AC power, and an Ethernet connection. The NIU bridges the sensor network to a WIMVSS server via an Ethernet connection. The server is configured with a database, a Web server, and proprietary interface software that makes it possible for the vacuum measurements from vacuum jacketed fluid lines to be saved, retrieved, and then displayed from any Web-enabled PC that has access to the Internet. Authorized users can then simply access the data from any PC with Internet connection. Commands can also be sent directly from the Web interface for control and maintenance of the sensor network. The technology enabled by the WIMVSS decreases labor required for gathering vacuum measurements, increases access to vacuum data by making it available on any computer with access to the Internet, increases the frequency with which data points can be acquired for evaluating the system, and decreases the recurring cost of the sensors by using off-the-shelf components and integrating these with heritage vacuum gauges.

  13. [Laser-induced breakdown spectroscopy system for elements analysis in high-temperature and vacuum environment].

    PubMed

    Pan, Cong-Yuan; Du, Xue-Wei; An, Ning; Han, Zhen-Yu; Wang, Sheng-Bo; Wei, Wei; Wang, Qiu-Ping

    2013-12-01

    Laser-induced breakdown spectroscopy (LIBS) is one of the most promising technologies to be applied to metallurgical composition online monitoring in these days. In order to study the spectral characters of LIBS spectrum and to investigate the quantitative analysis method of material composition under vacuum and high temperature environment, a LIBS measurement system was designed and set up which can be used for conducting experiments with high-temperature or molten samples in different vacuum environment. The system consists of a Q-switched Nd : YAG laser used as the light source, lens with different focus lengths used for laser focusing and spectrum signal collecting, a spectrometer used for detecting the signal of LIBS spectrums, and a vacuum system for holding and heating the samples while supplying a vacuum environment. The vacuum was achieved and maintained by a vacuum pump and an electric induction furnace was used for heating the system. The induction coil was integrated to the vacuum system by attaching to a ceramic sealing flange. The system was installed and testified, and the results indicate that the vacuum of the system can reach 1X 10(-4) Pa without heating, while the heating temperature could be about 1 600 degreeC, the system can be used for melting metal samples such as steel and aluminum and get the LIBS spectrum of the samples at the same time. Utilizing this system, LIBS experiments were conducted using standard steel samples under different vacuum or high-temperature conditions. Results of comparison between LIBS spectrums of solid steel samples under different vacuum were achieved, and so are the spectrums of molten and solid steel samples under vacuum environment. Through data processing and theoretical analyzing of these spectrums, the initial results of those experiments are in good agreement with the results that are presently reported, which indicates that the whole system functions well and is available for molten metal LIBS experiment under vacuum environment.

  14. Electromagnetic corrections to the hadronic vacuum polarization of the photon within QEDL and QEDM

    NASA Astrophysics Data System (ADS)

    Bussone, Andrea; Della Morte, Michele; Janowski, Tadeusz

    2018-03-01

    We compute the leading QED corrections to the hadronic vacuum polarization (HVP) of the photon, relevant for the determination of leptonic anomalous magnetic moments, al. We work in the electroquenched approximation and use dynamical QCD configurations generated by the CLS initiative with two degenerate flavors of nonperturbatively O(a)-improved Wilson fermions. We consider QEDL and QEDM to deal with the finite-volume zero modes. We compare results for the Wilson loops with exact analytical determinations. In addition we make sure that the volumes and photon masses used in QEDM are such that the correct dispersion relation is reproduced by the energy levels extracted from the charged pions two-point functions. Finally we compare results for pion masses and the HVP between QEDL and QEDM. For the vacuum polarization, corrections with respect to the pure QCD case, at fixed pion masses, turn out to be at the percent level.

  15. Volatile Analysis by Pyrolysis of Regolith for Planetary Resource Exploration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Malespin, Charles; ten Kate, Inge L.; Getty, Stephanie A.; Holmes, Vincent E.; Mumm, Erik; Franz, Heather B.; Noreiga, Marvin; Dobson, Nick; Southard, Adrian E.; hide

    2012-01-01

    The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400 C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300 C and determining the composition of volatiles released as a function of temperature.

  16. Determination of diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shrivastava, Komal Chandra; Kulkarni, A. S.; Ramanjaneyulu, P. S.; Sunil, Saurav; Saxena, M. K.; Singh, R. N.; Tomar, B. S.; Ramakumar, K. L.

    2015-06-01

    The diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr-2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H2/D2 content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick's second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as DH = 1.41 × 10-7 exp(-36,000/RT) and DD = 6.16 × 10-8 exp(-35,262/RT) for hydrogen and deuterium, respectively.

  17. SCOUT: a small vacuum chamber for nano-wire grid polarizer tests in the ultraviolet band

    NASA Astrophysics Data System (ADS)

    Landini, F.; Pancrazzi, M.; Totaro, M.; Pennelli, G.; Romoli, M.

    2012-01-01

    Within the Section of Astronomy of the Department of Physics and Astronomy of the University of Firenze, Italy), the XUVLab laboratory is active since 1998 dedicated to technological development, mainly UV oriented. The technological research is focused both on electronics and optics. Our last approach is dedicated to the development of innovative wiregrid polarizers optimized to work in transmission at 121.6 nm. The manufacturing of such optical devices requires advanced technological expertise and suitable experimental structures. First, nanotechnology capability is necessary, in order to build several tiny parallel conductive lines separated by tens of nanometers on wide areas to be macroscopically exploitable in an optical laboratory. Moreover, the characterization of such an advanced optical device has to be performed in vacuum, being air absorptive at 121.6 nm. A dedicated small vacuum chamber, SCOUT (Small Chamber for Optical UV Tests) was developed within our laboratory in order to perform practical and fast measurements. SCOUT hosts an optical bench and is equipped with several opening flanges, in order to be as flexible as possible. The flexibility that has been reached with SCOUT allows us to use the chamber beyond the goals it was thought for. It is exploitable by whatever compact (within 1 m) optical experiment that investigates the UV band of the spectrum.

  18. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Vacuum relaxation and annealing-induced enhancement of mobility of regioregular poly (3-hexylthiophene) field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tian, Xue-Yan; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Xu, Xu-Rong; Yuan, Guang-Cai; Li, Jing; Sun, Qin-Jun; Wang, Ying

    2009-11-01

    In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17 × 10-2 m2/(V · s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150 °C for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00 × 10-2 cm2/(V · s).

  19. Development of a Test Facility for Air Revitalization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick; Curley, Su

    2007-01-01

    Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat of up to eight persons. A multitude of gas analyzers and dew point sensors are used to monitor the chamber atmosphere upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space. A reliable data acquisition and control system is required to connect all the subsystems together. This paper presents the capabilities of the integrated test facility and some of the issues encountered during the integration.

  20. Optimal Design of a Hexakis Icosahedron Vacuum Based Lighter than Air Vehicle

    DTIC Science & Technology

    2017-03-23

    box objectives and constraints. Results for a number of designs are presented and compared . iv Acknowledgements I would like to thank my advisors...Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-23-2017 Optimal Design of a Hexakis Icosahedron Vacuum Based Lighter than...administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu. Recommended Citation Schwemmer, Joseph R., "Optimal Design of a

  1. Commercialization Plan Support for Development of Low Cost Vacuum Insulating Glazing: Cooperative Research and Development Final Report, CRADA Number CRD-11-449

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dameron, Arrelaine

    During the duration of this CRADA, V-Glass and NREL will partner in testing, analysis, performance forecasting, costing, and evaluation of V-Glass’s GRIPWELD™ process technology for creating a low cost hermetic seal for conventional and vacuum glazing. Upon successful evaluation of hermeticity, V-Glass’s GRIPWELD™ will be evaluated for its potential use in highly insulating window glazing.

  2. Ion plating for the future

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    The ion plating techniques are classified relative to the instrumental set up, evaporation media, and mode of transport. A distinction is drawn between the low vacuum (plasma) and high vacuum (ion beam) techniques. Ion plating technology is discussed at the fundamental and industrial level. At the fundamental level, the capabilities and limitations of the plasma (evaporant flux) and film characteristics are evaluated. And on the industrial level, the performance and potential uses of ion plated films are discussed.

  3. Ion plating for the future

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    The ion plating techniques are classified relative to the instrumental set up, evaporation media and mode of transport. Distinction is drawn between the low vacuum (plasma) and high vacuum (ion beam) techniques. Ion plating technology is discussed at the fundamental and industrial level. At the fundamental level, the capabilities and limitations of the plasma (evaporant flux) and film characteristics are evaluated. On the industrial level, the performance and potential uses of ion plated films are discussed.

  4. Novel technologies for the lost foam casting process

    NASA Astrophysics Data System (ADS)

    Jiang, Wenming; Fan, Zitian

    2018-03-01

    Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting technology; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thinwall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.

  5. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities varying pressure environments.

  6. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities at varying pressure environments.

  7. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  8. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    NASA Technical Reports Server (NTRS)

    Kegley, Jeff; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature SiO2 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  9. QCD sum rules study of meson-baryon sigma terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkol, Gueray; Oka, Makoto; Turan, Guersevil

    2008-11-01

    The pion-baryon sigma terms and the strange-quark condensates of the octet and the decuplet baryons are calculated by employing the method of QCD sum rules. We evaluate the vacuum-to-vacuum transition matrix elements of two baryon interpolating fields in an external isoscalar-scalar field and use a Monte Carlo-based approach to systematically analyze the sum rules and the uncertainties in the results. We extract the ratios of the sigma terms, which have rather high accuracy and minimal dependence on QCD parameters. We discuss the sources of uncertainties and comment on possible strangeness content of the nucleon and the Delta.

  10. Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News

    NASA Astrophysics Data System (ADS)

    Handmer, Casey; Szilagyi, Bela; Winicour, Jeff

    2015-04-01

    We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.

  11. The Design, Synthesis and Screening of Potential Pyridinium Oxime Prodrugs

    DTIC Science & Technology

    1985-09-30

    210 ml stainless steel bombs were each filled with 100 ml of 28% aqueous NH4OH, 2.8 g (11 imol) of copper sulfate pentahydrate , and 15 g (87 mol) of...ethyl acetate. The organic extracts were washed twice with brine, dried over sodium sulfate , filtered and flashed to a black oil. A vacuum distillation...extracts were washed with brine, dried with sodium sulfate , filtered and flashed. The residue was then purified by column chromatography (silica gel

  12. Evaluation of Sampling Methods for Bacillus Spore ...

    EPA Pesticide Factsheets

    Journal Article Following a wide area release of biological materials, mapping the extent of contamination is essential for orderly response and decontamination operations. HVAC filters process large volumes of air and therefore collect highly representative particulate samples in buildings. HVAC filter extraction may have great utility in rapidly estimating the extent of building contamination following a large-scale incident. However, until now, no studies have been conducted comparing the two most appropriate sampling approaches for HVAC filter materials: direct extraction and vacuum-based sampling.

  13. CFD Analysis of Evaporation-Condensation Phenomenon In an Evaporation Chamber of Natural Vacuum Solar Desalination

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.

    2018-01-01

    Desalination technologies is one of solutions for water scarcity. With using renewable energy, like solar energy, wind energy, and geothermal energy, expected will reduce the energy demand. This required study on the modeling and transport parameters determination of natural vacuum solar desalination by using computational fluid dynamics (CFD) method to simulate the model. A three-dimensional case, two-phase model was developed for evaporation-condensation phenomenon in natural vacuum solar desalination. The CFD simulation results were compared with the avalaible experimental data. The simulation results shows inthat there is a phenomenon of evaporation-condensation in an evaporation chamber. From the simulation, the fresh water productivity is 2.21 litre, and from the experimental is 2.1 litre. This study shows there’s an error of magnitude 0.4%. The CFD results also show that, vacuum pressure will degrade the saturation temperature of sea water.

  14. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    NASA Astrophysics Data System (ADS)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  15. GRC-2011-C-00579

    NASA Image and Video Library

    2007-03-28

    Photos for Web Feature by Victoria (Tori) Woods; Micro-Electro Mechanical Systems (MEMS) using vacuum technology; fabricating High Temperature Electronics for Harsh Environments using silicon carbide substrates

  16. 1997 Technology Applications Report,

    DTIC Science & Technology

    1997-01-01

    handle high -power loads at microwave radio frequencies , microwave vacuum tubes remain the chosen technology to amplify high power. Aria Microwave...structure called the active RF cavity amplifier (ARFCA). With this design , the amplifier handles high -power loads at radio and microwave frequencies ...developed this technology using BMDO-funded modeling methods designed to simulate the dynamics of large space-based structures. Because it increases

  17. Key composition optimization of meat processed protein source by vacuum freeze-drying technology.

    PubMed

    Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun

    2018-05-01

    Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.

  18. Can Vacuum Assisted Venous Drainage be Achieved using a Roller Pump in an Emergency? A Pilot Study using Neonatal Circuitry

    PubMed Central

    Hill, S. L.; Holt, D. W.

    2007-01-01

    Abstract: There has been much advancement in perfusion technology over its 50 years of progression. One of these techniques is vacuum-assisted venous drainage (VAVD). Many perfusionists augment venous drainage using VAVD, typically from a wall vacuum source. This study explores alternates to providing VAVD if the wall vacuum fails. In two porcine laboratories, ∼36 in. of 3/16-in. tubing was connected to a sucker return port and placed into the roller head next to the arterial pump. The vacuum was monitored with a DLP pressure monitoring system (Medtronic). This system was connected to small-bore tubing and attached to a stopcock on top of the reservoir. The vacuum was regulated using another stopcock connected to a non-filtered luer lock port on top of the reservoir or by a segment of 3 × 0.25-in.-diameter tubing attached to the vent port with a c-clamp. Vacuum drainage was achieved, ranging from −18 mmHg to −71 mmHg by manipulating the stopcock or c-clamp. Changes in venous drainage were seen by volume fluctuations in the venous reservoir. The vacuum was adjusted to account for dramatic changes. Augmented venous drainage using a roller pump can be achieved successfully during cardiopulmonary bypass (CPB). This method of active drainage can be used in lieu of wall suction or during times of emergency if wall suction fails. PMID:18293812

  19. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    NASA Technical Reports Server (NTRS)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated to Acquire, Process, Trend Data and Produce Radiometric System Assessment Reports; Exhaustive Thresholds and Resistance Checkpoints; Reconfigurable HIL Testing of Earth Satellites; FPGA Control System for the Automated Test of MicroShutters; Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM; Operationally Responsive Space Standard Bus Battery Thermal Balance Testing and Heat Dissipation Analysis; Galileo - The Serial-Production AIT Challenge; The Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Simulated Reentry Heating by Torching; Micro-Vibration Measurements on Thermally Loaded Multi-Layer Insulation Samples in Vacuum; High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber; The Planning and Implementation of Test Facility Improvements; and Development of a Silicon Carbide Molecular Beam Nozzle for Simulation Planetary Flybys and Low-Earth Orbit.

  20. Stress and Displacement Analysis of Microreactors during Thermal and Vacuum Loading

    DTIC Science & Technology

    2017-09-07

    and extend the available energy density well beyond state-of-the-art battery technology (140 W·h/kg for rechargeable lithium [Li]- ion technology).1...time. In the 10–100 W+ power range, battery technology is the best solution currently available, but higher-energy dense technologies are needed to...augment batteries and extend the available energy density well beyond state-of-the-art battery technology. One way to approach this is to take

  1. Antiinflammatory effect of Forsythia suspensa Vahl and its active fraction.

    PubMed

    Ozaki, Y; Rui, J; Tang, Y; Satake, M

    1997-08-01

    This study was carried out to elucidate the antiinflammatory effect of 70% methanol extract obtained from the dried fruit of Forsythia suspensa Vahl and its active principles. F. suspensa was extracted with 70% methanol and freeze-dried to give a powdered extract. The methanol extract was then dissolved in water and extracted with n-hexane, and the n-hexane fraction was evaporated to dryness under vacuum; the water fraction was freeze-dried to give a powdered extract. The antiinflammatory activity of the extract and fractions was investigated on acetic acid-induced vascular permeability and writhing symptoms in mice, as well as on carrageenin-induced edema and cotton pellet-induced granuloma formation in rats. The methanol extract and the n-hexane fraction (p.o.) showed the antiinflammatory effect and analgesic effect, but the water fraction did not. These results suggested that the antiinflammatory and analgesic activity induced by the methanol extract shifted to the n-hexane fraction and the active principles may be lipophilic compounds.

  2. Quantitative analysis of trap states through the behavior of the sulfur ions in MoS2 FETs following high vacuum annealing

    NASA Astrophysics Data System (ADS)

    Bae, Hagyoul; Jun, Sungwoo; Kim, Choong-Ki; Ju, Byeong-Kwon; Choi, Yang-Kyu

    2018-03-01

    Few-layer molybdenum disulfide (MoS2) has attracted a great deal of attention as a semiconductor material for electronic and optoelectronic devices. However, the presence of localized states inside the bandgap is a critical issue that must be addressed to improve the applicability of MoS2 technology. In this work, we investigated the density of states (DOS: g(E)) inside the bandgap of MoS2 FET by using a current-voltage (I-V) analysis technique with the aid of high vacuum annealing (HVA). The g(E) can be obtained by combining the trap density and surface potential (ψ S) extracted from a consistent subthreshold current (I D-sub). The electrical performance of MoS2 FETs is strongly dependent on the inherent defects, which are closely related to the g(E) in the MoS2 active layer. By applying the proposed technique to the MoS2 FETs, we were able to successfully characterize the g(E) after stabilization of the traps by the HVA, which reduces the hysteresis distorting the intrinsic g(E). Also, the change of sulfur ions in MoS2 film before and after the HVA treatment is investigated directly by Auger electron spectroscopy analysis. The proposed technique provides a new methodology for active channel engineering of 2D channel based FETs such as MoS2, MoTe2, WSe2, and WS2.

  3. A small scale remote cooling system for a superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.

    2017-02-01

    Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.

  4. Minimally Processed Functional Foods: Technological and Operational Pathways.

    PubMed

    Rodgers, Svetlana

    2016-10-01

    This paper offers a concise review of technical and operational concepts underpinning commercialization of minimally processed functional foods (FFs), foods with fresh-like qualities commanding premium prices. The growing number of permitted nutritional content/health claims, many of which relate to well-being, coupled with emerging extraction and food processing technologies offers new exciting opportunities for small and medium size enterprises (SMEs) specializing in fresh produce to play an active role in the health market. Supporting SMEs, governments could benefit from savings in healthcare costs and value creation in the economy. Consumers could benefit from novel FF formats such as refrigerated RTE (ready-to-eat) meals, a variety of fresh-like meat-, fish-, and egg-based products, fresh-cut fruits and vegetables, cereal-based fermented foods and beverages. To preserve these valuable commodities, mild biological (enzymatic treatment, fermentation and, bio-preservation) and engineering solutions are needed. The latter include nonthermal techniques such as high-pressure treatment, cook-chill, sous-vide, mirco-encapsulation, vacuum impregnation and others. "De-constructive" culinary techniques such as 3D food printing and molecular gastronomy as well as developments in nutrigenomics and digital technologies facilitate novel product formats, personalization and access to niche markets. In the operational sense, moving from nourishment to health improvement demands a shift from defensive market-oriented to offensive market-developing strategies including collaborative networks with research organizations. © 2016 Institute of Food Technologists®.

  5. Technical and economic assessment of processes for the production of butanol and acetone. Phase two: analysis of research advances. Energy Conversion and Utilization Technologies Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1984-08-01

    The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of amore » variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.« less

  6. Solid and Liquid Waste Drying Bag

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  7. Characterization of the homologs of flerovium with crown ether based extraction chromatography resins: studies in nitric acid

    DOE PAGES

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...

    2016-09-17

    Eichrom’s Pb resin, a crown-ether-based extraction chromatography resin, was characterized for separation of the flerovium (Fl) homologs, Pb and Sn. Batch uptake of Pb(II) and Sn(IV) radionuclides was determined from an HNO 3 matrix. Pb(II) was strongly retained on the resin at all HNO 3 concentrations, while Sn(IV) showed no uptake. Extraction kinetics for Pb(II) were examined and show suitable uptake on the second time scale. Here, separation methods for the isolation of individual homologs, Pb(II) and Sn(IV), have been established using 2 mL pre-packed vacuum flow Pb resin columns.

  8. Aerospace Mechanisms and Tribology Technology: Case Study

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.

    1999-01-01

    This paper focuses attention on tribology technology practice related to vacuum tribology. A case study describes an aspect of a real problem in sufficient detail for the engineer and scientist to understand the tribological situation and the failure. The nature of the problem is analyzed and the tribological properties are examined.

  9. $6 Million in Awards to Advance Solar Cell Research

    Science.gov Websites

    five companies for high tech research into non-conventional, photovoltaic technologies for creating can have significant cost advantages over conventional technologies. This non-conventional solar , Newbury Park, $498,000 (small business) Project Title: Non-Vacuum Processing of CIGS Solar Cells Project

  10. EMERGING TECHNOLOGY Summary. CROSS-FLOW PERVAPORATION FOR REMOVAL OF VOCS FROM CONTAMINATED WASTEWATER (EPA/540/SR-94/512)

    EPA Science Inventory

    Pervaporation is a membrane technology using & dense, nonporous polymeric film to separate contaminated water from a vacuum source. The membrane preferentially partitions the volatile organic compounds (VOC) organic phase used In this test This process has proven to be an alterna...

  11. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  12. Modification of fast-growing Chinese Fir wood with unsaturated polyester resin: Impregnation technology and efficiency

    NASA Astrophysics Data System (ADS)

    Ma, Qing; Zhao, Zijian; Yi, Songlin; Wang, Tianlong

    In this study, Chinese Fir was impregnated with unsaturated polyester resin to enhance its properties. Samples 20 mm × 20 mm × 20 mm in size were split into different sections with epoxy resin and tinfoil and subjected to an impregnation experiment under various parameters. Vacuum degree was -0.04 MPa, -0.06 MPa or -0.08 MPa and vacuum duration was 15 min, 30 min, or 45 min. The results indicated that impregnation weight percent gain is linearly dependent on curing weight percent gain. Vacuum duration appears to have less influence on the curing weight percent gain than vacuum degree, and impregnation was most successful at the transverse section compared to other sections. The optimal impregnation parameters were 30 min modification under -0.08 MPa vacuum followed by 120 min at atmospheric pressure for samples 200 mm × 100 mm × 20 mm in size. Uneven distribution of weight percent gain and cracking during the curing process suggested that 30 min post-processing at -0.09 MPa vacuum was the most effective way to complete the impregnation process. The sample's bending strength and modulus of elasticity increased after impregnation treatment. Bending strength after impregnation without post-processing reached 112.85%, but reached 71.65% with vacuum-processing; modulus of elasticity improved 67.13% and 58.28% without and with post-processing, respectively.

  13. USE OF A VACUUM FILTRATION TECHNIQUE TO STUDY LEACHING OF INDIGENOUS VIRUSES FROM RAW WASTEWATER SLUDGE

    EPA Science Inventory

    The relative efficiencies of a buffered beef extract solution, sewage secondary effluent, and distilled water, were compared in a study designed to simulate leaching of indigenous enteric viruses from raw primary sewage sludge. The initial sludge liquid fractions, termed sludge l...

  14. A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass

    NASA Astrophysics Data System (ADS)

    Žák, Karel; SkáLA, Roman; Šanda, Zdeněk.; Mizera, Jiří.

    2012-06-01

    Tektites, natural silica-rich glasses produced during impact events, commonly contain bubbles. The paper reviews published data on pressure and composition of a gas phase contained in the tektite bubbles and data on other volatile compounds which can be released from tektites by either high-temperature melting or by crushing or milling under vacuum. Gas extraction from tektites using high-temperature melting generally produced higher gas yield and different gas composition than the low-temperature extraction using crushing or milling under vacuum. The high-temperature extraction obviously releases volatiles not only from the bubbles, but also volatile compounds contained directly in the glass. Moreover, the gas composition can be modified by reactions between the released gases and the glass melt. Published data indicate that besides CO2 and/or CO in the bubbles, another carbon reservoir is present directly in the tektite glass. To clarify the problem of carbon content and carbon isotopic composition of the tektite glass, three samples from the Central European tektite strewn field—moldavites—were analyzed. The samples contained only 35-41 ppm C with δ13C values in the range from -28.5 to -29.9‰ VPDB. This indicates that terrestrial organic matter was a dominant carbon source during moldavite formation.

  15. Effects of vacuum level and pulsation rate on milk ejection and milk flow traits in Tunisian dairy camels (Camelus dromedarius).

    PubMed

    Atigui, Moufida; Marnet, Pierre-Guy; Barmat, Ahmed; Khorchani, Touhami; Hammadi, Mohamed

    2015-01-01

    This work aims to compare the effects of milking at two vacuum levels (38 and 48 kPa) and three pulsation rates (60, 90, and 120 cpm) on milk production and milk flow characteristics. Six multiparous Maghrebi camels in late lactation and once daily milked were used. The best combination of setting for camel's milking was high vacuum and low pulsation rate (48 kPa/60 cpm). Milk yield and average and peak milk flow rate were the highest, while milking time was the shortest using this combination of setting (3.05 ± 0.30 kg, 1.52 ± 0.21 kg/min, 2.52 ± 0.21 kg/min, and 3.32 ± 0.31 min, respectively). Lower vacuum level lengthened milking time by more than 100 % and was not sufficient to extract milk correctly (1.69 to 2.48 times less milk yield harvested), suggesting a negative interaction with the stimulatory effect of pulsation. Higher pulsation rates did not better stimulate the camels and induced more bimodality and lower milk flow rates. Animal characteristics and liner/claw design affect machine milking and further investigations must be carried out to verify their effects and to study long-term effect of high vacuum level on udder health and teat condition.

  16. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    PubMed

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  17. Compact, compression-free, displaceable, and resealable vacuum feedthrough with built-in strain relief for sensitive components such as optical fibers.

    PubMed

    Buchholz, B; Ebert, V

    2014-05-01

    For the direct fiber coupling of small optical measurement cells, we developed a new compact vacuum feedthrough for glass fibers and other similarly shaped objects that are compact and that offer the possibility of adjusting the fiber in longitudinal and in circular direction. The feedthrough assembly avoids compression or torsion on the fiber and thus protects, e.g., highly frangible fiber materials. In the following, we will present a brief simulation of the tightness requirements for low-pressure and low-concentration water vapor measurements and we will explain an integrated concept for a displaceable and self-adjustable, compression-free, compact, ultra-high vacuum, resealable feedthrough with good strain relief. The feedthrough has been successfully tested in a laboratory test facility and in several extractive airborne tunable diode laser absorption spectroscopy hygrometers. The leakage rate of the feedthrough presented here was tested via a helium leak searcher and was quantified further in an 8-week vacuum measurement campaign. The leakage rate is determined to be 0.41 ± 0.04 × 10(-9) hPa l/s, which--to our knowledge--is the first time a leakage rate for such a feedthrough has been quantified.

  18. A future, intense source of negative hydrogen ions

    NASA Technical Reports Server (NTRS)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  19. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  20. Diagnostics of Polymer Composite Materials and Analysis of Their Production Technology by Using the Method of Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Bashkov, O. V.; Protsenko, A. E.; Bryanskii, A. A.; Romashko, R. V.

    2017-09-01

    The strength properties of glass-fiber-reinforced plastics produced by vacuum and vacuum autoclave molding techniques are studied. Based on acoustic emission data, a method of diagnostic and prediction of the bearing capacity of polymer composite materials by using data from three-point bending tests is developed. The method is based on evaluating changes in the exponent of a power function relating the total acoustic emission to the test stress.

  1. From Vacuum Tubes to a Semiconductor Triode

    NASA Astrophysics Data System (ADS)

    Mil'shtein, S.

    2005-06-01

    Current study presents a brief review of an electronic technology evolution: from vacuum tubes, to transistors, to a novel, recently developed semiconductor triode, where electrons travel vertically about 600 angstroms from the filament to the anode. We plotted I-V and transfer curves for the semiconductor triodes. The very first prototypes proved to carry a maximum gain of about 15db and fT=8GHz. Filaments of variable length were produced to study mutual electrostatic interaction of the electrodes in the triode.

  2. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.

    PubMed

    Jiang, Xinian

    2010-04-26

    Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80?C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented.

  3. A review of vacuum ARC ion source research at ANSTO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, P.J.; Noorman, J.T.; Watt, G.C.

    1996-08-01

    The authors talk briefly describes the history and current status of vacuum arc ion source research at the Australian Nuclear Science and Technology Organization (ANSTO). In addition, the author makes some mention of the important role of previous Vacuum Arc Ion Source Workshops in fostering the development of this research field internationally. During the period 1986 - 89, a type of plasma centrifuge known as a vacuum arc centrifuge was developed at ANSTO as part of a research project on stable isotope separation. In this device, a high current vacuum arc discharge was used to produce a metal plasma whichmore » was subsequently rotated in an axial magnetic field. The high rotational speeds (10{sup 5} - 10{sup 6} rad sec{sup {minus}1}) achievable with this method produce centrifugal separation of ions with different mass:charge ratios such as isotopic species. The first portent of things to come occurred in 1985 when Dr. Ian Brown visited ANSTO`s Lucas Heights Research Laboratories and presented a talk on the metal vapour vacuum arc (MEVVA) ion source which had only recently been invented by Brown and co-workers, J. Galvin and R. MacGill, at Lawrence Berkeley Laboratory. For those of us involved in vacuum arc centrifuge research, this was an exciting development primarily because the metal vapour vacuum arc plasma source was common to both devices. Thus, a type of arc, which had since the 1930`s been extensively investigated as a means of switching high current loads, had found wider application as a useful plasma source.« less

  4. The SHiP experiment at CERN SPS

    NASA Astrophysics Data System (ADS)

    Di Crescenzo, A.; SHiP Collaboration

    2016-01-01

    SHiP is a new general purpose fixed target facility, whose Technical Proposal has been recently submitted to the CERN SPS Committee. In its initial phase, the 400GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2×1020 pot in 5years. A dedicated detector located downstream of the target, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below a few GeV/c2. The beam dump is also an ideal source of tau neutrinos, the less known particle in the Standard Model. Another dedicated detector, based on the Emulsion Cloud Chamber technology already used in the OPERA experiment, will allow to perform for the first time measurements of the tau neutrino deep inelastic scattering cross section. Tau neutrinos will be distinguished from tau anti-neutrinos, thus providing the first observation of the tau anti-neutrino.

  5. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    NASA Technical Reports Server (NTRS)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  6. NASA Applications of Molecular Adsorber Coatings

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2015-01-01

    The Molecular Adsorber Coating (MAC) is a new, innovative technology that was developed to reduce the risk of molecular contamination on spaceflight applications. Outgassing from materials, such as plastics, adhesives, lubricants, silicones, epoxies, and potting compounds, pose a significant threat to the spacecraft and the lifetime of missions. As a coating made of highly porous inorganic materials, MAC offers impressive adsorptive capabilities that help capture and trap contaminants. Past research efforts have demonstrated the coating's promising adhesion performance, optical properties, acoustic durability, and thermal stability. These results advocate its use near or on surfaces that are targeted by outgassed materials, such as internal optics, electronics, detectors, baffles, sensitive instruments, thermal control coatings, and vacuum chamber test environments. The MAC technology has significantly progressed in development over the recent years. This presentation summarizes the many NASA spaceflight applications of MAC and how the coatings technology has been integrated as a mitigation tool for outgassed contaminants. For example, this sprayable paint technology has been beneficial for use in various vacuum chambers for contamination control and hardware bake-outs. The coating has also been used in small instrument cavities within spaceflight instrument for NASA missions.

  7. Silicon microelectronic field-emissive devices for advanced display technology

    NASA Astrophysics Data System (ADS)

    Morse, J. D.

    1993-03-01

    Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.

  8. The 25th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Twenty-two papers are documented regarding aeronautical and spacecraft hardware. Technological areas include actuators, latches, cryogenic mechanisms, vacuum tribology, bearings, robotics, ground support equipment for aerospace applications, and other mechanisms.

  9. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    PubMed

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  10. Operation of a Thin-Film Inflatable Concentrator System Demonstrated in a Solar Thermal Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Thin-film inflatable solar concentrators offer significant advantages in comparison to stateof- the-art rigid panel concentrators, including low weight, low stowage volume, and simple gas deployment. From June 10 to 22, 2001, the ElectroMagnetic Radiation Control Experiment (EMRCE) Team used simulated solar energy to demonstrate the operation of an inflatable concentrator system at NASA Glenn Research Center's Tank 6 thermal vacuum facility. The joint Government/industry test team was composed of engineers and technicians from Glenn, the Air Force Research Laboratory, SRS Technologies, and ATK Thiokol Propulsion. The research hardware consisted of the following: 1) A thin-film inflatable concentrator; 2) The hexapod pointing and focus control system; 3) Two rigidized support struts using two candidate technologies - ultraviolet-rigidized glass and radiation-cured isographite.

  11. Student Support for EIPBN 2016 Conference - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrow, Reginald C.

    The 60th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (EIPBN) was held in Pittsburgh, PA, from May 31st to June 3rd, 2016. The conference received technical co-sponsorship from the American Vacuum Society (AVS) in cooperation with the Optical Society of America (OSA), and the American Physical Society (APS). The conference was a great success in large part because financial support allowed robust participation from students. The students gave oral and poster presentations of their research and many published peer-reviewed articles in a special conference issue of the Journal of Vacuum Science and Technology B. The Departmentmore » of Energy Office of Basic Energy Sciences supported 10 students from US universities with a $5,000 grant (DE-SC0015555).« less

  12. Vacuum frying as a route to produce novel snacks with desired quality attributes according to new health trends.

    PubMed

    Dueik, V; Bouchon, P

    2011-03-01

    Consumers look for products that contribute to their wellness and health, however, even health-conscious consumers are not willing to sacrifice organoleptic properties, and intense full-flavor snacks remain an important trend. The objective of this study was to examine most important quality parameters of vacuum (1.92 inHg) and atmospheric-fried carrot, potato, and apple slices to determine specific advantages of vacuum technology. Slices were fried using equivalent thermal driving forces, maintaining a constant difference between oil temperature and the boiling point of water at the working pressure (ΔT = 60 and 80 °C). This resulted in frying temperatures of 160 and 180 °C, and 98 and 118 °C, for atmospheric and vacuum frying, respectively. Vacuum-fried carrot and potato chips absorbed about 50% less oil than atmospheric-fried chips, whereas vacuum-fried apple chips reduced oil absorption by 25%. Total carotenoids and ascorbic acid (AA) were greatly preserved during vacuum frying. Carrot chips vacuum fried at 98 °C retained about 90% of total carotenoids, whereas potato and apple slices vacuum fried at 98 °C, preserved around 95% of their initial AA content. Interestingly, results showed that the antioxidant capacity of chips may be related to both the presence of natural antioxidants and brown pigments developed at elevated temperatures. A way to reduce detrimental effects of deep-fat frying is through operating-pressure reduction, the essence behind vacuum deep-fat frying. In this way, it is possible to remove product moisture at a low temperature in a low-oxygen environment. The objective of this research was to study the effect of oil temperature reduction when vacuum frying traditional (potatoes) and nontraditional products (carrots and apples) on most important quality attributes (vitamins, color, and oil uptake). Results are promising and show that vacuum frying can be an alternative to produce nutritious and novel snacks with desired quality attributes, since vitamins and color were greatly preserved and oil absorption could be substantially reduced.

  13. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    PubMed

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  14. Development of a gas cell-based laser ion source for RIKEN PALIS

    NASA Astrophysics Data System (ADS)

    Sonoda, T.; Wada, M.; Tomita, H.; Sakamoto, C.; Takatsuka, T.; Noto, T.; Iimura, H.; Matsuo, Y.; Kubo, T.; Shinozuka, T.; Wakui, T.; Mita, H.; Naimi, S.; Furukawa, T.; Itou, Y.; Schury, P.; Miyatake, H.; Jeong, S.; Ishiyama, H.; Watanabe, Y.; Hirayama, Y.

    2013-04-01

    We developed a prototype laser ionization gas cell with a beam extraction system. This device is for use of PArasitic Laser Ion-Source (PALIS), which will be implemented into RIKEN's fragment separator, BigRIPS as a part of SLOWRI. Off-line resonant laser ionization for stable Co, Cu, Fe, Ni, Ti, Nb, Sn, In and Pd inside the gas cell, ion extraction and transport to the high-vacuum region via SPIG and QMS have been confirmed (Sonoda et al, Nucl Instrum Meth B 295:1, 2013).

  15. Developable images produced by X-rays using the nickel-hypophosphite system. 3: The latent image and trapped hydrogen

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.; Marsik, S. J.

    1974-01-01

    The hydrogen trapped in X-irradiated hypophosphites, phosphites, formates, oxalates, a phosphate, and some organic compounds was vacuum extracted and measured quantitatively with a mass spectrometer. After extraction, normally developable salts were found to be still developable. Thus, the latent image is not the trapped hydrogen but a species of the type HPO(-)2. The amplification factor for irradiated hypophosphites is about 100. A narrow range of wavelengths (at about 0.07 nm, 0.7 A) is responsible for the formation of the latent image.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek

    Eichrom’s Pb resin, a crown-ether-based extraction chromatography resin, was characterized for separation of the flerovium (Fl) homologs, Pb and Sn. Batch uptake of Pb(II) and Sn(IV) radionuclides was determined from an HNO 3 matrix. Pb(II) was strongly retained on the resin at all HNO 3 concentrations, while Sn(IV) showed no uptake. Extraction kinetics for Pb(II) were examined and show suitable uptake on the second time scale. Here, separation methods for the isolation of individual homologs, Pb(II) and Sn(IV), have been established using 2 mL pre-packed vacuum flow Pb resin columns.

  17. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM; Loy, Douglas A [Tucson, AZ; Simmons, Blake A [San Francisco, CA; Long, Timothy M [Evanston, IL; McElhanon, James R [Manteca, CA; Rahimian, Kamyar [Albuquerque, NM; Staiger, Chad L [Albuquerque, NM

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  18. [Study on new extraction technology of astragaloside IV].

    PubMed

    Sun, Haiyan; Guan, Su; Huang, Min

    2005-08-01

    To explore the possibility and the optimal extraction technology of astragaloside IV by SFE-CO2. According the content of astragaloside IV, the optimum extraction technology parameters such as extraction temperature, pressure, extraction time, velocity of fluid and co-solvent were investigated and the result was compared with that of water extraction. The optimum technical parameters were as follows: Extracting pressure 40 Mpa, temperature 45 degrees C, extracting time 2h, co-solvent was 95% ethanol and its dosage was 4ml/g, the ratio of CO2 fluid was 10 kg/kg x h. Extraction technology of astragaloside IV by SFE-CO2 is reliable, stable.

  19. Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piallat, Fabien, E-mail: fabien.piallat@gmail.com; CEA, LETI, Campus Minatec, F-38054 Grenoble; LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble

    2016-09-15

    Due to the reduction of the thickness of the layers used in the advanced technology nodes, there is a growing importance of the surface phenomena in the definition of the general properties of the materials. One of the least controlled and understood phenomenon is the oxidation of metals after deposition, at the vacuum break. In this study, the influence of the sample temperature at vacuum break on the oxidation level of TiN deposited by metalorganic chemical vapor deposition is investigated. TiN resistivity appears to be lower for samples which underwent vacuum break at high temperature. Using X-ray photoelectron spectrometry analysis,more » this change is correlated to the higher oxidation of the TiN layer. Moreover, angle resolved XPS analysis reveals that higher is the temperature at the vacuum break, higher is the surface oxidation of the sample. This surface oxidation is in turn limiting the diffusion of oxygen in the volume of the layer. Additionally, evolution of TiN layers resistivity was monitored in time and it shows that resistivity increases until a plateau is reached after about 10 days, with the lowest temperature at vacuum break resulting in the highest increase, i.e., the resistivity of the sample released to atmosphere at high temperature increased by a factor 1.7 whereas the resistivity of the sample cooled down under vacuum temperature increased by a factor 2.7.« less

  20. Ultraviolet-enhanced photodetection in a graphene/SiO{sub 2}/Si capacitor structure with a vacuum channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Myungji; Kim, Hong Koo, E-mail: hkk@pitt.edu

    2015-09-14

    We report photodetection properties of a graphene/oxide/silicon capacitor structure with a nanoscale vacuum channel. The photogenerated two-dimensional electron gas (2DEG) inversion charges at SiO{sub 2}/Si interface are extracted out to air and transported along the void channel at low bias voltage (<5 V). A monolayer graphene, placed on top of SiO{sub 2} and suspended on the void channel, is utilized as a photon-transparent counter-electrode to the 2DEG layer and a collector electrode for the out-of-plane transported electrons, respectively. The photocurrent extracted through a void channel reveals high responsivity (1.0 A/W at 633 nm) as measured in a broad spectral range (325–1064 nm), especially demonstratingmore » a UV-enhanced performance (0.43 A/W responsivity and 384% internal quantum efficiency at 325 nm). The mechanisms underlying photocarrier generation, emission, and transport in a suspended-graphene/SiO{sub 2}/Si structure are proposed.« less

  1. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability.

    PubMed

    Li, Xiaohua; Luque-Moreno, Luis C; Oudenhoven, Stijn R G; Rehmann, Lars; Kersten, Sascha R A; Schuur, Boelo

    2016-09-01

    Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid-liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created from acid-leached and untreated pinewood, with levoglucosan contents (most abundant sugar) of 29.0% and 8.3% (w/w), respectively. In a single stage extraction, 70% of the aromatics were effectively removed by P666,14[N(CN)2] and 50% by EA, while no levoglucosan was extracted. The IL was regenerated by vacuum evaporation (100mbar) at 220°C, followed by extraction of aromatics from fresh pyrolytic sugar solutions. Regenerated IL extracted aromatics with similar extraction efficiency as the fresh IL, and the purified sugar fraction from pretreated pinewood was hydrolyzed to glucose and fermented to ethanol, yielding 0.46g ethanol/(g glucose), close to the theoretical maximum yield. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Wood Dust in Joineries and Furniture Manufacturing: An Exposure Determinant and Intervention Study.

    PubMed

    Douwes, Jeroen; Cheung, Kerry; Prezant, Bradley; Sharp, Mark; Corbin, Marine; McLean, Dave; 't Mannetje, Andrea; Schlunssen, Vivi; Sigsgaard, Torben; Kromhout, Hans; LaMontagne, Anthony D; Pearce, Neil; McGlothlin, James D

    2017-05-01

    To assess wood dust exposures and determinants in joineries and furniture manufacturing and to evaluate the efficacy of specific interventions on dust emissions under laboratory conditions. Also, in a subsequent follow-up study in a small sample of joinery workshops, we aimed to develop, implement, and evaluate a cost-effective and practicable intervention to reduce dust exposures. Personal inhalable dust (n = 201) was measured in 99 workers from 10 joineries and 3 furniture-making factories. To assess exposure determinants, full-shift video exposure monitoring (VEM) was conducted in 19 workers and task-based VEM in 32 workers (in 7 joineries and 3 furniture factories). We assessed the efficacy of vacuum extraction on hand tools and the use of vacuum cleaners instead of sweeping and dry wiping under laboratory conditions. These measures were subsequently implemented in three joinery workshops with 'high' (>4 mg m-3) and one with 'low' (<2 mg m-3) baseline exposures. We also included two control workshops (one 'low' and one 'high' exposure workshop) in which no interventions were implemented. Exposures were measured 4 months prior and 4 months following the intervention. Average (geometric means) exposures in joinery and furniture making were 2.5 mg m-3 [geometric standard deviations (GSD) 2.5] and 0.6 mg m-3 (GSD 2.3), respectively. In joinery workers cleaning was associated with a 3.0-fold higher (P < 0.001) dust concentration compared to low exposure tasks (e.g. gluing), while the use of hand tools showed 3.0- to 11.0-fold higher (P < 0.001) exposures. In furniture makers, we found a 5.4-fold higher exposure (P < 0.001) with using a table/circular saw. Laboratory efficiency experiments showed a 10-fold decrease in exposure (P < 0.001) when using a vacuum cleaner. Vacuum extraction on hand tools combined with a downdraft table reduced exposures by 42.5% for routing (P < 0.1) and 85.5% for orbital sanding (P < 0.001). Following intervention measures in joineries, a borderline statistically significant (P < 0.10) reduction in exposure of 30% was found in workshops with 'high' baseline exposures, but no reduction was shown in the workshop with 'low' baseline exposures. Wood dust exposure is high in joinery workers and (to a lesser extent) furniture makers with frequent use of hand tools and cleaning being key drivers of exposure. Vacuum extraction on hand tools and alternative cleaning methods reduced workplace exposures substantially, but may be insufficient to achieve compliance with current occupational exposure limits. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  3. Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity

    NASA Astrophysics Data System (ADS)

    Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro

    2018-06-01

    A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.

  4. Extended Operation of Stirling Convertors in a Thermal Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2006-01-01

    A 110 watt Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA exploration missions. The development effort is being performed by Lockheed Martin under contract to the Department of Energy (DOE). Infinia, Corp. supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been initiated at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG110, however the requirement for low mass was not considered. This test demonstrates the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The status of the test as well as the data gathered will be presented in this paper.

  5. The evolution of space simulation

    NASA Technical Reports Server (NTRS)

    Edwards, Arthur A.

    1992-01-01

    Thirty years have passed since the first large (more than 15 ft diameter) thermal vacuum space simulation chambers were built in this country. Many changes have been made since then, and the industry has learned a great deal as the designs have evolved in that time. I was fortunate to have been part of that beginning, and have participated in many of the changes that have occurred since. While talking with vacuum friends recently, I realized that many of the engineers working in the industry today may not be aware of the evolution of space simulation because they did not experience the changes that brought us today's technology. With that in mind, it seems to be appropriate to take a moment and review some of the events that were a big part of the past thirty years in the thermal vacuum business. Perhaps this review will help to understand a little of the 'why' as well as the 'how' of building and operating large thermal vacuum chambers.

  6. Magnet system optimization for segmented adaptive-gap in-vacuum undulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitegi, C., E-mail: ckitegi@bnl.gov; Chubar, O.; Eng, C.

    2016-07-27

    Segmented Adaptive Gap in-vacuum Undulator (SAGU), in which different segments have different gaps and periods, promises a considerable spectral performance gain over a conventional undulator with uniform gap and period. According to calculations, this gain can be comparable to the gain achievable with a superior undulator technology (e.g. a room-temperature in-vacuum hybrid SAGU would perform as a cryo-cooled hybrid in-vacuum undulator with uniform gap and period). However, for reaching the high spectral performance, SAGU magnetic design has to include compensation of kicks experienced by the electron beam at segment junctions because of different deflection parameter values in the segments. Wemore » show that such compensation to large extent can be accomplished by using a passive correction, however, simple correction coils are nevertheless required as well to reach perfect compensation over a whole SAGU tuning range. Magnetic optimizations performed with Radia code, and the resulting undulator radiation spectra calculated using SRW code, demonstrating a possibility of nearly perfect correction, are presented.« less

  7. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Astrophysics Data System (ADS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-03-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  8. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-01-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  9. A NEW, SMALL DRYING FACILITY FOR WET RADIOACTIVE WASTE AND LIQUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldiges, Olaf; Blenski, Hans-Juergen

    2003-02-27

    Due to the reason, that in Germany every Waste, that is foreseen to be stored in a final disposal facility or in a long time interim storage facility, it is necessary to treat a lot of waste using different drying technologies. In Germany two different drying facilities are in operation. The GNS Company prefers a vacuum-drying-technology and has built and designed PETRA-Drying-Facilities. In a lot of smaller locations, it is not possible to install such a facility because inside the working areas of that location, the available space to install the PETRA-Drying-Facility is too small. For that reason, GNS decidedmore » to design a new, small Drying-Facility using industrial standard components, applying the vacuum-drying-technology. The new, small Drying-Facility for wet radioactive waste and liquids is presented in this paper. The results of some tests with a prototype facility are shown in chapter 4. The main components of that new facility are described in chapter 3.« less

  10. Radioactive scrap metal decontamination technology assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for themore » liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.« less

  11. Marginal adaptation of mineral trioxide aggregate (MTA) compared with amalgam as a root-end filling material: a low-vacuum (LV) versus high-vacuum (HV) SEM study.

    PubMed

    Shipper, G; Grossman, E S; Botha, A J; Cleaton-Jones, P E

    2004-05-01

    To compare the marginal adaptation of mineral trioxide aggregate (MTA) or amalgam root-end fillings in extracted teeth under low-vacuum (LV) versus high-vacuum (HV) scanning electron microscope (SEM) viewing conditions. Root-end fillings were placed in 20 extracted single-rooted maxillary teeth. Ten root ends were filled with MTA and the other 10 root ends were filled with amalgam. Two 1 mm thick transverse sections of each root-end filling were cut 0.50 mm (top) and 1.50 mm (bottom) from the apex. Gap size was recorded at eight fixed points along the dentine-filling material interface on each section when uncoated wet (LV wet (LVW)) and dry under LV (0.3 Torr) in a JEOL JSM-5800 SEM and backscatter emission (LV dry uncoated (LVDU)). The sections were then air-dried, gold-coated and gap size was recorded once again at the fixed points under HV (10(-6) Torr; HV dry coated (HVDC)). Specimen cracking, and the size and extent of the crack were noted. Gap sizes at fixed points were smallest under LVW and largest under HVDC SEM conditions. Gaps were smallest in MTA root-end fillings. A General Linear Models Analysis, with gap size as the dependent variable, showed significant effects for extent of crack in dentine, material and viewing condition (P = 0.0001). This study showed that MTA produced a superior marginal adaptation to amalgam, and that LVW conditions showed the lowest gap size. Gap size was influenced by the method of SEM viewing. If only HV SEM viewing conditions are used for MTA and amalgam root-end fillings, a correction factor of 3.5 and 2.2, respectively, may be used to enable relative comparisons of gap size to LVW conditions.

  12. An RF-only ion-funnel for extraction from high-pressure gases

    DOE PAGES

    Brunner, T.; Fudenberg, D.; Varentsov, V.; ...

    2015-01-27

    An RF ion-funnel technique has been developed to extract ions from a high-pressure (10 bar) noble-gas environment into a vacuum (10 -6 mbar). Detailed simulations have been performed and a prototype has been developed for the purpose of extracting 136Ba ions from Xe gas with high efficiency. With this prototype, ions have been extracted for the first time from high-pressure xenon gas and argon gas. Systematic studies have been carried out and compared to simulations. This demonstration of extraction of ions, with mass comparable to that of the gas generating the high-pressure, has applications to Ba tagging from a Xe-gasmore » time-projection chamber for double-beta decay, as well as to the general problem of recovering trace amounts of an ionized element in a heavy (m > 40 u) carrier gas.« less

  13. Space Resource Utilization: Technologies and Potential Synergism with Terrestrial Mining

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2015-01-01

    Space Resources and Their Uses: The idea of using resources in space to support human exploration and settlement or for economic development and profit beyond the surface of Earth has been proposed and discussed for decades. Work on developing a method to extract oxygen from lunar regolith started even before humans set foot on the Moon for the first time. The use of space resources, commonly referred to as In Situ Resource Utilization (ISRU), involves the processes and operations to harness and utilize resources in space (both natural and discarded) to create products for subsequent use. Potential space resources include water, solar wind implanted volatiles (hydrogen, helium, carbon, nitrogen, etc.), vast quantities of metals and minerals in extraterrestrial soils, atmospheric constituents, unlimited solar energy, regions of permanent light and darkness, the vacuum and zero-gravity of space itself, trash and waste from human crew activities, and discarded hardware that has completed its primary purpose. ISRU covers a wide variety of concepts, technical disciplines, technologies, and processes. When considering all aspects of ISRU, there are 5 main areas that are relevant to human space exploration and the commercialization of space: 1. Resource Characterization and Mapping, 2. In Situ Consumables Production, 3. Civil Engineering and Construction, 4. In Situ Energy Production and Storage, and 5. In Situ Manufacturing.

  14. Venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Young, Douglas C.; Wade, Larry O.; Burney, Lewis G.

    1992-01-01

    Documentation of the installation and use of venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms is presented. Information on the types of venturis that are useful for meeting the pumping requirements of atmospheric-sampling experiments is also presented. A description of the configuration and installation of the venturi system vacuum line is included with details on the modifications that were made to adapt a venturi to the NASA Electra aircraft at GSFC, Wallops Flight Facility. Flight test results are given for several venturis with emphasis on applications to the Differential Absorption Carbon Monoxide Measurement (DACOM) system at LaRC. This is a source document for atmospheric scientists interested in using the venturi systems installed on the NASA Electra or adapting the technology to other aircraft.

  15. Vacuum Processing Technique for Development of Primary Standard Blackbodies

    PubMed Central

    Navarro, M.; Bruce, S. S.; Johnson, B. Carol; Murthy, A. V.; Saunders, R. D.

    1999-01-01

    Blackbody sources with nearly unity emittance that are in equilibrium with a pure freezing metal such as gold, silver, or copper are used as primary standard sources in the International Temperature Scale of 1990 (ITS-90). Recently, a facility using radio-frequency induction heating for melting and filling the blackbody crucible with the freeze metal under vacuum conditions was developed at the National Institute of Standards and Technology (NIST). The blackbody development under a vacuum environment eliminated the possibility of contamination of the freeze metal during the process. The induction heating, compared to a resistively heated convection oven, provided faster heating of crucible and resulted in shorter turn-around time of about 7 h to manufacture a blackbody. This paper describes the new facility and its application to the development of fixed-point blackbodies.

  16. Electron beam technologies in Poland state of the art and possibilities of development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojcicki, S.

    1994-12-31

    The recent state of high energy electron beam /EB/ used for metals melting and welding in Poland has been presented. Some typical construction of EB furnaces and EB welding machines designed and constructed in Institute of Vacuum Technology in Warsaw are shown. The examples of their application has also been described.

  17. Aerospace Mechanisms and Tribology Technology: Case Studies

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter focuses attention on tribology technology practice related to vacuum tribology and space tribology. Two case studies describe aspects of real problems in sufficient detail for the engineer and the scientist to understand the tribological situations and the failures. The nature of the problems is analyzed and the range of potential solutions is evaluated. Courses of action are recommended.

  18. Measurements on the gas desorption yield of the oxygen-free copper irradiated with low-energy Xe10+ and O+

    NASA Astrophysics Data System (ADS)

    Dong, Z. Q.; Li, P.; Yang, J. C.; Yuan, Y. J.; Xie, W. J.; Zheng, W. H.; Liu, X. J.; Chang, J. J.; Luo, C.; Meng, J.; Wang, J. C.; Wang, Y. M.; Yin, Y.; Chai, Z.

    2017-10-01

    Heavy ion beam lost on the accelerator vacuum wall will release quantity of gas molecules and make the vacuum system deteriorate seriously. This phenomenon is called dynamic vacuum effect, observed at CERN, GSI and BNL, leading to the decrease of beam lifetime when increasing beam intensity. Heavy ion-induced gas desorption, which results in dynamic vacuum effect, becomes one of the most important problems for future accelerators proposed to operate with intermediate charge state beams. In order to investigate the mechanism of this effect and find the solution method for the IMP future project High Intensity heavy-ion Accelerator Facility (HIAF), which is designed to extract 1 × 1011 uranium particles with intermediate charge state per cycle, two dedicated experiment setups have been installed at the beam line of the CSR and the 320 kV HV platform respectively. Recently, experiment was performed at the 320 kV HV platform to study effective gas desorption with oxygen-free copper target irradiated with continuous Xe10+ beam and O+ beam in low energy regime. Gas desorption yield in this energy regime was calculated and the link between gas desorption and electronic energy loss in Cu target was proved. These results will be used to support simulations about dynamic vacuum effect and optimizations about efficiency of collimators to be installed in the HIAF main synchrotron BRing, and will also provide guidance for future gas desorption measurements in high energy regime.

  19. [Optimization of Extraction Technology for Sericin from Silkworm Cocoon with Orthogonal Design].

    PubMed

    Zhao, Chun-ying; Wang, Yan; Li, Yun-feng; Chen, Zhi-hong

    2015-05-01

    To optimize the appropriate extracting technology for sericin from Silkworm cocoon. Using sericin extraction rates and sericin content as the indices. The single and orthogonal experiments were used to determine the best conditions. The optimal extraction technology for sericin from Silkworm cocoon was as follows: 1: 30 for the ratio of solid to liquid, 3 h reflux for 2 times of extraction and water temperature at 100 degrees C. The extraction rate of sericin from Silkworm cocoon was 27.1%. The optimal extraction technology is stable, feasible, and can provide reference for further pharmacological study on cocoon sericin.

  20. [Advances in studies on multi-stage countercurrent extraction technology in traditional Chinese medicine].

    PubMed

    Xie, Zhi-Peng; Liu, Xue-Song; Chen, Yong; Cai, Ming; Qu, Hai-Bin; Cheng, Yi-Yu

    2007-05-01

    Multi-stage countercurrent extraction technology, integrating solvent extraction, repercolation with dynamic and countercurrent extraction, is a novel extraction technology for the traditional Chinese medicine. This solvent-saving, energy-saving and high-extraction-efficiency technology can at the most drive active compounds to diffuse from the herbal materials into the solvent stage by stage by creating concentration differences between the herbal materials and the solvents. This paper reviewed the basic principle, the influence factors and the research progress and trends of the equipments and the application of the multi-stage countercurrent extraction.

  1. Non-PBDE halogenated flame retardants in Canadian indoor house dust: sampling, analysis, and occurrence.

    PubMed

    Fan, Xinghua; Kubwabo, Cariton; Rasmussen, Pat E; Wu, Fang

    2016-04-01

    An analytical method was developed for the measurement of 18 novel halogenated flame retardants in house dust. Sample preparation was based on ultrasound-assisted solvent extraction and clean up with solid phase extraction (SPE). Sample extracts were analyzed by gas chromatography-mass spectrometry (GC/MS) operated in electron capture negative ion (ECNI) chemical ionization mode. Baseline data from 351 fresh (active) dust samples collected under the Canadian House Dust Study (CHDS) revealed that five out of 18 target chemicals were present with detection frequencies higher than 90 %. Median (range) concentrations for these five compounds were as follows: 104 (<1.5-13,000) ng/g for 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB), 8.5 (<1.7-2390) ng/g for 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), 10.2 (<1.7-430) ng/g for hexabromobenzene (HBB), 2.9 (<1.2-1410) ng/g for syn-dechlorane plus (syn-DP) and 5.6 (<1.9-1570) ng/g for anti-dechlorane plus (anti-DP). A comparison of two sampling methods in a subset of 40 homes showed significant positive correlations between samples of "active" dust and samples taken directly from the household vacuum cleaner for all target compounds having median values above their corresponding method detection limits (MDLs). In addition, the method was also applied to the analysis of the targeted compounds in National Institute of Standards and Technology (NIST) standard reference material (SRM 2585, organic contaminants in house dust). Results from the current study could contribute to the potential certification of target chemicals in SRM 2585.

  2. Short communication: Effects of vacuum freeze-drying on inactivation of Cronobacter sakazakii ATCC29544 in liquid media with different initial inoculum levels.

    PubMed

    Jiao, Rui; Gao, Jina; Zhang, Xiyan; Zhang, Maofeng; Chen, Jiren; Wu, Qingping; Zhang, Jumei; Ye, Yingwang

    2017-03-01

    Vacuum freeze-drying is an important food-processing technology for valid retention of nutrients and bioactive compounds. Cronobacter sakazakii has been reported to be associated with severe infections in neonates through consumption of contaminated powdered infant formula. In this study, effects of vacuum freeze-drying treatment for 12, 24, and 36 h on inactivation of C. sakazakii with different initial inoculum levels in sterile water, tryptic soy broth (TSB), skim milk, and whole milk were determined. Results indicated that the lethality rate of C. sakazakii in each sample increased with the extension of vacuum freeze-drying time. With initial inoculum levels of 10 2 and 10 3 cfu/mL, the survival of C. sakazakii in different liquid media was significantly affected by vacuum freeze-drying for 12, 24, and 36 h. In addition, the lethality rates of C. sakazakii in whole milk, skim milk, and TSB was significantly reduced compared with those in sterile water. Furthermore, whole milk showed the strongest protective role for C. sakazakii cells, followed by skim milk and TSB medium. Using the scanning electron microscope, the intracellular damage and obvious distortion of C. sakazakii cells were observed after vacuum freeze-drying for 24 and 36 h compared with the untreated sample, and the injured cells increased with the extension of vacuum-drying time. We concluded that inactivation of vacuum freeze-drying on C. sakazakii cells is related to the food matrix, and a combination with other methods for inactivating C. sakazakii is required for ensuring microbial safety of powdered infant formula. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using eithermore » recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.« less

  4. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill frommore » the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.« less

  5. [Effect of Codonopsis Radix maintained with sulfur fumigation on immune function in mice].

    PubMed

    Liu, Cheng-song; Wang, Yu-ping; Shi, Yan-bin; Ma, Xing-ming; Li, Hui-li; Zhang, Xiao-yun; Li, Shou-tang

    2014-11-01

    To investigate the immune function of mice being given the extract of Codonopsis Radix maintained with sulfur fumigation. Mice were divided into five groups. Except the normal control group, the mice were fed with the extract of Codonopsis Radix maintained with sulfur fumigation at the high,medium and low doses, as well as medium dose of Codonopsis Radix maintained with low-temperature vacuum method, respectively. Mice were treated once a day for 10 continuous days. Weight change,organ indexes, blood cell indices, macrophage phagocytic function, and IL-2 and IFN-γ levels were measured. Compared with normal control group, Codonopsis Radix maintained with sulfur fumigation at medium and high doses inhibited body weight increase of mice; white blood cell count of high dose group was significantly increased; significant increase of macrophage phagocytosis were observed for all groups except the normal control group; and spleen index and IFN-γ level of Codonopsis Radix maintained with sulfur fumigation medium dose group were increased significantly. Codonopsis Radix maintained with sulfur fumigation can promote mouse immune function to a certain degree. There was no difference in immune effect between Codonopsis Radix maintained with sulfur fumigation and low-temperature vacuum method during experimental period. However,taking the extract of Codonopsis Radix maintained with sulfur fumigation can exert negative effect on appetite and body weight in mice.

  6. RESOLVE (Regolith & Environmental Science Oxygen & Lunar Volatile Extraction) Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Captain, Janine; Cryderman, Kate; Quinn, Jacqueline

    2015-01-01

    The RESOLVE Project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer for the Surge Tank (NIRST), WDD, Sample Delivery System, and GC-MS in the vacuum chamber. Since LAVA is a scientific subsystem, the near infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  7. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.; ...

    2017-08-07

    Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less

  8. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.

    Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less

  9. Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell.

    PubMed

    He, Ziming; Liu, Jing; Qiao, Yan; Li, Chang Ming; Tan, Timothy Thatt Yang

    2012-09-12

    The bioanode is the defining feature of microbial fuel cell (MFC) technology and often limits its performance. In the current work, we report the engineering of a novel hierarchically porous architecture as an efficient bioanode, consisting of biocompatible chitosan and vacuum-stripped graphene (CHI/VSG). With the hierarchical pores and unique VSG, an optimized bioanode delivered a remarkable maximum power density of 1530 mW m(-2) in a mediator-less MFC, 78 times higher than a carbon cloth anode.

  10. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.

    PubMed

    Jiang, Xinian

    2010-04-26

    Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80 degrees C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented.

  11. [Study on ultrafine vibration extraction technology of Rhizoma Chuanxiong].

    PubMed

    Dai, Long

    2009-04-01

    To explore the best ultrafine vibration extraction technology of Rhizoma Chuanxiong. Using the content of ligustrazine hydrochloride and ferulic acid as determination indexes, quadrature test was used to choose extraction times, time, solvent amount and to compare with the result of conventional extraction technology. The best condition of the Rhizoma chuanxiong was with 90% ethanol of 4 times volume, extracting 2 times in 25 degrees C, 15 minutes each time. Comparing with conventional extraction technology, extraction time of UVET was 1/6, solvent amount was 4/7, the extraction rate of marker components was 1.19 and 1.09 times, respectivley. UVET can improve the extracting rate of effective constituents, reduce the time and solvent amount and be used in industrialization.

  12. Cryogenic thermal control technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.

    1974-01-01

    A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  13. Precision requirements and innovative manufacturing for ultrahigh precision laser interferometry of gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou; Han, Sen; Jin, Tao

    2016-11-01

    With the LIGO announcement of the first direct detection of gravitational waves (GWs), the GW Astronomy was formally ushered into our age. After one-hundred years of theoretical investigation and fifty years of experimental endeavor, this is a historical landmark not just for physics and astronomy, but also for industry and manufacturing. The challenge and opportunity for industry is precision and innovative manufacturing in large size - production of large and homogeneous optical components, optical diagnosis of large components, high reflectance dielectric coating on large mirrors, manufacturing of components for ultrahigh vacuum of large volume, manufacturing of high attenuating vibration isolation system, production of high-power high-stability single-frequency lasers, production of high-resolution positioning systems etc. In this talk, we address the requirements and methods to satisfy these requirements. Optical diagnosis of large optical components requires large phase-shifting interferometer; the 1.06 μm Phase Shifting Interferometer for testing LIGO optics and the recently built 24" phase-shifting Interferometer in Chengdu, China are examples. High quality mirrors are crucial for laser interferometric GW detection, so as for ring laser gyroscope, high precision laser stabilization via optical cavities, quantum optomechanics, cavity quantum electrodynamics and vacuum birefringence measurement. There are stringent requirements on the substrate materials and coating methods. For cryogenic GW interferometer, appropriate coating on sapphire or silicon are required for good thermal and homogeneity properties. Large ultrahigh vacuum components and high attenuating vibration system together with an efficient metrology system are required and will be addressed. For space interferometry, drag-free technology and weak-light manipulation technology are must. Drag-free technology is well-developed. Weak-light phase locking is demonstrated in the laboratories while weak-light manipulation technology still needs developments.

  14. Nanoparticle contamination control for EUVL-technology: especially for photomasks in carriers and scanners

    NASA Astrophysics Data System (ADS)

    Fissan, Heinz; Asbach, Christof; Kuhlbusch, Thomas A. J.; Wang, Jing; Pui, David Y. H.; Yook, Se-Jin; Kim, Jung H.

    2009-05-01

    Extreme Ultraviolet Lithography (EUVL) is a leading lithography technology for the sub-32 nm chip manufacturing technology. Photomasks, in a mask carrier or inside a vacuum scanner, need to be protected from contamination by nanoparticles larger than the minimum feature size expected from this technology. The most critical part with respect to contamination in the EUVL-system is the photomask. The protection is made more difficult because protective pellicles cannot be used, due to the attenuation of the EUV beam by the pellicle. We have defined a set of protection schemes to protect EUVL photomasks from particle contamination and developed models to describe their effectiveness at atmospheric pressure (e.g. in mask carriers) or during scanning operation at low pressure. These schemes include that the mask is maintained facing down to avoid gravitational settling and the establishment of a thermal gradient underneath the mask surface to thermophoretically repel particles. Experimental verification studies of the models were carried out in atmospheric-pressure carriers and in a vacuum system down to about 3.3 Pa. Particles with sizes between 60 (for experiments, isn't it 125 nm?) nm and 250 nm were injected into the vacuum chamber with controlled speed and concentration to validate the analytical and numerical models. It could be shown that a deterministic approach using free molecular expressions can be used to accurately describe particle deposition at these low pressure levels. Thermophoresis was found to be very effective at both atmospheric and low pressure against the diffusional particle deposition, whereas inertial particle deposition of large and/or fast particles can likely not be prevented. A review of the models and their verification will be presented in this paper.

  15. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  16. Device for collecting chemical compounds and related methods

    DOEpatents

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  17. Devices for collecting chemical compounds

    DOEpatents

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  18. Selective Extraction and Recovery of Nd and Dy from Nd-Fe-B Magnet Scrap by Utilizing Molten MgCl2

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Okabe, Toru H.

    2018-06-01

    Fundamental experiments are conducted with the aim of developing an efficient recycling process for rare earth elements (REEs) from neodymium-iron-boron (Nd-Fe-B) permanent magnet scrap. Molten magnesium dichloride (MgCl2) was chosen as an extraction medium, which can selectively chlorinate and extract REEs in magnet alloys. Dysprosium-containing Nd-Fe-B magnet alloy was immersed in molten MgCl2 at 1273 K (1000 °C) for 3 to 12 hours. The results of the experiments clearly show that the REEs in the magnetic alloy were successfully extracted into the molten salt, while the Fe-B alloy remained in a solid form. The extraction ratios of Nd and Dy were at most 87 and 78 mass pct, respectively. After the extraction experiment, excess MgCl2 and Mg were removed by vacuum distillation and the rare earth chlorides were recovered. Thus, the feasibility of this method for efficient recovery of rare earths using molten MgCl2 is demonstrated.

  19. Selective Extraction and Recovery of Nd and Dy from Nd-Fe-B Magnet Scrap by Utilizing Molten MgCl2

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Okabe, Toru H.

    2018-02-01

    Fundamental experiments are conducted with the aim of developing an efficient recycling process for rare earth elements (REEs) from neodymium-iron-boron (Nd-Fe-B) permanent magnet scrap. Molten magnesium dichloride (MgCl2) was chosen as an extraction medium, which can selectively chlorinate and extract REEs in magnet alloys. Dysprosium-containing Nd-Fe-B magnet alloy was immersed in molten MgCl2 at 1273 K (1000 °C) for 3 to 12 hours. The results of the experiments clearly show that the REEs in the magnetic alloy were successfully extracted into the molten salt, while the Fe-B alloy remained in a solid form. The extraction ratios of Nd and Dy were at most 87 and 78 mass pct, respectively. After the extraction experiment, excess MgCl2 and Mg were removed by vacuum distillation and the rare earth chlorides were recovered. Thus, the feasibility of this method for efficient recovery of rare earths using molten MgCl2 is demonstrated.

  20. Extraction of S- and N-compounds from the mixture of hydrocarbons by ionic liquids as selective solvents.

    PubMed

    Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan

    2013-01-01

    Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation.

  1. Extraction of S- and N-Compounds from the Mixture of Hydrocarbons by Ionic Liquids as Selective Solvents

    PubMed Central

    Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan

    2013-01-01

    Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation. PMID:23843736

  2. Comparative Recovery of Two Human Norovirus Surrogates, Feline Calicivirus and Murine Norovirus, with a Wet Vacuum System, Macrofoam-Tipped Swab, and Bottle Extraction Method from Carpets.

    PubMed

    Buckley, David; Fraser, Angela; Pettigrew, Charles; Anderson, Jeffery; Jiang, Xiuping

    2018-05-10

    Human noroviruses (HuNoV) are the leading cause of known foodborne illness in the United States, but direct detection during outbreak investigations is challenging. On the other hand, sampling both hard and soft environmental surfaces can be used to improve outbreak investigations. Currently, we lack virus recovery methods for soft surfaces, such as carpet, despite evidence suggesting that carpets contribute to HuNoV outbreaks. Our aim was to compare two recovery methods, wet vacuum and swabbing, for routine carpet sampling of HuNoV against a laboratory reference method known as bottle extraction (BE). Specifically, we compared the microbial vacuum (MVAC), macrofoam-tipped swab (MS), and BE by using HuNoV surrogates, feline calicivirus (FCV) and murine norovirus (MNV), inoculated on wool and nylon carpet carriers. The highest recovery of infectious FCV from wool was 5.51, 3.76, and 5.16 log PFU, whereas on nylon, recovery was 5.03, 3.62, and 4.75 log PFU by using BE, MS, and MVAC, respectively. On the other hand, the highest recovery of infectious MNV from wool was 6.10, 4.50, and 5.99 log PFU, while recovery on nylon was 6.07, 4.58, and 6.13 log PFU by using BE, MS, and MVAC, respectively. Significantly more PFU and genomic copies were recovered by using BE and MVAC compared with MS, while buffer type played a significant role in recovery of infectious FCV.

  3. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  4. Latest improvements in microbolometer thin film packaging: paving the way for low-cost consumer applications

    NASA Astrophysics Data System (ADS)

    Yon, J. J.; Dumont, G.; Goudon, V.; Becker, S.; Arnaud, A.; Cortial, S.; Tisse, C. L.

    2014-06-01

    Silicon-based vacuum packaging is a key enabling technology for achieving affordable uncooled Infrared Focal Plane Arrays (IRFPA) required by a promising mass market that shows momentum for some extensive consumer applications, such as automotive driving assistance, smart presence localization and building management. Among the various approaches studied worldwide, CEA, LETI in partnership with ULIS is committed to the development of a unique technology referred to as PLP (Pixel Level Packaging). In this PLP technology, each bolometer pixel is sealed under vacuum using a transparent thin film deposition on wafer. PLP operates as an array of hermetic micro caps above the focal plane, each enclosing a single microbolometer. In continuation of our on-going studies on PLP for regular QVGA IRFPAs, this paper emphasizes on the innate scalability of the technology which was successfully demonstrated through the development of an 80 × 80 pixel IRFPA. The relevance of the technology with regard to the two formats is discussed, considering both performance and cost issues. We show that the suboptimal fill factor inherent to the PLP arrangement is not so critical when considering smaller arrays preferably fitted for consumer applications. The discussion is supported with the electro-optical performance measurements of the PLP-based 80×80 demonstrator.

  5. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Astrophysics Data System (ADS)

    Mason, L.; Palac, D.; Gibson, M.; Houts, M.; Warren, J.; Werner, J.; Poston, D.; Qualls, L.; Radel, R.; Harlow, S.

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  6. New advances in erectile technology

    PubMed Central

    Stein, Marshall J.; Lin, Haocheng

    2014-01-01

    New discoveries and technological advances in medicine are rapid. The role of technology in the treatment of erectile dysfunction (ED) will be widened and more options will be available in the years to come. These erectile technologies include external penile support devices, penile vibrators, low intensity extracorporeal shockwave, tissue engineering, nanotechnology and endovascular technology. Even for matured treatment modalities for ED, such as vacuum erectile devices and penile implants, there is new scientific information and novel technology available to improve their usage and to stimulate new ideas. We anticipate that erectile technologies may revolutionize ED treatment and in the very near future ED may become a curable condition. PMID:24489605

  7. Antibiotic prophylaxis for operative vaginal delivery.

    PubMed

    Liabsuetrakul, T; Choobun, T; Peeyananjarassri, K; Islam, M

    2004-01-01

    Vacuum and forceps assisted vaginal deliveries are reported to increase the incidence of postpartum infections and maternal readmission to hospital compared to spontaneous vaginal delivery. Prophylactic antibiotics are prescribed to prevent these infections. However, the benefit of antibiotic prophylaxis for operative vaginal deliveries is still unclear. To assess the effectiveness and safety of antibiotic prophylaxis in reducing infectious puerperal morbidities in women undergoing operative vaginal deliveries including vacuum and/or forceps deliveries. We searched the Cochrane Pregnancy and Childbirth Group trials register (November 2003), the Cochrane Central Register of Controlled Trials (The Cochrane Library, Issue 4, 2003) and MEDLINE (1966 to November 2003). All randomised trials comparing any prophylactic antibiotic regimens with placebo or no treatment in women undergoing vacuum or forceps deliveries were eligible. Participants were all pregnant women without evidence of infections or other indications for antibiotics of any gestational age undergoing vacuum or forceps delivery for any indications. Interventions were any antibiotic prophylaxis (any dosage regimen, any route of administration or at any time during delivery or the puerperium) compared with either placebo or no treatment. Four reviewers assessed trial eligibility and methodological quality. Two reviewers extracted the data independently using prepared data extraction forms. Any discrepancies were resolved by discussion and a consensus reached through discussion with all reviewers. We assessed methodological quality of the included trial using the standard Cochrane criteria and the CONSORT statement of randomised controlled trials. We calculated the relative risks using a fixed effect model and all the reviewers interpreted and discussed the results. One trial, involving 393 women undergoing either vacuum or forceps deliveries, was included. This trial identified only two out of the nine outcomes specified in this review. It reported seven women with endomyometritis in the group given no antibiotic and none in prophylactic antibiotic group. This difference did not reach statistical significance, but the relative risk reduction was 93% (relative risks 0.07; 95% confidence interval (CI) 0.00 to 1.21). There was no difference in the length of hospital stay between the two groups (weighted mean difference 0.09 days; 95% CI -0.23 to 0.41). The data were too few and of insufficient quality to make any recommendations for practice. Future research on antibiotic prophylaxis for operative vaginal delivery is needed to conclude whether it is useful for reducing postpartum morbidity.

  8. "Physics Stories": How the Early Technologies of High Voltage and High Vacuum Led to "Modern Physics"

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2018-01-01

    Some of you may remember the 1979 television series "Connections" that was written and narrated by James Burke, a British science writer. Burke's technique was to choose a number of seemingly unrelated ideas and show how they led to developments in science and technology. This is an enjoyable business, even if some of the connections…

  9. Fibre optic gyroscopes for space use

    NASA Astrophysics Data System (ADS)

    Faussot, Nicolas; Cottreau, Yann; Hardy, Guillaume; Simonpietri, Pascal; Gaiffe, Thierry

    2017-11-01

    Among the technologies available for gyroscopes usable in space, the Fibre Optic Gyroscope (FOG) technology appears to be the most suitable: no moving parts, very good lifetime, low power consumption, very low random walk, arbitrarily low angular resolution and very good behaviour in radiations and vacuum. Benefiting from more than ten years of experience with this technology, Ixsea (formerly the Navigation Division of Photonetics) is developing space FOG under both CNES and ESA contracts since many years. In the 1996-1998 period, two space FOG demonstrators in the 0,01°/h class were manufactured, including an optical head (optic and optoelectronic part) designed for space use and a standard ground electronics. Beyond the demonstration of the specified FOG performances, the behaviour of the optical head has been validated for use in typical space environment: vibrations, shocks, radiations (up to 50 krad) and thermal vacuum. Since the beginning of 1999, Ixsea is developing a space electronics in order to manufacture two complete space FOG. The first one entered in qualification in October. The second one will be delivered beginning of next year, it will be used in a CNES attitude measurement experiment (MAGI) onboard the FrenchBrazilian Microsatellite (FBM) partly dedicated to technology evaluation.

  10. Isolation and identification of curcumin and bisacurone from rhizome extract of temu glenyeh (Curcuma soloensis. Val)

    NASA Astrophysics Data System (ADS)

    Vitasari, Rista A.; Wibowo, Fajar R.; Marliyana, Soerya D.; Widyo Wartono, M.

    2016-02-01

    Temu glenyeh (Curcuma soloensis. Val) is one of the medicinal plants that grow in Surakarta. This plant is similar with C. longa and C. Xanthoriza. Chemical constituents from an extract of the plant have never been studied. In this paper, we report the isolation of a terpenoid and curcumin from the rhizome of C. soloensis. The isolation was employed by soxhlet apparatus using acetone as solvent. The fractionation and purification of the compound from the acetone extracts were undertaken by vacuum liquid chromatography and flash chromatography. Identification of compounds used spectroscopy methods, such as FTIR, NMR (1H NMR, 13C NMR, COSY, HSQC and HMBC) and GC-MS. Isolated compounds were identified as curcumin (1) and bisacurone (2).

  11. Towards extracting the timelike pion form factor on CLS twoflavour ensembles

    NASA Astrophysics Data System (ADS)

    Erben, Felix; Green, Jeremy; Mohler, Daniel; Wittig, Hartmut

    2018-03-01

    Results are presented from an ongoing study of the ρ resonance. The focus is on CLS 2-flavour ensembles generated using O(a) improved Wilson fermions with pion masses ranging from 265 to 437 MeV. The energy levels are extracted by solving the GEVP of correlator matrices, created with the distillation approach involving ρ and ππ interpolators. The study is done in the centre-of-mass frame and several moving frames. One aim of this work is to extract the timelike pion form factor after applying the Lüscher formalism. We therefore plan to integrate this study with the existing Mainz programme for the calculation of the hadronic vacuum polarization contribution to the muon g - 2.

  12. Innovative on-chip packaging applied to uncooled IRFPA

    NASA Astrophysics Data System (ADS)

    Dumont, Geoffroy; Arnaud, Agnès; Imperinetti, Pierre; Mottin, Eric; Simoens, François; Vialle, Claire; Rabaud, Wilfried; Grand, Gilles; Baclet, Nathalie

    2008-03-01

    The Laboratoire Infrarouge (LIR) of the Laboratoire d'Electronique et de Technologie de l'Information (LETI) has been involved in the development of microbolometers for over fifteen years. Two generations of technology have been transferred to ULIS and LETI is still working to improve performances of low cost detectors. Simultaneously, packaging still represents a significant part of detectors price. Reducing production costs would contribute to keep on extending applications of uncooled IRFPA to high volume markets like automotive. Therefore LETI develops an onchip packaging technology dedicated to microbolometers. The efficiency of a micropackaging technology for microbolometers relies on two major technical specifications. First, it must include an optical window with a high transmittance for the IR band, so as to maximize the detector absorption. Secondly, in order to preserve the thermal insulation of the detector, the micropackaging must be hermetically closed to maintain a vacuum level lower than 10 -3mbar. This paper presents an original microcap structure that enables the use of IR window materials as sealing layers to maintain the expected vacuum level. The modelling and integration of an IR window suitable for this structure is also presented. This zero level packaging technology is performed in a standard collective way, in continuation of bolometers' technology. The CEA-LETI, MINATEC presents status of these developments concerning this innovating technology including optical simulations results and SEM views of technical realizations.

  13. Vacuum Studies of a Prototype Composite Coil Dewar for HTSC Transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenterly, S W; Zhang, Y.; Pleva, E. F.

    Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to develop a high-temperature superconducting (HTSC) utility power transformer with primary and secondary coils cooled by liquid nitrogen. Since the vacuum-insulated cryogenic coil dewar surrounds the magnetic core limb and cannot form a shorted turn, non-conductive materials are required. Two test vessels and a small prototype dewar have been fabricated by Scorpius Space Launch Company with epoxy/fiberglass composites, using their proprietary PRESSURMAXX vessel technology. The effects of pumping time, bakeout temperature, and cryogenic vessel temperature on vacuum outgassing rates have been investigated. Outgassing rates of the individual materialsmore » used in vessel construction have also been measured. The results will be scaled up to determine the required pumping capacity for a full-size 25-MVA commercial transformer dewar.« less

  14. The Vacuum Silicon Photomultiplier Tube (VSiPMT): A new version of a hybrid photon detector

    NASA Astrophysics Data System (ADS)

    Russo, Stefano; Barbarino, Giancarlo; de Asmundis, Riccardo; De Rosa, Gianfranca

    2010-11-01

    The future astroparticle experiments will study both energetic phenomena and extremely rare events from astrophysical sources. Since most of these families of experiments are carried out by using scintillation phenomena, Cherenkov or fluorescence radiation, the development of photosensitive detectors seems to be the right way to increase the experimental sensitivity. Therefore we propose an innovative design for a modern, high gain, silicon-based Vacuum Silicon Photomultiplier Tube (VSiPMT), which combines three fully established and well-understood technologies: the manufacture of hemispherical vacuum tubes with the possibility of very large active areas, the photocathode glass deposition and the novel Geiger-mode avalanche silicon photodiode (G-APD) for which a mass production is today available. This new design, based on G-APD as the electron multiplier, allows overcoming the limits of a classical PMT dynode chain.

  15. Vacuum Nuller Testbed Performance, Characterization and Null Control

    NASA Technical Reports Server (NTRS)

    Lyon, R. G.; Clampin, M.; Petrone, P.; Mallik, U.; Madison, T.; Bolcar, M.; Noecker, C.; Kendrick, S.; Helmbrecht, M. A.

    2011-01-01

    The Visible Nulling Coronagraph (VNC) can detect and characterize exoplanets with filled, segmented and sparse aperture telescopes, thereby spanning the choice of future internal coronagraph exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has developed a Vacuum Nuller Testbed (VNT) to advance this approach, and assess and advance technologies needed to realize a VNC as a flight instrument. The VNT is an ultra-stable testbed operating at 15 Hz in vacuum. It consists of a MachZehnder nulling interferometer; modified with a "W" configuration to accommodate a hexpacked MEMS based deformable mirror (DM), coherent fiber bundle and achromatic phase shifters. The 2-output channels are imaged with a vacuum photon counting camera and conventional camera. Error-sensing and feedback to DM and delay line with control algorithms are implemented in a real-time architecture. The inherent advantage of the VNC is that it is its own interferometer and directly controls its errors by exploiting images from bright and dark channels simultaneously. Conservation of energy requires the sum total of the photon counts be conserved independent of the VNC state. Thus sensing and control bandwidth is limited by the target stars throughput, with the net effect that the higher bandwidth offloads stressing stability tolerances within the telescope. We report our recent progress with the VNT towards achieving an incremental sequence of contrast milestones of 10(exp 8) , 10(exp 9) and 10(exp 10) respectively at inner working angles approaching 2A/D. Discussed will be the optics, lab results, technologies, and null control. Shown will be evidence that the milestones have been achieved.

  16. The Strategic Technologies for Automation and Robotics (STEAR) program: Protection of materials in the space environment subprogram

    NASA Technical Reports Server (NTRS)

    Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.

    1995-01-01

    Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.

  17. Generation of a medium vacuum pressure by using two different pumping methods in the KRISS dynamic flow-control system

    NASA Astrophysics Data System (ADS)

    Hong, S. S.; Lim, J. Y.; Khan, W.

    2014-02-01

    Pumping systems with large vacuum chambers have numerous applications in the process industry: for example, mixing of various types of gases as in the semiconductor industry, the calibration of vacuum gauges, the measurement of outgassing rates of various materials in the field of space technology, etc. Most often, these systems are used in the medium vacuum range (10-1 Pa-102 Pa) and in the dynamically-generated pressure mode. We have designed and developed a new dynamic flow system at the KRISS (Korea Research Institute of Standards and Science) that can be used for such applications with reliability in the range from 0.1 Pa - 133 Pa. In this report, the design philosophy, operational procedure and experimental data for the generated stable pressure points in the chamber of the system are discussed. The data consist the pressure points generated in the medium vacuum range while pumping the chamber of the system by using two different methods: first by using a dry scroll pump and then by using a combination of a turbomolecular pump backed by the same scroll pump. The relative standard deviations in the pressure points were calculated and were found to be greater than 1.5% for the scroll pump and less than 0.5% for the turbomolecular pump.

  18. Insulation Technology in Dry Air and Vacuum for a 72kV Low Pressured Dry Air Insulated Switchgear

    NASA Astrophysics Data System (ADS)

    Yoshida, Tadahiro; Koga, Hiromi; Harada, Takakazu; Miki, Shinichi; Arioka, Masahiro; Sato, Shinji; Yoshida, Satoru; Inoue, Naoaki; Maruyama, Akihiko; Takeuchi, Toshie

    A new 72kV rated low pressured dry air insulated switchgear applying electromagnetic actuation and function that supports CBM has been developed. First, dielectric characteristics in dry air under lightning impulse application has been investigated at bare and insulator covered electrodes. Dependence of the breakdown electric field strength on the effective area has been clarified to apply the configuration design of the insulation mold for the vacuum interrupter. In addition, moisture volume dependence on surface resistance has been clarified to decide moisture volume in gas pressure tank. Next, a new vacuum circuit breaker (VCB) has been designed. To keep dimensions from former 72kV SF6 gas insulated switchgear, distance between contacts in vacuum interrupter is needed to be shorter than that of former switchgear. Voltage withstand capability between electrodes practically designed for vacuum interrupter has been investigated under dc voltage application simulated the small capacitive current breaking test. Gap configuration including contacts and slits has been optimized and distance has been shortened 11% from former switchgear. As a result, the new low pressured dry air insulated switchgear has been designed comparably in outer size to former SF6 gas insulated switchgear. Using dry air as an insulation medium with low pressure has been able to reduce the environmental burden.

  19. Petroleum mineral oil refining and evaluation of cancer hazard.

    PubMed

    Mackerer, Carl R; Griffis, Larry C; Grabowski, John S; Reitman, Fred A

    2003-11-01

    Petroleum base oils (petroleum mineral oils) are manufactured from crude oils by vacuum distillation to produce several distillates and a residual oil that are then further refined. Aromatics including alkylated polycyclic aromatic compounds (PAC) are undesirable constituents of base oils because they are deleterious to product performance and are potentially carcinogenic. In modern base oil refining, aromatics are reduced by solvent extraction, catalytic hydrotreating, or hydrocracking. Chronic exposure to poorly refined base oils has the potential to cause skin cancer. A chronic mouse dermal bioassay has been the standard test for estimating carcinogenic potential of mineral oils. The level of alkylated 3-7-ring PAC in raw streams from the vacuum tower must be greatly reduced to render the base oil noncarcinogenic. The processes that can reduce PAC levels are known, but the operating conditions for the processing units (e.g., temperature, pressure, catalyst type, residence time in the unit, unit engineering design, etc.) needed to achieve adequate PAC reduction are refinery specific. Chronic dermal bioassays provide information about whether conditions applied can make a noncarcinogenic oil, but cannot be used to monitor current production for quality control or for conducting research or developing new processes since this test takes at least 78 weeks to conduct. Three short-term, non-animal assays all involving extraction of oil with dimethylsulfoxide (DMSO) have been validated for predicting potential carcinogenic activity of petroleum base oils: a modified Ames assay of a DMSO extract, a gravimetric assay (IP 346) for wt. percent of oil extracted into DMSO, and a GC-FID assay measuring 3-7-ring PAC content in a DMSO extract of oil, expressed as percent of the oil. Extraction with DMSO concentrates PAC in a manner that mimics the extraction method used in the solvent refining of noncarcinogenic oils. The three assays are described, data demonstrating the validation of the assays are shown, and test results of currently manufactured base oils are summarized to illustrate the general lack of cancer hazard for the base oils now being manufactured.

  20. Sustainable recycling technologies for Solar PV off-grid system

    NASA Astrophysics Data System (ADS)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  1. Time-of-flight mass spectrometry of mineral volatilization: Toward direct composition analysis of shocked mineral vapor

    NASA Astrophysics Data System (ADS)

    Austin, Daniel E.; Shen, Andy H. T.; Beauchamp, J. L.; Ahrens, Thomas J.

    2012-04-01

    We have developed an orthogonal-acceleration time-of-flight mass spectrometer to study the volatiles produced when a mineral's shock-compressed state is isentropically released, as occurs when a shock wave, driven into the mineral by an impact, reflects upon reaching a free surface. The instrument is designed to use a gun or explosive-launched projectile as the source of the shock wave, impact onto a flange separating a poor vacuum and the high vacuum (10-7 Torr) interior of the mass spectrometer, and transmission of the shock wave through the flange to a mineral sample mounted on the high-vacuum side of the flange. The device extracts and analyzes the neutrals and ions produced from the shocked mineral prior to the possible occurrence of collateral instrument damage from the shock-inducing impact. The instrument has been tested using laser ablation of various mineral surfaces, and the resulting spectra are presented. Mass spectra are compared with theoretical distributions of molecular species, and with expected distributions from laser desorption.

  2. Comparison of a novel distillation method versus a traditional distillation method in a model gin system using liquid/liquid extraction.

    PubMed

    Greer, Derek; Pfahl, Les; Rieck, Jim; Daniels, Tim; Garza, Oscar

    2008-10-08

    This research studied a novel form of distillation (high vacuum distillation) as a method for preserving volatile aroma chemicals important to the organoleptic attributes of a four botanical model gin as well as the degradation products generated during the heating required in traditional methods of gin distillation. A 2 (5) factorial experiment was conducted in a partially confounded incomplete block design and analyzed using the PROC MIXED procedure from SAS. A model gin was made of dried juniper berries (Juniperus communis), coriander seed (Coriandrum sativum), angelica root (Angelica archangelica), and dry lemon peel (Citrus limonum). This was distilled on a traditional still utilizing atmospheric pressure and a heating mantel to initiate phase separation as well as a novel still (high vacuum) utilizing high vacuum pressures below 0.1 mmHg and temperatures below -15 degrees C to initiate phase separation. The degradation products (alpha-pinene, alpha-phellandrene, E-caryophyllene, and beta-myrcene) were present at greater levels (approximately 10 times) in the traditional still-made gin as compared to the novel gin.

  3. Field enhancement in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Piltan, Shiva; Sievenpiper, Dan

    2018-05-01

    Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of {{W}} {{{c}}{{m}}}-2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.

  4. The MEMS Knudsen Compressor as a Vacuum Pump for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Vargo, S. E.; Muntz, E. P.; Tang, W. C.

    2000-01-01

    Several lander, probe and rover missions currently under study at the Jet Propulsion Laboratory (JPL) and especially in the Microdevices Laboratory (MDL) Center for Space Microelectronics Technology, focus on utilizing microelectromechanical systems (MEMS) based instruments for science data gathering. These small instruments and NASA's commitment to "faster, better, cheaper" type missions has brought about the need for novel approaches to satisfying mission requirements. Existing in-situ instrument systems clearly lack novel and integrated methods for satisfying their vacuum needs. One attractive candidate for a MEMS vacuum pump is the Knudsen Compressor, which operates based on thermal transpiration. Thermal transpiration describes gas flows induced by temperature differences maintained across orifices, porous membranes or capillary tubes under rarefied conditions. This device has two overwhelmingly attractive features as a MEMS vacuum pump - no moving parts and no fluids. An initial estimate of a Knudsen Compressor's pumping power requirements for a surface atmospheric sampling task on Mars is less than 80 mW, significantly below than alternative pumps. Due to the relatively low energy use for this task and the applicability of the Knudsen Compressor to other applications, the development of a Knudsen Compressor utilizing MEMS fabrication techniques has been initiated. This paper discusses the initial fabrication of a single-stage MEMS Knudsen Compressor vacuum pump, provides performance criteria such as pumping speed, size, energy use and ultimate pressure and details vacuum pump applications in several MDL related in-situ instruments.

  5. Development of vegetation cutting tool attachments for the automated roadway debris vacuums.

    DOT National Transportation Integrated Search

    2008-12-01

    The Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center has been : developing robotic equipment and machinery for highway maintenance and construction operations. It is a : cooperative venture between the University of Ca...

  6. Advances in QCD sum-rule calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melikhov, Dmitri

    2016-01-22

    We review the recent progress in the applications of QCD sum rules to hadron properties with the emphasis on the following selected problems: (i) development of new algorithms for the extraction of ground-state parameters from two-point correlators; (ii) form factors at large momentum transfers from three-point vacuum correlation functions: (iii) properties of exotic tetraquark hadrons from correlation functions of four-quark currents.

  7. A gravitational wave observatory operating beyond the quantum shot-noise limit

    NASA Astrophysics Data System (ADS)

    Ligo Scientific Collaboration; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballmer, S.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Batch, J.; Bauchrowitz, J.; Behnke, B.; Bell, A. S.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bork, R.; Born, M.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummitt, A.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavagliá, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chelkowski, S.; Chen, Y.; Christensen, N.; Cho, H.; Chua, S. S. Y.; Chung, S.; Chung, C. T. Y.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; Danzmann, K.; Daudert, B.; Daveloza, H.; Davies, G.; Daw, E. J.; Dayanga, T.; Debra, D.; Degallaix, J.; Dent, T.; Dergachev, V.; Derosa, R.; Desalvo, R.; Dhurandhar, S.; Diguglielmo, J.; di Palma, I.; Díaz, M.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Fisher, R. P.; Flanigan, M.; Foley, S.; Forsi, E.; Fotopoulos, N.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Geng, R.; Gergely, L. Á.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Graef, C.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heintze, M. C.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Huynh-Dinh, T.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Li, J.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; MacDonald, E.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Marandi, A.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohanty, S. D.; Moraru, D.; Moreno, G.; Mori, T.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nolting, D.; Nuttall, L.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ogin, G. H.; Oldenburg, R. G.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Ajith, P.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Phelps, M.; Pickenpack, M.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Pöld, J.; Postiglione, F.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Mohapatra, S. R. P.; Raymond, V.; Redwine, K.; Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rollins, J.; Romano, J. D.; Romie, J. H.; Röver, C.; Rowan, S.; Rüdiger, A.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, R. J. E.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stefszky, M.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Torres, C.; Torrie, C. I.; Traylor, G.; Trias, M.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A. E.; Vitale, S.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wanner, A.; Wang, X.; Wang, Z.; Ward, R. L.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, K.; Yamamoto, H.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Zanolin, M.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2011-12-01

    Around the globe several observatories are seeking the first direct detection of gravitational waves (GWs). These waves are predicted by Einstein's general theory of relativity and are generated, for example, by black-hole binary systems. Present GW detectors are Michelson-type kilometre-scale laser interferometers measuring the distance changes between mirrors suspended in vacuum. The sensitivity of these detectors at frequencies above several hundred hertz is limited by the vacuum (zero-point) fluctuations of the electromagnetic field. A quantum technology--the injection of squeezed light--offers a solution to this problem. Here we demonstrate the squeezed-light enhancement of GEO600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3-4 years. GEO600 now operates with its best ever sensitivity, which proves the usefulness of quantum entanglement and the qualification of squeezed light as a key technology for future GW astronomy.

  8. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    PubMed

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Entropy Growth in the Early Universe and Confirmation of Initial Big Bang Conditions

    NASA Astrophysics Data System (ADS)

    Beckwith, Andrew

    2009-09-01

    This paper shows how increased entropy values from an initially low big bang level can be measured experimentally by counting relic gravitons. Furthermore the physical mechanism of this entropy increase is explained via analogies with early-universe phase transitions. The role of Jack Ng's (2007, 2008a, 2008b) revised infinite quantum statistics in the physics of gravitational wave detection is acknowledged. Ng's infinite quantum statistics can be used to show that ΔS~ΔNgravitons is a startmg point to the increasing net universe cosmological entropy. Finally, in a nod to similarities AS ZPE analysis, it is important to note that the resulting ΔS~ΔNgravitons ≠ 1088, that in fact it is much lower, allowing for evaluating initial graviton production as an emergent field phenomena, which may be similar to how ZPE states can be used to extract energy from a vacuum if entropy is not maximized. The rapid increase in entropy so alluded to without near sudden increases to 1088 may be enough to allow successful modeling of relic graviton production for entropy in a manner similar to ZPE energy extraction from a vacuum state.

  10. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).

    PubMed

    Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping

    2016-09-01

    Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The birth of information in the brain: Edgar Adrian and the vacuum tube.

    PubMed

    Garson, Justin

    2015-03-01

    As historian Henning Schmidgen notes, the scientific study of the nervous system would have been "unthinkable" without the industrialization of communication in the 1830s. Historians have investigated extensively the way nerve physiologists have borrowed concepts and tools from the field of communications, particularly regarding the nineteenth-century work of figures like Helmholtz and in the American Cold War Era. The following focuses specifically on the interwar research of the Cambridge physiologist Edgar Douglas Adrian, and on the technology that led to his Nobel-Prize-winning research, the thermionic vacuum tube. Many countries used the vacuum tube during the war for the purpose of amplifying and intercepting coded messages. These events provided a context for Adrian's evolving understanding of the nerve fiber in the 1920s. In particular, they provide the background for Adrian's transition around 1926 to describing the nerve impulse in terms of "information," "messages," "signals," or even "codes," and for translating the basic principles of the nerve, such as the all-or-none principle and adaptation, into such an "informational" context. The following also places Adrian's research in the broader context of the changing relationship between science and technology, and between physics and physiology, in the first few decades of the twentieth century.

  12. A Brief Review on Metamaterial-Based Vacuum Electronics for Terahertz and Microwave Science and Technology

    NASA Astrophysics Data System (ADS)

    Matsui, Tatsunosuke

    2017-09-01

    Metamaterials, which enable us to realize novel physical effects that cannot be achieved using natural materials, have been extensively studied in recent years and significant progress has been made, especially in the field of optics. This game-changing concept has also initiated a rich variety of research activity in vacuum electronics. Here we review the recent development of metamaterial-based vacuum electronics for terahertz (THz) and microwave science and technology. The reversed Cherenkov radiation (RCR) in double-negative (DNG) metamaterials predicted by Veselago back in the 1960s has been experimentally verified in the microwave frequency range by utilizing specially designed DNG metamaterials. The interaction of an electron beam (e-beam) with DNG metamaterials may lead to the realization of novel applications such as microwave and THz radiation sources, accelerators, and even the visualization of invisibility cloaks. Smith-Purcell radiation (SPR) has recently received renewed interest owing to the development of metamaterials and the concept of spoof surface plasmon polaritons, as discussed in this review, and recent results on e-beam-induced directional and wide-band THz radiation with sharp multiple peaks from a graded grating, as well as directional and monochromatic special SPR and their possible application to THz orotron devices, are also reviewed.

  13. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    NASA Technical Reports Server (NTRS)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Haag, Tom; Mackey, Jonathan; McVetta, Mike; Sorrelle, Luke; Tomsik, Tom; Gilligan, Ryan; hide

    2016-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kilowatt Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate and is intended to be used as the electric propulsion system on the Power and Propulsion Element of the recently announced Deep Space Gateway. The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU) 1 and TDU-3 Hall thrusters are also included.

  14. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Haag, Tom; Mackey, Jonathan; McVetta, Mike; Sorrelle, Luke; Tomsik, Tom; Gilligan, Ryan; hide

    2017-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kilowatt Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate and is intended to be used as the electric propulsion system on the Power and Propulsion Element of the recently announced Deep Space Gateway. The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU) 1 and TDU-3 Hall thrusters are also included.

  15. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide

    2018-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  16. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, Scott; Bhandari, Abhinav

    2012-12-26

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPG's program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPG's high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indiummore » Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.« less

  17. Inflatable Structures Technology Handbook. Chapter 21; Inflatable Habitats

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Raboin, Jasen; Spexarth, Gary; Valle, Gerard

    2000-01-01

    The technologies required to design, fabricate, and utilize an inflatable module for space applications has been demonstrated and proven by the TransHab team during the development phase of the program. Through testing and hands-on development several issues about inflatable space structures have been addressed , such as: ease of manufacturing, structural integrity, micrometeorite protection, folding , and vacuum deployment. The TransHab inflatable technology development program has proven that not only are inflatable structures a viable option, but they also offer significant advantages over conventional metallic structures.

  18. Surface thermohardening by the fast-moving electric arch

    NASA Astrophysics Data System (ADS)

    Gabdrakhmanov, Az T.; Shafigullin, L. N.; Galimov, E. R.; Ibragimov, A. R.

    2017-01-01

    This paper describes the technology of modern engineering-plasma hardening steels and prospects of its application. It gives the opportunity to manage the process without using of cooling media, vacuum, special coatings to improve the absorptive capacity of hardened surfaces; the simplicity, the low cost, the maneuverability, a small size of the process equipment; a possibility of the automation and the robotization of technological process.

  19. 1000 X Difference Between Current Displays and Capability of Human Visual System: Payoff Potential for Affordable Defense Systems

    DTIC Science & Technology

    2000-01-01

    second tier technologies: digital micromirror devices (DMD); alternating current gas plasma (ACGP); inorganic electroluminescent (EL, TFEL, AMEL... Micromirror Device (DMD) - Alternating Current Gas Plasma (ACGP) - Electroluminescent (EL, TFEL, AMEL) - Vacuum Fluorescent Display (VFD) - Inorganic Light...Instruments Digital Micromirror Device (DMD) Digital Light Processing technology and another, the Qualcomm/Hughes-JVC CRT/Liquid Crystal Light Valve

  20. Molten Boron Phase-Change Thermal Energy Storage: Containment and Applicability to Microsatellites (Draft)

    DTIC Science & Technology

    2011-06-01

    technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary design...support technologies, including high temperature thermal insulation and thermal to electric power conversion, have been evaluated, and a preliminary...vacuum gap with low emissivity surfaces on either side as the first insulating layer.11 D. Electrical Energy Conversion There are a wide variety

  1. Investment appraisal of technology innovations on dairy farm electricity consumption.

    PubMed

    Upton, J; Murphy, M; De Boer, I J M; Groot Koerkamp, P W G; Berentsen, P B M; Shalloo, L

    2015-02-01

    The aim of this study was to conduct an investment appraisal for milk-cooling, water-heating, and milk-harvesting technologies on a range of farm sizes in 2 different electricity-pricing environments. This was achieved by using a model for electricity consumption on dairy farms. The model simulated the effect of 6 technology investment scenarios on the electricity consumption and electricity costs of the 3 largest electricity-consuming systems within the dairy farm (i.e., milk-cooling, water-heating, and milking machine systems). The technology investment scenarios were direct expansion milk-cooling, ice bank milk-cooling, milk precooling, solar water-heating, and variable speed drive vacuum pump-milking systems. A dairy farm profitability calculator was combined with the electricity consumption model to assess the effect of each investment scenario on the total discounted net income over a 10-yr period subsequent to the investment taking place. Included in the calculation were the initial investments, which were depreciated to zero over the 10-yr period. The return on additional investment for 5 investment scenarios compared with a base scenario was computed as the investment appraisal metric. The results of this study showed that the highest return on investment figures were realized by using a direct expansion milk-cooling system with precooling of milk to 15°C with water before milk entry to the storage tank, heating water with an electrical water-heating system, and using standard vacuum pump control on the milking system. Return on investment figures did not exceed the suggested hurdle rate of 10% for any of the ice bank scenarios, making the ice bank system reliant on a grant aid framework to reduce the initial capital investment and improve the return on investment. The solar water-heating and variable speed drive vacuum pump scenarios failed to produce positive return on investment figures on any of the 3 farm sizes considered on either the day and night tariff or the flat tariff, even when the technology costs were reduced by 40% in a sensitivity analysis of technology costs. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. New Technologies for Enhanced Environmental Testing on Spacecraft Structures

    NASA Astrophysics Data System (ADS)

    Ascani, Maurizio; Alemanno, Leonardo; Rinalducci, Fabrizio

    2014-06-01

    This paper presents engineering approaches to realize Thermal Vacuum Chambers (TVC) for different R&D applications: (1) testing of propulsion systems, operating as a Hall thruster, (2) increasing of the DUT (device under test) surface temperature up to +550°C, (3) installation of the solar system inside the TVC. Each application implies specific problems that need to be managed by TVC during the tests. In particular, emission of high-energy ionized gas at high temperatures, surface temperatures higher 800 K and optical specimen contamination represent under high vacuum conditions significant challenges for test equipment.

  3. Research on vacuum utraviolet calibration technology

    NASA Astrophysics Data System (ADS)

    Wang, Jiapeng; Gao, Shumin; Sun, Hongsheng; Chen, Yinghang; Wei, Jianqiang

    2014-11-01

    Importance of extreme ultraviolet (EUV) and far ultraviolet (FUV) calibration is growing fast as vacuum ultraviolet payloads are wildly used in national space plan. A calibration device is established especially for the requirement of EUV and FUV metrology and measurement. Spectral radiation and detector relative spectral response at EUV and FUV wavelengths can be calibrated with accuracy of 26% and 20%, respectively. The setup of the device, theoretical model and value retroactive method are introduced and measurement of detector relative spectral response from 30 nm to 200 nm is presented in this paper. The calibration device plays an important role in national space research.

  4. Kinetics of scrap tyre pyrolysis under vacuum conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Gartzen; Aguado, Roberto; Olazar, Martin

    2009-10-15

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies themore » kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.« less

  5. Kinetics of scrap tyre pyrolysis under vacuum conditions.

    PubMed

    Lopez, Gartzen; Aguado, Roberto; Olazar, Martín; Arabiourrutia, Miriam; Bilbao, Javier

    2009-10-01

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12K in the reaction starting temperature. The kinetic constant at 503K for devolatilization of volatile additives at 0.25atm is 1.7 times higher than that at 1atm, and that corresponding to styrene-butadiene rubber at 723K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.

  6. Comparison of Gastric versus Gastrointestinal PBET Extractions for Estimating Oral Bioaccessibility of Metals in House Dust

    PubMed Central

    Boros, Kristina; Fortin, Danielle; Jayawardene, Innocent; Chénier, Marc; Levesque, Christine; Rasmussen, Pat E.

    2017-01-01

    Oral bioaccessibility estimates for six metals which are prevalent as contaminants in Canada (zinc, lead, cadmium, copper, nickel, and chromium) are investigated for house dust using the simple gastric phase versus the two-phase physiologically-based extraction technique (PBET). The purpose is to determine whether a complete gastrointestinal (GI) assay yields a more conservative (i.e., higher) estimate of metal bioaccessibility in house dust than the gastric phase alone (G-alone). The study samples include household vacuum dust collected from 33 homes in Montreal, Canada, plus four certified reference materials (NIST 2583, NIST 2584, NIST 2710 and NIST 2710a). Results indicate that percent bioaccessibilities obtained using G-alone are generally greater than or equivalent to those obtained using the complete GI simulation for the six studied metals in house dust. Median bioaccessibilities for G-alone/GI in household vacuum dust samples (n = 33) are 76.9%/19.5% for zinc, 50.4%/6.2% for lead, 70.0%/22.4% for cadmium, 33.9%/30.5% for copper and 28.5%/20.7% for nickel. Bioaccessible chromium is above the detection limit in only four out of 33 samples, for which G-alone results are not significantly different from GI results (p = 0.39). It is concluded that, for the six studied metals, a simple G-alone extraction provides a conservative and cost-effective approach for estimating oral bioaccessibility of metals in house dust. PMID:28106788

  7. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated withmore » VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.« less

  8. Progress on complementary patterning using plasmon-excited electron beamlets (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Du, Zhidong; Chen, Chen; Pan, Liang

    2017-04-01

    Maskless lithography using parallel electron beamlets is a promising solution for next generation scalable maskless nanolithography. Researchers have focused on this goal but have been unable to find a robust technology to generate and control high-quality electron beamlets with satisfactory brightness and uniformity. In this work, we will aim to address this challenge by developing a revolutionary surface-plasmon-enhanced-photoemission (SPEP) technology to generate massively-parallel electron beamlets for maskless nanolithography. The new technology is built upon our recent breakthroughs in plasmonic lenses, which will be used to excite and focus surface plasmons to generate massively-parallel electron beamlets through photoemission. Specifically, the proposed SPEP device consists of an array of plasmonic lens and electrostatic micro-lens pairs, each pair independently producing an electron beamlet. During lithography, a spatial optical modulator will dynamically project light onto individual plasmonic lenses to control the switching and brightness of electron beamlets. The photons incident onto each plasmonic lens are concentrated into a diffraction-unlimited spot as localized surface plasmons to excite the local electrons to near their vacuum levels. Meanwhile, the electrostatic micro-lens extracts the excited electrons to form a focused beamlet, which can be rastered across a wafer to perform lithography. Studies showed that surface plasmons can enhance the photoemission by orders of magnitudes. This SPEP technology can scale up the maskless lithography process to write at wafers per hour. In this talk, we will report the mechanism of the strong electron-photon couplings and the locally enhanced photoexcitation, design of a SPEP device, overview of our proof-of-concept study, and demonstrated parallel lithography of 20-50 nm features.

  9. Impact of dehydration of purslane on retention of bioactive molecules and antioxidant activity.

    PubMed

    Shanker, Niharika; Debnath, Sukumar

    2015-10-01

    Purslane (Portulaca oleracea L.) has several health benefits, such as it reduces risk of CVD, obesity and diabetes. The objective of the study was to investigate the effect of different drying on retention of bioactive molecules, such as omega-3 fatty acids, total phenolic content and antiradical activity of purslane. Five different dehydration methods including microwave (100 MW, 5 min), tray, vacuum, low temperature low humidity, infrared were used at 55-60 °C for 5-7 h for dehydration of purslane. Three solvents, viz. water, ethanol and methanol were used for extraction of bioactive molecules from purslane. Total polyphenol content, antiradical activity and rehydration ratio of the bioactive molecules were determined. Results revealed that total PUFA, α-linolenic acid (ALA), total polyphenol content and antiradical activity were found to retain in the dried purslane in the range of (47.9-59.9 %), (42.5-50 %), (188-408GAE/100 g) and (33.0-88.8 mg/100 g) respectively. The highest values of ALA, total polyphenol content and antiradical activity were found to obtain in the vacuum dried sample. Rehydration ratio was found in the range of 3.2-4.3 and vacuum dried purslane showed maximum rehydration. It could be concluded that vacuum dehydration of purslane is an effective method for retention of bioactive molecules and good rehydration behaviour of dried purslane.

  10. Insufficient filling of vacuum tubes as a cause of microhemolysis and elevated serum lactate dehydrogenase levels. Use of a data-mining technique in evaluation of questionable laboratory test results.

    PubMed

    Tamechika, Yoshie; Iwatani, Yoshinori; Tohyama, Kaoru; Ichihara, Kiyoshi

    2006-01-01

    Experienced physicians noted unexpectedly elevated concentrations of lactate dehydrogenase in some patient samples, but quality control specimens showed no bias. To evaluate this problem, we used a "latent reference individual extraction method", designed to obtain reference intervals from a laboratory database by excluding individuals who have abnormal results for basic analytes other than the analyte in question, in this case lactate dehydrogenase. The reference interval derived for the suspected year was 264-530 U/L, while that of the previous year was 248-495 U/L. The only change we found was the introduction of an order entry system, which requests precise sampling volumes rather than complete filling of vacuum tubes. The effect of vacuum persistence was tested using ten freshly drawn blood samples. Compared with complete filling, 1/5 filling resulted in average elevations of lactate dehydrogenase, aspartic aminotransferase, and potassium levels of 8.0%, 3.8%, and 3.4%, respectively (all p<0.01). Microhemolysis was confirmed using a urine stick method. The length of time before centrifugation determined the degree of hemolysis, while vacuum during centrifugation did not affect it. Microhemolysis is the probable cause of the suspected pseudo-elevation noted by the physicians. Data-mining methodology represents a valuable tool for monitoring long-term bias in laboratory results.

  11. Solar energy converters based on multi-junction photoemission solar cells.

    PubMed

    Tereshchenko, O E; Golyashov, V A; Rodionov, A A; Chistokhin, I B; Kislykh, N V; Mironov, A V; Aksenov, V V

    2017-11-23

    Multi-junction solar cells with multiple p-n junctions made of different semiconductor materials have multiple bandgaps that allow reducing the relaxation energy loss and substantially increase the power-conversion efficiency. The choice of materials for each sub-cell is very limited due to the difficulties in extracting the current between the layers caused by the requirements for lattice- and current-matching. We propose a new vacuum multi-junction solar cell with multiple p-n junctions separated by vacuum gaps that allow using different semiconductor materials as cathode and anode, both activated to the state of effective negative electron affinity (NEA). In this work, the compact proximity focused vacuum tube with the GaAs(Cs,O) photocathode and AlGaAs/GaAs-(Cs,O) anode with GaAs quantum wells (QWs) is used as a prototype of a vacuum single-junction solar cell. The photodiode with the p-AlGaAs/GaAs anode showed the spectral power-conversion efficiency of about 1% at V bias  = 0 in transmission and reflection modes, while, at V bias  = 0.5 V, the efficiency increased up to 10%. In terms of energy conservation, we found the condition at which the energy cathode-to-anode transition was close to 1. Considering only the energy conservation part, the NEA-cell power-conversion efficiency can rich a quantum yield value which is measured up to more than 50%.

  12. Analytical and numerical studies of positive ion beam expansion for surface treatment applications

    NASA Astrophysics Data System (ADS)

    Lounes-Mahloul, Soumya; Bendib, Abderrezeg; Oudini, Noureddine

    2018-01-01

    The aim of this work is to study the expansion in vacuum, of a positive ion beam with the use of one dimensional (1D) analytic model and a two dimensional Particle-In-Cell (2D-PIC) simulation. The ion beam is extracted and accelerated from preformed plasma by an extraction system composed of two polarized parallel perforated grids. The results obtained with both approaches reveal the presence of a potential barrier downstream the extraction system which tends to reflect the ion flux. The dependence of the critical distance for which all extracted ions are reflected, is investigated as a function of the extracted ion beam current density. In particular, it is shown that the 1D model recovers the well-known Child-Langmuir law and that the 2D simulation presents a significant discrepancy with respect to the 1D prediction. Indeed, for a given value of current density, the transverse effects lead to a greater critical distance.

  13. Recovery and purification of limonin from pummelo [Citrus grandis] peel using water extraction, ammonium sulfate precipitation and resin adsorption.

    PubMed

    Yang, Yuan Fan; Zhang, Liang Zheng; Du, Xi Ping; Zhang, Su Fang; Li, Li Jun; Jiang, Ze Dong; Wu, Li Ming; Ni, Hui; Chen, Feng

    2017-08-15

    Limonin is a bioactive compound that is traditionally extracted from citrus seeds using organic solvents or alkaline/metal ion solutions. In the present study, pummelo [Citrus grandis] peel was investigated for limonin preparation using a novel process consisting of water extraction, ammonium sulfate precipitation and resin adsorption. The pummelo peel was determined to have 4.7mg/g limonin, which could be extracted by water and further recovered by ammonium sulfate precipitation with a yield of 2.4mg/g, which was similar to that of traditional process using ethanol extraction and vacuumed evaporation. The precipitated limonin was purified by resin adsorption and crystallization with a purity of 96.4%. In addition, the limonin was identified via the analyses of retention time, infrared spectrum and nuclear magnetic resonance. This study indicates a novel and eco-friendly process for recovering limonin, providing a new candidate for limonin preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Edison's vacuum technology patents

    NASA Astrophysics Data System (ADS)

    Waits, Robert K.

    2003-07-01

    During 1879 Thomas Edison's Menlo Park, New Jersey laboratory developed the means to evacuate glass lamp globes to less than a mTorr in 20 min and in mid-1880 began production of carbon-filament incandescent lamps. Among Edison's nearly 1100 U.S. patents are five for vacuum pump improvements, and at least eight others that are vacuum-related; all applied for between 1880 and 1886. Inspired by an 1878 article by De La Rue and Müller [Philos. Trans. R. Soc. London, Ser. A 169, 155 (1878)] on studies of glow discharges, Edison devised a combination pump using the Geissler pump as a rough pump and the Sprengel pump for continuous exhaustion. Edison's patents described means to control the mercury flow and automate the delivery of the mercury to banks of up to a hundred pumps. Other patents described various means to remove residual gases during lamp processing.

  15. New evaporator station for the center for accelerator target science

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Labib, Mina

    2018-05-01

    As part of an equipment grant provided by DOE-NP for the Center for Accelerator Target Science (CATS) initiative, the procurement of a new, electron beam, high-vacuum deposition system was identified as a priority to insure reliable and continued availability of high-purity targets. The apparatus is designed to contain TWO electron beam guns; a standard 4-pocket 270° geometry source as well as an electron bombardment source. The acquisition of this new system allows for the replacement of TWO outdated and aging vacuum evaporators. Also included is an additional thermal boat source, enhancing our capability within this deposition unit. Recommended specifications for this system included an automated, high-vacuum pumping station, a deposition chamber with a rotating and heated substrate holder for uniform coating capabilities and incorporating computer-controlled state-of-the-art thin film technologies. Design specifications, enhanced capabilities and the necessary mechanical modifications for our target work are discussed.

  16. A characterization NMR of secondary metabolites from lichen Parmotrema praesorediosum

    NASA Astrophysics Data System (ADS)

    Azman, Anis Asmi; Khalid, Rozida; Bakar, Muntaz Abu

    2018-04-01

    The research study was carried out to extract, isolate and characterize the secondary metabolites of lichen Parmotrema praesorediosum. Most of the lichen samples were obtained from betel nut trees and needle flowers which were collected from 17 different places around UKM Bangi campus. Each lichen sample was dried before being grinded and extracted in methanol for nine days. This process was repeated three times at room temperature. Subsequently, the resulting residues were filtered to obtain the crude extracts and further analysed using Thin Layer Chromatography (TLC) and Vacuum Column Chromatography (VLC). In order to derive the pure compounds, the isolation step was proceeded using Radial Chromatography (RC). These isolated compounds were determined by Nuclear Magnetic Resonances (NMR) and identified as methyl haematomatte (1), methyl chlorohaematomatte (2) and methyl β-orsellinate (3).

  17. Biofiltration kinetics for volatile organic compounds (VOCs) and development of a structure-biodegradability relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govind, R.; Wang, Z.; Bishop, D.F.

    1997-12-31

    In recent years, regulation of hazardous air pollutants under the Clean Air Act and its amendments, has emerged as a major environmental issue. Major sources of volatile organic compounds (VOCs) in air are chemical production plants, manufacturing sites using common solvents, combustion sources, and waste treatment operations, such as waste water treatment plants, vacuum extraction of contaminated soils, and ground water stripping operations. Biofiltration is an emerging technology for treatment of biodegradable volatile organic compounds (VOCs) present in air. In biofiltration, the contaminants are contacted with active microorganisms present either in naturally bioactive materials, such as soil, peat, compost, etc.,more » or immobilized on an inactive support media. Design of biofilters requires information on biodegradation kinetics which controls biofilter size. In this paper, an experimental microbiofilter system is presented which can be used to measure biofiltration kinetics for any volatile organic compound. A mathematical model is used to derive the Monod biokinetic parameters from the experimental data. Finally, a structure-bioactivity relationship is derived for estimating the biofiltration biokinetic parameters for a variety of VOCs.« less

  18. Investigation on the influence of nitrogen in process atmospheres on the corrosion behavior of brazed stainless steel joints

    NASA Astrophysics Data System (ADS)

    Fedorov, V.; Uhlig, T.; Wagner, G.; Langohr, A.; Holländer, U.

    2018-06-01

    Brazing of stainless steels is commonly carried out using nickel-based brazing fillers, which provide a high corrosion and oxidation resistance of the resulting joints. These brazed stainless steel joints are mostly used for manufacturing of heat exchangers for energy and air conditioning technologies. The joints of the study were produced at temperatures of 1000 °C, 1125 °C and 1150 °C in vacuum furnaces or continuous furnaces. In both cases, the parts interact with process gases like nitrogen within the brazing process, especially during cooling. The amount of nitrogen in the braze metal as well as in the base material was determined by the carrier gas hot extraction technique. The occurring diffusion of nitrogen into the braze metal and the base material causes a shift in the corrosion potentials. In this work, the influence of the nitrogen enrichment on the corrosion behavior was investigated using a capillary microcell. The corrosion measurements were carried out on the braze metal and the base material. The results of samples, brazed with and without the influence of nitrogen, were compared.

  19. Towards decoding the conifer giga-genome.

    PubMed

    Mackay, John; Dean, Jeffrey F D; Plomion, Christophe; Peterson, Daniel G; Cánovas, Francisco M; Pavy, Nathalie; Ingvarsson, Pär K; Savolainen, Outi; Guevara, M Ángeles; Fluch, Silvia; Vinceti, Barbara; Abarca, Dolores; Díaz-Sala, Carmen; Cervera, María-Teresa

    2012-12-01

    Several new initiatives have been launched recently to sequence conifer genomes including pines, spruces and Douglas-fir. Owing to the very large genome sizes ranging from 18 to 35 gigabases, sequencing even a single conifer genome had been considered unattainable until the recent throughput increases and cost reductions afforded by next generation sequencers. The purpose of this review is to describe the context for these new initiatives. A knowledge foundation has been acquired in several conifers of commercial and ecological interest through large-scale cDNA analyses, construction of genetic maps and gene mapping studies aiming to link phenotype and genotype. Exploratory sequencing in pines and spruces have pointed out some of the unique properties of these giga-genomes and suggested strategies that may be needed to extract value from their sequencing. The hope is that recent and pending developments in sequencing technology will contribute to rapidly filling the knowledge vacuum surrounding their structure, contents and evolution. Researchers are also making plans to use comparative analyses that will help to turn the data into a valuable resource for enhancing and protecting the world's conifer forests.

  20. [Study on extraction technology of soyasaponins from residual of bean ware].

    PubMed

    Lu, Rumei; Zhang, Yizhen; Bi, Yi

    2003-04-01

    To find out the optimum extraction technology of soyasaponins from residual of bean ware. The optimum extraction conditions were investigated by the orthogonal design, and the content of soyasaponins was determined by UV-spectro-pho-tometry. The optimum extraction technology was A3B1C1, that is adding 7 times and 6 times amount of 70% alcohol and refluxing for two times and each time for 1.0 h. The selected technology showed higher yield of soyasaponins, good stability and high efficient.

  1. A path to in-space welding and to other in-space metal processing technologies using Space Shuttle small payloads

    NASA Technical Reports Server (NTRS)

    Tamir, David

    1992-01-01

    As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights.

  2. A plasma arc reactor for fullerene research

    NASA Astrophysics Data System (ADS)

    Anderson, T. T.; Dyer, P. L.; Dykes, J. W.; Klavins, P.; Anderson, P. E.; Liu, J. Z.; Shelton, R. N.

    1994-12-01

    A modified Krätschmer-Huffman reactor for the mass production of fullerenes is presented. Fullerene mass production is fundamental for the synthesis of higher and endohedral fullerenes. The reactor employs mechanisms for continuous graphite-rod feeding and in situ slag removal. Soot collects into a Soxhlet extraction thimble which serves as a fore-line vacuum pump filter, thereby easing fullerene separation from soot. Thermal gravimetric analysis (TGA) for yield determination is reported. This TGA method is faster and uses smaller samples than Soxhlet extraction methods which rely on aromatic solvents. Production of 10 g of soot per hour is readily achieved utilizing this reactor. Fullerene yields of 20% are attained routinely.

  3. Lenr and "cold Fusion" Excess Heat:. Their Relation to Other Anomalous Microphysical Energy Experiments and Emerging New Energy Technologies

    NASA Astrophysics Data System (ADS)

    Mallove, Eugene F.

    2005-12-01

    During the past 15 years, indisputable experimental evidence has built up for substantial excess heat (far beyond ordinary chemical energy) and low-energy nuclear reaction phenomena in specialized heavy hydrogen and ordinary hydrogen-containing systems.1 The primary theorists in the field that is properly designated Cold Fusion/LENR have generally assumed that the excess heat phenomena is commensurate with nuclear ash (such as helium), whether already identified or presumed to be present but not yet found. That was an excellent initial hypothesis. However, the commensurate nuclear ash hypothesis has not been proved, and appears to be approximately correct in only a few experiments. During this same period, compelling evidence although not as broadly verified as data from cold fusion/LENR has also emerged for other microphysical sources of energy that were previously unexpected by accepted physics. The exemplar of this has been the "hydrino" physics work of Dr. Randall Mills and his colleagues at Black-Light Power Corporation, which was a radical outgrowth from the cold fusion field that emerged publicly in May 1991.2 Even more far-reaching is the work in vacuum energy extraction pioneered by Dr. Paulo and Alexandra Correa, which first became public in 1996.3 This vacuum energy experimentation began in the early 1980s and has been reduced to prototype technological devices, such as the patented PAGDTM (pulsed abnormal glow discharge) electric power generator, as well as many published experiments that can be performed in table-top fashion to verify the Correa Aetherometry (non-luminiferous or non-electromagnetic aether measurement science).4 In an era when mainstream science and its media is all agog about dark matter and dark energy composing the vast bulk of the universe, there is a great need to reconcile, if possible, the significant bodies of evidence from these three major experimental and theoretical streams: cold fusion/LENR, hydrino physics, and Aetherometry. The aim of the present paper is to compare the substantial features of each field of investigation and to suggest how to move forward for the benefit of all with openness and a minimum of preconceptions.

  4. Active silicone oil removal with a modified vacuum syringe.

    PubMed

    Bajaire, Boris J; Oudovitchenko, Elena; Salguero, Andrés E; Paipilla, Diego F

    2012-01-01

    At present, the number of clinical indications for the use of silicone oil (SO) has increased in intraocular surgery because of the advent of new techniques in vitreoretinal surgery, availability of better quality oils, and greater experience in its use. Consequently, the number of procedures for SO removal has increased, and support technologies for these procedures are always a concern. A simple active technique for SO removal based on a 5-mL standard syringe with an 18G cannula was developed. The oil is suctioned into the syringe by the pulling effect of a spring assembled along the axis of the piston. No abrupt change in the intraocular pressure is produced because of the oil viscosity and the reduced diameter of the cannula. A technique for SO removal that has been used successfully during the past 7 years is presented in this article. During the 7-year period, 234 SO removals were performed without any complication or device failure. Using the present method, the average time for SO removal was 4 minutes. The average extraction time with the technique is 4 minutes, which is in the range of other active techniques, and it is faster than passive methods that are performed between 8 and 9 minutes. The technique is in line with the advantages of more elaborated active methods without using complex technology. It is considered to be highly successful and easy to implement.

  5. Titan probe technology assessment and technology development plan study

    NASA Technical Reports Server (NTRS)

    Castro, A. J.

    1980-01-01

    The need for technology advances to accomplish the Titan probe mission was determined by defining mission conditions and requirements and evaluating the technology impact on the baseline probe configuration. Mission characteristics found to be technology drivers include (1) ten years dormant life in space vacuum; (2) unknown surface conditions, various sample materials, and a surface temperature; and (3) mission constraints of the Saturn Orbiter Dual Probe mission regarding weight allocation. The following areas were identified for further development: surface sample acquisition system; battery powered system; nonmetallic materials; magnetic bubble memory devices, and the landing system. Preentry science, reliability, and weight reduction and redundancy must also be considered.

  6. Application of cavitation system to accelerate aqueous enzymatic extraction of seed oil from Cucurbita pepo L. and evaluation of hypoglycemic effect.

    PubMed

    Li, Xiao-Juan; Li, Zhu-Gang; Wang, Xun; Han, Jun-Yan; Zhang, Bo; Fu, Yu-Jie; Zhao, Chun-Jian

    2016-12-01

    Cavitation-accelerated aqueous enzymatic extraction (CAEE) of seed oil from Cucurbita pepo was performed. An enzyme cocktail comprised of cellulose, pectinase and proteinase can work synergistically in releasing the oil. The CAEE extraction conditions were optimized by a Plackett-Burman design followed by a central composite methodology. A maximal extraction yield of 58.06% was achieved under optimal conditions of vacuum degree -0.07, enzyme amount 1.05% and extraction time 69min. As compared to soxhlet extraction (SE)-derived oil, CAEE-derived oil exhibited similar physical properties and better oxidation stability. In addition, chemical composition analyzing showed that the content of linoleic acid obtained by CAEE (47.67%) was higher than that of SE (44.51%). Moreover, the IC50 of oil obtained by CAEE and SE, as measured by α-amylase inhibition assay, were 40.68μg/mL and 45.46μg/mL. All results suggest that CAEE represents an excellent alternative protocol for production of oil from oil-bearing materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. IN-SITU AIR INJECTION, SOIL VACUUM EXTRACTION AND ENHANCED BIODEGRADATION: A CASE STUDY IN A JP-4 JET FUEL CONTAMINATED SITE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) and the U.S. Coast Guard (USCG) conducted a joint demonstration of in situ remediation of a JP-4 jet fuel spill at the USCG Support Center in Elizabeth City, North Carolina. The jet fuel was trapped beneath a clay layer that ext...

  8. NASA Marshall Space Flight Center Barrel-Shaped Asymmetrical Capacitor

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.; Carruth, M. R.; Edwards, D. L.; Finchum, A.; Maxwell, G.; Nabors, S.; Smalley, L.; Huston, D.; Ila, D.; Zimmerman, R.

    2004-01-01

    The NASA Barrel-Shaped Asymmetrical Capacitor (NACAP) has been extensively tested at NASA Marshall Space Flight Center and the National Space Science and Technology Center. Trichel pulse emission was first discovered here. The NACAP is a magnetohydrodynamic device for electric propulsion. In air it requires no onboard propellant nor any moving parts. No performance was observed in hard vacuum. The next step shall be optimizing the technology for future applications.

  9. Lithium-Ion Performance and Abuse Evaluation Using Lithium Technologies 9Ah cell

    NASA Technical Reports Server (NTRS)

    Hall, Albert Daniel; Jeevarajan, Judith A.

    2006-01-01

    Lithium-ion batteries in a pouch form offer high energy density and safety in their designs and more recently they are offering performance at higher rates. Lithium Technologies 9Ah high-power pouch cells were studied at different rates, thermal environments, under vacuum and several different conditions of abuse including overcharge, over-discharge and external short circuit. Results of this study will be presented.

  10. Aerospace applications of batteries

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    1993-01-01

    NASA has developed battery technology to meet the demanding requirements for aerospace applications; specifically, the space vacuum, launch loads, and high duty cycles. Because of unique requirements and operating environments associated with space applications, NASA has written its own standards and specifications for batteries.

  11. Electronics: State of the Art No. 2.

    ERIC Educational Resources Information Center

    Gosling, W.

    1979-01-01

    Reviewed is a brief history of electronics technology, from the early beginnings of vacuum devices to development of solid state devices, silicon fabrication in the use of transistors, and integrated circuits. Educational needs at the university or polytechnic level are discussed. (CS)

  12. [Optimization of extraction technology from Paeoniae Radix Alba using response surface methodology].

    PubMed

    Jin, Lin; Zhao, Wan-shun; Guo, Qiao-sheng; Zhang, Wen-sheng; Ye, Zheng-liang

    2015-08-01

    To ensure the stability of chemistry components and the convenience of operation, ultrasound method was chosen to study in this investigation. As the total common peaks area in chromatograms was set to be evaluation index, the influence on the technology caused by extraction time, ethanol concentration and liquid-to-solid ratio was studied by using single factor methodology, and the extraction technology of Paeoniae Radix Alba was optimized by using response surface methodology. The results showed that the extracting results were most affected by ethanol concentration; liquid-to-solid ratio came the second and extraction time thirdly. The optimum ultrasonic-assisted extraction conditions were as follow: the ultrasonic extraction time was 20.06 min, the ethanol concentration in solvent was 72.04%, and the liquid-to-solid ratio was 53.38 mL · g(-1), the predicted value of total common peaks area was 2.1608 x 10(8). Under the extraction conditions after optimization, the total common peaks area was 2.1422 x 10(8), and the relative deviation between the measured and predicted value was 0.86%, so the optimized extraction technology for Paeoniae Radix Alba is suitable and feasible. Besides, for the purpose of extracting more sufficiently and completely, the optimized extraction technology had more advantages than the extraction method recorded in the monogragh of Paeoniae Radix Alba in Chinese Pharmacopoeia, which will come true the assessment and utilization comprehensively.

  13. Enhancement of water removing and the quality of fried purple-fleshed sweet potato in the vacuum frying by combined power ultrasound and microwave technology.

    PubMed

    Su, Ya; Zhang, Min; Bhandari, Bhesh; Zhang, Weiming

    2018-06-01

    The combination of ultrasound and microwave in vacuum frying system was investigated to achieve higher drying efficiency and quality attributes of fried products. Purple-fleshed potato were used as test specimen and different power levels of microwave (0 W, 600 W, 800 W) and ultrasound (0 W, 300 W, 600 W) during vacuum frying. Drying kinetics, dielectric properties, moisture state variation and quality attributes of fried samples were measured in a vacuum frying (VF), and an innovatively designed ultrasound and microwave assisted vacuum frying (USMVF) equipment. The USMVF process markedly increased the moisture evaporation rate and effective moisture diffusivity compared to VF process. The oil uptake was reduced by about 16-34%, the water activity and the shrinkage was lowered, the texture (crispness) and the color of fried samples were greatly improved. The higher ultrasound and microwave power level in USMVF made a greater improvement. The total anthocyanin levels and retention of fried purple-fleshed potato chips was the highest (123.52 mg/100 g solids and 79.51% retention, respectively) among all treatments in US600M800VF process. The SEM analysis revealed a more porous and disruption microstructure in USMVF sample. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Wafer-level hermetic vacuum packaging by bonding with a copper-tin thin film sealing ring

    NASA Astrophysics Data System (ADS)

    Akashi, Teruhisa; Funabashi, Hirofumi; Takagi, Hideki; Omura, Yoshiteru; Hata, Yoshiyuki

    2018-04-01

    A wafer-level hermetic vacuum packaging technology intended for use with MEMS devices was developed based on a copper-tin (CuSn) thin film sealing ring. To allow hermetic packaging, the shear strength of the CuSn thin film bond was improved by optimizing the pretreatment conditions. As a result, an average shear strength of 72.3 MPa was obtained and a cavity that had been hermetically sealed using wafer-level packaging (WLP) maintained its vacuum for 1.84 years. The total pressures in the cavities and the partial pressures of residual gases were directly determined with an ultra-low outgassing residual gas analyzer (RGA) system. Hermeticity was evaluated based on helium leak rates, which were calculated from helium pressures determined with the RGA system. The resulting data showed that a vacuum cavity following 1.84 years storage had a total pressure of 83.1 Pa, contained argon as the main residual gas and exhibited a helium leak rate as low as 1.67  ×  10-17 Pa · m3 s-1, corresponding to an air leak rate of 6.19  ×  10-18 Pa · m3 s-1. The RGA data demonstrate that WLP using a CuSn thin film sealing ring permits ultra-high hermeticity in conjunction with long-term vacuum packaging that is applicable to MEMS devices.

  15. A technological advance for 21st century obstetricians: the electronically-controlled vacuum extractor.

    PubMed

    Perone, Nicola

    2018-04-25

    To describe an innovative electronically-controlled vacuum extractor (VE) in detail and to illustrate its performance characteristics, as observed in a laboratory study. Thirty simulated, vacuum-assisted deliveries. (1) The ability to measure in real-time of the pull applied and to sound an alert, when the traction approaches the negative pressure under the cup, to prevent its detachment. (2) The recording and printing of a graphic representation of the pull applied (vacuum delivery graph). (3) The emission of a warning signal when the 15-min time limit of continuous cup application on the fetal scalp, is reached. No cup detachment occurred in any of the 15 vacuum-assisted deliveries, in which traction was kept below the adhesive force of the cup [44 lb (20 kg)], except in three cases, due to loss of negative pressure. In the remaining 15 tests, in which traction was greater than the adhesive force of the cup, "pull-offs" inevitably occurred. Furthermore, upon reaching the 15-min time limit of continuous cup application on the fetal cephalic model, a warning signal was emitted, as programmed. Conclusions We demonstrated that the electronically-controlled VE, with its distinctive pull-sensing handle, performs suitably for its intended purposes. The ability of the modernized device to decrease the incidence of cup detachment, secondary to the inadvertent application of excessive traction, may result in considerable safety, medico-legal and didactic advantages.

  16. Development and mechanical properties of construction materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1992-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward the establishment of outposts on the Moon and Mars. Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and tensile, flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal 'liquefaction' of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.), and (2) development and use of a new triaxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or in situ stress. Details of the development of intermediate ceramic composites (ICC) and testing for their flexural and compression characteristics were described in various reports and papers. The subject of behavior of compacted simulant under vacuum was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum be utilized for further investigation.

  17. [Investigation on Spray Drying Technology of Auricularia auricular Extract].

    PubMed

    Zhou, Rong; Chen, Hui; Xie, Yuan; Chen, Peng; Wang, Luo-lin

    2015-07-01

    To investigate the feasibility of spray drying technology of Auricularia auricular extract and its optimum process. On the basis of single factor test, with the yield of dry extract and the content of polysaccharide as indexes, orthogonal test method was used to optimize the spray drying technology on the inlet air temperature, injection speed and crude drug content. Using ultraviolet spectrophotometry, thin layer chromatography(TLC) and pharmacodynamics as indicators, extracts prepared by traditional alcohol precipitation drying process and spray drying process were compared. Compared with the traditional preparation method, the extract prepared by spray drying had little differences from the polysaccharide content, TLC and the function of reducing TG and TC, and its optimum technology condition were as follows: The inlet air temperature was 180 °C, injection speed was 10 ml/min and crude drugs content was 0. 4 g/mL. Auricularia auricular extract by spray drying technology is stable and feasible with high economic benefit.

  18. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  19. Evaluation of vacuum filter sock surface sample collection method for Bacillus spores from porous and non-porous surfaces.

    PubMed

    Brown, Gary S; Betty, Rita G; Brockmann, John E; Lucero, Daniel A; Souza, Caroline A; Walsh, Kathryn S; Boucher, Raymond M; Tezak, Matthew S; Wilson, Mollye C

    2007-07-01

    Vacuum filter socks were evaluated for recovery efficiency of powdered Bacillus atrophaeus spores from two non-porous surfaces, stainless steel and painted wallboard and two porous surfaces, carpet and bare concrete. Two surface coupons were positioned side-by-side and seeded with aerosolized Bacillus atrophaeus spores. One of the surfaces, a stainless steel reference coupon, was sized to fit into a sample vial for direct spore removal, while the other surface, a sample surface coupon, was sized for a vacuum collection application. Deposited spore material was directly removed from the reference coupon surface and cultured for enumeration of colony forming units (CFU), while deposited spore material was collected from the sample coupon using the vacuum filter sock method, extracted by sonication and cultured for enumeration. Recovery efficiency, which is a measure of overall transfer effectiveness from the surface to culture, was calculated as the number of CFU enumerated from the filter sock sample per unit area relative to the number of CFU enumerated from the co-located reference coupon per unit area. The observed mean filter sock recovery efficiency from stainless steel was 0.29 (SD = 0.14, n = 36), from painted wallboard was 0.25 (SD = 0.15, n = 36), from carpet was 0.28 (SD = 0.13, n = 40) and from bare concrete was 0.19 (SD = 0.14, n = 44). Vacuum filter sock recovery quantitative limits of detection were estimated at 105 CFU m(-2) from stainless steel and carpet, 120 CFU m(-2) from painted wallboard and 160 CFU m(-2) from bare concrete. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling for biological agents such as Bacillus anthracis.

  20. Tile-based rigidization surface parametric design study

    NASA Astrophysics Data System (ADS)

    Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee

    2018-03-01

    Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of variations in geometric design parameters, operating parameters, and architectural variations on the performance evaluation metrics. The results of this study bring insight into the rigidization behavior of this architecture, and provide design guidelines and expose tradeoffs to form the basis for the design of tile-based rigidization surfaces for a wide range of applications.

  1. Acousto-Optic Technology for Topographic Feature Extraction and Image Analysis.

    DTIC Science & Technology

    1981-03-01

    This report contains all findings of the acousto - optic technology study for feature extraction conducted by Deft Laboratories Inc. for the U.S. Army...topographic feature extraction and image analysis using acousto - optic (A-O) technology. A conclusion of this study was that A-O devices are potentially

  2. Microgravity

    NASA Image and Video Library

    2004-04-15

    The Wake Shield Facility is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers. The WSF Free-Flyer is a 12-foot-diameter stainless steel disk that, while traveling in orbit at approximately 18,000 mph, leaves in its wake a vacuum 1,000 to 10,000 times better than the best vacuums currently achieved on Earth. While it is carried into orbit by the Space Shuttle, the WSF is a fully equipped spacecraft in its own right, with cold gas propulsion for separation from the orbiter and a momentum bias attitude control system. All WSF functions are undertaken by a spacecraft computer with the WSF remotely controlled from the ground. The ultra vacuum, nearly empty of all molecules, is then used to conduct a series of thin film growths by a process called epitaxy which produces exceptionally pure and atomically ordered thin films of semiconductor compounds such as gallium arsenide. Using this process, the WSF offers the potential of producing thin film materials, and the devices they will make possible.

  3. Thermal/vacuum measurements of the Herschel space telescope by close-range photogrammetry

    NASA Astrophysics Data System (ADS)

    Parian, J. Amiri; Cozzani, A.; Appolloni, M.; Casarosa, G.

    2017-11-01

    In the frame of the development of a videogrammetric system to be used in thermal vacuum chambers at the European Space Research and Technology Centre (ESTEC) and other sites across Europe, the design of a network using micro-cameras was specified by the European Space agency (ESA)-ESTEC. The selected test set-up is the photogrammetric test of the Herschel Satellite Flight Model in the ESTEC Large Space Simulator. The photogrammetric system will be used to verify the Herschel Telescope alignment and Telescope positioning with respect to the Cryostat Vacuum Vessel (CVV) inside the Large Space Simulator during Thermal-Vacuum/Thermal-Balance test phases. We designed a close-range photogrammetric network by heuristic simulation and a videogrammetric system with an overall accuracy of 1:100,000. A semi-automated image acquisition system, which is able to work at low temperatures (-170°C) in order to acquire images according to the designed network has been constructed by ESA-ESTEC. In this paper we will present the videogrammetric system and sub-systems and the results of real measurements with a representative setup similar to the set-up of Herschel spacecraft which was realized in ESTEC Test Centre.

  4. Research on precision grinding technology of large scale and ultra thin optics

    NASA Astrophysics Data System (ADS)

    Zhou, Lian; Wei, Qiancai; Li, Jie; Chen, Xianhua; Zhang, Qinghua

    2018-03-01

    The flatness and parallelism error of large scale and ultra thin optics have an important influence on the subsequent polishing efficiency and accuracy. In order to realize the high precision grinding of those ductile elements, the low deformation vacuum chuck was designed first, which was used for clamping the optics with high supporting rigidity in the full aperture. Then the optics was planar grinded under vacuum adsorption. After machining, the vacuum system was turned off. The form error of optics was on-machine measured using displacement sensor after elastic restitution. The flatness would be convergenced with high accuracy by compensation machining, whose trajectories were integrated with the measurement result. For purpose of getting high parallelism, the optics was turned over and compensation grinded using the form error of vacuum chuck. Finally, the grinding experiment of large scale and ultra thin fused silica optics with aperture of 430mm×430mm×10mm was performed. The best P-V flatness of optics was below 3 μm, and parallelism was below 3 ″. This machining technique has applied in batch grinding of large scale and ultra thin optics.

  5. Protection of polyphenols in blueberry juice by vacuum-assisted block freeze concentration.

    PubMed

    Orellana-Palma, Patricio; Petzold, Guillermo; Pierre, Lissage; Pensaben, José Manuel

    2017-11-01

    Block freeze concentration allows produces high-quality cryoconcentrates with important protection of valuable components from fresh fruit juices. The aim of this study was to investigate the use of vacuum-assisted block freeze concentration under different experimental conditions to protect polyphenols in the elaboration of concentrated blueberry juice. Fresh blueberry juice was radial or unidirectional frozen at -20 and -80 °C for 12 h and vacuum process was performed at 80 kPa during 120 min. Results showed a significant solute increased in the concentrated fraction in all treatments, and the best treatment was - 20 °C/unidirectional with a value of ≈63 °Brix, equivalent to an increase of 3.8 times in the total polyphenol content (76% of retention). The color of concentrated samples was darker than the initial sample, with ΔE* values of >25 CIELab units in all treatments. The vacuum-assisted block freeze concentrations was an effective technology for protecting polyphenols and obtain a concentrated with a higher concentration of solids from blueberry juice, as well as interesting values of process parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development and mechanical properties of structural materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1991-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward establishment of outposts such as on the moon and Mars. Here development of the technologies for manufacture of structural and construction materials on the moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal liquefaction of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.); and (2) development and use of a traxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or insitu stress. The second area was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum is acquired.

  7. Antibiotic prophylaxis for operative vaginal delivery.

    PubMed

    Liabsuetrakul, Tippawan; Choobun, Thanapan; Peeyananjarassri, Krantarat; Islam, Q Monir

    2014-10-13

    Vacuum and forceps assisted vaginal deliveries are reported to increase the incidence of postpartum infections and maternal readmission to hospital compared to spontaneous vaginal delivery. Prophylactic antibiotics may be prescribed to prevent these infections. However, the benefit of antibiotic prophylaxis for operative vaginal deliveries is still unclear. To assess the effectiveness and safety of antibiotic prophylaxis in reducing infectious puerperal morbidities in women undergoing operative vaginal deliveries including vacuum or forceps deliveries, or both. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 August 2014). All randomised trials comparing any prophylactic antibiotic regimens with placebo or no treatment in women undergoing vacuum or forceps deliveries were eligible. Participants were all pregnant women without evidence of infections or other indications for antibiotics of any gestational age undergoing vacuum or forceps delivery for any indications. Interventions were any antibiotic prophylaxis (any dosage regimen, any route of administration or at any time during delivery or the puerperium) compared with either placebo or no treatment. Two review authors assessed trial eligibility and methodological quality. Two review authors extracted the data independently using prepared data extraction forms. Any discrepancies were resolved by discussion and a consensus reached through discussion with all review authors. For this update, we assessed methodological quality of the one included trial using the standard Cochrane criteria and the GRADE approach. We calculated the risk ratio (RR) and mean difference (MD) using a fixed-effect model and all the review authors interpreted and discussed the results. One trial, involving 393 women undergoing either vacuum or forceps deliveries, was included. This trial identified only two out of the nine outcomes specified in this review. It reported seven women with endomyometritis in the group given no antibiotic and none in prophylactic antibiotic group. This difference did not reach statistical significance, but the risk reduction was 93% (risk ratio (RR) 0.07; 95% confidence interval (CI) 0.00 to 1.21). There was no difference in the length of hospital stay between the two groups (mean difference (MD) 0.09 days; 95% CI -0.23 to 0.41). Overall, the risk of bias was judged as low. The quality of the evidence using GRADE was low for both endometritis and maternal length of stay. The data were too few to make any recommendations for practice. Future research on antibiotic prophylaxis for operative vaginal delivery is needed to conclude whether it is useful for reducing postpartum morbidity.

  8. Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Boyle, Robert V.

    1995-01-01

    A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.

  9. Experiment to measure vacuum birefringence: Conceptual design

    NASA Astrophysics Data System (ADS)

    Mueller, Guido; Tanner, David; Doebrich, Babette; Poeld, Jan; Lindner, Axel; Willke, Benno

    2016-03-01

    Vacuum birefringence is another lingering challenge which will soon become accessible to experimental verification. The effect was first calculated by Euler and Heisenberg in 1936 and is these days described as a one-loop correction to the differential index of refraction between light which is polarized parallel and perpendicular to an external magnetic field. Our plan is to realize (and slightly modify) an idea which was originally published by Hall, Ye, and Ma using advanced LIGO and LISA technology and the infrastructure of the ALPS light-shining-through-walls experiment following the ALPS IIc science run. This work is supported by the Deutsche Forschungsgemeinschaft and the Heising-Simons Foundation.

  10. METHOD 8261: USING SURROGATES TO MEASURE MATRIX EFFECTS AND CORRECT ANALYTICAL RESULTS

    EPA Science Inventory

    Vacuum distillation uses a specialized apparatus. This apparatus has been developed and patented by
    the EPA. Through the Federal Technology Transfer Act this invention has been made available for commercialization. Available vendors for this instrumentation are being evaluat...

  11. Biomedical technical transfer. Applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative unit for evaluating heart patients. This technology is based on NASA research, using vacuum chambers to stress the cardiovascular system during space flight. Additional laboratory tests of an intracranial pressure transducer, have been conducted. Three new biomedical problems to which NASA technology is applicable are also identified. These are: a communication device for the speech impaired, the NASA development liquid-cooled garment, and miniature force transducers for heart research.

  12. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    PubMed

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. [Optimization study on extraction technology of the seed of Ziziphus jujuba var. spinosa by orthogonal design with multi-targets].

    PubMed

    Wang, Xiao-liang; Zhang, Yu-jie; Chen, Ming-xia; Wang, Ze-feng

    2005-05-01

    To optimize extraction technology of the seed of Ziziphus jujuba var. spinosa with the targets of the total saponin, total jujuboside A and B and total flavonoids. In the method of one-way and orthogonal tests, ethanol concentration, amount of ethanol, extraction time and extraction times were the factors in orthogonal test, and each factor with three levels. Ethanol concentration and extraction times had significant effect on all the targets, other factors should be selected in accordance with production practice. The best extraction technology is to extract for three times with 8 fold ethanol solution (60%), and 1.5 h each time.

  14. TERRA-KLEEN RESPONSE GROUP, INC. SOLVENT EXTRACTION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the results of a field demonstration conducted under the SITE program. The technology which was demonstrated was a solvent extraction technology developed by Terra-Kleen Response Group. Inc. to remove organic contaminants from soil. The technology employs...

  15. Developing a Vacuum Electrospray Source To Implement Efficient Atmospheric Sampling for Miniature Ion Trap Mass Spectrometer.

    PubMed

    Yu, Quan; Zhang, Qian; Lu, Xinqiong; Qian, Xiang; Ni, Kai; Wang, Xiaohao

    2017-12-05

    The performance of a miniature mass spectrometer in atmospheric analysis is closely related to the design of its sampling system. In this study, a simplified vacuum electrospray ionization (VESI) source was developed based on a combination of several techniques, including the discontinuous atmospheric pressure interface, direct capillary sampling, and pneumatic-assisted electrospray. Pulsed air was used as a vital factor to facilitate the operation of electrospray ionization in the vacuum chamber. This VESI device can be used as an efficient atmospheric sampling interface when coupled with a miniature rectilinear ion trap (RIT) mass spectrometer. The developed VESI-RIT instrument enables regular ESI analysis of liquid, and its qualitative and quantitative capabilities have been characterized by using various solution samples. A limit of detection of 8 ppb could be attained for arginine in a methanol solution. In addition, extractive electrospray ionization of organic compounds can be implemented by using the same VESI device, as long as the gas analytes are injected with the pulsed auxiliary air. This methodology can extend the use of the proposed VESI technique to rapid and online analysis of gaseous and volatile samples.

  16. Changes during storage of quality parameters and in vitro antioxidant activity of extra virgin monovarietal oils obtained with two extraction technologies.

    PubMed

    Fadda, C; Del Caro, A; Sanguinetti, A M; Urgeghe, P P; Vacca, V; Arca, P P; Piga, A

    2012-10-01

    Extraction technology has a great effect on quality of olive oils. This paper studied 18 months of storage of two Sardinian extra virgin monovarietal oils obtained with a traditional and with a low oxidative stress technology. Oil samples were subjected to the following chemical analyses: acidity, peroxide value, ultraviolet light absorption K₂₃₂ and K₂₇₀, carotenoids, chlorophylls, tocopherols and total polyphenols. The antioxidant capacity of oils, polyphenol extract and oil extract (remaining after polyphenol extraction) was also determined as radical scavenging activity. The results show that both extraction technologies resulted in minor changes in legal and quality indices during storage, due surely to the high quality of the oils as well as to the very good storage conditions used. Oils obtained with the low oxidative stress technology showed lower peroxide value and acidity and resulted in up to 103% higher total polyphenol content as well as increased radical-scavenging activity, with respect to oils obtained with the traditional technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Recent Advances in Solar Sail Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion will provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. These sail systems consist of a central structure with four deployable booms that support the sails. This sail designs are robust enough for deployments in a one atmosphere, one gravity environment, and are scalable to much larger solar sails-perhaps as much as 150 meters on a side. In addition, computation modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (>150 meters) required for first generation solar sails missions. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum testing.

  18. Bismuth Propellant Feed System Development at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    NASA-MSFC has been developing liquid metal propellant feed systems capable of delivering molten bismuth at a prescribed mass flow rate to the vaporizer of an electric thruster. The first such system was delivered to NASA-JPL as part of the Very High Isp Thruster with Anode Layer (VHITAL) program. In this system, the components pictured were placed in a vacuum chamber and heated while the control electronics were located outside the chamber. The system was successfully operated at JPL in conjunction with a propellant vaporizer, and data was obtained demonstrating a new liquid bismuth flow sensing technique developed at MSFC. The present effort is aimed at producing a feed-system for use in conjunction with a bismuth-fed Hall thruster developed by Busek Co. Developing this system is more ambitious, however, in that it is designed to self-contain all the control electronics inside the same vacuum chamber as an operating bismuth-fed thruster. Consequently, the entire system, including an on-board computer, DC-output power supplies, and a gas-pressurization electro-pneumatic regulator, must be designed to survive a vacuum environment and shielded to keep bismuth plasma from intruding on the electronics and causing a shortcircuit. In addition, the hot portions of the feed system must be thermally isolated from the electronics to avoid failure due to high heat loads. This is accomplished using a thermal protection system (TPS) consisting of multiple layers of aluminum foil. The only penetrations into the vacuum chamber are an electrically isolated (floating) 48 VDC line and a fiberoptic line. The 48 VDC provides power for operation of the power supplies and electronics co-located with the system in the vacuum chamber. The fiberoptic Ethernet connection is used to communicate user-input control commands to the on-board computer and transmit real-time data back to the external computer. The partially assembled second-generation system is shown. Before testing at Busek, a more detailed flow sensor calibration will be performed to accurately quantify the flow monitoring capabilities. This effort is funded under a Technology Innovation Program (TIP) award from NASA-MSFC's Technology Transfer office and performed under SAA8-061060.

  19. Feasibility of Underwater Friction Stir Welding of Hardenable Alloy Steel

    DTIC Science & Technology

    2010-12-01

    Base Material CNC – Computer Numerical Controlled EDM – Electrical Discharge Machining FSP – Friction Stir Processing FSW – Friction Stir Welding...Hydrogen content was determined through vacuum hot extraction according to ASTM E 146-83. All other components were analyzed by direct current plasma ...emission spectroscopy according to ASTM E 1097-07. C. MICROSTRUCTURE ANALYSIS 1. Specimen Preparation A Charmilles Andrew EF630 CNC Wire EDM

  20. High current ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  1. Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability.

    PubMed

    Hoffmann, Lukas; Brinkmann, Kai O; Malerczyk, Jessica; Rogalla, Detlef; Becker, Tim; Theirich, Detlef; Shutsko, Ivan; Görrn, Patrick; Riedl, Thomas

    2018-02-14

    Despite the notable success of hybrid halide perovskite-based solar cells, their long-term stability is still a key-issue. Aside from optimizing the photoactive perovskite, the cell design states a powerful lever to improve stability under various stress conditions. Dedicated electrically conductive diffusion barriers inside the cell stack, that counteract the ingress of moisture and prevent the migration of corrosive halogen species, can substantially improve ambient and thermal stability. Although atomic layer deposition (ALD) is excellently suited to prepare such functional layers, ALD suffers from the requirement of vacuum and only allows for a very limited throughput. Here, we demonstrate for the first time spatial ALD-grown SnO x at atmospheric pressure as impermeable electron extraction layers for perovskite solar cells. We achieve optical transmittance and electrical conductivity similar to those in SnO x grown by conventional vacuum-based ALD. A low deposition temperature of 80 °C and a high substrate speed of 2.4 m min -1 yield SnO x layers with a low water vapor transmission rate of ∼10 -4 gm -2 day -1 (at 60 °C/60% RH). Thereby, in perovskite solar cells, dense hybrid Al:ZnO/SnO x electron extraction layers are created that are the key for stable cell characteristics beyond 1000 h in ambient air and over 3000 h at 60 °C. Most notably, our work of introducing spatial ALD at atmospheric pressure paves the way to the future roll-to-roll manufacturing of stable perovskite solar cells.

  2. Technology today : volume 31 issue 3, Spring 2017.

    DOT National Transportation Integrated Search

    2017-03-23

    The future of transportation is in the shape of an enclosed vacuum tube that propels passengers long distances at airplane speeds in a train-like fashion, which is known as the Hyperloop. What seems like something out of the Jetsons is becoming a rea...

  3. Photopneumatic Technology in Acne Treatment and Skin Rejuvenation: Histological Assessment

    PubMed Central

    Omi, Tokuya

    2012-01-01

    Background and Aims: Recent reports indicate that a variety of light-based devices have been used for acne treatment and skin rejuvenation. A new technology combining intense pulsed light with negative pressure, photopneumatic technology, has recently attracted interest. The present study assessed acne treatment and skin rejuvenation with this novel approach Subjects and Methods: Acne, 450 nm tip. Five Japanese volunteers (1 male, 4 female; mean age 28.6 yr; skin type III) with mild to moderate/moderate active acne participated. The face was treated with 2 sessions, 2 weeks apart. Biopsies were obtained immediately after the first session and 1 week after the second session, and routinely processed for transmission electron microscopy (TEM). Rejuvenation, profusion tip with topical preparation. In 5 Japanese volunteers (3 male, 2 female; mean age 37.6 yr, skin type III), the volar aspect of both forearms was treated with the 530 nm head at P6 (around 12 J/cm2). The left arm was then treated with a pre-infused profusion tip and vacuum only. Four sessions were given, 14-day intervals. Biopsies were taken from both arms 2 weeks after the 2nd session and 3 weeks after the 4th session. One-half of each biopsy was assessed with histo-and immunohistochemistry, and the other with TEM. Results Acne trial: A combination of physical extraction of comedones, mild photothermal damage of the follicle and damage to identified bacilli was noted post-treatment, with macroscopic improvement of the skin. Rejuvenation with profusion: Significant morphological and immunohistochemical differences were seen between the control and profusion-treated arms at the first assessment. These differences became less significant at the 2nd assessment. Conclusions Macroscopically and histologically, photopneumatic technology improved acne lesions, suggesting a synergistic effect between the components of the technology. In skin rejuvenation, the profusion therapy accelerated the regenerative process, and could have excellent additional potential as a noninvasive transepidermal drug delivery system. PMID:24610989

  4. Zero boil-off system testing

    NASA Astrophysics Data System (ADS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2016-03-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  5. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  6. Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.; hide

    2010-01-01

    Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.

  7. Characterization of the Twelve Channel 100/140 Micron Optical Fiber, Ribbon Cable and MTP Array Connector Assembly for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Macmurphy, Shawn; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2002-01-01

    Presented here is the second set of testing conducted by the Technology Validation Laboratory for Photonics at NASA Goddard Space Flight Center on the 12 optical fiber ribbon cable with MTP array connector for space flight environments. In the first set of testing the commercial 62.5/125 cable assembly was characterized using space flight parameters. The testing showed that the cable assembly would survive a typical space flight mission with the exception of a vacuum environment. Two enhancements were conducted to the existing technology to better suit the vacuum environment as well as the existing optoelectronics and increase the reliability of the assembly during vibration. The MTP assembly characterized here has a 100/140 optical commercial fiber and non outgassing connector and cable components. The characterization for this enhanced fiber optic cable assembly involved vibration, thermal and radiation testing. The data and results of this characterization study are presented which include optical in-situ testing.

  8. Case study of a floor-cleaning robot

    NASA Astrophysics Data System (ADS)

    Branch, Allan C.

    1998-01-01

    Developing the technologies suitable of ra high level robotic application such as cleaning a floor has proved extremely difficult. Developing the robot mobility technology has been a stumbling block and developing and integrating the applications technology to the machine and the mobility technology has also been a difficult stage in this quest, but doing so in a cost effective and realistic manner suitable for the market place and to compete with humans and manually operated machines has been the most difficult of all. This paper describes one of these quests spanning a 14 year period and resulting in what is hoped will be the world's first commercially manufactured household robot vacuum cleaner.

  9. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 2; Validation Results

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.

  10. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  11. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  12. Integrated cooling-vacuum-assisted 1540-nm erbium:glass laser is effective in treating mild-to-moderate acne vulgaris.

    PubMed

    Politi, Y; Levi, A; Enk, C D; Lapidoth, M

    2015-12-01

    Acne treatment by a mid-infrared laser may be unsatisfactory due to deeply situated acne-affected sebaceous glands which serve as its target. Skin manipulation by vacuum and contact cooling may improve laser-skin interaction, reduce pain sensation, and increase overall safety and efficacy. To evaluate the safety and efficacy of acne treatment using an integrated cooling-vacuum-assisted 1540-nm erbium:glass laser, a prospective interventional study was conducted. It included 12 patients (seven men and five women) suffering from mild-to-moderate acne vulgaris. The device utilizes a mid-infrared 1540-nm laser (Alma Lasers Ltd. Caesarea, Israel), which is integrated with combined cooling-vacuum-assisted technology. An acne lesion is initially manipulated upon contact by a vacuum-cooling-assisted tip, followed by three to four stacked laser pulses (500-600 mJ, 4 mm spot size, and frequency of 2 Hz). Patients underwent four to six treatment sessions with a 2-week interval and were followed-up 1 and 3 months after the last treatment. Clinical photographs were taken by high-resolution digital camera before and after treatment. Clinical evaluation was performed by two independent dermatologists, and results were graded on a scale of 0 (exacerbation) to 4 (76-100 % improvement). Patients' and physicians' satisfaction was also recorded. Pain perception and adverse effects were evaluated as well. All patients demonstrated a moderate to significant improvement (average score of 3.6 and 2.0 within 1 and 3 months, respectively, following last treatment session). No side effects, besides a transient erythema, were observed. Cooling-vacuum-assisted 1540-nm laser is safe and effective for the treatment of acne vulgaris.

  13. Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from comfrey (Symphytum officinale L.) root.

    PubMed

    Shang, Hongmei; Zhou, Haizhu; Duan, Mengying; Li, Ran; Wu, Hongxin; Lou, Yujie

    2018-06-01

    This study was designed to investigate the extraction conditions of polysaccharides from comfrey (Symphytum officinale L.) root (CRPs) using response surface methodology (RSM). The effects of three variables including liquid-solid ratio, extraction time and extraction temperature on the extraction yield of CRPs were taken into consideration. Moreover, the effects of drying methods including hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the physicochemical properties and antioxidant activities of CRPs were evaluated. The optimal conditions to extract the polysaccharides were as follows: liquid-solid ratio (15mL/g), extraction time (74min), and extraction temperature (95°C), allowed a maximum polysaccharides yield of 22.87%. Different drying methods had significant effects on the physicochemical properties of CRPs such as the chemical composition (contents of total polysaccharides and uronic acid), relative viscosity, solubility and molecular weight. CRPs drying with FD method showed stronger reducing power and radical scavenging capacities against DPPH and ABTS radicals compared with CRPs drying with HD and VD methods. Therefore, freeze drying served as a good method for keeping the antioxidant activities of polysaccharides from comfrey root. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and operational concepts verification, as well as demonstration of vehicular interfaces, consumables sizing and recharge, and water quality control.

  15. Extraction and characterization of the auricularia auricular polysaccharide

    NASA Astrophysics Data System (ADS)

    Zhang, Q. T.

    2016-07-01

    To study a new protein drugs carrier, the Auricularia auricular polysaccharide (AAP) was extracted and purified from Auricularia auricular, and then characterized by the micrOTOF-Q mass spectrometer, UV/Vis spectrophotometer, moisture analyzer and SEM. The results showed that the AAP sample was water- soluble and white flocculence, its molecular weight were 20506.9 Da∼⃒63923.7 Da, and the yield, moisture, and total sugar contents of the AAP were 4.5%, 6.2% and 90.12%(w/w), respectively. The results of the SEM revealed that the AAP dried by vacuum were spherical particles with a smooth surface, and the AAP freeze-dried had continuous porous sheet shape with the loose structure.

  16. Electrode wells for powerline-frequency electrical heating of soils

    DOEpatents

    Buettner, H.M.; Daily, W.D.; Aines, R.D.; Newmark, R.L.; Ramirez, A.L.; Siegel, W.H.

    1999-05-25

    An electrode well is described for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichloroethylene (TCE) as it is heated. 4 figs.

  17. Electrode wells for powerline-frequency electrical heating of soils

    DOEpatents

    Buettner, Harley M.; Daily, William D.; Aines, Roger D.; Newmark, Robin L.; Ramirez, Abelardo L.; Siegel, William H.

    1999-01-01

    An electrode well for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichioroethylene (TCE) as it is heated.

  18. Extraction and purification of high added value compounds from by-products of the winemaking chain using alternative/nonconventional processes/technologies.

    PubMed

    Yammine, Sami; Brianceau, Sylène; Manteau, Sébastien; Turk, Mohammad; Ghidossi, Rémy; Vorobiev, Eugène; Mietton-Peuchot, Martine

    2018-05-24

    Grape byproducts are today considered as a cheap source of valuable compounds since existent technologies allow the recovery of target compounds and their recycling. The goal of the current article is to explore the different recovery stages used by both conventional and alternative techniques and processes. Alternative pre-treatments techniques reviewed are: ultrasounds, pulsed electric fields and high voltage discharges. In addition, nonconventional solvent extraction under high pressure, specifically, supercritical fluid extraction and subcritical water extraction are discussed. Finally alternative purification technologies, for example membrane processing were also examined. The intent is to describe the mechanisms involved by these alternative technologies and to summarize the work done on the improvement of the extraction process of phenolic compounds from winery by-products. With a focus on the developmental stage of each technology, highlighting the research need and challenges to be overcome for an industrial implementation of these unitary operations in the overall extraction process. A critical comparison of conventional and alternative techniques will be reviewed for ethe pre-treatment of raw material, the diffusion of polyphenols and the purification of these high added value compounds. This review intends to give the reader some key answers (costs, advantages, drawbacks) to help in the choice of alternative technologies for extraction purposes.

  19. Preliminary study on fractions' activities of red betel vine (Piper crocatum Ruiz & Pav) leaves ethanol extract toward Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Rachmawaty, Farida Juliantina; Julianto, Tatang Shabur; Tamhid, Hady Anshory

    2018-04-01

    This research aims to identify the antimycobacterial activity of fraction of red betel vine leaves ethanol extract (methanol fraction, ethyl acetate, and chloroform) toward M. tuberculosis. Red betel vine leaves ethanol extract was made with maceration method using ethanol solvent 70%. Resulted extract was then fractionated using Liquid Vacuum Chromatography (LVC) with methanol, ethyl acetate, and chloroform solvent. Each fractionation was exposed to M. tuberculosis with serial dilution method. Controls of fraction, media, bacteria, and isoniazid as standard drug were included in this research. The group of compound from the most active fraction was then identified. The research found that the best fraction for antimycobacterial activity toward M. tuberculosisis chloroform fraction. The compound group of chloroform fraction was then identified. The fraction contains flavonoid, tannin, alkaloid, and terpenoid. The fraction of methanol, ethyl acetate, and chloroform from red betel vine leaves has antimycobacterial activity toward M. tuberculosis. Chloroform fraction has the best antimycobacterial activity and it contains flavonoid, tannin, alkaloid, and terpenoid.

  20. Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation.

    PubMed

    Dai, Jian-Ying; Ma, Lin-Hui; Wang, Zhuang-Fei; Guan, Wen-Tian; Xiu, Zhi-Long

    2017-03-01

    Acetoin is a natural flavor and an important bio-based chemical which could be separated from fermentation broth by solvent extraction, salting-out extraction or recovered in the form of derivatives. In this work, a novel method named as sugaring-out extraction coupled with fermentation was tried in the acetoin production by Bacillus subtilis DL01. The effects of six solvents on bacterial growth and the distribution of acetoin and glucose in different solvent-glucose systems were explored. The operation parameters such as standing time, glucose concentration, and volume ratio of ethyl acetate to fermentation broth were determined. In a system composed of fermentation broth, glucose (100%, m/v) and two-fold volume of ethyl acetate, nearly 100% glucose was distributed into bottom phase, and 61.2% acetoin into top phase without coloring matters and organic acids. The top phase was treated by vacuum distillation to remove solvent and purify acetoin, while the bottom phase was used as carbon source to produce acetoin in the next batch of fermentation.

Top