Sample records for vacuum gauge marking

  1. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  2. Carbon nanotubes based vacuum gauge

    NASA Astrophysics Data System (ADS)

    Rudyk, N. N.; Il'in, O. I.; Il'ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  3. Vacuum-Gauge Connection For Shipping Container

    NASA Technical Reports Server (NTRS)

    Henry, Robert H.

    1990-01-01

    External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.

  4. Electronic-type vacuum gauges with replaceable elements

    DOEpatents

    Edwards, Jr., David

    1984-01-01

    In electronic devices for measuring pressures in vacuum systems, the metal elements which undergo thermal deterioration are made readily replaceable by making them parts of a simple plug-in unit. Thus, in ionization gauges, the filament and grid or electron collector are mounted on the novel plug-in unit. In thermocouple pressure gauges, the heater and attached thermocouple are mounted on the plug-in unit. Plug-in units have been designed to function, alternatively, as ionization gauge and as thermocouple gauge, thus providing new gauges capable of measuring broader pressure ranges than is possible with either an ionization gauge or a thermocouple gauge.

  5. Electronic-type vacuum gauges with replaceable elements

    DOEpatents

    Edwards, D. Jr.

    1984-09-18

    In electronic devices for measuring pressures in vacuum systems, the metal elements which undergo thermal deterioration are made readily replaceable by making them parts of a simple plug-in unit. Thus, in ionization gauges, the filament and grid or electron collector are mounted on the novel plug-in unit. In thermocouple pressure gauges, the heater and attached thermocouple are mounted on the plug-in unit. Plug-in units have been designed to function, alternatively, as ionization gauge and as thermocouple gauge, thus providing new gauges capable of measuring broader pressure ranges than is possible with either an ionization gauge or a thermocouple gauge. 5 figs.

  6. Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)

    2013-01-01

    A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.

  7. Ultrahigh vacuum gauge having two collector electrodes

    NASA Technical Reports Server (NTRS)

    Torney, F. L., Jr. (Inventor)

    1967-01-01

    A gauge for measuring ultrahigh vacuums with great accuracy is described. It provides a means for ionizing the gas whose pressure is being measured, and consists of a collector electrode, a suppressor, radiation shielding, and a second collector.

  8. Optimized photonic gauge of extreme high vacuum with Petawatt lasers

    NASA Astrophysics Data System (ADS)

    Paredes, Ángel; Novoa, David; Tommasini, Daniele; Mas, Héctor

    2014-03-01

    One of the latest proposed applications of ultra-intense laser pulses is their possible use to gauge extreme high vacuum by measuring the photon radiation resulting from nonlinear Thomson scattering within a vacuum tube. Here, we provide a complete analysis of the process, computing the expected rates and spectra, both for linear and circular polarizations of the laser pulses, taking into account the effect of the time envelope in a slowly varying envelope approximation. We also design a realistic experimental configuration allowing for the implementation of the idea and compute the corresponding geometric efficiencies. Finally, we develop an optimization procedure for this photonic gauge of extreme high vacuum at high repetition rate Petawatt and multi-Petawatt laser facilities, such as VEGA, JuSPARC and ELI.

  9. Carbon nanotube vacuum gauges utilizing long, dissipative tubes

    NASA Astrophysics Data System (ADS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-04-01

    A carbon nanotube-based thermal conductivity vacuum gauge is described which utilizes 5-10 μm long diffusively contacted SWNTs for vacuum sensing. By etching the thermal SiO II beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward higher vacuums. The pressure response of unannealed and annealed devices was compared to that of released devices. The released devices showed sensitivity to pressure as low as 1 x 10 -6 Torr. The sensitivity increased more dramatically with power for the released device compared to that of the unreleased device. Low temperature electronic transport measurements of the tubes were suggestive of a thermally activated hopping mechanism where the activation energy for hopping was calculated to be ~ 39 meV.

  10. A vacuum gauge based on an ultracold gas

    NASA Astrophysics Data System (ADS)

    Makhalov, V. B.; Turlapov, A. V.

    2017-06-01

    We report the design and application of a primary vacuum gauge based on an ultracold gas of atoms in an optical dipole trap. The pressure is calculated from the confinement time for atoms in the trap. The relationship between pressure and confinement time is established from the first principles owing to elimination of all channels introducing losses, except for knocking out an atom from the trap due to collisions with a residual gas particle. The method requires the knowledge of the gas chemical composition in the vacuum chamber, and, in the absence of this information, the systematic error is less than that of the ionisation sensor.

  11. Carbon Nanotube Vacuum Gauges Utilizing Long, Dissipative Tubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Manohara, Harish M.

    2008-01-01

    CNT Vacuum Gauges: a) have a broad range of pressure response from 760 - 10(exp -6) Torr. b) have current changes approx. 100's nA in high vacuum regime (10(exp -6) Torr) and sensitivity increases with power and substrate removal. c) have a negative dR/dT (TCR negative) where a thermal hopping energy E(sub a) was determined to be approx. 40 meV. d) have compatible fabrication requirements for their integration with micromachined structures. e) can be operated at low power (nW - micro-W). f) have an active device region footprint of < 10 sq microns. g) are non-intrusive due to small size and passive operation.

  12. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraphs (b), (c), (d) or (e) of this section. (b) Hydraulic brakes. Vehicles manufactured on or after...

  13. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraphs (b), (c), (d) or (e) of this section. (b) Hydraulic brakes. Vehicles manufactured on or after...

  14. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraph (f), must be equipped with a signal that provides a warning to the driver when a failure occurs in...

  15. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Warning signals, air pressure and vacuum gauges... REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.51 Warning signals, air pressure... paragraph (f), must be equipped with a signal that provides a warning to the driver when a failure occurs in...

  16. How to Build a Vacuum Spring-transport Package for Spinning Rotor Gauges

    PubMed Central

    Fedchak, James A.; Scherschligt, Julia; Sefa, Makfir

    2016-01-01

    The spinning rotor gauge (SRG) is a high-vacuum gauge often used as a secondary or transfer standard for vacuum pressures in the range of 1.0 x 10-4 Pa to 1.0 Pa. In this application, the SRGs are frequently transported to laboratories for calibration. Events can occur during transportation that change the rotor surface conditions, thus changing the calibration factor. To assure calibration stability, a spring-transport mechanism is often used to immobilize the rotor and keep it under vacuum during transport. It is also important to transport the spring-transport mechanism using packaging designed to minimize the risk of damage during shipping. In this manuscript, a detailed description is given on how to build a robust spring-transport mechanism and shipping container. Together these form a spring-transport package. The spring-transport package design was tested using drop-tests and the performance was found to be excellent. The present spring-transport mechanism design keeps the rotor immobilized when experiencing shocks of several hundred g (g = 9.8 m/sec2 and is the acceleration due to gravity), while the shipping container assures that the mechanism will not experience shocks greater than about 100 g during common shipping mishaps (as defined by industry standards). PMID:27078575

  17. Study of cavity effect in micro-Pirani gauge chamber with improved sensitivity for high vacuum regime

    NASA Astrophysics Data System (ADS)

    Zhang, Guohe; Lai, Junhua; Kong, Yanmei; Jiao, Binbin; Yun, Shichang; Ye, Yuxin

    2018-05-01

    Ultra-low pressure application of Pirani gauge needs significant improvement of sensitivity and expansion of measureable low pressure limit. However, the performance of Pirani gauge in high vacuum regime remains critical concerns since gaseous thermal conduction with high percentage is essential requirement. In this work, the heat transfer mechanism of micro-Pirani gauge packaged in a non-hermetic chamber was investigated and analyzed compared with the one before wafer-level packaging. The cavity effect, extremely important for the efficient detection of low pressure, was numerically and experimentally analyzed considering the influence of the pressure, the temperature and the effective heat transfer area in micro-Pirani gauge chamber. The thermal conduction model is validated by experiment data of MEMS Pirani gauges with and without capping. It is found that nature gaseous convection in chamber, determined by the Rayleigh number, should be taken into consideration. The experiment and model calculated results show that thermal resistance increases in the molecule regime, and further increases after capping due to the suppression of gaseous convection. The gaseous thermal conduction accounts for an increasing percentage of thermal conduction at low pressure while little changes at high pressure after capping because of the existence of cavity effect improving the sensitivity of cavity-effect-influenced Pirani gauge for high vacuum regime.

  18. Scalar quantum electrodynamics via Duffin-Kemmer-Petiau gauge theory in the Heisenberg picture: Vacuum polarization

    NASA Astrophysics Data System (ADS)

    Beltran, J.; Maia, N. T.; Pimentel, B. M.

    2018-04-01

    Scalar Quantum Electrodynamics is investigated in the Heisenberg picture via the Duffin-Kemmer-Petiau gauge theory. On this framework, a perturbative method is used to compute the vacuum polarization tensor and its corresponding induced current for the case of a charged scalar field in the presence of an external electromagnetic field. Charge renormalization is brought into discussion for the interpretation of the results for the vacuum polarization.

  19. An ionization gauge for ultrahigh vacuum measurement based on a carbon nanotube cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Huzhong; Cheng, Yongjun; Sun, Jian; Wang, Yongjun; Xi, Zhenhua; Dong, Meng; Li, Detian

    2017-10-01

    This work reports on the complete design and the properties of an ionization gauge based on a carbon nanotube cathode, which can measure ultrahigh vacuum without thermal effects. The gauge is composed of a pressure sensor and an electronic controller. This pressure sensor is constructed based on a hot-cathode ionization gauge, where the traditional hot filament is replaced by an electron source prepared with multi-wall nanotubes. Besides, an electronic controller was developed for bias voltage supply, low current detection, and pressure indication. The gauge was calibrated in the pressure range of 10-8 to 10-4 Pa in a XHV/UHV calibration apparatus. The gauge shows good linear characteristics in different gases. The calibrated sensitivity is 0.035 Pa-1 in N2, and the standard deviation of the sensitivity is about 1.1%. In addition, the stability of the sensitivity was learned in a long period. The standard deviation of the sensitivity factor "S" during one year is 2.0% for Ar and 1.6% for N2.

  20. Reduction of the uncertainty of the PTB vacuum pressure scale by a new large area non-rotating piston gauge

    NASA Astrophysics Data System (ADS)

    Bock, Th; Ahrendt, H.; Jousten, K.

    2009-10-01

    This paper describes the metrological characterization of a new large area piston gauge (FRS5, Furness Rosenberg Standard) installed at the vacuum metrology laboratory of the Physikalisch-Technische Bundesanstalt (PTB). The operational procedure and the uncertainty budget for pressures between 30 Pa and 11 kPa are given. Comparisons between the FRS5 and a mercury manometer, a rotary piston gauge and a force-balanced piston gauge are described. We show that the reproducibility of the calibration values of capacitance diaphragm gauges is enhanced by a factor of 6 compared with a static expansion primary standard (SE2). Improvements of the SE2 performance by reducing the number of expansions and smaller uncertainties of expansion ratios are discussed.

  1. Gauge calibration by diffusion

    NASA Technical Reports Server (NTRS)

    Brock, F. J.; Feakes, F. (Inventor)

    1968-01-01

    Vacuum gage calibration by diffusing a known quantity of gas through a heated barrier into a gauge is examined. The gas flow raises the pressure in the gauge to known level and is then compared with the gauge's pressure reading.

  2. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  3. High vacuum measurements and calibrations, molecular flow fluid transient effects

    DOE PAGES

    Leishear, Robert A.; Gavalas, Nickolas A.

    2015-04-29

    High vacuum pressure measurements and calibrations below 1 × 10 -8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreasedmore » during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.« less

  4. Ultrasound-guided cable-free 13-gauge vacuum-assisted biopsy of non-mass breast lesions

    PubMed Central

    Seo, Jiwoon; Jang, Mijung; Yun, Bo La; Lee, Soo Hyun; Kim, Eun-Kyu; Kang, Eunyoung; Park, So Yeon; Moon, Woo Kyung; Choi, Hye Young; Kim, Bohyoung

    2017-01-01

    Purpose To compare the outcomes of ultrasound-guided core biopsy for non-mass breast lesions by the novel 13-gauge cable-free vacuum-assisted biopsy (VAB) and by the conventional 14-gauge semi-automated core needle biopsy (CCNB). Materials and methods Our institutional review board approved this prospective study, and all patients provided written informed consent. Among 1840 ultrasound-guided percutaneous biopsies performed from August 2013 to December 2014, 145 non-mass breast lesions with suspicious microcalcifications on mammography or corresponding magnetic resonance imaging finding were subjected to 13-gauge VAB or 14-gauge CCNB. We evaluated the technical success rates, average specimen numbers, and tissue sampling time. We also compared the results of percutaneous biopsy and final surgical pathologic diagnosis to analyze the rates of diagnostic upgrade or downgrade. Results Ultrasound-guided VAB successfully targeted and sampled all lesions, whereas CCNB failed to demonstrate calcification in four (10.3%) breast lesions with microcalcification on specimen mammography. The mean sampling time were 238.6 and 170.6 seconds for VAB and CCNB, respectively. No major complications were observed with either method. Ductal carcinoma in situ (DCIS) and atypical ductal hyperplasia (ADH) lesions were more frequently upgraded after CCNB (8/23 and 3/5, respectively) than after VAB (2/26 and 0/4, respectively P = 0.028). Conclusion Non-mass breast lesions were successfully and accurately biopsied using cable-free VAB. The underestimation rate of ultrasound-detected non-mass lesion was significantly lower with VAB than with CCNB. Trial registration CRiS KCT0002267. PMID:28628656

  5. Higgsed Gauge-flation

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Sfakianakis, Evangelos I.

    2017-08-01

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. We work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ < 2, where γ = g 2 ψ 2/ H 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density fluctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wave spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at inflationary energy scales well below the GUT scale.

  6. High-Sensitivity, Broad-Range Vacuum Gauge Using Nanotubes for Micromachined Cavities

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Kaul, Anupama B.

    2011-01-01

    A broad-range vacuum gauge has been created by suspending a single-walled carbon nanotube (SWNT) (metallic or semiconducting) in a Schottky diode format or in a bridge conductor format, between two electrically charged mesas. SWNTs are highly sensitive to molecular collisions because of their extremely small diameters in the range of 1 to 3 nanometers. The measurement parameter will be the change in conductivity of SWNT due to decreasing rate of molecular collisions as the pressure inside a chamber decreases. The rate of heat removal approaches a saturation limit as the mean free path (m.f.p.) lengths of molecules increase due to decreasing pressure. Only those sensing elements that have a long relaxation time can produce a measureable response when m.f.p. of molecules increases (or time between two consecutive collisions increases). A suspended SWNT offers such a capability because of its one-dimensional nature and ultrasmall diameter. In the initial approach, similar architecture was used as that of a SWNT-Schottky diode that has been developed at JPL, and has its changing conductivity measured as the test chamber is pumped down from atmospheric pressure to high vacuum (10(exp -7) Torr). Continuous response of decreasing conductivity has been measured as a function of decreasing pressure (SWNT is a negative thermal coefficient material) from atmosphere to less than 10(exp -6) Torr. A measureable current change in the hundreds of nA range has been recorded in the 10(exp -6) Torr regime.

  7. Higgsed Gauge-flation

    DOE PAGES

    Adshead, Peter; Sfakianakis, Evangelos I.

    2017-08-29

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. Here, we work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ< 2, where γ= g 2 2=ψH 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density uctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wavemore » spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at in inflationary energy scales well below the GUT scale.« less

  8. Higgsed Gauge-flation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adshead, Peter; Sfakianakis, Evangelos I.

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. Here, we work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ< 2, where γ= g 2 2=ψH 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density uctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wavemore » spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at in inflationary energy scales well below the GUT scale.« less

  9. Wireless Integrated Microelectronic Vacuum Sensor System

    NASA Technical Reports Server (NTRS)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum-gauge

  10. THERMOCOUPLE VACUUM GAUGE

    DOEpatents

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  11. Gauge copies in the Landau-DeWitt gauge: A background invariant restriction

    NASA Astrophysics Data System (ADS)

    Dudal, David; Vercauteren, David

    2018-04-01

    The Landau background gauge, also known as the Landau-DeWitt gauge, has found renewed interest during the past decade given its usefulness in accessing the confinement-deconfinement transition via the vacuum expectation value of the Polyakov loop, describable via an appropriate background. In this Letter, we revisit this gauge from the viewpoint of it displaying gauge (Gribov) copies. We generalize the Gribov-Zwanziger effective action in a BRST and background invariant way; this action leads to a restriction on the allowed gauge fluctuations, thereby eliminating the infinitesimal background gauge copies. The explicit background invariance of our action is in contrast with earlier attempts to write down and use an effective Gribov-Zwanziger action. It allows to address certain subtleties arising in these earlier works, such as a spontaneous and thus spurious Lorentz symmetry breaking, something which is now averted.

  12. Vacuum system of the cyclotrons in VECC, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anindya; Bhole, R.B.; Akhtar, J.

    2011-07-01

    The vacuum system of the K=130 Room Temperature Cyclotron (RTC) (operational since 1978) has been recently modernized and the same of the K{sub bend}=520 Superconducting Cyclotron (SCC), currently under commissioning, is being deployed for remote monitoring and control. The vacuum system of RTC is designed to achieve and maintain vacuum level of 2 X 10{sup -6} mbar inside 23 m{sup 3} volume of Resonator tank and DEE tank. This has been upgraded by replacing several valves, Freon units, gauges and pumps. The relay based manual control system has been replaced by PLC based automated system. The SCC vacuum system alsomore » has an elaborate arrangement comprising of turbo molecular pumping modules with associated isolation valves and characteristic gauges. This paper describes essential elements, typically used to obtain high (1X10{sup -7} mbar) vacuum using rotary pumps, diffusion pumps and cold traps/turbo-molecular pumps and other system components such as valves, gauges and baffles. The supervisory control methodology/scheme of both the vacuum systems, developed in-house using EPICS (Experimental Physics and Industrial Control System), a standard open-source software tool for designing distributed control system, is also elaborated here. (author)« less

  13. Semiclassical gravitoelectromagnetic inflation in a Lorentz gauge: Seminal inflaton fluctuations and electromagnetic fields from a 5D vacuum state

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín; Bellini, Mauricio

    2010-02-01

    Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. The difference with other previous works is that in this one we use a Lorentz gauge. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of magnetic field modes during the early inflationary epoch of the universe on cosmological scales.

  14. Bakeable McLeod gauge

    NASA Technical Reports Server (NTRS)

    Kreisman, W. S. (Inventor)

    1965-01-01

    A low pressure gauge of the McLeod type demonstrating superior performance and measuring characteristics is described. A mercury reservoir which is kept in a vacuum at all times as well as bakeable glass components to reduce contamination are featured.

  15. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  16. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata.

    PubMed

    Roy, Anindya; Bhole, R B; Nandy, Partha P; Yadav, R C; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  17. Vacuum-assisted breast biopsy with 7-gauge, 8-gauge, 9-gauge, 10-gauge, and 11-gauge needles: how many specimens are necessary?

    PubMed

    Preibsch, Heike; Baur, Astrid; Wietek, Beate M; Krämer, Bernhard; Staebler, Annette; Claussen, Claus D; Siegmann-Luz, Katja C

    2015-09-01

    Published national and international guidelines and consensus meetings on the use of vacuum-assisted biopsy (VAB) give different recommendations regarding the required numbers of tissue specimens depending on needle size and imaging method. To evaluate the weights of specimens obtained with different VAB needles to facilitate the translation of the required number of specimens between different breast biopsy systems and needle sizes, respectively. Five different VAB systems and seven different needle sizes were used: Mammotome® (11-gauge (G), 8-G), Vacora® (10-G), ATEC Sapphire™ (9-G), 8-G Mammotome® Revolve™, and EnCor Enspire® (10-G, 7-G). We took 24 (11-G) or 20 (7-10-G) tissue cores from a turkey breast phantom. The mean weight of a single tissue core was calculated for each needle size. A matrix, which allows the translation of the required number of tissue cores for different needle sizes, was generated. Results were compared to the true cumulative tissue weights of consecutively harvested tissue cores. The mean tissue weights obtained with the 11-G / 10-G Vacora® / 10-G Enspire® / 9-G / 8-G Original / 8-G Revolve™ / 7-G needles were 0.084 g / 0.142 g / 0.221 g / 0.121 g / 0.192 g / 0.334 g / 0.363 g, respectively. The calculated required numbers of VAB tissue cores for each needle size build the matrix. For example, the minimum calculated number of required cores according to the current German S3 guideline is 20 / 12 / 8 / 14 / 9 / 5 / 5 for needles of 11-G / 10-G Vacora® / 10-G Enspire® / 9-G / 8-G Original / 8-G Revolve™ / 7-G size. These numbers agree with the true cumulative tissue weights. The presented matrix facilitates the translation of the required number of VAB specimens between different needle sizes and thereby eases the implementation of current guidelines and consensus recommendations into clinical practice. © The Foundation Acta Radiologica 2014.

  18. Vacuum Technology Considerations For Mass Metrology

    PubMed Central

    Abbott, Patrick J.; Jabour, Zeina J.

    2011-01-01

    Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593

  19. NSLS II Vacuum System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, M.; Doom, L.; Hseuh, H.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning andmore » mounting the chambers are given.« less

  20. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anindya, E-mail: r-ani@vecc.gov.in; Bhole, R. B.; Nandy, Partha P.

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A setmore » of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.« less

  1. Dyonic Flux Tube Structure of Nonperturbative QCD Vacuum

    NASA Astrophysics Data System (ADS)

    Chandola, H. C.; Pandey, H. C.

    We study the flux tube structure of the nonperturbative QCD vacuum in terms of its dyonic excitations by using an infrared effective Lagrangian and show that the dyonic condensation of QCD vacuum has a close connection with the process of color confinement. Using the fiber bundle formulation of QCD, the magnetic symmetry condition is presented in a gauge covariant form and the gauge potential has been constructed in terms of the magnetic vectors on global sections. The dynamical breaking of the magnetic symmetry has been shown to lead the dyonic condensation of QCD vacuum in the infrared energy sector. Deriving the asymptotic solutions of the field equations in the dynamically broken phase, the dyonic flux tube structure of QCD vacuum is explored which has been shown to lead the confinement parameters in terms of the vector and scalar mass modes of the condensed vacuum. Evaluating the charge quantum numbers and energy associated with the dyonic flux tube solutions, the effect of electric excitation of monopole is analyzed using the Regge slope parameter (as an input parameter) and an enhancement in the dyonic pair correlations and the confining properties of QCD vacuum in its dyonically condensed mode has been demonstrated.

  2. TFTR diagnostic vacuum controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  3. 30 CFR 7.409 - Approval marking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... approval number in addition to the number and size (gauge) of conductors and cable type. For cables containing electric conductors, the marking shall also include the voltage rating. For splices, the marking...

  4. 30 CFR 7.409 - Approval marking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approval number in addition to the number and size (gauge) of conductors and cable type. For cables containing electric conductors, the marking shall also include the voltage rating. For splices, the marking...

  5. Phacoemulsification tip vacuum pressure: Comparison of 4 devices.

    PubMed

    Payne, Marielle; Georgescu, Dan; Waite, Aaron N; Olson, Randall J

    2006-08-01

    To determine the vacuum pressure generated by 4 phacoemulsification devices measured at the phacoemulsification tip. University ophthalmology department. The effective vacuum pressures generated by the Sovereign (AMO), Millennium (Bausch & Lomb), Legacy AdvanTec (Alcon Laboratories), and Infiniti (Alcon Laboratories) phacoemulsification machines were measured with a device that isolated the phacoemulsification tip in a chamber connected to a pressure gauge. The 4 machines were tested at multiple vacuum limit settings, and the values were recorded after the foot pedal was fully depressed and the pressure had stabilized. The AdvanTec and Infiniti machines were tested with and without occlusion of the Aspiration Bypass System (ABS) side port (Alcon Laboratories). The Millennium machine was tested using venturi and peristaltic pumps. The machines generated pressures close to the expected at maximum vacuum settings between 100 mm Hg and 500 mm Hg with few intermachine variations. There was no significant difference between pressures generated using 19- or 20-gauge tips (Millennium and Sovereign). The addition of an ABS side port decreased vacuum by a mean of 12.1% (P < .0001). Although there were some variations in vacuum pressures among phacoemulsification machines, particularly when an aspiration bypass tip was used, these discrepancies are probably not clinically significant.

  6. 46 CFR 154.1335 - Pressure and vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pressure and vacuum protection. 154.1335 Section 154... Equipment Instrumentation § 154.1335 Pressure and vacuum protection. (a) Each cargo tank must have the following: (1) A pressure gauge that: (i) Monitors the vapor space; (ii) Is readable at the tank; and (iii...

  7. Exact partition functions for gauge theories on Rλ3

    NASA Astrophysics Data System (ADS)

    Wallet, Jean-Christophe

    2016-11-01

    The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  8. The Schwinger Model on S 1: Hamiltonian Formulation, Vacuum and Anomaly

    NASA Astrophysics Data System (ADS)

    Stuart, David

    2014-12-01

    We present a Hamiltonian formulation of the Schwinger model with spatial domain taken to be the circle. It is shown that, in Coulomb gauge, the Hamiltonian is a semi-bounded, self-adjoint operator which is invariant under the group of large gauge transformations. There is a nontrivial action of on fermionic Fock space and its vacuum. This action plays a role analogous to that played by the spectral flow in the infinite Dirac sea formalism. The formulation allows (1) a description of the anomaly and its relation to the group action, and (2) an explicit identification of the vacuum. The anomaly in the chiral conservation law appears as a consequence of insisting upon semi-boundedness and gauge invariance of the quantized Hamiltonian.

  9. 33 CFR 118.160 - Vertical clearance gauges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the foot marks, read from top to bottom. Each gauge must be installed on the end of the right... directly on the bridge channel pier or pier protection structure if the surface is suitable and has... be marked by black numerals and foot marks on a white background. Paint, if used, must be of good...

  10. 33 CFR 118.160 - Vertical clearance gauges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the foot marks, read from top to bottom. Each gauge must be installed on the end of the right... directly on the bridge channel pier or pier protection structure if the surface is suitable and has... be marked by black numerals and foot marks on a white background. Paint, if used, must be of good...

  11. Precision and accuracy of nuclear asphalt content gauges in determining asphalt content in asphaltic concrete pavement.

    DOT National Transportation Integrated Search

    1988-06-17

    Use of nuclear asphalt content gauges for determining asphalt content of asphaltic concrete pavement are gaining acceptance as an alternative method to the vacuum extraction process. The reasons nuclear asphalt content gauges are considered promising...

  12. MMS Observatory Thermal Vacuum Results Contamination Summary

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn P.; Errigo, Therese; Brieda, Lubos

    2014-01-01

    The MMS mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earths magnetosphere. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Thermal vacuum testing was conducted at the Naval Research Laboratory (NRL) in their Big Blue vacuum chamber. The individual spacecraft were tested and enclosed in a cryopanel enclosure called a Hamster cage. Specific contamination control validations were actively monitored by several QCMs, a facility RGA, and at times, with 16 Ion Gauges. Each spacecraft underwent a bakeout phase, followed by 4 thermal cycles. Unique aspects of the TV environment included slow pump downs with represses, thruster firings, Helium identification, and monitoring pressure spikes with Ion gauges. Various data from these TV tests will be shown along with lessons learned.

  13. Introduction to total- and partial-pressure measurements in vacuum systems

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Kern, F. A.

    1989-01-01

    An introduction to the fundamentals of total and partial pressure measurement in the vacuum regime (760 x 10 to the -16th power Torr) is presented. The instrument most often used in scientific fields requiring vacuum measurement are discussed with special emphasis on ionization type gauges and quadrupole mass spectrometers. Some attention is also given to potential errors in measurement as well as calibration techniques.

  14. State-of-the-Art Calculation of the Decay Rate of Electroweak Vacuum in the Standard Model.

    PubMed

    Chigusa, So; Moroi, Takeo; Shoji, Yutaro

    2017-11-24

    The decay rate of the electroweak (EW) vacuum is calculated in the framework of the standard model (SM) of particle physics, using the recent progress in the understanding of the decay rate of metastable vacuum in gauge theories. We give a manifestly gauge-invariant expression of the decay rate. We also perform a detailed numerical calculation of the decay rate. With the best-fit values of the SM parameters, we find that the decay rate of the EW vacuum per unit volume is about 10^{-554}  Gyr^{-1} Gpc^{-3}; with the uncertainty in the top mass, the decay rate is estimated as 10^{-284}-10^{-1371}  Gyr^{-1} Gpc^{-3}.

  15. Model with a gauged lepton flavor SU(2) symmetry

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Tsumura, Koji

    2018-05-01

    We propose a model having a gauged SU(2) symmetry associated with the second and third generations of leptons, dubbed SU(2) μτ , of which U{(1)}_{L_{μ }-L_{τ }} is an Abelian subgroup. In addition to the Standard Model fields, we introduce two types of scalar fields. One exotic scalar field is an SU(2) μτ doublet and SM singlet that develops a nonzero vacuum expectation value at presumably multi-TeV scale to completely break the SU(2) μτ symmetry, rendering three massive gauge bosons. At the same time, the other exotic scalar field, carrying electroweak as well as SU(2) μτ charges, is induced to have a nonzero vacuum expectation value as well and breaks mass degeneracy between the muon and tau. We examine how the new particles in the model contribute to the muon anomalous magnetic moment in the parameter space compliant with the Michel decays of tau.

  16. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  17. Development of a large low-cost double-chamber vacuum laminator

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1983-01-01

    A double-chamber vacuum laminator was required to investigate the processing and control of the fabrication of large terrestrial photovoltaic modules, and economic problems arising therefrom. Major design considerations were low cost, process flexibility and the exploration of novel equipment approaches. Spherical end caps for industrial tanks were used for the vacuum chambers. A stepping programmer and adjustable timers were used for process flexibility. New processing options were obtained by use of vacuum sensors. The upper vacuum chamber was provided with a diaphragm support to reduce diaphragm stress. A counterweight was used for handling ease and safety. Heat was supplied by a large electrical strip heater. Thermal isolation and mechanical support were provided inexpensively by a bed of industrial marbles. Operational testing disclosed the need for a differential vacuum gauge and proportional valve. Reprogramming of the process control system was simple and quick.

  18. Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro

    2018-06-01

    We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model at tree-level as the gauge fields contain a tensor degree of freedom, and its production is dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape for 3lesssim mQlesssim 4, where mQ is an effective dimensionless mass of the SU(2) field normalised by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the tensor modes, characterised by the ratio Bh/P2h, is inversely proportional to the energy density fraction of the gauge field. This ratio can be much greater than unity, whereas the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum is effective at constraining large mQ regions of the parameter space, whereas the power spectrum constrains small mQ regions.

  19. Emergent Embolization of Arterial Bleeding after Vacuum-Assisted Breast Biopsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischman, Aaron M., E-mail: aaron.fischman@mountsinai.org; Epelboym, Yan, E-mail: yan.epelboym@mssm.edu; Siegelbaum, Robert H., E-mail: rhsiegelbaum@gmail.com

    2012-02-15

    Vacuum-assisted core breast biopsy has become important in evaluating patients with suspicious breast lesions. It has proven to be a relatively safe procedure that in rare cases can result in vascular complications. These are the first reported cases of transcatheter embolization of uncontrolled breast hemorrhage after vacuum-assisted breast biopsy. With increased use of biopsy and larger-gauge devices, breast imaging groups may consider embolotherapy as a safe alternative for treatment of hemorrhage in a select group of patients.

  20. Adiabatic regularization for gauge fields and the conformal anomaly

    NASA Astrophysics Data System (ADS)

    Chu, Chong-Sun; Koyama, Yoji

    2017-03-01

    Adiabatic regularization for quantum field theory in conformally flat spacetime is known for scalar and Dirac fermion fields. In this paper, we complete the construction by establishing the adiabatic regularization scheme for the gauge field. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using Wentzel-Kramers-Brillouin-type (WKB-type) solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduce the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for the gauge field allows one to study various renormalized physical quantities of theories coupled to (non-Abelian) gauge fields in conformally flat spacetime, such as conformal supersymmetric Yang Mills, inflation, and cosmology.

  1. Part Marking and Identification Materials' for MISSE

    NASA Technical Reports Server (NTRS)

    Roxby, Donald; Finckenor, Miria M.

    2008-01-01

    The Materials on International Space Station Experiment (MISSE) is being conducted with funding from NASA and the U.S. Department of Defense, in order to evaluate candidate materials and processes for flight hardware. MISSE modules include test specimens used to validate NASA technical standards for part markings exposed to harsh environments in low-Earth orbit and space, including: atomic oxygen, ultraviolet radiation, thermal vacuum cycling, and meteoroid and orbital debris impact. Marked test specimens are evaluated and then mounted in a passive experiment container (PEC) that is affixed to an exterior surface on the International Space Station (ISS). They are exposed to atomic oxygen and/or ultraviolet radiation for a year or more before being retrieved and reevaluated. Criteria include percent contrast, axial uniformity, print growth, error correction, and overall grade. MISSE 1 and 2 (2001-2005), MISSE 3 and 4 (2006-2007), and MISSE 5 (2005-2006) have been completed to date. Acceptable results were found for test specimens marked with Data Matrix(TradeMark) symbols by Intermec Inc. and Robotic Vision Systems Inc using: laser bonding, vacuum arc vapor deposition, gas assisted laser etch, chemical etch, mechanical dot peening, laser shot peening, laser etching, and laser induced surface improvement. MISSE 6 (2008-2009) is exposing specimens marked by DataLase(Registed TradeMark), Chemico technologies Inc., Intermec Inc., and tesa with laser-markable paint, nanocode tags, DataLase and tesa laser markings, and anodized metal labels.

  2. Color Confinement and Screening in the θ Vacuum of QCD

    DOE PAGES

    Kharzeev, Dmitri E.; Levin, Eugene M.

    2015-06-16

    QCD perturbation theory ignores the compact nature of the SU(3) gauge group that gives rise to the periodic θ vacuum of the theory. In this paper, we propose to modify the gluon propagator to reconcile perturbation theory with the anomalous Ward identities for the topological current in the θ vacuum. As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a “glost.” We evaluate the glost propagator and find that it has the form G(p)=(p 2+χ top/p 2) -1 wheremore » χ top is the Yang-Mills topological susceptibility related to the η" mass by the Witten-Veneziano relation; this propagator describes the confinement of gluons at distances ~χ top -1/4≃1 fm. The same functional form of the propagator was originally proposed by Gribov as a solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling coincides with the perturbative one at p 2>>√χtop, but in the infrared region either freezes (in pure Yang-Mills theory) or vanishes (in full QCD with light quarks), in accord with experimental evidence. In conclusion, our scenario makes explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.« less

  3. Color Confinement and Screening in the θ Vacuum of QCD.

    PubMed

    Kharzeev, Dmitri E; Levin, Eugene M

    2015-06-19

    QCD perturbation theory ignores the compact nature of the SU(3) gauge group that gives rise to the periodic θ vacuum of the theory. We propose to modify the gluon propagator to reconcile perturbation theory with the anomalous Ward identities for the topological current in the θ vacuum. As a result, the gluon couples to the Veneziano ghost describing the tunneling transitions between different Chern-Simons sectors of the vacuum; we call the emerging gluon dressed by ghost loops a "glost." We evaluate the glost propagator and find that it has the form G(p)=(p(2)+χ(top)/p(2))(-1) where χ(top) is the Yang-Mills topological susceptibility related to the η' mass by the Witten-Veneziano relation; this propagator describes the confinement of gluons at distances ∼χ(top)(-1/4)≃1  fm. The same functional form of the propagator was originally proposed by Gribov as a solution to the gauge copies problem that plagues perturbation theory. The resulting running coupling coincides with the perturbative one at p(2)≫√[χ(top)], but in the infrared region either freezes (in pure Yang-Mills theory) or vanishes (in full QCD with light quarks), in accord with experimental evidence. Our scenario makes explicit the connection between confinement and topology of the QCD vacuum; we discuss the implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.

  4. Spontaneous parity violation and SUSY strong gauge theory

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Ohki, Hiroshi

    2012-07-01

    We suggest simple models of spontaneous parity violation in supersymmetric strong gauge theory. We focus on left-right symmetric model and investigate vacuum with spontaneous parity violation. Non-perturbative effects are calculable in supersymmetric gauge theory, and we suggest new models. Our models show confinement, so that we try to understand them by using a dual description of the theory. The left-right symmetry breaking and electroweak symmetry breaking are simultaneously occurred with the suitable energy scale hierarchy. This structure has several advantages compared to the MSSM. The scale of the Higgs mass (left-right breaking scale) and that of VEVs are different, so the SUSY little hierarchy problems are absent. The second model also induces spontaneous supersymmetry breaking [1].

  5. Flux tubes and coherence length in the SU(3) vacuum

    NASA Astrophysics Data System (ADS)

    Cea, P.; Cosmai, L.; Cuteri, F.; Papa, A.

    An estimate of the London penetration and coherence lengths in the vacuum of the SU(3) pure gauge theory is given downstream an analysis of the transverse profile of the chromoelectric flux tubes. Within ordinary superconductivity, a simple variational model for the magnitude of the normalized order parameter of an isolated vortex produces an analytic expression for magnetic field and supercurrent density. In the picture of SU(3) vacuum as dual superconductor, this expression provides us with the function that fits the chromoelectric field data. The smearing procedure is used in order to reduce noise.

  6. Ultrasound-Guided Core-Needle Versus Vacuum-Assisted Breast Biopsy: A Cost Analysis Based on the American Society of Breast Surgeons' Mastery of Breast Surgery Registry.

    PubMed

    Grady, Ian; Vasquez, Tony; Tawfik, Sara; Grady, Sean

    2017-03-01

    To evaluate the cost-efficacy of vacuum-assisted ultrasound-guided breast biopsy instruments compared to ultrasound-guided 14-gauge spring-loaded core-needle biopsy. The American Society of Breast Surgeons' Mastery of Breast Surgery Registry was reviewed. Biopsy findings, any rebiopsy, and the instrument used were abstracted for 31,451 ultrasound-guided biopsy procedures performed between 2001 and July 2014. Rates of cancer diagnosis and rebiopsy were calculated for each instrument. A linear mathematical model was developed to calculate total cost per cancer diagnosis, including procedural costs and the costs of any additional surgical rebiopsy procedures. Mean cost per cancer diagnosis with confidence limits was then determined for 14-gauge spring-loaded core-needle biopsy and 14 different vacuum-assisted instruments. For 14-gauge spring-loaded core-needle biopsy, mean cost per cancer diagnosis was $4346 (4327-$4366). For the vacuum-assisted instruments, mean cost per cancer diagnosis ranged from a low of $3742 ($3732-$3752) to a high of $4779 ($4750-$4809). Vacuum-assisted instruments overall were more cost-effective than core with a mean cost per cancer diagnosis of $4052 ($4038-$4067) (p < 0.05). Tethered vacuum-assisted instruments performed best with a mean cost per cancer diagnosis of $3978 ($3964-$3991) (p < 0.05). Nontethered devices had a mean cost per cancer diagnosis of $4369 ($4350-$4388), a result no better than core (p < 0.05). Ultrasound-guided vacuum-assisted breast biopsy had a lower mean cost per cancer diagnosis than 14-gauge spring-loaded core-needle biopsy. This advantage was only seen in tethered vacuum-assisted instruments. Within device families, larger instruments tended to outperform smaller instruments.

  7. Vacuum Arc Vapor Deposition Method and Apparatus for Applying Identification Symbols to Substrates

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F. (Inventor); Roxby, Donald L. (Inventor); Weeks, Jack L. (Inventor)

    2002-01-01

    An apparatus for applying permanent markings onto products using a Vacuum Arc Vapor Deposition (VAVD) marker by accelerating atoms or molecules from a vaporization source onto a substrate to form human and/or machine-readable part identification marking that can be detected optically or via a sensing device like x-ray, thermal imaging, ultrasound, magneto-optic, micro-power impulse radar, capacitance, or other similar sensing means. The apparatus includes a housing with a nozzle having a marking end. A chamber having an electrode, a vacuum port and a charge is located within the housing. The charge is activated by the electrode in a vacuum environment and deposited onto a substrate at the marking end of the nozzle. The apparatus may be a hand-held device or be disconnected from the handle and mounted to a robot or fixed station.

  8. Vacuum electron acceleration by coherent dipole radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.

    1999-07-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell{close_quote}s equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a planemore » wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. {copyright} {ital 1999} {ital The American Physical Society}« less

  9. Baking enables McLeod gauge to measure in ultrahigh vacuum range

    NASA Technical Reports Server (NTRS)

    Kreisman, W. S.

    1965-01-01

    Accurate measurements in the ultrahigh vacuum range by a conventional McLeod gage requires degassing of the gage's glass walls. A closed system, in which mercury is forced into the gage by gravity alone, and in which the gage components are baked out for long periods, is used to achieve this degassing.

  10. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    DOE PAGES

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; ...

    2014-07-28

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore » point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less

  11. Subsidence at the Fairport Harbor Water Level Gauge

    NASA Astrophysics Data System (ADS)

    Conner, D. A.

    2014-12-01

    SUBSIDENCE AT THE FAIRPORT HARBOR WATER LEVEL GAUGE I will provide information on methods being used to monitor Lake Erie water levels and earth movement at Fairport Harbor, Ohio. Glacial Isostatic Adjustment (GIA) is responsible for vertical movement throughout the Great Lakes region. Fairport Harbor is also experiencing vertical movement due to salt mining, so the nearby water level gauge operated by the National Oceanic and Atmospheric Administration (NOAA) is affected by both GIA and mining. NOAA's National Geodetic Survey (NGS) defines and maintains the National Spatial Reference System (NSRS). The NSRS includes a network of permanently marked points; a consistent, accurate, and up-to-date national shoreline; a network of Continuously Operating Reference Stations (CORS) which supports three-dimensional positioning activities; and a set of accurate models describing dynamic, geophysical processes that affect spatial measurements. The NSRS provides the spatial reference foundation for transportation, mapping, charting and a multitude of scientific and engineering applications. Fundamental elements of geodetic infrastructure include GPS CORS (3-D), water level and tide gauges (height) and a system of vertical bench marks (height). When two or more of these elements converge they may provide an independent determination of position and vertical stability as is the case here at the Fairport Harbor water level gauge. Analysis of GPS, leveling and water level data reveal that this gauge is subsiding at about 2-3 mm/year, independent of the effects of GIA. Analysis of data from the nearby OHLA GPS CORS shows it subsiding at about 4 mm/yr, four times faster than expected due to GIA alone. A long history of salt mine activity in the area is known to geologists but it came as a surprise to other scientists.

  12. How gauge covariance of the fermion and boson propagators in QED constrain the effective fermion-boson vertex

    DOE PAGES

    Jia, Shaoyang; Pennington, M. R.

    2016-12-12

    In this paper, we derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator Schwinger-Dyson equation (SDE) in any covariant gauge with arbitrary numbers of spacetime dimensions to be consistent with the Landau-Khalatnikov-Fradkin transformation (LKFT). The general result has been verified by the special cases of three and four dimensions. Additionally, we present the condition that ensures the vacuum polarization is independent of the gauge parameter. Finally, as an illustration, we show how the gauge technique dimensionally regularizedmore » in four dimensions does not satisfy the covariance requirement.« less

  13. Vacuum structure and gravitational bags produced by metric-independent space-time volume-form dynamics

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana

    2015-07-01

    We propose a new class of gravity-matter theories, describing R + R2 gravity interacting with a nonstandard nonlinear gauge field system and a scalar “dilaton,” formulated in terms of two different non-Riemannian volume-forms (generally covariant integration measure densities) on the underlying space-time manifold, which are independent of the Riemannian metric. The nonlinear gauge field system contains a square-root -F2 of the standard Maxwell Lagrangian which is known to describe charge confinement in flat space-time. The initial new gravity-matter model is invariant under global Weyl-scale symmetry which undergoes a spontaneous breakdown upon integration of the non-Riemannian volume-form degrees of freedom. In the physical Einstein frame we obtain an effective matter-gauge-field Lagrangian of “k-essence” type with quadratic dependence on the scalar “dilaton” field kinetic term X, with a remarkable effective scalar potential possessing two infinitely large flat regions as well as with nontrivial effective gauge coupling constants running with the “dilaton” φ. Corresponding to each of the two flat regions we find “vacuum” configurations of the following types: (i) φ = const and a nonzero gauge field vacuum -F2≠0, which corresponds to a charge confining phase; (ii) X = const (“kinetic vacuum”) and ordinary gauge field vacuum -F2 = 0 which supports confinement-free charge dynamics. In one of the flat regions of the effective scalar potential we also find: (iii) X = const (“kinetic vacuum”) and a nonzero gauge field vacuum -F2≠0, which again corresponds to a charge confining phase. In all three cases, the space-time metric is de Sitter or Schwarzschild-de Sitter. Both “kinetic vacuums” (ii) and (iii) can exist only within a finite-volume space region below a de Sitter horizon. Extension to the whole space requires matching the latter with the exterior region with a nonstandard Reissner-Nordström-de Sitter geometry carrying an

  14. F4 , E6 and G2 exceptional gauge groups in the vacuum domain structure model

    NASA Astrophysics Data System (ADS)

    Shahlaei, Amir; Rafibakhsh, Shahnoosh

    2018-03-01

    Using a vacuum domain structure model, we calculate trivial static potentials in various representations of F4 , E6, and G2 exceptional groups by means of the unit center element. Due to the absence of the nontrivial center elements, the potential of every representation is screened at far distances. However, the linear part is observed at intermediate quark separations and is investigated by the decomposition of the exceptional group to its maximal subgroups. Comparing the group factor of the supergroup with the corresponding one obtained from the nontrivial center elements of S U (3 ) subgroup shows that S U (3 ) is not the direct cause of temporary confinement in any of the exceptional groups. However, the trivial potential obtained from the group decomposition into the S U (3 ) subgroup is the same as the potential of the supergroup itself. In addition, any regular or singular decomposition into the S U (2 ) subgroup that produces the Cartan generator with the same elements as h1, in any exceptional group, leads to the linear intermediate potential of the exceptional gauge groups. The other S U (2 ) decompositions with the Cartan generator different from h1 are still able to describe the linear potential if the number of S U (2 ) nontrivial center elements that emerge in the decompositions is the same. As a result, it is the center vortices quantized in terms of nontrivial center elements of the S U (2 ) subgroup that give rise to the intermediate confinement in the static potentials.

  15. Accelerator Vacuum Protection System

    NASA Astrophysics Data System (ADS)

    Barua, Pradip; Kothari, Ashok; Archunan, M.; Joshi, Rajan

    2012-11-01

    A new and elaborate automatic vacuum protection system using fast acting valve has been installed to avoid accidental venting of accelerator from experimental chamber side. To cover all the beam lines and to reduce the system cost, it has been installed at a common point from where all the seven beam lines originate. The signals are obtained by placing fast response pressure sensing gauges (HV SENSOR) near all the experimental stations. The closing time of the fast valve is 10 milli-second. The fast closing system protects only one vacuum line at a time. At IUAC, we have seven beam lines so one sensor was placed in each of the beam lines near experimental chamber and a multiplexer was incorporated into the fast closing system. At the time of experiment, the sensor of the active beam line is selected through the multiplexer and the Fast closing valve is interlocked with the selected sensor. As soon as the pressure sensor senses the pressure rise beyond a selected pressure, the signal is transferred and the fast valve closes within 10 to 12 millisecond.

  16. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    NASA Astrophysics Data System (ADS)

    Prasad, D. N.; Ayyappan, R.; Kamble, L. P.; Singh, J. P.; Muralikrishna, L. V.; Alex, M.; Balagi, V.; Mukhopadhyay, P. K.

    2008-05-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ~1 × 10-5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mm×160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face & diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6×10-9 m bar ltr/sec in vacuum mode and 2×10-7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5×10-5 mbar, the new valve achieved vacuum 7.4×10-6mbar in the same time under the same conditions.

  17. U(1) Wilson lattice gauge theories in digital quantum simulators

    NASA Astrophysics Data System (ADS)

    Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter

    2017-10-01

    Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.

  18. A model with isospin doublet U(1)D gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-05-01

    We propose a model with an extra isospin doublet U(1)D gauge symmetry, in which we introduce several extra fermions with odd parity under a discrete Z2 symmetry in order to cancel the gauge anomalies out. A remarkable issue is that we impose nonzero U(1)D charge to the Standard Model Higgs, and it gives the most stringent constraint to the vacuum expectation value of a scalar field breaking the U(1)D symmetry that is severer than the LEP bound. We then explore relic density of a Majorana dark matter candidate without conflict of constraints from lepton flavor violating processes. A global analysis is carried out to search for parameters which can accommodate with the observed data.

  19. Moyal deformations of Clifford gauge theories of gravity

    NASA Astrophysics Data System (ADS)

    Castro, Carlos

    2016-12-01

    A Moyal deformation of a Clifford Cl(3, 1) Gauge Theory of (Conformal) Gravity is performed for canonical noncommutativity (constant Θμν parameters). In the very special case when one imposes certain constraints on the fields, there are no first-order contributions in the Θμν parameters to the Moyal deformations of Clifford gauge theories of gravity. However, when one does not impose constraints on the fields, there are first-order contributions in Θμν to the Moyal deformations in variance with the previous results obtained by other authors and based on different gauge groups. Despite that the generators of U(2, 2),SO(4, 2),SO(2, 3) can be expressed in terms of the Clifford algebra generators this does not imply that these algebras are isomorphic to the Clifford algebra. Therefore one should not expect identical results to those obtained by other authors. In particular, there are Moyal deformations of the Einstein-Hilbert gravitational action with a cosmological constant to first-order in Θμν. Finally, we provide a mechanism which furnishes a plausible cancellation of the huge vacuum energy density.

  20. Measurement of vacuum pressure with a magneto-optical trap: A pressure-rise method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Rowan W. G.; Lee, Lucie A.; Findlay, Elizabeth A.

    2015-09-15

    The lifetime of an atom trap is often limited by the presence of residual background gases in the vacuum chamber. This leads to the lifetime being inversely proportional to the pressure. Here, we use this dependence to estimate the pressure and to obtain pressure rate-of-rise curves, which are commonly used in vacuum science to evaluate the performance of a system. We observe different rates of pressure increase in response to different levels of outgassing in our system. Therefore, we suggest that this is a sensitive method which will find useful applications in cold atom systems, in particular, where the inclusionmore » of a standard vacuum gauge is impractical.« less

  1. Construction of vacuum system for Tristan accumulation ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishimaru, H.; Horikoshi, G.; Kobayashi, M.

    1983-08-01

    An all aluminum-alloy vacuum system for the TRISTAN accumulation ring is now under construction. Aluminum and aluminum alloys are preferred materials for ultrahigh vacuum systems of large electron storage rings because of their good thermal conductivity, extremely low outgassing rate, and low residual radioactivity. Vacuum beam chambers for the dipole and quadrupole magnets are extruded using porthole dies. The aluminum alloy 6063-T6 provides superior performance in extrusion. For ultrahigh vacuum performance, a special extrusion technique is applied which, along with the outgassing procedure used, is described in detail. Aluminum alloy 3004 seamless elliptical bellows are inserted between the dipole andmore » quadrupole magnet chambers. These bellows are produced by the hydraulic forming of a seamless tube. The seamless bellows and the beam chambers are joined by fully automatic welding. The ceramic chambers for the kicker magnets, the fast bump magnets, and the slow beam intensity monitor are inserted in the aluminum alloy beam chambers. The ceramic chamber (98% alumina) and elliptical bellows are brazed with brazing sheets (4003-3003-4003) in a vacuum furnace. The brazing technique is described. The inner surface of the ceramic chamber is coated with a TiMo alloy by vacuum evaporation to permit a smooth flow of the RF wall current. Other suitable aluminum alloy components, including fittings, feedthroughs, gauges, optical windows, sputter ion pumps, turbomolecular pumps, and valves have been developed; their fabrication is described.« less

  2. Technically natural vacuum energy at the tip of a supersymmetric teardrop

    NASA Astrophysics Data System (ADS)

    Williams, Matthew

    2014-04-01

    A minimal supersymmetric braneworld model is presented which has (i) zero classical four-dimensional vacuum curvature, despite the large naive vacuum energy due to contributions from Standard Model particles and (ii) one-(bulk)-loop quantum corrections to the vacuum energy with a size set by the radius of the extra-dimensional spheroid. These corrections are technically natural because a Bogomol'nyi-Prasad-Sommerfield-like relation between the brane tension and R charge—which would have preserved (half of) the bulk supersymmetry—is violated by the requirement that the stabilizing R-symmetry gauge flux be quantized. The extra-dimensional geometry is similar to previous rugby-ball geometries, but is simpler in that there is only one brane and so fewer free parameters. Although the sign of the renormalized vacuum energy ends up being the unphysical one for this model (in the limit considered here, where the massive bulk loop is the leading contribution), it serves as an illustrative example of the relevant physics.

  3. Part Marking and Identification Materials on MISSE

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Roxby, Donald L.

    2008-01-01

    Many different spacecraft materials were flown as part of the Materials on International Space Station Experiment (MISSE), including several materials used in part marking and identification. The experiment contained Data Matrix symbols applied using laser bonding, vacuum arc vapor deposition, gas assisted laser etch, chemical etch, mechanical dot peening, laser shot peening, and laser induced surface improvement. The effects of ultraviolet radiation on nickel acetate seal versus hot water seal on sulfuric acid anodized aluminum are discussed. These samples were exposed on the International Space Station to the low Earth orbital environment of atomic oxygen, ultraviolet radiation, thermal cycling, and hard vacuum, though atomic oxygen exposure was very limited for some samples. Results from the one-year exposure on MISSE-3 and MISSE-4 are compared to those from MISSE-1 and MISSE-2, which were exposed for four years. Part marking and identification materials on the current MISSE -6 experiment are also discussed.

  4. Gauge fields at finite temperatures—"Thermo field dynamics" and the KMS condition and their extension to gauge theories

    NASA Astrophysics Data System (ADS)

    Ojima, Izumi

    1981-11-01

    "Thermo field dynamics," allowing the Feynman diagram method to be applied to real-time causal Green's functions at finite temperatures ( not temperature Green's functions with imaginary times) expressed in the form of "vacuum" expectation values, is reconsidered in light of its connection with the algebraic formulation of statical machanics based upon the KMS condition. On the basis of so-obtained general basic formulae, the formalism is extended to the case of gauge theories, where the subsidiary condition specifying physical states, the notion of observables, and the structure of the physical subspace at finite temperatures are clarified.

  5. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  6. Universal consistent truncation for 6d/7d gauge/gravity duals

    NASA Astrophysics Data System (ADS)

    Passias, Achilleas; Rota, Andrea; Tomasiello, Alessandro

    2015-10-01

    Recently, AdS7 solutions of IIA supergravity have been classified; there are infinitely many of them, whose expression is known analytically, and with internal space of S 3 topology. Their field theory duals are six-dimensional (1,0) SCFT's. In this paper we show that for each of these AdS7 solutions there exists a consistent truncation from massive IIA supergravity to minimal gauged supergravity in seven dimensions. This theory has an SU(2) gauge group, and a single scalar, whose value is related to a certain distortion of the internal S 3. This explains the universality observed in recent work on AdS5 and AdS4 solutions dual to compactifications of the (1, 0) SCFT6's. Thanks to previous work on the minimal gauged supergravity, the truncation also implies the existence of holographic RG-flows connecting those solutions to the AdS7 vacuum, as well as new classes of IIA AdS3 solutions.

  7. A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks.

    PubMed

    Farrugia, Kevin J; Fraser, Joanna; Friel, Lauren; Adams, Duncan; Attard-Montalto, Nicola; Deacon, Paul

    2015-12-01

    A number of pseudo-operational trials were set up to compare the atmospheric/humidity and vacuum cyanoacrylate fuming processes on plastic carrier bags. The fuming processes were compared using two-step cyanoacrylate fuming with basic yellow 40 (BY40) staining and a one-step fluorescent cyanoacrylate fuming, Lumicyano 4%. Preliminary work using planted fingermarks and split depletions were performed to identify the optimum vacuum fuming conditions. The first pseudo-operational trial compared the different fuming conditions (atmospheric/humidity vs. vacuum) for the two-step process where an additional 50% more marks were detected with the atmospheric/humidity process. None of the marks by the vacuum process could be observed visually; however, a significant number of marks were detected by fluorescence after BY40 staining. The second trial repeated the same work in trial 1 using the one-step cyanoacrylate process, Lumicyano at a concentration of 4%. Trial 2 provided comparable results to trial 1 and all the items were then re-treated with Lumicyano 4% at atmospheric/humidity conditions before dyeing with BY40 to provide the sequences of process A (Lumicyano 4% atmospheric-Lumicyano 4% atmospheric-BY40) and process B (Lumicyano 4% vacuum-Lumicyano 4% atmospheric-BY40). The number of marks (visual and fluorescent) was counted after each treatment with a substantial increase in the number of detected marks in the second and third treatments of the process. The increased detection rate after the double Lumicyano process was unexpected and may have important implications. Trial 3 was performed to investigate whether the amount of cyanoacrylate and/or fuming time had an impact on the results observed in trial 2 whereas trial 4 assessed if the double process using conventional cyanoacrylate, rather than Lumicyano 4%, provided an increased detection rate. Trials 3 and 4 confirmed that doubling the amount of Lumicyano 4% cyanoacrylate and fuming time produced a lower

  8. Electroweak vacuum stability in classically conformal B - L extension of the standard model

    DOE PAGES

    Das, Arindam; Okada, Nobuchika; Papapietro, Nathan

    2017-02-23

    Here, we consider the minimal U(1) B - L extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1) B - L gauge symme- try is introduced along with three generations of right-handed neutrinos and a U(1) B - L Higgs field. Because of the classi- cally conformal symmetry, all dimensional parameters are forbidden. The B - L gauge symmetry is radiatively bro- ken through the Coleman–Weinberg mechanism, generating the mass for the U(1) B - L gauge boson (Z' boson) and the right-handed neutrinos. Through a small negative coupling betweenmore » the SM Higgs doublet and the B - L Higgs field, the negative mass term for the SM Higgs doublet is gener- ated and the electroweak symmetry is broken. We investigate the electroweak vacuum instability problem in the SM in this model context. It is well known that in the classically conformal U(1) B - L extension of the SM, the electroweak vacuum remains unstable in the renormalization group anal- ysis at the one-loop level. In this paper, we extend the anal- ysis to the two-loop level, and perform parameter scans. We also identify a parameter region which not only solve the vacuum instability problem, but also satisfy the recent ATLAS and CMS bounds from search for Z ' boson resonance at the LHC Run-2. Considering self-energy corrections to the SM Higgs doublet through the right-handed neutrinos and the Z ' boson, we derive the naturalness bound on the model parameters to realize the electroweak scale without fine-tunings.« less

  9. Electroweak vacuum stability in classically conformal B - L extension of the standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Arindam; Okada, Nobuchika; Papapietro, Nathan

    Here, we consider the minimal U(1) B - L extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1) B - L gauge symme- try is introduced along with three generations of right-handed neutrinos and a U(1) B - L Higgs field. Because of the classi- cally conformal symmetry, all dimensional parameters are forbidden. The B - L gauge symmetry is radiatively bro- ken through the Coleman–Weinberg mechanism, generating the mass for the U(1) B - L gauge boson (Z' boson) and the right-handed neutrinos. Through a small negative coupling betweenmore » the SM Higgs doublet and the B - L Higgs field, the negative mass term for the SM Higgs doublet is gener- ated and the electroweak symmetry is broken. We investigate the electroweak vacuum instability problem in the SM in this model context. It is well known that in the classically conformal U(1) B - L extension of the SM, the electroweak vacuum remains unstable in the renormalization group anal- ysis at the one-loop level. In this paper, we extend the anal- ysis to the two-loop level, and perform parameter scans. We also identify a parameter region which not only solve the vacuum instability problem, but also satisfy the recent ATLAS and CMS bounds from search for Z ' boson resonance at the LHC Run-2. Considering self-energy corrections to the SM Higgs doublet through the right-handed neutrinos and the Z ' boson, we derive the naturalness bound on the model parameters to realize the electroweak scale without fine-tunings.« less

  10. Spacetime-bridge solutions in vacuum gravity

    NASA Astrophysics Data System (ADS)

    Sengupta, Sandipan

    2017-11-01

    Vacuum spacetime solutions, which are representations of a bridgelike geometry, are constructed as purely geometric sources of curvature in gravity theory. These configurations satisfy the first-order equations of motion everywhere. Each of them consists of two identical sheets of asymptotically flat geometry, connected by a region of finite extension where the tetrad is noninvertible. The solutions can be classified into nonstatic and static spacetimes. The first class represents a single causal universe equipped (locally) with a timelike coordinate everywhere. The latter, on the other hand, could be interpreted as a sum of two self-contained universes which are causally disconnected. These geometries, even though they have different metrical dimensions in the regions within and away from the bridge, are regular. This is reflected through the associated gauge-covariant fields, which are continuous across the hypersurfaces connecting the invertible and noninvertible phases of the tetrad and are finite everywhere. These vacuum bridge solutions have no analogue in the Einsteinian theory of gravity.

  11. Cosmological evolution of the Higgs boson's vacuum expectation value

    NASA Astrophysics Data System (ADS)

    Calmet, Xavier

    2017-11-01

    We point out that the expansion of the universe leads to a cosmological time evolution of the vacuum expectation of the Higgs boson. Within the standard model of particle physics, the cosmological time evolution of the vacuum expectation of the Higgs leads to a cosmological time evolution of the masses of the fermions and of the electroweak gauge bosons, while the scale of Quantum Chromodynamics (QCD) remains constant. Precise measurements of the cosmological time evolution of μ =m_e/m_p, where m_e and m_p are, respectively, the electron and proton mass (which is essentially determined by the QCD scale), therefore provide a test of the standard models of particle physics and of cosmology. This ratio can be measured using modern atomic clocks.

  12. Fayet-Iliopoulos terms in supergravity without gauged R-symmetry

    NASA Astrophysics Data System (ADS)

    Cribiori, Niccolò; Farakos, Fotis; Tournoy, Magnus; Van Proeyen, Antoine

    2018-04-01

    We construct a supergravity-Maxwell theory with a novel embedding of the Fayet-Iliopoulos D-term, leading to spontaneous supersymmetry breaking. The gauging of the R-symmetry is not required and a gravitino mass is allowed for a generic vacuum. When matter couplings are introduced, an uplift through a positive definite contribution to the scalar potential is obtained. We observe a notable similarity to the \\overline{D}3 uplift constructions and we give a natural description in terms of constrained multiplets.

  13. Gauged lepton flavour

    DOE PAGES

    Alonso, Rodrigo; Fernandez Martinez, Enrique; Gavela, M. B.; ...

    2016-12-22

    The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; in addition, it requires a phenomenologically viable setup which leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplingsmore » are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavour Violation. In every case, the μ - τ flavour sector exhibits rich and promising phenomenological signals.« less

  14. Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News

    NASA Astrophysics Data System (ADS)

    Handmer, Casey; Szilagyi, Bela; Winicour, Jeff

    2015-04-01

    We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.

  15. New U(1) gauge model of radiative lepton masses with sterile neutrino and dark matter

    DOE PAGES

    Adhikari, Rathin; Borah, Debasish; Ma, Ernest

    2016-02-23

    Here, an anomaly-free U(1) gauge extension of the standard model (SM) is presented. Only one Higgs doublet with a nonzero vacuum expectation is required as in the SM. New fermions and scalars as well as all SM particles transform nontrivially under this U(1), resulting in a model of three active neutrinos and one sterile neutrino, all acquiring radiative masses. Charged-lepton masses are also radiative as well as the mixing between active and sterile neutrinos. At the same time, a residual Z 2 symmetry of the U(1) gauge symmetry remains exact, allowing for the existence of dark matter.

  16. Extended gauge theory and gauged free differential algebras

    NASA Astrophysics Data System (ADS)

    Salgado, P.; Salgado, S.

    2018-01-01

    Recently, Antoniadis, Konitopoulos and Savvidy introduced, in the context of the so-called extended gauge theory, a procedure to construct background-free gauge invariants, using non-abelian gauge potentials described by higher degree forms. In this article it is shown that the extended invariants found by Antoniadis, Konitopoulos and Savvidy can be constructed from an algebraic structure known as free differential algebra. In other words, we show that the above mentioned non-abelian gauge theory, where the gauge fields are described by p-forms with p ≥ 2, can be obtained by gauging free differential algebras.

  17. Flux tubes in the QCD vacuum

    NASA Astrophysics Data System (ADS)

    Cea, Paolo; Cosmai, Leonardo; Cuteri, Francesca; Papa, Alessandro

    2017-06-01

    The hypothesis that the QCD vacuum can be modeled as a dual superconductor is a powerful tool to describe the distribution of the color field generated by a quark-antiquark static pair and, as such, can provide useful clues for the understanding of confinement. In this work we investigate, by lattice Monte Carlo simulations of the S U (3 ) pure gauge theory and of (2 +1 )-flavor QCD with physical mass settings, some properties of the chromoelectric flux tube at zero temperature and their dependence on the physical distance between the static sources. We draw some conclusions about the validity domain of the dual superconductor picture.

  18. Gauged baby Skyrme model with a Chern-Simons term

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2017-02-01

    The properties of the multisoliton solutions of the (2 +1 )-dimensional Maxwell-Chern-Simons-Skyrme model are investigated numerically. Coupling to the Chern-Simons term allows for existence of the electrically charge solitons which may also carry magnetic fluxes. Two particular choices of the potential term is considered: (i) the weakly bounded potential and (ii) the double vacuum potential. In the absence of gauge interaction in the former case the individual constituents of the multisoliton configuration are well separated, while in the latter case the rotational invariance of the configuration remains unbroken. It is shown that coupling of the planar multi-Skyrmions to the electric and magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, the energies, angular momenta, electric and magnetic fields of the configurations on the gauge coupling constant g , and the electric potential. It is found that, generically, the coupling to the Chern-Simons term strongly affects the usual pattern of interaction between the skyrmions, in particular the electric repulsion between the solitons may break the multisoliton configuration into partons. We show that as the gauge coupling becomes strong, both the magnetic flux and the electric charge of the solutions become quantized although they are not topological numbers.

  19. Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum.

    PubMed

    Diakonos, F K; Katsimiga, G C; Maintas, X N; Tsagkarakis, C E

    2015-02-01

    We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (m(H)) to the gauge-field mass (m(A)). We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism.

  20. Numerical solution of open string field theory in Schnabl gauge

    NASA Astrophysics Data System (ADS)

    Arroyo, E. Aldo; Fernandes-Silva, A.; Szitas, R.

    2018-01-01

    Using traditional Virasoro L 0 level-truncation computations, we evaluate the open bosonic string field theory action up to level (10 , 30). Extremizing this level-truncated potential, we construct a numerical solution for tachyon condensation in Schnabl gauge. We find that the energy associated to the numerical solution overshoots the expected value -1 at level L = 6. Extrapolating the level-truncation data for L ≤ 10 to estimate the vacuum energies for L > 10, we predict that the energy reaches a minimum value at L ˜ 12, and then turns back to approach -1 asymptotically as L → ∞. Furthermore, we analyze the tachyon vacuum expectation value (vev), for which by extrapolating its corresponding level-truncation data, we predict that the tachyon vev reaches a minimum value at L ˜ 26, and then turns back to approach the expected analytical result as L → ∞.

  1. Continuum approach to the BF vacuum: The U(1) case

    NASA Astrophysics Data System (ADS)

    Drobiński, Patryk; Lewandowski, Jerzy

    2017-12-01

    A quantum representation of holonomies and exponentiated fluxes of a U(1) gauge theory that contains the Pullin-Dittrich-Geiller (DG) vacuum is presented and discussed. Our quantization is performed manifestly in a continuum theory, without any discretization. The discreteness emerges on the quantum level as a property of the spectrum of the quantum holonomy operators. The new type of a cylindrical consistency present in the DG approach now follows easily and naturally. A generalization to the non-Abelian case seems possible.

  2. Vacuum system of the compact Energy Recovery Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gasmore » interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.« less

  3. Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges

    PubMed Central

    Yang, Shixuan; Lu, Nanshu

    2013-01-01

    Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed. PMID:23881128

  4. The Development of a Pirani Vacuum Gauge with a Platinum Wire in the J-PARC 3-GeV Rapid Cycling Synchrotron

    NASA Astrophysics Data System (ADS)

    Ogiwara, Norio; Hikichi, Yusuke; Yoshinari, Yoji

    The back pressure of Turbo-Molecular Pumps (TMPs) is constantly monitored using Pirani gauges at J-PARC (Japan Proton Accelerator Complex) RCS (3-GeV Rapid Cycling Synchrotron) where they are used not only in rough pumping but also evacuations during beam operations. The gauge head needs to be very resistant to vibration and abrupt air inlet etc. in minimizing exposure to radiation during maintenance and hence a 50 μm in diameter W wire was adopted as the filament. This type of Pirani gauge has worked well in monitoring the back pressure of the TMP but it has become difficult to measure the low pressure of less than several Pa with the gauge, which may have been due to changes in the emissivity of the W surface. An attempt was therefore made to develop a gauge head made of Pt wire in allowing pressures as low as 0.1 Pa to be measured. Platinum is one of the best possible materials to use because it is very stable against oxidization. However, ordinary Pt gauge heads are rather weak when it comes to vibrations and abrupt air inlet due to its low tensile strength. In order to improve its toughness the filament was composed of twelve 100 μm in diameter Pt wires that were 65 mm long, resulting in it being capable of enduring a force of 25 N. All the wires were welded in series on metal poles in two separate glass plates, with the poles being electrically insulated. This resulted in the filament, 78 cm long and about 10 Ω at room temperature, being containable in a 5 cm in diameter and 10 cm long cylindrical envelope. The output from the gauge head was then examined as a function of pressure under constant current as the plan was for it to be controlled using the constant current method. Confirmation then took place that the pressures of 0.1 Pa up to 103 Pa were measurable with the gauge using current control in such way that the set value increased with pressure increases in three stages.

  5. Vacuum structure and string tension in Yang-Mills dimeron ensembles

    NASA Astrophysics Data System (ADS)

    Zimmermann, Falk; Forkel, Hilmar; Müller-Preußker, Michael

    2012-11-01

    We numerically simulate ensembles of SU(2) Yang-Mills dimeron solutions with a statistical weight determined by the classical action and perform a comprehensive analysis of their properties as a function of the bare coupling. In particular, we examine the extent to which these ensembles and their classical gauge interactions capture topological and confinement properties of the Yang-Mills vacuum. This also allows us to put the classic picture of meron-induced quark confinement, with the confinement-deconfinement transition triggered by dimeron dissociation, to stringent tests. In the first part of our analysis we study spacial, topological-charge and color correlations at the level of both the dimerons and their meron constituents. At small to moderate couplings, the dependence of the interactions between the dimerons on their relative color orientations is found to generate a strong attraction (repulsion) between nearest neighbors of opposite (equal) topological charge. Hence, the emerging short- to mid-range order in the gauge-field configurations screens topological charges. With increasing coupling this order weakens rapidly, however, in part because the dimerons gradually dissociate into their less localized meron constituents. Monitoring confinement properties by evaluating Wilson-loop expectation values, we find the growing disorder due to the long-range tails of these progressively liberated merons to generate a finite and (with the coupling) increasing string tension. The short-distance behavior of the static quark-antiquark potential, on the other hand, is dominated by small, “instantonlike” dimerons. String tension, action density and topological susceptibility of the dimeron ensembles in the physical coupling region turn out to be of the order of standard values. Hence, the above results demonstrate without reliance on weak-coupling or low-density approximations that the dissociating dimeron component in the Yang-Mills vacuum can indeed produce a

  6. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenz, M.; Babutzka, M.; Bahr, M.

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less

  7. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    DOE PAGES

    Arenz, M.; Babutzka, M.; Bahr, M.; ...

    2016-04-07

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less

  8. Electroweak theory based on S U (4 )L⊗U (1 )X gauge group

    NASA Astrophysics Data System (ADS)

    Long, H. N.; Hue, L. T.; Loi, D. V.

    2016-07-01

    This paper includes two main parts. In the first part, we present generalized gauge models based on the S U (3 )C⊗S U (4 )L⊗U (1 )X (3-4-1) gauge group with arbitrary electric charges of exotic leptons. The mixing matrix of neutral gauge bosons is analyzed, and the eigenmasses and eigenstates are obtained. The anomaly-free as well as matching conditions are discussed precisely. In the second part, we present a new development of the original 3-4-1 model [R. Foot, H. N. Long, and T. A. Tran, Phys. Rev. D 50, R34 (1994), F. Pisano and V. Pleitez, Phys. Rev. D 51, 3865 (1995).]. Different from previous works, in this paper the neutrinos, with the help of the scalar decuplet H , get the Dirac masses at the tree level. The vacuum expectation value (VEV) of the Higgs boson field in the decuplet H acquiring the VEV responsible for neutrino Dirac mass leads to mixing in separated pairs of singly charged gauge bosons, namely the Standard Model (SM) W boson and K , the new gauge boson acting in the right-handed lepton sector, as well as the singly charged bileptons X and Y . Due to the mixing, there occurs a right-handed current carried by the W boson. From the expression of the electromagnetic coupling constant, ones get the limit of the sine-squared of the Weinberg angle, sin2θW<0.25 , and a constraint on electric charges of extra leptons. In the limit of lepton number conservation, the Higgs sector contains all massless Goldstone bosons for massive gauge bosons and the SM-like Higgs boson. Some phenomenology is discussed.

  9. Newton gauge cosmological perturbations for static spherically symmetric modifications of the de Sitter metric

    NASA Astrophysics Data System (ADS)

    Santa Vélez, Camilo; Enea Romano, Antonio

    2018-05-01

    Static coordinates can be convenient to solve the vacuum Einstein's equations in presence of spherical symmetry, but for cosmological applications comoving coordinates are more suitable to describe an expanding Universe, especially in the framework of cosmological perturbation theory (CPT). Using CPT we develop a method to transform static spherically symmetric (SSS) modifications of the de Sitter solution from static coordinates to the Newton gauge. We test the method with the Schwarzschild de Sitter (SDS) metric and then derive general expressions for the Bardeen's potentials for a class of SSS metrics obtained by adding to the de Sitter metric a term linear in the mass and proportional to a general function of the radius. Using the gauge invariance of the Bardeen's potentials we then obtain a gauge invariant definition of the turn around radius. We apply the method to an SSS solution of the Brans-Dicke theory, confirming the results obtained independently by solving the perturbation equations in the Newton gauge. The Bardeen's potentials are then derived for new SSS metrics involving logarithmic, power law and exponential modifications of the de Sitter metric. We also apply the method to SSS metrics which give flat rotation curves, computing the radial energy density profile in comoving coordinates in presence of a cosmological constant.

  10. Precise method of compensating radiation-induced errors in a hot-cathode-ionization gauge with correcting electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeki, Hiroshi, E-mail: saeki@spring8.or.jp; Magome, Tamotsu, E-mail: saeki@spring8.or.jp

    2014-10-06

    To compensate pressure-measurement errors caused by a synchrotron radiation environment, a precise method using a hot-cathode-ionization-gauge head with correcting electrode, was developed and tested in a simulation experiment with excess electrons in the SPring-8 storage ring. This precise method to improve the measurement accuracy, can correctly reduce the pressure-measurement errors caused by electrons originating from the external environment, and originating from the primary gauge filament influenced by spatial conditions of the installed vacuum-gauge head. As the result of the simulation experiment to confirm the performance reducing the errors caused by the external environment, the pressure-measurement error using this method wasmore » approximately less than several percent in the pressure range from 10{sup −5} Pa to 10{sup −8} Pa. After the experiment, to confirm the performance reducing the error caused by spatial conditions, an additional experiment was carried out using a sleeve and showed that the improved function was available.« less

  11. Sonographically-guided vacuum-assisted biopsy with digital mammography-guided skin marking of suspicious breast microcalcifications: comparison of outcomes with stereotactic biopsy in Asian women.

    PubMed

    Hahn, Soo Yeon; Shin, Jung Hee; Han, Boo-Kyung; Ko, Eun Young

    2011-02-01

    Management of suspicious microcalcifications in very thin breasts is problematic. To evaluate whether sonographically-guided vacuum-assisted biopsy (USVAB) with digital mammography-guided skin marking (DM) for the diagnosis of breast microcalcifications is comparable to stereotactic-guided vacuum-assisted biopsy (SVAB) in Asian women with thin breasts. Retrospective review was performed for 263 consecutive suspicious microcalcification lesions in 261 women who underwent USVAB with DM or SVAB using a prone table between January 2004 and December 2007. SVAB was performed for 190 lesions and USVAB for 73 lesions. Biopsy results were correlated with surgical pathology or followed up for at least 12 months. The diagnostic outcomes of SVAB and USVAB to diagnose microcalcifications were compared. Of 263 lesions, 104 (40%) underwent surgery and 159 (60%) were followed up. SVAB and USVAB groups showed similar final categories or the extent of microcalcifications. US visible lesions were 57 (78%) of 73 at USVAB and 14 (10%) of 140 at SVAB. Of 57 US visible lesions at USVAB, 29 (51%) were not found in initial US but were detectable with the help of DM. Specimen radiographs were negative in 2.1% of lesions at SVAB and in 4.1% at USVAB (p=0.4008). The under-estimation rate and false-negative rate were similar in SVAB and USVAB. US with DM facilitates US visibility of microcalcifications. USVAB with DM can produce acceptable biopsy results, as can SVAB, to diagnose breast microcalcifications in patients with thin breasts.

  12. On gauge independence for gauge models with soft breaking of BRST symmetry

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Alexander

    2014-12-01

    A consistent quantum treatment of general gauge theories with an arbitrary gauge-fixing in the presence of soft breaking of the BRST symmetry in the field-antifield formalism is developed. It is based on a gauged (involving a field-dependent parameter) version of finite BRST transformations. The prescription allows one to restore the gauge-independence of the effective action at its extremals and therefore also that of the conventional S-matrix for a theory with BRST-breaking terms being additively introduced into a BRST-invariant action in order to achieve a consistency of the functional integral. We demonstrate the applicability of this prescription within the approach of functional renormalization group to the Yang-Mills and gravity theories. The Gribov-Zwanziger action and the refined Gribov-Zwanziger action for a many-parameter family of gauges, including the Coulomb, axial and covariant gauges, are derived perturbatively on the basis of finite gauged BRST transformations starting from Landau gauge. It is proved that gauge theories with soft breaking of BRST symmetry can be made consistent if the transformed BRST-breaking terms satisfy the same soft BRST symmetry breaking condition in the resulting gauge as the untransformed ones in the initial gauge, and also without this requirement.

  13. Nonquadratic gauge fixing and ghosts for gauge theories on the hypersphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, F. T.; McKeon, D. G. C.; Department of Mathematics and Computer Science, Algoma University, Sault St. Marie, Ontario P6A 2G4

    2011-10-15

    It has been suggested that using a gauge fixing Lagrangian that is not quadratic in a gauge fixing condition is most appropriate for gauge theories formulated on a hypersphere. We reexamine the appropriate ghost action that is to be associated with gauge fixing, applying a technique that has been used for ensuring that the propagator for a massless spin-two field is transverse and traceless. It is shown that this nonquadratic gauge fixing Lagrangian leads to two pair of complex Fermionic ghosts and two Bosonic real ghosts.

  14. Vacuum currents in braneworlds on AdS bulk with compact dimensions

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Saharian, A. A.; Vardanyan, V.

    2015-11-01

    The two-point function and the vacuum expectation value (VEV) of the current density are investigated for a massive charged scalar field with arbitrary curvature coupling in the geometry of a brane on the background of AdS spacetime with partial toroidal compactification. The presence of a gauge field flux, enclosed by compact dimensions, is assumed. On the brane the field obeys Robin boundary condition and along compact dimensions periodicity conditions with general phases are imposed. There is a range in the space of the values for the coefficient in the boundary condition where the Poincaré vacuum is unstable. This range depends on the location of the brane and is different for the regions between the brane and AdS boundary and between the brane and the horizon. In models with compact dimensions the stability condition is less restrictive than that for the AdS bulk with trivial topology. The vacuum charge density and the components of the current along non-compact dimensions vanish. The VEV of the current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It is decomposed into the boundary-free and brane-induced contributions. The asymptotic behavior of the latter is investigated near the brane, near the AdS boundary and near the horizon. It is shown that, in contrast to the VEVs of the field squared an denergy-momentum tensor, the current density is finite on the brane and vanishes for the special case of Dirichlet boundary condition. Both the boundary-free and brane-induced contributions vanish on the AdS boundary. The brane-induced contribution vanishes on the horizon and for points near the horizon the current is dominated by the boundary-free part. In the near-horizon limit, the latter is connected to the corresponding quantity for a massless field in the Minkowski bulk by a simple conformal relation. Depending on the value of the Robin coefficient, the presence of the brane can either

  15. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  16. Gauge choices and entanglement entropy of two dimensional lattice gauge fields

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Hung, Ling-Yan

    2018-03-01

    In this paper, we explore the question of how different gauge choices in a gauge theory affect the tensor product structure of the Hilbert space in configuration space. In particular, we study the Coulomb gauge and observe that the naive gauge potential degrees of freedom cease to be local operators as soon as we impose the Dirac brackets. We construct new local set of operators and compute the entanglement entropy according to this algebra in 2 + 1 dimensions. We find that our proposal would lead to an entanglement entropy that behave very similar to a single scalar degree of freedom if we do not include further centers, but approaches that of a gauge field if we include non-trivial centers. We explore also the situation where the gauge field is Higgsed, and construct a local operator algebra that again requires some deformation. This should give us some insight into interpreting the entanglement entropy in generic gauge theories and perhaps also in gravitational theories.

  17. Dark gauge bosons: LHC signatures of non-abelian kinetic mixing

    DOE PAGES

    Argüelles, Carlos A.; He, Xiao-Gang; Ovanesyan, Grigory; ...

    2017-04-20

    We consider non-abelian kinetic mixing between the Standard Model and a dark sector gauge group associated with the presence of a scalar triplet. The magnitude of the resulting dark photon coupling ϵ is determined by the ratio of the triplet vacuum expectation value, constrained to by by electroweak precision tests, to the scale Λ of the effective theory. The corresponding effective operator Wilson coefficient can be while accommodating null results for dark photon searches, allowing for a distinctive LHC dark photon phenomenology. After outlining the possible LHC signatures, we illustrate by recasting current ATLAS dark photon results into the non-abelianmore » mixing context.« less

  18. Gauge engineering and propagators

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2017-03-01

    Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.

  19. NOVEL CHAMBER DESIGN FOR AN IN-VACUUM CRYO-COOLED MINI-GAP UNDULATOR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HU, J.-P.; FOERSTER, C.L.; SKARITKA, J.R.

    2006-05-24

    A stainless steel, Ultra-High Vacuum (UHV) chamber, featuring a large vertical rectangular port (53''W by 16''H), has been fabricated to house the one-meter magnet assembly of a newly installed undulator insertion device for beamline X-25 at the National Synchrotron Light Source. To achieve UHV, the new chamber is equipped with a differential ion pump, NEG pump, nude ion gauge, residual gas analyzer, and an all metal roughing valve. Temperature of the magnet assembly is maintained below 90 C during vacuum bake. The large rectangular port cover is sealed to the main flange of the chamber using a one-piece flat aluminummore » gasket and special sealing surfaces developed exclusively by Nor-Cal Products, Inc. The large flange provides easy access to the gap of the installed magnet girders for in situ magnetic measurements and shimming. Special window ports were designed into the cover and chamber for manipulation of optical micrometers external to the chamber to provide precise measurements of the in-vacuum magnet gap. The vacuum chamber assembly features independently vacuum-isolated feedthroughs that can be used for either water-or-cryogenic refrigeration-cooling of the monolithic magnet girders. This would allow for cryogenic-cooled permanent magnet operation and has been successfully tested within temperature range of +100 C to -150 C. Details of the undulator assembly for beamline X-25 is described in the paper.« less

  20. The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braguta, V. V., E-mail: braguta@mail.ru; Buividovich, P. V., E-mail: buividovich@itep.ru; Kalaydzhyan, T., E-mail: tigran.kalaydzhyan@desy.de

    2012-04-15

    We study some properties of the non-Abelian vacuum induced by strong external magnetic field. We perform calculations in the quenched SU(3) lattice gauge theory with tadpole-improved Luescher-Weisz action and chirally invariant lattice Dirac operator. The following results are obtained: The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate depends on the strength of the applied field as a power function with exponent {nu} = 1.6 {+-} 0.2. There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other magnetic properties are calculated and compared with the theoretical estimations. There are nonzero local fluctuations ofmore » the chirality and electromagnetic current, which grow with the magnetic field strength. These fluctuations can be a manifestation of the Chiral Magnetic Effect.« less

  1. Ultra high vacuum test setup for electron gun

    NASA Astrophysics Data System (ADS)

    Pandiyar, M. L.; Prasad, M.; Jain, S. K.; Kumar, R.; Hannurkar, P. R.

    2008-05-01

    Ultra High Vacuum (UHV) test setup for electron gun testing has been developed. The development of next generation light sources and accelerators require development of klystron as a radio frequency power source, and in turn electron gun. This UHV electron gun test setup can be used to test the electron guns ranging from high average current, quasi-continuous wave to high peak current, single pulse etc. An electron gun has been designed, fabricated, assembled and tested for insulation up to 80 kV under the programme to develop high power klystron for future accelerators. Further testing includes the electron emission parameters characterization of the cathode, as it determines the development of a reliable and efficient electron gun with high electron emission current and high life time as well. This needs a clean ultra high vacuum to study these parameters particularly at high emission current. The cathode emission current, work function and vapour pressure of cathode surface material at high temperature studies will further help in design and development of high power electron gun The UHV electron gun test setup consists of Turbo Molecular Pump (TMP), Sputter Ion Pump (SIP), pressure gauge, high voltage and cathode power supplies, current measurement device, solenoid magnet and its power supply, residual gas analyser etc. The ultimate vacuum less than 2×10-9 mbar was achieved. This paper describes the UHV test setup for electron gun testing.

  2. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  3. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  4. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  5. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  6. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-110 Water-level indicators, water...

  7. Regularization of the light-cone gauge gluon propagator singularities using sub-gauge conditions

    DOE PAGES

    Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.

    2015-12-21

    Perturbative QCD calculations in the light-cone gauge have long suffered from the ambiguity associated with the regularization of the poles in the gluon propagator. In this work we study sub-gauge conditions within the light-cone gauge corresponding to several known ways of regulating the gluon propagator. By using the functional integral calculation of the gluon propagator, we rederive the known sub-gauge conditions for the θ-function gauges and identify the sub-gauge condition for the principal value (PV) regularization of the gluon propagator’s light-cone poles. The obtained sub-gauge condition for the PV case is further verified by a sample calculation of the classicalmore » Yang-Mills field of two collinear ultrarelativistic point color charges. Our method does not allow one to construct a sub-gauge condition corresponding to the well-known Mandelstam-Leibbrandt prescription for regulating the gluon propagator poles.« less

  8. Spinal anaesthesia for caesarean section: comparison of 22-gauge and 25-gauge Whitacre needles with 26-gauge Quincke needles.

    PubMed

    Shutt, L E; Valentine, S J; Wee, M Y; Page, R J; Prosser, A; Thomas, T A

    1992-12-01

    We have studied 150 women undergoing elective Caesarean section under spinal anaesthesia. They were allocated randomly to have a 22-gauge Whitacre, a 25-gauge Whitacre or a 26-gauge Quincke needle inserted into the lumbar subarachnoid space. The groups were compared for ease of insertion, number of attempted needle insertions before identification of cerebrospinal fluid, quality of subsequent analgesia and incidence of postoperative complications. There were differences between groups, but they did not reach statistical significance. Postdural puncture headache (PDPH) was experienced by one mother in the 22-gauge Whitacre group, none in the 25-gauge Whitacre group and five in the 26-gauge Quincke group. Five of the six PDPH occurred after a single successful needle insertion. Seven of the 15 mothers in whom more than two needle insertions were made experienced backache, compared with 12 of the 129 receiving two or less (P < 0.001). We conclude that the use of 22- and 25-gauge Whitacre needles in elective Caesarean section patients is associated with a low incidence of PDPH and that postoperative backache is more likely when more than two attempts are made to insert a spinal needle.

  9. An analytic cosmology solution of Poincaré gauge gravity

    NASA Astrophysics Data System (ADS)

    Lu, Jianbo; Chee, Guoying

    2016-06-01

    A cosmology of Poincaré gauge theory is developed. An analytic solution is obtained. The calculation results agree with observation data and can be compared with the ΛCDM model. The cosmological constant puzzle is the coincidence and fine tuning problem are solved naturally at the same time. The cosmological constant turns out to be the intrinsic torsion and curvature of the vacuum universe, and is derived from the theory naturally rather than added artificially. The dark energy originates from geometry, includes the cosmological constant but differs from it. The analytic expression of the state equations of the dark energy and the density parameters of the matter and the geometric dark energy are derived. The full equations of linear cosmological perturbations and the solutions are obtained.

  10. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-04-04

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  11. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-01-01

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  12. Nambu-Poisson gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Vysoký, Jan

    2014-06-01

    We generalize noncommutative gauge theory using Nambu-Poisson structures to obtain a new type of gauge theory with higher brackets and gauge fields. The approach is based on covariant coordinates and higher versions of the Seiberg-Witten map. We construct a covariant Nambu-Poisson gauge theory action, give its first order expansion in the Nambu-Poisson tensor and relate it to a Nambu-Poisson matrix model.

  13. Scalar formalism for non-Abelian gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostler, L.C.

    1986-09-01

    The gauge field theory of an N-italic-dimensional multiplet of spin- 1/2 particles is investigated using the Klein--Gordon-type wave equation )Pi x (1+i-italicsigma) x Pi+m-italic/sup 2/)Phi = 0, Pi/sub ..mu../equivalentpartial/partiali-italicx-italic/sub ..mu../-e-italicA-italic/sub ..mu../, investigated before by a number of authors, to describe the fermions. Here Phi is a 2 x 1 Pauli spinor, and sigma repesents a Lorentz spin tensor whose components sigma/sub ..mu..//sub ..nu../ are ordinary 2 x 2 Pauli spin matrices. Feynman rules for the scalar formalism for non-Abelian gauge theory are derived starting from the conventional field theory of the multiplet and converting it to the new description. Themore » equivalence of the new and the old formalism for arbitrary radiative processes is thereby established. The conversion to the scalar formalism is accomplished in a novel way by working in terms of the path integral representation of the generating functional of the vacuum tau-functions, tau(2,1, xxx 3 xxx)equivalent<0-chemically bondT-italic(Psi/sub in/(2) Psi-bar/sub in/(1) xxx A-italic/sub ..mu../(3)/sub in/ xxx S-italic)chemically bond0->, where Psi/sub in/ is a Heisenberg operator belonging to a 4N-italic x 1 Dirac wave function of the multiplet. The Feynman rules obtained generalize earlier results for the Abelian case of quantum electrodynamics.« less

  14. [Sterilization effect analysis of B-class pulsation table top vacuum sterilizer to dental handpieces].

    PubMed

    Zeng, Shu-Rong; Jiang, Bo; Xiao, Xiao-Rong

    2007-06-01

    Discuss sterilization effect of B-class pulsation table top vacuum pressure steam sterilizer for dental handpiece. Analysis selection of sterilizer for dental handpiece and sterilization management processes and sterilization effect monitoring, evaluation of monitoring result and effective sterilization method. The B-class pulsation table top vacuum pressure steam sterilizer to dental handpiece in West China Stomatological Hospital of Sichuan University met the requirement of the chemical and biological monitoring. Its efficiency of sterilization was 100%. The results of aerobic culture, anaerobic culture, B-type hepatitis mark monitoring to sterilized dental handpiece were negative. It is effective method for dental handpiece sterilization to use B-class pulsation table top vacuum pressure steam sterilizer.

  15. Quantum Mechanics, vacuum, particles, Gödel-Cohen incompleteness and the Universe

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2017-12-01

    Are the standard laws of Physics really fundamental principles? Does the physical vacuum have a more primordial internal structure? Are quarks, leptons, gauge bosons… ultimate elementary objects? These three basic questions are actually closely related. If the deep vacuum structure and dynamics turn out to be less trivial than usually depicted, the conventional "elementary" particles will most likely be excitations of such a vacuum dynamics that remains by now unknown. We then expect relativity and quantum mechanics to be low-energy limits of a more fundamental dynamical pattern that generates them at a deeper level. It may even happen that vacuum drives the expansion of the Universe from its own inner dynamics. Inside such a vacuum structure, the speed of light would not be the critical speed for vacuum constituents and propagating signals. The natural scenario would be the superbradyon (superluminal preon) pattern we postulated in 1995, with a new critical speed cs much larger than the speed of light c just as c is much larger than the speed of sound. Superbradyons are assumed to be the bradyons of a super-relativity associated to cs (a Lorentz invariance with cs as the critical speed). Similarly, the standard relativistic space-time with four real coordinates would not necessarily hold beyond low-energy and comparatively local distance scales. Instead, the spinorial space-time (SST) with two complex coordinates we introduced in 1996-97 may be the suitable one to describe the internal structure of vacuum and standard "elementary" particles and, simultaneously, Cosmology at very large distance scales. If the constituents of the preonic vacuum are superluminal, quantum entanglement appears as a natural property provided cs ≫ c . The value of cs can even be possibly found experimentally by studying entanglement at large distances. It is not excluded that preonic constituents of vacuum can exist in our Universe as free particles ("free" superbradyons), in which

  16. Topics in Cosmic String Physics and Vacuum Stability of Field Theories

    NASA Astrophysics Data System (ADS)

    Dasgupta, Indranil

    1998-01-01

    In this thesis I examine aspects of the vacuum state of quantum field theories. Namely, I study topological defects in the vacuum which appear as localized regions of non-zero energy density if the model system is unable to relax to a homogeneous and isotropic ground state because of topological constraints. I also examine the stability of the so called false vacua in theories that have multiple vacuum states with different energy densities. I first consider topological defects in the form of strings and independently the decay of false vacua in models of particle physics where the presence of either defects or of false vacua leads to interesting phenomenology. Then I describe a situation in which the defects arising from topological properties of the vacuum in turn affect the stability of the vacuum itself. In the first part of this work (chapters 2 and 3), I explore the phenomenology of cosmic strings. I introduce new string-like topological defects that resemble pairs of strings bound together. I give an existence proof of these 'binary strings' and then develop their cosmological properties in detail. I then propose a simple extension of the Standard Model in which cosmic strings may form and then decay through baryon number violating interactions leading to baryogenesis. I show that the model has distinct and testable signatures. In the second part of this work (chapters 4 and 5), I examine the vacua of several proposed models of gauge mediated dynamical supersymmetry breaking and show that the viable vacua are often unstable. I develop a rigorous theory for approximating vacuum tunneling rates in multi-scalar field theories and by computing bounds on the decay rate of the vacua in these models obtain useful constraints on the parameter space. In the final part of this work (chapter 6), I develop a theory of vacuum tunneling induced by topological defects. I show that defects can speed up vacuum tunneling rates by seeding new kinds of bubbles during a first

  17. Second-order Boltzmann equation: gauge dependence and gauge invariance

    NASA Astrophysics Data System (ADS)

    Naruko, Atsushi; Pitrou, Cyril; Koyama, Kazuya; Sasaki, Misao

    2013-08-01

    In the context of cosmological perturbation theory, we derive the second-order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equation are revisited and extended given this more general framework: (i) the polarization of light is incorporated in this formalism by using a tensor-valued distribution function; (ii) the importance of a choice of the tetrad field to define the local inertial frame in the description of the distribution function is emphasized; (iii) we perform a separation between temperature and spectral distortion, both for the intensity and polarization for the first time; (iv) the gauge dependence of all perturbed quantities that enter the Boltzmann equation is derived, and this enables us to check the correctness of the perturbed Boltzmann equation by explicitly showing its gauge-invariance for both intensity and polarization. We finally discuss several implications of the gauge dependence for the observed temperature.

  18. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  19. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling

    NASA Astrophysics Data System (ADS)

    Beck, Hylke E.; Vergopolan, Noemi; Pan, Ming; Levizzani, Vincenzo; van Dijk, Albert I. J. M.; Weedon, Graham P.; Brocca, Luca; Pappenberger, Florian; Huffman, George J.; Wood, Eric F.

    2017-12-01

    We undertook a comprehensive evaluation of 22 gridded (quasi-)global (sub-)daily precipitation (P) datasets for the period 2000-2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086 gauges worldwide. Another nine gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the HBV conceptual model against streamflow records for each of 9053 small to medium-sized ( < 50 000 km2) catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR) and the satellite- and reanalysis-based CHIRP V2.0 dataset, the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7) or near-surface soil moisture (SM2RAIN-ASCAT), and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS). Two of the three reanalyses (ERA-Interim and JRA-55) unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified, and MSWEP V1.2 and V2.0) generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU), which in turn outperformed the one indirectly incorporating gauge data through another multi-source dataset (PERSIANN-CDR V1R1). Our results highlight large differences in estimation accuracy, and hence the importance of P

  20. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling

    NASA Astrophysics Data System (ADS)

    Beck, H.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.; Weedon, G. P.; Brocca, L.; Huffman, G. J.; Wood, E. F.; William, L.

    2017-12-01

    We undertook a comprehensive evaluation of 22 gridded (quasi-)global (sub-)daily precipitation (P) datasets for the period 2000-2016. Twelve non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76,086 gauges worldwide. Another ten gauge-corrected ones were evaluated using hydrological modeling, by calibrating the conceptual model HBV against streamflow records for each of 9053 small to medium-sized (<50,000 km2) catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR), the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7) or near-surface soil moisture (SM2RAIN-ASCAT), and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS). Two of the three reanalyses (ERA-Interim and JRA-55) unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified and MSWEP V1.2 and V2.0) generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU), which in turn outperformed those indirectly incorporating gauge data through other multi-source datasets (PERSIANN-CDR V1R1 and PGF). Our results highlight large differences in estimation accuracy, and hence, the importance of P dataset selection in both research and operational applications

  1. The cosmological Higgstory of the vacuum instability

    DOE PAGES

    Espinosa, José R.; Giudice, Gian F.; Morgante, Enrico; ...

    2015-09-24

    We report that the Standard Model Higgs potential becomes unstable at large field values. After clarifying the issue of gauge dependence of the effective potential, we study the cosmological evolution of the Higgs field in presence of this instability throughout inflation, reheating and the present epoch. We conclude that anti-de Sitter patches in which the Higgs field lies at its true vacuum are lethal for our universe. From this result, we derive upper bounds on the Hubble constant during inflation, which depend on the reheating temperature and on the Higgs coupling to the scalar curvature or to the inflaton. Finallymore » we study how a speculative link between Higgs meta-stability and consistence of quantum gravity leads to a sharp prediction for the Higgs and top masses, which is consistent with measured values.« less

  2. 27 CFR 19.709 - Gauging.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Gauging. (a) Gauging equipment and methods. A proprietor of an alcohol fuel plant must perform periodic gauges of the distilled spirits and fuel alcohol at the alcohol fuel plant. The procedures for the... following rules for the gauging of distilled spirits and fuel alcohol under this subpart also apply: (1) The...

  3. Vacuum cleaner emissions as a source of indoor exposure to airborne particles and bacteria.

    PubMed

    Knibbs, Luke D; He, Congrong; Duchaine, Caroline; Morawska, Lidia

    2012-01-03

    Vacuuming can be a source of indoor exposure to biological and nonbiological aerosols, although there are few data that describe the magnitude of emissions from the vacuum cleaner itself. We therefore sought to quantify emission rates of particles and bacteria from a large group of vacuum cleaners and investigate their potential determinants, including temperature, dust bags, exhaust filters, price, and age. Emissions of particles between 0.009 and 20 μm and bacteria were measured from 21 vacuums. Ultrafine (<100 nm) particle emission rates ranged from 4.0 × 10(6) to 1.1 × 10(11) particles min(-1). Emission of 0.54-20 μm particles ranged from 4.0 × 10(4) to 1.2 × 10(9) particles min(-1). PM(2.5) emissions were between 2.4 × 10(-1) and 5.4 × 10(3) μg min(-1). Bacteria emissions ranged from 0 to 7.4 × 10(5) bacteria min(-1) and were poorly correlated with dust bag bacteria content and particle emissions. Large variability in emission of all parameters was observed across the 21 vacuums, which was largely not attributable to the range of determinant factors we assessed. Vacuum cleaner emissions contribute to indoor exposure to nonbiological and biological aerosols when vacuuming, and this may vary markedly depending on the vacuum used.

  4. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2015-06-01

    Evaporation from a precipitation gauge can cause errors in the amount of measured precipitation. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants and frequent observations to limit these biases. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at U.S. Climate Reference Network (USCRN) stations. Two Geonor gauges were collocated, with one gauge using an evaporative suppressant (referred to as Geonor-NonEvap) and the other with no suppressant (referred to as Geonor-Evap) to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the Geonor-Evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. The impact of evaporation on precipitation measurements was sensitive to the choice of calculation method. In general, the pairwise method that utilized a longer time series to smooth out sensor noise was more sensitive to gauge evaporation (-4.6% bias with respect to control) than the weighted-average method that calculated depth change over a smaller window (<+1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates, computational methods also influence the magnitude of evaporation biases on precipitation measurements. This study can be used to advance quality insurance (QA) techniques used in other automated networks to mitigate the impact of evaporation biases on precipitation measurements.

  5. String solutions in spherically-symmetric f(R) gravity vacuum

    NASA Astrophysics Data System (ADS)

    Dil, Emre

    Dynamical evolution of the cosmic string in a spherically symmetric f(R) gravity vacuum is studied for a closed and straight string. We first set the background spacetime metric for a constant curvature scalar R = R0, and obtain the Killing fields for it. Using the standard gauge coordinates and constraints for both closed and straight strings, we present the equation of motions and find the solutions of them. We then analyze the dynamics of the string by studying the behavior of the string radius and periastron radius, with respect to both proper time and azimuthal angle, for various values of f(R) functions. Consequently, we conclude that the value of f(R) dramatically affects the closed string collapse time and the straight string angular deviation.

  6. A review of the use of Al-alloy vacuum components for operation at 10-13 Torr

    NASA Astrophysics Data System (ADS)

    Ishimaru, Hajime

    1990-02-01

    An extremely high vacuum (XHV) chamber was fabricated and tested. The vacuum chamber was made of special surface finished (EX-process) aluminum alloy in oxygen and argon atmosphere. The chamber was assembled using TIG welding in an argon atmosphere and by electron beam welding. The system was evacuated with a turbo-backed 300 l/s turbomolecular pump separated from the main chamber using a right angle valve. The liquid nitrogen shroud is installed inside the main vacuum chamber. The XHV is maintained by two 300 l/s sputter ion pumps and a titanium sublimation pump with a liquid nitrogen shroud. These pumps are also made of aluminum alloys. An ultimate pressure of 3×10-13 Torr was measured with a point collector gauge with a spherical anode mounted on an Al-flange. Residual gas analysis in the order 10-13 Torr was performed by a newly developed Q-mass filter. To suppress outgassing from the quadrupole electrode, the ion source is mounted on an Al-flange separated from the quadrupole electrode.

  7. Gravitational wave-Gauge field oscillations

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Devulder, C.; Maksimova, N. A.

    2016-09-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multidimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  8. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  9. Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential: Gauge Invariance and Experimental Detections

    PubMed Central

    Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming

    2013-01-01

    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153

  10. An almost trivial gauge theory in the limit of infinite gauge coupling constant.

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, S.

    A local SU(2) gauge theory with one multiplet of scalars in the adjoint representation is considered. In the limit of infinite gauge coupling constant Yang-Mills fields become auxiliary and the action possesses a larger invariance than the usual gauge invariance; hence, the system develops a richer structure of constraints. The constraint analysis is carried out.

  11. Gauge and Non-Gauge Tensor Multiplets in 5D Conformal Supergravity

    NASA Astrophysics Data System (ADS)

    Kugo, T.; Ohashi, K.

    2002-12-01

    An off-shell formulation of two distinct tensor multiplets, a massive tensor multiplet and a tensor gauge multiplet, is presented in superconformal tensor calculus in five-dimensional space-time. Both contain a rank 2 antisymmetric tensor field, but there is no gauge symmetry in the former, while it is a gauge field in the latter. Both multiplets have 4 bosonic and 4 fermionic on-shell modes, but the former consists of 16 (boson)+16 (fermion) component fields, while the latter consists of 8 (boson)+8 (fermion) component fields.

  12. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2014-12-01

    The effects of evaporation on precipitation measurements have been understood to bias total precipitation lower. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants with frequent observations. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at US Climate Reference Network (USCRN) stations. Collocated Geonor gauges with (nonEvap) and without (evap) an evaporative suppressant were compared to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. However, the impact of evaporation on precipitation measurements was sensitive to calculation methods. In general, methods that utilized a longer time series to smooth out sensor noise were more sensitive to gauge (-4.6% bias with respect to control) evaporation than methods computing depth change without smoothing (< +1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates computational methods can influence the magnitude of evaporation bias on precipitation measurements. It is hoped this study will advance QA techniques that mitigate the impact of evaporation biases on precipitation measurements from other automated networks.

  13. Vacuum ellipsometry as a method for probing glass transition in thin polymer films.

    PubMed

    Efremov, Mikhail Yu; Soofi, Shauheen S; Kiyanova, Anna V; Munoz, Claudio J; Burgardt, Peter; Cerrina, Franco; Nealey, Paul F

    2008-04-01

    A vacuum ellipsometer has been designed for probing the glass transition in thin supported polymer films. The device is based on the optics of a commercial spectroscopic phase-modulated ellipsometer. A custom-made vacuum chamber evacuated by oil-free pumps, variable temperature optical table, and computer-based data acquisition system was described. The performance of the tool has been demonstrated using 20-200 nm thick poly(methyl methacrylate) and polystyrene films coated on silicon substrates at 10(-6)-10(-8) torr residual gas pressure. Both polymers show pronounced glass transitions. The difficulties in assigning in the glass transition temperature are discussed with respect to the experimental challenges of the measurements in thin polymer films. It is found that the experimental curves can be significantly affected by a residual gas. This effect manifests itself at lower temperatures as a decreased or even negative apparent thermal coefficient of expansion, and is related to the uptake and desorption of water by the samples during temperature scans. It is also found that an ionization gauge--the standard accessory of any high vacuum system--can cause a number of spurious phenomena including drift in the experimental data, roughening of the polymer surface, and film dewetting.

  14. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  15. Torsion in gauge theory

    NASA Astrophysics Data System (ADS)

    Nieh, H. T.

    2018-02-01

    The potential conflict between torsion and gauge symmetry in the Riemann-Cartan curved spacetime was noted by Kibble in his 1961 pioneering paper and has since been discussed by many authors. Kibble suggested that, to preserve gauge symmetry, one should forgo the covariant derivative in favor of the ordinary derivative in the definition of the field strength Fμ ν for massless gauge theories, while for massive vector fields, covariant derivatives should be adopted. This view was further emphasized by Hehl et al. in their influential 1976 review paper. We address the question of whether this deviation from normal procedure by forgoing covariant derivatives in curved spacetime with torsion could give rise to inconsistencies in the theory, such as the quantum renormalizability of a realistic interacting theory. We demonstrate in this paper the one-loop renormalizability of a realistic gauge theory of gauge bosons interacting with Dirac spinors, such as the SU(3) chromodynamics, for the case of a curved Riemann-Cartan spacetime with totally antisymmetric torsion. This affirmative confirmation is one step toward providing justification for the assertion that the flat-space definition of the gauge-field strength should be adopted as the proper definition.

  16. Multi-step contrast sensitivity gauge

    DOEpatents

    Quintana, Enrico C; Thompson, Kyle R; Moore, David G; Heister, Jack D; Poland, Richard W; Ellegood, John P; Hodges, George K; Prindville, James E

    2014-10-14

    An X-ray contrast sensitivity gauge is described herein. The contrast sensitivity gauge comprises a plurality of steps of varying thicknesses. Each step in the gauge includes a plurality of recesses of differing depths, wherein the depths are a function of the thickness of their respective step. An X-ray image of the gauge is analyzed to determine a contrast-to-noise ratio of a detector employed to generate the image.

  17. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    NASA Astrophysics Data System (ADS)

    Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.

    2000-11-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.

  18. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  19. 25-Gauge active aspiration silicon tip-assisted removal of glass and other intraocular foreign bodies.

    PubMed

    Singh, Ramandeep; Kumar, Abiraj; Gupta, Vishali; Dogra, Mangat R

    2016-04-01

    To describe the use of 25-gauge active aspiration silicon tip in removal of intraocular foreign bodies, including glass. Retrospective, noncomparative, interventional study. Eleven eyes of 11 patients who underwent the procedure between January 2013 and April 2015. The study included 10 males and 1 female with a mean age of 31.27 ± 9.64 years (range 12-45 years). All eyes in which 25-gauge active aspiration silicon tip-assisted removal of intraocular foreign body (IOFB) was done in a sutureless vitrectomy setup, irrespective of the nature of IOFB, were included. We excluded the participants with less than 6 months of postoperative follow-up. The primary outcome of the study was to assess the feasibility and reproducibility of 25-gauge active aspiration silicon tip-assisted removal of IOFB. The secondary outcome measures included change in best-corrected visual acuity (BCVA), and intraoperative and postoperative complications. There were iron (6), glass (2), wooden (1), pellet (1), and stone (1) IOFBs, for which 25-gauge active aspiration silicon tip-assisted removal was done successfully. The mean BCVA in Snellen's decimal equivalent improved significantly from 0.14 ± 0.16 to 0.34 ± 0.36 with a mean follow-up of 12 months (range 6-24 months). Intraoperatively, drop of IOFB because of loss of vacuum was observed in 2 eyes. Postoperatively, cystoid macular edema with epiretinal membrane was seen in 1 eye. There were no other intraoperative and postoperative complications. Use of 25-gauge active aspiration silicon tip to assist removal of magnetic and nonmagnetic IOFBs is a feasible and reproducible procedure, and required instrumentation is readily available in present-day vitrectomy era. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  20. A wafer-level vacuum package using glass-reflowed silicon through-wafer interconnection for nano/micro devices.

    PubMed

    Jin, Joo-Young; Yoo, Seung-Hyun; Yoo, Byung-Wook; Kim, Yong-Kweon

    2012-07-01

    We propose a vacuum wafer-level packaging (WLP) process using glass-reflowed silicon via for nano/micro devices (NMDs). A through-wafer interconnection (TWIn) substrate with silicon vias and reflowed glass is introduced to accomplish a vertical feed-through of device. NMDs are fabricated in the single crystal silicon (SCS) layer which is formed on the TWIn substrate by Au eutectic bonding including Cr adhesion layer. The WLPof the devices is achieved with the capping glass wafer anodically bonded to the SCS layer. In order to demonstrate the successful hermetic packaging, we fabricated the micro-Pirani gauge in the SCS layer, and packaged it in the wafer-level. The vacuum level inside the packaging was measured to be 3.1 Torr with +/- 0.12 Torr uncertainty, and the packaging leakage was not detected during 24 hour after the packaging.

  1. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  2. Black-holes-hedgehogs in the false vacuum and a new physics beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Laperashvili, L. V.; Sidharth, B. G.; Nielsen, H. B.

    2017-12-01

    In the present talk, we consider the existence of the two degenerate universal vacua: a) the first Electroweak vacuum at v = 246 GeV - “true vacuum”, and b) the second Planck scale “false vacuum” at v 2 ∼ 1018 GeV. In these vacua, we investigated the different topological defects. The main aim of this paper is an investigation of the hedgehog’s configurations as defects of the false vacuum. In the framework of the f(R) gravity, suggested by authors in their Gravi-Weak Unification model, we obtained a black hole solution, which corresponds to a “hedgehog” - global monopole, “swallowed” by a black-hole with mass ∼ 1019 GeV. These black-holes form a lattice-like structure of the vacuum at the Planck scale. Considering the results of the hedgehog lattice theory in the framework of the SU(2) Yang-Mills gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of temperature for the hedgehog’s confinement phase. This result gave us the possibility to conclude that there exist triplet Higgs fields which can contribute to the SM at the energy scale ≃ 104 ∼ 105 GeV. Showing a new physics at the scale 10÷100 TeV, these triplet Higgs particles can provide the stability of the EW-vacuum of the SM.

  3. Realization of the medium and high vacuum primary standard in CENAM, Mexico

    NASA Astrophysics Data System (ADS)

    Torres-Guzman, J. C.; Santander, L. A.; Jousten, K.

    2005-12-01

    A medium and high vacuum primary standard, based on the static expansion method, has been set up at Centro Nacional de Metrología (CENAM), Mexico. This system has four volumes and covers a measuring range of 1 × 10-5 Pa to 1 × 103 Pa of absolute pressure. As part of its realization, a characterization was performed, which included volume calibrations, several tests and a bilateral key comparison. To determine the expansion ratios, two methods were applied: the gravimetric method and the method with a linearized spinning rotor gauge. The outgassing ratios for the whole system were also determined. A comparison was performed with Physikalisch-Technische Bundesanstalt (comparison SIM-Euromet.M.P-BK3). By means of this comparison, a link has been achieved with the Euromet comparison (Euromet.M.P-K1.b). As a result, it is concluded that the value obtained at CENAM is equivalent to the Euromet reference value, and therefore the design, construction and operation of CENAM's SEE-1 vacuum primary standard were successful.

  4. Inter-comparison of automatic rain gauges

    NASA Technical Reports Server (NTRS)

    Nystuen, Jeffrey A.

    1994-01-01

    The Ocean Acoustics Division (OAD) of the Atlantic Oceanographic and Meteorological Laboratory (AOML), in cooperation with NOAA/NESDIS and NASA, has deployed six rain gauges for calibration and intercomparison purposes. These instruments include: (1) a weighing rain gauge, (2) a RM Young Model 50202 capacitance rain gauge, (3) a ScTI ORG-705 (long path) optical rain gauge, (4) a ScTI ORG-105 (mini-ORG) optical rain gauge, (5) a Belfort Model 382 tipping bucket rain gauge, and (6) a Distromet RD-69 disdrometer. The system has been running continuously since July 1993. During this time period, roughly 150 events with maximum rainfall rate over 10 mm/hr and 25 events with maximum rainfall rates over 100 mm/hr have been recorded. All rain gauge types have performed well, with intercorrelations 0.9 or higher. However, limitations for each type of rain gauge have been observed.

  5. Interferometric step gauge for CMM verification

    NASA Astrophysics Data System (ADS)

    Hemming, B.; Esala, V.-P.; Laukkanen, P.; Rantanen, A.; Viitala, R.; Widmaier, T.; Kuosmanen, P.; Lassila, A.

    2018-07-01

    The verification of the measurement capability of coordinate measuring machines (CMM) is usually performed using gauge blocks or step gauges as reference standards. Gauge blocks and step gauges are robust and easy to use, but have some limitations such as finite lengths and uncertainty of thermal expansion. This paper describes the development, testing and uncertainty evaluation of an interferometric step gauge (ISG) for CMM verification. The idea of the ISG is to move a carriage bearing a gauge block along a rail and to measure the position with an interferometer. For a displacement of 1 m the standard uncertainty of the position of the gauge block is 0.2 µm. A short range periodic error of CMM can also be detected.

  6. Gauge-invariant flow equation

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.

  7. Gauged twistor spinors and symmetry operators

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2017-03-01

    We consider gauged twistor spinors which are supersymmetry generators of supersymmetric and superconformal field theories in curved backgrounds. We show that the spinor bilinears of gauged twistor spinors satisfy the gauged conformal Killing-Yano equation. We prove that the symmetry operators of the gauged twistor spinor equation can be constructed from ordinary conformal Killing-Yano forms in constant curvature backgrounds. This provides a way to obtain gauged twistor spinors from ordinary twistor spinors.

  8. A Robust, Microwave Rain Gauge

    NASA Astrophysics Data System (ADS)

    Mansheim, T. J.; Niemeier, J. J.; Kruger, A.

    2008-12-01

    Researchers at The University of Iowa have developed an all-electronic rain gauge that uses microwave sensors operating at either 10 GHz or 23 GHz, and measures the Doppler shift caused by falling raindrops. It is straightforward to interface these sensors with conventional data loggers, or integrate them into a wireless sensor network. A disadvantage of these microwave rain gauges is that they consume significant power when they are operating. However, this may be partially negated by using data loggers' or sensors networks' sleep-wake-sleep mechanism. Advantages of the microwave rain gauges are that one can make them very robust, they cannot clog, they don't have mechanical parts that wear out, and they don't have to be perfectly level. Prototype microwave rain gauges were collocated with tipping-bucket rain gauges, and data were collected for two seasons. At higher rain rates, microwave rain gauge measurements compare well with tipping-bucket measurements. At lower rain rates, the microwave rain gauges provide more detailed information than tipping buckets, which quantize measurement typically in 1 tip per 0.01 inch, or 1 tip per mm of rainfall.

  9. Loop induced type-II seesaw model and GeV dark matter with U(1)B - L gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2017-11-01

    We propose a model with U(1) B - L gauge symmetry and several new fermions in no conflict with anomaly cancellation where the neutrino masses are given by the vacuum expectation value of Higgs triplet induced at the one-loop level. The new fermions are odd under discrete Z2 symmetry and the lightest one becomes dark matter candidate. We find that the mass of dark matter is typically O (1)- O (10) GeV. Then relic density of the dark matter is discussed.

  10. Adding gauge fields to Kaplan's fermions

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kärkkäinen, Leo

    1994-04-01

    We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U (1) gauge theory we use an inhomogenous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field.

  11. 49 CFR 230.43 - Gauge siphon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained steam...

  12. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2002-08-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  13. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2005-11-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  14. Comparison of vacuum and non-vacuum urine tubes for urinary sediment analysis.

    PubMed

    Topcuoglu, Canan; Sezer, Sevilay; Kosem, Arzu; Ercan, Mujgan; Turhan, Turan

    2017-12-01

    Urine collection systems with aspiration system for vacuum tubes are becoming increasingly common for urinalysis, especially for microscopic examination of the urine. In this study, we aimed to examine whether vacuum aspiration of the urine sample has any adverse effect on sediment analysis by comparing results from vacuum and non-vacuum urine tubes. The study included totally 213 urine samples obtained from inpatients and outpatients in our hospital. Urine samples were collected to containers with aspiration system for vacuum tubes. Each sample was aliquoted to both vacuum and non-vacuum urine tubes. Urinary sediment analysis was performed using manual microscope. Results were evaluated using chi-square test. Comparison of the sediment analysis results from vacuum and non-vacuum urine tubes showed that results were highly concordant for erythrocyte, leukocyte and epithelial cells (gamma values 1, 0.997, and 0.994, respectively; p < .001). Results were also concordant for urinary casts, crystals and yeast (kappa values 0.815, 0.945 and 1, respectively; p < .001). The results show that in urinary sediment analysis, vacuum aspiration has no adverse effect on the cellular components except on casts.

  15. Gauged Q-balls

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.

    1988-01-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  16. Aspiration of breast abscess through wide bore 14-gauge intravenous cannula.

    PubMed

    Afridi, Shahida Parveen; Alam, Shams Nadeem; Ainuddin, Saman

    2014-10-01

    To aspirate breast abscess through a wide bore (14-gauge) intravenous (I/V) cannula and determine its efficacy in terms of the number of recurrences and number of aspirations. Case series. Dow University of Health Sciences and Civil Hospital and Bantva Hospital, Karachi, Pakistan, from January 2009 to December 2011. Patients with breast abscesses confirmed on ultrasound without skin ulceration were selected. The soft area of breast abscess with positive fluctuation was marked and fixed with index finger and thumb. A 14-gauge cannula was inserted. Pus was aspirated through a 50 cc syringe, repeated till no aspirate could be obtained. All patients were followed weekly for 4 weeks, clinically for size of lump, local tenderness and temperature, while complete resolution was confirmed on ultrasound, as resolution of the lesion. A total of 55 patients were included in this study. Mean age was 29 ± 5.58 years while ranging from 20 - 40 years. Complete resolution of abscess was seen in 31 (56.4%) cases by single aspiration. Second aspiration was required in 24 (43.6%) patients and third aspiration in single setting was required in one case only. Recurrence after the second aspiration occurred in 08 (14.5%). Incision drainage was required in 7 (12.7%) patients. Percutaneous aspiration of breast abscess through a wide bore (14-gauge) I/V cannula is a simple alternative to incision and drainage.

  17. Electromagnetic gauge as an integration condition: De Broglie's argument revisited and expanded

    NASA Astrophysics Data System (ADS)

    Costa de Beauregard, O.

    1992-12-01

    Einstein's mass-energy equivalence law, argues de Broglie, by fixing the zero of the potential energy of a system, ipso facto selects a gauge in electromagnetism. We examine how this works in electrostatics and in magnetostatics and bring in, as a “trump card,” the familiar, but highly peculiar, system consisting of a toroidal magnet m and a current coil c, where none of the mutual energy W resides in the vacuum. We propose the principle of a crucial test for measuring the fractions of W residing in m and in c; if the latter is nonzero, the (fieldless) vector potential has physicality. Also, using induction for transferring energy from the magnet to a superconducting current, we prove that W is equipartitioned between m and c.

  18. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than 3...

  19. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than 3...

  20. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than 3...

  1. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than 3...

  2. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than 3...

  3. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means...

  4. 46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... glasses, and flat plate type gauge glasses. (a) Cargo tanks may have sighting ports as a secondary means...

  5. Tensor gauge condition and tensor field decomposition

    NASA Astrophysics Data System (ADS)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  6. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... The following requirements apply to vehicles with vacuum brake assist units and vacuum brake systems. (a) Vacuum brake assist unit integrity. The vacuum brake assist unit shall demonstrate integrity as... maintained on the pedal. (1) Inspection procedure. Stop the engine and apply service brake several times to...

  7. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…

  8. Gauged U(1) clockwork theory

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Min

    2018-03-01

    We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.

  9. Noncommutative gauge theory for Poisson manifolds

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2000-09-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  10. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  11. Lopsided gauge mediation

    NASA Astrophysics Data System (ADS)

    de Simone, Andrea; Franceschini, Roberto; Giudice, Gian Francesco; Pappadopulo, Duccio; Rattazzi, Riccardo

    2011-05-01

    It has been recently pointed out that the unavoidable tuning among supersymmetric parameters required to raise the Higgs boson mass beyond its experimental limit opens up new avenues for dealing with the so called μ- B μ problem of gauge mediation. In fact, it allows for accommodating, with no further parameter tuning, large values of B μ and of the other Higgs-sector soft masses, as predicted in models where both μ and B μ are generated at one-loop order. This class of models, called Lopsided Gauge Mediation, offers an interesting alternative to conventional gauge mediation and is characterized by a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar mass, and moderately light sleptons. We discuss general parametric relations involving the fine-tuning of the model and various observables such as the chargino mass and the value of tan β. We build an explicit model and we study the constraints coming from LEP and Tevatron. We show that in spite of new interactions between the Higgs and the messenger superfields, the theory can remain perturbative up to very large scales, thus retaining gauge coupling unification.

  12. Improved Vacuum Bazooka

    NASA Astrophysics Data System (ADS)

    Cockman, John

    2003-04-01

    This apparatus is a modification to the well-known "vacuum bazooka" (PIRA 2B30.70). My vacuum bazooka is easy to construct and demonstrate, requires no precise fittings, foil, or vacuum grease, and propels ping-pong balls at a tremendous velocity!

  13. Comparison of Efficacy and Safety between Transconjunctival 23-Gauge and Conventional 20-Gauge Vitrectomy Systems in Macular Surgery

    PubMed Central

    Gurelik, Gokhan; Hasanreisoglu, Berati

    2012-01-01

    Purpose To compare the efficacy and safety of 23-gauge transconjunctival vitrectomy with the conventional 20-gauge method in idiopathic epiretinal membrane and macular hole surgery. Methods Sixty-one consecutive patients undergoing vitrectomy for idiopathic epiretinal membrane and macular hole were recruited to either 20- or 23-gauge vitrectomy groups and prospectively evaluated. Surgical success rates, operating time, surgery-related complications, long-term visual outcomes, and postoperative ocular surface problems are compared in the two groups. Results There were 31 eyes in the 20-gauge group and 33 eyes in the 23-gauge group. The macular hole closure rate after the first surgery was 83% and 90.9% in the 20-gauge and 23-gauge groups, respectively, with no significant difference between groups (p = 0.59). The success rate for idiopathic epiretinal membranes cases was 100% in both groups. There was no statistically significant difference between overall surgical times (p = 0.90). None of the patients in either group experienced postoperative complications of severe postoperative hypotony, vitreous hemorrhage or endophthalmitis, except one eye in the 20-gauge group, which was found to have retinal detachment. In both groups, statistically significant improvement in visual acuity was achieved 1-month postoperatively (p = 0.002) and thereafter at all postoperative visits (p < 0.05). The mean ocular surface scores were significantly lower in the 23-gauge group at all postoperative visits compared with the 20-gauge group scores (p = 0.001). Conclusions Transconjunctival 23-gauge vitrectomy appears to be as effective and safe as conventional 20-gauge vitrectomy in idiopathic epiretinal membrane and macular hole surgeries. PMID:23060720

  14. Generation of a medium vacuum pressure by using two different pumping methods in the KRISS dynamic flow-control system

    NASA Astrophysics Data System (ADS)

    Hong, S. S.; Lim, J. Y.; Khan, W.

    2014-02-01

    Pumping systems with large vacuum chambers have numerous applications in the process industry: for example, mixing of various types of gases as in the semiconductor industry, the calibration of vacuum gauges, the measurement of outgassing rates of various materials in the field of space technology, etc. Most often, these systems are used in the medium vacuum range (10-1 Pa-102 Pa) and in the dynamically-generated pressure mode. We have designed and developed a new dynamic flow system at the KRISS (Korea Research Institute of Standards and Science) that can be used for such applications with reliability in the range from 0.1 Pa - 133 Pa. In this report, the design philosophy, operational procedure and experimental data for the generated stable pressure points in the chamber of the system are discussed. The data consist the pressure points generated in the medium vacuum range while pumping the chamber of the system by using two different methods: first by using a dry scroll pump and then by using a combination of a turbomolecular pump backed by the same scroll pump. The relative standard deviations in the pressure points were calculated and were found to be greater than 1.5% for the scroll pump and less than 0.5% for the turbomolecular pump.

  15. Gauge Blocks – A Zombie Technology

    PubMed Central

    Doiron, Ted

    2008-01-01

    Gauge blocks have been the primary method for disseminating length traceability for over 100 years. Their longevity was based on two things: the relatively low cost of delivering very high accuracy to users, and the technical limitation that the range of high precision gauging systems was very small. While the first reason is still true, the second factor is being displaced by changes in measurement technology since the 1980s. New long range sensors do not require master gauges that are nearly the same length as the part being inspected, and thus one of the primary attributes of gauge blocks, wringing stacks to match the part, is no longer needed. Relaxing the requirement that gauges wring presents an opportunity to develop new types of end standards that would increase the accuracy and usefulness of gauging systems. PMID:27096119

  16. Chiral and deconfinement phase transition in the Hamiltonian approach to QCD in Coulomb gauge

    NASA Astrophysics Data System (ADS)

    Reinhardt, H.; Vastag, P.

    2016-11-01

    The chiral and deconfinement phase transitions are investigated within the variational Hamiltonian approach to QCD in Coulomb gauge. The temperature β-1 is introduced by compactifying a spatial dimension. Thereby the whole temperature dependence is encoded in the vacuum state on the spatial manifold R2×S1(β ) . The chiral quark condensate and the dual quark condensate (dressed Polyakov loop) are calculated as a function of the temperature. From their inflection points the pseudocritical temperatures for the chiral and deconfinement crossover transitions are determined. Using the zero-temperature quark and gluon propagators obtained within the variational approach as input, we find 170 and 198 MeV, respectively, for the chiral and deconfinement transition.

  17. The NASA Lewis Strain Gauge Laboratory: An update

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1986-01-01

    Efforts continue in the development and evaluation of electrical resistance strain gauges of the thin film and small diameter wire type. Results obtained early in 1986 on some Chinese gauges and Kanthal A-1 gauges mounted on a Hastelloy-X substrate are presented. More recent efforts include: (1) the determination of the uncertainty in the ability to establish gauge factor, (2) the evaluation of sputtered gauges that were fabricated at Lewis, (3) an investigation of the efficacy of dual element temperature compensated gauges when using strain gauge alloys having large thermal coefficients of resistance, and (4) an evaluation of the practical methods of stabilizing gauges whose apparent strain is dependent on cooling rate (e.g., FeCrAl gauges).

  18. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  19. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Matsui, Hiroki

    2017-08-01

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ phi 2 > enlarge in proportion to the Hubble scale H2. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ phi 2 > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ phi 2 >, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field phi determined by the effective potential V eff( phi ) in curved space-time and the renormalized vacuum fluctuations < δ phi 2 >ren via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field phi, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H< ΛI .

  20. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  1. Gauge interaction as periodicity modulation

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-06-01

    The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space-time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space-time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space-time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell's kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.

  2. Cupping - is it reproducible? Experiments about factors determining the vacuum.

    PubMed

    Huber, R; Emerich, M; Braeunig, M

    2011-04-01

    Cupping is a traditional method for treating pain which is investigated nowadays in clinical studies. Because the methods for producing the vacuum vary considerably we tested their reproducibility. In a first set of experiments (study 1) four methods for producing the vacuum (lighter flame 2 cm (LF1), lighter flame 4 cm (LF2), alcohol flame (AF) and mechanical suction with a balloon (BA)) have been compared in 50 trials each. The cupping glass was prepared with an outlet and stop-cock, the vacuum was measured with a pressure-gauge after the cup was set to a soft rubber pad. In a second series of experiments (study 2) we investigated the stability of pressures in 20 consecutive trials in two experienced cupping practitioners and ten beginners using method AF. In study 1 all four methods yielded consistent pressures. Large differences in magnitude were, however, observed between methods (mean pressures -200±30 hPa with LF1, -310±30 hPa with LF2, -560±30 hPa with AF, and -270±16 hPa with BA). With method BA the standard deviation was reduced by a factor 2 compared to the flame methods. In study 2 beginners had considerably more difficulty obtaining a stable pressure yield than advanced cupping practitioners, showing a distinct learning curve before reaching expertise levels after about 10-20 trials. Cupping is reproducible if the exact method is described in detail. Mechanical suction with a balloon has the best reproducibility. Beginners need at least 10-20 trials to produce stable pressures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. 49 CFR 230.42 - Location of gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Location of gauges. 230.42 Section 230.42 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Steam Gauges § 230.42 Location of gauges. Every boiler shall have at least one steam gauge which will...

  4. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  5. Gauge-free gyrokinetic theory

    NASA Astrophysics Data System (ADS)

    Burby, Joshua; Brizard, Alain

    2017-10-01

    Test-particle gyrocenter equations of motion play an essential role in the diagnosis of turbulent strongly-magnetized plasmas, and are playing an increasingly-important role in the formulation of kinetic-gyrokinetic hybrid models. Previous gyrocenter models required the knowledge of the perturbed electromagnetic potentials, which are not directly observable quantities (since they are gauge-dependent). A new gauge-free formulation of gyrocenter motion is presented, which enables gyrocenter trajectories to be determined using only measured values of the directly-observable electromagnetic field. Our gauge-free gyrokinetic theory is general enough to allow for gyroradius-scale fluctuations in both the electric and magnetic field. In addition, we provide gauge-free expressions for the charge and current densities produced by a distribution of gyrocenters, which explicitly include guiding-center and gyrocenter polarization and magnetization effects. This research was supported by the U.S. DOE Contract Nos. DE-SC0014032 (AB) and DE-AC05-06OR23100 (JB).

  6. Development of High Interruption Capability Vacuum Circuit Breaker -Technology of Vacuum Arc Control-

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshimitsu; Kaneko, Eiji

    Vacuum circuit breakers (VCB) have been widely used for power distribution systems. Vacuum Interrupters, which are the current interruption unit, have been increased its interruption capability with the development of vacuum arc control technology by magnetic field. There are three major type electrodes: disk shaped electrodes, radial magnetic field electrodes, axial magnetic field (AMF) electrodes. In the disk shaped electrode, the vacuum arc between the electrodes is not controlled. In the AMF electrode, the vacuum arc is diffused and stabilized by an axial magnetic field, which is parallel to the arc current. In the last type of electrodes, the vacuum arc column is rotated by magnetic force generated by the current flowing in the electrodes. The interruption current and the voltage of one break VCB is increased to 100 kA, 144 kV respectively. This paper describes basic configurations and functions of VCB, vacuum arc control technology in vacuum interrupters, recent researches and applications of VCB.

  7. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohri, Kazunori; Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ φ {sup 2} > enlarge in proportion to the Hubble scale H {sup 2}. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ φ {sup 2} > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ φ {sup 2} >, i.e., the vacuum expectation values have an ultraviolet divergence, andmore » therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field φ determined by the effective potential V {sub eff}( φ ) in curved space-time and the renormalized vacuum fluctuations < δ φ {sup 2} >{sub ren} via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field φ, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H < Λ {sub I} .« less

  8. HTL resummation in the light cone gauge

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Hou, De-fu

    2018-04-01

    The light cone gauge with light cone variables is often used in pQCD calculations in relativistic heavy-ion collision physics. The Hard Thermal Loops (HTL) resummation is an indispensable technique for hot QCD calculation. It was developed in covariant gauges with conventional Minkowski varaiables; we shall extend this method to the light cone gauge. In the real time formalism, using the Mandelstam-Leibbrant prescription of (n·K)‑1, we calculate the transverse and longitudinal components of the gluon HTL self energy, and prove that there are no infrared divergences. With this HTL self energy, we derive the HTL resummed gluon propagator in the light cone gauge. We also calculate the quark HTL self energy and the resummed quark propagator in the light cone gauge and find it is gauge independent. As application examples, we analytically calculate the damping rates of hard quarks and gluons with the HTL resummed gluon propagator in the light cone gauge and showed that they are gauge independent. The final physical results are identical to those computed in covariant gauge, as they should be. Supported by National Natural Science Foundation of China (11375070, 11735007, 11521064)

  9. Antisymplectic gauge theories

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    1998-02-01

    A general field-antifield BV formalism for antisymplectic first class constraints is proposed. It is as general as the corresponding symplectic BFV-BRST formulation and it is demonstrated to be consistent with a previously proposed formalism for antisymplectic second class constraints through a generalized conversion to corresponding first class constraints. Thereby the basic concept of gauge symmetry is extended to apply to quite a new class of gauge theories potentially possible to exist.

  10. The risk of capsular breakage from phacoemulsification needle contact with the lens capsule: a laboratory study.

    PubMed

    Meyer, Jay J; Kuo, Annie F; Olson, Randall J

    2010-06-01

    To determine capsular breakage risk from contact by phacoemulsification needles by machine and tip type. Experimental laboratory investigation. Infiniti (Alcon, Inc.) with Intrepid cartridges and Signature (Abbott Medical Optics, Inc.) phacoemulsification machines were tested using 19- and 20-gauge sharp and rounded tips. Actual and unoccluded flow vacuum were determined at 550 mm Hg, bottle height of 75 cm, and machine-indicated flow rate of 60 mL/minute. Breakage from brief tip contact with a capsular surrogate and human cadaveric lenses was calculated. Nineteen-gauge tips had more flow and less unoccluded flow vacuum than 20-gauge tips for both machines, with highest unoccluded flow vacuum in the Infiniti. The 19-gauge sharp tip was more likely than the 20-gauge sharp tip to cause surrogate breakage for Signature with micropulse and Ellips (Abbott Medical Optics, Inc.) ultrasound at 100% power. For Infiniti using OZil (Alcon, Inc.) ultrasound, 20-gauge sharp tips were more likely than 19-gauge sharp tips to break the membrane. For cadaveric lenses, using rounded 20-gauge tips at 100% power, breakage rates were micropulse (2.3%), Ellips (2.3%), OZil (5.3%). Breakage rates for sharp 20-gauge Ellips tips were higher than for rounded tips. Factors influencing capsular breakage may include active vacuum at the tip, flow rate, needle gauge, and sharpness. Nineteen-gauge sharp tips were more likely than 20-gauge tips to cause breakage in lower vacuum methods. For higher-vacuum methods, breakage is more likely with 20-gauge than with 19-gauge tips. Rounded-edge tips are less likely than sharp-edged tips to cause breakage. Copyright 2010 Elsevier Inc. All rights reserved.

  11. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., a fixed trycock line, or a differential pressure liquid level gauge must be used as the primary... control for filling. (2) The design pressure of each liquid level gauging device must be at least that of... openings for dip tube gauging devices and pressure gauges in flammable cryogenic liquid service must be...

  12. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  13. Novel principle of contactless gauge block calibration.

    PubMed

    Buchta, Zdeněk; Reřucha, Simon; Mikel, Břetislav; Cížek, Martin; Lazar, Josef; Cíp, Ondřej

    2012-01-01

    In this paper, a novel principle of contactless gauge block calibration is presented. The principle of contactless gauge block calibration combines low-coherence interferometry and laser interferometry. An experimental setup combines Dowell interferometer and Michelson interferometer to ensure a gauge block length determination with direct traceability to the primary length standard. By monitoring both gauge block sides with a digital camera gauge block 3D surface measurements are possible too. The principle presented is protected by the Czech national patent No. 302948.

  14. Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.

    DOT National Transportation Integrated Search

    2015-01-01

    This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...

  15. Novel Principle of Contactless Gauge Block Calibration

    PubMed Central

    Buchta, Zdeněk; Řeřucha, Šimon; Mikel, Břetislav; Čížek, Martin; Lazar, Josef; Číp, Ondřej

    2012-01-01

    In this paper, a novel principle of contactless gauge block calibration is presented. The principle of contactless gauge block calibration combines low-coherence interferometry and laser interferometry. An experimental setup combines Dowell interferometer and Michelson interferometer to ensure a gauge block length determination with direct traceability to the primary length standard. By monitoring both gauge block sides with a digital camera gauge block 3D surface measurements are possible too. The principle presented is protected by the Czech national patent No. 302948. PMID:22737012

  16. 27 CFR 19.319 - Production gauge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... package gauge record, if any, shall show: (1) The real name (or basic operating name as provided in § 19.... All spirits shall be gauged by determining quantity and proof within a reasonable time after... production gauge. If spirits are drawn from the production system into barrels, drums, or similar portable...

  17. Noncommutative gauge theories and Kontsevich's formality theorem

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schupp, P.; Wess, J.

    2001-09-01

    The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a "Mini Seiberg-Witten map" that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor.

  18. Digital lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  19. Optical heat flux gauge

    DOEpatents

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  20. Tracer gauge: An automated dye dilution gauging system for ice‐affected streams

    USGS Publications Warehouse

    Clow, David W.; Fleming, Andrea C.

    2008-01-01

    In‐stream flow protection programs require accurate, real‐time streamflow data to aid in the protection of aquatic ecosystems during winter base flow periods. In cold regions, however, winter streamflow often can only be estimated because in‐channel ice causes variable backwater conditions and alters the stage‐discharge relation. In this study, an automated dye dilution gauging system, a tracer gauge, was developed for measuring discharge in ice‐affected streams. Rhodamine WT is injected into the stream at a constant rate, and downstream concentrations are measured with a submersible fluorometer. Data loggers control system operations, monitor key variables, and perform discharge calculations. Comparison of discharge from the tracer gauge and from a Cipoletti weir during periods of extensive ice cover indicated that the root‐mean‐square error of the tracer gauge was 0.029 m3 s−1, or 6.3% of average discharge for the study period. The tracer gauge system can provide much more accurate data than is currently available for streams that are strongly ice affected and, thus, could substantially improve management of in‐stream flow protection programs during winter in cold regions. Care must be taken, however, to test for the validity of key assumptions, including complete mixing and conservative behavior of dye, no changes in storage, and no gains or losses of water to or from the stream along the study reach. These assumptions may be tested by measuring flow‐weighted dye concentrations across the stream, performing dye mass balance analyses, and evaluating breakthrough curve behavior.

  1. Cosmological density fluctuations produced by vacuum strings

    NASA Astrophysics Data System (ADS)

    Vilenkin, A.

    1981-04-01

    Consideration is given to the possible role of vacuum domain strings produced in the grand unification phase transition in the early universe in the generation of the density fluctuations giving rise to galaxies. The cosmological evolution of the strings formed in the grand unification phase transition is analyzed, with attention given to possible mechanisms for the damping out of oscillations produced by tension in convoluted strings and closed loops. The cosmological density fluctuations introduced by infinite strings and closed loops smaller than the horizon are then shown to be capable of giving rise to mass condensations on a scale of approximately 10 to the 9th solar masses at the time of the decoupling of radiation from matter, around which the galaxies condense. Differences between the present theory and that suggested by Zel'dovich (1980) are pointed out, and it is noted that string formation at the grand unification phase transition is possible only if the manifold of the degenerate vacua of the gauge theory is not simply connected.

  2. Gauge invariant spectral Cauchy characteristic extraction

    NASA Astrophysics Data System (ADS)

    Handmer, Casey J.; Szilágyi, Béla; Winicour, Jeffrey

    2015-12-01

    We present gauge invariant spectral Cauchy characteristic extraction. We compare gravitational waveforms extracted from a head-on black hole merger simulated in two different gauges by two different codes. We show rapid convergence, demonstrating both gauge invariance of the extraction algorithm and consistency between the legacy Pitt null code and the much faster spectral Einstein code (SpEC).

  3. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  4. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  5. Unification of gauge and Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Abdalgabar, Ammar; Khojali, Mohammed Omer; Cornell, Alan S.; Cacciapaglia, Giacomo; Deandrea, Aldo

    2018-01-01

    The unification of gauge and top Yukawa couplings is an attractive feature of gauge-Higgs unification models in extra-dimensions. This feature is usually considered difficult to obtain based on simple group theory analyses. We reconsider a minimal toy model including the renormalisation group running at one loop. Our results show that the gauge couplings unify asymptotically at high energies, and that this may result from the presence of an UV fixed point. The Yukawa coupling in our toy model is enhanced at low energies, showing that a genuine unification of gauge and Yukawa couplings may be achieved.

  6. Perturbative unitarity constraints on gauge portals

    NASA Astrophysics Data System (ADS)

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    2017-12-01

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs and dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. We briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.

  7. Perturbative unitarity constraints on gauge portals

    DOE PAGES

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    2017-10-03

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs andmore » dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. Here, we briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.« less

  8. Perturbative unitarity constraints on gauge portals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs andmore » dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. Here, we briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.« less

  9. 46 CFR 108.661 - Unit markings: Draft marks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Unit markings: Draft marks. 108.661 Section 108.661... AND EQUIPMENT Equipment Markings and Instructions § 108.661 Unit markings: Draft marks. (a) Each unit must have draft marks for each foot of immersion— (1) If the unit is a surface unit, on both the port...

  10. 46 CFR 108.661 - Unit markings: Draft marks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Unit markings: Draft marks. 108.661 Section 108.661... AND EQUIPMENT Equipment Markings and Instructions § 108.661 Unit markings: Draft marks. (a) Each unit must have draft marks for each foot of immersion— (1) If the unit is a surface unit, on both the port...

  11. 46 CFR 108.661 - Unit markings: Draft marks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Unit markings: Draft marks. 108.661 Section 108.661... AND EQUIPMENT Equipment Markings and Instructions § 108.661 Unit markings: Draft marks. (a) Each unit must have draft marks for each foot of immersion— (1) If the unit is a surface unit, on both the port...

  12. 46 CFR 108.661 - Unit markings: Draft marks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Unit markings: Draft marks. 108.661 Section 108.661... AND EQUIPMENT Equipment Markings and Instructions § 108.661 Unit markings: Draft marks. (a) Each unit must have draft marks for each foot of immersion— (1) If the unit is a surface unit, on both the port...

  13. 46 CFR 108.661 - Unit markings: Draft marks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Unit markings: Draft marks. 108.661 Section 108.661... AND EQUIPMENT Equipment Markings and Instructions § 108.661 Unit markings: Draft marks. (a) Each unit must have draft marks for each foot of immersion— (1) If the unit is a surface unit, on both the port...

  14. A Strain Gauge Manual.

    DTIC Science & Technology

    1984-04-01

    Applied Science Publications Ltd. (U.K.) "Strain Gauges, Kinds and Uses", H.K.P. Neubert . McMillan, London (U.K.) "A Strain Gauge Primer", Perry and...G.R. Paul (Materials) A.A. Baker (Materials) I.G. Powlesland G. Wright ." P. Ferrerotto J. Madej B. Ashcroft E.S. Moody M.T. Adams M. Cameron (GAF) (2

  15. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VAN BAAL,P.; ORLAND,P.; PISARSKI,R.

    2000-06-01

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribovmore » copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.« less

  16. Self-modulating pressure gauge

    DOEpatents

    Edwards, D. Jr.; Lanni, C.P.

    1979-08-07

    An ion gauge is disclosed having a reduced x-ray limit and means for measuring that limit. The gauge comprises an ion gauge of the Bayard-Alpert type having a short collector and having means for varying the grid-collector voltage. The x-ray limit (i.e. the collector current resulting from x-rays striking the collector) may then be determined by the formula: I/sub x/ = ..cap alpha..I/sub l/ - I/sub h//..cap alpha.. - l where: I/sub x/ = x-ray limit, I/sub l/ and I/sub h/ = the collector current at the lower and higher grid voltage respectively; and, ..cap alpha.. = the ratio of the collector current due to positive ions at the higher voltage to that at the lower voltage.

  17. Monitoring Sea Level by Tide Gauges and GPS at Barcelona and Estartit Harbours

    NASA Astrophysics Data System (ADS)

    Martinez Benjamin, J. J.; Gili, J.; Lopez, R.; Tapia, A.; Bosch, E.; Perez, B.; Pros, F.

    2012-04-01

    sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail.This sensor also measures agitation and sends wave parameters each 20 min. A provisional tide gauge bench mark has been defined while the levelling has being done. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna 1202. Bathymetric campaigns inside the harbour have been made. The presentation is directed to the description of the actual situation of the geodetic infrastructure of Barcelona and l'Estartit sites for sea level determination and contribution to regional sea level rise.

  18. Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate

    NASA Astrophysics Data System (ADS)

    Aoki, Hajime; Iso, Satoshi; Lee, Da-Shin; Sekino, Yasuhiro; Yeh, Chen-Pin

    2018-02-01

    We consider an open universe created by bubble nucleation, and study possible effects of our "ancestor vacuum," a de Sitter space in which bubble nucleation occurred, on the present universe. We compute vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly, and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy equation of state w (z ) as a function of the redshift.

  19. Gauge field entanglement in Kitaev's honeycomb model

    NASA Astrophysics Data System (ADS)

    Dóra, Balázs; Moessner, Roderich

    2018-01-01

    A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.

  20. Gauge supergravity in D = 2 + 2

    NASA Astrophysics Data System (ADS)

    Castellani, Leonardo

    2017-10-01

    We present an action for chiral N = (1 , 0) supergravity in 2 + 2 dimensions. The fields of the theory are organized into an OSp(1|4) connection supermatrix, and are given by the usual vierbein V a , spin connection ω ab , and Majorana gravitino ψ. In analogy with a construction used for D = 10 + 2 gauge supergravity, the action is given by ∫STr( R 2 Γ), where R is the OSp(1|4) curvature supermatrix two-form, and Γ a constant supermatrix containing γ 5. It is similar, but not identical to the MacDowell-Mansouri action for D = 2 + 2 supergravity. The constant supermatrix breaks OSp(1|4) gauge invariance to a subalgebra OSp(1|2) ⊕ Sp(2), including a Majorana-Weyl supercharge. Thus half of the OSp(1|4) gauge supersymmetry survives. The gauge fields are the selfdual part of ω ab and the Weyl projection of ψ for OSp(1|2), and the antiselfdual part of ω ab for Sp(2). Supersymmetry transformations, being part of a gauge superalgebra, close off-shell. The selfduality condition on the spin connection can be consistently imposed, and the resulting "projected" action is OSp(1|2) gauge invariant.

  1. Gauging hidden symmetries in two dimensions

    NASA Astrophysics Data System (ADS)

    Samtleben, Henning; Weidner, Martin

    2007-08-01

    We initiate the systematic construction of gauged matter-coupled supergravity theories in two dimensions. Subgroups of the affine global symmetry group of toroidally compactified supergravity can be gauged by coupling vector fields with minimal couplings and a particular topological term. The gauge groups typically include hidden symmetries that are not among the target-space isometries of the ungauged theory. The gaugings constructed in this paper are described group-theoretically in terms of a constant embedding tensor subject to a number of constraints which parametrizes the different theories and entirely encodes the gauged Lagrangian. The prime example is the bosonic sector of the maximally supersymmetric theory whose ungauged version admits an affine fraktur e9 global symmetry algebra. The various parameters (related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.) which characterize the possible gaugings, combine into an embedding tensor transforming in the basic representation of fraktur e9. This yields an infinite-dimensional class of maximally supersymmetric theories in two dimensions. We work out and discuss several examples of higher-dimensional origin which can be systematically analyzed using the different gradings of fraktur e9.

  2. Democratic superstring field theory: gauge fixing

    NASA Astrophysics Data System (ADS)

    Kroyter, Michael

    2011-03-01

    We show that a partial gauge fixing of the NS sector of the democratic-picture superstring field theory leads to the non-polynomial theory. Moreover, by partially gauge fixing the Ramond sector we obtain a non-polynomial fully RNS theory at pictures 0 and 1/2 . Within the democratic theory and in the partially gauge fixed theory the equations of motion of both sectors are derived from an action. We also discuss a representation of the non-polynomial theory analogous to a manifestly two-dimensional representation of WZW theory and the action of bosonic pure-gauge solutions. We further demonstrate that one can consistently gauge fix the NS sector of the democratic theory at picture number -1. The resulting theory is new. It is a {mathbb{Z}_2} dual of the modified cubic theory. We construct analytical solutions of this theory and show that they possess the desired properties.

  3. Extended Essay Marking on Screen: Is Examiner Marking Accuracy Influenced by Marking Mode?

    ERIC Educational Resources Information Center

    Johnson, Martin; Hopkin, Rebecca; Shiell, Hannah; Bell, John F.

    2012-01-01

    In the UK and elsewhere, large-scale educational assessment agencies are shifting the mode of school examination marking towards having examiners mark examination scripts on screen rather than on paper. This shift has prompted questions about whether the mode of marking might influence examiner marking accuracy, particularly in relation to…

  4. Velocity-induced heavy quarkonium dissociation using the gauge-gravity correspondence

    NASA Astrophysics Data System (ADS)

    Patra, Binoy Krishna; Khanchandani, Himanshu; Thakur, Lata

    2015-10-01

    Using the gauge-gravity duality, we have obtained the potential between a heavy quark and an antiquark pair, which is moving perpendicular to the direction of orientation, in a strongly coupled supersymmetric hot plasma. For this purpose we work on a metric in the gravity side, viz. Ouyang-Klebanov-Strassler black hole geometry, of which the dual in the gauge theory side runs with the energy and hence proves to be a better background for thermal QCD. The potential obtained has a confining term both in the vacuum and in a medium, in addition to the Coulomb term alone, usually reported in the literature. As the velocity of the pair is increased, the screening of the potential gets weakened, which may be understood by the decrease of the effective temperature with the increase of the velocity. The crucial observation of our work is that, beyond a critical separation of the heavy quark pair, the potential develops an imaginary part which is nowadays understood to be the main source of dissociation. The imaginary part is found to vanish at small r , thus agreeing with the perturbative result. Finally we have estimated the thermal width for the ground and first excited states and found that nonzero rapidities lead to an increase of thermal width. This implies that the moving quarkonia dissociate more easily than the static ones, which agrees with other calculations. However, the width in our case is larger than other calculations due to the presence of confining terms.

  5. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  6. Entanglement of Distillation for Lattice Gauge Theories.

    PubMed

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B; Verstraete, Frank

    2016-09-23

    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws-including a topological correction-emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  7. Five-Dimensional Gauged Supergravity with Higher Derivatives

    NASA Astrophysics Data System (ADS)

    Hanaki, Kentaro

    This thesis summarizes the recent developments on the study of five-dimensional gauged supergravity with higher derivative terms, emphasizing in particular the application to understanding the hydrodynamic properties of gauge theory plasma via the AdS/CFT correspondence. We first review how the ungauged and gauged five-dimensional supergravity actions with higher derivative terms can be constructed using the off-shell superconformal formalism. Then we relate the gauged supergravity to four-dimensional gauge theory using the AdS/CFT correspondence and extract the physical quantities associated with gauge theory plasma from the dual classical supergravity computations. We put a particular emphasis on the discussion of the conjectured lower bound for the shear viscosity over entropy density ratio proposed by Kovtun, Son and Starinets, and discuss how higher derivative terms in supergravity and the introduction of chemical potential for the R-charge affect this bound.

  8. Expanding the Bethe/Gauge dictionary

    NASA Astrophysics Data System (ADS)

    Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz

    2017-11-01

    We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.

  9. Gauging Variational Inference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael; Ahn, Sungsoo; Shin, Jinwoo

    Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we provemore » that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.« less

  10. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  11. Influence of Gap Distance on Vacuum Arc Characteristics of Cup Type AMF Electrode in Vacuum Interrupters

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoyong; Xiu, Shixin; Wang, Jimei; Shen, Zhengchao

    2006-11-01

    The greenhouse effect of SF6 is a great concern today. The development of high voltage vacuum circuit breakers becomes more important. The vacuum circuit breaker has minimum pollution to the environment. The vacuum interrupter is the key part of a vacuum circuit breaker. The interrupting characteristics in vacuum and arc-controlling technique are the main problems to be solved for a longer gap distance in developing high voltage vacuum interrupters. To understand the vacuum arc characteristics and provide effective technique to control vacuum arc in a long gap distance, the arc mode transition of a cup-type axial magnetic field electrode is observed by a high-speed charge coupled device (CCD) video camera under different gap distances while the arc voltage and arc current are recorded. The controlling ability of the axial magnetic field on vacuum arc obviously decreases when the gap distance is longer than 40 mm. The noise components and mean value of the arc voltage significantly increase. The effective method for controlling the vacuum arc characteristics is provided by long gap distances based on the test results. The test results can be used as a reference to develop high voltage and large capacity vacuum interrupters.

  12. Gauging away a big bang

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Raju, Avinash

    2017-08-01

    We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.

  13. Sequestered gravity in gauge mediation.

    PubMed

    Antoniadis, Ignatios; Benakli, Karim; Quiros, Mariano

    2016-01-01

    We present a novel mechanism of supersymmetry breaking embeddable in string theory and simultaneously sharing the main advantages of (sequestered) gravity and gauge mediation. It is driven by a Scherk-Schwarz deformation along a compact extra dimension, transverse to a brane stack supporting the supersymmetric extension of the Standard Model. This fixes the magnitude of the gravitino mass, together with that of the gauginos of a bulk gauge group, at a scale as high as [Formula: see text] GeV. Supersymmetry breaking is mediated to the observable sector dominantly by gauge interactions using massive messengers transforming non-trivially under the bulk and Standard Model gauge groups and leading to a neutralino LSP as dark matter candidate. The Higgsino mass [Formula: see text] and soft Higgs-bilinear [Formula: see text] term could be generated at the same order of magnitude as the other soft terms by effective supergravity couplings as in the Giudice-Masiero mechanism.

  14. Including gauge-group parameters into the theory of interactions: an alternative mass-generating mechanism for gauge fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldaya, V.; Lopez-Ruiz, F. F.; Sanchez-Sastre, E.

    2006-11-03

    We reformulate the gauge theory of interactions by introducing the gauge group parameters into the model. The dynamics of the new 'Goldstone-like' bosons is accomplished through a non-linear {sigma}-model Lagrangian. They are minimally coupled according to a proper prescription which provides mass terms to the intermediate vector bosons without spoiling gauge invariance. The present formalism is explicitly applied to the Standard Model of electroweak interactions.

  15. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flesch, K.; Kremeyer, T.; Schmitz, O.

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  16. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flesch, K., E-mail: kbflesch@wisc.edu; Kremeyer, T.; Schmitz, O.

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D{sub 2} molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude abovemore » the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  17. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements

    DOE PAGES

    Flesch, K.; Kremeyer, T.; Schmitz, O.; ...

    2016-08-18

    Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. In order to study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. There are three different anode geometries that we have studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least onemore » order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution.« less

  18. Gauge theory for finite-dimensional dynamical systems.

    PubMed

    Gurfil, Pini

    2007-06-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently "disordered" flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.

  19. Miniature Convection Cooled Plug-type Heat Flux Gauges

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1994-01-01

    Tests and analysis of a new miniature plug-type heat flux gauge configuration are described. This gauge can simultaneously measure heat flux on two opposed active surfaces when heat flux levels are equal to or greater than about 0.2 MW/m(sup 2). The performance of this dual active surface gauge was investigated over a wide transient and steady heat flux and temperature range. The tests were performed by radiatively heating the front surface with an argon arc lamp while the back surface was convection cooled with air. Accuracy is about +20 percent. The gauge is responsive to fast heat flux transients and is designed to withstand the high temperature (1300 K), high pressure (15 MPa), erosive and corrosive environments in modern engines. This gauge can be used to measure heat flux on the surfaces of internally cooled apparatus such as turbine blades and combustors used in jet propulsion systems and on the surfaces of hypersonic vehicles. Heat flux measurement accuracy is not compromised when design considerations call for various size gauges to be fabricated into alloys of various shapes and properties. Significant gauge temperature reductions (120 K), which can lead to potential gauge durability improvement, were obtained when the gauges were air-cooled by forced convection.

  20. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  1. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  2. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  3. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  4. 46 CFR 154.1300 - Liquid level gauging system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: General. 154.1300 Section... Equipment Instrumentation § 154.1300 Liquid level gauging system: General. (a) If Table 4 lists a closed gauge for a cargo, the liquid level gauging system under § 154.1305 must be closed gauges that do not...

  5. 21 CFR 886.1420 - Ophthalmic lens gauge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic lens gauge. 886.1420 Section 886.1420...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1420 Ophthalmic lens gauge. (a) Identification. An ophthalmic lens gauge is a calibrated device intended to manually measure the curvature of a...

  6. 49 CFR 178.337-14 - Gauging devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-14 Gauging devices. (a) Liquid level gauging devices. See § 173.315(h) of this subchapter. (b) Pressure gauges. (1) See § 173.315(h) of this subchapter. (2) Each cargo tank used in carbon dioxide, refrigerated liquid or nitrous oxide, refrigerated liquid...

  7. 49 CFR 178.337-14 - Gauging devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-14 Gauging devices. (a) Liquid level gauging devices. See § 173.315(h) of this subchapter. (b) Pressure gauges. (1) See § 173.315(h) of this subchapter. (2) Each cargo tank used in carbon dioxide, refrigerated liquid or nitrous oxide, refrigerated liquid...

  8. 49 CFR 178.337-14 - Gauging devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-14 Gauging devices. (a) Liquid level gauging devices. See § 173.315(h) of this subchapter. (b) Pressure gauges. (1) See § 173.315(h) of this subchapter. (2) Each cargo tank used in carbon dioxide, refrigerated liquid or nitrous oxide, refrigerated liquid...

  9. 49 CFR 178.337-14 - Gauging devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Containers for Motor Vehicle Transportation § 178.337-14 Gauging devices. (a) Liquid level gauging devices. See § 173.315(h) of this subchapter. (b) Pressure gauges. (1) See § 173.315(h) of this subchapter. (2) Each cargo tank used in carbon dioxide, refrigerated liquid or nitrous oxide, refrigerated liquid...

  10. More About High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Williams, W. D.; Lei, Jih-Fen; Hulse, C. O.

    1994-01-01

    Two reports present additional information on electrical-resistance strain gauges described in "High-Temperature Resistance Strain Gauges" (LEW-15379). For protection against oxidation at high temperatures, gauges covered, by flame spraying, with coats of alumina containing up to 1 weight percent of yttria or, perferably, containing 4 to 6 weight percent of zirconia.

  11. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  12. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  13. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  14. 49 CFR 178.338-14 - Gauging devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...

  15. Vehicle-Level Oxygen/Methane Propulsion System Hotfire Testing at Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.; Desai, Pooja; Werlink, Rudy

    2017-01-01

    A prototype integrated liquid oxygen/liquid methane propulsion system was hot-fire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). This test campaign served two purposes: 1) Characterize the performance of the Plum Brook facility in vacuum accumulator mode and 2) Collect the unique data set of an integrated LOX/Methane propulsion system operating in high altitude and thermal vacuum environments (a first). Data from this propulsion system prototype could inform the design of future spacecraft in-space propulsion systems, including landers. The test vehicle for this campaign was the Integrated Cryogenic Propulsion Test Article (ICPTA), which was constructed for this project using assets from the former Morpheus Project rebuilt and outfitted with additional new hardware. The ICPTA utilizes one 2,800 lbf main engine, two 28 lbf and two 7 lbf reaction control engines mounted in two pods, four 48-inch propellant tanks (two each for liquid oxygen and liquid methane), and a cold helium system for propellant tank pressurization. Several hundred sensors on the ICPTA and many more in the test cell collected data to characterize the operation of the vehicle and facility. Multiple notable experiments were performed during this test campaign, many for the first time, including pressure-fed cryogenic reaction control system characterization over a wide range of conditions, coil-on-plug ignition system demonstration at the vehicle level, integrated main engine/RCS operation, and a non-intrusive propellant mass gauging system. The test data includes water-hammer and thermal heat leak data critical to validating models for use in future vehicle design activities. This successful test campaign demonstrated the performance of the updated Plum Brook In-Space Propulsion thermal vacuum chamber and incrementally advanced the state of LOX/Methane propulsion

  16. Gauge Adjusted Global Satellite Mapping of Precipitation (GSMAP_GAUGE)

    NASA Astrophysics Data System (ADS)

    Mega, T.; Ushio, T.; Yoshida, S.; Kawasaki, Z.; Kubota, T.; Kachi, M.; Aonashi, K.; Shige, S.

    2013-12-01

    precipitation instantaneously, while the ground based rain gauges collects precipitation particles for one hour at a certain point. This discrepancy can cause the mismatch between the two estimates, and we need to fill the gap of the precipitation estimates between the satellite and rain gauge attributable to the spatial and temporal resolution difference. To that end, the gauge adjusted product named as GSMaP_Gauge has been developed. In this product, the CPC global gauge data analysis by Xie et al. (2007) and Chen et al. (2008) is used for the adjustment of the GSMaP_MVK data. In this presentation, the algorithm concept, examples of the product, and some validation results are presented.

  17. Primordial anisotropies in gauged hybrid inflation

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  18. Nonabelian noncommutative gauge theory via noncommutative extra dimensions

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2001-06-01

    The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric.

  19. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  20. WIMP dark matter and unitarity-conserving inflation via a gauge singlet scalar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahlhoefer, Felix; McDonald, John, E-mail: felix.kahlhoefer@desy.de, E-mail: j.mcdonald@lancaster.ac.uk

    2015-11-01

    A gauge singlet scalar with non-minimal coupling to gravity can drive inflation and later freeze out to become cold dark matter. We explore this idea by revisiting inflation in the singlet direction (S-inflation) and Higgs Portal Dark Matter in light of the Higgs discovery, limits from LUX and observations by Planck. We show that large regions of parameter space remain viable, so that successful inflation is possible and the dark matter relic abundance can be reproduced. Moreover, the scalar singlet can stabilise the electroweak vacuum and at the same time overcome the problem of unitarity-violation during inflation encountered by Higgsmore » Inflation, provided the singlet is a real scalar. The 2-σ Planck upper bound on n{sub s} imposes that the singlet mass is below 2 TeV, so that almost the entire allowed parameter range can be probed by XENON1T.« less

  1. Gauge theory for finite-dimensional dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-06-15

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differentialmore » equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.« less

  2. Holism and structuralism in U(1) gauge theory

    NASA Astrophysics Data System (ADS)

    Lyre, Holger

    After decades of neglect philosophers of physics have discovered gauge theories-arguably the paradigm of modern field physics-as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism-in the eyes of its proponents the best suited realist position towards modern physics-has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories-in particular U (1) gauge theory. In the first part of the paper the framework of fiber bundle gauge theories is briefly presented and the interpretation of local gauge symmetry will be examined. In the second part, an ontological underdetermination of gauge theories is carved out by considering the various kinds of non-locality involved in such typical effects as the Aharonov-Bohm effect. The analysis shows that the peculiar form of non-separability figuring in gauge theories is a variant of spatiotemporal holism and can be distinguished from quantum theoretic holism. In the last part of the paper the arguments for a gauge theoretic support of structural realism are laid out and discussed.

  3. Post-Vacuum-Assisted Stereotactic Core Biopsy Clip Displacement: A Comparison Between Commercially Available Clips and Surgical Clip.

    PubMed

    Yen, Peggy; Dumas, Sandra; Albert, Arianne; Gordon, Paula

    2018-02-01

    The placement of localization clips following percutaneous biopsy is a standard practice for a variety of situations. Subsequent clip displacement creates challenges for imaging surveillance and surgical planning, and may cause confusion amongst radiologists and between surgeons and radiologists. Many causes have been attributed for this phenomenon including the commonly accepted "accordion effect." Herein, we investigate the performance of a low cost surgical clip system against 4 commercially available clips. We retrospectively reviewed 2112 patients who underwent stereotactic vacuum-assisted core biopsy followed by clip placement between January 2013 and June 2016. The primary performance parameter compared was displacement >10 mm following vacuum-assisted stereotactic core biopsy. Within the group of clips that had displaced, the magnitude of displacement was compared. There was a significant difference in displacement among the clip types (P < .0001) with significant pairwise comparisons between pediatric surgical clips and SecureMark (38% vs 28%; P = .001) and SenoMark (38% vs 27%; P = .0001) in the proportion displaced. The surgical clips showed a significant magnitude of displacement of approximately 25% greater average distance displaced. As a whole, the commercial clips performed better than the surgical clip after stereotactic vacuum-assisted core biopsy suggesting the surrounding outer component acts to anchor the central clip and minimizes clip displacement. The same should apply to tomosynthesis-guided biopsy. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    PubMed

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  5. Novel circuits for energizing manganin stress gauges

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas G.

    2017-01-01

    This paper describes the design of a novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. The Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 mΩ and are energized with pulsed currents of 50 A. Conventional pulsed, constant current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to changing load impedances. The new circuit corrects these issues. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory in explosive experiments. [LA-UR-15-24819

  6. Comparison of work rates, energy expenditure, and perceived exertion during a 1-h vacuuming task with a backpack vacuum cleaner and an upright vacuum cleaner.

    PubMed

    Mengelkoch, Larry J; Clark, Kirby

    2006-03-01

    The purpose of this study was to evaluate two types of industrial vacuum cleaners, in terms of cleaning rates, energy expenditure, and perceived exertion. Twelve industrial cleaners (six males and six females, age 28-39 yr) performed two 1-h vacuuming tasks with an upright vacuum cleaner (UVC) and a backpack vacuum cleaner (BPVC). Measures for oxygen uptake (VO2) and ratings of perceived exertion (RPE) were collected continuously during the 1-h vacuuming tasks. Cleaning rates for the UVC and BPVC were 7.23 and 14.98 m2min(-1), respectively. On a separate day subjects performed a maximal treadmill exercise test to determine their maximal aerobic capacity (peak VO2). Average absolute energy costs (in Metabolic equivalents), relative energy costs of the vacuum task compared to the subjects' maximal aerobic capacity (% peak VO2), and RPE responses for the 1-h vacuuming tasks were similar between vacuum cleaners, but % peak VO2 and RPE values differed between genders. These results indicate that the BPVC was more efficient than the UVC. With the BPVC, experienced workers vacuumed at a cleaning rate 2.07 times greater than the UVC and had similar levels of energy expenditure and perceived effort, compared to the slower cleaning rate with the UVC.

  7. Elastic Gauge Fields in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Cortijo, Alberto; Ferreiros, Yago; Landsteiner, Karl; Hernandez Vozmediano, Maria Angeles

    We show that, as it happens in graphene, elastic deformations couple to the electronic degrees of freedom as pseudo gauge fields in Weyl semimetals. We derive the form of the elastic gauge fields in a tight-binding model hosting Weyl nodes and see that this vector electron-phonon coupling is chiral, providing an example of axial gauge fields in three dimensions. As an example of the new response functions that arise associated to these elastic gauge fields, we derive a non-zero phonon Hall viscosity for the neutral system at zero temperature. The axial nature of the fields provides a test of the chiral anomaly in high energy with three axial vector couplings. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007).

  8. Progress in lattice gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creutz, M.

    1983-01-01

    These lectures first provide an overview of the current status of lattice gauge theory calculations. They then review some technical points on group integration, gauge fixing, and order parameters. Various Monte Carlo algorithms are discussed. Finally, alternatives to the Wilson action are considered in the context of universality for the continuum limit. 41 references.

  9. Gauged multisoliton baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  10. Construction of an Optical Fiber Strain Gauge

    NASA Astrophysics Data System (ADS)

    Sulaiman, Najwa

    This project is focused on the construction of an optical fiber strain gauge that is based on a strain gauge described by Butter and Hocker. Our gauge is designed to generate an interference pattern from the signals carried on two bare single-mode fibers that are fastened to an aluminum cantilever. When the cantilever experiences flexural stress, the interference pattern should change. By observing this change, it is possible to determine the strain experienced by the cantilever. I describe the design and construction of our optical fiber strain gauge as well as the characterization of different parts of the apparatus.

  11. Headache after spinal anesthesia for cesarean section: a comparison of the 27-gauge Quincke and 24-gauge Sprotte needles.

    PubMed

    Mayer, D C; Quance, D; Weeks, S K

    1992-09-01

    A high incidence of postdural puncture headache (PDPH) occurs after spinal anesthesia for cesarean section. To examine this problem, a study was conducted with the recently developed 24-gauge Sprotte and 27-gauge Quincke needles in patients undergoing elective and emergency cesarean section (n = 298). The needle to be used was assigned in a random manner: group I, 27-gauge Quincke (n = 147); group II, 24-gauge Sprotte (n = 151). During the postoperative period, patients were visited daily and asked specifically about the presence and severity of headache. The overall incidence of PDPH was 2% (n = 6), five in the Quincke group (3.5%) and one in the Sprotte group (0.7%). There was no significant difference in the incidence of PDPH between the two groups. Five headaches were classified as mild, and only one was moderate to severe. All headaches resolved quickly with conservative management and without blood patch. The authors conclude that the choice between a 27-gauge Quincke and a 24-gauge Sprotte needle does not influence the incidence of PDPH after spinal anesthesia for cesarean section.

  12. Measuring systolic ankle and toe pressure using the strain gauge technique--a comparison study between mercury and indium-gallium strain gauges.

    PubMed

    Broholm, Rikke; Wiinberg, Niels; Simonsen, Lene

    2014-09-01

    Measurement of the ankle and toe pressures are often performed using a plethysmograph, compression cuffs and a strain gauge. Usually, the strain gauge contains mercury but other alternatives exist. From 2014, the mercury-containing strain gauge will no longer be available in the European Union. The aim of this study was to compare an indium-gallium strain gauge to the established mercury-containing strain gauge. Consecutive patients referred to the Department of Clinical Physiology and Nuclear Medicine at Bispebjerg and Frederiksberg Hospitals for measurements of systolic ankle and toe pressures volunteered for the study. Ankle and toe pressures were measured twice with the mercury and the indium-gallium strain gauge in random order. Comparison of the correlation between the mean pressure using the mercury and the indium-gallium device and the difference between the two devices was performed for both toe and ankle level. A total of 53 patients were included (36 male). Mean age was 69 (range, 45-92 years). Mean pressures at toe and ankle level with the mercury and the indium-gallium strain gauges were 77 (range, 0-180) mm Hg and 113 (range, 15-190) mm Hg, respectively. Comparison between the mercury and the indium-gallium strain gauge showed a difference in toe blood pressure values of - 0.7 mm Hg (SD: 7.0). At the ankle level, a difference of 2.0 mm Hg (SD: 8.6) was found. The two different devices agree sufficiently in the measurements of systolic ankle and toe pressure for the indium-gallium strain gauge to replace the mercury strain gauge.

  13. Effect of Test Environment on Lifetime of Two Vacuum Lubricants Determined by Spiral Orbit Tribometry

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    2006-01-01

    The destruction rates of a perfluoropolyether (PFPE) lubricant, Krytox 143AC(TradeMark), subjected to rolling contact with 440C steel in a spiral orbit tribometer at room temperature have been evaluated as a function of test environment. The rates in ultrahigh vacuum, 0.21 3 kPa (1.6 Torr) oxygen and one atmosphere of dry nitrogen were about the same. Water vapor in the test environment - a few ppm in one atmosphere of nitrogen - reduced the destruction rate by up to an order of magnitude. A similar effect of water vapor was found for the destruction rate of Pennzane(Registered TradeMark) 2001A , an unformulated multiply alkylated cyclopentane (MAC) hydrocarbon oil.

  14. One-Loop One-Point Functions in Gauge-Gravity Dualities with Defects.

    PubMed

    Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias

    2016-12-02

    We initiate the calculation of loop corrections to correlation functions in 4D defect conformal field theories (dCFTs). More precisely, we consider N=4 SYM theory with a codimension-one defect separating two regions of space, x_{3}>0 and x_{3}<0, where the gauge group is SU(N) and SU(N-k), respectively. This setup is made possible by some of the real scalar fields acquiring a nonvanishing and x_{3}-dependent vacuum expectation value for x_{3}>0. The holographic dual is the D3-D5 probe brane system where the D5-brane geometry is AdS_{4}×S^{2} and a background gauge field has k units of flux through the S^{2}. We diagonalize the mass matrix of the dCFT making use of fuzzy-sphere coordinates and we handle the x_{3} dependence of the mass terms in the 4D Minkowski space propagators by reformulating these as standard massive AdS_{4} propagators. Furthermore, we show that only two Feynman diagrams contribute to the one-loop correction to the one-point function of any single-trace operator and we explicitly calculate this correction in the planar limit for the simplest chiral primary. The result of this calculation is compared to an earlier string-theory computation in a certain double scaling limit and perfect agreement is found. Finally, we discuss how to generalize our calculation to any single-trace operator, to finite N, and to other types of observables such as Wilson loops.

  15. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  16. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems.

    PubMed

    Han, Young Keun; Miller, Kevin M

    2009-08-01

    To compare vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification machines. Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. The vacuum rise time under normal and enhanced aspiration modes, vacuum limit accuracy, and occlusion break surge of the Infiniti Vision System, Stellaris Vision Enhancement System, and WhiteStar Signature Phacoemulsification System were tested. Vacuum rise time and limit accuracy were measured at limit settings of 400 mm Hg and 600 mm Hg. Surge area was recorded at vacuum limit settings of 200 mm Hg, 300 mm Hg, 400 mm Hg, and 500 mm Hg. The Infiniti had the fastest vacuum rise times under normal and enhanced aspiration modes. At 4 seconds, the vacuum limit accuracy was greatest with the Infiniti at the 400 mm Hg limit and the Signature at the 600 mm Hg limit. The Stellaris did not reach either vacuum target. The Infiniti performed better than the other 2 machines during testing of occlusion break surge at all vacuum limit settings above 200 mm Hg. Under controlled laboratory test conditions, the Infiniti had the fastest vacuum rise time, greatest vacuum limit accuracy at 400 mm Hg, and least occlusion break surge. These results can be explained by the lower compliance of the Infiniti system.

  17. Gauge-origin dependence in electronic g-tensor calculations

    NASA Astrophysics Data System (ADS)

    Glasbrenner, Michael; Vogler, Sigurd; Ochsenfeld, Christian

    2018-06-01

    We present a benchmark study on the gauge-origin dependence of the electronic g-tensor using data from unrestricted density functional theory calculations with the spin-orbit mean field ansatz. Our data suggest in accordance with previous studies that g-tensor calculations employing a common gauge-origin are sufficiently accurate for small molecules; however, for extended molecules, the introduced errors can become relevant and significantly exceed the basis set error. Using calculations with the spin-orbit mean field ansatz and gauge-including atomic orbitals as a reference, we furthermore show that the accuracy and reliability of common gauge-origin approaches in larger molecules depends strongly on the locality of the spin density distribution. We propose a new pragmatic ansatz for choosing the gauge-origin which takes the spin density distribution into account and gives reasonably accurate values for molecules with a single localized spin center. For more general cases like molecules with several spatially distant spin centers, common gauge-origin approaches are shown to be insufficient for consistently achieving high accuracy. Therefore the computation of g-tensors using distributed gauge-origin methods like gauge-including atomic orbitals is considered as the ideal approach and is recommended for larger molecular systems.

  18. Characteristic classes of gauge systems

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Sharapov, A. A.

    2004-12-01

    We define and study invariants which can be uniformly constructed for any gauge system. By a gauge system we understand an (anti-)Poisson supermanifold provided with an odd Hamiltonian self-commuting vector field called a homological vector field. This definition encompasses all the cases usually included into the notion of a gauge theory in physics as well as some other similar (but different) structures like Lie or Courant algebroids. For Lagrangian gauge theories or Hamiltonian first class constrained systems, the homological vector field is identified with the classical BRST transformation operator. We define characteristic classes of a gauge system as universal cohomology classes of the homological vector field, which are uniformly constructed in terms of this vector field itself. Not striving to exhaustively classify all the characteristic classes in this work, we compute those invariants which are built up in terms of the first derivatives of the homological vector field. We also consider the cohomological operations in the space of all the characteristic classes. In particular, we show that the (anti-)Poisson bracket becomes trivial when applied to the space of all the characteristic classes, instead the latter space can be endowed with another Lie bracket operation. Making use of this Lie bracket one can generate new characteristic classes involving higher derivatives of the homological vector field. The simplest characteristic classes are illustrated by the examples relating them to anomalies in the traditional BV or BFV-BRST theory and to characteristic classes of (singular) foliations.

  19. Optical Rain Gauge Performance: Second Workshop on Optical Rain Gauge Measurements

    NASA Technical Reports Server (NTRS)

    Short, David A. (Editor); Thiele, Otto W. (Editor); Mcphaden, Michael J. (Editor)

    1994-01-01

    The primary focus of the workshop was on the performance and reliability of STi mini-Optical Rain Gauges in a number of environments, including deployments on ships and buoys in the western equatorial Pacific Ocean during the TOGA/COARE field experiment, deployments on buoys in U.S. coastal waters, and comparisons with other types of rain gauges on the Virginia coast and in Florida. The workshop was attended by 20 investigators, representing 10 different institutions, who gathered to present new results obtained since the first workshop (April 1993), to discuss problems, to consider solutions, and to chart future directions. Post-TOGA/COARE calibration studies were also presented.

  20. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  1. Novel Circuits for Energizing Manganin Stress Gauges

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas

    2015-06-01

    This paper describes the design, manufacture and testing of novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 m Ω and are energized with pulsed currents of 50 A. Conventional pulsed current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to finite and changing source impedances. To correct these issues a novel MOSFET circuit was designed and will be described. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory and selected explosive tests will be described together with their results. LA-UR-15-20613.

  2. Calibration of thin-foil manganin gauge in ALOX material

    NASA Astrophysics Data System (ADS)

    Benham, R. A.; Weirick, L. J.; Lee, L. M.

    1996-05-01

    The purpose of this program was to develop a calibration curve (stress as a function of change in gauge resistance/gauge resistance) and to obtain gauge repeatability data for Micro-Measurements stripped manganin thin-foiled gauges up to 6.1 GPa in ALOX (42% by volume alumina in Epon 828 epoxy) material. A light-gas gun was used to drive an ALOX impactor into the ALOX target containing four gauges in a centered diamond arrangement. Tilt and velocity of the impactor were measured along with the gauge outputs. Impact stresses from 0.5 to 6.1 GPa were selected in increments of 0.7 GPa with duplicate tests done at 0.5, 3.3 and 6.1 GPa. A total of twelve tests was conducted using ALOX. Three initial tests were done using polymethyl methacrylate (PMMA) as the impactor and target at an impact pressure of 3.0 GPa for comparison of gauge output with analysis and literature values. The installed gauge, stripped of its backing, has a nominal thickness of 5 μm. The thin gauge and high speed instrumentation allowed higher time resolution measurements than can be obtained with manganin wire.

  3. Large gauge transformations and little group for soft photons

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Seo, Min-Seok; Shiu, Gary

    2017-11-01

    Recently, large gauge transformation (LGT), the residual gauge symmetry after gauge fixing that survives at null infinity, has drawn much attention concerning soft theorems and the memory effect. We point out that LGT charges in quantum electrodynamics are in fact one of noncompact generators of the two dimensional Euclidean group. Moreover, by comparing two equivalent descriptions of gauge transformation, we suggest that LGT is simply another way of describing the gauged little group for massless soft photons.

  4. Milne boost from Galilean gauge theory

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Mukherjee, Pradip

    2018-03-01

    Physical origin of Milne boost invariance of the Newton Cartan spacetime is traced to the effect of local Galilean boosts in its metric structure, using Galilean gauge theory. Specifically, we do not require any gauge field to understand Milne boost invariance.

  5. Foreign exchange market as a lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Young, K.

    1999-10-01

    A simple model of the foreign exchange market is exactly a lattice gauge theory. Exchange rates are the exponentials of gauge potentials defined on spatial links while interest rates are related to gauge potentials on temporal links. Arbitrage opportunities are given by nonzero values of the gauge-invariant field tensor or curvature defined on closed loops. Arbitrage opportunities involving cross-rates at one time are "magnetic fields," while arbitrage opportunities involving future contracts are "electric fields."

  6. Evaluation of 25-gauge Quincke and 24-gauge Gertie Marx needles for spinal anaesthesia for caesarean section.

    PubMed

    Imarengiaye, C O; Edomwonyi, N P

    2002-07-01

    To compare the insertion characteristics and rate of complications between 25-gauge Quincke and 24-gauge Gertie Marx needles. Prospective, randomized study. University of Benin Teaching Hospital; a university-affiliated tertiary centre. Parturients (ASA 1 and 2) scheduled for elective caesarean section. They were randomly assigned to receive spinal anaesthesia with either 25-gauge Quincke needle or 24-gauge Gertie Marx needle. The patients with abnormal spaces, coagulopathy, infection, pre-eclampsia/eclampsia or obesity were excluded. The number of attempts at successful identification of the spinal space, intraoperative complications, incidence of postdural puncture headache (PDPH), non-postdural puncture headache (NPDPH) and backache. Sixty women were studied. The 24-gauge Gertie Marx needle resulted in more successful location of the spinal space on the second attempt (P<0.05). Non-postdural puncture headache was seen in 43% of the study population. PDPH was seen in 10% of the Quincke group and none in the Gertie Marx group. There was no difference in the incidence of backache in both groups. The ease of insertion and low incidence of PDPH with the Gertie Marx needle may encourage trainee anaesthetists to use this needle for caesarean section.

  7. Effective Porosity Measurements by Wet- and Dry-type Vacuum Saturations using Process-Programmable Vacuum Saturation System

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Lee, K. S., , Dr; Lee, S. K.

    2017-12-01

    One of the most important factors in measuring effective porosity by vacuum saturation method is that the air in the pore space can be fully substituted by water during the vacuum saturation process. International Society of Rock Mechanics (ISRM) suggests vacuuming a rock sample submerged in the water, while American Society of Test and Materials (ASTM) vacuuming the sample and water separately and then pour the water to the sample. In this study, we call the former wet-type vacuum saturation (WVS) method and the latter dry-type vacuum saturation (DVS) method, and compare the effective porosity measured by the two different vacuum saturation processes. For that purpose, a vacuum saturation system has been developed, which can support both WVS and DVS by only changing the process by programming. Comparison of effective porosity has been made for a cement mortar and rock samples. As a result, DVS can substitute more void volume to water than WVS, which in turn insists that DVS can provide more exact value of effective porosity than WVS.

  8. An exact elliptic superpotential for N=1 ∗ deformations of finite N=2 gauge theories

    NASA Astrophysics Data System (ADS)

    Dorey, Nick; Hollowood, Timothy J.; Kumar, S. Prem

    2002-03-01

    We study relevant deformations of the N=2 superconformal theory on the world-volume of N D3-branes at an Ak-1 singularity. In particular, we determine the vacuum structure of the mass-deformed theory with N=1 supersymmetry and show how the different vacua are permuted by an extended duality symmetry. We then obtain exact, modular covariant formulae (for all k, N and arbitrary gauge couplings) for the holomorphic observables in the massive vacua in two different ways: by lifting to M-theory, and by compactification to three dimensions and subsequent use of mirror symmetry. In the latter case, we find an exact superpotential for the model which coincides with a certain combination of the quadratic Hamiltonians of the spin generalization of the elliptic Calogero-Moser integrable system.

  9. Time evolution of complexity in Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Iizuka, Norihiro; Sugishita, Sotaro

    2017-12-01

    Quantum complexity is conjectured to probe inside of black hole horizons (or wormholes) via gauge gravity correspondence. In order to have a better understanding of this correspondence, we study time evolutions of complexities for Abelian pure gauge theories. For this purpose, we discretize the U (1 ) gauge group as ZN and also the continuum spacetime as lattice spacetime, and this enables us to define a universal gate set for these gauge theories and to evaluate time evolutions of the complexities explicitly. We find that to achieve a large complexity ˜exp (entropy), which is one of the conjectured criteria necessary to have a dual black hole, the Abelian gauge theory needs to be maximally nonlocal.

  10. Electrically tunable artificial gauge potential for polaritons

    PubMed Central

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-01-01

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047

  11. Coordinate transformations and gauges in the relativistic astronomical reference systems

    NASA Astrophysics Data System (ADS)

    Tao, J.-H.; Huang, T.-Y.; Han, C.-H.

    2000-11-01

    This paper applies a fully post-Newtonian theory (Damour et al. 1991, 1992, 1993, 1994) to the problem of gauge in relativistic reference systems. Gauge fixing is necessary when the precision of time measurement and application reaches 10-16 or better. We give a general procedure for fixing the gauges of gravitational potentials in both the global and local coordinate systems, and for determining the gauge functions in all the coordinate transformations. We demonstrate that gauge fixing in a gravitational N-body problem can be solved by fixing the gauge of the self-gravitational potential of each body and the gauge function in the coordinate transformation between the global and local coordinate systems. We also show that these gauge functions can be chosen to make all the coordinate systems harmonic or any as required, no matter what gauge is chosen for the self-gravitational potential of each body.

  12. Mark-recapture with multiple, non-invasive marks.

    PubMed

    Bonner, Simon J; Holmberg, Jason

    2013-09-01

    Non-invasive marks, including pigmentation patterns, acquired scars, and genetic markers, are often used to identify individuals in mark-recapture experiments. If animals in a population can be identified from multiple, non-invasive marks then some individuals may be counted twice in the observed data. Analyzing the observed histories without accounting for these errors will provide incorrect inference about the population dynamics. Previous approaches to this problem include modeling data from only one mark and combining estimators obtained from each mark separately assuming that they are independent. Motivated by the analysis of data from the ECOCEAN online whale shark (Rhincodon typus) catalog, we describe a Bayesian method to analyze data from multiple, non-invasive marks that is based on the latent-multinomial model of Link et al. (2010, Biometrics 66, 178-185). Further to this, we describe a simplification of the Markov chain Monte Carlo algorithm of Link et al. (2010, Biometrics 66, 178-185) that leads to more efficient computation. We present results from the analysis of the ECOCEAN whale shark data and from simulation studies comparing our method with the previous approaches. © 2013, The International Biometric Society.

  13. Non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another

  14. A gauge-theoretic approach to gravity.

    PubMed

    Krasnov, Kirill

    2012-08-08

    Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach.

  15. A gauge-theoretic approach to gravity

    PubMed Central

    Krasnov, Kirill

    2012-01-01

    Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  16. Yang-Mills gauge conditions from Witten's open string field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Haidong; Siegel, Warren

    2007-02-15

    We construct the Zinn-Justin-Batalin-Vilkovisky action for tachyons and gauge bosons from Witten's 3-string vertex of the bosonic open string without gauge fixing. Through canonical transformations, we find the off-shell, local, gauge-covariant action up to 3-point terms, satisfying the usual field theory gauge transformations. Perturbatively, it can be extended to higher-point terms. It also gives a new gauge condition in field theory which corresponds to the Feynman-Siegel gauge on the world-sheet.

  17. Comparison of 20-, 23-, and 25-gauge air infusion forces.

    PubMed

    Machado, Leonardo Martins; Magalhães, Octaviano; Maia, Mauricio; Rodrigues, Eduardo B; Farah, Michel Eid; Ismail, Kamal A R; Molon, Leandro; Oliveira, Danilo A

    2011-11-01

    To determine and compare 20-, 23-, and 25-gauge retinal infusion air jet impact pressure (force per unit area) in an experimental setting. Experimental laboratory investigation. Infusion cannulas were connected to a compressed air system. A controlled valve mechanism was used to obtain increasing levels of infusion pressure. Each infusion tube was positioned in front of a manual transducer to measure force. Impact pressure was calculated using known formulas in fluid dynamics. The 20-gauge infusion jet showed similar impact pressure values compared with the 23-gauge infusion jet. Both showed higher levels than the 25-gauge infusion jet. This was because of the smaller jet force for the 25-gauge system. In this experimental study, both the 23- and the 20-gauge air infusion jet showed higher impact pressure values compared with the 25-gauge air infusion jet. This could be of concern regarding air infusion during 23-gauge vitrectomy since retinal damage has been shown in standard-gauge surgeries.

  18. Gauge-flation and cosmic no-hair conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maleknejad, A.; Sheikh-Jabbari, M.M.; Soda, Jiro, E-mail: azade@ipm.ir, E-mail: jabbari@theory.ipm.ac.ir, E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2012-01-01

    Gauge-flation, inflation from non-Abelian gauge fields, was introduced in [1, 2]. In this work, we study the cosmic no-hair conjecture in gauge-flation. Starting from Bianchi-type I cosmology and through analytic and numeric studies we demonstrate that the isotropic FLRW inflation is an attractor of the dynamics of the theory and that the anisotropies are damped within a few e-folds, in accord with the cosmic no-hair conjecture.

  19. 46 CFR 151.15-10 - Cargo gauging devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contains definitions and requirements for types of gauging devices specified in Table 151.05. (a) Open... the cargo and its vapors. Examples of this type are gauge hatch, ullage hole. (b) Restricted. A... closure device in that opening. When not in use, this type gauging device is closed to maintain the...

  20. Nanoshells as a high-pressure gauge

    NASA Astrophysics Data System (ADS)

    Tempere, Jacques; van den Broeck, Nick; Putteneers, Katrijn; Silvera, Isaac

    2012-02-01

    Nanoshells, consisting of multiple spherical layers, have an extensive list of applications, usually performing the function of a probe. We add a new application to this list in the form of a high-pressure gauge in a Diamond Anvil Cell (DAC). In a DAC, where high pressures are reached by pressing two diamonds together, existing gauges fail at higher pressures because of calibration difficulties and obscuring effects in the diamonds. The nanoshell gauge does not face this issue since its optical spectrum can be engineered by altering the thickness of its layers. Furthermore their properties are measured by broad band optical transmission spectroscopy leading to a very large signal-to-noise ratio even in the multi-megabar pressure regime where ruby measurements become challenging. Theoretical calculations based on the Maxwell equations in a spherical geometry combined with the Vinet equation of state show that a three-layer geometry (SiO2-Au-SiO2) indeed has a measurable pressure-dependent optical response desirable for gauges.

  1. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  2. Robot design for a vacuum environment

    NASA Technical Reports Server (NTRS)

    Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.

    1987-01-01

    The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.

  3. Gaugeon formalism for the second-rank antisymmetric tensor gauge fields

    NASA Astrophysics Data System (ADS)

    Aochi, Masataka; Endo, Ryusuke; Miura, Hikaru

    2018-02-01

    We present a BRST symmetric gaugeon formalism for the second-rank antisymmetric tensor gauge fields. A set of vector gaugeon fields is introduced as a quantum gauge freedom. One of the gaugeon fields satisfies a higher-derivative field equation; this property is necessary to change the gauge-fixing parameter of the antisymmetric tensor gauge field. A naive Lagrangian for the vector gaugeon fields is itself invariant under a gauge transformation for the vector gaugeon field. The Lagrangian of our theory includes the gauge-fixing terms for the gaugeon fields and corresponding Faddeev-Popov ghost terms.

  4. Construction of non-Abelian gauge theories on noncommutative spaces

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Möller, L.; Schraml, S.; Schupp, P.; Wess, J.

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories.

  5. Thermal Vacuum Test Correlation of A Zero Propellant Load Case Thermal Capacitance Propellant Gauging Analytics Model

    NASA Technical Reports Server (NTRS)

    McKim, Stephen A.

    2016-01-01

    This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.

  6. Thermal Vacuum Test Correlation of a Zero Propellant Load Case Thermal Capacitance Propellant Gauging Analytical Model

    NASA Technical Reports Server (NTRS)

    Mckim, Stephen A.

    2016-01-01

    This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.

  7. Canonical transformation path to gauge theories of gravity

    NASA Astrophysics Data System (ADS)

    Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.

    2017-06-01

    In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.

  8. Gauge-flation confronted with Planck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, Ryo; Dimastrogiovanni, Emanuela; Peloso, Marco, E-mail: namba@physics.umn.edu, E-mail: ema@physics.umn.edu, E-mail: peloso@physics.umn.edu

    2013-11-01

    Gauge-flation is a recently proposed model in which inflation is driven solely by a non-Abelian gauge field thanks to a specific higher order derivative operator. The nature of the operator is such that it does not introduce ghosts. We compute the cosmological scalar and tensor perturbations for this model, improving over an existing computation. We then confront these results with the Planck data. The model is characterized by the quantity γ ≡ g{sup 2}Q{sup 2}/H{sup 2} (where g is the gauge coupling constant, Q the vector vev, and H the Hubble rate). For γ < 2, the scalar perturbations show a strongmore » tachyonic instability. In the stable region, the scalar power spectrum n{sub s} is too low at small γ, while the tensor-to-scalar ratio r is too high at large γ. No value of γ leads to acceptable values for n{sub s} and r, and so the model is ruled out by the CMB data. The same behavior with γ was obtained in Chromo-natural inflation, a model in which inflation is driven by a pseudo-scalar coupled to a non-Abelian gauge field. When the pseudo-scalar can be integrated out, one recovers the model of Gauge-flation plus corrections. It was shown that this identification is very accurate at the background level, but differences emerged in the literature concerning the perturbations of the two models. On the contrary, our results show that the analogy between the two models continues to be accurate also at the perturbative level.« less

  9. High accuracy step gauge interferometer

    NASA Astrophysics Data System (ADS)

    Byman, V.; Jaakkola, T.; Palosuo, I.; Lassila, A.

    2018-05-01

    Step gauges are convenient transfer standards for the calibration of coordinate measuring machines. A novel interferometer for step gauge calibrations implemented at VTT MIKES is described. The four-pass interferometer follows Abbe’s principle and measures the position of the inductive probe attached to a measuring head. The measuring head of the instrument is connected to a balanced boom above the carriage by a piezo translation stage. A key part of the measuring head is an invar structure on which the inductive probe and the corner cubes of the measuring arm of the interferometer are attached. The invar structure can be elevated so that the probe is raised without breaking the laser beam. During probing, the bending of the probe and the interferometer readings are recorded and the measurement face position is extrapolated to zero force. The measurement process is fully automated and the face positions of the steps can be measured up to a length of 2 m. Ambient conditions are measured continuously and the refractive index of air is compensated for. Before measurements the step gauge is aligned with an integrated 2D coordinate measuring system. The expanded uncertainty of step gauge calibration is U=\\sqrt{{{(64 nm)}2}+{{(88× {{10}-9}L)}2}} .

  10. Technical specification for vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaw, J.

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing andmore » designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)« less

  11. Gauge interactions theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zichichi, A.

    This volume brings together physicists from around the world to report and discuss the exciting advances made recently in theoretical and experimental aspects of gauge interactions. Following a presentation of the theoretical foundations of and recent developments in gauge fields, the contrib utors fogus on supersymmetry, the derivation of Higgs particles from gauge fields, and heavy leptons. Other chapters discuss the use of quantum chromodynamics in describing basic interactions among quarks and gluons, in predicting the existence of glueballs, and in application to heavy flavor production in strong interactions. The editor, Antonino Zichichi, provides a study of the multiparticle hadronicmore » systems produced in highenergy soft (pp) interactions. Other interesting chapters deal with photon scattering at very high energies and theoretical alternatives to the electroweak model, and the volume concludes with proposals for future experimental facilities for European physics.« less

  12. Non-Abelian gauge preheating

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Giblin, John T.; Weiner, Zachary J.

    2017-12-01

    We study preheating in models where a scalar inflaton is directly coupled to a non-Abelian S U (2 ) gauge field. In particular, we examine m2ϕ2 inflation with a conformal, dilatonlike coupling to the non-Abelian sector. We describe a numerical scheme that combines lattice gauge theory with standard finite difference methods applied to the scalar field. We show that a significant tachyonic instability allows for efficient preheating, which is parametrically suppressed by increasing the non-Abelian self-coupling. Additionally, we comment on the technical implementation of the evolution scheme and setting initial conditions.

  13. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  14. Active angular alignment of gauge blocks in double-ended interferometers.

    PubMed

    Buchta, Zdeněk; Reřucha, Simon; Hucl, Václav; Cížek, Martin; Sarbort, Martin; Lazar, Josef; Cíp, Ondřej

    2013-09-27

    This paper presents a method implemented in a system for automatic contactless calibration of gauge blocks designed at ISI ASCR. The system combines low-coherence interferometry and laser interferometry, where the first identifies the gauge block sides position and the second one measures the gauge block length itself. A crucial part of the system is the algorithm for gauge block alignment to the measuring beam which is able to compensate the gauge block lateral and longitudinal tilt up to 0.141 mrad. The algorithm is also important for the gauge block position monitoring during its length measurement.

  15. Active Angular Alignment of Gauge Blocks in Double-Ended Interferometers

    PubMed Central

    Buchta, Zdeněk; Řeřucha, Šimon; Hucl, Václav; Čížek, Martin; Šarbort, Martin; Lazar, Josef; Číp, Ondřej

    2013-01-01

    This paper presents a method implemented in a system for automatic contactless calibration of gauge blocks designed at ISI ASCR. The system combines low-coherence interferometry and laser interferometry, where the first identifies the gauge block sides position and the second one measures the gauge block length itself. A crucial part of the system is the algorithm for gauge block alignment to the measuring beam which is able to compensate the gauge block lateral and longitudinal tilt up to 0.141 mrad. The algorithm is also important for the gauge block position monitoring during its length measurement. PMID:24084107

  16. Origin of gauge invariance in string theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  17. Placement accuracy gauge for electrical components and method of using same

    DOEpatents

    Biggs, Peter M.; Dancer, Linda K.; Yerganian, Simon S.

    1988-10-11

    Surface mounted electrical components are typically assembled on printed wiring boards by automatic machines. It is important that the machines accurately move with respect to both X and Y rotational axes in order to insure that components are positioned precisely on connector pads of the printed wiring board being assembled. In accordance with the instant invention, a gauge is used to facilitate convenient accuracy checks. The gauge is a glass substrate on which grids of 0.005 inch lines are scribed to form location and orientation fields where components are to be placed. The grids are referenced from either fiducial marks or the edge of the substrate to establish known positions within the grids. The equipment to be evaluated is programmed to place components in known positions and the components are held in place by tacky adhesive that is sprayed on the substrate prior to placing the components. The accuracy of the component position is then compared to the programmed position by placing the substrate on a light table and observing the component location. If a significant inaccuracy with respect to any of the axes exists, the inaccuracy is apparent because the component is not aligned properly with the grid. If a precise measurement of an axis inaccuracy is desired, a measuring microscope may be utilized.

  18. Placement accuracy gauge for electrical components and method of using same

    DOEpatents

    Biggs, P.M.; Dancer, L.K.; Yerganian, S.S.

    1987-11-12

    Surface mounted electrical components are typically assembled on printed wiring board by automatic machines. It is important that the machines accurately move with respect to both X and Y rotational axes in order to insure that components are positioned precisely on connector pads of the printed wiring board being assembled. In accordance with the instant invention, a gauge is used to facilitate convenient accuracy checks. The gauge is a glass substrate on which grids of 0.005 inch lines are scribed to form location and orientation fields where components are to be placed. The grids are referenced from ether fiducial marks or the edge of the substrate to establish known positions within the grids. The equipment to be evaluated is programmed to place components in known positions and the components are held in place by tacky adhesive that is sprayed on the substrate prior to placing the components. The accuracy of the component position is then compared to the programmed position by placing the substrate on a light table and observing the component location. If a significant inaccuracy with respect to any of the axes exists, the inaccuracy is apparent because the component is not aligned properly with the grid. If a precise measurement of an axis inaccuracy is desired, a measuring microscope may be utilized. 6 figs.

  19. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  20. Fiber-Optic Strain Gauge With High Resolution And Update Rate

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mahajan, Ajay; Sayeh, Mohammad; Regez, Bradley

    2007-01-01

    An improved fiber-optic strain gauge is capable of measuring strains in the approximate range of 0 to 50 microstrains with a resolution of 0.1 microstrain. (To some extent, the resolution of the strain gauge can be tailored and may be extensible to 0.01 microstrain.) The total cost of the hardware components of this strain gauge is less than $100 at 2006 prices. In comparison with prior strain gauges capable of measurement of such low strains, this strain gauge is more accurate, more economical, and more robust, and it operates at a higher update rate. Strain gauges like this one are useful mainly for measuring small strains (including those associated with vibrations) in such structures as rocket test stands, buildings, oilrigs, bridges, and dams. The technology was inspired by the need to measure very small strains on structures supporting liquid oxygen tanks, as a way to measure accurately mass of liquid oxygen during rocket engine testing. This improved fiber-optic strain gauge was developed to overcome some of the deficiencies of both traditional foil strain gauges and prior fiber-optic strain gauges. Traditional foil strain gages do not have adequate signal-to-noise ratios at such small strains. Fiber-optic strain gauges have been shown to be potentially useful for measuring such small strains, but heretofore, the use of fiberoptic strain gauges has been inhibited, variously, by complexity, cost, or low update rate.

  1. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic

  2. Performance of stem flow gauges in greenhouse and desert environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitt, D.G.; Simpson, J.R.; Tipton, J.L.

    1995-06-01

    This study was conducted to evaluate the accuracy and general performance of a heat balance method for estimating transpirational sap flow through plant stems on two tree species in greenhouse and field experiments in Tucson, Arizona. Sap flow through 20-mm diameter stems of oak (Quercus virginiana `Heritage`) and mesquite (Prosopis alba `Colorado`.) trees in containers was measured using stem flow gauges and a precision balance, from January to October, 1991. Overall gauge accuracy, and the effects of gauge location on the tree stem, gauge ventilation, gauge insulation, sheath conductance factor (Ksh) selection method, and increased numbers of vertical thermocouple pairsmore » on gauge performance were evaluated.« less

  3. Perturbative Quantum Gravity from Gauge Theory

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph

    In this dissertation we present the graphical techniques recently developed in the construction of multi-loop scattering amplitudes using the method of generalized unitarity. We construct the three-loop and four-loop four-point amplitudes of N = 8 supergravity using these methods and the Kawaii, Lewellen and Tye tree-level relations which map tree-level gauge theory amplitudes to tree-level gravity theory amplitudes. We conclude by extending a tree-level duality between color and kinematics, generic to gauge theories, to a loop level conjecture, allowing the easy relation between loop-level gauge and gravity kinematics. We provide non-trivial evidence for this conjecture at three-loops in the particular case of maximal supersymmetry.

  4. 27 CFR 19.454 - Gauge for denaturation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dumped from previously gauged containers or spirits transferred directly to mixing tanks from gauge tanks... devices or methods. (Sec. 201, Pub. L. 85-859, 72 Stat. 1358, as amended (26 U.S.C. 5204); sec. 807, Pub...

  5. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  6. Mark-resight abundance estimation under incomplete identification of marked individuals

    USGS Publications Warehouse

    McClintock, Brett T.; Hill, Jason M.; Fritz, Lowell; Chumbley, Kathryn; Luxa, Katie; Diefenbach, Duane R.

    2014-01-01

    Often less expensive and less invasive than conventional mark–recapture, so-called 'mark-resight' methods are popular in the estimation of population abundance. These methods are most often applied when a subset of the population of interest is marked (naturally or artificially), and non-invasive sighting data can be simultaneously collected for both marked and unmarked individuals. However, it can often be difficult to identify marked individuals with certainty during resighting surveys, and incomplete identification of marked individuals is potentially a major source of bias in mark-resight abundance estimators. Previously proposed solutions are ad hoc and will tend to underperform unless marked individual identification rates are relatively high (>90%) or individual sighting heterogeneity is negligible.Based on a complete data likelihood, we present an approach that properly accounts for uncertainty in marked individual detection histories when incomplete identifications occur. The models allow for individual heterogeneity in detection, sampling with (e.g. Poisson) or without (e.g. Bernoulli) replacement, and an unknown number of marked individuals. Using a custom Markov chain Monte Carlo algorithm to facilitate Bayesian inference, we demonstrate these models using two example data sets and investigate their properties via simulation experiments.We estimate abundance for grassland sparrow populations in Pennsylvania, USA when sampling was conducted with replacement and the number of marked individuals was either known or unknown. To increase marked individual identification probabilities, extensive territory mapping was used to assign incomplete identifications to individuals based on location. Despite marked individual identification probabilities as low as 67% in the absence of this territorial mapping procedure, we generally found little return (or need) for this time-consuming investment when using our proposed approach. We also estimate rookery abundance

  7. Nuclear Gauges Used in Road Construction | RadTown USA ...

    EPA Pesticide Factsheets

    2017-08-07

    Nuclear gauges use radioactive sources to measure the thickness, density or make-up of a wide variety of materials and surfaces. When properly used, nuclear gauges will not expose the public to radiation. Nuclear gauges must be used safely and disposed of properly.

  8. Gauged BPS baby Skyrmions with quantized magnetic flux

    NASA Astrophysics Data System (ADS)

    Adam, C.; Wereszczynski, A.

    2017-06-01

    A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.

  9. A Gas Pressure Scale Based on Primary Standard Piston Gauges

    PubMed Central

    Olson, Douglas A.; Driver, R. Greg; Bowers, Walter J.

    2010-01-01

    The National Institute of Standards and Technology (NIST) has redefined its gas pressure scale, up to 17 MPa, based on two primary standard piston gauges. The primary standard piston gauges are 35.8 mm in diameter and operate from 20 kPa to 1 MPa. Ten secondary standard piston gauges, two each of five series of the Ruska 2465 type, with successively smaller diameters form the scale extending up to 17 MPa. Six of the piston gauges were directly compared to the primary standards to determine their effective area and expanded (k = 2) uncertainty. Two piston gauges operating to 7 MPa were compared to the 1.4 MPa gauges, and two piston gauges operating to 17 MPa were compared to the 7 MPa gauges. Distortion in the 7 MPa piston gauges was determined by comparing those gauges to a DH Instruments PG7601 type piston gauge, whose distortion was calculated using elasticity theory. The relative standard uncertainties achieved by the primary standards range from 3.0 × 10−6 to 3.2 × 10−6. The relative standard uncertainty of the secondary standards is as low as 4.2 × 10−6 at 300 kPa. The effective areas and uncertainties were validated by comparison to standards of other National Metrology Institutes (NMIs). Results show agreement in all cases to better than the expanded (k = 2) uncertainty of the difference between NIST and the other NMIs, and in most cases to better than the standard (k = 1) uncertainty of the difference. PMID:27134793

  10. Pure gauge spin-orbit couplings

    NASA Astrophysics Data System (ADS)

    Shikakhwa, M. S.

    2017-01-01

    Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2×2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but θ-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.

  11. To gauge or not to gauge?

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan; Milekhin, Alexey

    2018-04-01

    The D0 brane, or BFSS, matrix model is a quantum mechanical theory with an interesting gravity dual. We consider a variant of this model where we treat the SU( N) symmetry as a global symmetry, rather than as a gauge symmetry. This variant contains new non-singlet states. We consider the impact of these new states on its gravity dual. We argue that the gravity dual is essentially the same as the one for the original matrix model. The non-singlet states have higher energy at strong coupling and are therefore dynamically suppressed.

  12. Switching Circuit for Shop Vacuum System

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1987-01-01

    No internal connections to machine tools required. Switching circuit controls vacuum system draws debris from grinders and sanders in machine shop. Circuit automatically turns on vacuum system whenever at least one sander or grinder operating. Debris safely removed, even when operator neglects to turn on vacuum system manually. Pickup coils sense alternating magnetic fields just outside operating machines. Signal from any coil or combination of coils causes vacuum system to be turned on.

  13. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  14. Gauge Theory on a Space with Linear Lie Type Fuzziness

    NASA Astrophysics Data System (ADS)

    Khorrami, Mohammad; Fatollahi, Amir H.; Shariati, Ahmad

    2013-03-01

    The U(1) gauge theory on a space with Lie type noncommutativity is constructed. The construction is based on the group of translations in Fourier space, which in contrast to space itself is commutative. In analogy with lattice gauge theory, the object playing the role of flux of field strength per plaquette, as well as the action, is constructed. It is observed that the theory, in comparison with ordinary U(1) gauge theory, has an extra gauge field component. This phenomena is reminiscent of similar ones in formulation of SU(N) gauge theory in space with canonical noncommutativity, and also appearance of gauge field component in discrete direction of Connes' construction of the Standard Model.

  15. Postdural puncture headache and back pain after spinal anesthesia with 27-gauge Quincke and 26-gauge Atraucan needles.

    PubMed

    Schultz, A M; Ulbing, S; Kaider, A; Lehofer, F

    1996-01-01

    The purpose of this study was to determine whether the 26-gauge Atraucan needle shows any benefit on the incidence of postdural puncture headache (PDPH) and back pain as compared with the 27-gauge Quincke needle. We investigated 388 patients, 171 men and 217 women, who were receiving spinal anesthesia for subumbilical surgery. We compared spinal anesthesia via the 27-gauge Quincke needle in 202 patients (group Q) and via the 26-gauge Atraucan needle in 186 patients (group A). The incidence of PDPH was 2.97% (6 of 202) in group Q and 2.69% (5 of 186) in group A. The incidence of back pain was 4.95% (10 of 202) in group Q and 5.91% (11 of 186) in group A. There was no statistically significant association of needle type, age, or sex with the incidence of PDPH and back pain. Both needles are associated with very low incidences of PDPH and back pain, which are not affected by which needle is chosen.

  16. Supersymmetric solutions of the cosmological, gauged, ℂ magic model

    NASA Astrophysics Data System (ADS)

    Chimento, Samuele; Ortín, Tomás; Ruipérez, Alejandro

    2018-05-01

    We construct supersymmetric solutions of theories of gauged N = 1 , d = 5 supergravity coupled to vector multiplets with a U(1)R Abelian (Fayet-Iliopoulos) gauging and an independent SU(2) gauging associated to an SU(2) isometry group of the Real Special scalar manifold. These theories provide minimal supersymmetrizations of 5-dimensional SU(2) Einstein-Yang-Mills theories with negative cosmological constant. We consider a minimal model with these gauge groups and the "magic model" based on the Jordan algebra J 3 ℂ with gauge group SU(3) × U(1)R, which is a consistent truncation of maximal SO(6)-gauged supergravity in d = 5 and whose solutions can be embedded in Type IIB Superstring Theory. We find several solutions containing selfdual SU(2) instantons, some of which asymptote to AdS5 and some of which are very small, supersymmetric, deformations of AdS5. We also show how some of those solutions can be embedded in Romans' SU(2) × U(1)-gauged half-maximal supergravity, which was obtained by Lu, Pope and Tran by compactification of the Type IIB Superstring effective action. This provides another way of uplifting those solutions to 10 dimensions.

  17. Delicious Low GL space foods by using Low GI materials -IH and Vacuum cooking -

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Nagasaka, Sanako; Murasaki, Masahiro; Space Agriculture Task Force, J.

    Enough life-support systems are necessary to stay in space for a long term. The management of the meal for astronauts is in particular very important. When an astronaut gets sick in outer space, it means death. To astronauts, the delicious good balance space foods are essential for their work. This study was aimed at making balance space foods menu for the healthy space-life. The kitchen utensil has a limit in the space environment. And a method to warm is only heater without fire. Therefore purpose of this study, we make the space foods which make by using vacuum cooking device and the IH heater We made space foods menu to referred to Japanese nutrition standard in 2010. We made space foods menu which are using "brown rice, wheat, soy bean, sweet potato and green-vegetable" and " loach and insects which are silkworm pupa, snail, mud snail, turmait, fly, grasshopper, bee". We use ten health adults as subjects. Ten subjects performed the sensory test of the questionnaire method. There was the sensuality examination in the item of "taste, a fragrance, color, the quantity" and acquired a mark at ten points of perfect scores.. We could make the space foods which we devised with vacuum cooking and IH deliciously. As a result of sensuality examination, the eight points in ten points of perfect scores was appeared. This result showed, our space food menu is delicious. We can store these space foods with a refrigerator for 20 days by making vacuum cooking. This thing is at all important result so that a save is enabled when surplus food was done in future by performing vacuum cooking. We want to make delicious space foods menu with vacuum cooking and IH heater more in future.

  18. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass coronary pressure gauge...

  19. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass coronary pressure gauge...

  20. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass coronary pressure gauge...

  1. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass coronary pressure gauge...

  2. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass coronary pressure gauge...

  3. Hydrocode Analysis of Lateral Stress Gauges in Shocked Tantalum

    NASA Astrophysics Data System (ADS)

    Harris, Ernest; Winter, Ron

    2007-06-01

    Experiements published by other workers on the resistance change of manganin stress gauges embedded in a lateral orientation in Tantalum targets have been analysed using an Adaptive Mesh Refinement Hydrocode. It was found that for four experiments the shape of the time profile of the computed lateral stress in the mounting layer closely matched the shape of the experimental lateral stress profiles. However, the calculated lateral stresses at the gauge location in the mounting layer are significantly less than the stresses that would have been produced in the target if no gauge had been present. The perturbation caused by the gauge increased as the strength of the applied shock increased. When the perturbations are taken into account values of flow stress that are significantly smaller than those reported in the original research paper are derived. The work demonstrates that the lateral gauge technique can give valuable information on strength provided high resolution simulation is used to compensate for the perturbations caused by the gauges.

  4. Investigation of Dielectric Breakdown Characteristics for Double-break Vacuum Interrupter and Dielectric Breakdown Probability Distribution in Vacuum Interrupter

    NASA Astrophysics Data System (ADS)

    Shioiri, Tetsu; Asari, Naoki; Sato, Junichi; Sasage, Kosuke; Yokokura, Kunio; Homma, Mitsutaka; Suzuki, Katsumi

    To investigate the reliability of equipment of vacuum insulation, a study was carried out to clarify breakdown probability distributions in vacuum gap. Further, a double-break vacuum circuit breaker was investigated for breakdown probability distribution. The test results show that the breakdown probability distribution of the vacuum gap can be represented by a Weibull distribution using a location parameter, which shows the voltage that permits a zero breakdown probability. The location parameter obtained from Weibull plot depends on electrode area. The shape parameter obtained from Weibull plot of vacuum gap was 10∼14, and is constant irrespective non-uniform field factor. The breakdown probability distribution after no-load switching can be represented by Weibull distribution using a location parameter. The shape parameter after no-load switching was 6∼8.5, and is constant, irrespective of gap length. This indicates that the scatter of breakdown voltage was increased by no-load switching. If the vacuum circuit breaker uses a double break, breakdown probability at low voltage becomes lower than single-break probability. Although potential distribution is a concern in the double-break vacuum cuicuit breaker, its insulation reliability is better than that of the single-break vacuum interrupter even if the bias of the vacuum interrupter's sharing voltage is taken into account.

  5. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  6. Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Decker, R. F.; Rowe, John P.; Freeman, J. W.

    1959-01-01

    The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.

  7. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  8. Gauge invariance for a whole Abelian model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Soares, W.

    Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is themore » effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.« less

  9. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  10. Miniature high temperature plug-type heat flux gauges

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1992-01-01

    The objective is to describe continuing efforts to develop methods for measuring surface heat flux, gauge active surface temperature, and heat transfer coefficient quantities. The methodology involves inventing a procedure for fabricating improved plug-type heat flux gauges and also for formulating inverse heat conduction models and calculation procedures. These models and procedures are required for making indirect measurements of these quantities from direct temperature measurements at gauge interior locations. Measurements of these quantities were made in a turbine blade thermal cycling tester (TBT) located at MSFC. The TBT partially simulates the turbopump turbine environment in the Space Shuttle Main Engine. After the TBT test, experiments were performed in an arc lamp to analyze gauge quality.

  11. Field correlation of PQI gauge with nuclear density gauge: phase 1.

    DOT National Transportation Integrated Search

    2006-12-01

    Traditionally, the Oklahoma Department of Transportation (ODOT) uses a nuclear density gauge as a quality control (QC) and quality assurance (QA) tool for in-place density. The nuclear-based devices, however, tend to have problems associated with lic...

  12. Gauge-invariant effective potential: Equilibrium and nonequilibrium aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyanovsky, D.; Brahm, D.; Holman, R.

    1996-07-01

    We propose a gauge-invariant formulation of the effective potential in terms of a gauge-invariant order parameter, for the Abelian Higgs model. The one-loop contribution at zero and finite temperature is computed explicitly, and the leading terms in the high temperature expansion are obtained. The result is contrasted with the effective potential obtained in several covariant gauge-fixing schemes, and the gauge-invariant quantities that can be reliably extracted from these are identified. It is pointed out that the gauge-invariant effective potential in the one-loop approximation is complex for {ital all} {ital values} of the order parameter between the maximum and the minimummore » of the tree level potential, both at zero and nonzero temperatures. The imaginary part is related to long-wavelength instabilities towards phase separation. We study the real-time dynamics of initial states in the spinodal region, and relate the imaginary part of the effective potential to the growth rate of equal-time gauge-invariant correlation functions in these states. We conjecture that the spinodal instabilities may play a role in nonequilibrium processes {ital inside} the nucleating bubbles if the transition is first order. {copyright} {ital 1996 The American Physical Society.}« less

  13. Gravitationally induced zero modes of the Faddeev-Popov operator in the Coulomb gauge for Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2010-08-01

    It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the Abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentials. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows one to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three-dimensional anti-de Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.

  14. Running vacuum cosmological models: linear scalar perturbations

    NASA Astrophysics Data System (ADS)

    Perico, E. L. D.; Tamayo, D. A.

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ(H2) or Λ(R). Such models assume an equation of state for the vacuum given by bar PΛ = - bar rhoΛ, relating its background pressure bar PΛ with its mean energy density bar rhoΛ ≡ Λ/8πG. This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely bar rhoΛ = Σibar rhoΛi. Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ(H2) scenario the vacuum is coupled with every matter component, whereas the Λ(R) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  15. The energy-momentum tensor(s) in classical gauge theories

    DOE PAGES

    Blaschke, Daniel N.; Gieres, François; Reboud, Méril; ...

    2016-07-12

    We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. In conclusion, the relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.

  16. 21 CFR 888.4300 - Depth gauge for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Depth gauge for clinical use. 888.4300 Section 888...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4300 Depth gauge for clinical use. (a) Identification. A depth gauge for clinical use is a measuring device intended for various medical purposes, such...

  17. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2011-10-01 2011-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  18. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2013-10-01 2013-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  19. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2012-10-01 2012-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  20. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2014-10-01 2014-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  1. 46 CFR 154.1305 - Liquid level gauging system: Standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Instrumentation § 154.1305 Liquid level gauging system: Standards. (a) Each cargo tank must have at least one liquid level gauging system that is operable: (1) At pressures up to, and including, the... 46 Shipping 5 2010-10-01 2010-10-01 false Liquid level gauging system: Standards. 154.1305 Section...

  2. Parametric Dynamic Load Prediction of a Narrow Gauge Rocket Sled

    DTIC Science & Technology

    2006-12-01

    Monorail λ Compared to Sled Tests.......................................................... 11 Figure 2.1 Application of Vertical λ to a Narrow Gauge sled...Three distinct sled configurations are used: monorail , dual rail wide gauge, and dual rail narrow gauge. Of the three, the narrow gauge...weight and the resulting value was termed λ. Monorail λ factor loading was first documented by Mixon (1971) where a few measured data points were

  3. Post dural puncture headache in cesarean section: comparison of 25-gauge Whitacre with 25- and 26-gauge Quincke needles.

    PubMed

    Hwang, J J; Ho, S T; Wang, J J; Liu, H S

    1997-03-01

    Our previous study showed that there were no significant differences in the incidence of post dural puncture headache (PDPH) relevant to the use of 24 to 26-gauge Quincke spinal needles in obstetric patients. Again, we were eager to know if the pencil-point spinal needle (Whitacre) would be able to decrease the incidence of PDPH compared to Quincke spinal needle. We prospectively observed 94 spinal anesthesias for cesarean section performed during the period from May 1993 to July 1995. The 25-gauge Whitacre needles were used. In practice the insertion of needle was made through median line approach and the puncture was considered eligible only in one attempt. The PDPH was observed until its disappearance, and one without PDPH had also been observed for at least one week for likelihood of delayed occurrence. The data were compared with those of our previous study regarding the use of 25- and 26-gauge Quincke needles in obstetric patients. All of the data were analyzed using the Fisher exact test. The incidence of PDPH was 1.06%. In comparison there was no significant difference from that of 25- and 26-gauge Quincke needles (3.65% and 2.06%, respective). Only one case suffered from PDPH in the Whitacre group. It was mild and relieved with bed rest and hydration. Although the difference was not statistically significant, the 25-gauge Whitacre spinal needle caused a lower incidence and less severity of PDPH than the 25- and 26-gauge Quincke needles did.

  4. An evaluation of the Wyoming Gauge System for snowfall measurement

    USGS Publications Warehouse

    Yang, Daqing; Kane, Douglas L.; Hinzman, Larry D.; Goodison, Barry E.; Metcalfe, John R.; Louie, Paul Y.T.; Leavesley, George H.; Emerson, Douglas G.; Hanson, Clayton L.

    2000-01-01

    The Wyoming snow fence (shield) has been widely used with precipitation gauges for snowfall measurement at more than 25 locations in Alaska since the late 1970s. This gauge's measurements have been taken as the reference for correcting wind‐induced gauge undercatch of snowfall in Alaska. Recently, this fence (shield) was tested in the World Meteorological Organization Solid Precipitation Measurement Intercomparison Project at four locations in the United States of America and Canada for six winter seasons. At the Intercomparison sites an octagonal vertical Double Fence with a Russian Tretyakov gauge or a Universal Belfort recording gauge was installed and used as the Intercomparison Reference (DFIR) to provide true snowfall amounts for this Intercomparison experiment. The Intercomparison data collected were compiled at the four sites that represent a variety of climate, terrain, and exposure. On the basis of these data sets the performance of the Wyoming gauge system for snowfall observations was carefully evaluated against the DFIR and snow cover data. The results show that (1) the mean snow catch efficiency of the Wyoming gauge compared with the DFIR is about 80–90%, (2) there exists a close linear relation between the measurements of the two gauge systems and this relation may serve as a transfer function to adjust the Wyoming gauge records to obtain an estimate of the true snowfall amount, (3) catch efficiency of the Wyoming gauge does not change with wind speed and temperature, and (4) Wyoming gauge measurements are generally compatible to the snowpack water equivalent at selected locations in northern Alaska. These results are important to our effort of determining true snowfall amounts in the high latitudes, and they are also useful for regional hydrologic and climatic analyses.

  5. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. (b) Each vacuum air system line and fitting on the discharge side of the pump that might contain...

  6. Twenty-five-gauge vitrectomy versus 23-gauge vitrectomy in the management of macular diseases: a comparative analysis through a Health Technology Assessment model.

    PubMed

    Grosso, Andrea; Charrier, Lorena; Lovato, Emanuela; Panico, Claudio; Mariotti, Cesare; Dapavo, Giancarlo; Chiuminatto, Roberto; Siliquini, Roberta; Gianino, Maria Michela

    2014-04-01

    Small-gauge vitreoretinal techniques have been shown to be safe and effective in the management of a wide spectrum of vitreoretinal diseases. However, the costs of the new technologies may represent a critical issue for national health systems. The aim of the study is to plan a Health Technology Assessment (HTA) by performing a comparative analysis between the 23- and 25-gauge techniques in the management of macular diseases (epiretinal membranes, macular holes, vitreo-macular traction syndrome). In this prospective study, 45-80-year-old patients undergoing vitrectomy surgery for macular disease were enrolled at the Torino Eye Hospital. In the HTA model we assessed the safety, clinical effectiveness, and cost and financial evaluation of 23-gauge compared with 25-gauge vitrectomies. Fifty patients entered the study; 14 patients underwent 23-gauge vitrectomy and 36 underwent 25-gauge vitrectomy. There was no statistically significant difference in post-operative visual acuity at 1 year between the two groups. No cases of retinal detachment or endophtalmitis were registered at 1-year follow-up. The 23-gauge technique was slightly more expensive than the 25-gauge: the total surgical costs were EUR1217.70 versus EUR1164.84 (p = 0.351). We provide a financial comparison between new vitreoretinal procedures recently introduced in the market and reimbursed by the Italian National Health System and we also stimulate a critical debate about the expensive technocratic model of medicine.

  7. 49 CFR 179.201-9 - Gauging device.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-9 Gauging device. A gauging device of an...

  8. 49 CFR 179.201-9 - Gauging device.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-9 Gauging device. A gauging device of an...

  9. Gas propagation in a liquid helium cooled vacuum tube following a sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, Ram C.

    This dissertation describes the propagation of near atmospheric nitrogen gas that rushes into a liquid helium cooled vacuum tube after the tube suddenly loses vacuum. The loss-of-vacuum scenario resembles accidental venting of atmospheric air to the beam-line of a superconducting radio frequency particle accelerator and is investigated to understand how in the presence of condensation, the in-flowing air will propagate in such geometry. In a series of controlled experiments, room temperature nitrogen gas (a substitute for air) at a variety of mass flow rates was vented to a high vacuum tube immersed in a bath of liquid helium. Pressure probes and thermometers installed on the tube along its length measured respectively the tube pressure and tube wall temperature rise due to gas flooding and condensation. At high mass in-flow rates a gas front propagated down the vacuum tube but with a continuously decreasing speed. Regression analysis of the measured front arrival times indicates that the speed decreases nearly exponentially with the travel length. At low enough mass in-flow rates, no front propagated in the vacuum tube. Instead, the in-flowing gas steadily condensed over a short section of the tube near its entrance and the front appeared to `freeze-out'. An analytical expression is derived for gas front propagation speed in a vacuum tube in the presence of condensation. The analytical model qualitatively explains the front deceleration and flow freeze-out. The model is then simplified and supplemented with condensation heat/mass transfer data to again find the front to decelerate exponentially while going away from the tube entrance. Within the experimental and procedural uncertainty, the exponential decay length-scales obtained from the front arrival time regression and from the simplified model agree.

  10. Developing a vacuum cooking equipment prototype to produce strawberry jam and optimization of vacuum cooking conditions.

    PubMed

    Okut, Dilara; Devseren, Esra; Koç, Mehmet; Ocak, Özgül Özdestan; Karataş, Haluk; Kaymak-Ertekin, Figen

    2018-01-01

    Purpose of this study was to develop prototype cooking equipment that can work at reduced pressure and to evaluate its performance for production of strawberry jam. The effect of vacuum cooking conditions on color soluble solid content, reducing sugars total sugars HMF and sensory properties were investigated. Also, the optimum vacuum cooking conditions for strawberry jam were optimized for Composite Rotatable Design. The optimum cooking temperature and time were determined targeting maximum soluble solid content and sensory attributes (consistency) and minimum Hue value and HMF content. The optimum vacuum cooking conditions determined were 74.4 °C temperature and 19.8 time. The soluble solid content strawberry jam made by vacuum process were similar to those prepared by traditional method. HMF contents of jams produced with vacuum cooking method were well within limit of standards.

  11. Gauge-independent Abelian mechanism of color confinement in gluodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Tsuneo; Ishiguro, Katsuya; Sekido, Toru

    Abelian mechanism of non-Abelian color confinement is observed in a gauge-independent way by high precision lattice Monte Carlo simulations in gluodynamics. An Abelian gauge field is extracted with no gauge fixing. Then we decompose the Abelian field into regular photon and singular monopole parts using the Hodge decomposition. We find that only the monopole part is responsible for the string tension. The investigation of the flux-tube profile then shows that an Abelian electric field defined in an arbitrary color direction is squeezed by the monopole supercurrent with the same color direction, and the quantitative features of flux squeezing are consistentmore » with those observed previously after Abelian projections with gauge fixing. Non-Abelian color confinement is explained in the framework of the gauge-independent Abelian dual Meissner effect.« less

  12. Phenomenology of strongly coupled chiral gauge theories

    DOE PAGES

    Bai, Yang; Berger, Joshua; Osborne, James; ...

    2016-11-25

    A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1)' gauge symmetry such that their bare masses are related to the U(1)'-breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of suchmore » models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z'γ resonance, where the Z' naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.« less

  13. Accuracy of tretyakov precipitation gauge: Result of wmo intercomparison

    USGS Publications Warehouse

    Yang, Daqing; Goodison, Barry E.; Metcalfe, John R.; Golubev, Valentin S.; Elomaa, Esko; Gunther, Thilo; Bates, Roy; Pangburn, Timothy; Hanson, Clayton L.; Emerson, Douglas G.; Copaciu, Voilete; Milkovic, Janja

    1995-01-01

    The Tretyakov non-recording precipitation gauge has been used historically as the official precipitation measurement instrument in the Russian (formerly the USSR) climatic and hydrological station network and in a number of other European countries. From 1986 to 1993, the accuracy and performance of this gauge were evaluated during the WMO Solid Precipitation Measurement Intercomparison at 11 stations in Canada, the USA, Russia, Germany, Finland, Romania and Croatia. The double fence intercomparison reference (DFIR) was the reference standard used at all the Intercomparison stations in the Intercomparison. The Intercomparison data collected at the different sites are compatible with respect to the catch ratio (measured/DFIR) for the same gauge, when compared using mean wind speed at the height of the gauge orifice during the observation period.The Intercomparison data for the Tretyakov gauge were compiled from measurements made at these WMO intercomparison sites. These data represent a variety of climates, terrains and exposures. The effects of environmental factors, such as wind speed, wind direction, type of precipitation and temperature, on gauge catch ratios were investigated. Wind speed was found to be the most important factor determining the gauge catch and air temperature had a secondary effect when precipitation was classified into snow, mixed and rain. The results of the analysis of gauge catch ratio versus wind speed and temperature on a daily time step are presented for various types of precipitation. Independent checks of the correction equations against the DFIR have been conducted at those Intercomparison stations and a good agreement (difference less than 10%) has been obtained. The use of such adjustment procedures should significantly improve the accuracy and homogeneity of gauge-measured precipitation data over large regions of the former USSR and central Europe.

  14. Hydrocode Analysis of Lateral Stress Gauges in Shocked Tantalum

    NASA Astrophysics Data System (ADS)

    Harris, E. J.; Winter, R. E.

    2007-12-01

    Experiments published by other workers, on the resistance change of manganin stress gauges embedded in a lateral orientation in tantalum targets shocked to a range of stresses, have been analysed using an adaptive mesh refinement hydrocode. It was found that for all of the four experiments the shape of the time profile of the computed lateral stress in the mounting layer closely matched the shape of the experimental lateral stress profiles. However, the calculated lateral stresses at the gauge location in the mounting layer are significantly less than the lateral stresses that would have been produced in the target if no gauge had been present. The perturbation caused by the gauge increased as the strength of the applied shock increased. When the perturbations are taken into account values of flow stress that are significantly smaller than those reported in the original research paper are derived. The work shows that the lateral gauge technique can give valuable information on strength provided high resolution simulation is used to compensate for the perturbations caused by the gauges.

  15. Convertible socket for pressure gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissell, R.D.

    1990-01-01

    This patent describes a pressure gauge having a case in which is disposed a Bourdon tube and a base socket connected to the Bourdon tube for placing the tube in pressure communication with a fluid pressure source. Base socket has a rearward face and a bottom face with respect to the gauge adjacent openings defined through the case and an internal passage communication with the tube. It includes means for connecting a source of fluid pressure to the socket selectively through one of the case openings to the bottom face or the rearward face.

  16. Gauge fixing and BFV quantization

    NASA Astrophysics Data System (ADS)

    Rogers, Alice

    2000-01-01

    Non-singularity conditions are established for the Batalin-Fradkin-Vilkovisky (BFV) gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that the anticommutator of this fermion with the BRST charge regularizes the path integral by regularizing the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.

  17. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a.... (b) Each vacuum air system line and fitting on the discharge side of the pump that might contain...

  18. Mark.

    ERIC Educational Resources Information Center

    Lipman, Matthew; Smith, Theresa L., Ed.

    Mark is the central character in this story designed to help adolescents formulate a philosophy of values. The story is well suited for use in high school social studies courses and/or in philosophy or guidance units. Mark's thoughts and actions are reported as he interacts with his family, friends, acquaintances, and individuals of authority…

  19. Vacuum status-display and sector-conditioning programs

    NASA Astrophysics Data System (ADS)

    Skelly, J.; Yen, S.

    1990-08-01

    Two programs have been developed for observation and control of the AGS vacuum system, which include the following notable features: (1) they incorporate a graphical user interface and (2) they are driven by a relational database which describes the vacuum system. The vacuum system comprises some 440 devices organized into 28 vacuum sectors. The status-display program invites menu selection of a sector, interrogates the relational database for relevant vacuum devices, acquires live readbacks and posts a graphical display of their status. The sector-conditioning program likewise invites sector selection, produces the same status display and also implements process control logic on the sector devices to pump the sector down from atmospheric pressure to high vacuum over a period extending several hours. As additional devices are installed in the vacuum system, the devices are added to the relational database; these programs then automatically include the new devices.

  20. Dynamical gauge effects in an open quantum network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    We describe new experimental techniques for simulation of high-energy field theories based on an analogy between open thermodynamic systems and effective dynamical gauge-fields following SU(2) × U(1) Yang-Mills models. By coupling near-resonant laser-modes to atoms moving in a disordered optical environment, we create an open system which exhibits a non-equilibrium phase transition between two steady-state behaviors, exhibiting scale-invariant behavior near the transition. By measuring transport of atoms through the disordered network, we observe two distinct scaling behaviors, corresponding to the classical and quantum limits for the dynamical gauge field. This behavior is loosely analogous to dynamical gauge effects in quantum chromodynamics, and can mapped onto generalized open problems in theoretical understanding of quantized non-Abelian gauge theories. Additional, the scaling behavior can be understood from the geometric structure of the gauge potential and linked to the measure of information in the local disordered potential, reflecting an underlying holographic principle. We acknowledge support from NSF Award No.1068570, and the Charles E. Kaufman Foundation.

  1. Nonabelian Bundle Gerbes, Their Differential Geometry and Gauge Theory

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Cantini, Luigi; Jurčo, Branislav

    2005-03-01

    Bundle gerbes are a higher version of line bundles, we present nonabelian bundle gerbes as a higher version of principal bundles. Connection, curving, curvature and gauge transformations are studied both in a global coordinate independent formalism and in local coordinates. These are the gauge fields needed for the construction of Yang-Mills theories with 2-form gauge potential.

  2. Working in a Vacuum

    ERIC Educational Resources Information Center

    Rathey, Allen

    2005-01-01

    In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)…

  3. Papilloma diagnosed at MRI-guided vacuum-assisted breast biopsy: is surgical excision still warranted?

    PubMed

    Brennan, Sandra B; Corben, Adriana; Liberman, Laura; Dershaw, D David; Brogi, Edi; Van Zee, Kimberly J; Morris, Elizabeth

    2012-10-01

    The objective of our study was to determine the frequency of cancer at surgery in breast lesions yielding papilloma at MRI-guided 9-gauge vacuum-assisted biopsy (VAB) and to determine whether any features are associated with cancer upgrade. For this study, 1487 MRI-guided vacuum-assisted biopsies performed from January 2004 to March 2011 were reviewed. Lesions yielding papilloma were identified and classified as papilloma with or without atypia. Surgical findings were reviewed to determine the cancer rate. Statistical analysis was performed and 95% CIs were calculated. Papilloma was identified in 75 of the 1487 MRI-guided vacuum-assisted biopsies (5%). These 75 papillomas occurred in 73 women with a median age of 49 years (age range, 27-70 years). Of the 75 papillomas, 25 (33%) had atypia and 50 (67%) did not on core needle biopsy. Subsequent surgery of 67 of the 75 papillomas (89%) yielded ductal carcinoma in situ (DCIS) in four (6%; 95% CI, 2-15%). Surgery yielded DCIS in two of 23 papillomas with atypia (9%; 95% CI, 1-28%) at MRI-guided VAB and in two of 44 papillomas without atypia (5%; 95% CI, 0.4-16%) at MRI-guided VAB; these cancer rates did not differ significantly (p=0.6). Postmenopausal status (p=0.04) and histologic size of less than 0.2 cm (p=0.04) had a significant association with the cancer upgrade rate. Papilloma with or without atypia was found in 5% of patients who underwent MRI-guided VAB during the study period. Surgery revealed cancer in 6%. DCIS was found at surgery in 9% of lesions yielding papilloma with atypia versus 5% of lesions yielding papilloma without atypia. For lesions yielding papilloma with or without atypia at MRI-guided VAB, surgical excision is warranted.

  4. Selection of peripheral intravenous catheters with 24-gauge side-holes versus those with 22-gauge end-hole for MDCT: A prospective randomized study.

    PubMed

    Tamura, Akio; Kato, Kenichi; Kamata, Masayoshi; Suzuki, Tomohiro; Suzuki, Michiko; Nakayama, Manabu; Tomabechi, Makiko; Nakasato, Tatsuhiko; Ehara, Shigeru

    2017-02-01

    To compare the 24-gauge side-holes catheter and conventional 22-gauge end-hole catheter in terms of safety, injection pressure, and contrast enhancement on multi-detector computed tomography (MDCT). In a randomized single-center study, 180 patients were randomized to either the 24-gauge side-holes catheter or the 22-gauge end-hole catheter groups. The primary endpoint was safety during intravenous administration of contrast material for MDCT, using a non-inferiority analysis (lower limit 95% CI greater than -10% non-inferiority margin for the group difference). The secondary endpoints were injection pressure and contrast enhancement. A total of 174 patients were analyzed for safety during intravenous contrast material administration for MDCT. The overall extravasation rate was 1.1% (2/174 patients); 1 (1.2%) minor episode occurred in the 24-gauge side-holes catheter group and 1 (1.1%) in the 22-gauge end-hole catheter group (difference: 0.1%, 95% CI: -3.17% to 3.28%, non-inferiority P=1). The mean maximum pressure was higher with the 24-gauge side-holes catheter than with the 22-gauge end-hole catheter (8.16±0.95kg/cm 2 vs. 4.79±0.63kg/cm 2 , P<0.001). The mean contrast enhancement of the abdominal aorta, celiac artery, superior mesenteric artery, and pancreatic parenchyma in the two groups were not significantly different. In conclusion, our study showed that the 24-gauge side-holes catheter is safe and suitable for delivering iodine with a concentration of 300mg/mL at a flow-rate of 3mL/s, and it may contribute to the care of some patients, such as patients who have fragile and small veins. (Trial registration: UMIN000023727). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Enamel-based mark performance for marking Chinese mystery snail Bellamya chinensis

    USGS Publications Warehouse

    Wong, Alec; Allen, Craig R.; Hart, Noelle M.; Haak, Danielle M.; Pope, Kevin L.; Smeenk, Nicholas A.; Stephen, Bruce J.; Uden, Daniel R.

    2013-01-01

    The exoskeleton of gastropods provides a convenient surface for carrying marks, and i the interest of improving future marking methods our laboratory assessed the performance of an enamel paint. The endurance of the paint was also compared to other marking methods assessed in the past. We marked the shells of 30 adult Chinese mystery snails Bellamya chinensis and held them in an aquarium for 181 days. We observed no complete degradation of any enamel-paint mark during the 181 days. The enamel-paint mark was superior to a nai;-polish mark, which lasted a median of 100 days. Enamel-paint marks also have a lower rate of loss (0.00 month-1 181 days) than plastic bee tags (0.01 month-1, 57 days), gouache paint (0.07 month-1, 18.5 days), or car body paint from studies found in scientific literature. Legibility of enamel-paint marks had a median lifetime of 102 days. The use of enamel paint on the shells of gastropods is a viable option for studies lasting up to 6 months. Furthermore, visits to capture-mark-recapture site 1 year after application of enamel-paint marks on B. chinesnis shells produced several individuals on which the enamel paint was still visible, although further testing is required to clarify durability over longer periods.

  6. Hyperunified field theory and gravitational gauge-geometry duality

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  7. On denture marking.

    PubMed

    Borrman, H I; DiZinno, J A; Wasén, J; René, N

    1999-06-01

    During the last decades in Sweden dentures have been permanently marked with a stainless steel metal band incorporated into the acrylic and containing the patient's birth date, a special number, and "S" for Sweden. The last recommendation issued by the National Board of Health and Welfare states that "the patients shall always be offered denture marking and be informed about the benefit thereof. Denture marking is not permitted if the patient refuses it". Requirements for denture markers have been that they should be biologically inert (when incorporated into the denture), not be expensive, be easy to inscribe, be possible to retrieve after an accident, and survive elevated temperatures for a reasonable time under normal circumstances. Although the frequency of edentulousness has decreased in recent years due to the improvement in oral health there remains a need to address the issue of marking of complete dentures, because there is a large variation in the oral status of populations in different countries. Given that only one marked denture can reveal the identity of a deceased person when all other methods fail to do so, makes it worthwhile. Furthermore, denture marking is important in long-term care facilities. We have investigated the issue of denture marking in Europe and in the United States. The results from the European survey show that denture marking is, to our knowledge regulated by law only in Sweden and Iceland. In the US denture marking is so far mandatory in 21 states while New York State requires dentures to be marked if the patient requests it and several other states impose the obligation to mark dentures on long-term care facilities. Since there is no international consensus regarding the issue of denture marking it is important to address it. A survey from the Nordic countries has shown that if denture marking was in general use, the contribution to the establishment of identity by forensic odontology in cases of fire would increase by about 10

  8. Minimal realization of right-handed gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-01-01

    We propose a minimally extended gauge symmetry model with U (1 )R , where only the right-handed fermions have nonzero charges in the fermion sector. To achieve both anomaly cancellations and minimality, three right-handed neutrinos are naturally required, and the standard model Higgs has to have nonzero charge under this symmetry. Then we find that its breaking scale(Λ ) is restricted by precise measurement of neutral gauge boson in the standard model; therefore, O (10 ) TeV ≲Λ . We also discuss its testability of the new gauge boson and discrimination of U (1 )R model from U (1 )B-L one at collider physics such as LHC and ILC.

  9. Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system I. Vacuum charge density

    NASA Astrophysics Data System (ADS)

    Davydov, A.; Sveshnikov, K.; Voronina, Yu.

    2018-01-01

    Based on the original combination of analytical methods, computer algebra tools and numerical calculations, proposed recently in Refs. 1-3, the nonperturbative vacuum polarization effects in the 2+1D supercritical Dirac-Coulomb system with Z > Zcr,1 are explored. Both the vacuum charge density ρV P(r→) and vacuum energy ℰV P are considered. The main result of the work is that in the overcritical region ℰV P turns out to be a rapidly decreasing function ˜-ηeffZ3/R with ηeff > 0 and R being the size of the external Coulomb source. Due to a lot of details of calculation the whole work is divided into two parts I and II. In the present part I, we consider the evaluation and behavior of the vacuum density ρV P, which further is used in part II for evaluation of the vacuum energy, with emphasis on the renormalization, convergence of the partial expansion for ρV P and behavior of the integral induced charge QV P in the overcritical region.

  10. Unity of quark and lepton interactions with symplectic gauge symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajpoot, S.

    1982-07-01

    Properties of symplectic groups are reviewed and the gauge structure of Sp(2n) derived. The electroweak unification of leptons within Sp(8) gauge symmetry and grand unification of quarks and leptons within Sp(10) gauge symmetry are discussed.

  11. 49 CFR 178.337-14 - Gauging devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Gauging devices. 178.337-14 Section 178.337-14... Specifications for Containers for Motor Vehicle Transportation § 178.337-14 Gauging devices. (a) Liquid level... subchapter. (2) Each cargo tank used in carbon dioxide, refrigerated liquid or nitrous oxide, refrigerated...

  12. FAST TRACK COMMUNICATION: Symmetry breaking, conformal geometry and gauge invariance

    NASA Astrophysics Data System (ADS)

    Ilderton, Anton; Lavelle, Martin; McMullan, David

    2010-08-01

    When the electroweak action is rewritten in terms of SU(2) gauge-invariant variables, the Higgs can be interpreted as a conformal metric factor. We show that asymptotic flatness of the metric is required to avoid a Gribov problem: without it, the new variables fail to be nonperturbatively gauge invariant. We also clarify the relations between this approach and unitary gauge fixing, and the existence of similar transformations in other gauge theories.

  13. ENRAF Series 854 Advanced Technology Gauge (ATG) Acceptance Test Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUBER, J.H.

    1999-08-17

    This procedure provides acceptance testing for Enraf Series 854 level gauges used to monitor levels in Hanford Waste Storage Tanks. The test will verify that the gauge functions according to the manufacturer's instructions and specifications and is properly setup prior to being delivered to the tank farm area. This ATP does not set up the gauge for any specific tank, but is generalized to permit testing the gauge prior to installation package preparation.

  14. Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system II. Vacuum energy

    NASA Astrophysics Data System (ADS)

    Davydov, A.; Sveshnikov, K.; Voronina, Yu.

    2018-01-01

    Nonperturbative vacuum polarization effects are explored for a supercritical Dirac-Coulomb system with Z > Zcr,1 in 2+1D, based on the original combination of analytical methods, computer algebra and numerical calculations, proposed recently in Refs. 1-3. Both the vacuum charge density ρV P(r→) and vacuum energy ℰV P are considered. Due to a lot of details of calculation the whole work is divided into two parts I and II. Taking account of results, obtained in the part I4 for ρV P, in the present part II, the evaluation of the vacuum energy ℰV P is investigated with emphasis on the renormalization and convergence of the partial expansion for ℰV P. It is shown that the renormalization via fermionic loop turns out to be the universal tool, which removes the divergence of the theory both in the purely perturbative and essentially nonperturbative regimes of the vacuum polarization. The main result of calculation is that for a wide range of the system parameters in the overcritical region ℰV P turns out to be a rapidly decreasing function ˜-ηeffZ3/R with ηeff > 0 and R being the size of the external Coulomb source. To the end the similarity in calculations of ℰV P in 2+1 and 3+1D is discussed, and qualitative arguments are presented in favor of the possibility for complete screening of the classical electrostatic energy of the Coulomb source by the vacuum polarization effects for Z ≫ Zcr,1 in 3+1D.

  15. Quantum vacuum noise in physics and cosmology.

    PubMed

    Davies, P. C. W.

    2001-09-01

    The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. (c) 2001 American Institute of Physics.

  16. Semistrict higher gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Sämann, Christian; Wolf, Martin

    2015-04-01

    We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian tensor multiplet taking values in a semistrict Lie 2-algebra.

  17. Running vacuum cosmological models: linear scalar perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perico, E.L.D.; Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interactionmore » between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.« less

  18. Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction

    NASA Astrophysics Data System (ADS)

    Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.

    2018-04-01

    Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry breaking and, as such, provide a framework for building supergravity models of phenomenological relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a simple realization in which the resulting supergravity has U (1 )R gauge symmetry, spontaneously broken N =2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or without spontaneous gauge-symmetry breaking.

  19. Vacuum phonon tunneling.

    PubMed

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  20. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... means of a suction cup attached to the scalp and is powered by an external vacuum source. This generic type of device may include the cup, hosing, vacuum source, and vacuum control. (b) Classification...

  1. 21 CFR 884.4340 - Fetal vacuum extractor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... means of a suction cup attached to the scalp and is powered by an external vacuum source. This generic type of device may include the cup, hosing, vacuum source, and vacuum control. (b) Classification...

  2. Dyonic AdS black holes in maximal gauged supergravity

    NASA Astrophysics Data System (ADS)

    Chow, David D. K.; Compère, Geoffrey

    2014-03-01

    We present two new classes of dyonic anti-de Sitter black hole solutions of four-dimensional maximal N =8, SO(8) gauged supergravity. They are (1) static black holes of N=2, U(1)4 gauged supergravity with four electric and four magnetic charges, with spherical, planar or hyperbolic horizons; and (2) rotating black holes of N =2, U(1)2 gauged supergravity with two electric and two magnetic charges. We study their thermodynamics, and point out that the formulation of a consistent thermodynamics for dyonic anti-de Sitter black holes is dependent on the existence of boundary conditions for the gauge fields. We identify several distinct classes of boundary conditions for gauge fields in U(1)4 supergravity. We study a general family of metrics containing the rotating solutions, and find Killing-Yano tensors with torsion in two conformal frames, which underlie separability.

  3. Quantization of gauge fields, graph polynomials and graph homology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology.more » -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.« less

  4. Ward identity and basis tensor gauge theory at one loop

    NASA Astrophysics Data System (ADS)

    Chung, Daniel J. H.

    2018-06-01

    Basis tensor gauge theory (BTGT) is a reformulation of ordinary gauge theory that is an analog of the vierbein formulation of gravity and is related to the Wilson line formulation. To match ordinary gauge theories coupled to matter, the BTGT formalism requires a continuous symmetry that we call the BTGT symmetry in addition to the ordinary gauge symmetry. After classically interpreting the BTGT symmetry, we construct using the BTGT formalism the Ward identities associated with the BTGT symmetry and the ordinary gauge symmetry. For a way of testing the quantum stability and the consistency of the Ward identities with a known regularization method, we explicitly renormalize the scalar QED at one loop using dimensional regularization using the BTGT formalism.

  5. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  6. VACUUM TRAP AND VALVE COMBINATION

    DOEpatents

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  7. Outcomes of 23- and 25-gauge transconjunctival sutureless vitrectomies for dislocated intraocular lenses.

    PubMed

    Bajgai, Priya; Tigari, Basavraj; Singh, Ramandeep

    2017-10-04

    To compare the outcome of 23-gauge as compared with 25-gauge transconjunctival sutureless vitrectomy (TSV) in the management of dislocated intraocular lenses (IOLs). Retrospective, non-consecutive, comparative, interventional case series. Patients with dislocated intraocular lens who underwent sutureless PPV using either 23-gauge or 25-gauge instruments. The patients who presented with a dislocated IOL, underwent TSV with repositioning of the intraocular lens, either in the sulcus or scleral-fixated sutured/glued. Of the total 61 eyes, 33 (54.09%) underwent 23-gauge TSV and 28 (45.90%) underwent 25-gauge TSV. The mean logMAR BCVA at baseline and 6 months after surgery was 0.8 and 0.46 in the 23-gauge group, and 0.82 and 0.47 in the 25-gauge group. There was no significant difference in logMAR BCVA values between the two groups at any time point of time during the follow-up. The mean postoperative IOP on postoperative day 1 was 14.76 ± 5.4 in 23-gauge group and 17.57 ± 7.9 in the 25-gauge group (p = 0.10). Retinal break was noticed intraoperatively in two cases in 23-gauge group and in three cases in 25-gauge group (p = 0.509). Postoperative complications included IOL decentration in one case of 23-gauge vitrectomy and two cases in 25-gauge group (p = 0.5), cystoid macular edema in four patients in 23-gauge group and six cases of 25-gauge group (p = 0.3) and retinal detachment in one case in each group (p = 0.9). 25-gauge appears to be as safe and as effective as 23-gauge TSV in the management of dislocated intraocular lenses.

  8. Studies of Lubricating Materials in Vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Johnson, R. L.; Swikert, M. A.

    1964-01-01

    Lubricating materials for use in a vacuum environment have been the subject of a series of experimental investigations. Evaporation properties were evaluated for solid polymeric compositions. Friction and wear studies explored the behavior during sliding contact for series of polymeric compositions, binary alloys containing soft film-forming phases, complex alloys with film-forming materials, and a burnished MoS2 film. Friction and wear experiments were conducted at 10(exp-9)mm Hg with a 3/16-inch-radius-hemisphere rider specimen sliding on the flat surface of a rotating 2-1/2-inch-diameter disk specimen with materials that had low rates of evaporation. The influence of fillers in polytetrafluoroethylene (PTFE) on decomposition during vacuum friction studies was determined with a mass spectrometer. A real advantage in reducing decomposition and improving friction wear properties is gained by adding fillers (e.g., copper) that improve thermal conductivity through the composite materials. A polyimide and an epoxy-MoS2 composition material were found to have better friction and wear properties than PTFE compositions. A series of alloys (cast binary as well as more complex alloys) that contained microinclusions of potential film-forming material was studied. These materials replaced the normal surface oxides as they were worn away on sliding contact. Iron sulfide, nickel oxide, and tin are typical film-forming materials employed and were demonstrated to be effective in inhibiting surface welding and reducing friction. A burnished MoS2 film applied to type 440-C stainless steel in argon with a rotating soft wire brush had good endurance properties but somewhat higher friction than commercially available bonded films. An oil film applied to the burnished MoS2 markedly reduced its endurance life.

  9. Six-dimensional regularization of chiral gauge theories

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamamoto, Shota; Yamamura, Ryo

    2017-03-01

    We propose a regularization of four-dimensional chiral gauge theories using six-dimensional Dirac fermions. In our formulation, we consider two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain walls. One domain wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six dimensions to the gauge anomaly in four dimensions. Another domain wall implies a similar inflow of the global anomalies. The anomaly-free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is based on a massive vector-like fermion determinant, a nonperturbative regularization will be possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently proposed by Grabowska and Kaplan, we define the four-dimensional path integral of the target chiral gauge theory.

  10. Urban Rain Gauge Siting Selection Based on Gis-Multicriteria Analysis

    NASA Astrophysics Data System (ADS)

    Fu, Yanli; Jing, Changfeng; Du, Mingyi

    2016-06-01

    With the increasingly rapid growth of urbanization and climate change, urban rainfall monitoring as well as urban waterlogging has widely been paid attention. In the light of conventional siting selection methods do not take into consideration of geographic surroundings and spatial-temporal scale for the urban rain gauge site selection, this paper primarily aims at finding the appropriate siting selection rules and methods for rain gauge in urban area. Additionally, for optimization gauge location, a spatial decision support system (DSS) aided by geographical information system (GIS) has been developed. In terms of a series of criteria, the rain gauge optimal site-search problem can be addressed by a multicriteria decision analysis (MCDA). A series of spatial analytical techniques are required for MCDA to identify the prospective sites. With the platform of GIS, using spatial kernel density analysis can reflect the population density; GIS buffer analysis is used to optimize the location with the rain gauge signal transmission character. Experiment results show that the rules and the proposed method are proper for the rain gauge site selection in urban areas, which is significant for the siting selection of urban hydrological facilities and infrastructure, such as water gauge.

  11. Canonical field anticommutators in the extended gauged Rarita-Schwinger theory

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.; Henneaux, Marc; Pais, Pablo

    2017-10-01

    We reexamine canonical quantization of the gauged Rarita-Schwinger theory using the extended theory, incorporating a dimension 1/2 auxiliary spin-1/2 field Λ , in which there is an exact off-shell gauge invariance. In Λ =0 gauge, which reduces to the original unextended theory, our results agree with those found by Johnson and Sudarshan, and later verified by Velo and Zwanziger, which give a canonical Rarita-Schwinger field Dirac bracket that is singular for small gauge fields. In gauge covariant radiation gauge, the Dirac bracket of the Rarita-Schwinger fields is nonsingular, but does not correspond to a positive semidefinite anticommutator, and the Dirac bracket of the auxiliary fields has a singularity of the same form as found in the unextended theory. These results indicate that gauged Rarita-Schwinger theory is somewhat pathological, and cannot be canonically quantized within a conventional positive semidefinite metric Hilbert space. We leave open the questions of whether consistent quantizations can be achieved by using an indefinite metric Hilbert space, by path integral methods, or by appropriate couplings to conventional dimension 3/2 spin-1/2 fields.

  12. Democratic Superstring Field Theory and Its Gauge Fixing

    NASA Astrophysics Data System (ADS)

    Kroyter, M.

    This work is my contribution to the proceedings of the conference``SFT2010 -- the third international conference on string field theory and related topics'' and it reflects my talk there, which described the democratic string field theory and its gauge fixing. The democratic string field theory is the only fully RNS string field theory to date. It lives in the large Hilbert space and includes all picture numbers. Picture changing amounts in this formalism to a gauge transformation. We describe the theory and its properties and show that when partially gauge fixed it can be reduced to the modified theory and to the non-polynomial theory. In the latter case we can even include the Ramond sector in the picture-fixed action. We also show that another partial gauge-fixing leads to a new consistent string field theory at picture number -1.

  13. Global Gauge Anomalies in Two-Dimensional Bosonic Sigma Models

    NASA Astrophysics Data System (ADS)

    Gawȩdzki, Krzysztof; Suszek, Rafał R.; Waldorf, Konrad

    2011-03-01

    We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.

  14. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  15. Condition for confinement in non-Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Chaichian, Masud; Frasca, Marco

    2018-06-01

    We show that a criterion for confinement, based on the BRST invariance, holds in four dimensions, by solving a non-Abelian gauge theory with a set of exact solutions. The confinement condition we consider was obtained by Kugo and Ojima some decades ago. The current understanding of gauge theories permits us to apply the techniques straightforwardly for checking the validity of this criterion. In this way, we are able to show that the non-Abelian gauge theory is confining and that confinement is rooted in the BRST invariance and asymptotic freedom.

  16. Troubleshooting crude vacuum tower overhead ejector systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, J.R.; Frens, L.L.

    1995-03-01

    Routinely surveying tower overhead vacuum systems can improve performance and product quality. These vacuum systems normally provide reliable and consistent operation. However, process conditions, supplied utilities, corrosion, erosion and fouling all have an impact on ejector system performance. Refinery vacuum distillation towers use ejector systems to maintain tower top pressure and remove overhead gases. However, as with virtually all refinery equipment, performance may be affected by a number of variables. These variables may act independently or concurrently. It is important to understand basic operating principles of vacuum systems and how performance is affected by: utilities, corrosion and erosion, fouling, andmore » process conditions. Reputable vacuum-system suppliers have service engineers that will come to a refinery to survey the system and troubleshoot performance or offer suggestions for improvement. A skilled vacuum-system engineer may be needed to diagnose and remedy system problems. The affect of these variables on performance is discussed. A case history is described of a vacuum system on a crude tower in a South American refinery.« less

  17. Infrared problem in non-Abelian gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Y.

    1976-03-22

    I extend the Bloch--Nordsieck idea to show that in the lowest nontrivial order of radiative correction the fermion--fermion and gauge-meson--fermion scattering rates are finite, provided that they are averaged over the initial and summed over the final internal spin states. Questions of the physical gauge coupling and infrared slavery are discussed. (AIP)

  18. Gauge-invariant variables and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Agarwal, Abhishek; Karabali, Dimitra; Nair, V. P.

    2017-12-01

    The entanglement entropy (EE) of gauge theories in three spacetime dimensions is analyzed using manifestly gauge-invariant variables defined directly in the continuum. Specifically, we focus on the Maxwell, Maxwell-Chern-Simons (MCS), and non-Abelian Yang-Mills theories. Special attention is paid to the analysis of edge modes and their contribution to EE. The contact term is derived without invoking the replica method and its physical origin is traced to the phase space volume measure for the edge modes. The topological contribution to the EE for the MCS case is calculated. For all the Abelian cases, the EE presented in this paper agrees with known results in the literature. The EE for the non-Abelian theory is computed in a gauge-invariant Gaussian approximation, which incorporates the dynamically generated mass gap. A formulation of the contact term for the non-Abelian case is also presented.

  19. Reproducibility of the vertical dimension of occlusion with an improved measuring gauge.

    PubMed

    Morikawa, M; Kozono, Y; Noguchi, B S; Toyoda, S

    1988-07-01

    An improved gauge using an eyeglass frame, the TOM gauge, was devised. The reproducibility of the record of vertical dimension with this gauge was evaluated through repeated measurements on subjects having a definite centric stop with the natural dentition. Because of the stabilization provided by the frame and the reference point on the apex nasi, the TOM gauge showed excellent reproducibility of the record compared with the conventional gauges. The TOM gauge can be expected to significantly reduce the risk of errors in measuring the vertical dimension of occlusion especially in complete denture fabrication.

  20. Hamiltonian approach to second order gauge invariant cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Domènech, Guillem; Sasaki, Misao

    2018-01-01

    In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.

  1. Experimental and computational investigation of lateral gauge response in polycarbonate

    NASA Astrophysics Data System (ADS)

    Eliot, Jim; Harris, Ernest Joseph; Hazell, Paul; Appleby-Thomas, Gareth James; Winter, Ron; Wood, David Christopher

    2012-03-01

    The shock behaviour of polycarbonate is of interest due to its extensive use in defence applications. Interestingly, embedded lateral manganin stress gauges in polycarbonate have shown gradients behind incident shocks, suggestive of increasing shear strength. However, such gauges are commonly embedded in a central epoxy interlayer. This is an inherently invasive approach. Recently, research has suggested that in such systems interlayer/target impedance may contribute to observed gradients in lateral stress. Here, experimental T-gauge (Vishay Micro-Measurements® type J2M-SS-580SF-025) traces from polycarbonate targets are compared to computational simulations. The effects of gauge environment are investigated by looking at the response of lateral gauges with both standard "glued-joint" and a "dry joint" encapsulation, where no encapsulating medium is employed.

  2. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  3. Temperature measurements at material interfaces with thin-foil gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike; Chapman, David; Proud, William

    2009-06-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  4. Temperature Measurements at Material Interfaces with Thin-Foil Gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike J.; Chapman, David J.; Proud, William G.

    2009-12-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  5. A Model of Direct Gauge Mediation of Supersymmetry Breaking

    NASA Astrophysics Data System (ADS)

    Murayama, Hitoshi

    1997-07-01

    We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m2q~, m2l~ due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m2q~ and m2l~ can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed.

  6. Selection and static calibration of the Marsh J1678 pressure gauge

    NASA Technical Reports Server (NTRS)

    Oxendine, Charles R.; Smith, Howard W.

    1993-01-01

    During the experimental testing of the ultralight, it was determined that a pressure gauge would be required to monitor the simulated flight loads. After analyzing several factors, which are indicated in the discussion section of this report, the Marsh J1678 pressure gauge appeared to be the prominent candidate for the task. However, prior to the final selection, the Marsh pressure gauge was calibrated twice by two different techniques. As a result of the calibration, the Marsh gauge was selected as the appropriate measuring device during the structural testing of the ultralight. Although, there are commerical pressure gauges available on the market that would have proven to be more efficient and accurate. However, in order to obtain these characteristics in a gauge, one has to pay the price on the price tag, and this value is an exponential function of the degree of accuracy efficiency, precision, and many other features that may be designed into the gauge. After analyzing the extent of precision and accuracy that would be required, a more expensive gauge wouldn't have proven to be a financial benefit towards the outcome of the experiment.

  7. Radio Frequency Mass Gauging of Propellants

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Vaden, Karl R.; Herlacher, Michael D.; Buchanan, David A.; VanDresar, Neil T.

    2007-01-01

    A combined experimental and computer simulation effort was conducted to measure radio frequency (RF) tank resonance modes in a dewar partially filled with liquid oxygen, and compare the measurements with numerical simulations. The goal of the effort was to demonstrate that computer simulations of a tank's electromagnetic eigenmodes can be used to accurately predict ground-based measurements, thereby providing a computational tool for predicting tank modes in a low-gravity environment. Matching the measured resonant frequencies of several tank modes with computer simulations can be used to gauge the amount of liquid in a tank, thus providing a possible method to gauge cryogenic propellant tanks in low-gravity. Using a handheld RF spectrum analyzer and a small antenna in a 46 liter capacity dewar for experimental measurements, we have verified that the four lowest transverse magnetic eigenmodes can be accurately predicted as a function of liquid oxygen fill level using computer simulations. The input to the computer simulations consisted of tank dimensions, and the dielectric constant of the fluid. Without using any adjustable parameters, the calculated and measured frequencies agree such that the liquid oxygen fill level was gauged to within 2 percent full scale uncertainty. These results demonstrate the utility of using electromagnetic simulations to form the basis of an RF mass gauging technology with the power to simulate tank resonance frequencies from arbitrary fluid configurations.

  8. Nanocomposite Strain Gauges Having Small TCRs

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  9. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and maintained...

  10. 7 CFR 58.423 - Cheese vacuumizing chamber.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vacuumizing chamber. 58.423 Section 58.423 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....423 Cheese vacuumizing chamber. The vacuum chamber shall be satisfactorily constructed and maintained...

  11. Stretch marks

    MedlinePlus

    Stretch marks can appear when there is rapid stretching of the skin. The marks appear as parallel ... often disappear after the cause of the skin stretching is gone. Avoiding rapid weight gain helps reduce ...

  12. So, how much of the Earth's surface is covered by rain gauges?

    NASA Astrophysics Data System (ADS)

    Kidd, Chris; Huffman, George; Kirschbaum, Dalia; Skofronick-Jackson, Gail; Joe, Paul; Muller, Catherine

    2014-05-01

    The measurement of global precipitation, both rainfall and snowfall, is of critical importance to a wide range of users and applications. The fundamental means of measuring precipitation is the rain gauge. Although rain gauges have many drawbacks (including not measuring snowfall well), they remain the de facto source of precipitation information across the Earth surface for hydro-meteorological purposes. While the accuracy and representative of each gauge can be assessed and monitored, a key limitation of rain and snow gauges is in their distribution across the globe. Gauges tend to be limited to the land surface where their distribution and density is very variable, while over the oceans very few gauges are available and measurements available at island locations may not truly represent those of the surrounding oceans. The total numbers of gauges across the Earth, as noted in the literature, varies greatly primarily due to temporal sampling resolutions, periods of operation, the latency of the data and the availability of the data. These numbers range from a few thousand which are available in near real time, to an estimated hundreds of thousands if one includes all available 'official' gauges (this number might swell more if all amateur gauges are included, with crowdsourcing capable of providing even more). Considering those gauges that are routinely used in the generation of global precipitation products (i.e. those available and of reasonable quality), the physical area covered by rain gauges varies by a factor of about 25. Calculations suggest that if all available rain gauges are included, they would cover between 120 and 3,000 m2. For comparison, equivalent areas range from 267 m2 for the centre circle of a football (soccer) pitch, or about 260 m2 for a tennis court to about 3,000 m2 for half a football pitch. Each gauge should represent more than just the orifice of the gauge itself, however, observations and modelling suggest that the correlation

  13. One-loop renormalization of Lee-Wick gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinstein, Benjamin; O'Connell, Donal

    2008-11-15

    We examine the renormalization of Lee-Wick gauge theory to one-loop order. We show that only knowledge of the wave function renormalization is necessary to determine the running couplings, anomalous dimensions, and vector boson masses. In particular, the logarithmic running of the Lee-Wick vector boson mass is exactly related to the running of the coupling. In the case of an asymptotically free theory, the vector boson mass runs to infinity in the ultraviolet. Thus, the UV fixed point of the pure gauge theory is an ordinary quantum field theory. We find that the coupling runs more quickly in Lee-Wick gauge theorymore » than in ordinary gauge theory, so the Lee-Wick standard model does not naturally unify at any scale. Finally, we present results on the beta function of more general theories containing dimension six operators which differ from previous results in the literature.« less

  14. Engineering Matter Interactions Using Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Zeytinoǧlu, Sina; Imamoǧlu, Ataç; Huber, Sebastian

    2017-04-01

    Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the vacuum fluctuations can be used to engineer the strength and the range of interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or wave guides, which modify the electromagnetic fluctuations. Here, we show theoretically that the enhanced fluctuations in the antisqueezed quadrature of a squeezed vacuum state allow for engineering interactions between electric dipoles without the need for a photonic structure. Thus, the strength and range of the interactions can be engineered in a time-dependent way by changing the spatial profile of the squeezed vacuum in a traveling-wave geometry, which also allows the implementation of chiral dissipative interactions. Using experimentally realized squeezing parameters and including realistic losses, we predict single-atom cooperativities C of up to 10 for the squeezed-vacuum-enhanced interactions.

  15. Rain gauge calibration and testing

    NASA Technical Reports Server (NTRS)

    Wilkerson, John

    1994-01-01

    Prior to the Tropical Oceans Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE), 42 Model 100 series optical gauges were tested in the rain simulator facility at Wallops Island before shipment to the field. Baseline measurements at several rain rates were made simultaneously with collector cans, tipping bucket, and a precision weighing gauge and held for post-COARE evaluation with a repeat set of measurements that were to be recorded after the instruments were returned. This was done as a means of detecting any calibration changes that might have occurred while deployed. Although it was known that the artificial rain in the simulator did not contain the required exponential distribution for accurate optical rain gauge rate measurements, use of the facility was necessary because it was the only means available for taking controlled observations with instruments that were received, tested, and shipped out in groups over a period of months. At that point, it was believed that these measurements would be adequately precise for detecting performance changes over time. However, analysis of the data by STI now indicates that this may not be true. Further study of the data will be undertaken to resolve this.

  16. Lightweight Vacuum Jacket for Cryogenic Insulation. Volume 1

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility of producing a lightweight vacuum jacket using state-of-the-art technology and materials was examined. Design and analytical studies were made on a full-scale, orbital maneuvering system fuel tank. Preliminary design details were made for the tank assembly, including an optimized vacuum jacket and multilayer insulation system. A half-scale LH2 test model was designed and fabricated, and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of .000001 atmosphere ml of helium per second was measured, approximately 1500 hours of vacuum pressure were sustained, and 29 vacuum-pressure cycles were experienced prior to failure.

  17. 7 CFR 305.29 - Vacuum heat treatment schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Vacuum heat treatment schedule. 305.29 Section 305.29... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.29 Vacuum heat treatment... vacuum at 8 hours. Maintain the vacuum until the end of the treatment. Gradually increase the temperature...

  18. Non-Abelian Gauge Theory in the Lorentz Violating Background

    NASA Astrophysics Data System (ADS)

    Ganai, Prince A.; Shah, Mushtaq B.; Syed, Masood; Ahmad, Owais

    2018-03-01

    In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.

  19. [The evolution of vacuum extraction in obstetrics].

    PubMed

    Nikolov, A

    2010-01-01

    Vacuum extraction is one of the methods for assisted vaginal delivery. In this article the evolution of vacuum extraction in obstetrics is been discussed. Historical facts and data from the invention up to state-of-the-art vacuum systems in modern obstetrics are presented.

  20. Evaluation of a Prototype Hybrid Vacuum Pump to Provide Vacuum-Assisted Suspension for Above-Knee Prostheses

    PubMed Central

    Major, Matthew J.; Caldwell, Ryan; Fatone, Stefania

    2015-01-01

    Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels. PMID:27462383

  1. Stretch Marks

    MedlinePlus

    ... stretch marks. This isn't true with regular tanning or tanning beds , though: Stretch marks are less likely to ... up looking more obvious. Plus, the sun and tanning beds do more harm than good when it ...

  2. Gravitational collapse and the vacuum energy

    NASA Astrophysics Data System (ADS)

    Campos, M.

    2014-03-01

    To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.

  3. Gravitational baryogenesis in running vacuum models

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.; Pan, Supriya; Nunes, Rafael C.

    2017-08-01

    We study the gravitational baryogenesis mechanism for generating baryon asymmetry in the context of running vacuum models. Regardless of whether these models can produce a viable cosmological evolution, we demonstrate that they produce a nonzero baryon-to-entropy ratio even if the universe is filled with conformal matter. This is a sound difference between the running vacuum gravitational baryogenesis and the Einstein-Hilbert one, since in the latter case, the predicted baryon-to-entropy ratio is zero. We consider two well known and most used running vacuum models and show that the resulting baryon-to-entropy ratio is compatible with the observational data. Moreover, we also show that the mechanism of gravitational baryogenesis may constrain the running vacuum models.

  4. Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation.

    PubMed

    Zhou, Yihui; Wu, Wenbiao; Qiu, Keqiang

    2010-11-01

    In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Gauge transformations for twisted spectral triples

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Martinetti, Pierre

    2018-05-01

    It is extended to twisted spectral triples the fluctuations of the metric as bounded perturbations of the Dirac operator that arises when a spectral triple is exported between Morita equivalent algebras, as well as gauge transformations which are obtained by the action of the unitary endomorphisms of the module implementing the Morita equivalence. It is firstly shown that the twisted-gauged Dirac operators, previously introduced to generate an extra scalar field in the spectral description of the standard model of elementary particles, in fact follow from Morita equivalence between twisted spectral triples. The law of transformation of the gauge potentials turns out to be twisted in a natural way. In contrast with the non-twisted case, twisted fluctuations do not necessarily preserve the self-adjointness of the Dirac operator. For a self-Morita equivalence, conditions are obtained in order to maintain self-adjointness that are solved explicitly for the minimal twist of a Riemannian manifold.

  6. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  7. Electric Propulsion Laboratory Vacuum Chamber

    NASA Image and Video Library

    1964-06-21

    Engineer Paul Reader and his colleagues take environmental measurements during testing of a 20-inch diameter ion engine in a vacuum tank at the Electric Propulsion Laboratory (EPL). Researchers at the Lewis Research Center were investigating the use of a permanent-magnet circuit to create the magnetic field required power electron bombardment ion engines. Typical ion engines use a solenoid coil to create this magnetic field. It was thought that the substitution of a permanent magnet would create a comparable magnetic field with a lower weight. Testing of the magnet system in the EPL vacuum tanks revealed no significant operational problems. Reader found the weight of the two systems was similar, but that the thruster’s efficiency increased with the magnet. The EPL contained a series of large vacuum tanks that could be used to simulate conditions in space. Large vacuum pumps reduced the internal air pressure, and a refrigeration system created the cryogenic temperatures found in space.

  8. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    PubMed Central

    Góngora-Rubio, Mário R.; Kiyono, César Y.; Mello, Luis A. M.; Cardoso, Valtemar F.; Rosa, Reinaldo L. S.; Kuebler, Derek A.; Brodeur, Grace E.; Alotaibi, Amani H.; Coene, Marisa P.; Coene, Lauren M.; Jean, Elizabeth; Santiago, Rafael C.; Oliveira, Francisco H. A.; Rangel, Ricardo; Thomas, Gilles P.; Belay, Kalayu; da Silva, Luciana W.; Moura, Rafael T.; Seabra, Antonio C.; Silva, Emílio C. N.

    2018-01-01

    Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more. PMID:29401745

  9. Search for gauge extensions of the MSSM at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Ahmed; Demir, Durmus A.; Department of Physics, Izmir Institute of Technology, IZTECH, TR35430 Izmir

    2009-05-01

    The extensions of the minimal supersymmetric model (MSSM), driving mainly from the need to solve the {mu} problem, involve novel matter species and gauge groups. These extended MSSM models can be searched for at the LHC via the effects of the gauge and Higgs bosons or their fermionic partners. Traditionally, the focus has been on the study of the extra forces induced by the new gauge and Higgs bosons present in such models. An alternative way of studying such effects is through the superpartners of matter species and the gauge forces. We thus consider a U(1)' gauge extension of themore » MSSM, and perform an extensive study of the signatures of the model through the production and decays of the scalar quarks and gluino, which are expected to be produced copiously at the LHC. After a detailed study of the distinctive features of such models with regard to the signatures at the LHC, we carry out a detailed Monte Carlo analysis of the signals from the process pp{yields}n leptons+m jets+Ee{sub T}, and compare the resulting distributions with those predicted by the MSSM. Our results show that the searches for the extra gauge interactions in the supersymmetric framework can proceed not only through the forces mediated by the gauge and Higgs bosons but also through the superpartner forces mediated by the gauge and Higgs fermions. Analysis of the events induced by the squark/gluino decays presented here is complementary to the direct Z' searches at the LHC.« less

  10. An Intelligent Strain Gauge with Debond Detection and Temperature Compensation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.

    2012-01-01

    The harsh rocket propulsion test environment will expose any inadequacies associated with preexisting instrumentation technologies, and the criticality for collecting reliable test data justifies investigating any encountered data anomalies. Novel concepts for improved systems are often conceived during the high scrutiny investigations by individuals with an in-depth knowledge from maintaining critical test operations. The Intelligent Strain Gauge concept was conceived while performing these kinds of activities. However, the novel concepts are often unexplored even if it has the potential for advancing the current state of the art. Maturing these kinds of concepts is often considered to be a tangential development or a research project which are both normally abandoned within the propulsion-oriented environment. It is also difficult to justify these kinds of projects as a facility enhancement because facility developments are only accepted for mature and proven technologies. Fortunately, the CIF program has provided an avenue for bringing the Intelligent Strain Gauge to fruition. Two types of fully functional smart strain gauges capable of performing reliable and sensitive debond detection have been successfully produced. Ordinary gauges are designed to provide test article data and they lack the ability to supply information concerning the gauge itself. A gauge is considered to be a smart gauge when it provides supplementary data relating other relevant attributes for performing diagnostic function or producing enhanced data. The developed strain gauges provide supplementary signals by measuring strain and temperature through embedded Karma and nickel chromium (NiCr) alloy elements. Intelligently interpreting the supplementary data into valuable information can be performed manually, however, integrating this functionality into an automatic system is considered to be an intelligent gauge. This was achieved while maintaining a very low mass. The low mass enables

  11. Pavement markings and safety.

    DOT National Transportation Integrated Search

    2010-11-01

    Previous research on pavement markings from a safety perspective tackled various issues such as pavement marking retroreflectivity : variability, relationship between pavement marking retroreflectivity and driver visibility, or pavement marking impro...

  12. Vacuum Energy and Inflation: 4. An Inflationary Universe

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2013-01-01

    This is the fourth paper in a series of four. The first paper in the series, "Vacuum Energy and Inflation: 1. A Liter of Vacuum Energy" [EJ1024183] discusses an example of vacuum energy. Vacuum energy is explained as an energy with a negative pressure whose energy density remains constant in an expanding space. Paper 2, "Vacuum…

  13. Artificial Gauge Fields for Ultracold Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Jimenez-Garcia, Karina

    2013-05-01

    Ultracold atoms are a versatile probe for physics at the core of the most intriguing and fascinating systems in the quantum world. Due to the high degree of experimental control offered by such systems, effective Hamiltonians can be designed and experimentally implemented on them. This unique feature makes ultracold atom systems ideal for quantum simulation of complex phenomena as important as high-temperature superconductivity, and recently of novel artificial gauge fields. Suitably designed artificial gauge fields allow neutral particles to experience synthetic- electric or magnetic fields; furthermore, their generalization to matrix valued gauge fields leads to spin-orbit coupling featuring unprecedented control in contrast to ordinary condensed matter systems, thus allowing the characterization of the underlying mechanism of phenomena such as the spin Hall effect and topological insulators. In this talk, I will present an overview of our experiments on quantum simulation with ultracold atom systems by focusing on the realization of light induced artificial gauge fields. We illuminate our Bose-Einstein condensates with a pair of far detuned ``Raman'' lasers, thus creating dressed states that are spin and momentum superpositions. We adiabatically load the atoms into the lowest energy dressed state, where they acquire an experimentally-tunable effective dispersion relation, i.e. we introduce gauge terms into the Hamiltonian. We control such light-induced gauge terms via the strength of the Raman coupling and the detuning from Raman resonance. Our experimental techniques for ultracold bosons have surpassed the apparent limitations imposed by their neutral charge, bosonic nature, and ultra-low energy and have allowed the observation of these new and exciting phenomena. Future work might allow the realization of the bosonic quantum Hall effect, of topological insulators and of systems supporting Majorana fermions using cold atoms. This work was partially supported by

  14. Unveiling a spinor field classification with non-Abelian gauge symmetries

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.

  15. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  16. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  17. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  18. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  19. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  20. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  1. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  2. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  3. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  4. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  5. On 3-gauge transformations, 3-curvatures, and Gray-categories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei, E-mail: wwang@zju.edu.cn

    In the 3-gauge theory, a 3-connection is given by a 1-form A valued in the Lie algebra g, a 2-form B valued in the Lie algebra h, and a 3-form C valued in the Lie algebra l, where (g,h,l) constitutes a differential 2-crossed module. We give the 3-gauge transformations from one 3-connection to another, and show the transformation formulae of the 1-curvature 2-form, the 2-curvature 3-form, and the 3-curvature 4-form. The gauge configurations can be interpreted as smooth Gray-functors between two Gray 3-groupoids: the path 3-groupoid P{sub 3}(X) and the 3-gauge group G{sup L} associated to the 2-crossed module L,more » whose differential is (g,h,l). The derivatives of Gray-functors are 3-connections, and the derivatives of lax-natural transformations between two such Gray-functors are 3-gauge transformations. We give the 3-dimensional holonomy, the lattice version of the 3-curvature, whose derivative gives the 3-curvature 4-form. The covariance of 3-curvatures easily follows from this construction. This Gray-categorical construction explains why 3-gauge transformations and 3-curvatures have the given forms. The interchanging 3-arrows are responsible for the appearance of terms with the Peiffer commutator (, )« less

  6. The localized quantum vacuum field

    NASA Astrophysics Data System (ADS)

    Dragoman, D.

    2008-03-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  7. Planar zeros in gauge theories and gravity

    NASA Astrophysics Data System (ADS)

    Jiménez, Diego Medrano; Vera, Agustín Sabio; Vázquez-Mozo, Miguel Á.

    2016-09-01

    Planar zeros are studied in the context of the five-point scattering amplitude for gauge bosons and gravitons. In the case of gauge theories, it is found that planar zeros are determined by an algebraic curve in the projective plane spanned by the three stereographic coordinates labelling the direction of the outgoing momenta. This curve depends on the values of six independent color structures. Considering the gauge group SU( N) with N = 2 , 3 , 5 and fixed color indices, the class of curves obtained gets broader by increasing the rank of the group. For the five-graviton scattering, on the other hand, we show that the amplitude vanishes whenever the process is planar, without imposing further kinematic conditions. A rationale for this result is provided using color-kinematics duality.

  8. Remote high-temperature insulatorless heat-flux gauge

    DOEpatents

    Noel, B.W.

    1993-12-28

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  9. Remote high-temperature insulatorless heat-flux gauge

    DOEpatents

    Noel, Bruce W.

    1993-01-01

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  10. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  11. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. [Doc. No...

  12. Ceramic vacuum tubes for geothermal well logging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, R.D.

    1977-01-12

    The results of investigations carried out into the availability and suitability of ceramic vacuum tubes for the development of logging tools for geothermal wells are summarized. Design data acquired in the evaluation of ceramic vacuum tubes for the development of a 500/sup 0/C instrumentation amplifier are presented. The general requirements for ceramic vacuum tubes for application to the development of high temperature well logs are discussed. Commercially available tubes are described and future contract activities that specifically relate to ceramic vacuum tubes are detailed. Supplemental data is presented in the appendix. (MHR)

  13. Global Equity Gauge Alliance: reflections on early experiences.

    PubMed

    McCoy, David; Bambas, Lexi; Acurio, David; Baya, Banza; Bhuiya, Abbas; Chowdhury, A Mushtaque R; Grisurapong, Siriwan; Liu, Yuanli; Ngom, Pierre; Ngulube, Thabale J; Ntuli, Antoinette; Sanders, David; Vega, Jeanette; Shukla, Abhay; Braveman, Paula A

    2003-09-01

    The paper traces the evolution and working of the Global Equity Gauge Alliance (GEGA) and its efforts to promote health equity. GEGA places health equity squarely within a larger framework of social justice, linking findings on socioeconomic and health inequalities with differentials in power, wealth, and prestige in society. The Alliance's 11 country-level partners, called Equity Gauges, share a common action-based vision and framework called the Equity Gauge Strategy. An Equity Gauge seeks to reduce health inequities through three broad spheres of action, referred to as the 'pillars' of the Equity Gauge Strategy, which define a set of interconnected and overlapping actions. Measuring and tracking the inequalities and interpreting their ethical import are pursued through the Assessment and Monitoring pillar. This information provides an evidence base that can be used in strategic ways for influencing policy-makers through actions in the Advocacy pillar and for supporting grassroots groups and civil society through actions in the Community Empowerment pillar. The paper provides examples of strategies for promoting pro-equity policy and social change and reviews experiences and lessons, both in terms of technical success of interventions and in relation to the conceptual development and refinement of the Equity Gauge Strategy and overall direction of the Alliance. To become most effective in furthering health equity at both national and global levels, the Alliance must now reach out to and involve a wider range of organizations, groups, and actors at both national and international levels. Sustainability of this promising experiment depends, in part, on adequate resources but also on the ability to attract and develop talented leadership.

  14. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  15. Gauge-independent renormalization of the N2HDM

    NASA Astrophysics Data System (ADS)

    Krause, Marcel; López-Val, David; Mühlleitner, Margarete; Santos, Rui

    2017-12-01

    The Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) is an interesting benchmark model for a Higgs sector consisting of two complex doublet and one real singlet fields. Like the Next-to-Minimal Supersymmetric extension (NMSSM) it features light Higgs bosons that could have escaped discovery due to their singlet admixture. Thereby, the model allows for various different Higgs-to-Higgs decay modes. Contrary to the NMSSM, however, the model is not subject to supersymmetric relations restraining its allowed parameter space and its phenomenology. For the correct determination of the allowed parameter space, the correct interpretation of the LHC Higgs data and the possible distinction of beyond-the-Standard Model Higgs sectors higher order corrections to the Higgs boson observables are crucial. This requires not only their computation but also the development of a suitable renormalization scheme. In this paper we have worked out the renormalization of the complete N2HDM and provide a scheme for the gauge-independent renormalization of the mixing angles. We discuss the renormalization of the Z_2 soft breaking parameter m 12 2 and the singlet vacuum expectation value v S . Both enter the Higgs self-couplings relevant for Higgs-to-Higgs decays. We apply our renormalization scheme to different sample processes such as Higgs decays into Z bosons and decays into a lighter Higgs pair. Our results show that the corrections may be sizable and have to be taken into account for reliable predictions.

  16. A BRST gauge-fixing procedure for Yang Mills theory on sphere

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Deguchi, Shinichi

    2006-01-01

    A gauge-fixing procedure for the Yang-Mills theory on an n-dimensional sphere (or a hypersphere) is discussed in a systematic manner. We claim that Adler's gauge-fixing condition used in massless Euclidean QED on a hypersphere is not conventional because of the presence of an extra free index, and hence is unfavorable for the gauge-fixing procedure based on the BRST invariance principle (or simply BRST gauge-fixing procedure). Choosing a suitable gauge condition, which is proved to be equivalent to a generalization of Adler's condition, we apply the BRST gauge-fixing procedure to the Yang-Mills theory on a hypersphere to obtain consistent results. Field equations for the Yang-Mills field and associated fields are derived in manifestly O (n + 1) covariant or invariant forms. In the large radius limit, these equations reproduce the corresponding field equations defined on the n-dimensional flat space.

  17. A simple example of a classical gauge transformation

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.

    1983-01-01

    Attention is given to the manner in which the interaction of a gravitational field with a diffusing gas is induced by a gauge transformation. Since the gas can be thought of as a field, the diffusion process may be represented by a Lagrangian density with the symmetry property of invariance under translation. While this property is lost when the field interacts with a static gravitational field, it is formally restored when an appropriate gauge transformation is performed. This ascription of field properties to a gas offers an illuminating illustration of the coupling of matter to a gauge field within the context of classical mechanics.

  18. Vacuum chamber-free centrifuge with magnetic bearings.

    PubMed

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  19. Vacuum deposition and curing of liquid monomers

    DOEpatents

    Affinito, J.D.

    1993-11-09

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of standard polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  20. Vacuum deposition and curing of liquid monomers

    DOEpatents

    Affinito, J.D.

    1995-03-07

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.