Sample records for vacuum orbital thrust

  1. Single-stage-to-orbit performance enhancement from take-off thrust augmentation

    NASA Astrophysics Data System (ADS)

    Galati, Terence; Elkins, Travis

    1997-01-01

    Thrust augmentation offers the Single Stage to Orbit (SSTO) space launch vehicle improved payload capability while reducing vehicle weight and cost. Optimization of vehicle configuration and flight profile are studied. Using a 612,000 kg Gross Lift Off Weight (GLOW) SSTO with three Castor® strap-on motors, payloads in excess of 18,000 kg to Low Earth Orbit (LEO) are achievable. Emphasis is placed on finding vehicle optimums in the 9,000 kg payload range to capture over 80% of commercial payloads. Strap-on boosters allow a small SSTO vehicle to fly with a mass fraction of only 0.88 and LOX/H2 engines operating at 445 sec vacuum specific impulse. Payload sensitivity due to variations of mass fraction, Isp and pitch rate are quantified.

  2. Orbit Transfer Vehicle Engine Study. Phase A, extension 1: Advanced expander cycle engine optimization

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1979-01-01

    The performance optimization of expander cycle engines at vacuum thrust levels of 10K, 15K, and 20K lb is discussed. The optimization is conducted for a maximum engine length with an extendible nozzle in the retracted position of 60 inches and an engine mixture ratio of 6.0:1. The thrust chamber geometry and cycle analyses are documented. In addition, the sensitivity of a recommended baseline expander cycle to component performance variations is determined and chilldown/start propellant consumptions are estimated.

  3. Feasibility of Reusable Continuous Thrust Spacecraft for Cargo Resupply Missions to Mars

    NASA Astrophysics Data System (ADS)

    Rabotin, C. B.

    Continuous thrust propulsion systems benefit from a much greater efficiency in vacuum than chemical rockets, at the expense of lower instantaneous thrust and high power requirements. The satellite telecommunications industry, known for greatly emphasizing heritage over innovation, now uses electric propulsion for station keeping on a number of spacecraft, and for orbit raising for some smaller satellites, such as the Boeing 702SP platform. Only a few interplanetary missions have relied on continuous thrust for most of their mission, such as ESA's 367 kg SMART-1 and NASA's 1217 kg Dawn mission. The high specific impulse of these continuous thrust engines should make them suitable for transportation of heavy payloads to inner solar system destinations in such a way to limit the dependency on heavy rocket launches. Additionally, such spacecraft should be able to perform orbital insertions at destination in order to deliver the cargo directly in a desired orbit. An example application is designing round-trip missions to Mars to support exploration and eventually colonization. This research investigates the feasibility of return journeys to Mars based on the performance of existing or in-development continuous thrust propulsion systems. In order to determine the business viability of such missions, an emphasis is made on the time of flight during different parts of the mission, the relative velocity with respect to the destination planet, and the fuel requirements. The study looks at the applicability for interplanetary mission design of simple control laws for efficient correction of orbital elements, and of thrusting purely in velocity or anti-velocity direction. The simulations explore different configurations of continuous thrusting technologies using a patched-conics approach. In addition, all simulation scenarios facilitate escape from planetary gravity wells as the initial spacecraft orbit is highly elliptical, both around the Earth and around Mars. This work does not include any optimal trajectory design. For this research, a highly configurable orbit propagation software with SPICE ephemerides was developed from scratch in Go, a modern compiled computer language. The outcome of this research is that simple orbital element control laws do not lead to more efficient or faster interplanetary transfers. In addition, spiraling out of Earth's gravity wells requires a substantial amount of time despite starting from a highly elliptical orbit, and even with clustered high thrust engines like the VASIMR VX-200. Further investigation should look into hybrid solutions with a chemical engine for departing Earth; outbound spirals from Mars take a more reasonable amount of time.

  4. Concept of Operations for the Dust Dispenser Spacecraft for Active Orbital Debris Removal

    DTIC Science & Technology

    2014-03-25

    the fragments, liquid , and gas from the microcrater into vacuum as a recoil jet that imparts negative thrust to the debris mass. The dust vaporizes...approximately 1,100 km and maneuvers occur to lower the altitude to perhaps 200 km circular or 200 x 1,100 km elliptical , thrusters are activated

  5. Numerical investigations in the backflow region of a vacuum plume

    NASA Technical Reports Server (NTRS)

    Liaw, Goang-Shin

    1992-01-01

    The objective of this research is to numerically simulate the vacuum plume flow field in the backflow region of a low thrust nozzle exit. In space applications, the low thrust nozzles are used as a propulsion device to control the vehicle attitude, or to maneuver the vehicle flight trajectory. When the spacecraft is deployed in the orbit or cruising in a planetary mission, the vacuum plume is created behind the nozzle exit (so called backflow region), by the exhausting gas of the propulsion system or by venting internal gas to the extremely low density ambient. The low density vacuum plume flow regions cover the continuum, transitional and free molecular flow regimes, which were characterized by the Knudsen number K(sub n), K(sub n) = lambda(sub m)/L where lambda(sub m) is the mean free path of the gas molecules and L is the characteristic length of the flow field. The transitional regime is defined by 0.01 is less than or equal to K(sub n) is less than or equal to 10. The conventional Navier-Stokes equations are valid only in the flow region close to the nozzle exit since the validity of the Navier-Stokes equations fails asymptotically as the Knudsen number increases. The vacuum plume characteristics prediction is primarily a problem of transitional aerodynamics.

  6. Measurement of Impulsive Thrust from a Closed Radio Frequency Cavity in Vacuum

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Lawrence, James; Vera, Jerry; Sylvester, Andre; Brady, David; Bailey, Paul

    2016-01-01

    A vacuum test campaign evaluating the impulsive thrust performance of a tapered RF test article excited in the TM212 mode at 1,937 megahertz (MHz) has been completed. The test campaign consisted of a forward thrust phase and reverse thrust phase at less than 8 x 10(exp -6) Torr vacuum with power scans at 40 watts, 60 watts, and 80 watts. The test campaign included a null thrust test effort to identify any mundane sources of impulsive thrust, however none were identified. Thrust data from forward, reverse, and null suggests that the system is consistently performing with a thrust to power ratio of 1.2 +/- 0.1 mN/kW.

  7. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  8. Focal Point Inside the Vacuum Chamber for Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This photograph is a close-up view of a 4-in focal point inside the vacuum chamber at the MSFC Solar Thermal Propulsion Test facility. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  9. Simplified procedures for correlation of experimentally measured and predicted thrust chamber performance

    NASA Technical Reports Server (NTRS)

    Powell, W. B.

    1973-01-01

    Thrust chamber performance is evaluated in terms of an analytical model incorporating all the loss processes that occur in a real rocket motor. The important loss processes in the real thrust chamber were identified, and a methodology and recommended procedure for predicting real thrust chamber vacuum specific impulse were developed. Simplified equations for the calculation of vacuum specific impulse are developed to relate the delivered performance (both vacuum specific impulse and characteristic velocity) to the ideal performance as degraded by the losses corresponding to a specified list of loss processes. These simplified equations enable the various performance loss components, and the corresponding efficiencies, to be quantified separately (except that interaction effects are arbitrarily assigned in the process). The loss and efficiency expressions presented can be used to evaluate experimentally measured thrust chamber performance, to direct development effort into the areas most likely to yield improvements in performance, and as a basis to predict performance of related thrust chamber configurations.

  10. Solar Thermal Propulsion Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  11. Research Technology

    NASA Image and Video Library

    1999-03-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  12. Research Technology

    NASA Image and Video Library

    1999-11-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  13. Simple control laws for low-thrust orbit transfers

    NASA Technical Reports Server (NTRS)

    Petropoulos, Anastassios E.

    2003-01-01

    Two methods are presented by which to determine both a thrust direction and when to apply thrust to effect specified changes in any of the orbit elements except for true anomaly, which is assumed free. The central body is assumed to be a point mass, and the initial and final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse is constant. The thrust profiles derived from the two methods are not propellant-optimal, but are based firstly on the optimal thrust directions and location on the osculating orbit for changing each of the orbit elements and secondly on the desired changes in the orbit elements. Two examples of transfers are presented, one in semimajor axis and inclination, and one in semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized transfer between the same orbits. The control laws have few input parameters, but can still capture the complexity of a wide variety of orbit transfers.

  14. Optimal thrust level for orbit insertion

    NASA Astrophysics Data System (ADS)

    Cerf, Max

    2017-07-01

    The minimum-fuel orbital transfer is analyzed in the case of a launcher upper stage using a constantly thrusting engine. The thrust level is assumed to be constant and its value is optimized together with the thrust direction. A closed-loop solution for the thrust direction is derived from the extremal analysis for a planar orbital transfer. The optimal control problem reduces to two unknowns, namely the thrust level and the final time. Guessing and propagating the costates is no longer necessary and the optimal trajectory is easily found from a rough initialization. On the other hand the initial costates are assessed analytically from the initial conditions and they can be used as initial guess for transfers at different thrust levels. The method is exemplified on a launcher upper stage targeting a geostationary transfer orbit.

  15. Pilot Wave Model for Impulsive Thrust from RF Test Device Measured in Vacuum

    NASA Technical Reports Server (NTRS)

    White, Harold; Lawrence, James; Sylvester, Andre; Vera, Jerry; Chap, Andrew; George, Jeff

    2017-01-01

    A physics model is developed in detail and its place in the taxonomy of ideas about the nature of the quantum vacuum is discussed. The experimental results from the recently completed vacuum test campaign evaluating the impulsive thrust performance of a tapered RF test article excited in the TM212 mode at 1,937 megahertz (MHz) are summarized. The empirical data from this campaign is compared to the predictions from the physics model tools. A discussion is provided to further elaborate on the possible implications of the proposed model if it is physically valid. Based on the correlation of analysis prediction with experimental data collected, it is proposed that the observed anomalous thrust forces are real, not due to experimental error, and are due to a new type of interaction with quantum vacuum fluctuations.

  16. Low Thrust Cis-Lunar Transfers Using a 40 kW-Class Solar Electric Propulsion Spacecraft

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Burke, Laura M.; Mccarty, Steven L.; Hack, Kurt J.; Whitley, Ryan J.; Davis, Diane C.; Ocampo, Cesar

    2017-01-01

    This paper captures trajectory analysis of a representative low thrust, high power Solar Electric Propulsion (SEP) vehicle to move a mass around cis-lunar space in the range of 20 to 40 kW power to the Electric Propulsion (EP) system. These cis-lunar transfers depart from a selected Near Rectilinear Halo Orbit (NRHO) and target other cis-lunar orbits. The NRHO cannot be characterized in the classical two-body dynamics more familiar in the human spaceflight community, and the use of low thrust orbit transfers provides unique analysis challenges. Among the target orbit destinations documented in this paper are transfers between a Southern and Northern NRHO, transfers between the NRHO and a Distant Retrograde Orbit (DRO) and a transfer between the NRHO and two different Earth Moon Lagrange Point 2 (EML2) Halo orbits. Because many different NRHOs and EML2 halo orbits exist, simplifying assumptions rely on previous analysis of orbits that meet current abort and communication requirements for human mission planning. Investigation is done into the sensitivities of these low thrust transfers to EP system power. Additionally, the impact of the Thrust to Weight ratio of these low thrust SEP systems and the ability to transit between these unique orbits are investigated.

  17. A minimum propellant solution to an orbit-to-orbit transfer using a low thrust propulsion system

    NASA Technical Reports Server (NTRS)

    Cobb, Shannon S.

    1991-01-01

    The Space Exploration Initiative is considering the use of low thrust (nuclear electric, solar electric) and intermediate thrust (nuclear thermal) propulsion systems for transfer to Mars and back. Due to the duration of such a mission, a low thrust minimum-fuel solution is of interest; a savings of fuel can be substantial if the propulsion system is allowed to be turned off and back on. This switching of the propulsion system helps distinguish the minimal-fuel problem from the well-known minimum-time problem. Optimal orbit transfers are also of interest to the development of a guidance system for orbital maneuvering vehicles which will be needed, for example, to deliver cargoes to the Space Station Freedom. The problem of optimizing trajectories for an orbit-to-orbit transfer with minimum-fuel expenditure using a low thrust propulsion system is addressed.

  18. Directed self-assembly of block copolymer thin films: From fundamentals science to applications

    NASA Astrophysics Data System (ADS)

    Teel, George Lewis

    A modern approach to satellite based experimentation has evolved from large, multi-instrumented satellites, to cheaper, smaller, almost disposable yet still reliable small spacecrafts. These small satellites are either sent to the International Space Station (ISS) to be dropped out into low earth orbit (LEO), or dropped off as a secondary payload into various orbits. While it is cheap to have small spacecraft accomplishing these missions, the lifetime expectancy is very short. Currently there are no commercialized propulsion systems that exist to keep them flying for prolonged periods of time. Recently researched at the Micro Propulsion and Nanotechnology Lab (MPNL), at the George Washington University (GWU), have been developments of a variety of Vacuum Arc Thrusters (VAT's) dubbed Micro-Cathode Vacuum Arc Thrusters (muCATs). muCAT's provide an inert electric means of propulsion for small spacecraft. The issue with these muCATs has been their efficiency levels and low amounts of thrust that they provide. The muCATs can provide muN levels of thrust per pulse. While being proficient for small spacecrafts, an increase in thrust is highly sought for, but the improvements must retain a small footprint and low power consumption. The topic of this thesis is the development and characterization of a new type of muCAT. The interest in this new design has been conceptualized based on experiments for plasma coating techniques. By utilizing the physics of evaporation, which has been used to decrease macroparticles (MP's) for thin film deposition, it has been theorized to also be applied to VAT technology. The concept is to increase levels of thrust with the muCAT, and provide higher levels of efficiency. This effect can be created without many additional components nor multiple additional loads to the thruster subsystem. Development of this new mechanic for thruster technology has been investigated through a variety of tests for fundamental proofs of concept. Running in two operations modes, the Heated-Anode Cathode Arc Thruster (HA-CAT), has undergone current efficiency tests, mass measurements, and cross examination through the use of a Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). This research hopes to explore an old territory of plasma engineering for future developments with muCAT and VAT technology.

  19. Research Technology

    NASA Image and Video Library

    1999-08-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This photograph is a close-up view of a 4-in focal point inside the vacuum chamber at the MSFC Solar Thermal Propulsion Test facility. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  20. Research Technology

    NASA Image and Video Library

    1999-08-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  1. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  2. Solar Thermal Propulsion Test Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph, taken at MSFC's Solar Thermal Propulsion Test Facility, shows a concentrator mirror, a combination of 144 mirrors forming this 18-ft diameter concentrator, and a vacuum chamber that houses the focal point. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-foot diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  3. Comparison of theoretical and experimental thrust performance of a 1030:1 area ratio rocket nozzle at a chamber pressure of 2413 kN/m2 (350 psia)

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.; Pavli, Albert J.; Kacynski, Kenneth J.

    1987-01-01

    The joint Army. Navy, NASA. Air Force (JANNAF) rocket engine peformnace prediction procedure is based on the use of various reference computer programs. One of the reference programs for nozzle analysis is the Two-Dimensional Kinetics (TDK) Program. The purpose of this report is to calibrate the JANNAF procedure incorporated into the December l984 version of the TDK program for the high-area-ratio rocket engine regime. The calibration was accomplished by modeling the performance of a 1030:1 rocket nozzle tested at NASA Lewis Research Center. A detailed description of the experimental test conditions and TDK input parameters is given. The results show that the computer code predicts delivered vacuum specific impulse to within 0.12 to 1.9 percent of the experimental data. Vacuum thrust coefficient predictions were within + or - 1.3 percent of experimental results. Predictions of wall static pressure were within approximately + or - 5 percent of the measured values. An experimental value for inviscid thrust was obtained for the nozzle extension between area ratios of 427.5 and 1030 by using an integration of the measured wall static pressures. Subtracting the measured thrust gain produced by the nozzle between area ratios of 427.5 and 1030 from the inviscid thrust gain yielded experimental drag decrements of 10.85 and 27.00 N (2.44 and 6.07 lb) for mixture ratios of 3.04 and 4.29, respectively. These values correspond to 0.45 and 1.11 percent of the total vacuum thrust. At a mixture ratio of 4.29, the TDK predicted drag decrement was 16.59 N (3.73 lb), or 0.71 percent of the predicted total vacuum thrust.

  4. Simplified installation of thrust bearings

    NASA Technical Reports Server (NTRS)

    Sensenbaugh, N. D.

    1980-01-01

    Special handling sleeve, key to method of installing thrust bearings, was developed for assembling bearings on shaft of low-pressure oxygen turbo-pump. Method eliminates cooling and vacuum-drying steps which saves time, while also eliminating possibility of corrosion formation. Procedure saves energy because it requires no liquid nitrogen for cooling shaft and no natural gas or electric power for operating vacuum oven.

  5. Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul

    2005-01-01

    An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.

  6. Design and Optimization of Low-thrust Orbit Transfers Using Q-law and Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Fink, Wolfgang; Petropoulos, Anastassios; Terrile, Richard

    2005-01-01

    Future space missions will depend more on low-thrust propulsion (such as ion engines) thanks to its high specific impulse. Yet, the design of low-thrust trajectories is complex and challenging. Third-body perturbations often dominate the thrust, and a significant change to the orbit requires a long duration of thrust. In order to guide the early design phases, we have developed an efficient and efficacious method to obtain approximate propellant and flight-time requirements (i.e., the Pareto front) for orbit transfers. A search for the Pareto-optimal trajectories is done in two levels: optimal thrust angles and locations are determined by Q-law, while the Q-law is optimized with two evolutionary algorithms: a genetic algorithm and a simulated-annealing-related algorithm. The examples considered are several types of orbit transfers around the Earth and the asteroid Vesta.

  7. Sub-micro-Newton resolution thrust balance.

    PubMed

    Hathaway, G

    2015-10-01

    Herein is described a sensitive vacuum balance for measuring the thrust produced by small (∼0.5 kg) thrusters typically employed in microsat station-keeping. The balance is based on a torsion design but incorporates jewel-pivot bearings instead of the more typical torsion spring bearings. Novel tilt control allows maintenance of true verticality of the bearing axis even while under vacuum. The low moment of inertia design allows it to measure small thrusts from high-voltage devices without direct wire conductor connections. Calibration by several means is described including use of a previously calibrated dielectric barrier discharge thruster.

  8. Solving fuel-optimal low-thrust orbital transfers with bang-bang control using a novel continuation technique

    NASA Astrophysics Data System (ADS)

    Zhu, Zhengfan; Gan, Qingbo; Yang, Xin; Gao, Yang

    2017-08-01

    We have developed a novel continuation technique to solve optimal bang-bang control for low-thrust orbital transfers considering the first-order necessary optimality conditions derived from Lawden's primer vector theory. Continuation on the thrust amplitude is mainly described in this paper. Firstly, a finite-thrust transfer with an ;On-Off-On; thrusting sequence is modeled using a two-impulse transfer as initial solution, and then the thrust amplitude is decreased gradually to find an optimal solution with minimum thrust. Secondly, the thrust amplitude is continued from its minimum value to positive infinity to find the optimal bang-bang control, and a thrust switching principle is employed to determine the control structure by monitoring the variation of the switching function. In the continuation process, a bifurcation of bang-bang control is revealed and the concept of critical thrust is proposed to illustrate this phenomenon. The same thrust switching principle is also applicable to the continuation on other parameters, such as transfer time, orbital phase angle, etc. By this continuation technique, fuel-optimal orbital transfers with variable mission parameters can be found via an automated algorithm, and there is no need to provide an initial guess for the costate variables. Moreover, continuation is implemented in the solution space of bang-bang control that is either optimal or non-optimal, which shows that a desired solution of bang-bang control is obtained via continuation on a single parameter starting from an existing solution of bang-bang control. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed continuation technique. Specifically, this continuation technique provides an approach to find multiple solutions satisfying the first-order necessary optimality conditions to the same orbital transfer problem, and a continuation strategy is presented as a preliminary approach for solving the bang-bang control of many-revolution orbital transfers.

  9. Tsien's method for generating non-Keplerian trajectories. Part 2: The question of thrust to orbit a sphere and the restricted three-body problem

    NASA Technical Reports Server (NTRS)

    Murad, P. A.

    1993-01-01

    Tsien's method is extended to treat the orbital motion of a body undergoing accelerations and decelerations. A generalized solution is discussed for the generalized case where a body undergoes azimuthal and radial thrust and the problem is further simplified for azimuthal thrust alone. Judicious selection of thrust could generate either an elliptic or hyperbolic trajectory. This is unexpected especially when the body has only enough energy for a lower state trajectory. The methodology is extended treating the problem of vehicle thrust for orbiting a sphere and vehicle thrust within the classical restricted three-body problem. Results for the latter situation can produce hyperbolic trajectories through eigen value decomposition. Since eigen values for no-thrust can be imaginary, thrust can generate real eigen values to describe hyperbolic trajectories. Keplerian dynamics appears to represent but a small subset of a much larger non-Keplerian domain especially when thrust effects are considered. The need for high thrust long duration space-based propulsion systems for changing a trajectory's canonical form is clearly demonstrated.

  10. H2 arcjet performance mapping program

    NASA Astrophysics Data System (ADS)

    1992-01-01

    Work performed during the period of Mar. 1991 to Jan. 1992 is reviewed. High power H2 arcjets are being considered for electric powered orbit transfer vehicles (EOTV). Mission analyses indicate that the overall arcjet thrust efficiency is very important since increasing the efficiency increases the thrust, and thereby reduces the total trip time for the same power. For example, increasing the thrust efficiency at the same specific impulse from 30 to 40 percent will reduce the trip time by 25 percent. For a 200 day mission, this equates to 50 days, which results in lower ground costs and less time during which the payload is dormant. Arcjet performance levels of 1200 seconds specific impulse (lsp) at 35 to 40 percent efficiency with lifetimes over 1000 hours are needed to support EOTV missions. Because of the potential very high efficiency levels, the objective of this program was to evaluate the ability of a scaled Giannini-style thruster to achieve the performance levels while operating at a reduced nominal power of 10 kW. To meet this objective, a review of past literature was conducted; scaling relationships were developed and applied to establish critical dimensions; a development thruster was designed with the aid of the plasma analysis model KARNAC and finite element thermal modeling; test hardware was fabricated; and a series of performance tests were conducted in RRC's Cell 11 vacuum chamber with its null-balance thrust stand.

  11. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    NASA Technical Reports Server (NTRS)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  12. Optimal high- and low-thrust geocentric transfer

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.; Edelbaum, T. N.

    1974-01-01

    A computer code which rapidly calculates time optimal combined high- and low-thrust transfers between two geocentric orbits in the presence of a strong gravitational field has been developed as a mission analysis tool. The low-thrust portion of the transfer can be between any two arbitrary ellipses. There is an option for including the effect of two initial high-thrust impulses which would raise the spacecraft from a low, initially circular orbit to the initial orbit for the low-thrust portion of the transfer. In addition, the effect of a single final impulse after the low-thrust portion of the transfer may be included. The total Delta V for the initial two impulses must be specified as well as the Delta V for the final impulse. Either solar electric or nuclear electric propulsion can be assumed for the low-thrust phase of the transfer.

  13. Explicit Low-Thrust Guidance for Reference Orbit Targeting

    NASA Technical Reports Server (NTRS)

    Lam, Try; Udwadia, Firdaus E.

    2013-01-01

    The problem of a low-thrust spacecraft controlled to a reference orbit is addressed in this paper. A simple and explicit low-thrust guidance scheme with constrained thrust magnitude is developed by combining the fundamental equations of motion for constrained systems from analytical dynamics with a Lyapunov-based method. Examples are given for a spacecraft controlled to a reference trajectory in the circular restricted three body problem.

  14. Anomalous Thrust Production from an RF Test Device Measured on a Low-Thrust Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Brady, David A.; White, Harold G.; March, Paul; Lawrence, James T.; Davies, Frank J.

    2014-01-01

    This paper describes the test campaigns designed to investigate and demonstrate viability of using classical magnetoplasmadynamics to obtain a propulsive momentum transfer via the quantum vacuum virtual plasma. This paper will not address the physics of the quantum vacuum plasma thruster (QVPT), but instead will describe the recent test campaign. In addition, it contains a brief description of the supporting radio frequency (RF) field analysis, lessons learned, and potential applications of the technology to space exploration missions. During the first (Cannae) portion of the campaign, approximately 40 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 935 megahertz and 28 watts. During the subsequent (tapered cavity) portion of the campaign, approximately 91 micronewtons of thrust were observed in an RF resonant cavity test article excited at approximately 1933 megahertz and 17 watts. Testing was performed on a low-thrust torsion pendulum that is capable of detecting force at a single-digit micronewton level. Test campaign results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma.

  15. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the two largest members of the main asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional thrust design objectives (like minimum (Delta)V or minimum transfer time) often result in thrust direction time evolutions that can not be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and necessary to successfully navigate Dawn through all orbital transfers at Vesta.

  16. Modeling low-thrust transfers between periodic orbits about five libration points: Manifolds and hierarchical design

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Zhang, Jingrui

    2018-04-01

    The low-thrust version of the fuel-optimal transfers between periodic orbits with different energies in the vicinity of five libration points is exploited deeply in the Circular Restricted Three-Body Problem. Indirect optimization technique incorporated with constraint gradients is employed to further improve the computational efficiency and accuracy of the algorithm. The required optimal thrust magnitude and direction can be determined to create the bridging trajectory that connects the invariant manifolds. A hierarchical design strategy dividing the constraint set is proposed to seek the optimal solution when the problem cannot be solved directly. Meanwhile, the solution procedure and the value ranges of used variables are summarized. To highlight the effectivity of the transfer scheme and aim at different types of libration point orbits, transfer trajectories between some sample orbits, including Lyapunov orbits, planar orbits, halo orbits, axial orbits, vertical orbits and butterfly orbits for collinear and triangular libration points, are investigated with various time of flight. Numerical results show that the fuel consumption varies from a few kilograms to tens of kilograms, related to the locations and the types of mission orbits as well as the corresponding invariant manifold structures, and indicates that the low-thrust transfers may be a beneficial option for the extended science missions around different libration points.

  17. Low Thrust Orbital Maneuvers Using Ion Propulsion

    NASA Astrophysics Data System (ADS)

    Ramesh, Eric

    2011-10-01

    Low-thrust maneuver options, such as electric propulsion, offer specific challenges within mission-level Modeling, Simulation, and Analysis (MS&A) tools. This project seeks to transition techniques for simulating low-thrust maneuvers from detailed engineering level simulations such as AGI's Satellite ToolKit (STK) Astrogator to mission level simulations such as the System Effectiveness Analysis Simulation (SEAS). Our project goals are as follows: A) Assess different low-thrust options to achieve various orbital changes; B) Compare such approaches to more conventional, high-thrust profiles; C) Compare computational cost and accuracy of various approaches to calculate and simulate low-thrust maneuvers; D) Recommend methods for implementing low-thrust maneuvers in high-level mission simulations; E) prototype recommended solutions.

  18. Optimal Trajectories For Orbital Transfers Using Low And Medium Thrust Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cobb, Shannon S.

    1992-01-01

    For many problems it is reasonable to expect that the minimum time solution is also the minimum fuel solution. However, if one allows the propulsion system to be turned off and back on, it is clear that these two solutions may differ. In general, high thrust transfers resemble the well-known impulsive transfers where the burn arcs are of very short duration. The low and medium thrust transfers differ in that their thrust acceleration levels yield longer burn arcs which will require more revolutions, thus making the low thrust transfer computational intensive. Here, we consider optimal low and medium thrust orbital transfers.

  19. Thrust vector control of upper stage with a gimbaled thruster during orbit transfer

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Jia, Yinghong; Jin, Lei; Duan, Jiajia

    2016-10-01

    In launching Multi-Satellite with One-Vehicle, the main thruster provided by the upper stage is mounted on a two-axis gimbal. During orbit transfer, the thrust vector of this gimbaled thruster (GT) should theoretically pass through the mass center of the upper stage and align with the command direction to provide orbit transfer impetus. However, it is hard to be implemented from the viewpoint of the engineering mission. The deviations of the thrust vector from the command direction would result in large velocity errors. Moreover, the deviations of the thrust vector from the upper stage mass center would produce large disturbance torques. This paper discusses the thrust vector control (TVC) of the upper stage during its orbit transfer. Firstly, the accurate nonlinear coupled kinematic and dynamic equations of the upper stage body, the two-axis gimbal and the GT are derived by taking the upper stage as a multi-body system. Then, a thrust vector control system consisting of the special attitude control of the upper stage and the gimbal rotation of the gimbaled thruster is proposed. The special attitude control defined by the desired attitude that draws the thrust vector to align with the command direction when the gimbal control makes the thrust vector passes through the upper stage mass center. Finally, the validity of the proposed method is verified through numerical simulations.

  20. On-board orbit determination for low thrust LEO-MEO transfer by Consider Kalman Filtering and multi-constellation GNSS

    NASA Astrophysics Data System (ADS)

    Menzione, Francesco; Renga, Alfredo; Grassi, Michele

    2017-09-01

    In the framework of the novel navigation scenario offered by the next generation satellite low thrust autonomous LEO-to-MEO orbit transfer, this study proposes and tests a GNSS based navigation system aimed at providing on-board precise and robust orbit determination strategy to override rising criticalities. The analysis introduces the challenging design issues to simultaneously deal with the variable orbit regime, the electric thrust control and the high orbit GNSS visibility conditions. The Consider Kalman Filtering approach is here proposed as the filtering scheme to process the GNSS raw data provided by a multi-antenna/multi-constellation receiver in presence of uncertain parameters affecting measurements, actuation and spacecraft physical properties. Filter robustness and achievable navigation accuracy are verified using a high fidelity simulation of the low-thrust rising scenario and performance are compared with the one of a standard Extended Kalman Filtering approach to highlight the advantages of the proposed solution. Performance assessment of the developed navigation solution is accomplished for different transfer phases.

  1. Analytical Equations for Orbital Transfer Maneuvers of a Vehicle Using Constant Low Thrust

    DTIC Science & Technology

    1981-12-01

    136auks" ,b , .. .. a. AFIT/GA/AA/81D -3 ANALITICAL EQUATIOIS FOR OR.BITAL TRASFER MANIUVRS OF A V 1CI, USING CONSTANT LOW THRUST THESIS AFIT/GA/AA...nondimensional radius ( )m - specified values vii. AFIT/GA/AA/81D -3 Abstract The object of this study is to derive a set of equations which predict the...study is to derive a set of equations which predict the results of orbital maneuvers of vehicles using constant low thrust. These equations are

  2. Automated low-thrust guidance for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Rose, Richard E.; Schmeichel, Harry; Shortwell, Charles P.; Werner, Ronald A.

    1988-01-01

    This paper describes the highly autonomous OMV Guidance Navigation and Control system. Emphasis is placed on a key feature of the design, the low thrust guidance algorithm. The two guidance modes, orbit change guidance and rendezvous guidance, are discussed in detail. It is shown how OMV will automatically transfer from its initial orbit to an arbitrary target orbit and reach a specified rendezvous position relative to the target vehicle.

  3. Aeroassisted orbit transfer vehicle trajectory analysis

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Suit, William T.

    1988-01-01

    The emphasis in this study was on the use of multiple pass trajectories for aerobraking. However, for comparison, single pass trajectories, trajectories using ballutes, and trajectories corrupted by atmospheric anomolies were run. A two-pass trajectory was chosen to determine the relation between sensitivity to errors and payload to orbit. Trajectories that used only aerodynamic forces for maneuvering could put more weight into the target orbits but were very sensitive to variations from the planned trajectors. Using some thrust control resulted in less payload to orbit, but greatly reduced the sensitivity to variations from nominal trajectories. When compared to the non-thrusting trajectories investigated, the judicious use of thrusting resulted in multiple pass trajectories that gave 97 percent of the payload to orbit with almost none of the sensitivity to variations from the nominal.

  4. Combined high and low-thrust geostationary orbit insertion with radiation constraint

    NASA Astrophysics Data System (ADS)

    Macdonald, Malcolm; Owens, Steven Robert

    2018-01-01

    The sequential use of an electric propulsion system is considered in combination with a high-thrust propulsion system for application to the propellant-optimal Geostationary Orbit insertion problem, whilst considering both temporal and radiation flux constraints. Such usage is found to offer a combined propellant mass saving when compared with an equivalent high-thrust only transfer. This propellant mass saving is seen to increase as the allowable transfer duration is increased, and as the thrust from the low-thrust system is increased, assuming constant specific impulse. It was found that the required plane change maneuver is most propellant-efficiently performed by the high-thrust system. The propellant optimal trajectory incurs a significantly increased electron flux when compared to an equivalent high-thrust only transfer. However, the electron flux can be reduced to a similar order of magnitude by increasing the high-thrust propellant consumption, whilst still delivering an improved mass fraction.

  5. Low-thrust chemical orbit transfer propulsion

    NASA Technical Reports Server (NTRS)

    Pelouch, J. J., Jr.

    1979-01-01

    The need for large structures in high orbit is reported in terms of the many mission opportunities which require such structures. Mission and transportation options for large structures are presented, and it is shown that low-thrust propulsion is an enabling requirement for some missions and greatly enhancing to many others. Electric and low-thrust chemical propulsion are compared, and the need for an requirements of low-thrust chemical propulsion are discussed in terms of the interactions that are perceived to exist between the propulsion system and the large structure.

  6. Primary propulsion/large space system interactions

    NASA Technical Reports Server (NTRS)

    Dergance, R. H.

    1980-01-01

    Three generic types of structural concepts and nonstructural surface densities were selected and combined to represent potential LSS applications. The design characteristics of various classes of large space systems that are impacted by primary propulsion thrust required to effect orbit transfer were identified. The effects of propulsion system thrust-to-mass ratio, thrust transients, and performance on the mass, area, and orbit transfer characteristics of large space systems were determined.

  7. Space tug geosynchronous mission simulation

    NASA Technical Reports Server (NTRS)

    Lang, T. J.

    1973-01-01

    Near-optimal three dimensional trajectories from a low earth park orbit inclined at 28.5 deg to a synchronous-equatorial mission orbit were developed for both the storable (thrust = 28,912 N (6,500 lbs), I sub sp = 339 sec) and cryogenic (thrust = 44,480 N (10,000 lbs), I sub sp = 470 sec) space tug using the iterative cost function minimization technique contained within the modularized vehicle simulation (MVS) program. The finite burn times, due to low thrust-to-weight ratios, and the associated gravity losses are accounted for in the trajectory simulation and optimization. The use of an ascent phasing orbit to achieve burnout in synchronous orbit at any longitude is investigated. The ascent phasing orbit is found to offer the additional advantage of significantly reducing the overall delta velocity by splitting the low altitude burn into two parts and thereby reducing gravity losses.

  8. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  9. Space shuttle system program definition. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Phase B Extension of the Space Shuttle System Program Definition study was redirected to apply primary effort to consideration of space shuttle systems utilizing either recoverable pressure fed liquids or expendable solid rocket motor boosters. Two orbiter configurations were to be considered, one with a 15x60 foot payload bay with a 65,000 lb, due East, up-payload capability and the other with a 14x45 payload bay with 45,000 lb, of due East, up-payload. Both were to use three SSME engines with 472,000 lb of vacuum thrust each. Parallel and series burn ascent modes were to be considered for the launch configurations of primary interest. A recoverable pump-fed booster is included in the study in a series burn configuration with the 15x60 orbiter. To explore the potential of the swing engine orbiter configuration in the pad abort case, it is included in the study matrix in two launch configurations, a series burn pressure fed BRB and a parallel burn SRM. The resulting matrix of configuration options is shown. The principle objectives of this study are to evaluate the cost and technical differences between the liquid and solid propellant booster systems and to assess the development and operational cost savings available with a smaller orbiter.

  10. Earth orbital assessment of solar electric and solar sail propulsion systems

    NASA Technical Reports Server (NTRS)

    Teeter, R. R.

    1977-01-01

    The earth orbital applications potential of Solar Electric (Ion Drive) and Solar Sail low-thrust propulsion systems are evaluated. Emphasis is placed on mission application in the 1980s. The two low-thrust systems are compared with each other and with two chemical propulsion Shuttle upper stages (the IUS and SSUS) expected to be available in the 1980s. The results indicate limited Earth orbital application potential for the low-thrust systems in the 1980s (primarily due to cost disadvantages). The longer term potential is viewed as more promising. Of the two systems, the Ion Drive exhibits better performance and appears to have better overall application potential.

  11. Fuel-optimal, low-thrust transfers between libration point orbits

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey R.

    Mission design requires the efficient management of spacecraft fuel to reduce mission cost, increase payload mass, and extend mission life. High efficiency, low-thrust propulsion devices potentially offer significant propellant reductions. Periodic orbits that exist in a multi-body regime and low-thrust transfers between these orbits can be applied in many potential mission scenarios, including scientific observation and communications missions as well as cargo transport. In light of the recent discovery of water ice in lunar craters, libration point orbits that support human missions within the Earth-Moon region are of particular interest. This investigation considers orbit transfer trajectories generated by a variable specific impulse, low-thrust engine with a primer-vector-based, fuel-optimizing transfer strategy. A multiple shooting procedure with analytical gradients yields rapid solutions and serves as the basis for an investigation into the trade space between flight time and consumption of fuel mass. Path and performance constraints can be included at node points along any thrust arc. Integration of invariant manifolds into the design strategy may also yield improved performance and greater fuel savings. The resultant transfers offer insight into the performance of the variable specific impulse engine and suggest novel implementations of conventional impulsive thrusters. Transfers incorporating invariant manifolds demonstrate the fuel savings and expand the mission design capabilities that are gained by exploiting system symmetry. A number of design applications are generated.

  12. Propulsion requirements for communications satellites.

    NASA Technical Reports Server (NTRS)

    Isley, W. C.; Duck, K. I.

    1972-01-01

    The concept of characteristics thrust is introduced herein as a means of classifying propulsion system tasks related particularly to geosynchronous communications spacecraft. Approximate analytical models are developed to permit estimation of characteristic thrust for injection error corrections, orbit angle re-location, north-south station keeping, east-west station keeping, spin axis precession control, attitude rate damping, and orbit raising applications. Performance assessment factors are then outlined in terms of characteristic power, characteristic weight, and characteristic volume envelope, which are related to the characteristic thrust. Finally, selected performance curves are shown for power as a function of spacecraft weight, including the influence of duty cycle on north-south station keeping, a 90 degree orbit angle re-location in 14 days, and finally comparison of orbit raising tasks from low and intermediate orbits to a final geosynchronous station. Power requirements range from less than 75 watts for north-south station keeping on small payloads up to greater than 15 KW for a 180 day orbit raising mission including a 28.5 degree plane change.

  13. The role of invariant manifolds in lowthrust trajectory design (part III)

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.; Anderson, Rodney L.; Lam, Try; Whiffen, Greg

    2006-01-01

    This paper is the third in a series to explore the role of invariant manifolds in the design of low thrust trajectories. In previous papers, we analyzed an impulsive thrust resonant gravity assist flyby trajectory to capture into Europa orbit using the invariant manifolds of unstable resonant periodic orbits and libration orbits. The energy savings provided by the gravity assist may be interpreted dynamically as the result of a finite number of intersecting invariant manifolds. In this paper we demonstrate that the same dynamics is at work for low thrust trajectories with resonant flybys and low energy capture. However, in this case, the flybys and capture are effected by continuous families of intersecting invariant manifolds.

  14. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the giant asteroid Vesta and the dwarf planet Ceres, the two largest members of the main asteroid belt. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional low-thrust design objectives (like minimum change in velocity or minimum transfer time) often result in thrust direction time evolutions that cannot be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and turned out to be essential to the successful navigation of Dawn at Vesta.

  15. Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.

    1998-01-01

    A static experimental investigation of a counterflow thrust vectoring nozzle concept was performed. The study was conducted in the NASA Langley Research Center Jet Exit Test Facility. Internal performance characteristics were defined over a nozzle pressure ratio (jet total to ambient) range of 3.5 to 10.0. The effects of suction collar geometry and suction slot height on nozzle performance were examined. In the counterflow concept, thrust vectoring is achieved by applying a vacuum to a slot adjacent to a primary jet that is shrouded by a suction collar. Two flow phenomena work to vector the primary jet depending upon the test conditions and configuration. In one case, the vacuum source creates a secondary reverse flowing stream near the primary jet. The shear layers between the two counterflowing streams mix and entrain mass from the surrounding fluid. The presence of the collar inhibits mass entrainment and the flow near the collar accelerates, causing a drop in pressure on the collar. The second case works similarly except that the vacuum is not powerful enough to create a counterflowing stream and instead a coflowing stream is present. The primary jet is vectored if suction is applied asymmetrically on the top or bottom of the jet.

  16. Optimal Low-Thrust Limited-Power Transfers between Arbitrary Elliptic Coplanar Orbits

    NASA Technical Reports Server (NTRS)

    daSilvaFernandes, Sandro; dasChagasCarvalho, Francisco

    2007-01-01

    In this work, a complete first order analytical solution, which includes the short periodic terms, for the problem of optimal low-thrust limited-power transfers between arbitrary elliptic coplanar orbits in a Newtonian central gravity field is obtained through Hamilton-Jacobi theory and a perturbation method based on Lie series.

  17. Research Technology

    NASA Image and Video Library

    1999-11-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  18. Solar Thermal Propulsion Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  19. Experimental thrust performance of a high-area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, Albert J.; Kacynski, Kenneth J.; Smith, Tamara A.

    1987-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  20. Experimental thrust performance of a high area-ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Pavli, A. J.; Kacynski, K. J.; Smith, T. A.

    1986-01-01

    An experimental investigation was conducted to determine the thrust performance attainable from high-area-ratio rocket nozzles. A modified Rao-contoured nozzle with an expansion area of 1030 was test fired with hydrogen-oxygen propellants at altitude conditions. The nozzle was also tested as a truncated nozzle, at an expansion area ratio of 428. Thrust coefficient and thrust coefficient efficiency values are presented for each configuration at various propellant mixture ratios (oxygen/fuel). Several procedural techniques were developed permitting improved measurement of nozzle performance. The more significant of these were correcting the thrust for the aneroid effects, determining the effective chamber pressure, and referencing differential pressure transducers to a vacuum reference tank.

  1. Advanced solar-propelled cargo spacecraft for Mars missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, J.; Beall, M.; Burianek, J.; Cinniger, A.; Dunmire, B.; Haberman, E.; Iwamoto, J.; Johnson, S.; Mccracken, S.; Miller, M.

    1989-01-01

    At the University of Washington, three concepts for an unmanned, solar powered, cargo spacecraft for Mars-support missions have been investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: a solar radiation absorption (SRA) system, a solar-pumped laser (SPL) system, and a solar powered mangetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process developed at the University of Washington. A solar concentrator focuses sunlight into an absorption chamber. A mixture of hydrogen and potassium vapor absorbs the incident radiation and is heated to approximately 3700 K. The hot propellant gas exhausts through a nozzle to produce thrust. The SRA has an I(sub sp) of approximately 1000 sec and produces a thrust of 2940 N using two thrust chambers. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sun-synchronous Earth orbit converts solar energy to laser energy. The laser beams are transmitted to the spacecraft via laser relay satellites. The laser energy heats the hydrogen propellant through a plasma breakdown process in the center of an absorption chamber. Propellant flowing through the chamber, heated by the plasma core, expands through a nozzle to produce thrust. The SPL has an I(sub sp) of 1285 sec and produces a thrust of 1200 N using two thrust chambers. The MPD system uses indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. In this system, the argon propellant is ionized and electromagnetically accelerated by a magnetoplasmadynamic arc to produce thrust. The MPD spacecraft has an I(sub sp) of 2490 sec and produces a thrust of 100 N. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft releases the payload as the spacecraft passes by Mars. Both the SRA-powered spacecraft and the SPL-powered spacecraft return to Earth for subsequent missions. The MPD-propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  2. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  3. OPTRAN- OPTIMAL LOW THRUST ORBIT TRANSFERS

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.

    1994-01-01

    OPTRAN is a collection of programs that solve the problem of optimal low thrust orbit transfers between non-coplanar circular orbits for spacecraft with chemical propulsion systems. The programs are set up to find Hohmann-type solutions, with burns near the perigee and apogee of the transfer orbit. They will solve both fairly long burn-arc transfers and "divided-burn" transfers. Program modeling includes a spherical earth gravity model and propulsion system models for either constant thrust or constant acceleration. The solutions obtained are optimal with respect to fuel use: i.e., final mass of the spacecraft is maximized with respect to the controls. The controls are the direction of thrust and the thrust on/off times. Two basic types of programs are provided in OPTRAN. The first type is for "exact solution" which results in complete, exact tkme-histories. The exact spacecraft position, velocity, and optimal thrust direction are given throughout the maneuver, as are the optimal thrust switch points, the transfer time, and the fuel costs. Exact solution programs are provided in two versions for non-coplanar transfers and in a fast version for coplanar transfers. The second basic type is for "approximate solutions" which results in approximate information on the transfer time and fuel costs. The approximate solution is used to estimate initial conditions for the exact solution. It can be used in divided-burn transfers to find the best number of burns with respect to time. The approximate solution is useful by itself in relatively efficient, short burn-arc transfers. These programs are written in FORTRAN 77 for batch execution and have been implemented on a DEC VAX series computer with the largest program having a central memory requirement of approximately 54K of 8 bit bytes. The OPTRAN program were developed in 1983.

  4. Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

    NASA Astrophysics Data System (ADS)

    Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.

    2018-01-01

    Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to an orbit angle and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are computed with the transfer duration extended up to 2000 revolutions. The flexibility of the approach to higher fidelity dynamics is shown with Earth's J 2 perturbation and lunar gravity included for a 500 revolution transfer.

  5. Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

    NASA Astrophysics Data System (ADS)

    Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.

    2018-06-01

    Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to an orbit angle and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are computed with the transfer duration extended up to 2000 revolutions. The flexibility of the approach to higher fidelity dynamics is shown with Earth's J 2 perturbation and lunar gravity included for a 500 revolution transfer.

  6. Upper stages utilizing electric propulsion

    NASA Technical Reports Server (NTRS)

    Byers, D. C.

    1980-01-01

    The payload characteristics of geocentric missions which utilize electron bombardment ion thruster systems are discussed. A baseline LEO to GEO orbit transfer mission was selected to describe the payload capabilities. The impacts on payloads of both mission parameters and electric propulsion technology options were evaluated. The characteristics of the electric propulsion thrust system and the power requirements were specified in order to predict payload mass. This was completed by utilizing a previously developed methodology which provides a detailed thrust system description after the final mass on orbit, the thrusting time, and the specific impulse are specified. The impact on payloads of total mass in LEO, thrusting time, propellant type, specific impulse, and power source characteristics was evaluated.

  7. LEO-to-GEO low thrust chemical propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1980-01-01

    One approach being considered for transporting large space structures from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) is the use of low thrust chemical propulsion systems. A variety of chemical rocket engine cycles evaluated for this application for oxygen/hydrogen and oxygen/hydrocarbon propellants (oxygen/methane and oxygen/RF-1) are discussed. These cycles include conventional propellant turbine drives, turboalternator/electric motor pump drive, and fuel cell/electric motor pump drive as well as pressure fed engines. Thrust chamber cooling analysis results are presented for regenerative/radiation and film/radiation cooling.

  8. Solar Electric Propulsion Triple-Satellite-Aided Capture With Mars Flyby

    NASA Astrophysics Data System (ADS)

    Patrick, Sean

    Triple-Satellite-aided-capture sequences use gravity-assists at three of Jupiter's four massive Galilean moons to reduce the DeltaV required to enter into Jupiter orbit. A triple-satellite-aided capture at Callisto, Ganymede, and Io is proposed to capture a SEP spacecraft into Jupiter orbit from an interplanetary Earth-Jupiter trajectory that employs low-thrust maneuvers. The principal advantage of this method is that it combines the ISP efficiency of ion propulsion with nearly impulsive but propellant-free gravity assists. For this thesis, two main chapters are devoted to the exploration of low-thrust triple-flyby capture trajectories. Specifically, the design and optimization of these trajectories are explored heavily. The first chapter explores the design of two solar electric propulsion (SEP), low-thrust trajectories developed using the JPL's MALTO software. The two trajectories combined represent a full Earth to Jupiter capture split into a heliocentric Earth to Jupiter Sphere of Influence (SOI) trajectory and a Joviocentric capture trajectory. The Joviocentric trajectory makes use of gravity assist flybys of Callisto, Ganymede, and Io to capture into Jupiter orbit with a period of 106.3 days. Following this, in chapter two, three more SEP low-thrust trajectories were developed based upon those in chapter one. These trajectories, devised using the high-fidelity Mystic software, also developed by JPL, improve upon the original trajectories developed in chapter one. Here, the developed trajectories are each three separate, full Earth to Jupiter capture orbits. As in chapter one, a Mars gravity assist is used to augment the heliocentric trajectories. Gravity-assist flybys of Callisto, Ganymede, and Io or Europa are used to capture into Jupiter Orbit. With between 89.8 and 137.2-day periods, the orbits developed in chapters one and two are shorter than most Jupiter capture orbits achieved using low-thrust propulsion techniques. Finally, chapter 3 presents an original trajectory design for a Very-Long-Baseline Interferometry (VLBI) satellite constellation. The design was created for the 8th Global Trajectory Optimization Competition (GTOC8) in which participants are tasked with creating and optimizing low-thrust trajectories to place a series of three space craft into formation to map given radio sources.

  9. A simplex method for the orbit determination of maneuvering satellites

    NASA Astrophysics Data System (ADS)

    Chen, JianRong; Li, JunFeng; Wang, XiJing; Zhu, Jun; Wang, DanNa

    2018-02-01

    A simplex method of orbit determination (SMOD) is presented to solve the problem of orbit determination for maneuvering satellites subject to small and continuous thrust. The objective function is established as the sum of the nth powers of the observation errors based on global positioning satellite (GPS) data. The convergence behavior of the proposed method is analyzed using a range of initial orbital parameter errors and n values to ensure the rapid and accurate convergence of the SMOD. For an uncontrolled satellite, the orbit obtained by the SMOD provides a position error compared with GPS data that is commensurate with that obtained by the least squares technique. For low Earth orbit satellite control, the precision of the acceleration produced by a small pulse thrust is less than 0.1% compared with the calibrated value. The orbit obtained by the SMOD is also compared with weak GPS data for a geostationary Earth orbit satellite over several days. The results show that the position accuracy is within 12.0 m. The working efficiency of the electric propulsion is about 67% compared with the designed value. The analyses provide the guidance for subsequent satellite control. The method is suitable for orbit determination of maneuvering satellites subject to small and continuous thrust.

  10. The Dawn of Vesta Science

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.; Brophy, John R.; Mikes, Steven C.

    2011-01-01

    The Dawn mission is part of NASA's Discovery Program and has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from the Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218-kg spacecraft onto an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide a total ?V of 11.3 km/s for the heliocentric transfer to Vesta, orbit capture at Vesta, transfer between Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer between Ceres science orbits. Fullpower thrusting from December 2007 through October 2008 was used to successfully target a Mars gravity assist flyby in February 2009 that provided an additional ?V of 2.6 km/s. Deterministic thrusting for the heliocentric transfer to Vesta resumed in June 2009 and concluded with orbit capture at Vesta on July 16, 2011. An additional 210 hours of IPS thrusting was used to enter the first Vesta science orbit, called Survey orbit, on August 3, 2011 at an altitude of approximately 2,735 km. To date the IPS has been operated for 23,621 hours, consumed approximately 252 kg of xenon, and provided a delta-V of approximately 6.7 km/s. The IPS performance characteristics are very close to the expected performance based on analysis and testing performed pre-launch. The only significant issue in over the almost four years of IPS operations in flight was the temporary failure of a valve driver board in the Digital Control and Interface Unit-1 (DCIU-1), resulting in a loss of thrust of approximately 29 hours. Thrusting operations resumed after switching to DCIU-2, and power cycling conducted after orbit capture restored DCIU-1 to full functionality. After about three weeks of Survey orbit operations the IPS will be used to transfer the spacecraft to the other planned science orbit altitudes. After approximately one year of science operations the IPS will be used for escape from Vesta and then for thrusting to Ceres with a planned arrival date at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through the start of science operations at Vesta.

  11. Very Low Thrust Gaseous Oxygen-hydrogen Rocket Engine Ignition Technology

    NASA Technical Reports Server (NTRS)

    Bjorklund, Roy A.

    1983-01-01

    An experimental program was performed to determine the minimum energy per spark for reliable and repeatable ignition of gaseous oxygen (GO2) and gaseous hydrogen (GH2) in very low thrust 0.44 to 2.22-N (0.10 to 0.50-lb sub f) rocket engines or spacecraft and satellite attitude control systems (ACS) application. Initially, the testing was conducted at ambient conditions, with the results subsequently verified under vacuum conditions. An experimental breadboard electrical exciter that delivered 0.2 to 0.3 mj per spark was developed and demonstrated by repeated ignitions of a 2.22-N (0.50-lb sub f) thruster in a vacuum chamber with test durations up to 30 min.

  12. An engineering evaluation of the Space Shuttle OMS engine after 5 orbital flights

    NASA Technical Reports Server (NTRS)

    David, D.

    1983-01-01

    Design features, performances on the first five flights, and condition of the Shuttle OMS engines are summarized. The engines were designed to provide a vacuum-fed 6000 lb of thrust and a 310 sec specific impulse, fueled by a combination of N2O4 and monomethylhydrazine (MMH) at a mixture ratio of 1.65. The design lifetime is 1000 starts and 15 hr of cumulative firing duration. The engine assembly is throat gimballed and features yaw actuators. No degradation of the hot components was observed during the first five flights, and the injector pattern maintained a uniform, enduring level of performance. An increase in the take-off loads have led to enhancing the wall thickness in the nozzle in affected areas. The engine is concluded to be performing to design specifications and is considered an operational system.

  13. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  14. Thrust law effects on the long-period modes of aerospace craft

    NASA Technical Reports Server (NTRS)

    Markopoulos, Nikos; Mease, Kenneth D.; Vinh, Nguyen X.

    1989-01-01

    An analytical study is presented of the longitudinal long-period dynamics of an aerospace craft in a nearly circular orbit, with a thrust law depending arbitrarily on the speed and altitude. A plane of engine possibilities is first defined, with points corresponding to propulsion systems having prescribed thrust slopes with respect to speed and altitude. Approximate expressions for the characteristic roots and times are obtained by first identifying a small quantity in the coefficients of the characteristic equation, and then expanding in a perturbation series about the origin of the plane of engine possibilities, for which the solution is always known. These expressions agree very well with the exact solutions over a wide range of altitudes and thrust laws. The period of the oscillatory translational mode (phugoid) is found to be independent to first order of the thrust law, generalizing results found by previous investigators for specific thrust laws. The results apply to the speed range from hypersonic to orbital.

  15. Numerical investigation of two interacting parallel thruster-plumes and comparison to experiment

    NASA Astrophysics Data System (ADS)

    Grabe, Martin; Holz, André; Ziegenhagen, Stefan; Hannemann, Klaus

    2014-12-01

    Clusters of orbital thrusters are an attractive option to achieve graduated thrust levels and increased redundancy with available hardware, but the heavily under-expanded plumes of chemical attitude control thrusters placed in close proximity will interact, leading to a local amplification of downstream fluxes and of back-flow onto the spacecraft. The interaction of two similar, parallel, axi-symmetric cold-gas model thrusters has recently been studied in the DLR High-Vacuum Plume Test Facility STG under space-like vacuum conditions, employing a Patterson-type impact pressure probe with slot orifice. We reproduce a selection of these experiments numerically, and emphasise that a comparison of numerical results to the measured data is not straight-forward. The signal of the probe used in the experiments must be interpreted according to the degree of rarefaction and local flow Mach number, and both vary dramatically thoughout the flow-field. We present a procedure to reconstruct the probe signal by post-processing the numerically obtained flow-field data and show that agreement to the experimental results is then improved. Features of the investigated cold-gas thruster plume interaction are discussed on the basis of the numerical results.

  16. Optimal Electrodynamic Tether Phasing Maneuvers

    NASA Technical Reports Server (NTRS)

    Bitzer, Matthew S.; Hall, Christopher D.

    2007-01-01

    We study the minimum-time orbit phasing maneuver problem for a constant-current electrodynamic tether (EDT). The EDT is assumed to be a point mass and the electromagnetic forces acting on the tether are always perpendicular to the local magnetic field. After deriving and non-dimensionalizing the equations of motion, the only input parameters become current and the phase angle. Solution examples, including initial Lagrange costates, time of flight, thrust plots, and thrust angle profiles, are given for a wide range of current magnitudes and phase angles. The two-dimensional cases presented use a non-tilted magnetic dipole model, and the solutions are compared to existing literature. We are able to compare similar trajectories for a constant thrust phasing maneuver and we find that the time of flight is longer for the constant thrust case with similar initial thrust values and phase angles. Full three-dimensional solutions, which use a titled magnetic dipole model, are also analyzed for orbits with small inclinations.

  17. Low thrust chemical orbit to orbit propulsion system propellant management study

    NASA Technical Reports Server (NTRS)

    Dergance, R. H.; Hamlyn, K. M.; Tegart, J. R.

    1981-01-01

    Low thrust chemical propulsion systems were sized for transfer of large space systems from LEO to GEO. The influence of propellant combination, tankage and insulation requirements, and propellant management techniques on the LTPS mass and volume were studied. Liquid oxygen combined with hydrogen, methane or kerosene were the propellant combinations. Thrust levels of 445, 2230, and 4450 N were combined with 1, 4 and 8 perigee burn strategies. This matrix of systems was evaluated using multilayer insulation and spray-on-foam insulation systems. Various combinations of toroidal, cylindrical with ellipsoidal domes, and ellipsoidal tank shapes were investigated. Results indicate that low thrust (445 N) and single perigee burn approaches are considerably less efficient than the higher thrust level and multiple burn strategies. A modified propellant settling approach minimized propellant residuals and decreased system complexity, in addition, the toroid/ellipsoidal tank combination was predicted to be shortest.

  18. Implementation of the Orbital Maneuvering Systems Engine and Thrust Vector Control for the European Service Module

    NASA Technical Reports Server (NTRS)

    Millard, Jon

    2014-01-01

    The European Space Agency (ESA) has entered into a partnership with the National Aeronautics and Space Administration (NASA) to develop and provide the Service Module (SM) for the Orion Multipurpose Crew Vehicle (MPCV) Program. The European Service Module (ESM) will provide main engine thrust by utilizing the Space Shuttle Program Orbital Maneuvering System Engine (OMS-E). Thrust Vector Control (TVC) of the OMS-E will be provided by the Orbital Maneuvering System (OMS) TVC, also used during the Space Shuttle Program. NASA will be providing the OMS-E and OMS TVC to ESA as Government Furnished Equipment (GFE) to integrate into the ESM. This presentation will describe the OMS-E and OMS TVC and discuss the implementation of the hardware for the ESM.

  19. Particle Swarm Optimization of Low-Thrust, Geocentric-to-Halo-Orbit Transfers

    NASA Astrophysics Data System (ADS)

    Abraham, Andrew J.

    Missions to Lagrange points are becoming increasingly popular amongst spacecraft mission planners. Lagrange points are locations in space where the gravity force from two bodies, and the centrifugal force acting on a third body, cancel. To date, all spacecraft that have visited a Lagrange point have done so using high-thrust, chemical propulsion. Due to the increasing availability of low-thrust (high efficiency) propulsive devices, and their increasing capability in terms of fuel efficiency and instantaneous thrust, it has now become possible for a spacecraft to reach a Lagrange point orbit without the aid of chemical propellant. While at any given time there are many paths for a low-thrust trajectory to take, only one is optimal. The traditional approach to spacecraft trajectory optimization utilizes some form of gradient-based algorithm. While these algorithms offer numerous advantages, they also have a few significant shortcomings. The three most significant shortcomings are: (1) the fact that an initial guess solution is required to initialize the algorithm, (2) the radius of convergence can be quite small and can allow the algorithm to become trapped in local minima, and (3) gradient information is not always assessable nor always trustworthy for a given problem. To avoid these problems, this dissertation is focused on optimizing a low-thrust transfer trajectory from a geocentric orbit to an Earth-Moon, L1, Lagrange point orbit using the method of Particle Swarm Optimization (PSO). The PSO method is an evolutionary heuristic that was originally written to model birds swarming to locate hidden food sources. This PSO method will enable the exploration of the invariant stable manifold of the target Lagrange point orbit in an effort to optimize the spacecraft's low-thrust trajectory. Examples of these optimized trajectories are presented and contrasted with those found using traditional, gradient-based approaches. In summary, the results of this dissertation find that the PSO method does, indeed, successfully optimize the low-thrust trajectory transfer problem without the need for initial guessing. Furthermore, a two-degree-of-freedom PSO problem formulation significantly outperformed a one-degree-of-freedom formulation by at least an order of magnitude, in terms of CPU time. Finally, the PSO method is also used to solve a traditional, two-burn, impulsive transfer to a Lagrange point orbit using a hybrid optimization algorithm that incorporates a gradient-based shooting algorithm as a pre-optimizer. Surprisingly, the results of this study show that "fast" transfers outperform "slow" transfers in terms of both Deltav and time of flight.

  20. Directed energy deflection laboratory measurements of common space based targets

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so further tests must be performed.

  1. Directed Energy Deflection Laboratory Measurements of Asteroids and Space Debris

    NASA Astrophysics Data System (ADS)

    Brashears, T.; Lubin, P. M.

    2016-12-01

    We report on laboratory studies of the effectiveness of directed energy planetary and space defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" or a space debris sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 µN/Woptical, though we assume a more conservative value of 80 µN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 µN/Woptical in our deflection modeling. Our measurements discussed here yield about 60 µN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  2. Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.

    2004-01-01

    The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All Space Shuttle flights were suspended, including logistics support for the International Space Station. NASA Langley Research Center s (LaRC) Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by Johnson Space Center (JSC). At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net-gravity alone.

  3. Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.

    2004-01-01

    The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All space Shuttle flights were suspended, including logistics support for the International Space Station. NASA LaRC s Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by JSC. At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net- gravity alone.

  4. Closeup view of the aft fuselage of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the aft fuselage of the Orbiter Discovery looking at the thrust structure that supports the Space Shuttle Main Engines (SSMEs). In this view, SSME number two position is on the left and SSME number three position is on the right. The thrust structure transfers the forces produce by the engines into and through the airframe of the orbiter. The thrust structure includes the SSMEs load reaction truss structure, engine interface fittings and the hydraulic-actuator support structure. The propellant feed lines are the plugged and capped orifices within the engine bays. Note that SSME position two is rotated ninety degrees from position three and one. This was needed to enable enough clearance for the engines to fit and gimbal. Note in engine bay three is a clear view of the actuators that control the gambling of that engine. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. a Permanent Magnet Hall Thruster for Orbit Control of Lunar Polar Satellites

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Silva Moraes, Bruno; Soares Ferreira, Ivan; Cardozo Mour, Decio; Winter, Othon

    Future moon missions devoted to lunar surface remote sensing and to many others scientific exploration topics will require more fine and higher precision orbit control. It is well known that, lunar satellites in polar orbits will suffer a high increase on the eccentricity due to the gravitational perturbation of the Earth. Without proper orbit correction the satellite life time will decrease and end up in a collision with the moon surface. It is pointed out by many authors that this effect is a natural consequence of the Lidov-Kozai resonance. In the present work, we propose a precise method of orbit eccentricity control based on the use of a low thrust Hall plasma thruster. The proposed method is based on an approach intended to keep the orbital eccentricity of the satellite at low values. A previous work on this subject was made using numerical integration considering two systems: the 3-body problem, Moon-Earth-satellite and the 4-body problem, Moon-Earth-Sun-satellite (??). In such simulation it is possible to follow the evolution of the satellite's eccentricity and find empirical expressions for the length of time needed to occur the collision with the moon. In this work, a satellite orbit eccentricity control maneuvering is proposed. It is based on working parameters of a low thrust propulsion permanent magnet Hall plasma thruster (PMHT), which is been developed at University of Brasilia, Brazil. We studied different arcs of active lunar satellite propulsion in order to be able to introduce a correction of the eccentricity at each cycle. The calculations were made considering a set of different thrust values, from 0.1N up to 0.4N which can be obtained by using the PMHT. In each calculation procedure we measured the length of eccentricity correction provided by active propulsion. From these results we obtained empirical expressions of the time needed for the corrections as a function of the initial altitude and as a function of the thrust value. 1. Winter, O. C. et all in Controlling the Eccentricity of Polar Lunar Orbits with Low Thrust Propulsion, Mathematical Problems in Engineering, vol. on Space Dynamics, 2009.

  6. Anomalous Thrust Production from an RF Test Device Measured on a Low-Thrust Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Brady, David; White, Harold G.; March, Paul; Lawrence, James T.; Davies, Frank J.

    2014-01-01

    This paper describes the eight-day August 2013 test campaign designed to investigate and demonstrate viability of using classical magnetoplasmadynamics to obtain a propulsive momentum transfer via the quantum vacuum virtual plasma. This paper will not address the physics of the quantum vacuum plasma thruster, but instead will describe the test integration, test operations, and the results obtained from the test campaign. Approximately 30-50 micro-Newtons of thrust were recorded from an electric propulsion test article consisting primarily of a radio frequency (RF) resonant cavity excited at approximately 935 megahertz. Testing was performed on a low-thrust torsion pendulum that is capable of detecting force at a single-digit micronewton level, within a stainless steel vacuum chamber with the door closed but at ambient atmospheric pressure. Several different test configurations were used, including two different test articles as well as a reversal of the test article orientation. In addition, the test article was replaced by an RF load to verify that the force was not being generated by effects not associated with the test article. The two test articles were designed by Cannae LLC of Doylestown, Pennsylvania. The torsion pendulum was designed, built, and operated by Eagleworks Laboratories at the NASA Johnson Space Center of Houston, Texas. Approximately six days of test integration were required, followed by two days of test operations, during which, technical issues were discovered and resolved. Integration of the two test articles and their supporting equipment was performed in an iterative fashion between the test bench and the vacuum chamber. In other words, the test article was tested on the bench, then moved to the chamber, then moved back as needed to resolve issues. Manual frequency control was required throughout the test. Thrust was observed on both test articles, even though one of the test articles was designed with the expectation that it would not produce thrust. Specifically, one test article contained internal physical modifications that were designed to produce thrust, while the other did not (with the latter being referred to as the "null" test article). Test data gathered includes torsion pendulum displacement measurements which are used to calculate generated force, still imagery in the visible spectrum to document the physical configuration, still imagery in the infrared spectrum to characterize the thermal environment, and video imagery. Post-test data includes static and animated graphics produced during RF resonant cavity characterization using the COMSOL Multiphysics® software application. Excerpts from all of the above are included and discussed in this paper. Lessons learned from test integration and operations include identification of the need to replace manual control of the resonant cavity target frequency with an automated frequency control capability. Future test plans include the development of an automatic frequency control circuit. Test results indicate that the RF resonant cavity thruster design, which is unique as an electric propulsion device, is producing a force that is not attributable to any classical electromagnetic phenomenon and therefore is potentially demonstrating an interaction with the quantum vacuum virtual plasma. Future test plans include independent verification and validation at other test facilities.

  7. Spacecraft Orbit Anomaly Representation Using Thrust-Fourier-Coefficients with Orbit Determination Toolbox

    NASA Astrophysics Data System (ADS)

    Ko, H.; Scheeres, D.

    2014-09-01

    Representing spacecraft orbit anomalies between two separate states is a challenging but an important problem in achieving space situational awareness for an active spacecraft. Incorporation of such a capability could play an essential role in analyzing satellite behaviors as well as trajectory estimation of the space object. A general way to deal with the anomaly problem is to add an estimated perturbing acceleration such as dynamic model compensation (DMC) into an orbit determination process based on pre- and post-anomaly tracking data. It is a time-consuming numerical process to find valid coefficients to compensate for unknown dynamics for the anomaly. Even if the orbit determination filter with DMC can crudely estimate an unknown acceleration, this approach does not consider any fundamental element of the unknown dynamics for a given anomaly. In this paper, a new way of representing a spacecraft anomaly using an interpolation technique with the Thrust-Fourier-Coefficients (TFCs) is introduced and several anomaly cases are studied using this interpolation method. It provides a very efficient way of reconstructing the fundamental elements of the dynamics for a given spacecraft anomaly. Any maneuver performed by a satellite transitioning between two arbitrary orbital states can be represented as an equivalent maneuver using an interpolation technique with the TFCs. Given unconnected orbit states between two epochs due to a spacecraft anomaly, it is possible to obtain a unique control law using the TFCs that is able to generate the desired secular behavior for the given orbital changes. This interpolation technique can capture the fundamental elements of combined unmodeled anomaly events. The interpolated orbit trajectory, using the TFCs compensating for a given anomaly, can be used to improve the quality of orbit fits through the anomaly period and therefore help to obtain a good orbit determination solution after the anomaly. Orbit Determination Toolbox (ODTBX) is modified to adapt this technique in order to verify the performance of this interpolation approach. Spacecraft anomaly cases are based on either single or multiple low or high thrust maneuvers and the unknown thrust accelerations are recovered and compared with the true thrust acceleration. The advantage of this approach is to easily append TFCs and its dynamics to the pre-built ODTBX, which enables us to blend post-anomaly tracking data to improve the performance of the interpolation representation in the absence of detailed information about a maneuver. It allows us to improve space situational awareness in the areas of uncertainty propagation, anomaly characterization and track correlation.

  8. Orbital transfer vehicle engine technology: Baffled injector design, fabrication, and verification

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1991-01-01

    New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. Supporting tasks for the design of a dual expander cycle engine thrust chamber design are documented. The purpose of the studies was to research the materials used in the thrust chamber design, the supporting fabrication methods necessary to complete the design, and the modification of the injector element for optimum injector/chamber compatibility.

  9. Spacecraft formation control using analytical finite-duration approaches

    NASA Astrophysics Data System (ADS)

    Ben Larbi, Mohamed Khalil; Stoll, Enrico

    2018-03-01

    This paper derives a control concept for formation flight (FF) applications assuming circular reference orbits. The paper focuses on a general impulsive control concept for FF which is then extended to the more realistic case of non-impulsive thrust maneuvers. The control concept uses a description of the FF in relative orbital elements (ROE) instead of the classical Cartesian description since the ROE provide a direct insight into key aspects of the relative motion and are particularly suitable for relative orbit control purposes and collision avoidance analysis. Although Gauss' variational equations have been first derived to offer a mathematical tool for processing orbit perturbations, they are suitable for several different applications. If the perturbation acceleration is due to a control thrust, Gauss' variational equations show the effect of such a control thrust on the Keplerian orbital elements. Integrating the Gauss' variational equations offers a direct relation between velocity increments in the local vertical local horizontal frame and the subsequent change of Keplerian orbital elements. For proximity operations, these equations can be generalized from describing the motion of single spacecraft to the description of the relative motion of two spacecraft. This will be shown for impulsive and finite-duration maneuvers. Based on that, an analytical tool to estimate the error induced through impulsive maneuver planning is presented. The resulting control schemes are simple and effective and thus also suitable for on-board implementation. Simulations show that the proposed concept improves the timing of the thrust maneuver executions and thus reduces the residual error of the formation control.

  10. NASA Orbit Transfer Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.

  11. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Sabiers, R. L.; Siebenhaar, A.

    1981-01-01

    Candidate pump and driver systems for low thrust cargo orbit transfer vehicle engines which deliver large space structures to geosynchronous equatorial orbit and beyond are evaluated. The pumps operate to 68 atmospheres (1000 psi) discharge pressure and flowrates suited to cryogenic engines using either LOX/methane or LOX/hydrogen propellants in thrust ranges from 445 to 8900 N (100 to 2000 lb F). Analysis of the various pumps and drivers indicate that the low specific speed requirement will make high fluid efficiencies difficult to achieve. As such, multiple stages are required. In addition, all pumps require inducer stages. The most attractive main pumps are the multistage centrifugal pumps.

  12. Optimal orbit transfer suitable for large flexible structures

    NASA Technical Reports Server (NTRS)

    Chatterjee, Alok K.

    1989-01-01

    The problem of continuous low-thrust planar orbit transfer of large flexible structures is formulated as an optimal control problem with terminal state constraints. The dynamics of the spacecraft motion are treated as a point-mass central force field problem; the thrust-acceleration magnitude is treated as an additional state variable; and the rate of change of thrust-acceleration is treated as a control variable. To ensure smooth transfer, essential for flexible structures, an additional quadratic term is appended to the time cost functional. This term penalizes any abrupt change in acceleration. Numerical results are presented for the special case of a planar transfer.

  13. The 30-centimeter ion thrust subsystem design manual

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The principal characteristics of the 30-centimeter ion propulsion thrust subsystem technology that was developed to satisfy the propulsion needs of future planetary and early orbital missions are described. Functional requirements and descriptions, interface and performance requirements, and physical characteristics of the hardware are described at the thrust subsystem, BIMOD engine system, and component level.

  14. Orbit period modulation for relative motion using continuous low thrust in the two-body and restricted three-body problems

    NASA Astrophysics Data System (ADS)

    Arnot, C. S.; McInnes, C. R.; McKay, R. J.; Macdonald, M.; Biggs, J.

    2018-02-01

    This paper presents rich new families of relative orbits for spacecraft formation flight generated through the application of continuous thrust with only minimal intervention into the dynamics of the problem. Such simplicity facilitates implementation for small, low-cost spacecraft with only position state feedback, and yet permits interesting and novel relative orbits in both two- and three-body systems with potential future applications in space-based interferometry, hyperspectral sensing, and on-orbit inspection. Position feedback is used to modify the natural frequencies of the linearised relative dynamics through direct manipulation of the system eigenvalues, producing new families of stable relative orbits. Specifically, in the Hill-Clohessy-Wiltshire frame, simple adaptations of the linearised dynamics are used to produce a circular relative orbit, frequency-modulated out-of-plane motion, and a novel doubly periodic cylindrical relative trajectory for the purposes of on-orbit inspection. Within the circular restricted three-body problem, a similar minimal approach with position feedback is used to generate new families of stable, frequency-modulated relative orbits in the vicinity of a Lagrange point, culminating in the derivation of the gain requirements for synchronisation of the in-plane and out-of-plane frequencies to yield a singly periodic tilted elliptical relative orbit with potential use as a Lunar far-side communications relay. The Δ v requirements for the cylindrical relative orbit and singly periodic Lagrange point orbit are analysed, and it is shown that these requirements are modest and feasible for existing low-thrust propulsion technology.

  15. Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jeannette

    2016-01-01

    This paper presents a study of transfers between distant retrograde orbits (DROs) and L2 halo orbits in the Earth-Moon system that could be flown by a spacecraft with solar electric propulsion (SEP). Two collocation-based optimal control methods are used to optimize these highly-nonlinear transfers: Legendre pseudospectral and Hermite-Simpson. Transfers between DROs and halo orbits using low-thrust propulsion have not been studied previously. This paper offers a study of several families of trajectories, parameterized by the number of orbital revolutions in a synodic frame. Even with a poor initial guess, a method is described to reliably generate families of solutions. The circular restricted 3-body problem (CRTBP) is used throughout the paper so that the results are autonomous and simpler to understand.

  16. Electric sail elliptic displaced orbits with advanced thrust model

    NASA Astrophysics Data System (ADS)

    Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2017-09-01

    This paper analyzes the performance of an Electric Solar Wind Sail for generating and maintaining an elliptic, heliocentric, displaced non-Keplerian orbit. In this sense, this paper extends and completes recent studies regarding the performances of an Electric Solar Wind Sail that covers a circular, heliocentric, displaced orbit of given characteristics. The paper presents the general equations that describe the elliptic orbit maintenance in terms of both spacecraft attitude and performance requirements, when a refined thrust model (recently proposed for the preliminary mission design) is taken into account. In particular, the paper also discusses some practical applications on particular mission scenarios in which an analytic solution of the governing equations has been found.

  17. Trajectory optimization of spacecraft high-thrust orbit transfer using a modified evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shirazi, Abolfazl

    2016-10-01

    This article introduces a new method to optimize finite-burn orbital manoeuvres based on a modified evolutionary algorithm. Optimization is carried out based on conversion of the orbital manoeuvre into a parameter optimization problem by assigning inverse tangential functions to the changes in direction angles of the thrust vector. The problem is analysed using boundary delimitation in a common optimization algorithm. A method is introduced to achieve acceptable values for optimization variables using nonlinear simulation, which results in an enlarged convergence domain. The presented algorithm benefits from high optimality and fast convergence time. A numerical example of a three-dimensional optimal orbital transfer is presented and the accuracy of the proposed algorithm is shown.

  18. Optimal low-thrust trajectories for nuclear and solar electric propulsion

    NASA Astrophysics Data System (ADS)

    Genta, G.; Maffione, P. F.

    2016-01-01

    The optimization of the trajectory and of the thrust profile of a low-thrust interplanetary transfer is usually solved under the assumption that the specific mass of the power generator is constant. While this is reasonable in the case of nuclear electric propulsion, if solar electric propulsion is used the specific mass depends on the distance of the spacecraft from the Sun. In the present paper the optimization of the trajectory of the spacecraft and of the thrust profile is solved under the latter assumption, to obtain optimized interplanetary trajectories for solar electric spacecraft, also taking into account all phases of the journey, from low orbit about the starting planet to low orbit about the destination one. General plots linking together the travel time, the specific mass of the generator and the propellant consumption are obtained.

  19. Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Fariz, A.; Sasongko, R. A.; Poetro, R. E.

    2018-04-01

    The effect of solid rocket motor specifications, i.e. specific impulse and mass flow rate, and coast time on the thrust profile of three stages small launch vehicle is studied. Solid rocket motor specifications are collected from various small launch vehicle that had ever been in operation phase, and also from previous study. Comparison of orbital parameters shows that the radius of apocenter targeted can be approached using one combination of solid rocket motor specifications and appropriate coast time. However, the launch vehicle designed is failed to achieve the targeted orbit nor injecting the satellite to any orbit.

  20. Fuel optimal maneuvers of spacecraft about a circular orbit

    NASA Technical Reports Server (NTRS)

    Carter, T. E.

    1982-01-01

    Fuel optimal maneuvers of spacecraft relative to a body in circular orbit are investigated using a point mass model in which the magnitude of the thrust vector is bounded. All nonsingular optimal maneuvers consist of intervals of full thrust and coast and are found to contain at most seven such intervals in one period. Only four boundary conditions where singular solutions occur are possible. Computer simulation of optimal flight path shapes and switching functions are found for various boundary conditions. Emphasis is placed on the problem of soft rendezvous with a body in circular orbit.

  1. Propellant management for low thrust chemical propulsion systems

    NASA Technical Reports Server (NTRS)

    Hamlyn, K. M.; Dergance, R. H.; Aydelott, J. C.

    1981-01-01

    Low-thrust chemical propulsion systems (LTPS) will be required for orbital transfer of large space systems (LSS). The work reported in this paper was conducted to determine the propellant requirements, preferred propellant management technique, and propulsion system sizes for the LTPS. Propellants were liquid oxygen (LO2) combined with liquid hydrogen (LH2), liquid methane or kerosene. Thrust levels of 100, 500, and 1000 lbf were combined with 1, 4, and 8 perigee burns for transfer from low earth orbit to geosynchronous earth orbit. This matrix of systems was evaluated with a multilayer insulation (MLI) or a spray-on-foam insulation. Vehicle sizing results indicate that a toroidal tank configuration is needed for the LO2/LH2 system. Multiple perigee burns and MLI allow far superior LSS payload capability. Propellant settling, combined with a single screen device, was found to be the lightest and least complex propellant management technique.

  2. KSC-08pd1652

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians begin installation of an auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd1651

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians begin installation of an auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  4. KSC-08pd1654

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, auxiliary power unit 3, or APU3, is in place on space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  5. KSC-08pd1653

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility bay No. 2, technicians install auxiliary power unit 3, or APU3, in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  6. KSC-08pd1650

    NASA Image and Video Library

    2008-06-10

    CAPE CANAVERAL, Fla. – Auxiliary power unit 3, or APU3, is ready for installation in space shuttle Endeavour for the STS-126 mission. The auxiliary power unit is a hydrazine-fueled, turbine-driven power unit that generates mechanical shaft power to drive a hydraulic pump that produces pressure for the orbiter's hydraulic system. There are three separate APUs, three hydraulic pumps and three hydraulic systems, located in the aft fuselage of the orbiter. When the three auxiliary power units are started five minutes before lift-off, the hydraulic systems are used to position the three main engines for activation, control various propellant valves on the engines and position orbiter aerosurfaces. The auxiliary power units are not operated after the first orbital maneuvering system thrusting period because hydraulic power is no longer required. One power unit is operated briefly one day before deorbit to support checkout of the orbiter flight control system. One auxiliary power unit is restarted before the deorbit thrusting period. The two remaining units are started after the deorbit thrusting maneuver and operate continuously through entry, landing and landing rollout. On STS-126, Endeavour will deliver a multi-purpose logistics module to the International Space Station. Launch is targeted for Nov. 10. Photo credit: NASA/Kim Shiflett

  7. Primary propulsion/large space system interaction study

    NASA Technical Reports Server (NTRS)

    Coyner, J. V.; Dergance, R. H.; Robertson, R. I.; Wiggins, J. V.

    1981-01-01

    An interaction study was conducted between propulsion systems and large space structures to determine the effect of low thrust primary propulsion system characteristics on the mass, area, and orbit transfer characteristics of large space systems (LSS). The LSS which were considered would be deployed from the space shuttle orbiter bay in low Earth orbit, then transferred to geosynchronous equatorial orbit by their own propulsion systems. The types of structures studied were the expandable box truss, hoop and column, and wrap radial rib each with various surface mesh densities. The impact of the acceleration forces on system sizing was determined and the effects of single point, multipoint, and transient thrust applications were examined. Orbit transfer strategies were analyzed to determine the required velocity increment, burn time, trip time, and payload capability over a range of final acceleration levels. Variables considered were number of perigee burns, delivered specific impulse, and constant thrust and constant acceleration modes of propulsion. Propulsion stages were sized for four propellant combinations; oxygen/hydrogen, oxygen/methane, oxygen/kerosene, and nitrogen tetroxide/monomethylhydrazine, for pump fed and pressure fed engine systems. Two types of tankage configurations were evaluated, minimum length to maximize available payload volume and maximum performance to maximize available payload mass.

  8. Real-time approximate optimal guidance laws for the advanced launch system

    NASA Technical Reports Server (NTRS)

    Speyer, Jason L.; Feeley, Timothy; Hull, David G.

    1989-01-01

    An approach to optimal ascent guidance for a launch vehicle is developed using an expansion technique. The problem is to maximize the payload put into orbit subject to the equations of motion of a rocket over a rotating spherical earth. It is assumed that the thrust and gravitational forces dominate over the aerodynamic forces. It is shown that these forces can be separated by a small parameter epsilon, where epsilon is the ratio of the atmospheric scale height to the radius of the earth. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in a series where the zeroth-order term (epsilon = 0) can be obtained in closed form. The zeroth-order problem is that of putting maximum payload into orbit subject to the equations of motion of a rocket in a vacuum over a flat earth. The neglected inertial and aerodynamic terms are included in higher order terms of the expansion, which are determined from the solution of first-order linear partial differential equations requiring only quadrature integrations. These quadrature integrations can be performed rapidly, so that real-time approximate optimization can be used to construct the launch guidance law.

  9. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    The feasibility of potential reusable thrust chamber concepts is studied. Propellant condidates were examined and analytically combined with potential cooling schemes. A data base of engine data which would assist in a configuration selection was produced. The data base verification was performed by the demonstration of a thrust chamber of a selected coolant scheme design. A full scale insulated columbium thrust chamber was used for propellant coolant configurations. Combustion stability of the injectors and a reduced size thrust chamber were experimentally verified as proof of concept demonstrations of the design and study results.

  10. Accessibility, stabilizability, and feedback control of continuous orbital transfer.

    PubMed

    Gurfil, Pini

    2004-05-01

    This paper investigates the problem of low-thrust orbital transfer using orbital element feedback from a control-theoretic standpoint, concepts of controllability, feedback stabilizability, and their interaction. The Gauss variational equations (GVEs) are used to model the state-space dynamics. First, the notion of accessibility, a weaker form of controllability, is presented. It is then shown that the GVEs are globally accessible. Based on the accessibility result, a nonlinear feedback controller is derived that asymptotically steers a vehicle from an initial elliptic Keplerian orbit to any given elliptic Keplerian orbit. The performance of the new controller is illustrated by simulating an orbital transfer between two geosynchronous Earth orbits. It is shown that the low-thrust controller requires less fuel than an impulsive maneuver for the same transfer time. Closed-form, analytic expressions for the new orbital transfer controller are given. Finally, it is proved, based on a topological nonlinear stabilizability test, that there does not exist a continuous closed-loop controller that can transfer a spacecraft to a parabolic escape trajectory.

  11. Characterizing Longitude-Dependent Orbital Debris Congestion in the Geosynchronous Orbit Regime

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.

    The geosynchronous orbit (GEO) is a unique commodity of the satellite industry that is becoming increasingly contaminated with orbital debris, but is heavily populated with high-value assets from the civil, commercial, and defense sectors. The GEO arena is home to hundreds of communications, data transmission, and intelligence satellites collectively insured for an estimated 18.3 billion USD. As the lack of natural cleansing mechanisms at the GEO altitude renders the lifetimes of GEO debris essentially infinite, conjunction and risk assessment must be performed to safeguard operational assets from debris collisions. In this thesis, longitude-dependent debris congestion is characterized by predicting the number of near-miss events per day for every longitude slot at GEO, using custom debris propagation tools and a torus intersection metric. Near-miss events with the present-day debris population are assigned risk levels based on GEO-relative position and speed, and this risk information is used to prioritize the population for debris removal target selection. Long-term projections of debris growth under nominal launch traffic, mitigation practices, and fragmentation events are also discussed, and latitudinal synchronization of the GEO debris population is explained via node variations arising from luni-solar gravity. In addition to characterizing localized debris congestion in the GEO ring, this thesis further investigates the conjunction risk to operational satellites or debris removal systems applying low-thrust propulsion to raise orbit altitude at end-of-life to a super-synchronous disposal orbit. Conjunction risks as a function of thrust level, miss distance, longitude, and semi-major axis are evaluated, and a guidance method for evading conjuncting debris with continuous thrust by means of a thrust heading change via single-shooting is developed.

  12. A comprehensive cold gas performance study of the Pocket Rocket radiofrequency electrothermal microthruster

    NASA Astrophysics Data System (ADS)

    Ho, Teck Seng; Charles, Christine; Boswell, Roderick W.

    2016-12-01

    This paper presents computational fluid dynamics simulations of the cold gas operation of Pocket Rocket and Mini Pocket Rocket radiofrequency electrothermal microthrusters, replicating experiments performed in both sub-Torr and vacuum environments. This work takes advantage of flow velocity choking to circumvent the invalidity of modelling vacuum regions within a CFD simulation, while still preserving the accuracy of the desired results in the internal regions of the microthrusters. Simulated results of the plenum stagnation pressure is in precise agreement with experimental measurements when slip boundary conditions with the correct tangential momentum accommodation coefficients for each gas are used. Thrust and specific impulse is calculated by integrating the flow profiles at the exit of the microthrusters, and are in good agreement with experimental pendulum thrust balance measurements and theoretical expectations. For low thrust conditions where experimental instruments are not sufficiently sensitive, these cold gas simulations provide additional data points against which experimental results can be verified and extrapolated. The cold gas simulations presented in this paper will be used as a benchmark to compare with future plasma simulations of the Pocket Rocket microthruster.

  13. Advanced engine study for mixed-mode orbit-transfer vehicles

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1978-01-01

    Engine design, performance, weight and envelope data were established for three mixed-mode orbit-transfer vehicle engine candidates. Engine concepts evaluated are the tripropellant, dual-expander and plug cluster. Oxygen, RP-1 and hydrogen are the propellants considered for use in these engines. Theoretical performance and propellant properties were established for bipropellant and tripropellant mixes of these propellants. RP-1, hydrogen and oxygen were evaluated as coolants and the maximum attainable chamber pressures were determined for each engine concept within the constraints of the propellant properties and the low cycle thermal fatigue (300 cycles) requirement. The baseline engine design and component operating characteristics are determined at a thrust level of 88,964N (20,000 lbs) and a thrust split of 0.5. The parametric data is generated over ranges of thrust and thrust split of 66.7 to 400kN (15 to 90 klb) and 0.4 to 0.8, respectively.

  14. A Numerical-Analytical Approach Based on Canonical Transformations for Computing Optimal Low-Thrust Transfers

    NASA Astrophysics Data System (ADS)

    da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.

    2018-04-01

    A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.

  15. Sensitivity Analysis and Mitigation with Applications to Ballistic and Low-thrust Trajectory Design

    NASA Astrophysics Data System (ADS)

    Alizadeh, Iman

    The ever increasing desire to expand space mission capabilities within the limited budgets of space industries requires new approaches to the old problem of spacecraft trajectory design. For example, recent initiatives for space exploration involve developing new tools to design low-cost, fail-safe trajectories to visit several potential destinations beyond our celestial neighborhood such as Jupiter's moons, asteroids, etc. Designing and navigating spacecraft trajectories to reach these destinations safely are complex and challenging. In particular, fundamental questions of orbital stability imposed by planetary protection requirements are not easily taken into account by standard optimal control schemes. The event of temporary engine loss or an unexpected missed thrust can indeed quickly lead to impact with planetary bodies or other unrecoverable trajectories. While electric propulsion technology provides superior efficiency compared to chemical engines, the very low-control authority and engine performance degradation can impose higher risk to the mission in strongly perturbed orbital environments. The risk is due to the complex gravitational field and its associated chaotic dynamics which causes large navigation dispersions in a short time if left un-controlled. Moreover, in these situations it can be outside the low-thrust propulsion system capability to correct the spacecraft trajectory in a reasonable time frame. These concerns can lead to complete or partial mission failure or even an infeasible mission concept at the early design stage. The goal of this research is to assess and increase orbital stability of ballistic and low-thrust transfer trajectories in multi-body systems. In particular, novel techniques are presented to characterize sensitivity and improve recovery characteristics of ballistic and low-thrust trajectories in unstable orbital environments. The techniques developed are based on perturbation analysis around ballistic trajectories to determine analytically the maximum divergence directions and also optimal control theory with nonstandard cost functions along with inverse dynamics applied to low-thrust trajectories. Several mission scenarios are shown to demonstrate the applicability of the techniques in the Earth-Moon and the Jupiter-Europa system. In addition, the results provide fundamental insight into design, stability analysis and guidance, navigation and control of low-thrust trajectories to meet challenging mission requirements in support of NASA's vision for space exploration.

  16. Interior of Vacuum Tank at the Electric Propulsion Laboratory

    NASA Image and Video Library

    1961-08-21

    Interior of the 20-foot diameter vacuum tank at the NASA Lewis Research Center’s Electric Propulsion Laboratory. Lewis researchers had been studying different electric rocket propulsion methods since the mid-1950s. Harold Kaufman created the first successful ion engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory, which began operation in 1961, contained two large vacuum tanks capable of simulating a space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank included a 10-foot diameter test compartment to test electric thrusters with condensable propellants. The portals along the chamber floor lead to the massive exhauster equipment that pumped out the air to simulate the low pressures found in space.

  17. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1981-01-01

    Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.

  18. SSTAC/ARTS Review of the Draft Integrated Technology Plan (ITP). Volume 2: Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The topics addressed are: (1) space propulsion technology program overview; (2) space propulsion technology program fact sheet; (3) low thrust propulsion; (4) advanced propulsion concepts; (5) high-thrust chemical propulsion; (6) cryogenic fluid management; (7) NASA CSTI earth-to-orbit propulsion; (8) advanced main combustion chamber program; (9) earth-to-orbit propulsion turbomachinery; (10) transportation technology; (11) space chemical engines technology; (12) nuclear propulsion; (13) spacecraft on-board propulsion; and (14) low-cost commercial transport.

  19. 4.5-kW Hall Effect Thruster Evaluated

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2000-01-01

    As part of an Interagency Agreement with the Air Force Research Lab (AFRL), a space simulation test of a Russian SPT 140 Hall Effect Thruster was completed in September 1999 at Vacuum Facility 6 at the NASA Glenn Research Center at Lewis Field. The thruster was subjected to a three-part test sequence that included thrust and performance characterization, electromagnetic interference, and plume contamination. SPT 140 is a 4.5-kW thruster developed under a joint agreement between AFRL, Atlantic Research Corp, and Space Systems/Loral, and was manufactured by the Fakal Experimental Design Bureau of Russia. All objectives were satisfied, and the thruster performed exceptionally well during the 120-hr test program, which comprised 33 engine firings. The Glenn testing provided a critical contribution to the thruster development effort, and the large volume and high pumping speed of this vacuum facility was key to the test s success. The low background pressure (1 10 6 torr) provided a more accurate representation of space vacuum than is possible in most vacuum chambers. The facility had been upgraded recently with new cryogenic pumps and sputter shielding to support the active electric propulsion program at Glenn. The Glenn test team was responsible for all test support equipment, including the thrust stand, power supplies, data acquisition, electromagnetic interference measurement equipment, and the contamination measurement system.

  20. Orbit Transfer Vehicle Engine Study. Phase A, extension 1: Alternate low-thrust capability task report

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1980-01-01

    The feasibility and design impact of a requirement for the advanced expander cycle engine to be adaptable to extended low thrust operation of approximately 1K to 2K lb is assessed. It is determined that the orbit transfer vehicle point design engine can be reduced in thrust with minor injector modifications from 15K to 1K without significantly affecting combustion performance efficiency or injector face/chamber wall thermal compatibility. Likewise, high frequency transverse mode combustion instability is not expected to be detrimentally affected. Primarily, the operational limitations consist of feed system chugging instabilities and potential coupling of the injector response with the chamber longitudinal mode resonances under certain operating conditions. The recommended injector modification for low thrust operation is a change in the oxidizer injector element orifice size. Analyses also indicate that chamber coolant flow stability may be a concern below 2K 1bF operation and oxidizer pump stability could be a problem below a 2K thrust level although a recirculation flow could alleviate the problem.

  1. Minimum Propellant Low-Thrust Maneuvers near the Libration Points

    NASA Astrophysics Data System (ADS)

    Marinescu, A.; Dumitrache, M.

    The impulse technique certainly can bring the vehicle on orbits around the libration points or close to them. The question that aries is, by what means can the vehicle arrive in such cases at the libration points? A first investigation carried out in this paper can give an answer: the use of the technique of low-thrust, which, in addition, can bring the vehicle from the libration points near to or into orbits around these points. This aspect is considered in this present paper where for the applications we have considered the transfer for orbits of the equidistant point L4 and of the collinear point L2, from Earth-moon system. This transfer maneuver can be used to insertion one satellite on libration points orbits. In Earth- moon system the points L 4 and L 5 because an vehicle in on of the equidistant points in quite stable and remains in its vicinity of perturbed, have potential interest for the establishment of transporder satellite for interplanetary tracking. In contrast an vehicle in one of the collinear points is quite instable and it will oscillate along the Earth-moon-axis at increasing amplitude and gradually escape from the libration point. Let use assume that a space vehicle equipped with a low-thrust propulsion is near a libration point L. We consider the planar motion in the restricted frame of the three bodies in the rotating system L, where the Earth-moon distance D=l. The unit of time T is period of the moon's orbit divided by 2 and multiplied by the square root of the quantity one plus the moon/Earth mass ratio, and the unit of mass is the Earth's mass. With these predictions the motion equatios of the vehicle equiped with a low-thrust propulsion installation in the linear approximation near the libration point, have been established. The parameters of the motion at the beginning and the end of these maneuvers are known, the variational problem has been formulated as a Lagrange type problem with fixed extremities. On established the differential equations of the extremals and integrating these differential equations we obtain the desired extremals which characterize the minimum propellant optimal manoeuvres of transfer from libration points to their orbits. By means of Legendre conditions for weak minimum and Weierstrass condition for strong minimum, is demonstrated that variational problem so formulated has sense and is a problem of minimum. The integration of extremal's differential equations system can not lead to analytical solutions easily to obtain and for this we have directed to a numerical integration. The problem is a bilocal one because the motion parameter values are predicted at the beginning and of the maneuver (the manoeuvre duration coincides with the combustion duration) the values of the Lagrange multipliers not being specified at the beginning and end of the manoeuvre. For determination of the velocities at any point on the libration point L4 and L2 has been elaborated the program of calculus on the integration of the motion equations without accelerations due thrust during a revolution period the coordinates and velocities to be equal, with which have been calculated the velocities at the apoapsis A and respectively A'. With these specifications, the final conditions (at the end of the maneuver) could be established, and the determination of optimal transfer parameters in the specified points could be determined. The calculus performed for the transfer from the libration points L4 and L2 to their orbits, shows that the evolution velocities on the orbits are in general small, the velocities on the L2 orbits being greater than the velocities on L 4 orbits having the same semimajor axis. This fact is explicable because the period of evolution on orbits of libration point L4 is greater than the period of orbits of the libration point L2. For the transfer in the apoapsis of both orbits (the points A. and A') on can remarque the fact the accelerations due thrust are greater for orbits around the libration point L2 comparatively with orbits having the same semimajor axis around the libration point L 4 ( maneuver duration = 106 s = 11.574 days for L 4 and = 105 s = 1.157 days for L2 ). Considering orbits around libration points L4 and L2 with semimajor axis between 150-15000 km the components of acceleration due thrust have values between 10-2 -10-5 m/S2 which lays in the range of performances of law thrust propulsion installations (the D, T units have been converted in m, s). *Senior Scientist. Member AIAA **Researche Engineer

  2. RHETT/EPDM Performance Characterization

    NASA Technical Reports Server (NTRS)

    Haag, T.; Osborn, M.

    1998-01-01

    The 0.6 kW Electric Propulsion Demonstration Module (EPDM) flight thruster system was tested in a large vacuum facility for performance measurements and functional checkout. The thruster was operated at a xenon flow rate of 3.01 mg/s, which was supplied through a self-contained propellant system. All power was provided through a flight-packaged power processing unit, which was mounted in vacuum on a cold plate. The thruster was cycled through 34 individual startup and shutdown sequences. Operating periods ranged from 3 to 3600 seconds. The system responded promptly to each command sequence and there were no involuntary shutdowns. Direct thrust measurements indicated that steady state thrust was temperature sensitive, and varied from a high of 41.7 mN at 16 C, to a low of 34.8 mN at 110 C. Short duration thruster firings showed rapid response and good repeatability.

  3. Parametric trade studies on a Shuttle 2 launch system architecture

    NASA Technical Reports Server (NTRS)

    Stanley, Douglas O.; Talay, Theodore A.; Lepsch, Roger A.; Morris, W. Douglas; Naftel, J. Christopher; Cruz, Christopher I.

    1991-01-01

    A series of trade studies are presented on a complementary architecture of launch vehicles as a part of a study often referred to as Shuttle-2. The results of the trade studies performed on the vehicles of a reference Shuttle-2 mixed fleet architecture have provided an increased understanding of the relative importance of each of the major vehicle parameters. As a result of trades on the reference booster-orbiter configuration with a methane booster, the study showed that 60 percent of the total liftoff thrust should be on the booster and 40 percent on the orbiter. It was also found that the liftoff thrust to weight ratio (T/W) on the booster-orbiter should be 1.3. This leads to a low dry weight and still provides enough thrust to allow the design of a heavy lift architecture. As a result of another trade study, the dry weight of the reference booster-orbiter was chosen for a variety of operational considerations. Other trade studies on the booster-orbiter demonstrate that the cross feeding of propellant during boost phase is desirable and that engine-out capability from launch to orbit is worth the performance penalty. Technology assumptions made during the Shuttle-2 design were shown to be approx. equivalent to a 25 percent across the board weight reduction over the Space Shuttle technology. The vehicles of the Shuttle-2 architecture were also sized for a wide variety of payloads and missions to different orbits. Many of these same parametric trades were also performed on completely liquid hydrogen fueled fully reusable concepts. If a booster-orbiter is designed using liquid hydrogen engines on both the booster and orbiter, the total vehicle dry weight is only 3.0 percent higher than the reference dual-fuel booster-orbiter, and the gross weight is 3.8 percent less. For this booster-orbiter vehicle, a liftoff T/W of 1.3, a thrust of about 60 percent on the booster, and a Mach staging number of 3 all proved to be desirable. This modest dry weight increase for a liquid hydrogen fueled Shuttle-2 system should be more than offset by the elimination of the entire hydrocarbon engine development program and the savings in operation cost realized by the elimination of an entire fuel type.

  4. In-Flight Operation of the Dawn Ion Propulsion System Through Survey Science Orbit at Ceres

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.

    2015-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt objects, Vesta and Ceres. The Dawn spacecraft was launched from the Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H- 9.5 (Delta-II Heavy) rocket that placed the 1218-kg spacecraft onto an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide a total delta V of 11 km/s for the heliocentric transfer to Vesta, orbit capture at Vesta, transfer between Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer between Ceres science orbits. Full-power thrusting from December 2007 through October 2008 was used to successfully target a Mars gravity assist flyby in February 2009 that provided an additional delta V of 2.6 km/s. Deterministic thrusting for the heliocentric transfer to Vesta resumed in June 2009 and concluded with orbit capture at Vesta on July 16, 2011. From July 2011 through September 2012 the IPS was used to transfer to all the different science orbits at Vesta and to escape from Vesta orbit. Cruise for a rendezvous with Ceres began in September 2012 and concluded with the start of the approach to Ceres phase on December 26, 2015, leading to orbit capture on March 6, 2015. Deterministic thrusting continued during approach to place the spacecraft in its first science orbit, called RC3, which was achieved on April 23, 2015. Following science operations at RC3 ion thrusting was resumed for twenty-five days leading to arrival to the next science orbit, called survey orbit, on June 3, 2015. The IPS will be used for all subsequent orbit transfers and trajectory correction maneuvers until completion of the primary mission in approximately June 2016. To date the IPS has been operated for over 46,774 hours, consumed approximately 393 kg of xenon, and provided a delta V of over 10.8 km/s to the spacecraft. The IPS performance characteristics are very close to the expected performance based on analysis and testing performed pre-launch. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through arrival at the second science orbit at Ceres.

  5. Multiple burn fuel-optimal orbit transfers: Numerical trajectory computation and neighboring optimal feedback guidance

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.; Goodson, Troy D.; Ledsinger, Laura A.

    1995-01-01

    This report describes current work in the numerical computation of multiple burn, fuel-optimal orbit transfers and presents an analysis of the second variation for extremal multiple burn orbital transfers as well as a discussion of a guidance scheme which may be implemented for such transfers. The discussion of numerical computation focuses on the use of multivariate interpolation to aid the computation in the numerical optimization. The second variation analysis includes the development of the conditions for the examination of both fixed and free final time transfers. Evaluations for fixed final time are presented for extremal one, two, and three burn solutions of the first variation. The free final time problem is considered for an extremal two burn solution. In addition, corresponding changes of the second variation formulation over thrust arcs and coast arcs are included. The guidance scheme discussed is an implicit scheme which implements a neighboring optimal feedback guidance strategy to calculate both thrust direction and thrust on-off times.

  6. Vacuum form sheet as a guide for fabrication of orbital prosthesis.

    PubMed

    Dugad, Jinesh A; Dholam, Kanchan P; Chougule, Arati T

    2014-08-01

    Rehabilitation with an orbital prosthesis is done when surgical reconstruction is not possible or affordable in patients with orbital exenteration. Fabrication of orbital prosthesis requires precision in placement of the ocular portion of the prosthesis on the facial moulage. This method describes the use of a vacuum formed sheet for making an orbital template that acts as a guide for achieving optimum orientation of the ocular portion of the prosthesis. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Use of space ultra-vacuum for high quality semiconductor thin film growth

    NASA Technical Reports Server (NTRS)

    Ignatiev, A.; Sterling, M.; Sega, R. M.

    1992-01-01

    The utilization of space for materials processing is being expanded through a unique concept of epitaxial thin film growth in the ultra-vacuum of low earth orbit (LEO). This condition can be created in the wake of an orbiting space vehicle; and assuming that the vehicle itself does not pertub the environment, vacuum levels of better than 10 exp -14 torr can be attained. This vacuum environment has the capacity of greatly enhancing epitaxial thin film growth and will be the focus of experiments conducted aboard the Wake Shield Facility (WSF) currently being developed by the Space Vacuum Epitaxy Center (SVEC), Industry, and NASA.

  8. A 10 nN resolution thrust-stand for micro-propulsion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert, E-mail: herbert.shea@epfl.ch

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better thanmore » 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.« less

  9. A 10 nN resolution thrust-stand for micro-propulsion devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subha; Courtney, Daniel G.; Shea, Herbert

    2015-11-01

    We report on the development of a nano-Newton thrust-stand that can measure up to 100 μN thrust from different types of microthrusters with 10 nN resolution. The compact thrust-stand measures the impingement force of the particles emitted from a microthruster onto a suspended plate of size 45 mm × 45 mm and with a natural frequency over 50 Hz. Using a homodyne (lock-in) readout provides strong immunity to facility vibrations, which historically has been a major challenge for nano-Newton thrust-stands. A cold-gas thruster generating up to 50 μN thrust in air was first used to validate the thrust-stand. Better than 10 nN resolution and a minimum detectable thrust of 10 nN were achieved. Thrust from a miniature electrospray propulsion system generating up to 3 μN of thrust was measured with our thrust-stand in vacuum, and the thrust was compared with that computed from beam diagnostics, obtaining agreement within 50 nN to 150 nN. The 10 nN resolution obtained from this thrust-stand matches that from state-of-the-art nano-Newton thrust-stands, which measure thrust directly from the thruster by mounting it on a moving arm (but whose natural frequency is well below 1 Hz). The thrust-stand is the first of its kind to demonstrate less than 3 μN resolution by measuring the impingement force, making it capable of measuring thrust from different types of microthrusters, with the potential of easy upscaling for thrust measurement at much higher levels, simply by replacing the force sensor with other force sensors.

  10. Pursuit-evasion games with information uncertainties for elusive orbital maneuver and space object tracking

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Jia, Bin; Chen, Genshe; Blasch, Erik; Pham, Khanh

    2015-05-01

    This paper develops and evaluates a pursuit-evasion (PE) game approach for elusive orbital maneuver and space object tracking. Unlike the PE games in the literature, where the assumption is that either both players have perfect knowledge of the opponents' positions or use primitive sensing models, the proposed PE approach solves the realistic space situation awareness (SSA) problem with imperfect information, where the evaders will exploit the pursuers' sensing and tracking models to confuse their opponents by maneuvering their orbits to increase the uncertainties, which the pursuers perform orbital maneuvers to minimize. In the game setup, each game player P (pursuer) and E (evader) has its own motion equations with a small continuous low-thrust. The magnitude of the low thrust is fixed and the direction can be controlled by the associated game player. The entropic uncertainty is used to generate the cost functions of game players. The Nash or mixed Nash equilibrium is composed of the directional controls of low-thrusts. Numerical simulations are emulated to demonstrate the performance. Simplified perturbations models (SGP4/SDP4) are exploited to calculate the ground truth of the satellite states (position and speed).

  11. Practicality of Using a Tether for Electrodynamic Reboost of the International Space Station

    NASA Technical Reports Server (NTRS)

    Blumer, J. H.; Donahue, Benjamin B.; Bangham, Michal E.; Roth, A. (Technical Monitor)

    2001-01-01

    ElectroDynamic (ED) Tethers can generate continuous low thrust in a low Earth orbit. An induced current running through the length of the tether reacts with the geomagnetic field to produce thrust. The amount of thrust scales with tether lens!th and current. The International Space Station (ISS) requires periodic reboost to maintain an approximately circular orbit t above the Earth. The baseline reboost method is a traditional bi-propellant rocket thruster and tankage system which must to be refueled via Soyuz / Progress or other launch vehicle. The estimated propellant costs associated with keeping ISS in the designated orbit over a 10-year life have been extremely high. The ED Tether would draw energy from the renewable ISS Solar Array electrical power system. Propulsion requirements for ISS vary depending on solar wind and other conditions. It is projected that a ED Tether could provide the majority of the required reboost thrust for ISS for a nominal solar year. For above nominal solar wind years the ISS would have to use the rocket reboost system, but at a greatly reduced level. Thus resulting in substantial cost savings, via the reduction in the number of Earth-to-orbit launch vehicle flights to the ISS that must bring reboost propellant. However, the purposes of this paper is to further Previous research on an ISS ED Tether and examine the operational and technical issues working against using a ED Tether on ISS. Issues such as Shuttle rendezvous and flight path concerns raise serious safety concerns and restrictions on tether use. Tether issues such as tether librations and off angle thrust raise concerns about impacts to microgravity payloads and the long-term effect on ISS orbital path and inclination. Operational issues such as peak power available to an ED Tether and allowable duty cycle may impose severe restrictions on tether design and ultimately limit the practicality of an ED Tether on ISS. Thus while at first glance the cost numbers appear to be strongly in favor of an ED Tether the limitations imposed by safety, operations and technical concerns may severely undermine the economic model. Possible Solutions to these problems have been investigated and proposed, however some items like off angle thrust are still being actively investigated for an adequate solution.

  12. Structures-propulsion interactions and requirements. [large space structures

    NASA Technical Reports Server (NTRS)

    Coyner, J. V.

    1982-01-01

    The effects of low-thrust primary propulsion system characteristics on the mass, area, and orbit transfer characteristics of large space systems (LSS) were determined. Three general structural classes of LSS were considered, each with a broad range of diameters and nonstructural surface densities. While transferring the deployed structure from LEO and to GEO, an acceleration range of 0.02 to 0.1 g's was found to maximize deliverable payload based on structural mass impact. After propulsion system parametric analyses considering four propellant combinations produced values for available payload mass, length and volume, a thrust level range which maximizes deliverable LSS diameter was determined corresponding to a structure and propulsion vehicle. The engine start and/or shutdown thrust transients on the last orbit transfer (apogee) burn can impose transient loads which would be greater than the steady-state loads at the burnout acceleration. The effect of the engine thrust transients on the LSS was determined from the dynamic models upon which various engine ramps were imposed.

  13. A trajectory generation and system characterization model for cislunar low-thrust spacecraft. Volume 2: Technical manual

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David J.; Pinon, Elfego, III; Oconnor, Brendan M.; Bilby, Curt R.

    1990-01-01

    The documentation of the Trajectory Generation and System Characterization Model for the Cislunar Low-Thrust Spacecraft is presented in Technical and User's Manuals. The system characteristics and trajectories of low thrust nuclear electric propulsion spacecraft can be generated through the use of multiple system technology models coupled with a high fidelity trajectory generation routine. The Earth to Moon trajectories utilize near Earth orbital plane alignment, midcourse control dependent upon the spacecraft's Jacobian constant, and capture to target orbit utilizing velocity matching algorithms. The trajectory generation is performed in a perturbed two-body equinoctial formulation and the restricted three-body formulation. A single control is determined by the user for the interactive midcourse portion of the trajectory. The full spacecraft system characteristics and trajectory are provided as output.

  14. Hybrid propulsion technology program. Volume 1: Conceptional design package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.

  15. Hybrid propulsion technology program. Volume 2: Technology definition package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.

  16. Orbital transfer rocket engine technology 7.5K-LB thrust rocket engine preliminary design

    NASA Technical Reports Server (NTRS)

    Harmon, T. J.; Roschak, E.

    1993-01-01

    A preliminary design of an advanced LOX/LH2 expander cycle rocket engine producing 7,500 lbf thrust for Orbital Transfer vehicle missions was completed. Engine system, component and turbomachinery analysis at both on design and off design conditions were completed. The preliminary design analysis results showed engine requirements and performance goals were met. Computer models are described and model outputs are presented. Engine system assembly layouts, component layouts and valve and control system analysis are presented. Major design technologies were identified and remaining issues and concerns were listed.

  17. Low-thrust chemical orbit to orbit propulsion system propellant management study

    NASA Technical Reports Server (NTRS)

    Dergance, R. H.

    1980-01-01

    Propellant requirements, tankage configurations, preferred propellant management techniques, propulsion systems weights, and technology deficiencies for low thrust expendable propulsion systems are examined. A computer program was utilized which provided a complete propellant inventory (including boil-off for cryogenic cases), pressurant and propellant tank dimensions for a given ullage, pressurant requirements, insulation requirements, and miscellaneous masses. The output also includes the masses of all tanks; the mass of the insulation, engines and other components; total wet system and burnout mass; system mass fraction; total impulse and burn time.

  18. Direct measurement of axial momentum imparted by an electrothermal radiofrequency plasma micro-thruster

    NASA Astrophysics Data System (ADS)

    Charles, Christine; Boswell, Roderick; Bish, Andrew; Khayms, Vadim; Scholz, Edwin

    2016-05-01

    Gas flow heating using radio frequency plasmas offers the possibility of depositing power in the centre of the flow rather than on the outside, as is the case with electro-thermal systems where thermal wall losses lower efficiency. Improved systems for space propulsion are one possible application and we have tested a prototype micro-thruster on a thrust balance in vacuum. For these initial tests, a fixed component radio frequency matching network weighing 90 grams was closely attached to the thruster in vacuum with the frequency agile radio frequency generator power being delivered via a 50 Ohm cable. Without accounting for system losses (estimated at around 50%), for a few 10s of Watts from the radio frequency generator the specific impulse was tripled to ˜48 seconds and the thrust tripled from 0.8 to 2.4 milli-Newtons.

  19. Apollo-Lunar Orbital Rendezvous Technique

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The film shows artists rendition of the spacecrafts, boosters, and flight of the Apollo lunar missions. The Apollo spacecraft will consist of three modules: the manned Command Module; the Service Module, which contains propulsion systems; and the Lunar Excursion Module (LEM) to carry astronauts to the moon and back to the Command and Service Modules. The spacecraft will be launched via a three-stage Saturn booster. The first stage will provide 7.5 million pounds of thrust from five F-1 engines for liftoff and initial powered flight. The second stage will develop 1 million pounds of thrust from five J-2 engines to boost the spacecraft almost into Earth orbit. Immediately after ignition of the second stage, the Launch Escape System will be jettisoned. A single J-2 engine in the S4B stage will provide 200,000 pounds of thrust to place the spacecraft in an earth parking orbit. It also will be used to propel the spacecraft into a translunar trajectory, then it will separate from the Apollo Modules. Onboard propulsion systems will be used to insert the spacecraft into lunar orbit. Two astronauts will enter the LEM, which will separate from the command and service modules. The LEM will go into elliptical orbit and prepare for landing. The LEM will lift off of the Moon's surface to return to the Command and Service Modules, and most likely be left in lunar orbit. After leaving the Moon's orbit, and shortly before entering Earth's orbit, the Service Module will be ejected. The Command Module will be oriented for reentry into the Earth's atmosphere. A drogue parachute will deploy at approximately 50,000 feet, followed by the main parachute system for touchdown.

  20. Task 12 data dump (phase 2) OME integrated thrust chamber test report

    NASA Technical Reports Server (NTRS)

    Tobin, R. D.; Pauckert, R. P.

    1974-01-01

    The characteristics and performance of the orbit maneuvering engine for the space shuttle are discussed. Emphasis is placed on the regeneratively cooled thrust chamber of the engine. Tests were conducted to determine engine operating parameters during the start, shutdown, and restart. Characteristics of the integrated thrust chamber and the performance and thermal conditions for blowdown operation without supplementary boundary layer cooling were investigated. The results of the test program are presented.

  1. Mission Capability Gains from Multi-Mode Propulsion Thrust Profile Variations for a Plane Change Maneuver

    DTIC Science & Technology

    2010-12-29

    propellant mass [kg] msc = mass of the spacecraft [kg] MMP = multi-mode propulsion   = position in the Geocentric Equatorial Reference...thrust burn time [s] Tsc = thrust of the spacecraft [N] = vector between current and final velocity vector   = velocity vector in the Geocentric ...Equatorial Reference Frame of spacecraft in intended orbit [km/s]   = velocity vector in the Geocentric Equatorial Reference Frame of spacecraft in

  2. Direct Fusion Drive for a Human Mars Orbital Mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paluszek, Michael; Pajer, Gary; Razin, Yosef

    2014-08-01

    The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.

  3. Fuel-Optimal Altitude Maintenance of Low-Earth-Orbit Spacecrafts by Combined Direct/Indirect Optimization

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Ha; Park, Chandeok; Park, Sang-Young

    2015-12-01

    This work presents fuel-optimal altitude maintenance of Low-Earth-Orbit (LEO) spacecrafts experiencing non-negligible air drag and J2 perturbation. A pseudospectral (direct) method is first applied to roughly estimate an optimal fuel consumption strategy, which is employed as an initial guess to precisely determine itself. Based on the physical specifications of KOrea Multi-Purpose SATellite-2 (KOMPSAT-2), a Korean artificial satellite, numerical simulations show that a satellite ascends with full thrust at the early stage of the maneuver period and then descends with null thrust. While the thrust profile is presumably bang-off, it is difficult to precisely determine the switching time by using a pseudospectral method only. This is expected, since the optimal switching epoch does not coincide with one of the collocation points prescribed by the pseudospectral method, in general. As an attempt to precisely determine the switching time and the associated optimal thrust history, a shooting (indirect) method is then employed with the initial guess being obtained through the pseudospectral method. This hybrid process allows the determination of the optimal fuel consumption for LEO spacecrafts and their thrust profiles efficiently and precisely.

  4. Approximate approach for optimization space flights with a low thrust on the basis of sufficient optimality conditions

    NASA Astrophysics Data System (ADS)

    Salmin, Vadim V.

    2017-01-01

    Flight mechanics with a low-thrust is a new chapter of mechanics of space flight, considered plurality of all problems trajectory optimization and movement control laws and the design parameters of spacecraft. Thus tasks associated with taking into account the additional factors in mathematical models of the motion of spacecraft becomes increasingly important, as well as additional restrictions on the possibilities of the thrust vector control. The complication of the mathematical models of controlled motion leads to difficulties in solving optimization problems. Author proposed methods of finding approximate optimal control and evaluating their optimality based on analytical solutions. These methods are based on the principle of extending the class of admissible states and controls and sufficient conditions for the absolute minimum. Developed procedures of the estimation enabling to determine how close to the optimal founded solution, and indicate ways to improve them. Authors describes procedures of estimate for approximately optimal control laws for space flight mechanics problems, in particular for optimization flight low-thrust between the circular non-coplanar orbits, optimization the control angle and trajectory movement of the spacecraft during interorbital flights, optimization flights with low-thrust between arbitrary elliptical orbits Earth satellites.

  5. Test stand for precise measurement of impulse and thrust vector of small attitude control jets

    NASA Technical Reports Server (NTRS)

    Woodruff, J. R.; Chisel, D. M.

    1973-01-01

    A test stand which accurately measures the impulse bit and thrust vector of reaction jet thrusters used in the attitude control system of space vehicles has been developed. It can be used to measure, in a vacuum or ambient environment, both impulse and thrust vector of reaction jet thrusters using hydrazine or inert gas propellants. The ballistic pendulum configuration was selected because of its accuracy, simplicity, and versatility. The pendulum is mounted on flexure pivots rotating about a vertical axis at the center of its mass. The test stand has the following measurement capabilities: impulse of 0.00004 to 4.4 N-sec (0.00001 to 1.0 lb-sec) with a pulse duration of 0.5 msec to 1 sec; static thrust of 0.22 to 22 N (0.05 to 5 lb) with a 5 percent resolution; and thrust angle alinement of 0.22 to 22 N (0.05 to 5 lb) thrusters with 0.01 deg accuracy.

  6. A Comparison Study of Magnetic Bearing Controllers for a Fully Suspended Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Morrison, Carlos; Mehmed, Oral; Huff, Dennis (Technical Monitor)

    2002-01-01

    NASA Glenn Research Center (GRC) has developed a fully suspended magnetic bearing system for the Dynamic Spin Rig (DSR) that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust bearing and the associated control system were integrated into the DSR to provide noncontact magnetic suspension and mechanical excitation of the 35 lb vertical rotor with blades to induce turbomachinery blade vibration. A simple proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked very well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, and energy savings for the system. The test results of a variety of controllers we demonstrated up to the rig's maximum allowable speed of 10,000 rpm are shown.

  7. KSC-04pd0950

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod is lowered toward the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  8. KSC-04pd0948

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod is maneuvered toward the engine interfaces on the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  9. Pursuit/evasion in orbit

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Cliff, E. M.; Lutze, F. H.

    1981-01-01

    Maneuvers available to a spacecraft having sufficient propellant to escape an antisatellite satellite (ASAT) attack are examined. The ASAT and the evading spacecraft are regarded as being in circular orbits, and equations of motion are developed for the ASAT to commence a two-impulse maneuver sequence. The ASAT employs thrust impulses which yield a minimum-time-to-rendezvous, considering available fuel. Optimal evasion is shown to involve only in-plane maneuvers, and begins as soon as the ASAT launch information is gathered and thrust activation can be initiated. A closest approach, along with a maximum evasion by the target spacecraft, is calculated to be 14,400 ft. Further research to account for ASATs in parking orbit and for generalization of a continuous control-modeled differential game is indicated.

  10. Lunar Cube Transfer Trajectory Options

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Dichman, Don; Clark, Pamela; Haapala, Amanda; Howell, Kathleen

    2014-01-01

    Contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these designs can be restricted by the selection of the Cubesat subsystem design such as propulsion or communication. Nonetheless, many trajectory options can be designed with have a wide range of transfer durations, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several design options including deployment into low Earth orbit (LEO), geostationary transfer orbits (GTO), and higher energy direct lunar transfer orbits. In addition to direct transfer options from these initial orbits, we also investigate the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory. In this article we examine several design options that meet the above limited deployment and subsystem drivers. We study ways that both impulsive and low-thrust Solar Electric Propulsion (SEP) engines can be used to place the Cubesat first into a highly eccentric Earth orbit, enter the Moon's Sphere of Influence, and finally achieve a highly eccentric lunar orbit. We show that such low-thrust transfers are feasible with a realistic micro-thruster model, assuming that the Cubesat can generate sufficient power for the SEP. Two examples are shown here: (1) A Cubestat injected by Exploration Mission 1 (EM-1) then employing low thrust; and (2) a CubSat deployed in a GTO, then employing impulsive maneuvers. For the EM-1 injected initial design, we increase the EM-1 targeted lunar flyby distance to reduce the energy of the lunar flyby to match that of a typical lMoon system heteroclinic manifold. Figure 1 presents an option that encompasses the similar dynamics as that of the ARTEMIS mission design. Low-thrust maneuvers are used along the manifold trajectory to raise perigee to that of a lunar orbit, adjust the timing with respect to the Moon, rotate the line of apsides, and target a ballistic lunar encounter. In this design a second flyby decreases the orbital energy with respect to the Moon, so that C3 -0.1 km2s2. Another design, shown in Figure 2 emanates from a GTO then uses impulsive maneuvers to phase onto a local Earth-Moon manifold, which then transfers the CubeSat to a lunar encounter.

  11. Orbit Determination and Maneuver Detection Using Event Representation with Thrust-Fourier-Coefficients

    NASA Astrophysics Data System (ADS)

    Lubey, D.; Ko, H.; Scheeres, D.

    The classical orbit determination (OD) method of dealing with unknown maneuvers is to restart the OD process with post-maneuver observations. However, it is also possible to continue the OD process through such unknown maneuvers by representing those unknown maneuvers with an appropriate event representation. It has been shown in previous work (Ko & Scheeres, JGCD 2014) that any maneuver performed by a satellite transitioning between two arbitrary orbital states can be represented as an equivalent maneuver connecting those two states using Thrust-Fourier-Coefficients (TFCs). Event representation using TFCs rigorously provides a unique control law that can generate the desired secular behavior for a given unknown maneuver. This paper presents applications of this representation approach to orbit prediction and maneuver detection problem across unknown maneuvers. The TFCs are appended to a sequential filter as an adjoint state to compensate unknown perturbing accelerations and the modified filter estimates the satellite state and thrust coefficients by processing OD across the time of an unknown maneuver. This modified sequential filter with TFCs is capable of fitting tracking data and maintaining an OD solution in the presence of unknown maneuvers. Also, the modified filter is found effective in detecting a sudden change in TFC values which indicates a maneuver. In order to illustrate that the event representation approach with TFCs is robust and sufficiently general to be easily adjustable, different types of measurement data are processed with the filter in a realistic LEO setting. Further, cases with mis-modeling of non-gravitational force are included in our study to verify the versatility and efficiency of our presented algorithm. Simulation results show that the modified sequential filter with TFCs can detect and estimate the orbit and thrust parameters in the presence of unknown maneuvers with or without measurement data during maneuvers. With no measurement data during maneuvers, the modified filter with TFCs uses an existing pre-maneuver orbit solution to compute a post-maneuver orbit solution by forcing TFCs to compensate for an unknown maneuver. With observation data available during maneuvers, maneuver start time and stop time is determined

  12. Low thrust optimal orbital transfers

    NASA Technical Reports Server (NTRS)

    Cobb, Shannon S.

    1994-01-01

    For many optimal transfer problems it is reasonable to expect that the minimum time solution is also the minimum fuel solution. However, if one allows the propulsion system to be turned off and back on, it is clear that these two solutions may differ. In general, high thrust transfers resemble the well known impulsive transfers where the burn arcs are of very short duration. The low and medium thrust transfers differ in that their thrust acceleration levels yield longer burn arcs and thus will require more revolutions. In this research, we considered two approaches for solving this problem: a powered flight guidance algorithm previously developed for higher thrust transfers was modified and an 'averaging technique' was investigated.

  13. Orbital-angular-momentum transfer to optically levitated microparticles in vacuum

    NASA Astrophysics Data System (ADS)

    Mazilu, Michael; Arita, Yoshihiko; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan

    2016-11-01

    We demonstrate the transfer of orbital angular momentum to an optically levitated microparticle in vacuum. The microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present.

  14. Designing capture trajectories to unstable periodic orbits around Europa

    NASA Technical Reports Server (NTRS)

    Russell, Ryan P.; Lam, Try

    2006-01-01

    The hostile environment of third body perturbations restricts a mission designer's ability to find well-behaved reproducible capture trajectories when dealing with limited control authority as is typical with low-thrust missions. The approach outlined in this paper confronts this shortcoming by utilizing dynamical systems theory and an extensive preexisting database of Restricted Three Body Problem (RTBP) periodic orbits. The stable manifolds of unstable periodic orbits are utilized to attract a spacecraft towards Europa. By selecting an appropriate periodic orbit, a mission designer can control important characteristics of the captured state including stability, minimum altitudes, characteristic inclinations, and characteristic radii among others. Several free parameters are optimized in the non-trivial mapping from the RTBP to a more realistic model. Although the ephemeris capture orbit is ballistic by design, low-thrust is used to target the state that leads to the capture orbit, control the spacecraft after arriving on the unstable quasi-periodic orbit, and begin the spiral down towards the science orbit. The approach allows a mission designer to directly target fuel efficient captures at Europa in an ephemeris model. Furthermore, it provides structure and controllability to the design of capture trajectories that reside in a chaotic environment.

  15. Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.

    2017-01-01

    Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to the eccentric anomaly and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are shown in excess of 1000 revolutions while subject to Earths J2 perturbation and lunar gravity.

  16. CAMELOT: Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox

    NASA Astrophysics Data System (ADS)

    Di Carlo, Marilena; Romero Martin, Juan Manuel; Vasile, Massimiliano

    2018-03-01

    Computational-Analytical Multi-fidElity Low-thrust Optimisation Toolbox (CAMELOT) is a toolbox for the fast preliminary design and optimisation of low-thrust trajectories. It solves highly complex combinatorial problems to plan multi-target missions characterised by long spirals including different perturbations. To do so, CAMELOT implements a novel multi-fidelity approach combining analytical surrogate modelling and accurate computational estimations of the mission cost. Decisions are then made using two optimisation engines included in the toolbox, a single-objective global optimiser, and a combinatorial optimisation algorithm. CAMELOT has been applied to a variety of case studies: from the design of interplanetary trajectories to the optimal de-orbiting of space debris and from the deployment of constellations to on-orbit servicing. In this paper, the main elements of CAMELOT are described and two examples, solved using the toolbox, are presented.

  17. A Performance Comparison of Xenon and Krypton Propellant on an SPT-100 Hall Thruster (Preprint)

    DTIC Science & Technology

    2011-08-10

    plume data from electrostatic probes. This paper presents the results of performance measurements made using an inverted pendulum thrust stand. Krypton...inverted pendulum thrust stand. Krypton operating conditions were tested over a large range of operating powers from 800 W to 3.9 kW. Analysis of how...advantages for missions where high thrust at reduced specific impulse is advantageous, primarily for orbit raising missions. Bismuth’s main drawback is

  18. Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 1: Analytical manual for earth orbital MAPSEP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An introduction to the MAPSEP organization and a detailed analytical description of all models and algorithms are given. These include trajectory and error covariance propagation methods, orbit determination processes, thrust modeling, and trajectory correction (guidance) schemes. Earth orbital MAPSEP contains the capability of analyzing almost any currently projected low thrust mission from low earth orbit to super synchronous altitudes. Furthermore, MAPSEP is sufficiently flexible to incorporate extended dynamic models, alternate mission strategies, and almost any other system requirement imposed by the user. As in the interplanetary version, earth orbital MAPSEP represents a trade-off between precision modeling and computational speed consistent with defining necessary system requirements. It can be used in feasibility studies as well as in flight operational support. Pertinent operational constraints are available both implicitly and explicitly. However, the reader should be warned that because of program complexity, MAPSEP is only as good as the user and will quickly succumb to faulty user inputs.

  19. An analysis of the effect of aeroassist maneuvers on orbital transfer vehicle performance

    NASA Technical Reports Server (NTRS)

    Murphy, Gregory O.; Suit, William T.

    1987-01-01

    This paper summarizes a Langley Research Summer Scholars (LARSS) research project (Summer 1986) dealing with the topic of the effectiveness of aeroassist maneuvers to accomplish a change in the orbital inclination of an Orbital Transfer Vehicle (OTV). This task was subject to OTV design constraints, chief of which were the axial acceleration and the aerodynamic heating rate limits of the OTV. The use of vehicle thrust to replace lost kinetic energy and, thereby, to increase the maximum possible change in orbital inclination was investigated. A relation between time in the hover orbit and payload to LEO was established. The amount of plane change possible during this type of maneuver was checked for several runs and a possible thrusting procedure to increase the plane change and still get to LEO was suggested. Finally, the sensitivity of various target parameters to controllable independent variables was established, trades between the amount of control allowed, and payload to LEO suggested.

  20. Research Technology

    NASA Image and Video Library

    2002-03-13

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  1. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  2. Characterization of in-flight performance of ion propulsion systems

    NASA Astrophysics Data System (ADS)

    Sovey, James S.; Rawlin, Vincent K.

    1993-06-01

    In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.

  3. Characterization of in-flight performance of ion propulsion systems

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.

    1993-01-01

    In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.

  4. Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows a night view of the orbiter Atlantis being loaded onto one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at the Dryden Flight Research Center, Edwards, California. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  5. Orbital Disturbance Analysis due to the Lunar Gravitational Potential and Deviation Minimization through the Trajectory Control in Closed Loop

    NASA Astrophysics Data System (ADS)

    Gonçalves, L. D.; Rocco, E. M.; de Moraes, R. V.

    2013-10-01

    A study evaluating the influence due to the lunar gravitational potential, modeled by spherical harmonics, on the gravity acceleration is accomplished according to the model presented in Konopliv (2001). This model provides the components x, y and z for the gravity acceleration at each moment of time along the artificial satellite orbit and it enables to consider the spherical harmonic degree and order up to100. Through a comparison between the gravity acceleration from a central field and the gravity acceleration provided by Konopliv's model, it is obtained the disturbing velocity increment applied to the vehicle. Then, through the inverse problem, the Keplerian elements of perturbed orbit of the satellite are calculated allowing the orbital motion analysis. Transfer maneuvers and orbital correction of lunar satellites are simulated considering the disturbance due to non-uniform gravitational potential of the Moon, utilizing continuous thrust and trajectory control in closed loop. The simulations are performed using the Spacecraft Trajectory Simulator-STRS, Rocco (2008), which evaluate the behavior of the orbital elements, fuel consumption and thrust applied to the satellite over the time.

  6. A Rolling Element Tribometer for the Study of Liquid Lubricants in Vacuum

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Ebihara, Ben T.; Kingsbury, Edward

    1996-01-01

    A tribometer for the evaluation of liquid lubricants in vacuum is described. This tribometer is essentially a thrust bearing with three balls and flat races having contact stresses and ball motions similar to those in an angular contact ball bearing operating in the boundary lubrication regime. The friction coefficient, lubrication lifetime, and species evolved from the liquid lubricant by tribodegradation can be determined. A complete analysis of the contact stresses and energy dissipation together with experimental evidence supporting the analysis are presented.

  7. Transfer orbit stage mechanisms thermal vacuum test

    NASA Technical Reports Server (NTRS)

    Oleary, Scott T.

    1990-01-01

    A systems level mechanisms test was conducted on the Orbital Sciences Corp.'s Transfer Orbit Stage (TOS). The TOS is a unique partially reusable transfer vehicle which will boost a satellite into its operational orbit from the Space Shuttle's cargo bay. The mechanical cradle and tilt assemblies will return to earth with the Space Shuttle while the Solid Rocket Motor (SRM) and avionics package are expended. A mechanisms test was performed on the forward cradle and aft tilting assemblies of the TOS under thermal vacuum conditions. Actuating these assemblies under a 1 g environment and thermal vacuum conditions proved to be a complex task. Pneumatic test fixturing was used to lift the forward cradle, and tilt the SRM, and avionics package. Clinometers, linear voltage displacement transducers, and load cells were used in the thermal vacuum chamber to measure the performance and characteristics of the TOS mechanism assembly. Incorporation of the instrumentation and pneumatic system into the test setup was not routine since pneumatic actuation of flight hardware had not been previously performed in the facility. The methods used are presented along with the problems experienced during the design, setup and test phases.

  8. Space shuttle orbit maneuvering engine, reusable thrust chamber program. Task 6: Data dump hot fuel element investigation

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1974-01-01

    An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.

  9. Performance of an electrically raised, synchronous satellite when subjected to radiation degradation effects

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Regetz, J. D., Jr.

    1971-01-01

    The use of solar electric propulsion to raise a high-power communication satellite from a low altitude, inclined circular orbit of the geosynchronous orbit is evaluated. Since the satellite ascends through the high intensity radiation belts, the power available from the solar array and therefore to the ion thrusters degrades. The performance of the solar electric stage in combination with the thrust augmented Thor/Delta launch vehicle is evaluated for two thrust steering programs. The transfer times and solar array requirements are presented for total geosynchronous payloads from 450 to 1100 kg.

  10. Space shuttle orbit maneuvering engine reusable thrust chamber

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A data dump is presented containing space shuttle orbiter maneuvering engine performance, weight, envelope, and interface pressure requirements for candidate propellant combinations (NTO/MMH, NTO50-50, LOX/MMH, LOX/50-50, LOX/N2H4, LOX/C3H8, and LOX/RP-1) and cooling concepts (regenerative and dump/film). These data are presented parametrically for the thrust, chamber pressure, nozzle expansion ratio, and engine mixture ratio ranges of interest. Also included is information describing sensitivity to system changes; reliability, maintainability and safety; development programs and associated critical technology areas; engine cost comparisons during development and operation; and ecological effects.

  11. An analysis of thrust of a realistic solar sail with focus on a flight validation mission in a geocentric orbit

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.

    Several scientifically important space flight missions have been identified that, at this time, can only be practically achieved using a solar sail propulsion system. These missions take advantage of the potentially continuous force on the sail, provided by solar radiation, to produce significant changes in the spacecraft's velocity, in both magnitude and/or direction, without the need for carrying the enormous amount of fuel that conventional propulsion systems would require to provide the same performance. However, to provide thrust levels that would support these missions requires solar sail areas in the (tens of) thousands of square meter sizes. To realize this, many technical areas must be developed further and demonstrated in space before solar sails will be accepted as a viable space mission propulsion system. One of these areas concerns understanding the propulsion performance of a realistic solar sail well enough for mission planning. Without this understanding, solar sail orbits could not be predicted well enough to meet defined mission requirements, such as rendezvous or station-keeping, and solar sail orbit optimization, such as minimizing flight time, could be close to impossible. In most mission studies, either an "ideal" sail's performance is used for mission planning, or some top-level assumptions of certain nonideal sail characteristics are incorporated to give a slightly better estimate of the sail performance. This paper identifies the major sources of solar sail thrust performance uncertainty, and analyzes the most significant ones to provide a more comprehensive understanding of thrust generation by a "realistic" solar sail. With this understanding, mission planners will be able to more confidently and accurately estimate the capabilities of such a system. The first solar sail mission will likely be a system validation mission, using a relatively small sail in a geocentric (Earth-centered) orbit. The author has been involved in conceptual design of such missions, and through this became aware of the current status in solar sail system development, and the need for a better understanding of the thrust performance of a "realistic" solar sail. Such a validation mission is significantly different than most of the "operational" science missions envisioned to utilize a solar sail propulsion system. These future missions will likely use very large, very light sails in heliocentric orbits far away from major gravity fields like planets, have very long mission lifetimes (years), and will conduct relatively minor and slow orbital and attitude control maneuvers. Nonetheless, most of the capabilities of later systems can be gleaned from a small geocentric validation mission. This paper is a significant step toward understanding the thrust characteristics and performance of a realistic solar sail, and provides insight to the methods by which this understanding can be corroborated by a solar sail validation mission.

  12. Low thrust vehicle concept study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Low thrust chemical (hydrogen-oxygen) propulsion systems configured specifically for low acceleration orbit transfer of large space systems were defined. Results indicate that it is cost effective and least risk to combine the OTV and stowed spacecraft in a single 65 K Shuttle. The study shows that the engine for an optimized low thrust stage (1) does not require very low thrust; (2) 1-3 K thrust range appears optimum; (3) thrust transient is not a concern; (4) throttling probably not worthwhile; and (5) multiple thrusters complicate OTV/LSS design and aggravate LSS loads. Regarding the optimum vehicle for low acceleration missions, the single shuttle launch (LSS and expendable OTV) is most cost effective and least risky. Multiple shuttles increase diameter 20%. The space based radar structure short OTV (which maximizes space available for packaged LSS) favors use of torus tank. Propellant tank pressures/vapor residuals are little affected by engine thrust level or number of burns.

  13. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    NASA Technical Reports Server (NTRS)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  14. ESCORT: A Pratt & Whitney nuclear thermal propulsion and power system for manned mars missions

    NASA Astrophysics Data System (ADS)

    Feller, Gerald J.; Joyner, Russell

    1999-01-01

    The purpose of this paper is to describe the conceptual design of an upgrade to the Pratt & Whitney ESCORT nuclear thermal rocket engine. The ESCORT is a bimodal engine capable of supporting a wide range of vehicle propulsive and electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In propulsive mode, the reactor is used to heat hot hydrogen to approximately 2700 K which is expanded through a converging/diverging nozzle to generate thrust. Heat pickup in the nozzle and the radial beryllium reflectors is used to drive the turbomachinery in the ESCORT expander cycle. In electrical mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. This closed loop system has the additional function of a decay heat removal system after the propulsive mode operation is discontinued. The original ESCORT design was capable of delivering 4448.2 N (1000 lbf) of thrust at a vacuum impulse level of approximately 900 s. Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential manned Mars missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. This is met assuming three engines capable of each delivering 66723 N (15000 lbf) of vacuum thrust and 25 kWe of electrical power. The individual engine requirements were developed assuming three out of three engine reliability for propulsion and two out of three engine reliability for spacecraft electrical power. The approximate target vacuum impulse is 925 s. The Pratt & Whitney ESCORT concept was upgraded to meet these requirements. The hexagonal prismatic fuel elements were modified to address the uprated power requirements while maintaining the peak fuel temperature below the 2880 K limit for W-UO2 CERMET fuels. A system integrated performance methodology was developed to assess the sensitivity to weight, thrust and impulse to the DRM requirements. Propellant tanks, shielding, and Brayton cycle power conversion unit requirements were included in this evaluation.

  15. Solar power satellite. System definition study. Part 1, volume 4: SPS transportation system requirements. [spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The best estimates of space transportation requirements for cargo launch vehicles, personnel launch carriers, high thrust orbit transfer, and electric orbit transfer systems are discussed, along with the rationale for each.

  16. Orbit Transfer Vehicle (OTV) engine phase A study, extension 1. Volume 3: Study cost estimates

    NASA Technical Reports Server (NTRS)

    Christensen, K. L.

    1980-01-01

    Program cost and planning data based on 1980 technology and shown in 1979 dollars for a 20K lb Thrust Staged Combustion Cycle Engine are presented. These data were compared with those for the Advanced Expander Cycle Engine at 10K lb and 20K lb thrust levels.

  17. The cislunar low-thrust trajectories via the libration point

    NASA Astrophysics Data System (ADS)

    Qu, Qingyu; Xu, Ming; Peng, Kun

    2017-05-01

    The low-thrust propulsion will be one of the most important propulsion in the future due to its large specific impulse. Different from traditional low-thrust trajectories (LTTs) yielded by some optimization algorithms, the gradient-based design methodology is investigated for LTTs in this paper with the help of invariant manifolds of LL1 point and Halo orbit near the LL1 point. Their deformations under solar gravitational perturbation are also presented to design LTTs in the restricted four-body model. The perturbed manifolds of LL1 point and its Halo orbit serve as the free-flight phase to reduce the fuel consumptions as much as possible. An open-loop control law is proposed, which is used to guide the spacecraft escaping from Earth or captured by Moon. By using a two-dimensional search strategy, the ON/OFF time of the low-thrust engine in the Earth-escaping and Moon-captured phases can be obtained. The numerical implementations show that the LTTs achieved in this paper are consistent with the one adopted by the SMART-1 mission.

  18. A Performance and Plume Comparison of Xenon and Krypton Propellant on the SPT-100

    DTIC Science & Technology

    2012-07-02

    HET (1.35 kW), performance measurements were made using an inverted pendulum thrust stand. The plume was also characterized by a Faraday probe and RPA...performance reduction for the case of the flight model SPT-100 HET (1.35 kW), per- formance measurements were made using an inverted pendulum thrust stand...where high thrust at reduced specific impulse is advantageous, such as orbit raising missions. Bismuth’s main drawback is that the metal must be

  19. Orbital and angular motion construction for low thrust interplanetary flight

    NASA Astrophysics Data System (ADS)

    Yelnikov, R. V.; Mashtakov, Y. V.; Ovchinnikov, M. Yu.; Tkachev, S. S.

    2016-11-01

    Low thrust interplanetary flight is considered. Firstly, the fuel-optimal control is found. Then the angular motion is synthesized. This motion provides the thruster tracking of the required by optimal control direction. And, finally, reaction wheel control law for tracking this angular motion is proposed and implemented. The numerical example is given and total operation time for thrusters is found. Disturbances from solar pressure, thrust eccentricity, inaccuracy of reaction wheels installation and errors of inertia tensor are taken into account.

  20. An algorithm for targeting finite burn maneuvers

    NASA Technical Reports Server (NTRS)

    Barbieri, R. W.; Wyatt, G. H.

    1972-01-01

    An algorithm was developed to solve the following problem: given the characteristics of the engine to be used to make a finite burn maneuver and given the desired orbit, when must the engine be ignited and what must be the orientation of the thrust vector so as to obtain the desired orbit? The desired orbit is characterized by classical elements and functions of these elements whereas the control parameters are characterized by the time to initiate the maneuver and three direction cosines which locate the thrust vector. The algorithm was built with a Monte Carlo capability whereby samples are taken from the distribution of errors associated with the estimate of the state and from the distribution of errors associated with the engine to be used to make the maneuver.

  1. Guidance and control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Hibey, Joseph L.; Naidu, Desineni S.

    1990-01-01

    The first part of the report concerns broadly the summary of the work done in the areas of singular perturbations and time scales (SPaTS), aerobraking technology, guidance and aerocruise. The synergistic plane change problem connected with orbital transfer employing aeroassist technology, is addressed. The mission involves transfer from high Earth orbit to low Earth orbit with plane change being performed within the atmosphere. The complete mission consists of a deorbit phase, atmospheric phase, and finally reorbit phase. The atmospheric maneuver is composed of an entry mode, a cruise mode, and finally an exit mode. During the cruise mode, constant altitude and velocity are maintained by means of bank angle control with constant thrust or thrust control with constant bank angle. Comparisons between these two control strategies bring out some interesting features.

  2. Spacecraft attitude control for a solar electric geosynchronous transfer mission

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.; Regetz, J. D., Jr.

    1975-01-01

    A study of the Attitude Control System (ACS) is made for a solar electric propulsion geosynchronous transfer mission. The basic mission considered is spacecraft injection into a low altitude, inclined orbit followed by low thrust orbit changing to achieve geosynchronous orbit. Because of the extended thrusting time, the mission performance is a strong function of the attitude control system. Two attitude control system design options for an example mission evolve from consideration of the spacecraft configuration, the environmental disturbances, and the probable ACS modes of operation. The impact of these design options on other spacecraft subsystems is discussed. The factors which must be considered in determining the ACS actuation and sensing subsystems are discussed. The effects of the actuation and sensing subsystems on the mission performance are also considered.

  3. KSC-04pd0942

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod (seen from the back) is lifted off its transporter. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  4. KSC-04pd0949

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers stand by as the left-hand Orbital Maneuvering System (OMS) pod is maneuvered toward the engine interfaces on the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  5. KSC-04pd0944

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod is lifted at an angle from the transporter below. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  6. KSC-04pd0947

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod (top of photo) is poised behind the engine interfaces on the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  7. KSC-04pd0946

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers on an upper level watch as the left-hand Orbital Maneuvering System (OMS) pod is lifted high to maneuver it toward the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  8. KSC-04pd0943

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers check the lifting of the left-hand Orbital Maneuvering System (OMS) pod. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  9. KSC-04pd0941

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod (seen from the front) is lifted off its transporter. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  10. KSC-04pd0945

    NASA Image and Video Library

    2004-04-21

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a worker on an upper level watches as the left-hand Orbital Maneuvering System (OMS) pod is lifted high to maneuver it toward the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.

  11. G-38, 39 and 40: An artist's exploration of space. [using the space environment to create orbiting sphere configurations

    NASA Technical Reports Server (NTRS)

    Mcshane, J. W.; Coursen, C. D.

    1984-01-01

    Three experiments are described which use space processing technology in the formation of and coating of bubbles and spheres to be orbited as sculptures visible from Earth. In one experiment, a 22,000 m1 sphere is to ride into orbit containing a 15 psi Earth atmosphere. Once in orbit, a controller directs a valve to open, linking the sphere to a vacuum of space. Technologies used in the fabrication of these art forms include vacuum film deposition and large bubble formation in the space environment.

  12. Space Electric Research Test in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1964-06-21

    Technicians prepare the Space Electric Research Test (SERT-I) payload for a test in Tank Number 5 of the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust, but once lofted into orbit by workhorse chemical rockets, they are capable of small, continuous thrust for periods up to several years. The electron bombardment thruster operated at a 90-percent efficiency during testing in the Electric Propulsion Laboratory. The package was rapidly rotated in a vacuum to simulate its behavior in space. The SERT-I mission, launched from Wallops Island, Virginia, was the first flight test of Kaufman’s ion engine. SERT-I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. The Electric Propulsion Laboratory included two large space simulation chambers, one of which is seen here. Each uses twenty 2.6-foot diameter diffusion pumps, blowers, and roughing pumps to remove the air inside the tank to create the thin atmosphere. A helium refrigeration system simulates the cold temperatures of space.

  13. Parking Lot and Public Viewing Area for STS-4 Landing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    This aerial photo shows the large crowd of people and vehicles that assembled to watch the landing of STS-4 at Edwards Air Force Base in California in July 1982. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  14. Modeling, Simulation, and Control of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin (Inventor); Hojnicki, Jeffery (Inventor); Manzella, David (Inventor)

    2016-01-01

    Modeling and control software that integrates the complexities of solar array models, a space environment, and an electric propulsion system into a rigid body vehicle simulation and control model is provided. A rigid body vehicle simulation of a solar electric propulsion (SEP) vehicle may be created using at least one solar array model, at least one model of a space environment, and at least one model of a SEP propulsion system. Power availability and thrust profiles may be determined based on the rigid body vehicle simulation as the SEP vehicle transitions from a low Earth orbit (LEO) to a higher orbit or trajectory. The power availability and thrust profiles may be displayed such that a user can use the displayed power availability and thrust profiles to determine design parameters for an SEP vehicle mission.

  15. Space station orbit maintenance

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  16. A globally nonsingular quaternion-based formulation for all-electric satellite trajectory optimization

    NASA Astrophysics Data System (ADS)

    Libraro, Paola

    The general electric propulsion orbit-raising maneuver of a spacecraft must contend with four main limiting factors: the longer time of flight, multiple eclipses prohibiting continuous thrusting, long exposure to radiation from the Van Allen belt and high power requirement of the electric engines. In order to optimize a low-thrust transfer with respect to these challenges, the choice of coordinates and corresponding equations of motion used to describe the kinematical and dynamical behavior of the satellite is of critical importance. This choice can potentially affect the numerical optimization process as well as limit the set of mission scenarios that can be investigated. To increase the ability to determine the feasible set of mission scenarios able to address the challenges of an all-electric orbit-raising, a set of equations free of any singularities is required to consider a completely arbitrary injection orbit. For this purpose a new quaternion-based formulation of a spacecraft translational dynamics that is globally nonsingular has been developed. The minimum-time low-thrust problem has been solved using the new set of equations of motion inside a direct optimization scheme in order to investigate optimal low-thrust trajectories over the full range of injection orbit inclinations between 0 and 90 degrees with particular focus on high-inclinations. The numerical results consider a specific mission scenario in order to analyze three key aspects of the problem: the effect of the initial guess on the shape and duration of the transfer, the effect of Earth oblateness on transfer time and the role played by, radiation damage and power degradation in all-electric minimum-time transfers. Finally trade-offs between mass and cost savings are introduced through a test case.

  17. Comparison of theoretical and experimental thrust performance of a 1030:1 area ratio rocket nozzle at a chamber pressure of 2413 kN/sq m (350 psia)

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.; Pavli, Albert J.; Kacynski, Kenneth J.

    1987-01-01

    The Joint Army, Navy, NASA, Air Force (JANNAF) rocket-engine performance-prediction procedure is based on the use of various reference computer programs. One of the reference programs for nozzle analysis is the Two-Dimensional Kinetics (TDK) Program. The purpose of this report is to calibrate the JANNAF procedure that has been incorporated into the December 1984 version of the TDK program for the high-area-ratio rocket-engine regime. The calibration was accomplished by modeling the performance of a 1030:1 rocket nozzle tested at NASA Lewis. A detailed description of the test conditions and TDK input parameters is given. The reuslts indicate that the computer code predicts delivered vacuum specific impulse to within 0.12 to 1.9 percent of the experimental data. Vacuum thrust coefficient predictions were within + or - 1.3 percent of experimental results. Predictions of wall static pressure were within approximately + or - 5 percent of the measured values.

  18. Design and characterization of a nano-Newton resolution thrust stand

    NASA Astrophysics Data System (ADS)

    Soni, J.; Roy, S.

    2013-09-01

    The paper describes the design, calibration, and characterization of a thrust stand capable of nano-Newton resolution. A low uncertainty calibration method is proposed and demonstrated. A passive eddy current based damper, which is non-contact and vacuum compatible, is employed. Signal analysis techniques are used to perform noise characterization, and potential sources are identified. Calibrated system noise floor suggests thrust measurement resolution of the order of 10 nN is feasible under laboratory conditions. Force measurement from this balance for a standard macroscale dielectric barrier discharge (DBD) plasma actuator is benchmarked with a commercial precision balance of 9.8 μN resolution and is found to be in good agreement. Published results of a microscale DBD plasma actuator force measurement and low pressure characterization of conventional plasma actuators are presented for completeness.

  19. Upper Stage Flight Experiment 10K Engine Design and Test Results

    NASA Technical Reports Server (NTRS)

    Ross, R.; Morgan, D.; Crockett, D.; Martinez, L.; Anderson, W.; McNeal, C.

    2000-01-01

    A 10,000 lbf thrust chamber was developed for the Upper Stage Flight Experiment (USFE). This thrust chamber uses hydrogen peroxide/JP-8 oxidizer/fuel combination. The thrust chamber comprises an oxidizer dome and manifold, catalyst bed assembly, fuel injector, and chamber/nozzle assembly. Testing of the engine was done at NASA's Stennis Space Center (SSC) to verify its performance and life for future upper stage or Reusable Launch Vehicle applications. Various combinations of silver screen catalyst beds, fuel injectors, and combustion chambers were tested. Results of the tests showed high C* efficiencies (97% - 100%) and vacuum specific impulses of 275 - 298 seconds. With fuel film cooling, heating rates were low enough that the silica/quartz phenolic throat experienced minimal erosion. Mission derived requirements were met, along with a perfect safety record.

  20. Solar electric propulsion thrust subsystem development

    NASA Technical Reports Server (NTRS)

    Masek, T. D.

    1973-01-01

    The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.

  1. Space Launch Initiative (SLI) Engine Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  2. Theory and computation of optimal low- and medium-thrust transfers

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.

    1994-01-01

    This report presents two numerical methods considered for the computation of fuel-optimal, low-thrust orbit transfers in large numbers of burns. The origins of these methods are observations made with the extremal solutions of transfers in small numbers of burns; there seems to exist a trend such that the longer the time allowed to perform an optimal transfer the less fuel that is used. These longer transfers are obviously of interest since they require a motor of low thrust; however, we also find a trend that the longer the time allowed to perform the optimal transfer the more burns are required to satisfy optimality. Unfortunately, this usually increases the difficulty of computation. Both of the methods described use small-numbered burn solutions to determine solutions in large numbers of burns. One method is a homotopy method that corrects for problems that arise when a solution requires a new burn or coast arc for optimality. The other method is to simply patch together long transfers from smaller ones. An orbit correction problem is solved to develop this method. This method may also lead to a good guidance law for transfer orbits with long transfer times.

  3. The effects of the stellar wind and orbital motion on the jets of high-mass microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Barkov, M. V.

    2016-05-01

    Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.

  4. Logarithmic spiral trajectories generated by Solar sails

    NASA Astrophysics Data System (ADS)

    Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2018-02-01

    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.

  5. Optimal trajectories based on linear equations

    NASA Technical Reports Server (NTRS)

    Carter, Thomas E.

    1990-01-01

    The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive problem are highly effective in the solution of the two-point boundary-value problem associated with bounded thrust. These results were applied to the problem of fuel optimal maneuvers of a spacecraft near a satellite in circular orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in the way that a certain integral is evaluated. For elliptical orbits this integral is evaluated through the use of the eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits.

  6. Space construction system analysis study: Project systems and missions descriptions

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Three project systems are defined and summarized. The systems are: (1) a Solar Power Satellite (SPS) Development Flight Test Vehicle configured for fabrication and compatible with solar electric propulsion orbit transfer; (2) an Advanced Communications Platform configured for space fabrication and compatible with low thrust chemical orbit transfer propulsion; and (3) the same Platform, configured to be space erectable but still compatible with low thrust chemical orbit transfer propulsion. These project systems are intended to serve as configuration models for use in detailed analyses of space construction techniques and processes. They represent feasible concepts for real projects; real in the sense that they are realistic contenders on the list of candidate missions currently projected for the national space program. Thus, they represent reasonable configurations upon which to base early studies of alternative space construction processes.

  7. Tribometer for Lubrication Studies in Vacuum

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1998-01-01

    The NASA Lewis Research Center has developed a new way to evaluate the liquid lubricants used in ball bearings in space mechanisms. For this evaluation, a liquid lubricant is exercised in the rolling contact vacuum tribometer shown in the photo. This tribometer, which is essentially a thrust bearing with three balls and flat races, has contact stresses similar to those in a typical preloaded, angular contact ball bearing. The rotating top plate drives the balls in an outward-winding spiral orbit instead of a circular path. Upon contact with the "guide plate," the balls are forced back to their initial smaller orbit radius; they then repeat this spiral orbit thousands of times. The orbit rate of the balls is low enough, 2 to 5 rpm, to allow the system to operate in the boundary lubrication regime that is most stressful to the liquid lubricant. This system can determine the friction coefficient, lubricant lifetime, and species evolved from the liquid lubricant by tribodegradation. The lifetime of the lubricant charge is only few micrograms, which is "used up" by degradation during rolling. The friction increases when the lubricant is exhausted. The species evolved by the degrading lubricant are determined by a quadrupole residual gas analyzer that directly views the rotating elements. The flat races (plates) and 0.5-in.-diameter balls are of a configuration and size that permit easy post-test examination by optical and electron microscopy and the full suite of modern surface and thin-film chemical analytical techniques, including infrared and Raman microspectroscopy and x-ray photoelectron spectroscopy. In addition, the simple sphere-on-a-flat-plate geometry allows an easy analysis of the contact stresses at all parts of the ball orbit and an understanding of the frictional energy losses to the lubricant. The analysis showed that when the ball contacts the guide plate, gross sliding occurs between the ball and rotating upper plate as the ball forced back to a smaller orbit radius. The friction force due to gross sliding is sensed by the piezoelectric force transducer behind the guide plate and furnishes the coefficient of friction for the system. This tribometer has been used to determine the relative lifetimes of Fomblin Z-25, a lubricant often used in space mechanisms, as a function of the material of the plates against which it was run. The balls were 440C steel in all cases; the plate materials were aluminum, chromium (Cr), 440C steel (17 wt % Cr), and 4150 steel (1 wt % Cr). As shown in the bar graph, the lifetime is greatest for the plate material with least chromium, thus implicating chromium as a tribochemically active element attacking Fomblin Z-25.

  8. Studies of Microdischarge Plasma Thrusters for Nanosatellite Propulsion

    DTIC Science & Technology

    2009-09-30

    sections 0^ based on the Lennard - Jones interaction potentials14 are used to determine the neutral transport properties using vk = nk gkt^kb, where g... potential that exists between the MPT and the vacuum. The expulsion of hot gas and ions into the vacuum generates thrust. So far the MPT has been...cathode and e2 is at a potential between ej and e3. In fig. 3 b, ei is anode and e3 is cathode whereas e2 is floating. The power supply for ei is

  9. Conventionally cast and forged copper alloy for high-heat-flux thrust chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Repas, George A.

    1987-01-01

    The combustion chamber liner of the space shuttle main engine is made of NARloy-Z, a copper-silver-zirconium alloy. This alloy was produced by vacuum melting and vacuum centrifugal casting; a production method that is currently now available. Using conventional melting, casting, and forging methods, NASA has produced an alloy of the same composition called NASA-Z. This report compares the composition, microstructure, tensile properties, low-cycle fatigue life, and hot-firing life of these two materials. The results show that the materials have similar characteristics.

  10. Last ion engine thrust puts ESA's SMART-1 on the right track for its Moon encounter

    NASA Astrophysics Data System (ADS)

    2004-10-01

    SMART-1, on its way to the Moon, has now covered more than 80 million kilometres. Its journey started on 27 September 2003, when the spacecraft was launched on board an Ariane 5 rocket from Europe’s spaceport in Kourou, French Guiana. Since then, it has been spiralling in progressively larger orbits around Earth, to eventually be captured by the lunar gravity and enter into orbit around the Moon in November this year. The SMART-1 mission was designed to pursue two main objectives. The first is purely technological: to demonstrate and test a number of space techniques to be applied to future interplanetary exploration missions. The second goal is scientific, mainly dedicated to lunar science. It is the technology demonstration goal, in particular the first European flight test of a solar-powered ion engine as a spacecraft’s main propulsion system, that gave shape to the peculiar route and duration (13 months) of the SMART-1 journey to the Moon. The long spiralling orbit around Earth, which is bringing the spacecraft closer and closer to the Moon, is needed for the ion engine to function and be tested over a distance comparable to that a spacecraft would travel during a possible interplanetary trip. The SMART-1 mission is also testing the response of a spacecraft propelled by such an engine during gravity-assisted manoeuvres. These are techniques currently used on interplanetary journeys, which make use of the gravitational pull of celestial objects (e.g. planets) for the spacecraft to gain acceleration and reach its final target while saving fuel. In SMART-1’s case, the Moon’s gravitational pull has been exploited in three “lunar resonance” manoeuvres. The first two successfully took place in August and September 2004. The last resonance manoeuvre was on 12 October, during the last major ion engine thrust, which lasted nearly five days, from 10 to 14 October. Thanks to this final thrust, SMART-1 will make two more orbits around Earth without any further need to switch on the engine, apart from minor trajectory correction if needed. The same thrust will allow the spacecraft to progressively fall into the natural sphere of attraction of the Moon and start orbiting around it from 13 November, when it is 60 000 kilometres from the lunar surface. SMART-1 will reach its first perilune (initial closest distance from the lunar surface) on 15 November, while the ion engine is performing its first and major thrust in orbit around the Moon. After that it will continue orbiting around the Moon in smaller loops until it reaches its final operational orbit (spanning between 3000 and 300 kilometres over the Moon’s poles) in mid-January 2005. From then, for six months Smart-1 will start the first comprehensive survey of key chemical elements on the lunar surface and will investigate the theory of how the Moon was formed.

  11. Particle Orbit Analysis in the Finite Beta Plasma of the Large Helical Device using Real Coordinates

    NASA Astrophysics Data System (ADS)

    Seki, Ryousuke; Matsumoto, Yutaka; Suzuki, Yasuhiro; Watanabe, Kiyomasa; Itagaki, Masafumi

    High-energy particles in a finite beta plasma of the Large Helical Device (LHD) are numerically traced in a real coordinate system. We investigate particle orbits by changing the beta value and/or the magnetic field strength. No significant difference is found in the particle orbit classifications between the vacuum magnetic field and the finite beta plasma cases. The deviation of a banana orbit from the flux surfaces strongly depends on the beta value, although the deviation of the orbit of a passing particle is independent of the beta value. In addition, the deviation of the orbit of the passing particle, rather than that of the banana-orbit particles, depends on the magnetic field strength. We also examine the effect of re-entering particles, which repeatedly pass in and out of the last closed flux surface, in the finite beta plasma of the LHD. It is found that the number of re-entering particles in the finite beta plasma is larger than that in the vacuum magnetic field. As a result, the role of reentering particles in the finite beta plasma of the LHD is more important than that in the vacuum magnetic field, and the effect of the charge-exchange reaction on particle confinement in the finite beta plasma is large.

  12. Analytical investigations in aircraft and spacecraft trajectory optimization and optimal guidance

    NASA Technical Reports Server (NTRS)

    Markopoulos, Nikos; Calise, Anthony J.

    1995-01-01

    A collection of analytical studies is presented related to unconstrained and constrained aircraft (a/c) energy-state modeling and to spacecraft (s/c) motion under continuous thrust. With regard to a/c unconstrained energy-state modeling, the physical origin of the singular perturbation parameter that accounts for the observed 2-time-scale behavior of a/c during energy climbs is identified and explained. With regard to the constrained energy-state modeling, optimal control problems are studied involving active state-variable inequality constraints. Departing from the practical deficiencies of the control programs for such problems that result from the traditional formulations, a complete reformulation is proposed for these problems which, in contrast to the old formulation, will presumably lead to practically useful controllers that can track an inequality constraint boundary asymptotically, and even in the presence of 2-sided perturbations about it. Finally, with regard to s/c motion under continuous thrust, a thrust program is proposed for which the equations of 2-dimensional motion of a space vehicle in orbit, viewed as a point mass, afford an exact analytic solution. The thrust program arises under the assumption of tangential thrust from the costate system corresponding to minimum-fuel, power-limited, coplanar transfers between two arbitrary conics. The thrust program can be used not only with power-limited propulsion systems, but also with any propulsion system capable of generating continuous thrust of controllable magnitude, and, for propulsion types and classes of transfers for which it is sufficiently optimal the results of this report suggest a method of maneuvering during planetocentric or heliocentric orbital operations, requiring a minimum amount of computation; thus uniquely suitable for real-time feedback guidance implementations.

  13. Analytical Method of Approximating the Motion of a Spinning Vehicle with Variable Mass and Inertia Properties Acted Upon by Several Disturbing Parameters

    NASA Technical Reports Server (NTRS)

    Buglia, James J.; Young, George R.; Timmons, Jesse D.; Brinkworth, Helen S.

    1961-01-01

    An analytical method has been developed which approximates the dispersion of a spinning symmetrical body in a vacuum, with time-varying mass and inertia characteristics, under the action of several external disturbances-initial pitching rate, thrust misalignment, and dynamic unbalance. The ratio of the roll inertia to the pitch or yaw inertia is assumed constant. Spin was found to be very effective in reducing the dispersion due to an initial pitch rate or thrust misalignment, but was completely Ineffective in reducing the dispersion of a dynamically unbalanced body.

  14. Space Shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1984-01-01

    The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.

  15. Water absorption and desorption in shuttle ablator and insulation materials

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Smith, C. F.; Wooden, V. A.; Cothren, B. E.; Gregory, H.

    1982-01-01

    Shuttle systems ablator and insulation materials underwent water soak with subsequent water desorption in vacuum. Water accumulation in these materials after a soak for 24 hours ranged from +1.1% for orbiter tile to +161% for solid rocket booster MSA-1. After 1 minute in vacuum, water retention ranged from none in the orbiter tile to +70% for solid rocket booster cork.

  16. Alternate space shuttle concepts study. Part 2: Technical summary. Volume 2: Orbiter definition

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study was conducted of a three-engined external hydrogen tank orbiter/heat sink booster utilizing 415 K sea level thrust engines. The results of the study, pertaining to the orbiter portion of the configuration, are presented. A complete summary of characteristics is given for the external tank configuration along with some comparative data for a conventional internal tank configuration.

  17. A users manual for a computer program which calculates time optical geocentric transfers using solar or nuclear electric and high thrust propulsion

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.; Edelbaum, T. N.; Malchow, H. L.

    1974-01-01

    This manual is a guide for using a computer program which calculates time optimal trajectories for high-and low-thrust geocentric transfers. Either SEP or NEP may be assumed and a one or two impulse, fixed total delta V, initial high thrust phase may be included. Also a single impulse of specified delta V may be included after the low thrust state. The low thrust phase utilizes equinoctial orbital elements to avoid the classical singularities and Kryloff-Boguliuboff averaging to help insure more rapid computation time. The program is written in FORTRAN 4 in double precision for use on an IBM 360 computer. The manual includes a description of the problem treated, input/output information, examples of runs, and source code listings.

  18. High-Temperature Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.

    1994-01-01

    Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.

  19. Mission Design Analysis for the Martian Moon Phobos: Close Flybys, Missed Thrusts, and Other In-Flight Entertainment

    NASA Technical Reports Server (NTRS)

    Stuart, Jeffrey; McElrath, Tim; Petropoulos, Anastassios

    2015-01-01

    A robotic mission to the Martian moons Phobos and Deimos would offer a wealth of scientific information and serve as a useful precursor to potential human missions. In this paper, we investigate a prospective mission enabled by solar electric propulsion that would explore Phobos via a series of flybys followed by capture into orbit around the moon. Of particular interest are low-cost options for capture and walkdown to the target science orbits aided by multi-body effects due to the mutual gravitational interaction of Phobos and Mars. We also consider contingency operations in the event of missed thrust or maneuver execution errors.

  20. Proof-of-Concept Trajectory Designs for a Multi-Spacecraft, Low-Thrust Heliocentric Solar Weather Buoy Mission

    NASA Technical Reports Server (NTRS)

    Muller, Ronald; Franz, Heather; Roberts, Craig; Folta, Dave

    2005-01-01

    A new solar weather mission has been proposed, involving a dozen or more small spacecraft spaced at regular, constant intervals in a mutual heliocentric circular orbit between the orbits of Earth and Venus. These solar weather buoys (SWBs) would carry instrumentation to detect and measure the material in solar flares, solar energetic particle events, and coronal mass ejections as they flowed past the buoys, serving both as science probes and as a radiation early warning system for the Earth and interplanetary travelers to Mars. The baseline concept involves placing a mothercraft carrying the SWBs into a staging orbit at the Sun-Earth L1 libration point. The mothercraft departs the L1 orbit at the proper time to execute a trailing-edge lunar flyby near New Moon, injecting it into a heliocentric orbit with its perihelion interior to Earth s orbit. An alternative approach would involve the use of a Double Lunar Swingby (DLS) orbit, rather than the L1 orbit, for staging prior to this flyby. After injection into heliocentric orbit, the mothercraft releases the SWBs-all equipped with low-thrust pulsed plasma thrusters (PPTs)-whereupon each SWB executes a multi-day low-thrust finite bum around perihelion, lowering aphelion such that each achieves an elliptical phasing orbit of different orbital period from its companions. The resulting differences in angular rates of motion cause the spacecraft to separate. While the lead SWB achieves the mission orbit following an insertion burn at its second perihelion passage, the remaining SWBs must complete several revolutions in their respective phasing orbits to establish them in the mission orbit with the desired longitudinal spacing. The complete configuration for a 14 SWB scenario using a single mothercraft is achieved in about 8 years, and the spacing remains stable for at least a further 6 years. Flight operations can be simplified, and mission risk reduced, by employing two mothercraft instead of one. In this scenario: the second mothercraft stays in a libration-point or DLS staging orbit until the first mothercraft has achieved nearly 180 separation from the Earth. The timing of the second mothercraft's subsequent lunar flyby is planned such that this spacecraft will be located 180 from the first mothercraft upon completion of its heliocentric circularization maneuvers. Both groups of satellites then only have to spread out over 180 to obtain full 360 coverage around the Sun.

  1. Low energy stage study. Volume 5: Program study cost elements and appendices. [orbital launching of space shuttle payloads

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The methodology and rationale used in the development of costs for engineering, manufacturing, testing and operating a low thrust system for placing automated shuttle payloads into earth orbits are described. Cost related information for the recommended propulsion approach is included.

  2. Control Study for Five-axis Dynamic Spin Rig Using Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Provenza, Andrew; Morrison, Carlos; Montague, Gerald

    2003-01-01

    The NASA Glenn Research Center (GRC) has developed a magnetic bearing system for the Dynamic Spin Rig (DSR) with a fully suspended shaft that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust magnetic bearing and the associated control system were integrated into the DSR to provide magnetic excitation as well as non-contact mag- netic suspension of a 15.88 kg (35 lb) vertical rotor with blades to induce turbomachinery blade vibration. For rotor levitation, a proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, more blade vibration amplitude, and energy savings for the system. The test results of a variety of controllers that were demonstrated up to 10.000 rpm are shown. Furthermore, rotor excitation operation and conceptual study of active blade vibration control are addressed.

  3. Orbit transfer vehicle engine study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The orbit transfer vehicle (OTV) engine study provided parametric performance, engine programmatic, and cost data on the complete propulsive spectrum that is available for a variety of high energy, space maneuvering missions. Candidate OTV engines from the near term RL 10 (and its derivatives) to advanced high performance expander and staged combustion cycle engines were examined. The RL 10/RL 10 derivative performance, cost and schedule data were updated and provisions defined which would be necessary to accommodate extended low thrust operation. Parametric performance, weight, envelope, and cost data were generated for advanced expander and staged combustion OTV engine concepts. A prepoint design study was conducted to optimize thrust chamber geometry and cooling, engine cycle variations, and controls for an advanced expander engine. Operation at low thrust was defined for the advanced expander engine and the feasibility and design impact of kitting was investigated. An analysis of crew safety and mission reliability was conducted for both the staged combustion and advanced expander OTV engine candidates.

  4. LANTR Engine Optimization for Lunar Missions

    NASA Astrophysics Data System (ADS)

    Bulman, M. J.; Poth, Greg; Borowski, Stan

    2006-01-01

    Propulsion requirements for sustainable Lunar missions are very demanding. The high Delta V for short transit times and/or reusable vehicles are best served with the High Isp of Nuclear Propulsion. High thrust is needed to reduce gravity losses during earth departure. The LOX-Augmented Nuclear Thermal Rocket (LANTR) is a concept whereby thrust from a nuclear thermal rocket can be doubled, or even quadrupled, by the injection and combustion of gaseous oxygen downstream of the throat. This has many advantages for the mission including a reduction in the size of the reactor(s) and propellant tank volume for a given payload delivered to Low Lunar Orbit. In this paper, we conduct mission studies to define the optimum basic (Unaugmented) engine thrust, Lox augmentation level and Lox loading for minimum initial mass in low earth orbit. 35% mass savings are seen for NTR powered LTVs with over twice the propellant Volume. The LANTR powered LTV has a similar mass savings with minimal volume penalties.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This is a cutaway illustration of the Saturn V launch vehicle with callouts of the major components. The Saturn V is the largest and most powerful launch vehicle developed in the United States. It was a three stage rocket, 363 feet in height, used for sending American astronauts to the moon and for placing the Skylab in Earth orbit. The Saturn V was designed to perform Earth orbital missions through the use of the first two stages, while all three stages were used for lunar expeditions. The S-IC stage (first stage) was powered by five F- engines, which burned kerosene and liquid oxygen to produce more than 7,500,000 pounds of thrust. The S-II (second) stage was powered by five J-2 engines, that burned liquid hydrogen and liquid oxygen and produced 1,150,000 pounds thrust. The S-IVB (third) stage used one J-2 engine, producing 230,000 pounds of thrust, with a re-start capability. The Marshall Space Flight Center and its contractors designed, developed, and assembled the Saturn V launch vehicle stages.

  6. Accurate approximation of in-ecliptic trajectories for E-sail with constant pitch angle

    NASA Astrophysics Data System (ADS)

    Huo, Mingying; Mengali, Giovanni; Quarta, Alessandro A.

    2018-05-01

    Propellantless continuous-thrust propulsion systems, such as electric solar wind sails, may be successfully used for new space missions, especially those requiring high-energy orbit transfers. When the mass-to-thrust ratio is sufficiently large, the spacecraft trajectory is characterized by long flight times with a number of revolutions around the Sun. The corresponding mission analysis, especially when addressed within an optimal context, requires a significant amount of simulation effort. Analytical trajectories are therefore useful aids in a preliminary phase of mission design, even though exact solution are very difficult to obtain. The aim of this paper is to present an accurate, analytical, approximation of the spacecraft trajectory generated by an electric solar wind sail with a constant pitch angle, using the latest mathematical model of the thrust vector. Assuming a heliocentric circular parking orbit and a two-dimensional scenario, the simulation results show that the proposed equations are able to accurately describe the actual spacecraft trajectory for a long time interval when the propulsive acceleration magnitude is sufficiently small.

  7. Test Plan. GCPS Task 4, subtask 4.2 thrust structure development

    NASA Astrophysics Data System (ADS)

    Greenberg, H. S.

    1994-09-01

    The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.

  8. Test Plan. GCPS Task 4, subtask 4.2 thrust structure development

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    The Single Stage To Orbit (SSTO) vehicle is designed to lift off from a vertical position, go into orbit, return to earth for a horizontal landing, and be reusable for the next mission. (NASA baseline only) In order to meet its performance goals, the SSTO relies on light weight structure and the use of 8 tri-propellant engines. These engines are mounted to the thrust structure. This test plan addresses selection of the material for this structure, and the integrity of the design through testing of elements and a full-scale subcomponent. This test plan supports the development of the design for an advanced composite thrust structure for a Single Stage to Orbit manned, heavy launch vehicle. The thrust structure is designed to transmit very high thrust loads from the engines to the rest of the vehicle (see Figure 1 ). The thrust structure will also be used for primary attachment of the twin vertical tails and possibly act as the aft attach point for the wing. The combination of high loading, high vibration, long service life and high acoustic environments will need to be evaluated by tests. To minimize design risk, a building block approach will be used. We will first screen materials to determine which materials show the most promise for this application. Factors in this screening will be the suitability of these materials for chosen design concepts, particularly concerning specific strength, environmental compatibility and applicability to fabrication processes. Next we will characterize two material systems that will be used in the design; the characterization will allow us to generate preliminary design data that will be used for the analysis. Element testing will be performed to evaluate critical structural locations under load. Final testing on the full scale test article will be performed to verify the design and to demonstrate predictability of the analysis. Additionally, risks associated with fabricating full scale thrust structures will be reduced through testing activities. One of the major concerns that stems from full scale fabrication is the realities of size and the associated complexities of handling, manufacturing, and assembly. The need exists to fabricate, assemble and test_representative joint specimens to achieve_confidence in the design and manufacturing technologies being proposed.

  9. Relative Lifetimes of Several Space Liquid Lubricants Using a Vacuum Spiral Orbit Tribometer (SOT)

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Predmore, Roamer E.; Loewenthal, Stuart L.

    2001-01-01

    A vacuum spiral orbit rolling contact tribometer (SOT) was used to determine the relative lifetimes of several unformulated space liquid lubricants. The lubricants tested included a synthetic hydrocarbon (Pennzane 2001 A), three perfluoropolyethers (Krytox 143AC, Fomblin Z25, and Brayco 815Z), three silahydrocarbons (a tri, a tetra, and a penta) and a polyalphaolefin (Nye PAO-100). The SOT simulates the ball motions in an angular contact bearing and tribochemically degrades microgram quantities of lubricant. Test failure is determined when a preset friction coefficient is exceeded. Relative lifetime (orbits/micro-g) is defined as the number of ball orbits to failure divided by the amount of lubricant on the ball. Conditions included 10 to 200 rpm rotational speed, approximately 50 micro-g lubricant, an initial vacuum < 1.3x10(exp -6) Pa, room temperature (approximately 23 C), a mean Hertzian stress of 1.5 GPa, and 440 C stainless steel specimens. Lubricated lifetimes from longest to shortest were Pennzane 2001 A, the silahydrocarbons and the PAO-100, 143AC, ZI-5, and then 815Z. Relative lifetimes compare favorably to full-scale vacuum gimbal bearing tests. The effect of varying the mean Hertzian stress on the lifetime of some of the lubricants was examined.

  10. Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    Curtis, Leslie; Johnson, Les; Brown, Norman S. (Technical Monitor)

    2002-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta 11 Expendable Launch Vehicle second stage. ProSEDS, which is planned on an Air Force GPS Satellite replacement mission in June 2002, will use the flight proven Small Expendable Deployer System (SEDS) to deploy a tether (5 km bare wire plus 10 km non-conducting Dyneema) from a Delta 11 second stage to achieve approx. 0.4N drag thrust. ProSEDS will utilize the tether-generated current to provide limited spacecraft power. The ProSEDS instrumentation includes Langmuir probes and Differential Ion Flux Probes, which will determine the characteristics of the ambient ionospheric plasma. Two Global Positioning System (GPS) receivers will be used (one on the Delta and one on the endmass) to help determine tether dynamics and to limit transmitter operations to occasions when the spacecraft is over selected ground stations. The flight experiment is a precursor to the more ambitious electrodynamic tether upper stage demonstration mission, which will be capable of orbit raising, lowering and inclination changes-all using electrodynamic thrust. An immediate application of ProSEDS technology is for the removal of spent satellites for orbital debris mitigation. In addition to the use of this technology to provide orbit transfer and debris mitigation it may also be an attractive option for future missions to Jupiter and any other planetary body with a magnetosphere.

  11. Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    Ballance, Judy; Johnson, Les; Rogacki, John R. (Technical Monitor)

    2000-01-01

    The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta II Expendable Launch Vehicle (ELV) second stage. ProSEDS, which is planned to fly in 2001, will use the flight proven Small Expendable Deployer System (SEDS) to deploy a tether (5km bare wire plus 10 km spectra or dyneema) from a Delta II second stage to achieve approximately 0.4N drag thrust. ProSEDS will utilize the tether-generated current to provide limited spacecraft power. The ProSEDs instrumentation includes a Langmuir probe and Differential Ion Flux Probe, which will determine the characteristics of the ambient ionospheric plasma. Two Global Positioning System (GPS) receivers will be used (one on the Delta and one on the endmass) to help determine tether dynamics and to limit transmitter operations to occasions when the spacecraft is over selected ground stations, The flight experiment is a precursor to the more ambitious electrodynamic tether upper stage demonstration mission, which will be capable of orbit raising, lowering and inclination changes-all using electrodynamic thrust. An immediate application of ProSEDS technology is for the deorbit of spent satellites for orbital debris mitigation. In addition to the use of this technology to provide orbit transfer and debris mitigation it may also be an attractive option for future missions to Jupiter and any other planetary body with a magnetosphere.

  12. Independent Orbiter Assessment (IOA): Analysis of the ascent thrust vector control actuator subsystem

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.; Riccio, J. R.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Ascent Thrust Vector Control (ATVC) Actuator hardware are documented. The function of the Ascent Thrust Vector Control Actuators (ATVC) is to gimbal the main engines to provide for attitude and flight path control during ascent. During first stage flight, the SRB nozzles provide nearly all the steering. After SRB separation, the Orbiter is steered by gimbaling of its main engines. There are six electrohydraulic servoactuators, one pitch and one yaw for each of the three main engines. Each servoactuator is composed of four electrohydraulic servovalve assemblies, one second stage power spool valve assembly, one primary piston assembly and a switching valve. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Critical failures resulting in loss of ATVC were mainly due to loss of hydraulic fluid, fluid contamination and mechanical failures.

  13. Large-payload earth-orbit transportation with electric propulsion

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.

    1976-01-01

    Economical unmanned earth orbit transportation for large payloads is evaluated. The high exhaust velocity achievable with electric propulsion is attractive because it minimizes the propellant that must be carried to low earth orbit. Propellant transport is a principal cost item. Electric propulsion subsystems utilizing advanced ion thrusters are compared to magnetoplasmadynamic (MPD) thrust subsystems. For very large payloads, a large lift vehicle is needed to low earth orbit, and argon propellant is required for electric propulsion. Under these circumstances, the MPD thruster is shown to be desirable over the ion thruster for earth orbit transportation.

  14. An Introduction to Rockets - or - Never Leave Geeks Unsupervised

    NASA Technical Reports Server (NTRS)

    Mellett, Kevin

    2006-01-01

    An introduction to rockets along with a brief history Newton's third law is presented. The contents include: 1) What is a Rocket?; 2) A Brief History; 3) Newton's Third Law; 4) A Brief History; 5) Mission Requirements; 6) Some Orbital Measurements; 7) Self Eating Watermelon; 8) Orbital Inclinations; 9) 28.5 Equatorial Orbit; 10) 51.6 Orbit (ISS); 11) Polar Orbit; 12) Geostationary Orbit; 13) Liquid Rocket; 13) Liquids vs. Solids; 14) Liquids; 15) Systems Integration; 16) Integration (NFL!); 17) Guidance Systems; 18) Vectored Thrust; 19) Spin Stabilization; 20) Aerodynamic Stability (Fire Arrows); and 21) Center of Gravity & Center of Pressure.

  15. Dawn Orbit Determination Team: Trajectory Modeling and Reconstruction Processes at Vesta

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J.; Ardito, Alessandro; Han, Dongsuk; Haw, Robert; Kennedy, Brian; Mastrodemos, Nick; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012. In order to maintain the designated science reference orbits and enable the transfers between those orbits, precise and timely orbit determination was required. Challenges included low-thrust ion propulsion modeling, estimation of relatively unknown Vesta gravity and rotation models, track-ing data limitations, incorporation of real-time telemetry into dynamics model updates, and rapid maneuver design cycles during transfers. This paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.

  16. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    NASA Technical Reports Server (NTRS)

    Watters, T. R.; Weber, R. C.; Collins, G. C.; Johnson, C. L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and thrust faults consistent with lobate scarp orientations. Stresses due to orbital recession do not change with orbital position, thus it is with the addition of diurnal stresses that peak stresses are reached. At apogee, diurnal and recession stresses are most compressive near the tidal axis, while at perigee they are most compressive 90 degrees away from the tidal axis. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we show the results of relocating the shallow moonquake using an algorithm designed for sparse networks to better constrain their epicentral locations in order to compare them with stress models. The model for the current stress state of the Moon is refined by investigating the contribution of polar wander.

  17. Development Status of the NASA MC-1 (Fastrac) Engine

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.; Olive, Tim; Turner, James E. (Technical Monitor)

    2000-01-01

    The MC-1 (formerly known as the Fastrac 60K) Engine is being developed for the X-34 technology demonstrator vehicle. It is a pump-fed liquid rocket engine with fixed thrust operating at one rated power level of 60,000 lbf vacuum thrust using a 15:1 area ratio nozzle (slightly higher for the 30:1 flight nozzle). Engine system development testing of the MC-1 has been ongoing since 24 Oct 1998. To date, 48 tests have been conducted on three engines using three separate test stands. This paper will provide some details of the engine, the tests conducted, and the lessons learned to date.

  18. Theoretical Performance of Hydrogen-Oxygen Rocket Thrust Chambers

    NASA Technical Reports Server (NTRS)

    Sievers, Gilbert K.; Tomazic, William A.; Kinney, George R.

    1961-01-01

    Data are presented for liquid-hydrogen-liquid-oxygen thrust chambers at chamber pressures from 15 to 1200 pounds per square inch absolute, area ratios to approximately 300, and percent fuel from about 8 to 34 for both equilibrium and frozen composition during expansion. Specific impulse in vacuum, specific impulse, combustion-chamber temperature, nozzle-exit temperature, characteristic velocity, and the ratio of chamber-to-nozzle-exit pressure are included. The data are presented in convenient graphical forms to allow quick calculation of theoretical nozzle performance with over- or underexpansion, flow separation, and introduction of the propellants at various initial conditions or heat loss from the combustion chamber.

  19. Analysis of Parallel Burn Without Crossfeed TSTO RLV Architectures and Comparison to Parallel Burn With Crossfeed and Series Burn Architectures

    NASA Technical Reports Server (NTRS)

    Smith, Garrett; Phillips, Alan

    2002-01-01

    There are currently three dominant TSTO class architectures. These are Series Burn (SB), Parallel Burn with crossfeed (PBw/cf), and Parallel Burn without crossfeed (PBncf). The goal of this study was to determine what factors uniquely affect PBncf architectures, how each of these factors interact, and to determine from a performance perspective whether a PBncf vehicle could be competitive with a PBw/cf or SB vehicle using equivalent technology and assumptions. In all cases, performance was evaluated on a relative basis for a fixed payload and mission by comparing gross and dry vehicle masses of a closed vehicle. Propellant combinations studied were LOX: LH2 propelled orbiter and booster (HH) and LOX: Kerosene booster with LOX: LH2 orbiter (KH). The study conclusions were: 1) a PBncf orbiter should be throttled as deeply as possible after launch until the staging point. 2) a detailed structural model is essential to accurate architecture analysis and evaluation. 3) a PBncf TSTO architecture is feasible for systems that stage at mach 7. 3a) HH architectures can achieve a mass growth relative to PBw/cf of < 20%. 3b) KH architectures can achieve a mass growth relative to Series Burn of < 20%. 4) center of gravity (CG) control will be a major issue for a PBncf vehicle, due to the low orbiter specific thrust to weight ratio and to the position of the orbiter required to align the nozzle heights at liftoff. 5 ) thrust to weight ratios of 1.3 at liftoff and between 1.0 and 0.9 when staging at mach 7 appear to be close to ideal for PBncf vehicles. 6) performance for all vehicles studied is better when staged at mach 7 instead of mach 5. The study showed that a Series Burn architecture has the lowest gross mass for HH cases, and has the lowest dry mass for KH cases. The potential disadvantages of SB are the required use of an air-start for the orbiter engines and potential CG control issues. A Parallel Burn with crossfeed architecture solves both these problems, but the mechanics of a large bipropellant crossfeed system pose significant technical difficulties. Parallel Burn without crossfeed vehicles start both booster and orbiter engines on the ground and thus avoid both the risk of orbiter air-start and the complexity of a crossfeed system. The drawback is that the orbiter must use 20% to 35% of its propellant before reaching the staging point. This induces a weight penalty in the orbiter in order to carry additional propellant, which causes a further weight penalty in the booster to achieve the same staging point. One way to reduce the orbiter propellant consumption during the first stage is to throttle down the orbiter engines as much as possible. Another possibility is to use smaller or fewer engines. Throttling the orbiter engines soon after liftoff minimizes CG control problems due to a low orbiter liftoff thrust, but may result in an unnecessarily high orbiter thrust after staging. Reducing the number or size of engines size may cause CG control problems and drift at launch. The study suggested possible methods to maximize performance of PBncf vehicle architectures in order to meet mission design requirements.

  20. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  1. Enterprise - First Tailcone Off Free Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the Shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preperation for the first space mission with the orbiter Columbia in April 1981. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  2. STS Challenger Mated to 747 SCA for Initial Delivery to Florida

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Shuttle orbiter Challenger atop NASA's Boeing 747 Shuttle Carrier Aircraft (SCA), NASA 905, after leaving the Dryden Flight Research Center, Edwards, California, for the ferry flight that took the orbiter to the Kennedy Space Center in Florida for its first launch. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  3. Shuttle Enterprise Mated to 747 SCA for Delivery to Smithsonian

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Enterprise atop the NASA 747 Shuttle Carrier Aircraft as it leaves NASA's Dryden Flight Research Center, Edwards, California. The Enterprise, first orbiter built, was not spaceflight rated and was used in 1977 to verify the landing, approach, and glide characteristics of the orbiters. It was also used for engineering fit-checks at the shuttle launch facilities. Following approach and landing tests in 1977 and its use as an engineering vehicle, Enterprise was donated to the National Air and Space Museum in Washington, D.C. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  4. Spiral Orbit Tribometry. 2; Evaluation of Three Liquid Lubricants in Vacuum

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Kingsbury, Edward P.; Kiraly, Louis J. (Technical Monitor)

    2002-01-01

    The coefficients of friction and relative degradation rates of three lubricants run in the boundary regime in vacuum are evaluated in a Spiral Orbit Tribometer. This tribometer subjected the lubricants to rolling contact conditions similar to those found in angular contact ball bearings. A multiply alkylated cyclopentane (MAC) hydrocarbon lubricant suffered degradation at a rate almost two orders of magnitude less than the degradation rate of two perfluoropolyalkylether (PFPE) lubricants.

  5. Effect of vacuum processing on outgassing within an orbiting molecular shield

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.

    1982-01-01

    The limiting hydrogen number density in an orbiting molecular shield is highly dependent on the outgassing rates from the materials of construction for the shield, experimental apparatus, and other hardware contained within the shield. Ordinary degassing temperatures used for ultrahigh vacuum studies (less than 450 C) are not sufficient to process metals so that the contribution to the number density within the shield due to outgassing is less than the theoretically attainable level (approximately 200 per cu. cm). Pure aluminum and type 347 stainless steel were studied as candidate shield materials. Measurements of their hydrogen concentration and diffusion coefficients were made, and the effects of high temperature vacuum processing (greater than 600 C) on their resulting outgassing rates was determined. The densities in a molecular shield due to the outgassing from either metal were substantially less ( 0.003) than the density due to the ambient atomic hydrogen flux at an orbital altitude of 500 km.

  6. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Technical Reports Server (NTRS)

    Askew, J. W.

    1986-01-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  7. Deep Space 1 Ion Engine

    NASA Image and Video Library

    2002-12-21

    This image of a xenon ion engine prototype, photographed through a port of the vacuum chamber where it was being tested at NASA's Jet Propulsion Laboratory, shows the faint blue glow of charged atoms being emitted from the engine. The engine is now in an ongoing extended- life test, in a vacuum test chamber at JPL, and has run for almost 500 days (12,000 hours) and is scheduled to complete nearly 625 days (15,000 hours) by the end of 2001. A similar engine powers the New Millennium Program's flagship mission, Deep Space 1, which uses the ion engine in a trip through the solar system. The engine, weighing 17.6 pounds (8 kilograms), is 15.7 inches (40 centimeters) in diameter and 15.7 inches long. The actual thrust comes from accelerating and expelling positively charged xenon atoms, or ions. While the ions are fired in great numbers out the thruster at more than 110,000 kilometers (68,000 miles) per hour, their mass is so low that the engine produces a gentle thrust of only 90 millinewtons (20-thousandths of a pound). http://photojournal.jpl.nasa.gov/catalog/PIA04238

  8. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Astrophysics Data System (ADS)

    Askew, J. W.

    1986-09-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  9. MSFC Skylab Orbital Workshop, volume 2. [design and development of electrical systems and attitude control system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of the Skylab Orbital Workshop are discussed. The subjects considered are: (1) thrust attitude control system, (2) solar array system, (3) electrical power distribution system, (4) communication and data acquisition system, (5) illumination system, and (6) caution and warning system.

  10. Real time optimal guidance of low-thrust spacecraft: an application of nonlinear model predictive control.

    PubMed

    Arrieta-Camacho, Juan José; Biegler, Lorenz T

    2005-12-01

    Real time optimal guidance is considered for a class of low thrust spacecraft. In particular, nonlinear model predictive control (NMPC) is utilized for computing the optimal control actions required to transfer a spacecraft from a low Earth orbit to a mission orbit. The NMPC methodology presented is able to cope with unmodeled disturbances. The dynamics of the transfer are modeled using a set of modified equinoctial elements because they do not exhibit singularities for zero inclination and zero eccentricity. The idea behind NMPC is the repeated solution of optimal control problems; at each time step, a new control action is computed. The optimal control problem is solved using a direct method-fully discretizing the equations of motion. The large scale nonlinear program resulting from the discretization procedure is solved using IPOPT--a primal-dual interior point algorithm. Stability and robustness characteristics of the NMPC algorithm are reviewed. A numerical example is presented that encourages further development of the proposed methodology: the transfer from low-Earth orbit to a molniya orbit.

  11. Thrust augmentation options for the Beta 2 two-stage-to-orbit vehicle

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    1993-01-01

    NASA LeRC is continuing to study propulsion concepts for a horizontal takeoff and landing, fully reusable, two-stage-to-orbit vehicle. This will be capable of launching and returning a 10,000 pound payload to a 100 nautical mile polar orbit using low-risk technology. The vehicle, Beta 2, is a derivative of the USAF/Boeing Beta vehicle which was designed to deliver a 50,000 pound payload to a similar orbit. Beta 2 stages at Mach 6.5 and about 100,000 ft altitude. The propulsion system for the booster is an over/under turbine bypass engine/ramjet configuration. In this paper, several options for thrust augmentation were studied in order to improve the performance of this engine where there was a critical need. Options studies were turbine engine overspeed in the transonic region, water injection at a various turbine engine locations also during the transonic region, and water injection at the turbine engine face during high speed operation. The methodology, constraints, propulsion performance, and mission study results are presented.

  12. A New Maneuver for Escape Trajectories

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.

    2008-01-01

    This presentation put forth a new maneuver for escape trajectories and specifically sought to find an analytical approximation for medium thrust trajectories. In most low thrust derivations the idea is that escape velocity is best achieved by accelerating along the velocity vector. The reason for this is that change in specific orbital energy is a function of velocity and acceleration. However, Levin (1952) suggested that while this is a locally optimal solution it might not be a globally optimal one. Turning acceleration inward would drop periapse giving a higher velocity later in the trajectory. Acceleration at that point would be dotted against a higher magnitude V giving a greater rate of change of mechanical energy. The author then hypothesized that decelerating from the initial orbit and then accelerating at periapse would not lead to a gain in greater specific orbital energy--however, the hypothesis was incorrect. After considerable derivation it was determined that this new maneuver outperforms a direct burn when the overall DeltaV budget exceeds the initial orbital velocity (the author has termed this the Heinlein maneuver). The author provides a physical explanation for this maneuver and presents optimization analyses.

  13. The DTIC Review. Hybrid and Electronic Vehicles. Volume 4. Number 1, June 1998.

    DTIC Science & Technology

    1998-06-01

    ARGONNE NATIONAL LAB KIRTLAND AFB, NM IL (U) Constant-Thrust Orbit-Raising Transfer Charts. • (U) Dynamics and Controls in Maglev Systems DESCRIPTIVE...method to levitated ( MAGLEV ) ground transportation systems has generate minimum-fuel trajectories between coplanar important consequences for safety...satellite designers to control systems must be considered if MAGLEV systems assess preliminary fuel requirements for constant-thrust are to be economically

  14. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  15. In-Flight Operation of the Dawn Ion Propulsion System - The First Nine Months

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.; Mikes, Steven C.; Raymond, Marc D.

    2008-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) which will provide most of the delta-V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer to Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to Ceres science orbits. The Dawn ion engine design is based on the design validated on NASA's Deep Space 1 mission. However, because of the very substantial (11 km/s) delta-V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are also based on the DS1 design. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft prior to the initiation of long-term thrusting for the heliocentric transfer to Vesta. The IPS hardware, consisting of three ion thrusters and TGAs, two PPUs and DCIUs, xenon feed system, and spacecraft control software, was investigated extensively. Thrust measurements, roll torque measurements, pointing capabilities, control characteristics, and thermal behavior of the spacecraft and IPS were carefully evaluated. The Dawn IPS fully met all its initial checkout performance objectives. Deterministic thrusting for cruise began on December 17, 2007. Over the subsequent approximately 330 days the IPS will be operated virtually continuously at full power thrusting (approximately 91 mN) leading to a Mars flyby in February 2009. The encounter with Mars provides a gravity assist for a plane change and is the only source of post-launch delta-V apart from the IPS. Following the Mars gravity assist IPS will be operated for approximately one year at full power and for 1.3 years at throttled power levels leading to rendezvous with Vesta in August of 2011. Following nine months of orbital operations with IPS providing the propulsion needed for orbit capture, science orbit transfer and orbit maintenance and Vesta escape, Dawn will transit to Ceres with an expected arrival date of February 2015. As of June 16, 2008 the ion thrusters on Dawn have operated for close to 3,846 hours and have delivered nearly 1 km/s of delta-V to the spacecraft. Dawn IPS operation has been almost flawless during the initial checkout and six months of cruise. This paper provides an overview of Dawn's mission objectives, mission and system design, and the results of the post-launch Dawn IPS mission operations through June 2008

  16. Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method

    NASA Astrophysics Data System (ADS)

    Li, Jing

    2016-07-01

    This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.

  17. Development of an IVE/EVA Compatible Prototype Cold-Gas Cubesat Propulsion System at NASA/JSC

    NASA Technical Reports Server (NTRS)

    Radke, Christopher; Studak, Joseph

    2017-01-01

    Cold-gas propulsion systems are well suited for some applications because they are simple to design and build, have low operating costs, and are non-toxic. The inherent tradeoff, however, is their relatively low impulse density. Nevertheless, a modest propulsion system, sized for Cubesats and designed for affordability, presents an attractive system solution for some missions, such as an on-orbit inspection free-flyer. NASA has a long-standing effort to develop propulsion systems appropriate for very high delta-V cubesat missions, such as geo transfer orbits, and there are commercially available Cubesat propulsion systems with considerably more impulse capability, but, these are both prohibitively expensive for some development customers and face compatibility constraints for crewed applications, such as operation within ISS. A relatively conventional cold-gas system has been developed at NASA/JSC taking advantage of existing miniature industrial components, additive manufacturing techniques and in-house qualification of the system. The result is a nearly modular system with a 1U form factor. Compressed nitrogen is stored in a small high-pressure tank, then regulated and distributed to 12 thrusters. Maneuvering thrust can be adjusted, with a typical value of 40 mN, and the delta-V delivered to a 3U Cubesat would be approximately 7 m/s. These values correspond to the performance parameters for an inspection mission previously established at JSC for inspection of the orbiter prior to reentry. Environmental testing was performed to meet ISS launch and workmanship standards, along with the expected thermal environment for an inspection mission. Functionality has been demonstrated, and performance in both vacuum and relevant blow down scenarios was completed. Several avenues for further improvement are also explored. Details of the system, components, integration, tests, and test data are presented in this paper.

  18. Maintaining Aura's Orbit Requirements While Performing Orbit Maintenance Maneuvers Containing an Orbit Normal Delta-V Component

    NASA Technical Reports Server (NTRS)

    Johnson, Megan R.; Petersen, Jeremy D.

    2014-01-01

    The Earth Observing System (EOS) Afternoon Constellation consists of five member missions (GCOM-W1, Aqua, CALIPSO, CloudSat, and Aura), each of which maintain a frozen, sun-synchronous orbit with a 16-day repeating ground track that follows the Worldwide Reference System-2 (WRS-2). Under nominal science operations for Aura, the propulsion system is oriented such that the resultant thrust vector is aligned 13.493 degrees away from the velocity vector along the yaw axis. When performing orbit maintenance maneuvers, the spacecraft performs a yaw slew to align the thrust vector in the appropriate direction. A new Drag Make Up (DMU) maneuver operations scheme has been implemented for Aura alleviating the need for the 13.493 degree yaw slew. The focus of this investigation is to assess the impact that no-slew DMU maneuver operations will have on Aura's Mean Local Time (MLT) which drives the required along track separation between Aura and the constellation members, as well as Aura's frozen orbit properties, eccentricity and argument of perigee. Seven maneuver strategies were analyzed to determine the best operational approach. A mirror pole strategy, with maneuvers alternating at the North and South poles, was implemented operationally to minimize impact to the MLT. Additional analysis determined that the mirror pole strategy could be further modified to include frozen orbit maneuvers and thus maintain both MLT and the frozen orbit properties under noslew operations.

  19. The ISR Asymmetrical Capacitor Thruster: Experimental Results and Improved Designs

    NASA Technical Reports Server (NTRS)

    Canning, Francis X.; Cole, John; Campbell, Jonathan; Winet, Edwin

    2004-01-01

    A variety of Asymmetrical Capacitor Thrusters has been built and tested at the Institute for Scientific Research (ISR). The thrust produced for various voltages has been measured, along with the current flowing, both between the plates and to ground through the air (or other gas). VHF radiation due to Trichel pulses has been measured and correlated over short time scales to the current flowing through the capacitor. A series of designs were tested, which were increasingly efficient. Sharp features on the leading capacitor surface (e.g., a disk) were found to increase the thrust. Surprisingly, combining that with sharp wires on the trailing edge of the device produced the largest thrust. Tests were performed for both polarizations of the applied voltage, and for grounding one or the other capacitor plate. In general (but not always) it was found that the direction of the thrust depended on the asymmetry of the capacitor rather than on the polarization of the voltage. While no force was measured in a vacuum, some suggested design changes are given for operation in reduced pressures.

  20. Calculation of Turbine Axial Thrust by Coupled CFD Simulations of the Main Flow Path and Secondary Cavity Flow in an SLI LOX Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, D. J.; Marci, Bogdan; Tran, Ken; Sargent, Scott

    2003-01-01

    Each single reusable Space Launch Initiative (SLI) booster rocket is an engine operating at a record vacuum thrust level of over 730,000 Ibf using LOX and LH2. This thrust is more than 10% greater than that of the Delta IV rocket, resulting in relatively large LOX and LH2 turbopumps. Since the SLI rocket employs a staged combustion cycle the level of pressure is very high (thousands of psia). This high pressure creates many engineering challenges, including the balancing of axial-forces on the turbopumps. One of the main parameters in the calculation of the axial force is the cavity pressure upstream of the turbine disk. The flow in this cavity is very complex. The lack of understanding of this flow environment hinders the accurate prediction of axial thrust. In order to narrow down the uncertainty band around the actual turbine axial force, a coupled, unsteady computational methodology has been developed to simulate the interaction between the turbine main flow path and the cavity flow. The CORSAIR solver, an unsteady three- dimensional Navier-Stokes code for turbomachinery applications, was used to solve for both the main and the secondary flow fields. Turbine axial thrust values are presented in conjunction with the CFD simulation, together with several considerations regarding the turbine instrumentation for axial thrust estimations during test.

  1. Shuttle Discovery Landing at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Dryden Flight Research Center pilot Tom McMurtry lands NASA's Shuttle Carrier Aircraft with Space Shuttle Discovery attached at Rockwell Aerospace's Palmdale, California, facility about 1:00 p.m. Pacific Daylight Time (PDT). There for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  2. Shuttle Discovery Being Unloaded from SCA-747 at Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Space Shuttle Discovery being unloaded from NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance. Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  3. Shuttle in Mate-Demate Device being Loaded onto SCA-747

    NASA Technical Reports Server (NTRS)

    1991-01-01

    At NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Florida, following its STS-44 flight 24 November - 1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  4. STS-35 Leaves Dryden on 747 Shuttle Carrier Aircraft (SCA) Bound for Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The first rays of the morning sun light up the side of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) as it departs for the Kennedy Space Center, Florida, with the orbiter from STS-35 attached to its back. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  5. 2016 Summer Series - Jin-Woo Han: Vacuum Electronics in a Nanometer Era

    NASA Image and Video Library

    2016-06-07

    Modern space vehicles rely on transistors. Radiation tolerance of space electronics is critical for space exploration beyond low Earth orbit. NASA Ames Research Center is investigating ways to overcome this issue using vacuums. Dr. Jin-Woo Han's lecture will present advancements in the use of vacuums to improve radiation immunity in space circuitry.

  6. Performance of an 8 kW Hall Thruster

    DTIC Science & Technology

    2000-01-12

    For the purpose of either orbit raising and/or repositioning the Hall thruster must be capable of delivering sufficient thrust to minimize transfer...time. This coupled with the increasing on-board electric power capacity of military and commercial satellites, requires a high power Hall thruster that...development of a novel, high power Hall thruster , capable of efficient operation over a broad range of Isp and thrust. We call such a thruster the bi

  7. Orbital Transfer Rocket Engine Technology. Advanced Engine Study, Task D.6 Final Report

    DTIC Science & Technology

    1992-06-01

    PROPERTIES _- -,mr m" , MANUAL a PAQ *E,- 7.3.2.1.2. IA .A.2 ,C -- 70-t’ i Rl I _ N -’.±v-j-. .......-441I 0.2% YS Design Allowable • -’Moo 0 2W0" 6W...Storage External Radiation Environment ( Buried Engine) The engine thrust chamber would be cold to the touch even at full thrust operation from the

  8. Lightweight Vacuum Jacket for Cryogenic Insulation. Volume 1

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility of producing a lightweight vacuum jacket using state-of-the-art technology and materials was examined. Design and analytical studies were made on a full-scale, orbital maneuvering system fuel tank. Preliminary design details were made for the tank assembly, including an optimized vacuum jacket and multilayer insulation system. A half-scale LH2 test model was designed and fabricated, and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of .000001 atmosphere ml of helium per second was measured, approximately 1500 hours of vacuum pressure were sustained, and 29 vacuum-pressure cycles were experienced prior to failure.

  9. Lightweight Vacuum Jacket for Cryogenic Insulation - Appendices to Final Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility is demonstrated of producing a lightweight vacuum jacket using state-of-the-art technology and materials. Design and analytical studies were made on an orbital maneuvering system fuel tank. Preliminary design details were completed for the tank assembly which included an optimized vacuum jacket and multilayered insulation system. A half-scale LH2 test model was designed and fabricated and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of 0.00001 was measured, approximately 1500 hours of vacuum pressure was sustained, and 29 vacuum pressure cycles were experienced prior to failure. For vol. 1, see N75-26192.

  10. From Paper to Production to Test: An Update on NASA's J-2X Engine for Exploration

    NASA Technical Reports Server (NTRS)

    Kynard, Michael

    2011-01-01

    The NASA/industry team responsible for developing the J-2X upper stage engine for the Space Launch System (SLS) Program has made significant progress toward moving beyond the design phase and into production, assembly, and test of development hardware. The J-2X engine exemplifies the SLS Program goal of using proven technology and experience from more than 50 years of United States spaceflight experience combined with modern manufacturing processes and approaches. It will power the second stage of the fully evolved SLS Program launch vehicle that will enable a return to human exploration of space beyond low earth orbit. Pratt & Whitney Rocketdyne (PWR) is under contract to develop and produce the engine, leveraging its flight-proven LH2/LOX, gas generator cycle J-2 and RS-68 engine capabilities, recent experience with the X-33 aerospike XRS-2200 engine, and development knowledge of the J-2S tap-off cycle engine. The J- 2X employs a gas generator operating cycle designed to produce 294,000 pounds of vacuum thrust in primary operating mode with its full nozzle extension. With a truncated nozzle extension suitable to support engine clustering on the stage, the nominal vacuum thrust level in primary mode is 285,000 pounds. It also has a secondary mode, during which it operates at 80 percent thrust by altering its mixture ratio. The J-2X development philosophy is based on proven hardware, an aggressive development schedule, and early risk reduction. NASA Marshall Space Flight Center (MSFC) and PWR began development of the J-2X in June 2006. The government/industry team of more than 600 people within NASA and PWR successfully completed the Critical Design Review (CDR) in November 2008, following extensive risk mitigation testing. Assembly of the first development engine was completed in May 2011 and the first engine test was conducted at the NASA Stennis Space Center (SSC), test stand A2, on 14 July 2011. Testing of the first development engine will continue through the autumn of 2011, be paused for test stand modifications to the passive diffuser, and then restart in the spring of 2012. This testing will be followed by specialized powerpack testing intended to examine the design and operating margins of the engine turbomachinery. The development plan beyond this point leads through more system-level, engine testing of several samples, analytical model validation activities, functional and performance verification, and then ultimate certification to support human spaceflight. This paper will discuss the J-2X development background, provide top-level information on design and development planning, and will explore some of the development challenges and mitigation activities pursued to date.

  11. Microgravity

    NASA Image and Video Library

    2004-04-15

    The Wake Shield Facility is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers. The WSF Free-Flyer is a 12-foot-diameter stainless steel disk that, while traveling in orbit at approximately 18,000 mph, leaves in its wake a vacuum 1,000 to 10,000 times better than the best vacuums currently achieved on Earth. While it is carried into orbit by the Space Shuttle, the WSF is a fully equipped spacecraft in its own right, with cold gas propulsion for separation from the orbiter and a momentum bias attitude control system. All WSF functions are undertaken by a spacecraft computer with the WSF remotely controlled from the ground. The ultra vacuum, nearly empty of all molecules, is then used to conduct a series of thin film growths by a process called epitaxy which produces exceptionally pure and atomically ordered thin films of semiconductor compounds such as gallium arsenide. Using this process, the WSF offers the potential of producing thin film materials, and the devices they will make possible.

  12. An adaptive guidance algorithm for an aerodynamically assisted orbital plane change maneuver. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Blissit, J. A.

    1986-01-01

    Using analysis results from the post trajectory optimization program, an adaptive guidance algorithm is developed to compensate for density, aerodynamic and thrust perturbations during an atmospheric orbital plane change maneuver. The maneuver offers increased mission flexibility along with potential fuel savings for future reentry vehicles. Although designed to guide a proposed NASA Entry Research Vehicle, the algorithm is sufficiently generic for a range of future entry vehicles. The plane change analysis provides insight suggesting a straight-forward algorithm based on an optimized nominal command profile. Bank angle, angle of attack, and engine thrust level, ignition and cutoff times are modulated to adjust the vehicle's trajectory to achieve the desired end-conditions. A performance evaluation of the scheme demonstrates a capability to guide to within 0.05 degrees of the desired plane change and five nautical miles of the desired apogee altitude while maintaining heating constraints. The algorithm is tested under off-nominal conditions of + or -30% density biases, two density profile models, + or -15% aerodynamic uncertainty, and a 33% thrust loss and for various combinations of these conditions.

  13. Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jennette

    2016-01-01

    Enable future missions Any mission to a DRO or halo orbit could benefit from the capability to transfer between these orbits Chemical propulsion could be used for these transfers, but at high propellant cost Fill gaps in knowledge A variety of transfers using SEP or solar sails have been studied for the Earth-Moon system Most results in literature study a single transfer This is a step toward understanding the wide array of types of transfers available in an N-body force model.

  14. Research Technology

    NASA Image and Video Library

    2002-03-11

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  15. Reaction Control Engine for Space Launch Initiative

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  16. Lessons for Interstellar Travel from the G&C Design of the NEA Scout Solar Sail Mission

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew; Diedrich, Benjamin

    2017-01-01

    NASA is developing the Near Earth Asteroid (NEA) Scout mission that will use a solar sail to travel to an asteroid where it will perform a slow flyby to acquire science imagery. A guidance and control system was developed to meet the science and trajectory requirements. The NEA Scout design process can be applied to an interstellar or precursor mission that uses a beam-propelled sail. The scientific objectives are met by accurately targeting the destination trajectory position and velocity. The destination is targeted by understanding the force on the sail from the beam (or sunlight in the case of NEA Scout) over the duration of the thrust maneuver. The propulsive maneuver is maintained by accurate understanding of the torque on the sail, which is a function of sail shape, optical properties, and mass properties, all of which apply to NEA Scout and beam propelled sails. NEA Scout uses active control of the sail attitude while trimming the solar torque, which could be used on a beamed propulsion sail if necessary. The biggest difference is that NEA Scout can correct for uncertainties in sail thrust modeling, spacecraft orbit, and target orbit throughout the flight to the target, while beamed propulsion needs accurate operation for the short duration of the beamed propulsion maneuver, making accurate understanding of the sail thrust and orbits much more critical.

  17. Lessons for Interstellar Travel from the Guidance and Control Design of the Near Earth Asteroid Scout Solar Sail Mission

    NASA Technical Reports Server (NTRS)

    Diedrich, Benjamin; Heaton, Andrew

    2017-01-01

    NASA is developing the Near Earth Asteroid (NEA) Scout mission that will use a solar sail to travel to an asteroid where it will perform a slow flyby to acquire science imagery. A guidance and control system was developed to meet the science and trajectory requirements. The NEA Scout design process can be applied to an interstellar or precursor mission that uses a beam propelled sail. The scientific objectives are met by accurately targeting the destination trajectory position and velocity. The destination is targeted by understanding the force on the sail from the beam (or sunlight in the case of NEA Scout) over the duration of the thrust maneuver. The propulsive maneuver is maintained by accurate understanding of the torque on the sail, which is a function of sail shape, optical properties, and mass properties, all of which apply to NEA Scout and beam propelled sails. NEA Scout uses active control of the sail attitude while trimming the solar torque, which could be used on a beamed propulsion sail if necessary. The biggest difference is that NEA Scout can correct for uncertainties in sail thrust modeling, spacecraft orbit, and target orbit throughout the flight to the target, while beamed propulsion needs accurate operation for the short duration of the beamed propulsion maneuver, making accurate understanding of the sail thrust and orbits much more critical.

  18. Non-Toxic Dual Thrust Reaction Control Engine Development for On-Orbit APS Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.

    2003-01-01

    A non-toxic dual thrust proof-of-concept demonstration engine was successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the Next Generation Launch Technology (NGLT) program. The demonstration engine utilized the existing Kistler K-1 870 lbf LOX/Ethanol orbital maneuvering engine ( O m ) coupled with some special test equipment (STE) that enabled engine operation at 870 lbf in the primary mode and 25 lbf in the vernier mode. Ambient testing in primary mode varied mixture ratio (MR) from 1.28 to 1.71 and chamber pressure (P(c) from 110 to 181 psia, and evaluated electrical pulse widths (EPW) of 0.080, 0.100 and 0.250 seconds. Altitude testing in vernier mode explored igniter and thruster pulsing characteristics, long duration steady state operation (greater than 420 sec) and the impact of varying the percent fuel film cooling on vernier performance and chamber thermal response at low PC (4 psia). Data produced from the testing provided calibration of the performance and thermal models used in the design of the next version of the dual thrust Reaction Control Engine (RCE).

  19. Solar rocket system concept analysis

    NASA Technical Reports Server (NTRS)

    Boddy, J. A.

    1980-01-01

    The use of solar energy to heat propellant for application to Earth orbital/planetary propulsion systems is of interest because of its performance capabilities. The achievable specific impulse values are approximately double those delivered by a chemical rocket system, and the thrust is at least an order of magnitude greater than that produced by a mercury bombardment ion propulsion thruster. The primary advantage the solar heater thruster has over a mercury ion bombardment system is that its significantly higher thrust permits a marked reduction in mission trip time. The development of the space transportation system, offers the opportunity to utilize the full performance potential of the solar rocket. The requirements for transfer from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) was examined as the return trip, GEO to LEO, both with and without payload. Payload weights considered ranged from 2000 to 100,000 pounds. The performance of the solar rocket was compared with that provided by LO2-LH2, N2O4-MMH, and mercury ion bombardment systems.

  20. Guidance, navigation, and control study for a solar electric propulsion spacecraft

    NASA Technical Reports Server (NTRS)

    Kluever, Craig A.

    1995-01-01

    A preliminary investigation of a lunar-comet rendezvous mission using a solar electric propulsion (SEP) spacecraft was performed in two phases.The first phase involved exploration of the moon and the second involved rendezvous with a comet. The initial phase began with a chemical propulsion translunar injection and chemical insertion into a lunar orbit, followed by a low thrust SEP transfer to a circular, polar, low-lunar orbit. After collecting scientific data at the moon, the SEP spacecraft performed a spiral lunar escape maneuver to begin the interplanetary leg of the mission. After escape from the Earth-moon system, the SEP spacecraft maneuvered in interplanetary space and performed a rendezvous with a comet.The immediate goal of this study was to demonstrate the feasibility of using a low-thrust SEP spacecraft for orbit transfer to both the moon and a comet. Another primary goal was to develop a computer optimization code which would be robust enough to obtain minimum-fuel rendezvous trajectories for a wide range of comets.

  1. Mariner 9 propulsion subsystem performance during interplanetary cruise and Mars orbit insertion

    NASA Technical Reports Server (NTRS)

    Cork, M. J.; French, R. L.; Leising, C. J.; Schmit, D. D.

    1972-01-01

    On 14 November 1971 the Mariner 9 1334-N-(300-lbf)-thrust rocket engine was fired for just over 15 min to place the first man-made satellite into orbit about Mars. Propulsion subsystem data gathered during the 5-month interplanetary cruise and orbit insertion are of significance to future missions of this type. Specific results related to performance predictability, zero g heat transfer, and nitrogen permeation, diffusion, and solubility values are presented.

  2. Casimir energy in Kerr space-time

    NASA Astrophysics Data System (ADS)

    Sorge, F.

    2014-10-01

    We investigate the vacuum energy of a scalar massless field confined in a Casimir cavity moving in a circular equatorial orbit in the exact Kerr space-time geometry. We find that both the orbital motion of the cavity and the underlying space-time geometry conspire in lowering the absolute value of the (renormalized) Casimir energy ⟨ɛvac⟩ren , as measured by a comoving observer, with respect to whom the cavity is at rest. This, in turn, causes a weakening in the attractive force between the Casimir plates. In particular, we show that the vacuum energy density ⟨ɛvac⟩ren→0 when the orbital path of the Casimir cavity comes close to the corotating or counter-rotating circular null orbits (possibly geodesic) allowed by the Kerr geometry. Such an effect could be of some astrophysical interest on relevant orbits, such as the Kerr innermost stable circular orbits, being potentially related to particle confinement (as in some interquark models). The present work generalizes previous results obtained by several authors in the weak field approximation.

  3. STS-68 747 SCA Ferry Flight Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Columbia, atop NASA's 747 Shuttle Carrier Aircraft (SCA), taking off for the Kennedy Space Center shortly after its landing on 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  4. Shuttle Columbia Post-landing Tow - with Reflection in Water

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. MartinMarietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  5. Theory and Computation of Optimal Low- and Medium- Thrust Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Goodson, Troy D.; Chuang, Jason C. H.; Ledsinger, Laura A.

    1996-01-01

    This report presents new theoretical results which lead to new algorithms for the computation of fuel-optimal multiple-burn orbit transfers of low and medium thrust. Theoretical results introduced herein show how to add burns to an optimal trajectory and show that the traditional set of necessary conditions may be replaced with a much simpler set of equations. Numerical results are presented to demonstrate the utility of the theoretical results and the new algorithms. Two indirect methods from the literature are shown to be effective for the optimal orbit transfer problem with relatively small numbers of burns. These methods are the Minimizing Boundary Condition Method (MBCM) and BOUNDSCO. Both of these methods make use of the first-order necessary conditions exactly as derived by optimal control theory. Perturbations due to Earth's oblateness and atmospheric drag are considered. These perturbations are of greatest interest for transfers that take place between low Earth orbit altitudes and geosynchronous orbit altitudes. Example extremal solutions including these effects and computed by the aforementioned methods are presented. An investigation is also made into a suboptimal multiple-burn guidance scheme. The FORTRAN code developed for this study has been collected together in a package named ORBPACK. ORBPACK's user manual is provided as an appendix to this report.

  6. Launch Condition Deviations of Reusable Launch Vehicle Simulations in Exo-Atmospheric Zoom Climbs

    NASA Technical Reports Server (NTRS)

    Urschel, Peter H.; Cox, Timothy H.

    2003-01-01

    The Defense Advanced Research Projects Agency has proposed a two-stage system to deliver a small payload to orbit. The proposal calls for an airplane to perform an exo-atmospheric zoom climb maneuver, from which a second-stage rocket is launched carrying the payload into orbit. The NASA Dryden Flight Research Center has conducted an in-house generic simulation study to determine how accurately a human-piloted airplane can deliver a second-stage rocket to a desired exo-atmospheric launch condition. A high-performance, fighter-type, fixed-base, real-time, pilot-in-the-loop airplane simulation has been modified to perform exo-atmospheric zoom climb maneuvers. Four research pilots tracked a reference trajectory in the presence of winds, initial offsets, and degraded engine thrust to a second-stage launch condition. These launch conditions have been compared to the reference launch condition to characterize the expected deviation. At each launch condition, a speed change was applied to the second-stage rocket to insert the payload onto a transfer orbit to the desired operational orbit. The most sensitive of the test cases was the degraded thrust case, yielding second-stage launch energies that were too low to achieve the radius of the desired operational orbit. The handling qualities of the airplane, as a first-stage vehicle, have also been investigated.

  7. Capture of near-Earth objects with low-thrust propulsion and invariant manifolds

    NASA Astrophysics Data System (ADS)

    Tang, Gao; Jiang, Fanghua

    2016-01-01

    In this paper, a mission incorporating low-thrust propulsion and invariant manifolds to capture near-Earth objects (NEOs) is investigated. The initial condition has the spacecraft rendezvousing with the NEO. The mission terminates once it is inserted into a libration point orbit (LPO). The spacecraft takes advantage of stable invariant manifolds for low-energy ballistic capture. Low-thrust propulsion is employed to retrieve the joint spacecraft-asteroid system. Global optimization methods are proposed for the preliminary design. Local direct and indirect methods are applied to optimize the two-impulse transfers. Indirect methods are implemented to optimize the low-thrust trajectory and estimate the largest retrievable mass. To overcome the difficulty that arises from bang-bang control, a homotopic approach is applied to find an approximate solution. By detecting the switching moments of the bang-bang control the efficiency and accuracy of numerical integration are guaranteed. By using the homotopic approach as the initial guess the shooting function is easy to solve. The relationship between the maximum thrust and the retrieval mass is investigated. We find that both numerically and theoretically a larger thrust is preferred.

  8. Saturn Apollo Program

    NASA Image and Video Library

    1963-01-01

    Smokeless flame juts from the diffuser of a unique vacuum chamber in which the upper stage rocket engine, the hydrogen fueled J-2, was tested at a simulated space altitude in excess of 60,000 feet. The smoke you see is actually steam. In operation, vacuum is established by injecting steam into the chamber and is maintained by the thrust of the engine firing through the diffuser. The engine was tested in this environment for start, stop, coast, restart, and full-duration operations. The chamber was located at Rocketdyne's Propulsion Field Laboratory, in the Santa Susana Mountains, near Canoga Park, California. The J-2 engine was developed by Rocketdyne for the Marshall Space Flight Center.

  9. Trim drag reduction concepts for horizontal takeoff single-stage-to-Orbit vehicles

    NASA Technical Reports Server (NTRS)

    Shaughnessy, John D.; Gregory, Irene M.

    1991-01-01

    The results of a study to investigate concepts for minimizing trim drag of horizontal takeoff single-stage-to-orbit (SSTO) vehicles are presented. A generic hypersonic airbreathing conical configuration was used as the subject aircraft. The investigation indicates that extreme forward migration of the aerodynamic center as the vehicle accelerates to orbital velocities causes severe aerodynamic instability and trim moments that must be counteracted. Adequate stability can be provided by active control of elevons and rudder, but use of elevons to produce trim moments results in excessive trim drag and fuel consumption. To alleviate this problem, two solution concepts are examined. Active control of the center of gravity (COG) location to track the aerodynamic center decreases trim moment requirements, reduces elevon deflections, and leads to significant fuel savings. Active control of the direction of the thrust vector produces required trim moments, reduces elevon deflections, and also results in significant fuel savings. It is concluded that the combination of active flight control to provide stabilization, (COG) position control to minimize trim moment requirements, and thrust vectoring to generate required trim moments has the potential to significantly reduce fuel consumption during ascent to orbit of horizontal takeoff SSTO vehicles.

  10. Tethers

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew Hall; Carroll, Joseph A.

    1992-01-01

    A tether of sufficient strength, capable of being lengthened or shortened and having appropriate apparatuses for capturing and releasing bodies at its ends, may be useful in propulsion applications. For example, a tether could allow rendezvous between spacecraft in substantially different orbits without using propellant. A tether could also allow co-orbiting spacecraft to exchange momentum and separate. Thus, a reentering spacecraft (such as the Shuttle) could give its momentum to one remaining on orbit (such as the space station). Similarly, a tether facility could gain momentum from a high I(sub sp)/low thrust mechanism (which could be an electrodynamics tether) and transfer than momentum by means of a tether to payloads headed for many different orbits. Such a facility would, in effect, combine high I(sub sp) with high thrust, although only briefly. An electrodynamic tether could propel a satellite from its launch inclination to a higher or lower inclination. Tethers could also allow samples to be taken from bodies such as the Moon. Three types of tether operations are illustrated. The following topics are discussed: (1) tether characteristics; (2) tether propulsion methods--basics, via momentum transfer, and electrodynamic tether propulsion; and (3) their use in planetary exploration.

  11. GNSS satellite transmit power and its impact on orbit determination

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Thoelert, Steffen; Montenbruck, Oliver

    2018-06-01

    Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50-240 W were obtained, 20-135 W for GLONASS, 95-265 W for Galileo, and 130-185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1-27 mm depending on the transmit power, the satellite mass, and the orbital period.

  12. Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)

    NASA Technical Reports Server (NTRS)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.

  13. Novel load responsive multilayer insulation with high in-atmosphere and on-orbit thermal performance

    NASA Astrophysics Data System (ADS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2012-04-01

    Aerospace cryogenic systems require lightweight, high performance thermal insulation to preserve cryopropellants both pre-launch and on-orbit. Current technologies have difficulty meeting all requirements, and advances in insulation would benefit cryogenic upper stage launch vehicles, LH2 fueled aircraft and ground vehicles, and provide capabilities for sub-cooled cryogens for space-borne instruments and orbital fuel depots. This paper reports the further development of load responsive multilayer insulation (LRMLI) that has a lightweight integrated vacuum shell and provides high thermal performance both in-air and on-orbit. LRMLI is being developed by Quest Product Development and Ball Aerospace under NASA contract, with prototypes designed, built, installed and successfully tested. A 3-layer LRMLI blanket (0.63 cm thick, 77 K cold, 295 K hot) had a measured heat leak of 6.6 W/m2 in vacuum and 40.6 W/m2 in air at one atmosphere. In-air LRMLI has an 18× advantage over Spray On Foam Insulation (SOFI) in heat leak per thickness and a 16× advantage over aerogel. On-orbit LRMLI has a 78× lower heat leak than SOFI per thickness and 6× lower heat leak than aerogel. The Phase II development of LRMLI is reported with a modular, flexible, thin vacuum shell and improved on-orbit performance. Structural and thermal analysis and testing results are presented. LRMLI mass and thermal performance is compared to SOFI, aerogel and MLI over SOFI.

  14. RCS jet-flow field interaction effects on the aerodynamics of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Rausch, J. R.; Roberge, A. M.

    1973-01-01

    A study was conducted to determine the external effects caused by operation of the reaction control system during entry of the space shuttle orbiter. The effects of jet plume-external flow interactions were emphasized. Force data were obtained for the basic airframe characteristics plus induced effects when the reaction control system is operating. Resulting control amplification and/or coupling were derived and their effects on the aerodynamic stability and control of the orbiter and the reaction control system thrust were determined.

  15. Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2006-01-01

    Mystic software is designed to compute, analyze, and visualize optimal high-fidelity, low-thrust trajectories, The software can be used to analyze inter-planetary, planetocentric, and combination trajectories, Mystic also provides utilities to assist in the operation and navigation of low-thrust spacecraft. Mystic will be used to design and navigate the NASA's Dawn Discovery mission to orbit the two largest asteroids, The underlying optimization algorithm used in the Mystic software is called Static/Dynamic Optimal Control (SDC). SDC is a nonlinear optimal control method designed to optimize both 'static variables' (parameters) and dynamic variables (functions of time) simultaneously. SDC is a general nonlinear optimal control algorithm based on Bellman's principal.

  16. PEG Enhancement for EM1 and EM2+ Missions

    NASA Technical Reports Server (NTRS)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The next evolution of SLS, the Block-1B Exploration Mission 2 (EM-2), is currently being designed. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm. Due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS), certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions. In order to accommodate mission design for EM-2 and beyond, PEG has been significantly improved since its use on the Space Shuttle program. The current version of PEG has the ability to switch to different targets during Core Stage (CS) or EUS flight, and can automatically reconfigure for a single Engine Out (EO) scenario, loss of communication with the Launch Abort System (LAS), and Inertial Navigation System (INS) failure. The Thrust Factor (TF) algorithm uses measured state information in addition to a priori parameters, providing PEG with an improved estimate of propulsion information. This provides robustness against unknown or undetected engine failures. A loft parameter input allows LAS jettison while maximizing payload mass. The current PEG algorithm is now able to handle various classes of missions with burn arcs much longer than were seen in the shuttle program. These missions include targeting a circular LEO orbit with a low-thrust, long-burn-duration upper stage, targeting a highly eccentric Trans-Lunar Injection (TLI) orbit, targeting a disposal orbit using the low-thrust Reaction Control System (RCS), and targeting a hyperbolic orbit. This paper will describe the design and implementation of the TF algorithm, the strategy to handle EO in various flight regimes, algorithms to cover off-nominal conditions, and other enhancements to the Block-1 PEG algorithm. This paper illustrates challenges posed by the Block-1B vehicle, and results show that the improved PEG algorithm is capable for use on the SLS Block 1-B vehicle as part of the Guidance, Navigation, and Control System.

  17. Strategies for the sustained human exploration of Mars

    NASA Astrophysics Data System (ADS)

    Landau, Damon Frederick

    A variety of mission scenarios are compared in this thesis to assess the strengths and weaknesses of options for Mars exploration. The mission design space is modeled along two dimensions: trajectory architectures and propulsion system technologies. Direct, semi-direct, stop-over, semi-cycler, and cycler architectures are examined, and electric propulsion, nuclear thermal rockets, methane and oxygen production on Mars, Mars water excavation, aerocapture, and reusable propulsion systems are included in the technology assessment. The mission sensitivity to crew size, vehicle masses, and crew travel time is also examined. The primary figure of merit for a mission scenario is the injected mass to low-Earth orbit (IMLEO), though technology readiness levels (TRL) are also included. Several elements in the architecture dimension are explored in more detail. The Earth-Mars semi-cycler architecture is introduced and five families of Earth-Mars semi-cycler trajectories are presented along with optimized itineraries. Optimized cycler trajectories are also presented. In addition to Earth-Mars semi-cycler and cycler trajectories, conjunction-class, free-return, Mars-Earth semi-cycler, and low-thrust trajectories are calculated. Design parameters for optimal DeltaV trajectories are provided over a range of flight times (from 120 to 270 days) and launch years (between 2009 and 2022). Unlike impulsive transfers, the mass-optimal low-thrust trajectory depends strongly on the thrust and specific impulse of the propulsion system. A low-thrust version of the rocket equation is provided where the initial mass or thrust may be minimized by varying the initial acceleration and specific impulse. Planet-centered operations are also examined. A method to rotate a parking orbit about the line of apsides to achieve the proper orientation at departure is discussed, thus coupling the effects of parking-orbit orientation with the interplanetary trajectories. Also, a guidance algorithm for rendezvous during flybys in semi-cycler and cycler missions is presented with a control law for final approach. A forty-year plan to establish a permanent base on Mars is detailed and methods to expand the base are discussed. Once a large base is established, one-, two-, or three-vehicle systems may sustain the colonization of Mars.

  18. Design of human missions to Mars and robotic missions to Jupiter

    NASA Astrophysics Data System (ADS)

    Okutsu, Masataka

    We consider human missions to Mars and robotic missions to Jupiter for launch dates in the near- and far-future. For the near-future, we design trajectories for currently proposed space missions that have well-defined spacecraft and mission requirements. For example, for early human missions to Mars we assume that the constraints used in NASA's design reference missions are indicative of current and near-future technologies, which of course limit our capabilities to explore Mars--and these limits make the problem challenging. Similarly, in the case of robotic exploration of Jupiter, we consider that the technology levels assumed for the proposed Europa Orbiter mission represent reasonable limits. For the far-future (two to three decades from now), we take the best estimates from current literature about the capabilities that may be available in nuclear-powered electric propulsion. We consider hardware capabilities (in terms of specific mass, specific impulse, thrust, power, etc.) for low-thrust trajectories, which range froth near-term to far-future technologies. In designing such missions, several techniques are found useful. For example, the Tisserand Graph, which tracks the changes in orbital shapes and energies, provides insight in designing Jovian tours for the Europa Orbiter mission. The graph is also useful in analyzing abort trajectories for human missions to Mars. Furthermore, a patched-conic propagator, which can generate thousands of potential trajectories, plays a vital role in three of four chapters of this thesis. For launches in the next three decades, we discovered a class of Earth- Mars-Venus-Earth free returns (which appear only four times in the 100-year period), Jovian tours involving ten to twenty flybys of the Galilean satellites, and low-thrust trajectories to Jupiter via gravity assists from Venus, Earth, and Mars. In addition, our continuation method, in which a solution for a conic trajectory is gradually converted into that for a low- thrust trajectory, is found effective in design of some families of low-thrust trajectories. The method is applied, for example, in the design of a "one- vehicle cycler," an architecture requiring only one interplanetary vehicle for sustained human missions to Mars.

  19. Orbit transfer rocket engine technology program: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.

    1992-01-01

    In Task D.6 of the Advanced Engine Study, three primary subtasks were accomplished: (1) design of parametric data; (2) engine requirement variation studies; and (3) vehicle study/engine study coordination. Parametric data were generated for vacuum thrusts ranging from 7500 lbf to 50,000 lbf, nozzle expansion ratios from 600 to 1200, and engine mixture ratios from 5:1 to 7:1. Failure Modes and Effects Analysis (FMEA) was used as a departure point for these parametric analyses. These data are intended to assist in definition and trade studies. In the Engine Requirements Variation Studies, the individual effects of increasing the throttling ratio from 10:1 to 20:1 and requiring the engine to operate at a maximum mixture ratio of 12:1 were determined. Off design engine balances were generated at these extreme conditions and individual component operating requirements analyzed in detail. Potential problems were identified and possible solutions generated. In the Vehicle Study/Engine Study coordination subtask, vehicle contractor support was provided as needed, addressing a variety of issues uncovered during vehicle trade studies. This support was primarily provided during Technical Interchange Meetings (TIM) in which Space Exploration Initiative (SEI) studies were addressed.

  20. Shuttle Endeavour Mated to 747 SCA Taxi to Runway for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, taxies to the runway to begin the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  1. Shuttle Endeavour Mated to 747 SCA Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, begins the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  2. Shuttle Discovery Mated to 747 SCA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Discovery rides atop '905,' NASA's 747 Shuttle Carrier Aircraft, on its delivery flight from California to the Kennedy Space Center, Florida, where it was prepared for its first orbital mission for 30 August to 5 September 1984. The NASA 747, obtained in 1974, has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. A second modified 747, no. 911, went in to service in November 1990 and is also used to ferry orbiters to destinations where ground transportation is not practical. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  3. Comparative Emissions of Random Orbital Sanding between Conventional and Self-Generated Vacuum Systems

    PubMed Central

    Liverseed, David R.

    2013-01-01

    Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects. PMID:23065674

  4. Comparative emissions of random orbital sanding between conventional and self-generated vacuum systems.

    PubMed

    Liverseed, David R; Logan, Perry W; Johnson, Carl E; Morey, Sandy Z; Raynor, Peter C

    2013-03-01

    Conventional abrasive sanding generates high concentrations of particles. Depending on the substrate being abraded and exposure duration, overexposure to the particles can cause negative health effects ranging from respiratory irritation to cancer. The goal of this study was to understand the differences in particle emissions between a conventional random orbital sanding system and a self-generated vacuum random orbital sanding system with attached particle filtration bag. Particle concentrations were sampled for each system in a controlled test chamber for oak wood, chromate painted (hexavalent chromium) steel panels, and gel-coated (titanium dioxide) fiberglass panels using a Gesamtstaub-Probenahmesystem (GSP) sampler at three different locations adjacent to the sanding. Elevated concentrations were reported for all particles in the samples collected during conventional sanding. The geometric mean concentration ratios for the three substrates ranged from 320 to 4640 times greater for the conventional sanding system than the self-generated vacuum sanding system. The differences in the particle concentration generated by the two sanding systems were statistically significant with the two sample t-test (P < 0.0001) for all three substances. The data suggest that workers using conventional sanding systems could utilize the self-generated vacuum sanding system technology to potentially reduce exposure to particles and mitigate negative health effects.

  5. Status of Low Thrust Work at JSC

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.

    2004-01-01

    High performance low thrust (solar electric, nuclear electric, variable specific impulse magnetoplasma rocket) propulsion offers a significant benefit to NASA missions beyond low Earth orbit. As NASA (e.g., Prometheus Project) endeavors to develop these propulsion systems and associated power supplies, it becomes necessary to develop a refined trajectory design capability that will allow engineers to develop future robotic and human mission designs that take advantage of this new technology. This ongoing work addresses development of a trajectory design and optimization tool for assessing low thrust (and other types) trajectories. This work targets to advance the state of the art, enable future NASA missions, enable science drivers, and enhance education. This presentation provides a summary of the low thrust-related JSC activities under the ISP program and specifically, provides a look at a new release of a multi-gravity, multispacecraft trajectory optimization tool (Copernicus) along with analysis performed using this tool over the past year.

  6. 1000 Hours of Testing Completed on 10-kW Hall Thruster

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2001-01-01

    Between the months of April and August 2000, a 10-kW Hall effect thruster, designated T- 220, was subjected to a 1000-hr life test evaluation. Hall effect thrusters are propulsion devices that electrostatically accelerate xenon ions to produce thrust. Hall effect propulsion has been in development for many years, and low-power devices (1.35 kW) have been used in space for satellite orbit maintenance. The T-220, shown in the photo, produces sufficient thrust to enable efficient orbital transfers, saving hundreds of kilograms in propellant over conventional chemical propulsion systems. This test is the longest operation ever achieved on a high-power Hall thruster (greater than 4.5 kW) and is a key milestone leading to the use of this technology for future NASA, commercial, and military missions.

  7. Synergistic approach of asteroid exploitation and planetary protection

    NASA Astrophysics Data System (ADS)

    Sanchez, J. P.; McInnes, C. R.

    2012-02-01

    The asteroid and cometary impact hazard has long been recognised as an important issue requiring risk assessment and contingency planning. At the same time asteroids have also been acknowledged as possible sources of raw materials for future large-scale space engineering ventures. This paper explores possible synergies between these two apparently opposed views; planetary protection and space resource exploitation. In particular, the paper assumes a 5 tonne low-thrust spacecraft as a baseline for asteroid deflection and capture (or resource transport) missions. The system is assumed to land on the asteroid and provide a continuous thrust able to modify the orbit of the asteroid according to the mission objective. The paper analyses the capability of such a near-term system to provide both planetary protection and asteroid resources to Earth. Results show that a 5 tonne spacecraft could provide a high level of protection for modest impact hazards: airburst and local damage events (caused by 15-170 m diameter objects). At the same time, the same spacecraft could also be used to transport to bound Earth orbits significant quantities of material through judicious use of orbital dynamics and passively safe aero-capture manoeuvres or low energy ballistic capture. As will be shown, a 5 tonne low-thrust spacecraft could potentially transport between 12 and 350 times its own mass of asteroid resources by means of ballistic capture or aero-capture trajectories that pose very low dynamical pressures on the object.

  8. Space Shuttle life support systems - A status report

    NASA Technical Reports Server (NTRS)

    Faget, M. A.; Guy, W. W.

    1981-01-01

    The Space Shuttle Program has two independent life support systems. One provides the basic environmental control for the Orbiter cabin while the second enables the crewmen to function outside the spacecraft for extravehicular operation. Although both of these systems were developed and fabricated under contract to NASA, all system-level testing was conducted at the Johnson Space Center. The paper will discuss the results of this testing which, in part, includes: (1) certification of the Orbiter cabin atmospheric pressure and composition control system at three operational pressures (8 psia, 9 psia and 14.7 psia); (2) certification of the Orbiter atmospheric revitalization system at 9 psia and 14.7 psia; (3) manrating of the Orbiter airlock at 14.7 psia, 9 psia and vacuum; and (4) certification of the space suit/life support system in the airlock and at deep space thermal/vacuum conditions. In addition, pertinent flight information from the on-orbit performance of the Shuttle life support systems will be presented.

  9. Stable photon orbits in stationary axisymmetric electrovacuum spacetimes

    NASA Astrophysics Data System (ADS)

    Dolan, Sam R.; Shipley, Jake O.

    2016-08-01

    We investigate the existence and phenomenology of stable photon orbits (SPOs) in stationary axisymmetric electrovacuum spacetimes in four dimensions. First, we review the classification of equatorial circular photon orbits on Kerr-Newman spacetimes in the charge-spin plane. Second, using a Hamiltonian formulation, we show that Reissner-Nordström diholes (a family encompassing the Majumdar-Papapetrou and Weyl-Bach special cases) admit SPOs, in a certain parameter regime that we investigate. Third, we explore the transition from order to chaos for typical SPOs bounded within a toroidal region around a dihole, via a selection of Poincaré sections. Finally, for general axisymmetric stationary spacetimes, we show that the Einstein-Maxwell field equations allow for the existence of SPOs in electro vacuum, but not in pure vacuum.

  10. The Air Force Phillips Laboratory multimegawatt quasi-steady MPD thruster facility

    NASA Astrophysics Data System (ADS)

    Castillo, Salvador; Tilley, Dennis L.

    1992-07-01

    The operational multimegawatt quasi-steady MPD thruster facility is described in terms of its general design emphasizing the impulse thrust stand and diagnostics capabilities. The vacuum, propellant, and electrical systems are discussed with schematic diagrams of the respective component configurations and explanations of the needs of MPD thruster testing. The impulse thrust stand comprises an accelerometer/pendulum-impulse stand which can be used to correlate thruster impulse with accelerometer readings and thereby reduce measurement uncertainties. The diagnostics of the terminal characteristics of the thruster operation are complemented by diagnostics platforms that study plasma properties in the plume and the thruster. Preliminary tests indicate that the MPD thruster facility is prepared for detailed investigations of MPD thruster performance and plume diagnostics.

  11. Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Mehmed, Oral; Johnson, Dexter; Montague, Gerald; Duffy, Kirsten; Jansen, Ralph

    2005-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig is an apparatus for vibration testing of turbomachine blades in a vacuum at rotational speeds from 0 to 40,000 rpm. This rig includes (1) a vertically oriented shaft on which is mounted an assembly comprising a rotor holding the blades to be tested, (2) two actively controlled heteropolar radial magnetic bearings at opposite ends of the shaft, and (3) an actively controlled magnetic thrust bearing at the upper end of the shaft. This rig is a more capable successor to a prior apparatus, denoted the Dynamic Spin Rig (DSR), that included a vertically oriented shaft with a mechanical thrust bearing at the upper end and a single actively controlled heteropolar radial magnetic bearing at the lower end.

  12. Simulation of the synergistic low Earth orbit effects of vacuum thermal cycling, vacuum UV radiation, and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Degroh, Kim K.; Stidham, Curtis R.; Stueber, Thomas J.; Dever, Therese M.; Rodriguez, Elvin; Terlep, Judith A.

    1992-01-01

    In order to assess the low Earth orbit (LEO) durability of candidate space materials, it is necessary to use ground laboratory facilities which provide LEO environmental effects. A facility combining vacuum thermal cycling and vacuum ultraviolet (VUV) radiation has been designed and constructed at NASA Lewis Research Center for this purpose. This facility can also be operated without the VUV lamps. An additional facility can be used to provide VUV exposure only. By utilizing these facilities, followed by atomic oxygen exposure in an RF plasma asher, the effects of the individual vacuum thermal cycling and VUV environments can be compared to the effect of the combined vacuum thermal cycling/VUV environment on the atomic oxygen durability of materials. The synergistic effects of simulated LEO environmental conditions on materials were evaluated by first exposing materials to vacuum thermal cycling, VUV, and vacuum thermal cycling/VUV environments followed by exposure to atomic oxygen in an RP plasma asher. Candidate space power materials such as atomic oxygen protected polyimides and solar concentrator mirrors were evaluated using these facilities. Characteristics of the Vacuum Thermal Cycling/VUV Exposure Facility which simulates the temperature sequences and solar ultraviolet radiation exposure that would be experienced by a spacecraft surface in LEO are discussed. Results of durability evaluations of some candidate space power materials to the simulated LEO environmental conditions will also be discussed. Such results have indicated that for some materials, atomic oxygen durability is affected by previous exposure to thermal cycling and/or VUV exposure.

  13. Performance of a RBCC Engine in Rocket-Operation

    NASA Astrophysics Data System (ADS)

    Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro

    Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.

  14. Space Shuttle Projects

    NASA Image and Video Library

    2001-01-01

    The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  15. Space Shuttle Projects

    NASA Image and Video Library

    1975-01-01

    The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  16. Navigation strategy and filter design for solar electric missions

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Hagar, H., Jr.

    1972-01-01

    Methods which have been proposed to improve the navigation accuracy for the low-thrust space vehicle include modifications to the standard Sequential- and Batch-type orbit determination procedures and the use of inertial measuring units (IMU) which measures directly the acceleration applied to the vehicle. The navigation accuracy obtained using one of the more promising modifications to the orbit determination procedures is compared with a combined IMU-Standard. The unknown accelerations are approximated as both first-order and second-order Gauss-Markov processes. The comparison is based on numerical results obtained in a study of the navigation requirements of a numerically simulated 152-day low-thrust mission to the asteroid Eros. The results obtained in the simulation indicate that the DMC algorithm will yield a significant improvement over the navigation accuracies achieved with previous estimation algorithms. In addition, the DMC algorithms will yield better navigation accuracies than the IMU-Standard Orbit Determination algorithm, except for extremely precise IMU measurements, i.e., gyroplatform alignment .01 deg and accelerometer signal-to-noise ratio .07. Unless these accuracies are achieved, the IMU navigation accuracies are generally unacceptable.

  17. Rocket-Induced Magnetohydrodynamic Ejector: A Single-Stage-to-Orbit Advanced Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Cole, John; Campbell, Jonathan; Robertson, Anthony

    1995-01-01

    During the atmospheric boost phase of a rocket trajectory, magnetohydrodynamic (MHD) principles can be utilized to augment the thrust by several hundred percent without the input of additional energy. The concept is an MHD implementation of a thermodynamic ejector. Some ejector history is described and some test data showing the impressive thrust augmentation capabilities of thermodynamic ejectors are provided. A momentum and energy balance is used to derive the equations to predict the MHD ejector performance. Results of these equations are compared with the test data and then applied to a specific performance example. The rocket-induced MHD ejector (RIME) engine is described and a status of the technology and availability of the engine components is provided. A top level vehicle sizing analysis is performed by scaling existing MHD designs to the required flight vehicle levels. The vehicle can achieve orbit using conservative technology. Modest improvements are suggested using recently developed technologies, such as superconducting magnets, which can improve predicted performance well beyond those expected for current single-stage-to-orbit (SSTO) designs.

  18. Space shuttle vehicle rocket plume impingement study for separation analysis. Tasks 2 and 3: Definition and preliminary plume impingement analysis for the MSC booster

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Penny, M. M.; Prozan, R. J.

    1970-01-01

    The results are presented of a space shuttle plume impingement study for the Manned Spacecraft Center configuration. This study was conducted as two tasks which were to (1) define the orbiter main stage engine exhaust plume flow field, and (2) define the plume impingement heating, force and resulting moment environments on the booster during the staging maneuver. To adequately define these environments during the staging maneuver and allow for deviation from the nominal separation trajectory, a multitude of relative orbiter/booster positions are analyzed which map the region that contains the separation trajectories. The data presented can be used to determine a separation trajectory which will result in acceptable impingement heating rates, forces, and the resulting moments. The data, presented in graphical form, include the effect of roll, pitch and yaw maneuvers for the booster. Quasi-steady state analysis methods were used with the orbiter engine operating at full thrust. To obtain partial thrust results, simple ratio equations are presented.

  19. Independent Orbiter Assessment (IOA): Assessment of the ascent thrust vector control actuator subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Ascent Thrust Vector Control Actuator (ATVD) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter ATVC hardware. The IOA product for the ATVC actuator analysis consisted of 25 failure mode worksheets that resulted in 16 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 21 FMEAs and 13 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

  20. Optimal low thrust geocentric transfer. [mission analysis computer program

    NASA Technical Reports Server (NTRS)

    Edelbaum, T. N.; Sackett, L. L.; Malchow, H. L.

    1973-01-01

    A computer code which will rapidly calculate time-optimal low thrust transfers is being developed as a mission analysis tool. The final program will apply to NEP or SEP missions and will include a variety of environmental effects. The current program assumes constant acceleration. The oblateness effect and shadowing may be included. Detailed state and costate equations are given for the thrust effect, oblateness effect, and shadowing. A simple but adequate model yields analytical formulas for power degradation due to the Van Allen radiation belts for SEP missions. The program avoids the classical singularities by the use of equinoctial orbital elements. Kryloff-Bogoliuboff averaging is used to facilitate rapid calculation. Results for selected cases using the current program are given.

  1. NASA's Current Directions in the CETDP Micro-Technology Thrust Area

    NASA Technical Reports Server (NTRS)

    Stocky, J.

    2000-01-01

    NASA's program in micro-technologies seeks to develop the advanced technologies needed to reduce the mass of Earth-orbiting and deep-space spacecraft by several orders of magnitude over the next decade.

  2. Beamed energy propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, James M.

    1992-01-01

    Beamed energy concepts offer an alternative for an advanced propulsion system. The use of a remote power source reduces the weight of the propulsion system in flight and this, combined with the high performance, provides significant payload gains. Within the context of this study's baseline scenario, two beamed energy propulsion concepts are potentially attractive: solar thermal propulsion and laser thermal propulsion. The conceived beamed energy propulsion devices generally provide low thrust (tens of pounds to hundreds of pounds); therefore, they are typically suggested for cargo transportation. For the baseline scenario, these propulsion system can provide propulsion between the following nodes: (1) low Earth orbit to geosynchronous Earth orbit; (2) low Earth orbit to low lunar orbit; (3) low lunar orbit to low Mars orbit--only solar thermal; and (4) lunar surface to low lunar orbit--only laser thermal.

  3. Characterization of a Pressure-Fed LOX/LCH4 Reaction Control System Under Simulated Altitude and Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Atwell, Matthew J.; Melcher, John C.; Hurlbert, Eric A.; Morehead, Robert L.

    2017-01-01

    A liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under simulated altitude and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA) and was initially developed under Project Morpheus. Composed of two 28 lbf-thrust and two 7 lbf-thrust engines, the RCS is fed in parallel with the ICPTA main engine from four propellant tanks. 40 tests consisting of 1,010 individual thruster pulses were performed across 6 different test days. Major test objectives were focused on system dynamics, and included characterization of fluid transients, manifold priming, manifold thermal conditioning, thermodynamic vent system (TVS) performance, and main engine/RCS interaction. Peak surge pressures from valve opening and closing events were examined. It was determined that these events were impacted significantly by vapor cavity formation and collapse. In most cases the valve opening transient was more severe than the valve closing. Under thermal vacuum conditions it was shown that TVS operation is unnecessary to maintain liquid conditions at the thruster inlets. However, under higher heat leak environments the RCS can still be operated in a self-conditioning mode without overboard TVS venting, contingent upon the engines managing a range of potentially severe thermal transients. Lastly, during testing under cold thermal conditions the engines experienced significant ignition problems. Only after warming the thruster bodies with a gaseous nitrogen purge to an intermediate temperature was successful ignition demonstrated.

  4. KSC-05pd2537

    NASA Image and Video Library

    2005-11-30

    KENNEDY SPACE CENTER, FLA. - The Forward Reaction Control System (FRCS) of space shuttle Atlantis sits in the transfer aisle of Orbiter Processing Facility Bay 1 in anticipation of being installed. The FRCS provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.

  5. KSC-05pd2536

    NASA Image and Video Library

    2005-11-30

    KENNEDY SPACE CENTER, FLA. - The Forward Reaction Control System (FRCS) of space shuttle Atlantis sits in the transfer aisle of Orbiter Processing Facility Bay 1 in anticipation of being installed. The FRCS provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.

  6. Variation of parameters using Battin's universal functions

    NASA Astrophysics Data System (ADS)

    Burton, James R., III; Melton, Robert G.

    This paper presents a variation of parameters analysis, suitable for use in situations involving small perturbations to the two-body problem, using Battin's universal functions. Unlike the universal variable formulation, this approach avoids the need to switch among different functional representations if the orbit transitions from elliptical, through parabolic, to hyperbolic state, making it attractive for use in simulating low-thrust trajectories ascending to escape or capturing into orbit.

  7. Apollo guidance, navigation and control: Guidance system operations plan for manned CM earth orbital and lunar missions using Program COLOSSUS 3. Section 3: Digital autopilots (revision 14)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Digital autopilots for the manned command module earth orbital and lunar missions using program COLOSSUS 3 are discussed. Subjects presented are: (1) reaction control system digital autopilot, (2) thrust vector control autopilot, (3) entry autopilot and mission control programs, (4) takeover of Saturn steering, and (5) coasting flight attitude maneuver routine.

  8. Regularization in Orbital Mechanics; Theory and Practice

    NASA Astrophysics Data System (ADS)

    Roa, Javier

    2017-09-01

    Regularized equations of motion can improve numerical integration for the propagation of orbits, and simplify the treatment of mission design problems. This monograph discusses standard techniques and recent research in the area. While each scheme is derived analytically, its accuracy is investigated numerically. Algebraic and topological aspects of the formulations are studied, as well as their application to practical scenarios such as spacecraft relative motion and new low-thrust trajectories.

  9. Shuttle Columbia Mated to 747 SCA with Crew

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The crew of NASA's 747 Shuttle Carrier Aircraft (SCA), seen mated with the Space Shuttle Columbia behind them, are from viewers left: Tom McMurtry, pilot; Vic Horton, flight engineer; Fitz Fulton, command pilot; and Ray Young, flight engineer. The SCA is used to ferry the shuttle between California and the Kennedy Space Center, Florida, and other destinations where ground transportation is not practical. The NASA 747 has special support struts atop the fuselage and internal strengthening to accommodate the additional weight of the orbiters. Small vertical fins have also been added to the tips of the horizontal stabilizers for additional stability due to air turbulence on the control surfaces caused by the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  10. Qualifciation test series of the indium needle FEEP micro-propulsion system for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Scharlemann, C.; Buldrini, N.; Killinger, R.; Jentsch, M.; Polli, A.; Ceruti, L.; Serafini, L.; DiCara, D.; Nicolini, D.

    2011-11-01

    The Laser Interferometer Space Antenna project (LISA) is a co-operative program between ESA and NASA to detect gravitational waves by measuring distortions in the space-time fabric. LISA Pathfinder is the precursor mission to LISA designed to validate the core technologies intended for LISA. One of the enabling technologies is the micro-propulsion system based on field emission thrusters necessary to achieve the uniquely stringent propulsion requirements. A consortium consisting of Astrium GmbH and the University of Applied Sciences Wiener Neustadt (formerly AIT) was commissioned by ESA to develop and qualify the micro-propulsion system based on the Indium Needle FEEP technology. Several successful tests have verified the proper Needle Field Emission Electric Propulsion (FEEP) operation and the thermal and mechanical design of subcomponents of the developed system. For all functional tests, the flight representative Power Control Unit developed by SELEX Galileo S.p.A (also responsible for the Micro-Propulsion Subsystem (MPS) development) was used. Measurements have shown the exceptional stability of the thruster. An acceptance test of one Thruster Cluster Assembly (TCA) over 3600 h has shown the stable long term operation of the developed system. During the acceptance test compliance to all the applicable requirements have been shown such as a thrust resolution of 0.1 μN, thrust range capability between 0 and 100 μN, thrust overshoot much lower than the required 0.3 μN+3% and many others. In particular important is the voltage stability of the thruster (±1% over the duration of the testing) and the confirmation of the very low thrust noise. Based on the acceptance test the lifetime of the thruster is expected to exceed 39,000 h generating a total impulse bit of 6300 Ns at an average thrust level of 50 μN. A flight representative qualification model of the Needle FEEP Cluster Assembly (DM1) equipped with one active TCA has performed a qualification program consisting of acceptance, vibration, shock, and thermal vacuum test. During the last test, the thermal vacuum test (TVT), a performance decrease was observed. According to a preliminary analysis, this performance decrease is not linked to the thermal conditions simulated in the TVT but might be rather linked to secondary effects of the TVT set-up.

  11. The Effect of Tic Coated Balls and Stress on the Lubricant Lifetime of a Synthetic Hydrocarbon (pennzane 2001A) Using a Vacuum Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Pepper, Stephen V.; Wheeler, Donald R.; Schroeer, Achim; Fluehmann, Freddy; Loewenthal, Stuart H.; Shogrin, Bradley A.

    2000-01-01

    A vacuum spiral orbit rolling contact tribometer was used to determine effect of varying mean Hertzian stress (1.0, 1.5, 2.0 GPa) and the use of 440C and TiC coated 440C balls on lubricant lifetime of a synthetic hydrocarbon (Pennzane 2001A) on 440C stainless steel. Conditions included 210 rpm, approx. 50 micrograms lubricant, an initial vacuum < 1.3xl0(exp-6) Pa, and room temperature (approx. 23 C). Increasing the mean Hertzian stress resulted in an exponential decrease in lubricant lifetime for both material combinations. Substituting a TiC coated 440C ball showed no increase in lifetime over the 440C ball. The decreasing lifetime with increasing stress level correlated well with energy dissipation calculations.

  12. Claritas Fossae Enhanced Color

    NASA Image and Video Library

    1998-06-04

    Mars Syria Planum-centered volcanism and tectonism produced fractures, narrow to broad grabens, large scarps, and broad fold and thrust ridges that deformed a basement complex captured by NASA's Viking Orbiter 2. http://photojournal.jpl.nasa.gov/catalog/PIA00154

  13. Structural and mechanical design challenges of space shuttle solid rocket boosters separation and recovery subsystems

    NASA Technical Reports Server (NTRS)

    Woodis, W. R.; Runkle, R. E.

    1985-01-01

    The design of the space shuttle solid rocket booster (SRB) subsystems for reuse posed some unique and challenging design considerations. The separation of the SRBs from the cluster (orbiter and external tank) at 150,000 ft when the orbiter engines are running at full thrust meant the two SRBs had to have positive separation forces pushing them away. At the same instant, the large attachments that had reacted launch loads of 7.5 million pounds thrust had to be servered. These design considerations dictated the design requirements for the pyrotechnics and separation rocket motors. The recovery and reuse of the two SRBs meant they had to be safely lowered to the ocean, remain afloat, and be owed back to shore. In general, both the pyrotechnic and recovery subsystems have met or exceeded design requirements. In twelve vehicles, there has only been one instance where the pyrotechnic system has failed to function properly.

  14. Computational analysis of liquid hypergolic propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Krishnan, A.; Przekwas, A. J.; Gross, K. W.

    1992-01-01

    The combustion process in liquid rocket engines depends on a number of complex phenomena such as atomization, vaporization, spray dynamics, mixing, and reaction mechanisms. A computational tool to study their mutual interactions is developed to help analyze these processes with a view of improving existing designs and optimizing future designs of the thrust chamber. The focus of the article is on the analysis of the Variable Thrust Engine for the Orbit Maneuvering Vehicle. This engine uses a hypergolic liquid bipropellant combination of monomethyl hydrazine as fuel and nitrogen tetroxide as oxidizer.

  15. Orbit transfer vehicle engine study, phase A, extension 1: Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1981-01-01

    Because of the advantage of the Advanced Expander Cycle Engine brought out in initial studies, further design optimization and comparative analyses were undertaken. The major results and conclusion derived are summarized. The primary areas covered are (1) thrust chamber geometry optimization, (2) expander cycle optimization, (3) alternate low thrust capability, (4) safety and reliability, (5) development risk comparison, and (6) cost comparisons. All of the results obtained were used to baseline the initial design concept for the OTV Advanced Expander Cycle Engine Point Design Study.

  16. Foundational Methane Propulsion Related Technology Efforts, and Challenges for Applications to Human Exploration Beyond Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brown, Thomas; Klem, Mark; McRight, Patrick

    2016-01-01

    Current interest in human exploration beyond earth orbit is driving requirements for high performance, long duration space transportation capabilities. Continued advancement in photovoltaic power systems and investments in high performance electric propulsion promise to enable solar electric options for cargo delivery and pre-deployment of operational architecture elements. However, higher thrust options are required for human in-space transportation as well as planetary descent and ascent functions. While high thrust requirements for interplanetary transportation may be provided by chemical or nuclear thermal propulsion systems, planetary descent and ascent systems are limited to chemical solutions due to their higher thrust to weight and potential planetary protection concerns. Liquid hydrogen fueled systems provide high specific impulse, but pose challenges due to low propellant density and the thermal issues of long term propellant storage. Liquid methane fueled propulsion is a promising compromise with lower specific impulse, higher bulk propellant density and compatibility with proposed in-situ propellant production concepts. Additionally, some architecture studies have identified the potential for commonality between interplanetary and descent/ascent propulsion solutions using liquid methane (LCH4) and liquid oxygen (LOX) propellants. These commonalities may lead to reduced overall development costs and more affordable exploration architectures. With this increased interest, it is critical to understand the current state of LOX/LCH4 propulsion technology and the remaining challenges to its application to beyond earth orbit human exploration. This paper provides a survey of NASA's past and current methane propulsion related technology efforts, assesses the accomplishments to date, and examines the remaining risks associated with full scale development.

  17. Sphere launcher

    NASA Technical Reports Server (NTRS)

    Reed, W. B.

    1972-01-01

    The sphere launcher was designed to eject a 200 lb, 15 in. diameter sphere from a space vehicle or missile, at a velocity of 58 ft/sec without imparting excessive lateral loads to the vehicle. This launching is accomplished with the vehicle operating in vacuum conditions and under a 9 g acceleration. Two principal elements are used: a high thrust, short burn time rocket motor and two snubbers for reducing the lateral loads to acceptable limits.

  18. Electric Propulsion for Low Earth Orbit Communication Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  19. The Chameleon Solid Rocket Propulsion Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Glen A.

    The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to thismore » forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).« less

  20. Hybrid Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Jensen, G. E.; Holzman, A. L.

    1990-01-01

    Future launch systems of the United States will require improvements in booster safety, reliability, and cost. In order to increase payload capabilities, performance improvements are also desirable. The hybrid rocket motor (HRM) offers the potential for improvements in all of these areas. The designs are presented for two sizes of hybrid boosters, a large 4.57 m (180 in.) diameter booster duplicating the Advanced Solid Rocket Motor (ASRM) vacuum thrust-time profile and smaller 2.44 m (96 in.), one-quater thrust level booster. The large booster would be used in tandem, while eight small boosters would be used to achieve the same total thrust. These preliminary designs were generated as part of the NASA Hybrid Propulsion Technology Program. This program is the first phase of an eventual three-phaes program culminating in the demonstration of a large subscale engine. The initial trade and sizing studies resulted in preferred motor diameters, operating pressures, nozzle geometry, and fuel grain systems for both the large and small boosters. The data were then used for specific performance predictions in terms of payload and the definition and selection of the requirements for the major components: the oxidizer feed system, nozzle, and thrust vector system. All of the parametric studies were performed using realistic fuel regression models based upon specific experimental data.

  1. STS-68 on Runway with 747 SCA/Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  2. STS-68 on Runway with 747 SCA - Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  3. Shuttle Discovery Overflight of Edwards Enroute to Palmdale, California, Maintenance Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Space Shuttle Discovery overflies the Rogers Dry Lakebed, California, on 28 September 1995, at 12:50 p.m. Pacific Daylight Time (PDT) atop NASA's 747 Shuttle Carrier Aircraft (SCA). On its way to Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  4. Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Rear View

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Evening light begins to fade at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, as technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA 911) for the ferry flight back to the Kennedy Space Center, Fla., following its STS-44 flight 24 November-1 December 1991. Post-flight servicing of the orbiters, and the mating operation is carried out at Dryden at the Mate-Demate Device, the large gantry-like structure that hoists the spacecraft to various levels during post-spaceflight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  5. Shuttle in Mate-Demate Device being Loaded onto SCA-747 - Side View

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Evening light begins to fade at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, as technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Fla., following its STS-44 flight 24 November-1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  6. Shuttle Enterprise Mated to 747 SCA in Flight

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Space Shuttle Enterprise, the nation's prototype space shuttle orbiter, departed NASA's Dryden Flight Research Center, Edwards, California, at 11:00 a.m., 16 May 1983, on the first leg of its trek to the Paris Air Show at Le Bourget Airport, Paris, France. Carried by the huge 747 Shuttle Carrier Aircraft (SCA), the first stop for the Enterprise was Peterson AFB, Colorado Springs, Colorado. Piloting the 747 on the Europe trip were Joe Algranti, Johnson Space Center Chief Pilot, Astronaut Dick Scobee, and NASA Dryden Chief Pilot Tom McMurtry. Flight engineers for that portion of the flight were Dryden's Ray Young and Johnson Space Center's Skip Guidry. The Enterprise, named after the spacecraft of Star Trek fame, was originally carried and launched by the 747 during the Approach and Landing Tests (ALT) at Dryden Flight Research Center. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  7. Shuttle Enterprise Mated to 747 SCA on Ramp

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Shuttle Enterprise, the nation's prototype space shuttle orbiter, before departing NASA's Dryden Flight Research Center, Edwards, California, at 11:00 a.m., 16 May 1983, on the first leg of its trek to the Paris Air Show at Le Bourget Airport, Paris, France. Seen here atop the huge 747 Shuttle Carrier Aircraft (SCA), the first stop for the Enterprise was Peterson AFB, Colorado Springs, Colorado. Piloting the 747 on the Europe trip were Joe Algranti, Johnson Space Center Chief Pilot, Astronaut Dick Scobee, and NASA Dryden Chief Pilot Tom McMurtry. Flight engineers for that portion of the flight were Dryden's Ray Young and Johnson Space Center's Skip Guidry. The Enterprise, named after the spacecraft of Star Trek fame, was originally carried and launched by the 747 during the Approach and Landing Tests (ALT) at Dryden Flight Research Center. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  8. Martian Wrinkle Ridge Topography: Evidence for Subsurface Faults from MOLA

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Anderson, F. S.; Zuber, M. T.

    2000-01-01

    Mars Orbiter Laser Altimeter (MOLA) profiles across wrinkle ridges are characterized by plains surfaces at different elevations on either side that appear best explained by subsurface thrust faults that underlie the ridges and produce the offset.

  9. Pre-Flight Tests with Astronauts, Flight and Ground Hardware, to Assure On-Orbit Success

    NASA Technical Reports Server (NTRS)

    Haddad Michael E.

    2010-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit or on the Lunar surface. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g/vacuum environment of space or low-g/vacuum environment on the Lunar/Mars Surface. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit/on Lunar/Mars surface before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit/Lunar/Mars surface operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  10. RS-88 Pad Abort Demonstrator Thrust Chamber Assembly Testing at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Sanders, Timothy M.

    1990-01-01

    This paper documents the effort conducted to collect hot-tire dynamic and acoustics environments data during 50,000-lb thrust lox-ethanol hot-fire rocket testing at NASA Marshall Space Flight Center (MSFC) in November-December 2003. This test program was conducted during development testing of the Boeing Rocketdyne RS-88 development engine thrust chamber assembly (TCA) in support of the Orbital Space Plane (OSP) Crew Escape System Propulsion (CESP) Program Pad Abort Demonstrator (PAD). In addition to numerous internal TCA and nozzle measurements, induced acoustics environments data were also collected. Provided here is an overview of test parameters, a discussion of the measurements, test facility systems and test operations, and a quality assessment of the data collected during this test program.

  11. Development of advanced inert-gas ion thrusters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1983-01-01

    Inert gas ion thruster technology offers the greatest potential for providing high specific impulse, low thrust, electric propulsion on large, Earth orbital spacecraft. The development of a thruster module that can be operated on xenon or argon propellant to produce 0.2 N of thrust at a specific impulse of 3000 sec with xenon propellant and at 6000 sec with argon propellant is described. The 30 cm diameter, laboratory model thruster is considered to be scalable to produce 0.5 N thrust. A high efficiency ring cusp discharge chamber was used to achieve an overall thruster efficiency of 77% with xenon propellant and 66% with argon propellant. Measurements were performed to identify ion production and loss processes and to define critical design criteria (at least on a preliminary basis).

  12. KSC-2009-4794

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 2, workers begin removing the forward reaction control system, or FRCS, from space shuttle Endeavour's forward fuselage nose area. The FRCS provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Endeavour is designated as the shuttle for the STS-130 mission, targeted for launch in February 2010. Photo credit: NASA/Jack Pfaller

  13. KSC-2009-4795

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Orbiter Processing Facility 2, a worker removes the forward reaction control system, or FRCS, from space shuttle Endeavour's forward fuselage nose area. The FRCS provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Endeavour is designated as the shuttle for the STS-130 mission, targeted for launch in February 2010. Photo credit: NASA/Jack Pfaller

  14. KSC-05pd2574

    NASA Image and Video Library

    2005-12-07

    KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, installation of the forward reaction control system on Atlantis is complete. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.

  15. KSC-05pd2571

    NASA Image and Video Library

    2005-12-07

    KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers are installing the forward reaction control system on Atlantis. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.

  16. KSC-05pd2569

    NASA Image and Video Library

    2005-12-06

    KENNEDY SPACE CENTER, FLA. -- Inside NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers get ready to lift the sling placed round the forward reaction control system that will be installed on Atlantis. The forward reaction control system is located in the forward fuselage nose area. During ascent of the space shuttle, it provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers).

  17. KSC-05pd2570

    NASA Image and Video Library

    2005-12-07

    KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers are installing the forward reaction control system on Atlantis. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.

  18. KSC-2009-4792

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – The forward reaction control system, or FRCS, will be removed from space shuttle Endeavour's forward fuselage nose area in NASA Kennedy Space Center's Orbiter Processing Facility 2. The FRCS provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Endeavour is designated as the shuttle for the STS-130 mission, targeted for launch in February 2010. Photo credit: NASA/Jack Pfaller

  19. Scanning tunneling microscopy, orbital-mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of metal(II) tetraphenylporphyrins deposited from vapor.

    PubMed

    Scudiero, L; Barlow, D E; Mazur, U; Hipps, K W

    2001-05-02

    Thin films of vapor-deposited Ni(II) and Co(II) complexes of tetraphenylporphyrin (NiTPP and CoTPP) were studied supported on gold and embedded in Al-Al(2)O(3)-MTPP-Pb tunnel diodes, where M = Ni or Co. Thin films deposited onto polycrystalline gold were analyzed by ultraviolet photoelectron spectroscopy (UPS) using He I radiation. Scanning tunneling microscopy (STM) and orbital-mediated tunneling spectroscopy (STM-OMTS) were performed on submonolayer films of CoTPP and NiTPP supported on Au(111). Inelastic electron tunneling spectroscopy (IETS) and OMTS were measured in conventional tunnel diode structures. The highest occupied pi molecular orbital of the porphyrin ring was seen in both STM-OMTS and UPS at about 6.4 eV below the vacuum level. The lowest unoccupied pi molecular orbital of the porphyrin ring was observed by STM-OMTS and by IETS-OMTS to be located near 3.4 eV below the vacuum level. The OMTS spectra of CoTPP had a band near 5.2 eV (below the vacuum level) that was attributed to transient oxidation of the central Co(II) ion. That is, it is due to electron OMT via the half-filled d(z)(2) orbital present in Co(II) of CoTPP. The NiTPP OMTS spectra show no such band, consistent with the known difficulty of oxidation of the Ni(II) ion. The STM-based OMTS allowed these two porphyrin complexes to be easily distinguished. The present work is the first report of the observation of STM-OMTS, tunnel junction OMTS, and UPS of the same compounds. Scanning tunneling microscope-based orbital-mediated tunneling provides more information than UPS or tunnel junction-based OMTS and does so with molecular-scale resolution.

  20. Optimization of transfer trajectories to the Apophis asteroid for spacecraft with high and low thrust

    NASA Astrophysics Data System (ADS)

    Ivashkin, V. V.; Krylov, I. V.

    2014-03-01

    The problem of optimization of a spacecraft transfer to the Apophis asteroid is investigated. The scheme of transfer under analysis includes a geocentric stage of boosting the spacecraft with high thrust, a heliocentric stage of control by a low thrust engine, and a stage of deceleration with injection to an orbit of the asteroid's satellite. In doing this, the problem of optimal control is solved for cases of ideal and piecewise-constant low thrust, and the optimal magnitude and direction of spacecraft's hyperbolic velocity "at infinity" during departure from the Earth are determined. The spacecraft trajectories are found based on a specially developed comprehensive method of optimization. This method combines the method of dynamic programming at the first stage of analysis and the Pontryagin maximum principle at the concluding stage, together with the parameter continuation method. The estimates are obtained for the spacecraft's final mass and for the payload mass that can be delivered to the asteroid using the Soyuz-Fregat carrier launcher.

  1. Near Earth Asteroids- Prospection, Orbit Modification and Mining

    NASA Astrophysics Data System (ADS)

    Grandl, W.; Bazso, A.

    2014-04-01

    The number of known Near Earth Asteroids (NEAs) has increased continuously during the last decades. Now we understand the role of asteroid impacts for the evolution of life on Earth. To ensure that mankind will survive in the long run, we have to face the "asteroid threat" seriously. On one hand we will have to develop methods of detection and deflection for Hazardous Asteroids, on the other hand we can use these methods to modify their orbits and exploit their resources. Rare-earth elements, rare metals like platinum group elements, etc. may be extracted more easily from NEAs than from terrestrial soil, without environmental pollution or political and social problems. In a first step NEAs, which are expected to contain resources like nickel-iron, platinum group metals or rare-earth elements, will be prospected by robotic probes. Then a number of asteroids with a minimum bulk density of 2 g/cm^3 and a diameter of 150 to 500 m will be selected for mining. Given the long duration of an individual mission time of 10-20 years, the authors propose a "pipeline" concept. While the observation of NEAs can be done in parallel, the precursor missions of the the next phase can be launched in short intervals, giving time for technical corrections and upgrades. In this way a continuous data flow is established and there are no idle times. For our purpose Potentially Hazardous Asteroids (PHAs) seem to be a favorable choice for the following reasons: They have frequent closeencounters to Earth, their minimum orbit intersection distance is less than 0.05 AU (Astronomic Units) and they have diameters exceeding 150 meters. The necessary velocity change (delta V) for a spaceship is below 12 km/s to reach the PHA. The authors propose to modify the orbits of the chosen PHAs by orbital maneuvers from solar orbits to stable Earth orbits beyond the Moon. To change the orbits of these celestial bodies it is necessary to develop advanced propulsion systems. They must be able to deliver high thrust and specific impulse to move the huge masses of the asteroids. Such a propulsion system could be the Bussard Fusion System, also known as the quiet-electricdischarge (QED) engine. It uses electrostatic fusion devices to generate electrical power. The fuel consists of Deuterium and Helium3 that are fusing to Helium4 plus protons releasing 18.3 MeV of energy per reaction. The charged protons escape from the confinement; their kinetic energy can be converted to electricity or be used directly as a plasma beam for generating thrust. For the reaction a specific energy of 3.5x1014 Joule/kg can be computed, i.e. orders-ofmagnitude higher than for any existing propulsion system. As an example we take the Asteroid with the designation 2008 EV5. It is classified as an Aten group asteroid with a mean diameter of 450 meters and belongs to spectral type S (stony asteroids). Our mass estimate (using a bulk density of 3 g/cm^3) is 1.4x1011 kg. To transfer 2008 EV5 to an Earth-like orbit the energy required is estimated to be in the order of 2.8x1018 Joule. This is the difference in Kepler energy between the NEA's current orbit and the Earth's orbit around the sun. Using the Bussard Fusion System the amount of fuel would be approx. 8000 kg of Helium3. To move an asteroid by remote control the authors propose to design unmanned space tugs which are propelled by Bussard Fusion Engines. A pair of space tugs is docked to each asteroid using drilling anchors. The fusion engines of the tugs then apply the thrust forces for the maneuvers. The first tug, which carries the main fuel quantity, applies the primary force for the orbital maneuvers. The second one adjust the flight track by short engine thrusts.

  2. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery

    2014-01-01

    The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.

  3. A Match Made in Space

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Just before the space shuttle reaches orbit, its three main engines shut down so that it can achieve separation from the massive external tank that provided the fuel required for liftoff and ascent. In jettisoning the external tank, which is completely devoid of fuel at this point in the flight, the space shuttle fires a series of thrusters, separate from its main engines, that gives the orbiter the maneuvering ability necessary to safely steer clear of the descending tank and maintain its intended flight path. These thrusters make up the space shuttle s Reaction Control System. While the space shuttle s main engines only provide thrust in one direction (albeit a very powerful thrust), the Reaction Control System engines allow the vehicle to maneuver in any desired direction (via small amounts of thrust). The resulting rotational maneuvers are known as pitch, roll, and yaw, and are very important in ensuring that the shuttle docks properly when it arrives at the International Space Station and safely reenters the Earth s atmosphere upon leaving. To prevent the highly complex Reaction Control System from malfunctioning during space shuttle flights, and to provide a diagnosis if such a mishap were to occur, NASA turned to a method of artificial intelligence that truly defied the traditional laws of computer science.

  4. Rocketdyne - J-2 Saturn V 2nd and 3rd Stage Engine. Chapter 2, Appendix D

    NASA Technical Reports Server (NTRS)

    Coffman, Paul

    2009-01-01

    The J-2 engine was unique in many respects. Technology was not nearly as well-developed in oxygen/hydrogen engines at the start of the J-2 project. As a result, it experienced a number of "teething" problems. It was used in two stages on the Saturn V vehicle in the Apollo Program, as well as on the later Skylab and Apollo/Soyuz programs. In the Apollo Program, it was used on the S-II stage, which was the second stage of the Saturn V vehicle. There were five J-2 engines at the back end of the S-II Stage. In the S-IV-B stage, it was a single engine, but that single engine had to restart. The Apollo mission called for the entire vehicle to reach orbital velocity in low Earth orbit after the first firing of the Saturn-IV-B stage and, subsequently, to fire a second time to go on to the moon. The engine had to be man-rated (worthy of transporting humans). It had to have a high thrust rate and performance associated with oxygen/hydrogen engines, although there were some compromises there. It had to gimbal for thrust vector control. It was an open-cycle gas generator engine delivering up to 230,000 pounds of thrust.

  5. Oxygen-hydrogen thrusters for Space Station auxiliary propulsion systems

    NASA Technical Reports Server (NTRS)

    Berkman, D. K.

    1984-01-01

    The feasibility and technology requirements of a low-thrust, high-performance, long-life, gaseous oxygen (GO2)/gaseous hydrogen (GH2) thruster were examined. Candidate engine concepts for auxiliary propulsion systems for space station applications were identified. The low-thrust engine (5 to 100 lb sub f) requires significant departure from current applications of oxygen/hydrogen propulsion technology. Selection of the thrust chamber material and cooling method needed or long life poses a major challenge. The use of a chamber material requiring a minimum amount of cooling or the incorporation of regenerative cooling were the only choices available with the potential of achieving very high performance. The design selection for the injector/igniter, the design and fabrication of a regeneratively cooled copper chamber, and the design of a high-temperature rhenium chamber were documented and the performance and heat transfer results obtained from the test program conducted at JPL using the above engine components presented. Approximately 115 engine firings were conducted in the JPL vacuum test facility, using 100:1 expansion ratio nozzles. Engine mixture ratio and fuel-film cooling percentages were parametrically investigated for each test configuration.

  6. Focus adjustment method for CBERS 3 and 4 satellites Mux camera to be performed in air condition and its experimental verification for best performance in orbital vacuum condition

    NASA Astrophysics Data System (ADS)

    Scaduto, Lucimara C. N.; Malavolta, Alexandre T.; Modugno, Rodrigo G.; Vales, Luiz F.; Carvalho, Erica G.; Evangelista, Sérgio; Stefani, Mario A.; de Castro Neto, Jarbas C.

    2017-11-01

    The first Brazilian remote sensing multispectral camera (MUX) is currently under development at Opto Eletronica S.A. It consists of a four-spectral-band sensor covering a 450nm to 890nm wavelength range. This camera will provide images within a 20m ground resolution at nadir. The MUX camera is part of the payload of the upcoming Sino-Brazilian satellites CBERS 3&4 (China-Brazil Earth Resource Satellite). The preliminary alignment between the optical system and the CCD sensor, which is located at the focal plane assembly, was obtained in air condition, clean room environment. A collimator was used for the performance evaluation of the camera. The preliminary performance evaluation of the optical channel was registered by compensating the collimator focus position due to changes in the test environment, as an air-to-vacuum environment transition leads to a defocus process in this camera. Therefore, it is necessary to confirm that the alignment of the camera must always be attained ensuring that its best performance is reached for an orbital vacuum condition. For this reason and as a further step on the development process, the MUX camera Qualification Model was tested and evaluated inside a thermo-vacuum chamber and submitted to an as-orbit vacuum environment. In this study, the influence of temperature fields was neglected. This paper reports on the performance evaluation and discusses the results for this camera when operating within those mentioned test conditions. The overall optical tests and results show that the "in air" adjustment method was suitable to be performed, as a critical activity, to guarantee the equipment according to its design requirements.

  7. Close up view of the Commander's Seat on the Flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Commander's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the commander's ingress. Most notable in this view are the Speed Brake/Thrust Controller in the center right in this view and the Translational Hand Controller in the center top of the view. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Detail view in engine bay three in the the aft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view in engine bay three in the the aft fuselage of the Orbiter Discovery. This view shows the engine interface fittings and the hydraulic-actuator support structure. The propellant feed lines are the large plugged and capped orifices. Note the handwritten references on the thrust plate in proximity to the actuators that read E3 Pitch and E3 Yaw. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. The Lunar IceCube Mission Challenge: Attaining Science Orbit Parameters from a Constrained Approach Trajectory

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.

    2017-01-01

    The challenges of targeting specific lunar science orbit parameters from a concomitant Sun-EarthMoon system trajectory are examined. While the concept of ballistic lunar capture is well-studied, achieving and controlling the time evolution of the orbital elements to satisfy mission constraints is especially problematic when the spacecraft is equipped with a low-thrust propulsion system. Satisfying these requirements on the lunar approach and capture segments is critical to the success of the Lunar IceCube mission, a 6U CubeSat that will prospect for water in solid (ice), liquid, and vapor forms and other lunar volatiles from a low-periapsis, highly inclined elliptical lunar orbit.

  10. The Lunar IceCube Mission Challenge: Attaining Science Orbit Parameters from a Constrained Approach Trajectory

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Bosanac, Natasha; Cox, Andrew; Howell, Kathleen C.

    2017-01-01

    The challenges of targeting specific lunar science orbit parameters from a concomitant Sun-Earth/Moon system trajectory are examined. While the concept of ballistic lunar capture is well-studied, achieving and controlling the time evolution of the orbital elements to satisfy mission constraints is especially problematic when the spacecraft is equipped with a low-thrust propulsion system. Satisfying these requirements on the lunar approach and capture segments is critical to the success of the Lunar IceCube mission, a 6U CubeSat that will prospect for water in solid (ice), liquid, and vapor forms and other lunar volatiles from a low-periapsis, highly inclined elliptical lunar orbit.

  11. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  12. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 and 31 March necessitated a landing at the backup site at Edwards. This photo shows the drag chute deployed to help the shuttle roll to a stop. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was payload commander and mission specialist-1. Mission specialists were Richard Clifford, Linda Godwin and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  13. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time on 31 March 1996 after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both March 30 and March 31 necessitated a landing at the backup site at Edwards AFB. Mission commander for STS-76 was Kevin P. Chilton. Richard A. Searfoss was the pilot. Serving as payload commander and mission specialist-1 was Ronald M. Sega. Mission specialist-2 was Richard Clifford. Linda Godwin served as mission specialist-3, and Shannon Lucid was mission specialist-4. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  14. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis prepares to touch down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. Lucid was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 March and 31 March necessitated a landing at the backup site at Edwards on the latter date. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was the payload commander and mission specialist-1. Other mission specialists were Richard Clifford, Linda Godwin, and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  15. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Moonrise over Atlantis: the space shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, 31 March 1996. Once servicing was complete, one of NASA's two 747 Shuttle Carrier Aircraft, No. 905, was readied to ferry Atlantis back to the Kennedy Space Center, Florida. Delivery of Atlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on April 6. The SCA returned to Edwards only minutes after departure. The right inboard engine #3 was exchanged, and the 747 with Atlantis atop was able to depart 11 April for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  16. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Moonrise over Atlantis: following the STS-76 dawn landing at NASA's Dryden Flight Research Center, Edwards, California, on 31 March 1996, NASA 905, one of two modified Boeing 747 Shuttle Carrier Aircraft, was prepared to ferry Atlantis back to the Kennedy Space Center, FL. Delivery of Altlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on April 6. The SCA #905 returned to Edwards only minutes after departure. The right inboard engine #3 was exchanged and the 747 with Atlantis atop was able to depart for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  17. STS-76 - Being Prepared for Delivery to Kennedy Space Center via SCA 747 Aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Moonrise over Atlantis following the STS-76 dawn landing at NASA's Dryden Flight Research Center, Edwards, California, on 31 March 1996. NASA 905, one of two modified Boeing 747 Shuttle Carrier Aircraft (SCA), was readied to ferry Atlantis back to the Kennedy Space Center, Florida. Delivery of Atlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on 6 April. The SCA #905 returned to Edwards with Atlantis attached only minutes after departure. The right inboard engine #3 was exchanged and the 747 with Atlantis atop was able to depart for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  18. STS-76 - SCA 747 Aircraft Takeoff for Delivery to Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Boeing 747 Shuttle Carrier Aircraft leaves the runway with the Shuttle Atlantis on its back. Following the STS-76 dawn landing at NASA's Dryden Flight Research Center, Edwards, California, on 31 March 1996. NASA 905, one of two modified 747's, was prepared to ferry Atlantis back to the Kennedy Space Center, FL. Delivery of Altlantis to Florida was delayed until 11 April 1996, due to an engine warning light that appeared shortly after take off on 6 April. The SCA #905 returned to Edwards with Atlantis aboard only minutes after departure. The right inboard engine #3 was exchanged and the 747 with Atlantis atop was able to depart for Davis-Monthan Air Force Base for a refueling stop. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  19. STS-66 Atlantis 747 SCA Ferry Flight Morning Takeoff for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The space shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (SCA) during takeoff for a return ferry flight to the Kennedy Space Center from Edwards, California. The STS-66 mission was dedicated to the third flight of the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3), part of NASA's Mission to Planet Earth program. The astronauts also deployed and retrieved a free-flying satellite designed to study the middle and lower thermospheres and perform a series of experiments covering life sciences research and microgravity processing. The landing was at 7:34 a.m. (PST) 14 November 1994, after being waved off from the Kennedy Space Center, Florida, due to adverse weather. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  20. Shuttle Discovery Landing at Edwards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  1. STS-58 Landing at Edwards with Drag Chute

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A drag chute slows the space shuttle Columbia as it rolls to a perfect landing concluding NASA's longest mission at that time, STS-58, at the Ames-Dryden Flight Research Facility (later redesignated the Dryden Flight Research Center), Edwards, California, with a 8:06 a.m. (PST) touchdown 1 November 1993 on Edward's concrete runway 22. The planned 14 day mission, which began with a launch from Kennedy Space Center, Florida, at 7:53 a.m. (PDT), October 18, was the second spacelab flight dedicated to life sciences research. Seven Columbia crewmembers performed a series of experiments to gain more knowledge on how the human body adapts to the weightless environment of space. Crewmembers on this flight included: John Blaha, commander; Rick Searfoss, pilot; payload commander Rhea Seddon; mission specialists Bill MacArthur, David Wolf, and Shannon Lucid; and payload specialist Martin Fettman. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  2. STS-29 Landing Approach at Edwards

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The STS-29 Space Shuttle Discovery mission approaches for a landing at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  3. Preliminary Design, Simulation, and Test of the Electrical Power Subsystem of the TINYSCOPE Nanosatellite

    DTIC Science & Technology

    2009-12-01

    VACUUM TEST NOTES..................................... 173 LIST OF REFERENCES ...test, and operate a low earth-orbiting (LEO) proto-flight unit using the following guiding principles: 3 • Use COTS components or slightly...orbit must be replaced on that same orbit during the satellite’s non- eclipse period. This is stated mathematically as, bd d bc cP T P T× ≤ × (1

  4. Annular Internal-External-Expansion Rocket Nozzles for Large Booster Applications

    NASA Technical Reports Server (NTRS)

    Connors, James F.; Cubbison, Robert W.; Mitchell, Glenn A.

    1961-01-01

    For large-thrust booster applications, annular rocket nozzles employing both internal and external expansion are investigated. In these nozzles, free-stream air flows through the center as well as around the outside of the exiting jet. Flaps for deflecting the rocket exhaust are incorporated on the external-expansion surface for thrust-vector control. In order to define nozzle off-design performance, thrust vectoring effectiveness, and external stream effects, an experimental investigation was conducted on two annular nozzles with area ratios of 15 and 25 at Mach 0, 2, and 3 in the Lewis 10- by 10-foot wind tunnel. Air, pressurized to 600 pounds per square inch absolute, was used to simulate the exhaust flow. For a nozzle-pressure-ratio range of 40 to 1000, the ratio of actual to ideal thrust was essentially constant at 0.98 for both nozzles. Compared with conventional convergent-divergent configurations on hypothetical boost missions, the performance gains of the annular nozzle could yield significant orbital payload increases (possibly 8 to 17 percent). A single flap on the external-expansion surface of the area-ratio-25 annular nozzle produced a side force equal to 4 percent of the axial force with no measurable loss in axial thrust.

  5. Efficient Optimization of Low-Thrust Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Fink, Wolfgang; Russell, Ryan; Terrile, Richard; Petropoulos, Anastassios; vonAllmen, Paul

    2007-01-01

    A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called "direct" and "indirect." In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primer-vector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-the-art trajectory-optimization methods while requiring much less computation time.

  6. Simulation of Liquid Injection Thrust Vector Control for Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Gudenkauf, Jared

    2017-01-01

    The Jet Propulsion Laboratory is currently in the initial design phase for a potential Mars Ascent Vehicle; which will be landed on Mars, stay on the surface for period of time, collect samples from the Mars 2020 rover, and then lift these samples into orbit around Mars. The engineers at JPL have down selected to a hybrid wax-based fuel rocket using a liquid oxidizer based on nitrogen tetroxide, or a Mixed Oxide of Nitrogen. To lower the gross lift-off mass of the vehicle the thrust vector control system will use liquid injection of the oxidizer to deflect the thrust of the main nozzle instead of using a gimbaled nozzle. The disadvantage of going with the liquid injection system is the low technology readiness level with a hybrid rocket. Presented in this paper is an effort to simulate the Mars Ascent Vehicle hybrid rocket nozzle and liquid injection thrust vector control system using the computational fluid dynamic flow solver Loci/Chem. This effort also includes determining the sensitivity of the thrust vector control system to a number of different design variables for the injection ports; including axial location, number of adjacent ports, injection angle, and distance between the ports.

  7. Shuttle Carrier Aircraft (SCA) Fleet Photo

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's two Boeing 747 Shuttle Carrier Aircraft (SCA) are seen here nose to nose at Dryden Flight Research Center, Edwards, California. The front mounting attachment for the Shuttle can just be seen on top of each. The SCAs are used to ferry Space Shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are; three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached, and two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Texas. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  8. Multi-functional Extreme Environment Surfaces: Nanotribology for Air and Space

    DTIC Science & Technology

    2010-09-14

    TRIBOLOGY ( QCM ) (STM) Fundamental Challenges and Unsolved Issues How do adsorbed and tribo-generated films impact friction and wear? How is heat dissipated...InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Thrust II: Cryotribology and Nanocrystalline Diamond for Space Applications...Satellite bearings, InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Five Years ago: Three publications in the area of vacuum

  9. Orbit Transfer Rocket Engine Technology Program, Advanced Engine Study Task D.6

    DTIC Science & Technology

    1992-02-28

    l!J~iliiJl 1. Report No. 2. Government Accession No. 3 . Recipient’s Catalog No. NASA 187215 4. Title and Subtitle 5. Report Date ORBIT TRANSFER ROCKET...Engine Study, three primary subtasks were accomplished: 1) Design and Parametric Data, 2) Engine Requirement Variation Studies, and 3 ) Vehicle Study...Mixture Ratio Parametrics 18 3 . Thrust Parametrics Off-Design Mixture Ratio Scans 22 4. Expansion Area Ratio Parametrics 24 5. OTV 20 klbf Engine Off

  10. KSC-05pd2572

    NASA Image and Video Library

    2005-12-07

    KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, technicians check details for the installation of the forward reaction control system on Atlantis (behind them). The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.

  11. KSC-05pd2573

    NASA Image and Video Library

    2005-12-07

    KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, a technician inspects a point of installation of the forward reaction control system on Atlantis. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.

  12. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V. Similar bursts in thrust are observed using a square waveform grid bias at 10 kHz and +/- 350 V for volumetric flow rates of 6, 10, and 12 sccm at 150, 350, and 350 W respectively. The only operating condition that exhibits repeated thrust spikes throughout thruster operation is the 24 sccm condition with a 5:1 mixture ratio at 150 W RF power using the 10 kHz square waveform acceleration grid bias. Thrust spikes for this condition measure 3 mN with an error of +/- 2.5 mN. There are no operating conditions tested that show continuous thrust production.

  13. Orbital Transfer Vehicle (OTV) engine study. Phase A: Extension

    NASA Technical Reports Server (NTRS)

    Sobin, A. J.

    1980-01-01

    The current Phase A-Extension of the OTV engine study program aims to provide additional expander and staged combustion cycle data that will lead to design definition of the OTV engine. The proposed program effort seeks to optimize the expander cycle engine concept (consistent with identified OTV engine requirements), investigate the feasibility of kitting the staged combustion cycle engine to provide extended thrust operation, and conduct in-depth analysis of development risk, crew safety, and reliability for both cycles. Additional tasks address the costing of a 10/K thrust expander cycle engine and support of OTV systems study contractors.

  14. Orbit Transfer Rocket Engine Technology - 7.5K-LB Thrust Rocket Engine Preliminary Design

    DTIC Science & Technology

    1993-10-15

    AND SPACE ADMINISTRATION October, 1993 r W NASA-Lewis Research Center Cleveland, Ohio 44135 94-08572 Contract Nc. NAS3-23773 Task B.7 and D.5 4I3’OA4 3 ...APPROACH 1 4.0 SUMMARY OF ACCOMPLISHMENTS 2 5.0 TECHNICAL DISCUSSIONS 3 6.0 PROGRAM WORK PLAN 5 6.1 Engine Analysis 5 6.2 Component Analysis 15 6.2.1...FIGURES Page Figure 1 Advanced Engine Studv Logic Diagram 4 Figure 2 Design Point Engine Pertormance at Full Thrust & MR = 6.0 7 Figure 3 Off-Design

  15. Low-thrust trajectory analysis for the geosynchronous mission

    NASA Technical Reports Server (NTRS)

    Jasper, T. P.

    1973-01-01

    Methodology employed in development of a computer program designed to analyze optimal low-thrust trajectories is described, and application of the program to a Solar Electric Propulsion Stage (SEPS) geosynchronous mission is discussed. To avoid the zero inclination and eccentricity singularities which plague many small-force perturbation techniques, a special set of state variables (equinoctial) is used. Adjoint equations are derived for the minimum time problem and are also free from the singularities. Solutions to the state and adjoint equations are obtained by both orbit averaging and precision numerical integration; an evaluation of these approaches is made.

  16. Advanced space engine powerhead breadboard assembly system study

    NASA Technical Reports Server (NTRS)

    Campbell, R. G.

    1978-01-01

    The objective of this study was to establish a preliminary design of a Powerhead Breadboard Assembly (PBA) for an 88 964-Newton (20,000-pound) thrust oxygen/hydrogen staged combustion cycle engine for use in orbital transfer vehicle propulsion. Existing turbopump, preburner, and thrust chamber components were integrated with interconnecting ducting, a heat exchanger, and a control system to complete the PBA design. Cycle studies were conducted to define starting transients and steady-state balances for the completed design. Specifications were developed for all valve applications and the conditions required for the control system integration with the facility for system test were defined.

  17. Orbital Maneuvering system design evolution

    NASA Technical Reports Server (NTRS)

    Gibson, C.; Humphries, C.

    1985-01-01

    Preliminary design considerations and changes made in the baseline space shuttle orbital maneuvering system (OMS) to reduce cost and weight are detailed. The definition of initial subsystem requirements, trade studies, and design approaches are considered. Design features of the engine, its injector, combustion chamber, nozzle extension and bipropellant valve are illustrated and discussed. The current OMS consists of two identical pods that use nitrogen tetroxide (NTO) and monomethylhydrazine (MMH) propellants to provide 1000 ft/sec of delta velocity for a payload of 65,000 pounds. Major systems are pressurant gas storage and control, propellant storage supply and quantity measurement, and the rocket engine, which includes a bipropellant valve, an injector/thrust chamber, and a nozzle. The subsystem provides orbit insertion, circularization, and on orbit and deorbit capability for the shuttle orbiter.

  18. Nonlinear feedback guidance law for aero-assisted orbit transfer maneuvers

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1992-01-01

    Aero-assisted orbit transfer vehicles have the potential for significantly reducing the fuel requirements in certain classes of orbit transfer operations. Development of a nonlinear feedback guidance law for performing aero-assisted maneuvers that accomplish simultaneous change of all the orbital elements with least vehicle acceleration magnitude is discussed. The analysis is based on a sixth order nonlinear point-mass vehicle model with lift, bank angle, thrust and drag modulation as the control variables. The guidance law uses detailed vehicle aerodynamic and the atmosphere models in the feedback loop. Higher-order gravitational harmonics, planetary atmosphere rotation and ambient winds are included in the formulation. Due to modest computational requirements, the guidance law is implementable on-board an orbit transfer vehicle. The guidance performance is illustrated for three sets of boundary conditions.

  19. Formation flying for electric sails in displaced orbits. Part I: Geometrical analysis

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Mengali, Giovanni; Quarta, Alessandro A.; Yuan, Jianping

    2017-09-01

    We present a geometrical methodology for analyzing the formation flying of electric solar wind sail based spacecraft that operate in heliocentric, elliptic, displaced orbits. The spacecraft orbit is maintained by adjusting its propulsive acceleration modulus, whose value is estimated using a thrust model that takes into account a variation of the propulsive performance with the sail attitude. The properties of the relative motion of the spacecraft are studied in detail and a geometrical solution is obtained in terms of relative displaced orbital elements, assumed to be small quantities. In particular, for the small eccentricity case (i.e. for a near-circular displaced orbit), the bounds characterized by the extreme values of relative distances are analytically calculated, thus providing an useful mathematical tool for preliminary design of the spacecraft formation structure.

  20. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  1. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael; Thomas, Robert; Crofton, Mark; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground-in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  2. Orbit transfer vehicle engine study, phase A extension. Volume 2A: Study results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Engine trade studies and systems analyses leading to a baseline engine selection for advanced expander cycle engine are discussed with emphasis on: (1) performance optimization of advanced expander cycle engines in the 10 to 20K pound thrust range; (2) selection of a recommended advanced expander engine configuration based on maximized performance and minimized mission risk, and definition of the components for this configuration; (3) characterization of the low thrust adaptation requirements and performance for the staged combustion engine; (4) generation of a suggested safety and reliability approach for OTV engines independent of engine cycle; (5) definition of program risk relationships between expander and staged combustion cycle engines; and (6) development of schedules and costs for the DDT&E, production, and operation phases of the 10K pound thrust expander engine program.

  3. Polestitters: Using Solar Sails for Constant Real-time Sensing of Earth's Polar Regions

    NASA Astrophysics Data System (ADS)

    Mulligan, P.; Diedrich, B. L.; Barnes, N.; Derbes, B.

    2012-12-01

    NASA has funded the Sunjammer mission - a near term demonstration of solar sail technology (2014/15). Sunjammer has the potential to demonstrate stationkeeping out of Earth's orbital plane. This is a first step in achieving "polesitter" orbits with year-round, real-time visibility of Earth's polar regions. Potential applications for such missions are illustrated. Solar sails have long been a concept for spacecraft propulsion that works by exchanging momentum with sunlight reflected by large, lightweight, mirrored sails. In addition to enabling propellantless propulsion throughout the solar system and beyond, their continuous thrust enables artificial Lagrange orbits (ALOs), some of which can be called "polesitter" orbits, with 24-hour, year-round visibility of Earth's polar regions. Several potential Earth remote sensing applications have been identified that address the limited temporal and spatial coverage from traditional polar and geostationary satellites. The Galileo spacecraft during its 1990 Earth flyby acquired imagery and radiometer data similar to the view from a polesitter. The Galileo imagery was used to derive aerosols and cloud variations used in atmospheric motion vector (AMV) derivations. Composites of satellite imagery over the South Pole is routinely used to derive atmospheric motion vectors like those performed regularly from geostationary satellites. The JAXA IKAROS mission flew a 14x14m solar sail past Venus in 2010. Sunjammer will demonstrate a state of the art 38x38m solar sail from Earth to an artificial Lagrange orbit located sunward and north of the sun-Earth L1 point. Traditional spacecraft can orbit naturally occurring Lagrange equilibrium points between the sun and Earth. The low, continuous thrust of solar sails can change where these points occur, creating new orbits with a variety of potential applications including polar remote sensing, space weather monitoring, and polar communications. This figure illustrates a selection of possible solar sail orbits around the sun-Earth L1 and L2 points.

  4. Analysis of Parallel Burn, No-Crossfeed TSTO RLV Architectures and Comparison to Parallel Burn with Crossfeed and Series Burn Architectures

    NASA Technical Reports Server (NTRS)

    Smith, Garrett; Philips, Alan

    2003-01-01

    Three dominant Two Stage To Orbit (TSTO) class architectures were studied: Series Burn (SB), Parallel Bum with crossfeed (PBw/cf), and Parallel Burn, no-crossfeed (PBncf). The study goal was to determine what factors uniquely affect PBncf architectures, how each of these factors interact, and to determine from a performance perspective whether a PBncf vehicle could be competitive with a PBw/cf or a SB vehicle using equivalent technology and assumptions. In all cases, performance was evaluated on a relative basis for a fixed payload and mission by comparing gross and dry vehicle masses of a closed vehicle. Propellant combinations studied were LOX: LH2 propelled booster and orbiter (HH) and LOX: Kerosene booster with LOX: LH2 orbiter (KH). The study observations were: 1) A PBncf orbiter should be throttled as deeply as possible after launch until the staging point. 2) A PBncf TSTO architecture is feasible for systems that stage at mach 7. 2a) HH architectures can achieve a mass growth relative to PBw/cf of <20%. 2b) KH architectures can achieve a mass growth relative to Series Burn of <20%. 3) Center of gravity (CG) control will be a major issue for a PBncf vehicle, due to the low orbiter specific thrust to weight ratio and to the position of the orbiter required to align the nozzle heights at liftoff. 4) Thrust to weight ratios of 1.3 at liftoff and between 1.0 and 0.9 when staging at mach 7 appear to be close to ideal for PBncf vehicles. 5) Performance for HH vehicles was better when staged at mach 7 instead of mach 5. The study suggests possible methods to maximize performance of PBncf vehicle architectures in order to meet mission design requirements.

  5. Microgravity

    NASA Image and Video Library

    1999-11-10

    Space Vacuum Epitaxy Center works with industry and government laboratories to develop advanced thin film materials and devices by utilizing the most abundant free resource in orbit: the vacuum of space. SVEC, along with its affiliates, is developing semiconductor mid-IR lasers for environmental sensing and defense applications, high efficiency solar cells for space satellite applications, oxide thin films for computer memory applications, and ultra-hard thin film coatings for wear resistance in micro devices. Performance of these vacuum deposited thin film materials and devices can be enhanced by using the ultra-vacuum of space for which SVEC has developed the Wake Shield Facility---a free flying research platform dedicated to thin film materials development in space.

  6. Microgravity

    NASA Image and Video Library

    2000-11-10

    Space Vacuum Epitaxy Center works with industry and government laboratories to develop advanced thin film materials and devices by utilizing the most abundant free resource in orbit: the vacuum of space. SVEC, along with its affiliates, is developing semiconductor mid-IR lasers for environmental sensing and defense applications, high efficiency solar cells for space satellite applications, oxide thin films for computer memory applications, and ultra-hard thin film coatings for wear resistance in micro devices. Performance of these vacuum deposited thin film materials and devices can be enhanced by using the ultra-vacuum of space for which SVEC has developed the Wake Shield Facility---a free flying research platform dedicated to thin film materials development in space.

  7. Proven, long-life hydrogen/oxygen thrust chambers for space station propulsion

    NASA Technical Reports Server (NTRS)

    Richter, G. P.; Price, H. G.

    1986-01-01

    The development of the manned space station has necessitated the development of technology related to an onboard auxiliary propulsion system (APS) required to provide for various space station attitude control, orbit positioning, and docking maneuvers. A key component of this onboard APS is the thrust chamber design. To develop the required thrust chamber technology to support the Space Station Program, the NASA Lewis Research Center has sponsored development programs under contracts with Aerojet TechSystems Company and with Bell Aerospace Textron Division of Textron, Inc. During the NASA Lewis sponsored program with Aerojet TechSystems, a 25 lb sub f hydrogen/oxygen thruster has been developed and proven as a viable candidate to meet the needs of the Space Station Program. Likewise, during the development program with Bell Aerospace, a 50 lb sub f hydrogen/oxygen Thrust Chamber has been developed and has demonstrated reliable, long-life expectancy at anticipated space station operating conditions. Both these thrust chambers were based on design criteria developed in previous thruster programs and successfully verified in experimental test programs. Extensive thermal analyses and models were used to design the thrusters to achieve total impulse goals of 2 x 10 to the 6th power lb sub f-sec. Test data for each thruster will be compared to the analytical predictions for the performance and heat transfer characteristics. Also, the results of thrust chamber life verification tests will be presented.

  8. Spacecraft attitude impacts on COLD-SAT non-vacuum jacketed LH2 supply tank thermal performance

    NASA Technical Reports Server (NTRS)

    Arif, Hugh

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot - Storage, Acquisition and Transfer (COLD-SAT) spacecraft will be launched into low earth orbit to perform fluid management experiments on the behavior of subcritical liquid hydrogen (LH2). For determining the optimum on-orbit attitude for the COLD-SAT satellite, a comparative analytical study was performed to determine the thermal impacts of spacecraft attitude on the performance of the COLD-SAT non-vacuum jacketed LH2 supply tank. Tank thermal performance was quantitied by total conductive and radiative heat leakage into the pressure vessel due to the absorbed solar, earth albedo and infra-red on-orbit fluxes, and also by the uniformity of the variation of this leakage on the vessel surface area. Geometric and thermal analysis math models were developed for the spacecraft and the tank as part of this analysis, based on their individual thermal/structural designs. Two quasi-inertial spacecraft attitudes were investigated and their effects on the tank performance compared. The results are one of the criteria by which the spacecraft orientation in orbit was selected for the in-house NASA Lewis Research Center design.

  9. Spacecraft attitude impacts on COLD-SAT non-vacuum jacketed LH2 supply tank thermal performance

    NASA Technical Reports Server (NTRS)

    Arif, Hugh

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot - Storage, Acquisition and Transfer (COLD-SAT) spacecraft will be launched into low earth orbit to perform fluid management experiments on the behavior of subcritical liquid hydrogen (LH2). For determining the optimum on-orbit attitude for the COLD-SAT satellite, a comparative analytical study was performed to determine the thermal impacts of spacecraft attitude on the performance of the COLD-SAT non-vacuum jacketed LH2 supply tank. Tank thermal performance was quantified by total conductive and radiative heat leakage into the pressure vessel due to the absorbed solar, earth albedo and infra-red on-orbit fluxes, and also by the uniformity of the variation of this leakage on the vessel surface area. Geometric and thermal analysis math models were developed for the spacecraft and the tank as part of this analysis, based on their individual thermal/structural designs. Two quasi-inertial spacecraft attitudes were investigated and their effects on the tank performance compared. The results are one of the criteria by which the spacecraft orientation in orbit was selected for the in-house NASA Lewis Research Center design.

  10. Early Results from Solar Dynamic Space Power System Testing

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1996-01-01

    A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.

  11. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study, volume 2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engine requirements are emphasized and include: high specific impulse within a restricted installed length constraint, long life, multiple starts, different thrust levels, and man-rated reliability. The engine operating characteristics and the major component analytical design are summarized.

  12. RD860 and RD860L Engines with Deep Thrust Throttling and a High Technology Readiness Level (TRL)

    NASA Astrophysics Data System (ADS)

    Prokopchuk, O. O.; Shul'ga, V. A.; Dibrivnyi, O. V.; Kukhta, A. S.

    2018-04-01

    To solve the problems of delivering payloads to Mars surface and returning them to the orbit, liquid rocket engines, operating on storable propellants with deep throttling possibility, are needed, besides having high energy-mass characteristics.

  13. Laser propulsion to earth orbit. Has its time come?

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1989-01-01

    Recent developments in high energy lasers, adaptive optics, and atmospheric transmission bring laser propulsion much closer to realization. Proposed here is a reference vehicle for study which consists of payload and solid propellant (e.g. ice). A suitable laser pulse is proposed for using a Laser Supported Detonation wave to produce thrust efficiently. It seems likely that a minimum system (10 Mw CO2 laser and 10 m dia. mirror) could be constructed for about $150 M. This minimum system could launch payloads of about 13 kg to a 400 km orbit every 10 minutes. The annual launch capability would be about 683 tons times the duty factor. Laser propulsion would be an order of magnitude cheaper than chemical rockets if the duty factor was 20 percent (10,000 launches/yr). Launches beyond that would be even cheaper. The chief problem which needs to be addressed before these possibilities could be realized is the design of a propellant to turn laser energy into thrust efficiently and to withstand the launch environment.

  14. Space shuttle orbital maneuvering engine platelet injector program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A platelet face injector for the Orbit Maneuvering Engine (OME) on the space shuttle was evaluated as a means of obtaining additional design margin and lower cost. The program was conducted in three phases. The first phase evaluated single injection elements, or unielements; it involved visual flow studies, mixing experiments using propellant simulants, and hot firings to assess combustion efficiency, chamber wall compatibility, and injector face temperatures. In the second phase, subscale units producing 600 lbf thrust were used to further evaluate the orifice patterns chosen on the basis of unielement testing. In addition to combustion efficiency, chamber and injector heat transfer, the subscale testing provided a preliminary indication of injector stability. Full scale testing of the selected patterns at 6,000 lbf thrust was performed in the third phase. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects on combustion stability of acoustic cavity configuration, including cavity depth, open area, inlet contour, and other parameters, were investigated.

  15. KSC-05pd2567

    NASA Image and Video Library

    2005-12-06

    KENNEDY SPACE CENTER, FLA. -- Inside NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers make adjustments to the sling being placed round the forward reaction control system that will be installed on Atlantis. When ready, the shuttle equipment will be lifted for installation. The forward reaction control system is located in the forward fuselage nose area. During ascent of the space shuttle, it provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers).

  16. KSC-05pd2566

    NASA Image and Video Library

    2005-12-06

    KENNEDY SPACE CENTER, FLA. -- Inside NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers move the sling into place around the forward reaction control system that will be installed on Atlantis. When ready, the shuttle equipment will be lifted for installation. The forward reaction control system is located in the forward fuselage nose area. During ascent of the space shuttle, it provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers).

  17. KSC-05pd2568

    NASA Image and Video Library

    2005-12-06

    KENNEDY SPACE CENTER, FLA. -- Inside NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers secure the overhead crane to the sling placed round the forward reaction control system that will be installed on Atlantis. When ready, the shuttle equipment will be lifted for installation. The forward reaction control system is located in the forward fuselage nose area. During ascent of the space shuttle, it provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers).

  18. The effects of Poynting-Robertson drag on solar sails

    NASA Astrophysics Data System (ADS)

    Abd El-Salam, F. A.

    2018-06-01

    In the present work, the concept of solar sailing and its developing spacecraft are presented. The effects of Poynting-Robertson drag on solar sails are considered. Some analytical control laws with some mentioned input constraints for optimizing solar sails dynamics in heliocentric orbit using Lagrange's planetary equations are obtained. Optimum force vector in a required direction is maximized by deriving optimal sail cone angle. New control laws that maximize thrust to obtain certain required maximization in some particular orbital element are obtained.

  19. Research and Technology

    NASA Image and Video Library

    1998-01-09

    The Direct Gain Solar Thermal Engine was designed with no moving parts. The concept of Solar Thermal Propulsion Research uses focused solar energy from an inflatable concentrator (a giant magnifying glass) to heat a propellant (hydrogen) and allows thermal expansion through the nozzle for low thrust without chemical combustion. Energy limitations and propellant weight associated with traditional combustion engines are non-existant with this concept. The Direct Gain Solar Thermal Engine would be used for moving from a lower orbit to an upper synchronous orbit.

  20. Space transportation, satellite services, and space platforms

    NASA Technical Reports Server (NTRS)

    Disher, J. H.

    1979-01-01

    The paper takes a preview of the progressive development of vehicles for space transportation, satellite services, and orbital platforms. A low-thrust upper stage of either the ion engine or chemical type will be developed to transport large spacecraft and space platforms to and from GEO. The multimission spacecraft, space telescope, and other scientific platforms will require orbital serves going beyond that provided by the Shuttle's remote manipulator system, and plans call for extravehicular activity tools, improved remote manipulators, and a remote manned work station (the cherry picker).

  1. Space shuttle orbit maneuvering engine reusable thrust chamber: Adverse operating conditions test report

    NASA Technical Reports Server (NTRS)

    Tobin, R. D.

    1974-01-01

    Test hardware, facilities, and procedures are described along with results of electrically heated tube and channel tests conducted to determine adverse operating condition limits for convectively cooled chambers typical of Space Shuttle Orbit Manuevering Engine designs. Hot-start tests were conducted with corrosion resistant steel and nickel tubes with both monomethylhydrazine and 50-50 coolants. Helium ingestion, in both bubble and froth form, was studied in tubular test sections. Helium bubble ingestion and burn-out limits in rectangular channels were also investigated.

  2. Q-Thruster Breadboard Campaign Project

    NASA Technical Reports Server (NTRS)

    White, Harold

    2014-01-01

    Dr. Harold "Sonny" White has developed the physics theory basis for utilizing the quantum vacuum to produce thrust. The engineering implementation of the theory is known as Q-thrusters. During FY13, three test campaigns were conducted that conclusively demonstrated tangible evidence of Q-thruster physics with measurable thrust bringing the TRL up from TRL 2 to early TRL 3. This project will continue with the development of the technology to a breadboard level by leveraging the most recent NASA/industry test hardware. This project will replace the manual tuning process used in the 2013 test campaign with an automated Radio Frequency (RF) Phase Lock Loop system (precursor to flight-like implementation), and will redesign the signal ports to minimize RF leakage (improves efficiency). This project will build on the 2013 test campaign using the above improvements on the test implementation to get ready for subsequent Independent Verification and Validation testing at Glenn Research Center (GRC) and Jet Propulsion Laboratory (JPL) in FY 2015. Q-thruster technology has a much higher thrust to power than current forms of electric propulsion (7x Hall thrusters), and can significantly reduce the total power required for either Solar Electric Propulsion (SEP) or Nuclear Electric Propulsion (NEP). Also, due to the high thrust and high specific impulse, Q-thruster technology will greatly relax the specific mass requirements for in-space nuclear reactor systems. Q-thrusters can reduce transit times for a power-constrained architecture.

  3. Effect of Test Environment on Lifetime of Two Vacuum Lubricants Determined by Spiral Orbit Tribometry

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    2011-01-01

    The destruction rates of a perfluoropolyether (PFPE) lubricant, Krytox 143AC, subjected to rolling contact with 440C steel in a spiral orbit tribometer at room temperature have been evaluated as a function of test environment. The rates in ultrahigh vacuum, 0.213 kPa (1.6 torr) oxygen and one atmosphere of dry nitrogen were about the same. Water vapor in the test environment-a few ppm in one atmosphere of nitrogen-reduced the destruction rate by up to an order of magnitude. A similar effect of water vapor was found for the destruction rate of Pennzane 2001A, an unformulated multiply alkylated cyclopentane (MAC) hydrocarbon oil.

  4. NESC Independent Review of the Mars Reconnaissance Orbiter (MRO) Contamination Thermal/Vacuum (T/V) Anomaly Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Leidecker, Henning W.; Panda, Binayak; Piascik, Robert S.; Muirhead, Brian K.; Peeler, Debra

    2009-01-01

    The NESC eras requested by the NASA Jet Propulsion Laboratory (JPL) to conduct an independent review of the Mars Reconnaissance Orbiter (MRO) Thermal/Vacuum (T/V) Anomaly Assessment. Because the anomaly resulted in the surface contamination of the MRO, selected members of the Materials Super Problem Resolution Team (SPRT) and the NASA technical community having technical expertise relative to contamination issues were chosen for the independent review. The consultation consisted of a review of the MRO Project's reported response to the assessment findings, a detailed review of JPL technical assessment final report, and detailed discussions with the JPL assessment team relative to their findings.

  5. Investigation of a method for repairing the hot gas system branch 2 of the Symphonie-Satellite MV2 in orbit

    NASA Technical Reports Server (NTRS)

    Braun, H.

    1981-01-01

    The failure of all engines on the Symphonie MV2 satellite is attributed to blockage of the oxidizer branch caused by metal salts precipitating and forming a gel which constricts the narrow passage. Laboratory tests and other simulations conducted to observe the behavior of artificially produced jellies on a vacuum show that a removal or at least a reduction of the blockage in the oxidizer branch is possible by evacuation. The greatest blockage appears to occur in the filter. This fact restricts the capability to perform repairs in orbit because the filter installed ahead of the valve cannot by subjected to a vacuum.

  6. A simulation study of emergency lunar escape to orbit using several simplified manual guidance and control techniques

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Hurt, G. J., Jr.

    1971-01-01

    A fixed-base piloted simulator investigation has been made of the feasibility of using any of several manual guidance and control techniques for emergency lunar escape to orbit with very simplified, lightweight vehicle systems. The escape-to-orbit vehicles accommodate two men, but one man performs all of the guidance and control functions. Three basic attitude-control modes and four manually executed trajectory-guidance schemes were used successfully during approximately 125 simulated flights under a variety of conditions. These conditions included thrust misalinement, uneven propellant drain, and a vehicle moment-of-inertia range of 250 to 12,000 slugs per square foot. Two types of results are presented - orbit characteristics and pilot ratings of vehicle handling qualities.

  7. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    NASA Technical Reports Server (NTRS)

    Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Johnson, Catherine L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps are very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and may produce thrust faults consistent with lobate scarp orientations. At any particular point on the lunar surface, peak compressive stress will be reached at a certain time in the diurnal cycle. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we report efforts to refine the model for the current stress state of the Moon by investigating the contribution of polar wander. Progress on relocating the epicentral locations of the shallow moonquakes using an algorithm designed for sparse networks is also reported.

  8. Scaled Lunar Module Jet Erosion Experiments

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Scholl, Harland F.

    1966-01-01

    An experimental research program was conducted on the erosion of particulate surfaces by a jet exhaust. These experiments were scaled to represent the lunar module (LM) during landing. A conical cold-gas nozzle simulating the lunar module nozzle was utilized. The investigation was conducted within a large vacuum chamber by using gravel or glass beads as a simulated soil. The effects of thrust, descent speed, nozzle terminal height, particle size on crater size, and visibility during jet erosion were determined.

  9. Propulsion Physics Under the Changing Density Field Model

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  10. Boeing Low-Thrust Geosynchronous Transfer Mission Experience

    NASA Technical Reports Server (NTRS)

    Poole, Mark; Ho, Monte

    2007-01-01

    Since 2000, Boeing 702 satellites have used electric propulsion for transfer to geostationary orbits. The use of the 25cm Xenon Ion Propulsion System (25cm XIPS) results in more than a tenfold increase in specific impulse with the corresponding decrease in propellant mass needed to complete the mission when compared to chemical propulsion[1]. In addition to more favorable mass properties, with the use of XIPS, the 702 has been able to achieve orbit insertions with higher accuracy than it would have been possible with the use of chemical thrusters. This paper describes the experience attained by using the 702 XIPS ascent strategy to transfer satellite to geosynchronous orbits.

  11. Round-Trip Solar Electric Propulsion Missions for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.

    2014-01-01

    Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.

  12. Composite material application for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Heubner, S. W.

    1982-01-01

    With increasing emphasis on improving engine thrust-to-weight ratios to provide improved payload capabilities, weight reductions achievable by the use of composites have become attractive. Of primary significance is the weight reduction offered by composites, although high temperature properties and cost reduction were also considered. The potential for application of composites to components of Earth-to-orbit hydrocarbon engines and orbit-to-orbit LOX/H2 engines was assessed. The components most likely to benefit from the application of composites were identified, as were the critical technology areas where developed would be required. Recommendations were made and a program outlined for the design, fabrication, and demonstration of specific engine components.

  13. Optimal three-dimensional reusable tug trajectories for planetary missions including correction for nodal precession

    NASA Technical Reports Server (NTRS)

    Borsody, J.

    1976-01-01

    Equations are derived by using the maximum principle to maximize the payload of a reusable tug for planetary missions. The analysis includes a correction for precession of the space shuttle orbit. The tug returns to this precessed orbit (within a specified time) and makes the required nodal correction. A sample case is analyzed that represents an inner planet mission as specified by a fixed declination and right ascension of the outgoing asymptote and the mission energy. The reusable stage performance corresponds to that of a typical cryogenic tug. Effects of space shuttle orbital inclination, several trajectory parameters, and tug thrust on payload are also investigated.

  14. Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods

    NASA Astrophysics Data System (ADS)

    Gilbert, Kathleen M.; Skawinski, William J.; Misra, Milind; Paris, Kristina A.; Naik, Neelam H.; Buono, Ronald A.; Deutsch, Howard M.; Venanzi, Carol A.

    2004-11-01

    Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte> MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl ring rotational barrier for neutral MP and gave results very similar to those of the HF/6-31G* method.

  15. Identification of New Orbits to Enable Future Missions for the Exploration of the Martian Moon Phobos

    NASA Astrophysics Data System (ADS)

    Zamaro, Mattia; Biggs, James D.

    One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. In this paper, a showcase of various classes of non-Keplerian orbits are identified and a number of potential mission applications in the Mars-Phobos system are proposed. These applications include: low-thrust hovering around Phobos for close-range observations; Libration Point Orbits in enhanced three-body dynamics to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing/take-off maneuvers to and from Phobos' surface; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk as a passive radiation shield during future manned flights to Mars to reduce human exposure to radiation. Moreover, the latter orbits can be used as an orbital garage, requiring no orbital maintenance, where a spacecraft could make planned pit-stops during a round-trip mission to Mars.

  16. Research on the transfers to Halo orbits from the view of invariant manifolds

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Tan, Tian; Xu, ShiJie

    2012-04-01

    This paper discusses the evolutions of invariant manifolds of Halo orbits by low-thrust and lunar gravity. The possibility of applying all these manifolds in designing low-thrust transfer, and the presence of single-impulse trajectories under lunar gravity are also explained. The relationship between invariant manifolds and the altitude of the perigee is investigated using a Poincaré map. Six types of single-impulse transfer trajectories are then attained from the geometry of the invariant manifolds. The evolutions of controlled manifolds are surveyed by the gradient law of Jacobi energy, and the following conclusions are drawn. First, the low thrust (acceleration or deceleration) near the libration point is very inefficient that the spacecraft free-flies along the invariant manifolds. The purpose is to increase its velocity and avoid stagnation near the libration point. Second, all controlled manifolds are captured because they lie inside the boundary of Earth's gravity trap in the configuration space. The evolutions of invariant manifolds under lunar gravity are indicated from the relationship between the lunar phasic angle and the altitude of the perigee. Third and last, most of the manifolds have preserved their topologies in the circular restricted three-body problem. However, the altitudes of the perigee of few manifolds are quite non-continuous, which can be used to generate single- impulse flyby trajectories.

  17. Design of a resistojet for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Garza, Jose; Reisman, Jill; Tapia, Jose; Wright, Anthony

    1993-01-01

    In the mid 1990's, NASA will begin assembly of Space Station Freedom, a permanent outpost in a low-earth orbit. For the station to remain in that orbit, an altitude control system must be developed to resist the effects of atmospheric drag. One system being considered by NASA is called a resistojet, and it uses highly pressurized waste gases heated by electrical resistance to provide thrust on the order of 1 Newton. An additional function of the resistojet is to vent waste gases used by the station and its inhabitants. This report focuses on resolving the issues of system performance, flow and heater control, and materials selection and designing test procedures to resolve, by experimentation, any remaining issues. The conceptual model of the resistojet consists of a shell wrapped by a resistive coil with gases flowing internally through the tube with additional components such as regulators, transducers, and thermocouples. For system performance, the major parameters were calculated from the desired thrust range, the pressure within the resistojet and the cold flow mode of operation; waste gases were analyzed at 100 percent capacity and between 58.95 kPa and 552 kPa. The design team found that any ventilation under all conditions would produce thrust, and therefore, it was decided to limit the design of the ventilation function. The design team proceeded with a simplified model to determine the nozzle throat diameter and chamber diameter.

  18. Development of Modal Test Techniques for Validation of a Solar Sail Design

    NASA Technical Reports Server (NTRS)

    Gaspar, James L.; Mann, Troy; Behun, Vaughn; Wilkie, W. Keats; Pappa, Richard

    2004-01-01

    This paper focuses on the development of modal test techniques for validation of a solar sail gossamer space structure design. The major focus is on validating and comparing the capabilities of various excitation techniques for modal testing solar sail components. One triangular shaped quadrant of a solar sail membrane was tested in a 1 Torr vacuum environment using various excitation techniques including, magnetic excitation, and surface-bonded piezoelectric patch actuators. Results from modal tests performed on the sail using piezoelectric patches at different positions are discussed. The excitation methods were evaluated for their applicability to in-vacuum ground testing and to the development of on orbit flight test techniques. The solar sail membrane was tested in the horizontal configuration at various tension levels to assess the variation in frequency with tension in a vacuum environment. A segment of a solar sail mast prototype was also tested in ambient atmospheric conditions using various excitation techniques, and these methods are also assessed for their ground test capabilities and on-orbit flight testing.

  19. Benefits and costs of low thrust propulsion systems

    NASA Technical Reports Server (NTRS)

    Robertson, R. I.; Rose, L. J.; Maloy, J. E.

    1983-01-01

    The results of costs/benefits analyses of three chemical propulsion systems that are candidates for transferring high density, low volume STS payloads from LEO to GEO are reported. Separate algorithms were developed for benefits and costs of primary propulsion systems (PPS) as functions of the required thrust levels. The life cycle costs of each system were computed based on the developmental, production, and deployment costs. A weighted criteria rating approach was taken for the benefits, with each benefit assigned a value commensurate to its relative worth to the overall system. Support costs were included in the costs modeling. Reference missions from NASA, commercial, and DoD catalog payloads were examined. The program was concluded reliable and flexible for evaluating benefits and costs of launch and orbit transfer for any catalog mission, with the most beneficial PPS being a dedicated low thrust configuration using the RL-10 system.

  20. A guidance and navigation system for continuous low thrust vehicles. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tse, C. J. C.

    1973-01-01

    A midcourse guidance and navigation system for continuous low thrust vehicles is described. A set of orbit elements, known as the equinoctial elements, are selected as the state variables. The uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time nominal trajectory is defined and the equation of motion and the measurement equation are linearized about this nominal trajectory. An exponential cost criterion is constructed and a linear feedback guidance law is derived to control the thrusting direction of the engine. Using this guidance law, the vehicle will fly in a trajectory neighboring the nominal trajectory. The extended Kalman filter is used for state estimation. Finally a short mission using this system is simulated. The results indicate that this system is very efficient for short missions.

  1. Altair Descent and Ascent Reference Trajectory Design and Initial Dispersion Analyses

    NASA Technical Reports Server (NTRS)

    Kos, Larry D.; Polsgrove, Tara T.; Sostaric, Ronald r.; Braden, Ellen M.; Sullivan, Jacob J.; Lee, Thanh T.

    2010-01-01

    The Altair Lunar Lander is the linchpin in the Constellation Program (CxP) for human return to the Moon. Altair is delivered to low Earth orbit (LEO) by the Ares V heavy lift launch vehicle, and after subsequent docking with Orion in LEO, the Altair/Orion stack is delivered through translunar injection (TLI). The Altair/Orion stack separating from the Earth departure stage (EDS) shortly after TLI and continues the flight to the Moon as a single stack. Altair performs the lunar orbit insertion (LOI) maneuver, targeting a 100-km circular orbit. This orbit will be a polar orbit for missions landing near the lunar South Pole. After spending nearly 24 hours in low lunar orbit (LLO), the lander undocks from Orion and performs a series of small maneuvers to set up for descending to the lunar surface. This descent begins with a small deorbit insertion (DOI) maneuver, putting the lander on an orbit that has a perilune of 15.24 km (50,000 ft), the altitude where the actual powered descent initiation (PDI) commences. At liftoff from Earth, Altair has a mass of 45 metric tons (mt). However after LOI (without Orion attached), the lander mass is slightly less than 33 mt at PDI. The lander currently has a single descent module main engine, with TBD lb(sub f) thrust (TBD N), providing a thrust-to-weight ratio of approximately TBD Earth g's at PDI. LDAC-3 (Lander design and analysis cycle #3) is the most recently closed design sizing and mass properties iteration. Upgrades for loss of crew (LDAC-2) and loss of mission (LDAC-3) have been incorporated into the lander baseline design (and its Master Equipment List). Also, recently, Altair has been working requirements analyses (LRAC-1). All nominal data here are from the LDAC-3 analysis cycle. All dispersions results here are from LRAC-1 analyses.

  2. Independent Orbiter Assessment (IOA): Analysis of the guidance, navigation, and control subsystem

    NASA Technical Reports Server (NTRS)

    Trahan, W. H.; Odonnell, R. A.; Pietz, K. C.; Hiott, J. M.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Guidance, Navigation, and Control (GNC) Subsystem hardware are documented. The function of the GNC hardware is to respond to guidance, navigation, and control software commands to effect vehicle control and to provide sensor and controller data to GNC software. Some of the GNC hardware for which failure modes analysis was performed includes: hand controllers; Rudder Pedal Transducer Assembly (RPTA); Speed Brake Thrust Controller (SBTC); Inertial Measurement Unit (IMU); Star Tracker (ST); Crew Optical Alignment Site (COAS); Air Data Transducer Assembly (ADTA); Rate Gyro Assemblies; Accelerometer Assembly (AA); Aerosurface Servo Amplifier (ASA); and Ascent Thrust Vector Control (ATVC). The IOA analysis process utilized available GNC hardware drawings, workbooks, specifications, schematics, and systems briefs for defining hardware assemblies, components, and circuits. Each hardware item was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  3. Commercial winged booster to launch satellites from B-52

    NASA Astrophysics Data System (ADS)

    Covault, Craig

    1988-06-01

    A newly developed commercial winged space booster, the Pegasus, which will launch satellites from a B-52, is described. The booster will be able to launch a 600 lb, 72 in long craft into a 250 nm equatorial orbit. The Pegasus is 49.2 ft long with a 22 ft wing span and a weight of 40,000 lb. The winged design allows for an angle of attack of 20 degrees and a supersonic lift over drag ratio of 4:1. It operates with three solid rocket motors and will be launched from a B-52 at an altitude of 40,000 ft. The first motor provides an average of 112,000 lbs of thrust for about 82 seconds; burnout occurs at 208,000 ft and Mach 8.7. The third stage provides 9,000 lbs of thrust for 65 seconds, accelerating the vehicle into 25,000 fps orbital velocity. The first launch will be a 400 lb relay satellite targeted for July 1989 over the Pacific Ocean. Future launches will be possible from any site and will cost 10 million dollars. The Pegasus can also carry a 1500 payload at high altitude Mach cruise flights that do not achieve orbit, providing data to validate spaceplane conceptual fluid dynamic codes generated by computer.

  4. Thrust Measurements in Ballistic Pendulum Ablative Laser Propulsion Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brazolin, H.; Rodrigues, N. A. S.; Minucci, M. A. S.

    This paper describes a setup for thrust measurement in ablative laser propulsion experiments, based on a simple ballistic pendulum associated to an imaging system, which is being assembled at IEAv. A light aluminium pendulum holding samples is placed inside a 100 liters vacuum chamber with two optical windows: the first (in ZnSe) for the laser beam and the second (in fused quartz) for the pendulum visualization. A TEA-CO{sub 2} laser beam is focused to the samples providing ablation and transferring linear moment to the pendulum as a whole. A CCD video camera captures the oscillatory movement of the pendulum andmore » the its trajectory is obtained by image processing. By fitting the trajectory of the pendulum to a dumped sinusoidal curve is possible to obtain the amplitude of the movement which is directly related to the momentum transfered to the sample.« less

  5. The research Of Multilayer Thermal Insulation With Mechanical Properties Based On Model Analysis Test

    NASA Astrophysics Data System (ADS)

    Lianhua, Yin

    The heat shield of aircraft is made of the major thrusts structure with multilayer thermal insulation part. For protecting against thermo-radiation from larger thrusting force engine,the heat shield is installed around this engine nearby.The multilayer thermal insulation part with multilayer radiation/reflection structure is made of reflection layer and interval layer.At vacuum condition,these materials is higher heat insulation capability than other material,is applied for lots of pats on aircraft extensively.But because of these material is made of metal and nonmetal,it is impossible to receive it's mechanical properties of materials from mechanical tests.These paper describes a new measure of mechanical properties of materials in the heat shield based on model analysis test.At the requirement for the first order lateral frequency,these measure provide for the FEM analysis foundation on the optimization structure of the heat shield.

  6. The ENABLER - Based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  7. Solar electric geocentric transfer with attitude constraints: Analysis

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.; Malchow, H. L.; Delbaum, T. N.

    1975-01-01

    A time optimal or nearly time optimal trajectory program was developed for solar electric geocentric transfer with or without attitude constraints and with an optional initial high thrust stage. The method of averaging reduces computation time. A nonsingular set of orbital elements is used. The constraints, which are those of one of the SERT-C designs, introduce complexities into the analysis and the solution yields possible discontinuous changes in thrust direction. The power degradation due to VanAllen radiation is modeled analytically. A wide range of solar cell characteristics is assumed. Effects such as oblateness and shadowing are included. The analysis and the results of many example runs are included.

  8. Space shuttle maneuvering engine reusable thrust chamber program. Task 11: Low Epsilon stability test plan

    NASA Technical Reports Server (NTRS)

    Pauckert, R. P.

    1974-01-01

    The performance and heat transfer characteristics of a doublet element type injector for the space shuttle orbiter maneuvering engine thrust chamber were investigated. Ths stability characteristics were evaluated over a range of chamber pressures and mixture ratios. The specific objectives of the test were: (1) to determine whether stability has been influenced by injection of boundary layer coolant across the cavity entrance, (2) if the injector is stable, to determine the minimum cavity area required to maintain stability, and (3) if the injector is unstable, to determine the effects of entrance geometry and increased area on stability.

  9. SSME/side loads analysis for flight configuration, revision A. [structural analysis of space shuttle main engine under side load excitation

    NASA Technical Reports Server (NTRS)

    Holland, W.

    1974-01-01

    This document describes the dynamic loads analysis accomplished for the Space Shuttle Main Engine (SSME) considering the side load excitation associated with transient flow separation on the engine bell during ground ignition. The results contained herein pertain only to the flight configuration. A Monte Carlo procedure was employed to select the input variables describing the side load excitation and the loads were statistically combined. This revision includes an active thrust vector control system representation and updated orbiter thrust structure stiffness characteristics. No future revisions are planned but may be necessary as system definition and input parameters change.

  10. Pointing and control system enabling technology for future automated space missions

    NASA Technical Reports Server (NTRS)

    Dahlgren, J. B.

    1978-01-01

    Future automated space missions present challenging opportunities in the pointing-and-control technology disciplines. The enabling pointing-and-control system technologies for missions from 1985 to the year 2000 were identified and assessed. A generic mission set including Earth orbiter, planetary, and other missions which predominantly drive the pointing-and-control requirements was selected for detailed evaluation. Technology candidates identified were prioritized as planning options for future NASA-OAST advanced development programs. The primary technology thrusts in each candidate program were cited, and advanced development programs in pointing-and-control were recommended for the FY 80 to FY 87 period, based on these technology thrusts.

  11. STS-49 Landing at Edwards with First Drag Chute Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Shuttle Endeavour concludes mission STS-49 at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, with a 1:57 p.m. (PDT) landing 16 May on Edward's concrete runway 22. The planned 7-day mission, which began with a launch from Kennedy Space Center, Florida, at 4:41 p.m. (PFT), 7 May, was extended two days to allow extra time to rescue the Intelsat VI satellite and complete Space Station assembly techniques originally planned. After a perfect rendezvous in orbit and numerous attempts to grab the satellite, space walking astronauts Pierre Thuot, Rick Hieb and Tom Akers successfully rescued it by hand on the third space walk with the support of mission specialists Kathy Thornton and Bruce Melnick. The three astronauts, on a record space walk, took hold of the satellite and directed it to the shuttle where a booster motor was attached to launch it to its proper orbit. Commander Dan Brandenstein and Pilot Kevin Chilton brought Endeavours's record setting maiden voyage to a perfect landing at Edwards AFB with the first deployment of a drag chute on a shuttle mission. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  12. STS-49 Landing at Edwards with First Drag Chute Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Shuttle Endeavour concludes mission STS-49 at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, with a 1:57 p.m. (PDT) landing May 16 on Edward's concrete runway 22. The planned 7-day mission, which began with a launch from Kennedy Space Center, Florida, at 4:41 p.m. (PFT), 7 May, was extended two days to allow extra time to rescue the Intelsat VI satellite and complete Space Station assembly techniques originally planned. After a perfect rendezvous in orbit and numerous attempts to grab the satellite, space walking astronauts Pierre Thuot, Rick Hieb and Tom Akers successfully rescued it by hand on the third space walk with the support of mission specialists Kathy Thornton and Bruce Melnick. The three astronauts, on a record space walk, took hold of the satellite and directed it to the shuttle where a booster motor was attached to launch it to its proper orbit. Commander Dan Brandenstein and Pilot Kevin Chilton brought Endeavours's record setting maiden voyage to a perfect landing at Edwards with the first deployment of a drag chute on a shuttle mission. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  13. Blue Origin testing

    NASA Image and Video Library

    2012-04-20

    NASA Administrator Charles Bolden (r) discusses the upcoming testing of Blue Origin's BE-3 engine thrust chamber assembly with Steve Knowles, Blue Origin project manager, at the E-1 Test Stand during an April 20, 2012, visit to Stennis Space Center. Blue Origin is one of NASA's partners developing innovative systems to reach low-Earth orbit.

  14. Space shuttle orbit maneuvering engine

    NASA Technical Reports Server (NTRS)

    Pauckert, R. P.

    1975-01-01

    Data on the performance, stability, and thermal characteristics of an OME operating with an alternate injector configuration and with alternate propellants was obtained. The design, manufacturing, and operating characteristics of an electroformed, regeneratively cooled thrust chamber were also derived. Subscale and full scale tests provide data relating to off-design and transient operation.

  15. In-Flight Operation of the Dawn Ion Propulsion System Through Start of the Vesta Cruise Phase

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.; Brophy, John R.

    2009-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) which will provide most of the delta V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer to Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to Ceres science orbits. The Dawn ion design is based on the design validated on NASA's Deep Space 1 (DS1) mission. However, because of the very substantial (11 km/s) delta V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are derivatives of the components used on DS1. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft followed by cruise to Mars. Cruise thrusting leading to a Mars gravity assist began on December 17, 2007 and was successfully concluded as planned on October 31, 2008. During this time period the Dawn IPS was operated mostly at full power for approximately 6500 hours, consumed 71.7 kg of xenon and delivered approximately 1.8 km/s of delta V to the spacecraft. The thrusting to Mars was followed by a coasting period of approximately 3.5 months that included a Mars flyby in February of 2009. The Mars flyby provided a gravity assist (MGA) for a plane change and approximately 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. During the coast period IPS was operated for a trajectory correction maneuver and for engineering tests but was not operated for primary propulsion. Closest approach to Mars occurred as planned on February 17, 2009 and was followed by another coasting period of just under 4 months in duration. During this last coasting phase IPS was operated only for routine maintenance activities and for system engineering tests. Deterministic thrusting for heliocentric transfer to Vesta resumed on June 8, 2009. IPS will be operated for over two years at throttled power levels leading to arrival at Vesta in September of 2011 and arrival at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through the start of deterministic thrusting to Vesta.

  16. Space Transfer Concepts and Analyses for Exploration Missions. Technical Directive 12: Beamed Power Systems Study

    NASA Technical Reports Server (NTRS)

    Eder, D.

    1992-01-01

    Parametric models were constructed for Earth-based laser powered electric orbit transfer from low Earth orbit to geosynchronous orbit. These models were used to carry out performance, cost/benefit, and sensitivity analyses of laser-powered transfer systems including end-to-end life cycle cost analyses for complete systems. Comparisons with conventional orbit transfer systems were made indicating large potential cost savings for laser-powered transfer. Approximate optimization was done to determine best parameter values for the systems. Orbit transfer flights simulations were conducted to explore effects of parameters not practical to model with a spreadsheet. The simulations considered view factors that determine when power can be transferred from ground stations to an orbit transfer vehicle and conducted sensitivity analyses for numbers of ground stations, Isp including dual-Isp transfers, and plane change profiles. Optimal steering laws were used for simultaneous altitude and plane change. Viewing geometry and low-thrust orbit raising were simultaneously simulated. A very preliminary investigation of relay mirrors was made.

  17. Low Earth orbit communications satellite

    NASA Technical Reports Server (NTRS)

    Moroney, D.; Lashbrook, D.; Mckibben, B.; Gardener, N.; Rivers, T.; Nottingham, G.; Golden, B.; Barfield, B.; Bruening, J.; Wood, D.

    1992-01-01

    A current thrust in satellite communication systems considers a low-Earth orbiting constellations of satellites for continuous global coverage. Conceptual design studies have been done at the time of this design project by LORAL Aerospace Corporation under the program name GLOBALSTAR and by Motorola under their IRIDIUM program. This design project concentrates on the spacecraft design of the GLOBALSTAR low-Earth orbiting communication system. Overview information on the program was gained through the Federal Communications Commission licensing request. The GLOBALSTAR system consists of 48 operational satellites positioned in a Walker Delta pattern providing global coverage and redundancy. The operational orbit is 1389 km (750 nmi) altitude with eight planes of six satellites each. The orbital planes are spaced 45 deg., and the spacecraft are separated by 60 deg. within the plane. A Delta 2 launch vehicle is used to carry six spacecraft for orbit establishment. Once in orbit, the spacecraft will utilize code-division multiple access (spread spectrum modulation) for digital relay, voice, and radio determination satellite services (RDSS) yielding position determination with accuracy up to 200 meters.

  18. Fusion-Enabled Pluto Orbiter and Lander

    NASA Technical Reports Server (NTRS)

    Thomas, Stephanie

    2017-01-01

    The Pluto orbiter mission proposed here is credible and exciting. The benefits to this and all outer-planet and interstellar-probe missions are difficult to overstate. The enabling technology, Direct Fusion Drive, is a unique fusion engine concept based on the Princeton Field-Reversed Configuration (PFRC) fusion reactor under development at the Princeton Plasma Physics Laboratory. The truly game-changing levels of thrust and power in a modestly sized package could integrate with our current launch infrastructure while radically expanding the science capability of these missions. During this Phase I effort, we made great strides in modeling the engine efficiency, thrust, and specific impulse and analyzing feasible trajectories. Based on 2D fluid modeling of the fusion reactors outer stratum, its scrape-off-layer (SOL), we estimate achieving 2.5 to 5 N of thrust for each megawatt of fusion power, reaching a specific impulse, Isp, of about 10,000 s. Supporting this model are particle-in-cell calculations of energy transfer from the fusion products to the SOL electrons. Subsequently, this energy is transferred to the ions as they expand through the magnetic nozzle and beyond. Our point solution for the Pluto mission now delivers 1000 kg of payload to Pluto orbit in 3.75 years using 7.5 N constant thrust. This could potentially be achieved with a single 1 MW engine. The departure spiral from Earth orbit and insertion spiral to Pluto orbit require only a small portion of the total delta-V. Departing from low Earth orbit reduces mission cost while increasing available mission mass. The payload includes a lander, which utilizes a standard green propellant engine for the landing sequence. The lander has about 4 square meters of solar panels mounted on a gimbal that allows it to track the orbiter, which beams 30 to 50 kW of power using a 1080 nm laser. Optical communication provides dramatically high data rates back to Earth. Our mass modeling investigations revealed that if current high-temperature superconductors are utilized at liquid nitrogen temperatures, they drive the mass of the engine, partly because of the shielding required to maintain their critical temperature. Second generation materials are thinner but the superconductor is a very thin layer deposited on a substrate with additional layers of metallic classing. Tremendous research is being performed on a variety of these superconducting materials, and new irradiation data is now available. This raises the possibility of operating nearfuture high-temperature superconductors at a moderately low temperature to dramatically reduce the amount of shielding required. At the same time, a first generation space engine may require low-temperature superconductors, which are higher TRL and have been designed for space coils before (AMS-02 experiment for the ISS). We performed detailed analysis of the startup system and thermal conversion system components. The ideal working fluid was determined to be a blend of Helium and Xenon. No significant problems were identified with these subsystems. For the RF system, we conceived of a new, more efficient design using state-of-the-art switch amplifiers, which have the potential for 100% efficiency. This report presents details of our engine and trajectory analyses, mass modeling efforts, and updated vehicle designs.

  19. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  20. Debris Albedo from Laser Ablation in Low and High Vacuum: Comparisons to Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, G.; Adams, P. M.; Alaan, D. R.; Panetta, C. J.

    The albedo of orbital debris fragments in space is a critical parameter used in the derivation of their physical sizes from optical measurements. The change in albedo results from scattering due to micron and sub-micron particles on the surface. There are however no known hypervelocity collision ground tests that simulate the high-vacuum conditions on-orbit. While hypervelocity impact experiments at a gun range can offer a realistic representation of the energy of impact and fragmentation, and can aid the understanding of albedo, they are conducted in low-pressure air that is not representative of the very high vacuum of 10-8 Torr or less that exists in the Low Earth Orbit environment. Laboratory simulation using laser ablation with a high power laser, on the same target materials as used in current satellite structures, is appealing because it allows for well-controlled investigations that can be coupled to optical albedo (reflectance) measurements of the resultant debris. This relatively low-cost laboratory approach can complement the significantly more elaborate and expensive field-testing of single-shot hypervelocity impact on representative satellite structures. Debris generated is optically characterized with UV-VIS-NIR reflectance, and particle size distributions can be measured. In-situ spectroscopic diagnostics (nanosecond time frame) provide an identification of atoms and ions in the plume, and plasma temperatures, allowing a correlation of the energetics of the ablated plume with resulting albedo and particle size distributions of ablated debris. Our laboratory experiments offer both a high-vacuum environment, and selection of any gaseous ambient, at any controlled pressure, thus allowing for comparison to the hypervelocity impact experiments in low-pressure air. Initial results from plume analysis, and size distribution and microstructure of debris collected on witness plates show that laser ablations in low-pressure air offer many similarities to the recent DebrisLV and DebriSat hypervelocity impact experiments, while ablations in high-vacuum provide critical distinctions.

  1. Evaluation of an In-Situ, Liquid Lubrication System for Space Mechanisms Using a Vacuum Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Pepper, Stephen V.

    2002-01-01

    Many moving mechanical assemblies (MMAs) for space applications rely on a small, initial charge of lubricant for the entire mission lifetime, often in excess of five years. In many cases, the premature failure of a lubricated component can result in mission failure. If lubricant could be resupplied to the contact in-situ, the life of the MMA could be extended. A vacuum spiral orbit tribometer (SOT) was modified to accept a device to supply re-lubrication during testing. It was successfully demonstrated that a liquid lubricant (Pennzane (Registered Trademark)/Nye 2001A) could be evaporated into a contact during operation, lowering the friction coefficient and therefore extending the life of the system.

  2. Effect of Test Environment on Lifetime of Two Vacuum Lubricants Determined by Spiral Orbit Tribometry

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    2006-01-01

    The destruction rates of a perfluoropolyether (PFPE) lubricant, Krytox 143AC(TradeMark), subjected to rolling contact with 440C steel in a spiral orbit tribometer at room temperature have been evaluated as a function of test environment. The rates in ultrahigh vacuum, 0.21 3 kPa (1.6 Torr) oxygen and one atmosphere of dry nitrogen were about the same. Water vapor in the test environment - a few ppm in one atmosphere of nitrogen - reduced the destruction rate by up to an order of magnitude. A similar effect of water vapor was found for the destruction rate of Pennzane(Registered TradeMark) 2001A , an unformulated multiply alkylated cyclopentane (MAC) hydrocarbon oil.

  3. Propulsion Physics Using the Chameleon Density Model

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will require a new theory of propulsion. Specifically one that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. The Chameleon Density Model (CDM) is one such model that could provide new paths in propulsion toward this end. The CDM is based on Chameleon Cosmology a dark matter theory; introduced by Khrouy and Weltman in 2004. Chameleon as it is hidden within known physics, where the Chameleon field represents a scalar field within and about an object; even in the vacuum. The CDM relates to density changes in the Chameleon field, where the density changes are related to matter accelerations within and about an object. These density changes in turn change how an object couples to its environment. Whereby, thrust is achieved by causing a differential in the environmental coupling about an object. As a demonstration to show that the CDM fits within known propulsion physics, this paper uses the model to estimate the thrust from a solid rocket motor. Under the CDM, a solid rocket constitutes a two body system, i.e., the changing density of the rocket and the changing density in the nozzle arising from the accelerated mass. Whereby, the interactions between these systems cause a differential coupling to the local gravity environment of the earth. It is shown that the resulting differential in coupling produces a calculated value for the thrust near equivalent to the conventional thrust model used in Sutton and Ross, Rocket Propulsion Elements. Even though imbedded in the equations are the Universe energy scale factor, the reduced Planck mass and the Planck length, which relates the large Universe scale to the subatomic scale.

  4. STS-51 Discovery launch

    NASA Image and Video Library

    1993-09-12

    STS051-S-108 (12 Sept. 1993) --- The Space Shuttle Discovery soars toward a nine-day stay in Earth-orbit to support the mission. Launch occurred at 7:45 a.m. (EDT) September 12, 1993. Note the diamond shock effect coming from the thrust of the three main engines. Onboard the shuttle were astronauts Frank L. Culbertson, Jr., William F. Readdy, Daniel W. Bursch, James H. Newman and Carl E. Walz, along with a number of payloads. The payloads included the Advanced Communications Technology Satellite (ACTS) with its Transfer Orbit Stage (TOS), the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) and its Shuttle Pallet Satellite (SPAS) carrier. This photograph was taken with a 35mm camera.

  5. Analysis of separation of the space shuttle orbiter from a large transport airplane

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.

    1977-01-01

    The feasibility of safely separating the space shuttle orbiter (140A/B) from the top of a large carrier vehicle (the C-5 airplane) at subsonic speeds was investigated. The longitudinal equations of motion for both vehicles were numerically integrated using a digital computer program which incorporates experimentally derived interference aerodynamic data to analyze the separation maneuver for various initial conditions. Separation of the space shuttle orbiter from a carrier vehicle was feasible for a range of dynamic-pressure and flight-path-angle conditions. By using an autopilot, the vehicle attitudes were held constant which ensured separation. Carrier-vehicle engine thrust, landing gear, and spoilers provide some flexibility in the separation maneuver.

  6. Nuclear energy waste-space transportation and removal

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    A method for utilizing the decay heat of actinide wastes to power an electric thrust vehicle is proposed. The vehicle, launched by shuttle to earth orbit and to earth escape by a tug, obtains electrical power from the actinide waste heat by thermionic converters. The heavy gamma ray and neutron shielding which is necessary as a safety feature is removed in orbit and returned to earth for reuse. The problems associated with safety are dealt with in depth. A method for eliminating fission wastes via chemical propulsion is briefly discussed.

  7. Radioactive waste disposal via electric propulsion

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  8. NASA' s life sciences and space radiation biology.

    PubMed

    Rambaut, P; Nicogossian, A

    1984-01-01

    Plans for the various missions in which men and women are expected to participate during the next 10 years are outlined. Such missions include flights of up to three months duration in low earth orbit as well as possible short excursions to geosynchronous orbit. Research activities are described which cover the full spectrum of physiological and psychological responses to space flight. These activities are shown to contribute to the ongoing Shuttle program and the future Space Station. The paper includes a summary of the major technical thrusts needed to support extended habitation in space.

  9. Laser Propulsion for LOTV Space Missions

    NASA Astrophysics Data System (ADS)

    Rezunkov, Yuri A.

    2004-03-01

    Advanced Space Propulsion-Investigation Committee (ASPIC) of the Japan Society for Aeronautics and Space Sciences (JSASS) selected the Laser Orbital Transfer Vehicle (LOTV) project for development of non-chemical space propulsion systems that have a capability to sustain expanded human space activities in the 21st century. This talk is presenting an analysis of the laser propulsion researches made within the frames of the ISTC Project 1801 as applied to the LOTV Project. The study includes the development of techniques for low-thrust maneuvers of the spacecraft to achieve geostationary orbits.

  10. A Minimal Radio and Plasma Wave Investigation For a Mercury Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    2001-01-01

    The primary thrust of the effort at The University of Iowa for the definition of an orbiter mission to Mercury is a minimum viable radio and plasma wave investigation. While it is simple to add sensors and capability to any payload, the challenge is to do reasonable science within limited resources; and viable missions to Mercury are especially limited in payload mass. For a wave investigation, this is a serious concern, as the sensor mass often makes up a significant fraction of the instrumentation mass.

  11. ARC-1980-AC80-0107-4

    NASA Image and Video Library

    1980-02-06

    Outfitting the Space Shuttle Orbiter Columbia with the three main rocket engines that will boost the 75 ton spacecraft into orbit on its first flight is completed with the installation of Engine #2007 (top). At liftoff, each engine will be producing about 375,000 pounds of thrust, or about 12 million horsepower each, and gulping down its liquid oxygen and liquid hydrogen propellants at a rate of about 1,100 pounts per second. The Shuttle's main engines, the most efficient rocket engines ever built, are reusable and designed t operate over a life span of 55 missions.

  12. Orbit Transfer Vehicle (OTV) engine phase A study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1978-01-01

    Requirements for the orbit transfer vehicle engine were examined. Engine performance/weight sensitivities, the effect of a service life of 300 start/shutdown cycles between overalls on the maximum engine operating pressure, and the sensitivity of the engine design point (i.e., thrust chamber pressure and nozzle area ratio) to the performance requirements specified are among the factors studied. Preliminary engine systems analyses were conducted on the stage combustion, expander, and gas generator engine cycles. Hydrogen and oxygen pump discharge pressure requirements are shown for various engine cycles. Performance of the engine cycles is compared.

  13. Launching rockets and small satellites from the lunar surface

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Dougherty, W. M.; Pankow, D. H.

    1985-01-01

    Scientific payloads and their propulsion systems optimized for launch from the lunar surface differ considerably from their counterparts for use on earth. For spin-stabilized payloads, the preferred shape is a large diameter-to-length ratio to provide stability during the thrust phase. The rocket motor required for a 50-kg payload to reach an altitude of one lunar radius would have a mass of about 41 kg. To place spin-stabilized vehicles into low altitude circular orbits, they are first launched into an elliptical orbit with altitude about 840 km at aposelene. When the spacecraft crosses the desired circular orbit, small retro-rockets are fired to attain the appropriate direction and speed. Values of the launch angle, velocity increments, and other parameters for circular orbits of several altitudes are tabulated. To boost a 50-kg payload into a 100-km altitude circular orbit requires a total rocket motor mass of about 90 kg.

  14. Launching rockets and small satellites from the lunar surface

    NASA Astrophysics Data System (ADS)

    Anderson, K. A.; Dougherty, W. M.; Pankow, D. H.

    Scientific payloads and their propulsion systems optimized for launch from the lunar surface differ considerably from their counterparts for use on earth. For spin-stabilized payloads, the preferred shape is a large diameter-to-length ratio to provide stability during the thrust phase. The rocket motor required for a 50-kg payload to reach an altitude of one lunar radius would have a mass of about 41 kg. To place spin-stabilized vehicles into low altitude circular orbits, they are first launched into an elliptical orbit with altitude about 840 km at aposelene. When the spacecraft crosses the desired circular orbit, small retro-rockets are fired to attain the appropriate direction and speed. Values of the launch angle, velocity increments, and other parameters for circular orbits of several altitudes are tabulated. To boost a 50-kg payload into a 100-km altitude circular orbit requires a total rocket motor mass of about 90 kg.

  15. International Space Station End-of-Life Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    Duncan, Gary

    2014-01-01

    Although there are ongoing efforts to extend the ISS life cycle through 2028, the International Space Station (ISS) end-of-life (EOL) cycle is currently scheduled for 2020. The EOL for the ISS will require de-orbiting the ISS. This will be the largest manmade object ever to be de-orbited, therefore safely de-orbiting the station will be a very complex problem. This process is being planned by NASA and its international partners. Numerous factors will need to be considered to accomplish this such as target corridors, orbits, altitude, drag, maneuvering capabilities, debris mapping etc. The ISS EOL Probabilistic Risk Assessment (PRA) will play a part in this process by estimating the reliability of the hardware supplying the maneuvering capabilities. The PRA will model the probability of failure of the systems supplying and controlling the thrust needed to aid in the de-orbit maneuvering.

  16. Kalman filtering applied to real-time monitoring of apogee maneuvers

    NASA Technical Reports Server (NTRS)

    Deboer, Frederic; Barbier, Christian

    1993-01-01

    Part of the Space Mathematics Division in CNES, the Flight Dynamics Center provides attitude and orbit determinations and maneuvers during the Launch and Early Operation Phase (LEOP) of geostationary satellites. Orbit determination is based on a Kalman filter method; when the 2 GHz CNES/NASA network is used, Doppler measurements are available and allow orbit determination during the apogee maneuvers. This method was used for TELE-X and TDF 2 LEOP (3-axis controlled satellites) and also for TELECOM 2 and HISPASAT (spun satellites): it enables us to follow the evolution of the maneuver and gives out a quite accurate estimation of the reached orbit. In this paper, we briefly describe the dynamic models of the orbit evolution in both cases, '3-axis' and 'inertial' thrust. Then, we present the results obtained for each case. Afterwards, we present some cases to show the robustness of the filter.

  17. STS-64 and 747-SCA Ferry Flight Takeoff

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Discovery, mated to NASA's 747 Shuttle Carrier Aircraft (SCA), takes to the air for its ferry flight back to the Kennedy Space Center in Florida. The spacecraft, with a crew of six, was launched into a 57-degree high inclination orbit from the Kennedy Space Center, Florida, at 3:23 p.m., 9 September 1994. The mission featured the study of clouds and the atmosphere with a laser beaming system called Lidar In-Space Technology Experiment (LITE), and the first untethered space walk in ten years. A Spartan satellite was also deployed and later retrieved in the study of the sun's corona and solar wind. The mission was scheduled to end Sunday, 18 September, but was extended one day to continue science work. Bad weather at the Kennedy Space Center on 19 September, forced a one-day delay to September 20, with a weather divert that day to Edwards. Mission commander was Richard Richards, the pilot Blaine Hammond, while mission specialists were Jerry Linenger, Susan Helms, Carl Meade, and Mark Lee. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.

  18. Commercial aspects of epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.

  19. Reflector for efficient coupling of a laser beam to air or other fluids

    DOEpatents

    Kare, Jordin T.

    1992-01-01

    A reflector array is disclosed herein that provides a controlled region or regions of plasma breakdowns from a laser beam produced at a remotely-based laser source. The plasma may be applied to produce thrust to propel a spacecraft, or to diagnose a laser beam, or to produce shockwaves. The spacecraft propulsion system comprises a reflector array attached to the vehicle. The reflector array comprises a plurality of reflectors spaced apart on a reflective surface, with each reflector acting as an independent focusing mirror. The reflectors are spaced closely together to form a continuous or partially-continuous surface. The reflector array may be formed from a sheet of reflective material, such as copper or aluminum. In operation, a beam of electromagnetic energy, such as a laser beam, is directed at the reflectors which focus the reflected electromagnetic energy at a plurality of regions off the surface. The energy concentrated in the focal region causes a breakdown of the air or other fluid in the focal region, creating a plasma. Electromagnetic energy is absorbed in the plasma and it grows in volume, compressing and heating the adjacent fluid thereby providing thrust. Laser pulses may be applied repetitively. After each such thrust pulse, fresh air can be introduced next to the surface either laterally, or through a perforated surface. If air or some other gas or vapor is supplied, for example from a tank carried on board a vehicle, this invention may also be used to provide thrust in a vacuum environment.

  20. Independent Orbiter Assessment (IOA): Analysis of the orbital maneuvering system

    NASA Technical Reports Server (NTRS)

    Prust, C. D.; Paul, D. J.; Burkemper, V. J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbital Maneuvering System (OMS) hardware are documented. The OMS provides the thrust to perform orbit insertion, orbit circularization, orbit transfer, rendezvous, and deorbit. The OMS is housed in two independent pods located one on each side of the tail and consists of the following subsystems: Helium Pressurization; Propellant Storage and Distribution; Orbital Maneuvering Engine; and Electrical Power Distribution and Control. The IOA analysis process utilized available OMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluted and analyzed for possible failure modes and effects. Criticality was asigned based upon the severity of the effect for each failure mode.

  1. Spacecraft Formation Flying Maneuvers Using Linear Quadratic Regulation With No Radial Axis Inputs

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Yedavalli, R. K.; Sparks, Andrew G.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Regarding multiple spacecraft formation flying, the observation has been made that control thrust need only be applied coplanar to the local horizon to achieve complete controllability of a two-satellite (leader-follower) formation. A formulation of orbital dynamics using the state of one satellite relative to another is used. Without the need for thrust along the radial (zenith-nadir) axis of the relative reference frame, propulsion system simplifications and weight reduction may be accomplished. This work focuses on the validation of this control system on its own merits, and in comparison to a related system which does provide thrust along the radial axis of the relative frame. Maneuver simulations are performed using commercial ODE solvers to propagate the Keplerian dynamics of a controlled satellite relative to an uncontrolled leader. These short maneuver simulations demonstrate the capacity of the controller to perform changes from one formation geometry to another. Control algorithm performance is evaluated based on measures such as the fuel required to complete a maneuver and the maximum acceleration required by the controller. Based on this evaluation, the exclusion of the radial axis of control still allows enough control authority to use Linear Quadratic Regulator (LQR) techniques to design a gain matrix of adequate performance over finite maneuvers. Additional simulations are conducted including perturbations and using no radial control inputs. A major conclusion presented is that control inputs along the three axes have significantly different relationships to the governing orbital dynamics that may be exploited using LQR.

  2. A History of Satellite Reconnaissance. Volume 3A - GAMBIT (REDACTED)

    DTIC Science & Technology

    1974-01-01

    In order to carry still more batteries, therefore, it was necessary to increase the thrust of the Agena upper stage by the use of High Density Acid ... HDA ) in place of the standard oxidizer. That modification allowed either an increase in orbital 295 BYE 17017-74 Handle via Byemarl Ta -T-OP-SEMET

  3. Program documentation. Program description and user information for the hydraulics/auxiliary power unit (HYDRA) computer program. [for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Redwine, W. J.

    1979-01-01

    A timeline containing altitude, control surface deflection rates and angles, hinge moment loads, thrust vector control gimbal rates, and main throttle settings is used to derive the model. The timeline is constructed from the output of one or more trajectory simulation programs.

  4. Study and Developement of Compact Permanent Magnet Hall Thrusters for Future Brazillian Space Missions

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Martins, Alexandre; Cerda, Rodrigo

    2016-07-01

    The Plasma Physics Laboratory of UnB has been developing a Permanent Magnet Hall Thruster (PHALL) for the UNIESPAÇO program, part of the Space Activities Program conducted by AEB- The Brazillian Space Agency since 2004. Electric propulsion is now a very successful method for primary and secondary propulsion systems. It is essential for several existing geostationary satellite station keeping systems and for deep space long duration solar system missions, where the thrusting system can be designed to be used on orbit transfer maneuvering and/or for satellite attitude control in long term space missions. Applications of compact versions of Permanent Magnet Hall Thrusters on future brazillian space missions are needed and foreseen for the coming years beginning with the use of small divergent cusp field (DCFH) Hall Thrusters type on CUBESATS ( 5-10 kg , 1W-5 W power consumption) and on Micro satellites ( 50- 100 kg, 10W-100W). Brazillian (AEB) and German (DLR) space agencies and research institutions are developing a new rocket dedicated to small satellite launching. The VLM- Microsatellite Launch Vehicle. The development of PHALL compact versions can also be important for the recently proposed SBG system, a future brazillian geostationary satellite system that is already been developed by an international consortium of brazillian and foreign space industries. The exploration of small bodies in the Solar System with spacecraft has been done by several countries with increasing frequency in these past twenty five years. Since their historical beginning on the sixties, most of the Solar System missions were based on gravity assisted trajectories very much depended on planet orbit positioning relative to the Sun and the Earth. The consequence was always the narrowing of the mission launch window. Today, the need for Solar System icy bodies in situ exploration requires less dependence on gravity assisted maneuvering and new high precision low thrust navigation methods. The main difficulty to reach these minor bodies is related to their specific orbits with high eccentricity and inclination. A good example is the case for sample return missions to NEOs-Near Earth Objects. They are small bodies consisting of primitive left over building blocks of the Solar System formation processes. These missions can be accomplished by using low thrust trajectories with spacecrafts propelled by plasma thrusters with total thrust below 0.5 N, and a specific impulse around2500 s. In this work, we will show the brazilian contribution to the development of a compact electrical propulsion engine named PHALL III, designed with DCFH and foreseen to be used in future cubesats microsatellites but with possible applications in geostationary attitude control systems and on low thrust trajectory missions to the Near Earth Asteroids region. We will show a particular new permanent magnet field designed for PHALL III . Computer based simulation codes such as VSIM are also used on the design of this new proposed cuped magnet field Hall Thruster. Based on the first results wee believed PHALL III will also allow a good spacecraft performance of long duration space missions for small size spacecrafts with limited low electric source power consumption. The PHALL III plasma source characterization is presented together with the ejected plasma plume ion current intensity, ion energy and plasma flow velocity parameters measured by an integrated Plasma Diagnostic Bench (BID). Based on plasma source and plume ejected parameters a merit figure of PHALL III is constructed and compared to computer calculated low thrust transfer requirements. From these results it is goig to be possible to analyse the potential use of PHALL III on future brazillian space missions , its working parameters are compared with parameters of existing space tested plasma thrusters already used on moon , deep space missions and also on satellite geostationary positioning using low thrust orbit maneuvering. A joint brazillian space mission on the solar system has also been consider for the coming years. ASTER project is a mission to a near earth asteroid that is planned to be carried on using Hall thrusters. The PHALL project consists on plasma source design, construction and characterization of plasma propulsion engines based on Hall current generated inside a cylindrical channel with an axial electric field produced by a ring anode and a radial magnetic field produced by permanent magnets. One of the main advantage of PHALL thruster is the production of a steady state magnetic field by permanent magnets providing electron trapping and Hall current generation within a significant decrease on the electric energy supply. This advantage turns PHALL thruster into a specially good option when it comes to space usage for longer and deep space missions, where solar panels and electric energy storage on batteries is a limiting factor. This work also describes the Hall Plasma Source construction and characteristics and the plasma diagnostics system used on BID, an Integrated Plasma Diagnostic System. This system contains Langmuir probes that are used for plasma density and temperature measurements. Faraday Cup, Ion probes and Spectrograph (Andor SR-750-B2, within 435nm to 700nm) line broadening measurements are used to measure ion temperature and transport from Hall current channel to the ejected plasma plume. In order to control argon fuel purity a mass spectrometer is also planned to be used. Thrust and Specific Impulse measurements will also be shown. Important to notice relevant plasma physics phenomena investigation that may significantly interfere on PHALL performance. It is the occurrence of instabilities that can happen inside and outside of the Hall current channel. In order to better understand the turbulence and plasma oscillations that occur during the thruster operation, we propose and test a wide frequency range instability detection system based on a RF detection probe connected to a Spectrum Analyzer (Agilent CSA 100 khz-6 Ghz). Instabilities on PHALL discharge current is monitoring using a real time data acquisition system, based on a PCI-DAS 1602/12 board containing 16 analogic inputs, 24 digital channels operating within a 330 khz sampling rate. Near future developments will include PHALL lifetime test system assembly in a vacuum system with bigger volume and pumping speed capability. A direct thrust and specific impulse measurement instrumentation it has also been considered. Ferreira J. L.; Martins A. A.; Cerda R. M. ; Schellin A. B.; Alves L.S.; Costa E.G.; Coelho H.O.; Serra A.C.B.and Nathan F. in Permanent magnet Hall thruster development for future Brazillian space missions . Computer Apllied Math. Springer SBMAC ,December 2015.

  5. Holographic Solar Photon Thrusters

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Matloff, Greg

    2006-01-01

    A document discusses a proposal to incorporate holographic optical elements into solar photon thrusters (SPTs). First suggested in 1990, SPTs would be systems of multiple reflective, emissive, and absorptive surfaces (solar sails) that would be attached to spacecraft orbiting the Earth to derive small propulsive forces from radiation pressures. An SPT according to the proposal would include, among other things, a main sail. One side of the sail would be highly emissive and would normally face away from the Earth. The other side would be reflective and would be covered by white-light holographic images that would alternately become reflective, transmissive, and absorptive with small changes in the viewing angle. When the spacecraft was at a favorable orbital position, the main sail would be oriented to reflect sunlight in a direction to maximize the solar thrust; when not in a favorable position, the main sail would be oriented to present a substantially absorptive/emissive aspect to minimize the solar drag. By turning the main sail slightly to alternate between the reflective and absorptive/ emissive extremes, one could achieve nearly a doubling or halving of the radiational momentum transfer and, hence, of the solar thrust.

  6. Engineer Examines Cluster of Ion Engines in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1963-01-21

    New staff member Paul Margosian inspects a cluster of ion engines in the Electric Propulsion Laboratory’s 25-foot diameter vacuum tank at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, and but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory contained two large vacuum tanks capable of simulating the space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank was intended for testing electric thrusters with condensable propellants. The tank’s test compartment, seen here, was 10 feet in diameter. Margosian joined Lewis in late 1962 during a major NASA hiring phase. The Agency reorganized in 1961 and began expanding its ranks through a massive recruiting effort. Lewis personnel increased from approximately 2,700 in 1961 to over 4,800 in 1966. Margosian, who worked with Bill Kerslake in the Electromagnetic Propulsion Division’s Propulsion Systems Section, wrote eight technical reports on mercury and electron bombardment thrusters, thermoelectrostatic generators, and a high voltage insulator.

  7. Low-thrust trajectory optimization of asteroid sample return mission with multiple revolutions and moon gravity assists

    NASA Astrophysics Data System (ADS)

    Tang, Gao; Jiang, FanHuag; Li, JunFeng

    2015-11-01

    Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep space exploration missions possible. A mission from low-Earth orbit using low-thrust electric propulsion system to rendezvous with near-Earth asteroid and bring sample back is investigated. By dividing the mission into five segments, the complex mission is solved separately. Then different methods are used to find optimal trajectories for every segment. Multiple revolutions around the Earth and multiple Moon gravity assists are used to decrease the fuel consumption to escape from the Earth. To avoid possible numerical difficulty of indirect methods, a direct method to parameterize the switching moment and direction of thrust vector is proposed. To maximize the mass of sample, optimal control theory and homotopic approach are applied to find the optimal trajectory. Direct methods of finding proper time to brake the spacecraft using Moon gravity assist are also proposed. Practical techniques including both direct and indirect methods are investigated to optimize trajectories for different segments and they can be easily extended to other missions and more precise dynamic model.

  8. Extended analytical formulas for the perturbed Keplerian motion under a constant control acceleration

    NASA Astrophysics Data System (ADS)

    Zuiani, Federico; Vasile, Massimiliano

    2015-03-01

    This paper presents a set of analytical formulae for the perturbed Keplerian motion of a spacecraft under the effect of a constant control acceleration. The proposed set of formulae can treat control accelerations that are fixed in either a rotating or inertial reference frame. Moreover, the contribution of the zonal harmonic is included in the analytical formulae. It will be shown that the proposed analytical theory allows for the fast computation of long, multi-revolution spirals while maintaining good accuracy. The combined effect of different perturbations and of the shadow regions due to solar eclipse is also included. Furthermore, a simplified control parameterisation is introduced to optimise thrusting patterns with two thrust arcs and two cost arcs per revolution. This simple parameterisation is shown to ensure enough flexibility to describe complex low thrust spirals. The accuracy and speed of the proposed analytical formulae are compared against a full numerical integration with different integration schemes. An averaging technique is then proposed as an application of the analytical formulae. Finally, the paper presents an example of design of an optimal low-thrust spiral to transfer a spacecraft from an elliptical to a circular orbit around the Earth.

  9. Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hulka, James; Yang, Virog

    2009-01-01

    Liquid-Propellant Rocket Engines (LREs) are capable of on-command variable thrust or thrust modulation, an operability advantage that has been studied intermittently since the late 1930s. Throttleable LREs can be used for planetary entry and descent, space rendezvous, orbital maneuvering including orientation and stabilization in space, and hovering and hazard avoidance during planetary landing. Other applications have included control of aircraft rocket engines, limiting of vehicle acceleration or velocity using retrograde rockets, and ballistic missile defense trajectory control. Throttleable LREs can also continuously follow the most economical thrust curve in a given situation, compared to discrete throttling changes over a few select operating points. The effects of variable thrust on the mechanics and dynamics of an LRE as well as difficulties and issues surrounding the throttling process are important aspects of throttling behavior. This review provides a detailed survey of LRE throttling centered around engines from the United States. Several LRE throttling methods are discussed, including high-pressure-drop systems, dual-injector manifolds, gas injection, multiple chambers, pulse modulation, throat throttling, movable injector components, and hydrodynamically dissipative injectors. Concerns and issues surrounding each method are examined, and the advantages and shortcomings compared.

  10. Sunmaster: An SEP cargo vehicle for Mars missions

    NASA Technical Reports Server (NTRS)

    Chiles, Aleasa; Fraser, Jennifer; Halsey, Andy; Honeycutt, David; Madden, Michael; Mcgough, Brian; Paulsen, David; Spear, Becky; Tarkenton, Lynne; Westley, Kevin

    1991-01-01

    Options are examined for an unmanned solar powered electric propulsion cargo vehicle for Mars missions. The 6 prime areas of study include: trajectory, propulsion system, power system, supporting structure, control system, and launch consideration. Optimization of the low thrust trajectory resulted in a total round trip mission time just under 4 years. The argon propelled electrostatic ion thruster system consists of seventeen 5 N engines and uses a specific impulse of 10,300 secs. At Earth, the system uses 13 engines to produce 60 N of thrust; at Mars, five engines are used, producing 25 N thrust. The thrust of the craft is varied between 60 N at Earth and 24 N at Mars due to reduced solar power available. Solar power is collected by a Fresnel lens concentrator system using a multistacked cell. This system provides 3.5 MW to the propulsion system after losses. Control and positioning to the craft are provided by a system of three double gimballed control moment gyros. Four shuttle 'C' launches will be used to transport the unassembled vehicle in modular units to low Earth orbit where it will be assembled using the Mobile Transporter of the Space Station Freedom.

  11. CVD Rhenium Engines for Solar-Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Fortini, Arthur J.; Tuffias, Robert H.; Duffy, Andrew J.; Tucker, Stephen P.

    1999-01-01

    Solar-thermal upper-stage propulsion systems have the potential to provide specific impulse approaching 900 seconds, with 760 seconds already demonstrated in ground testing. Such performance levels offer a 100% increase in payload capability compared to state-of-the-art chemical upper-stage systems, at lower cost. Although alternatives such as electric propulsion offer even greater performance, the 6- to 18- month orbital transfer time is a far greater deviation from the state of the art than the one to two months required for solar propulsion. Rhenium metal is the only material that is capable of withstanding the predicted thermal, mechanical, and chemical environment of a solar-thermal propulsion device. Chemical vapor deposition (CVD) is the most well-established and cost-effective process for the fabrication of complex rhenium structures. CVD rhenium engines have been successfully constructed for the Air Force ISUS program (bimodal thrust/electricity) and the NASA Shooting Star program (thrust only), as well as under an Air Force SBIR project (thrust only). The bimodal engine represents a more long-term and versatile approach to solar-thermal propulsion, while the thrust-only engines provide a potentially lower weight/lower cost and more near-term replacement for current upper-stage propulsion systems.

  12. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  13. Orbit Determination (OD) Error Analysis Results for the Triana Sun-Earth L1 Libration Point Mission and for the Fourier Kelvin Stellar Interferometer (FKSI) Sun-Earth L2 Libration Point Mission Concept

    NASA Technical Reports Server (NTRS)

    Marr, Greg C.

    2003-01-01

    The Triana spacecraft was designed to be launched by the Space Shuttle. The nominal Triana mission orbit will be a Sun-Earth L1 libration point orbit. Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination (OD) error analysis results are presented for all phases of the Triana mission from the first correction maneuver through approximately launch plus 6 months. Results are also presented for the science data collection phase of the Fourier Kelvin Stellar Interferometer Sun-Earth L2 libration point mission concept with momentum unloading thrust perturbations during the tracking arc. The Triana analysis includes extensive analysis of an initial short arc orbit determination solution and results using both Deep Space Network (DSN) and commercial Universal Space Network (USN) statistics. These results could be utilized in support of future Sun-Earth libration point missions.

  14. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  15. Parametric studies and orbital analysis for an electric orbit transfer vehicle space flight demonstration

    NASA Astrophysics Data System (ADS)

    Avila, Edward R.

    The Electric Insertion Transfer Experiment (ELITE) is an Air Force Advanced Technology Transition Demonstration which is being executed as a cooperative Research and Development Agreement between the Phillips Lab and TRW. The objective is to build, test, and fly a solar-electric orbit transfer and orbit maneuvering vehicle, as a precursor to an operational electric orbit transfer vehicle (EOTV). This paper surveys some of the analysis tools used to do parametric studies and discusses the study results. The primary analysis tool was the Electric Vehicle Analyzer (EVA) developed by the Phillips Lab and modified by The Aerospace Corporation. It uses a simple orbit averaging approach to model low-thrust transfer performance, and runs in a PC environment. The assumptions used in deriving the EVA math model are presented. This tool and others surveyed were used to size the solar array power required for the spacecraft, and develop a baseline mission profile that meets the requirements of the ELITE mission.

  16. The ENABLER—based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs.

  17. Re-Thinking the Use of the OML Model in Electric-Sail Development

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2016-01-01

    The Orbit Motion Limited (OML) model commonly forms the basis for calculations made to determine the effect of the long, biased wires of an Electric Sail on solar wind protons and electrons (which determines the thrust generated and the required operating power). A new analysis of the results of previously conducted ground-based experimental studies of spacecraft-space plasma interactions indicate that the expected thrust created by deflected solar wind protons and the current of collected solar wind electrons could be considerably higher than the OML model would suggest. Herein the experimental analysis will be summarized and the assumptions and approximations required to derive the OML equation-and the limitations they impose-will be considered.

  18. Cold-welding test environment

    NASA Technical Reports Server (NTRS)

    Wang, J. T.

    1972-01-01

    A flight test was conducted and compared with ground test data. Sixteen typical spacecraft material couples were mounted on an experimental research satellite in which a motor intermittently drove the spherical moving specimens across the faces of the fixed flat specimens in an oscillating motion. Friction coefficients were measured over a period of 14-month orbital time. Surface-to-surface sliding was found to be the controlling factor of generating friction in a vacuum environment. Friction appears to be independent of passive vacuum exposure time. Prelaunch and postlaunch tests identical to the flight test were performed in an oil-diffusion-pumped ultrahigh vacuum chamber. Only 50% of the resultant data agreed with the flight data owing to pump oil contamination. Identical ground tests were run in an ultrahigh vacuum facility and a ion-pumped vacuum chamber. The agreement (90%) between data from these tests and flight data established the adequacy of these test environments and facilities.

  19. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

  20. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

Top