NASA Technical Reports Server (NTRS)
Powell, W. B.
1973-01-01
Thrust chamber performance is evaluated in terms of an analytical model incorporating all the loss processes that occur in a real rocket motor. The important loss processes in the real thrust chamber were identified, and a methodology and recommended procedure for predicting real thrust chamber vacuum specific impulse were developed. Simplified equations for the calculation of vacuum specific impulse are developed to relate the delivered performance (both vacuum specific impulse and characteristic velocity) to the ideal performance as degraded by the losses corresponding to a specified list of loss processes. These simplified equations enable the various performance loss components, and the corresponding efficiencies, to be quantified separately (except that interaction effects are arbitrarily assigned in the process). The loss and efficiency expressions presented can be used to evaluate experimentally measured thrust chamber performance, to direct development effort into the areas most likely to yield improvements in performance, and as a basis to predict performance of related thrust chamber configurations.
Vacuum decay in an interacting multiverse
NASA Astrophysics Data System (ADS)
Robles-Pérez, S.; Alonso-Serrano, A.; Bastos, C.; Bertolami, O.
2016-08-01
We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of "true" vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.
Unloading Farmers’ Stock Warehouses with a Peanut Vac
USDA-ARS?s Scientific Manuscript database
A peanut vacuum has been developed by a company specializing in pneumatic conveying equipment by redesigning their existing grain vacuum (vac) specifically to handle farmers’ stock peanuts accounting for the desire to maintain the integrity of the peanut pod throughout the conveyance process. The pe...
Solar cells for lunar applications by vacuum evaporation of lunar regolith materials
NASA Technical Reports Server (NTRS)
Ignatiev, Alex
1991-01-01
The National Space Exploration Initiative, specifically the Lunar component, has major requirements for technology development of critical systems, one of which is electrical power. The availability of significant electrical power on the surface of the Moon is a principal driver defining the complexity of the lunar base. Proposals to generate power on the Moon include both nuclear and solar (photovoltaic) systems. A more efficient approach is to attempt utilization of the existing lunar resources to generate the power systems. Synergism may occur from the fact that there have already been lunar materials processing techniques proposed for the extraction of oxygen that would have, as by-products, materials that could be specifically used to generate solar cells. The lunar environment is a vacuum with pressures generally in the 1 x 10(exp -10) torr range. Such conditions provide an ideal environment for direct vacuum deposition of thin film solar cells using the waste silicon, iron, and TiO2 available from the lunar regolith processing meant to extract oxygen. It is proposed, therefore, to grow by vacuum deposition, thin film silicon solar cells from the improved regolith processing by-products.
Deterministic Impulsive Vacuum Foundations for Quantum-Mechanical Wavefunctions
NASA Astrophysics Data System (ADS)
Valentine, John S.
2013-09-01
By assuming that a fermion de-constitutes immediately at source, that its constituents, as bosons, propagate uniformly as scalar vacuum terms with phase (radial) symmetry, and that fermions are unique solutions for specific phase conditions, we find a model that self-quantizes matter from continuous waves, unifying bosons and fermion ontologies in a single basis, in a constitution-invariant process. Vacuum energy has a wavefunction context, as a mass-energy term that enables wave collapse and increases its amplitude, with gravitational field as the gradient of the flux density. Gravitational and charge-based force effects emerge as statistics without special treatment. Confinement, entanglement, vacuum statistics, forces, and wavefunction terms emerge from the model's deterministic foundations.
Cold Vacuum Drying (CVD) Set Point Determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHILIPP, B.L.
2000-03-21
The Safety Class Instrumentation and Control (SCIC) system provides active detection and response to process anomalies that, if unmitigated, would result in a safety event. Specifically, actuation of the SCIC system includes two portions. The portion which isolates the MCO and initiates the safety-class helium (SCHe) purge, and the portion which detects and stops excessive heat input to the MCO on high tempered water MCO inlet temperature. For the MCO isolation and purge, the SCIC receives signals from MCO pressure (both positive pressure and vacuum), helium flow rate, bay high temperature switches, seismic trips and time under vacuum trips.
Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.
2015-05-15
Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films depositedmore » by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.« less
Cycle development and design for CO{sub 2} capture from flue gas by vacuum swing adsorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun Zhang; Paul A. Webley
CO{sub 2} capture and storage is an important component in the development of clean power generation processes. One CO{sub 2} capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO{sub 2} capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures non-isothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and ourmore » apparatus, we have designed and studied a large number of cycles for CO{sub 2} capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles - this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO{sub 2} capture from flue gases. 20 refs., 6 figs., 2 tabs.« less
Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.
Zhang, Jun; Webley, Paul A
2008-01-15
CO2 capture and storage is an important component in the development of clean power generation processes. One CO2 capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO2 capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures nonisothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and our apparatus, we have designed and studied a large number of cycles for CO2 capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles-this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO2 capture from flue gases.
Measurement of Outgassing Rates of Steels.
Park, Chongdo; Kim, Se-Hyun; Ki, Sanghoon; Ha, Taekyun; Cho, Boklae
2016-12-13
Steels are commonly used materials in the fabrication of vacuum systems because of their good mechanical, corrosion, and vacuum properties. A variety of steels meet the criterion of low outgassing required for high or ultrahigh vacuum applications. However, a given material can present different outgassing rates depending on its manufacturing process or the various pretreatment processes involved during the fabrication. Thus, the measurement of outgassing rates is highly desirable for a specific vacuum application. For this reason, the rate-of-pressure rise (RoR) method is often used to measure the outgassing of hydrogen after bakeout. In this article, a detailed description of the design and execution of the experimental protocol involved in the RoR method is provided. The RoR method uses a spinning rotor gauge to minimize errors that stem from outgassing or the pumping action of a vacuum gauge. The outgassing rates of two ordinary steels (stainless steel and mild steel) were measured. The measurements were made before and after the heat pretreatment of the steels. The heat pretreatment of steels was performed to reduce the outgassing. Extremely low rates of outgassing (on the order of 10 - 11 Pa m 3 sec - 1 m - 2 ) can be routinely measured using relatively small samples.
Research on Melt Degassing Processes of High Conductivity Hard Drawn Aluminum Wire
NASA Astrophysics Data System (ADS)
Xu, Xuexia; Feng, Yanting; Wang, Qing; Li, Wenbin; Fan, Hui; Wang, Yong; Li, Guowei; Zhang, Daoqian
2018-03-01
Degassing effects of ultrasonic and vacuum processes on high conductivity hard drawn aluminum melt were studied. Results showed that the degassing efficiency improved with the increase of ultrasonic power within certain range, stabilizing at 70% with 240W. For vacuum degassing process, hydrogen content of aluminum melt decreased with the loading time and was linear with logarithm of vacuum degree. Comparison of degassing effects of ultrasonic, vacuum, vacuum-ultrasonic degassing process showed that vacuum-ultrasonic process presented optimal effect.
Thermodynamic performance of multi-stage gradational lead screw vacuum pump
NASA Astrophysics Data System (ADS)
Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun
2018-02-01
As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.
Technical specification for vacuum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaw, J.
The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing andmore » designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)« less
Drying characteristics of whole Musa AA group ‘Kluai Leb Mu Nang’ using hot air and infrared vacuum
NASA Astrophysics Data System (ADS)
Kulketwong, C.; Thungsotanon, D.; Suwanpayak, N.
2017-06-01
Dried Musa AA group ‘Kluai Leb Mu Nang’ are the famous processing goods of Chumphon province, the south of Thailand. In this paper, we improved the qualities of whole Musa AA group ‘Kluai leb Mu Nang’ by using the hot air and infrared vacuum (HA and infrared vacuum) drying method which has two stages. The first stage of the method is the hot air (HA) and hot air-infrared (HAI) drying for rapidly reducing the moisture content and the drying times at atmospheric pressure, and the second stage, the moisture content, and color of the samples can be controlled by the HA and infrared vacuum drying. The experiment was evaluated by the terms of firmness, color change, moisture content, vacuum pressure and energy consumption at various temperatures. The results were found that the suitable temperature of the HAI and HA and infrared vacuum drying stages at 70°C and 55°C, respectively, while the suitable vacuum pressure in the second process was -0.4 bar. The samples were dried in a total of 28 hrs using 13.83 MJ/kg of specific energy consumption (stage 1 with 8.8 MJ/kg and stage 2 of 5.03 MJ/kg). The physical characteristics of the 21% (wb) of dried bananas can be measured the color change, L*=38.56, a*=16.47 and b*=16.3, was approximate the goods from the local market, whereas the firmness of them was more tender and shown a value of 849.56 kN/m3.
Structure refinement for tantalum nitrides nanocrystals with various morphologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lianyun; School of Science, Beijing Jiaotong University, 3 Shang Yuan Cun, Haidian District, Beijing 100044; Huang, Kai
2012-07-15
Graphical abstract: Tantalum nitrides nanocrystals with various phases and morphologies for the first time have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. Highlights: ► The spherical TaN, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. ► The crystal structures of different tantalum nitrides were determined by Rietveld refinement on the X-ray diffraction data and the examinations of electron microcopies. ► The specific surface area of the tantalum nitrides powders was around 10 m{supmore » 2} g{sup −1}. ► Tantalum nitrides powders could be suitable for capacitor with high specific capacitance. -- Abstract: Tantalum nitrides (TaN{sub x}) nanocrystals with different phase and morphology have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. The crystal structures of tantalum nitrides were determined by Rietveld refinement based on the X-ray diffraction data. The morphologies of various tantalum nitrides nanocrystals in high quality were analyzed through the electron microcopies examinations. The spherical TaN nanoparticles, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been selectively prepared at different annealing temperatures. In addition, the specific surface areas of the tantalum nitrides nanocrystals measured by BET method were around 9.87–11.64 m{sup 2} g{sup −1}, indicating that such nano-sized tantalum nitrides could be suitable for capacitor with high specific capacitance.« less
Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B
2017-12-01
Dental handpieces are required to be sterilized between patient use. Vacuum steam sterilization processes with fractionated pre/post-vacuum phases or unique cycles for specified medical devices are required for hollow instruments with internal lumens to assure successful air removal. Entrapped air will compromise achievement of required sterilization conditions. Many countries and professional organizations still advocate non-vacuum sterilization processes for these devices. To investigate non-vacuum downward/gravity displacement, type-N steam sterilization of dental handpieces, using thermometric methods to measure time to achieve sterilization temperature at different handpiece locations. Measurements at different positions within air turbines were undertaken with thermocouples and data loggers. Two examples of widely used UK benchtop steam sterilizers were tested: a non-vacuum benchtop sterilizer (Little Sister 3; Eschmann, Lancing, UK) and a vacuum benchtop sterilizer (Lisa; W&H, Bürmoos, Austria). Each sterilizer cycle was completed with three handpieces and each cycle in triplicate. A total of 140 measurements inside dental handpiece lumens were recorded. The non-vacuum process failed (time range: 0-150 s) to reliably achieve sterilization temperatures within the time limit specified by the international standard (15 s equilibration time). The measurement point at the base of the handpiece failed in all test runs (N = 9) to meet the standard. No failures were detected with the vacuum steam sterilization type B process with fractionated pre-vacuum and post-vacuum phases. Non-vacuum downward/gravity displacement, type-N steam sterilization processes are unreliable in achieving sterilization conditions inside dental handpieces, and the base of the handpiece is the site most likely to fail. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin
2014-09-19
Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food.
Investigation on the storage of benzotriazole corrosion inhibitor in TiO2 nanotube
NASA Astrophysics Data System (ADS)
Nguyen, Thi Dieu Hang; Tiep Nong, Thanh; Quang Nguyen, Van; Quyen Nguyen, The; Le, Quang Trung
2018-06-01
The present paper describes different methods for storing the benzotriazole (BTA) corrosion inhibitor in the titanium dioxide nanotubes (TNT) as nanocontainers. Three methods were used, including the vacuum impregnation at ambient temperature, the vacuum impregnation at cooling temperature () and the rotary vacuum evaporation. TNT, BTA and BTA/TNT products were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. nanotube powder was synthesized by hydrothermal treatment from the inexpensive spherical commercial precursor. The results obtained from SEM, TEM images and BET values showed the successful synthesis of TNT with a homogeneous morphology of nano size tubes and a large specific surface . The existence of BTA in TNT was demonstrated. The BTA/TNT obtained via the rotary vacuum evaporation contained a very significant amount of BTA (66.6 weight %) but BTA existed mostly outside the nanotubes. Two processes of vacuum impregnation at ambient temperature and vacuum impregnation at cooling temperature revealed that there was about 8 weight % BTA stored in BTA/TNT product and BTA was present mostly inside the nanotubes.
Development of water quality standards criteria. [for consumables (spacecrew supplies)
NASA Technical Reports Server (NTRS)
1976-01-01
Qualitative and semiquantitative analyses were made of volatile organic compounds in water supplies collected at various stages of processing in the space station prototype vacuum compression distillation unit to evaluate the process and the product water. Additional evaluation was made of specific ingredients required to adequately enhance the taste of the reclaimed water. A concept for the in-flight addition of these ingredients was developed. Revisions to previously recommended potable water criteria and specifications are included.
NASA Astrophysics Data System (ADS)
Lee, T. J.; Lee, K. S., , Dr; Lee, S. K.
2017-12-01
One of the most important factors in measuring effective porosity by vacuum saturation method is that the air in the pore space can be fully substituted by water during the vacuum saturation process. International Society of Rock Mechanics (ISRM) suggests vacuuming a rock sample submerged in the water, while American Society of Test and Materials (ASTM) vacuuming the sample and water separately and then pour the water to the sample. In this study, we call the former wet-type vacuum saturation (WVS) method and the latter dry-type vacuum saturation (DVS) method, and compare the effective porosity measured by the two different vacuum saturation processes. For that purpose, a vacuum saturation system has been developed, which can support both WVS and DVS by only changing the process by programming. Comparison of effective porosity has been made for a cement mortar and rock samples. As a result, DVS can substitute more void volume to water than WVS, which in turn insists that DVS can provide more exact value of effective porosity than WVS.
Radiative process of two entanglement atoms in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang
2018-05-01
We investigate the radiative processes of a quantum system composed by two identical two-level atoms in the de Sitter spacetime, interacting with a conformally coupled massless scalar field prepared in the de Sitter-invariant vacuum. We discuss the structure of the rate of variations of the atomic energy for two static atoms. Following a procedure developed by Dalibard, Dupont-Roc, and Cohen-Tannoudji, our intention is to identify in a quantitative way the contributions of vacuum fluctuations and the radiation reaction to the generation of quantum entanglement and to the degradation of entangled states. We find that when the distance between two atoms larger than the characteristic length scale, the rate of variation of atomic energy in the de Sitter-invariant vacuum behaves differently compared with that in the thermal Minkowski spacetime. In particular, the generation and degradation of quantum entanglement can be enhanced or inhibited, which are dependent not only on the specific entangled state but also on the distance between the atoms.
Robot design for a vacuum environment
NASA Technical Reports Server (NTRS)
Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.
1987-01-01
The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.
Redesigning the continuous vacuum sealer packaging machine to improve the processing speed
NASA Astrophysics Data System (ADS)
Belo, J. B.; Widyanto, S. A.; Jamari, J.
2017-01-01
Vacuum sealer as a product packaging tool of food products to be able to vacuum air inside the plastic which is filled with food products and it causes the pressure lower. In this condition, the optimal heating temperature is reached in a shorter time, so that damage on plastic sealer of vacuumed food products could be prevented to be more effective and efficient. The purpose of this redesigning is to design a vacuum sealer packaging machine continuously through a conveyor mechanism on the packaging quality, time of processing speed of vacuuming food product in the plastic package. This designing process is conducted through several steps of designing and constructing tools until the products are ready to operate. Data analysis is done through quality test of vacuum and sealer to the plastic thickness of 75 µm, 80 µm, and 100 µm with temperature of 170°C, 180°C, 190°C and vacuum duration of 5 seconds, 8 seconds, and 60 seconds. Results of this designing process indicate that vacuum sealer works practically and more optimally with the time of vacuum processing speed of 0 to 1 minute/s; whereas, the pressure of vacuuming suction is until 1e-5 MPa. The results of tensile strength test are at a maximum of 32,796 (N/mm2) and a minimum of 20,155 (N/mm2) and the analysis of plastic composite with EDX. This result shows that the vacuum pressure and the quality of vacuum sealer are better and more efficient.
Germanium detector vacuum encapsulation
NASA Technical Reports Server (NTRS)
Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.
1991-01-01
This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.
Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin
2014-01-01
Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food. PMID:25244012
Power processor for a 30cm ion thruster
NASA Technical Reports Server (NTRS)
Biess, J. J.; Inouye, L. Y.
1974-01-01
A thermal vacuum power processor for the NASA Lewis 30cm Mercury Ion Engine was designed, fabricated and tested to determine compliance with electrical specifications. The power processor breadboard used the silicon controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to an ion engine. The power processor includes a digital interface unit to process all input commands and internal telemetry signals so that operation is compatible with a central computer system. The breadboard was tested in a thermal vacuum environment. Integration tests were performed with the ion engine and demonstrate operational compatibility and reliable operation without any component failures. Electromagnetic interference data were also recorded on the design to provide information on the interaction with total spacecraft.
Fiber Bragg grating sensors for real-time monitoring of evacuation process
NASA Astrophysics Data System (ADS)
Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.
2010-03-01
Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.
NASA Technical Reports Server (NTRS)
White, D. R.
1976-01-01
A high-vacuum complex composed of an atmospheric decontamination system, sample-processing chambers, storage chambers, and a transfer system was built to process and examine lunar material while maintaining quarantine status. Problems identified, equipment modifications, and procedure changes made for Apollo 11 and 12 sample processing are presented. The sample processing experiences indicate that only a few operating personnel are required to process the sample efficiently, safely, and rapidly in the high-vacuum complex. The high-vacuum complex was designed to handle the many contingencies, both quarantine and scientific, associated with handling an unknown entity such as the lunar sample. Lunar sample handling necessitated a complex system that could not respond rapidly to changing scientific requirements as the characteristics of the lunar sample were better defined. Although the complex successfully handled the processing of Apollo 11 and 12 lunar samples, the scientific requirement for vacuum samples was deleted after the Apollo 12 mission just as the vacuum system was reaching its full potential.
Zeugner, Silke; Mayr, Thomas; Zietz, Christian; Aust, Daniela E; Baretton, Gustavo B
2015-01-01
The term "pre-analytics" summarizes all procedures concerned with specimen collection or processing as well as logistical aspects like transport or storage of tissue specimens. All or these variables as well as tissue-specific characteristics affect sample quality. While certain parameters like warm ischemia or tissue-specific characteristics cannot be changed, other parameters can be assessed and optimized. The aim of this study was to determine RNA quality by assessing the RIN values of specimens from different organs and to assess the influence of vacuum preservation. Samples from the GI tract, in general, appear to have lower RNA quality when compared to samples from other organ sites. This may be due to the digestive enzymes or bacterial colonization. Processing time in pathology does not significantly influence RNA quality. Tissue preservation with a vacuum sealer leads to preserved RNA quality over an extended period of time and offers a feasible alternative to minimize the influence of transport time into pathology.
Development of a large low-cost double-chamber vacuum laminator
NASA Technical Reports Server (NTRS)
Burger, D. R.
1983-01-01
A double-chamber vacuum laminator was required to investigate the processing and control of the fabrication of large terrestrial photovoltaic modules, and economic problems arising therefrom. Major design considerations were low cost, process flexibility and the exploration of novel equipment approaches. Spherical end caps for industrial tanks were used for the vacuum chambers. A stepping programmer and adjustable timers were used for process flexibility. New processing options were obtained by use of vacuum sensors. The upper vacuum chamber was provided with a diaphragm support to reduce diaphragm stress. A counterweight was used for handling ease and safety. Heat was supplied by a large electrical strip heater. Thermal isolation and mechanical support were provided inexpensively by a bed of industrial marbles. Operational testing disclosed the need for a differential vacuum gauge and proportional valve. Reprogramming of the process control system was simple and quick.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karantzalis, A.E., E-mail: akarantz@cc.uoi.gr; Lekatou, A.; Tsirka, K.
2012-07-15
Monolithic Ni{sub 3}Al and Ni-25 at.%Al intermetallic matrix TiC-reinforced composites were successfully produced by vacuum arc melting. TiC crystals were formed through a dissolution-reprecipitation mechanism and their final morphology is explained by means of a) Jackson's classical nucleation and growth phenomena and b) solidification rate considerations. The TiC presence altered the matrix microconstituents most likely due to specific melt-particle interactions and crystal plane epitaxial matching. TiC particles caused a significant decrease on the specific wear rate of the monolithic Ni{sub 3}Al alloy and the possible wear mechanisms are approached by means of a) surface oxidation, b) crack/flaws formation, c) materialmore » detachment and d) debris-counter surfaces interactions. - Highlights: Black-Right-Pointing-Pointer Vacuum arc melting (VAM) of Ni-Al based intermetallic matrix composite materials. Black-Right-Pointing-Pointer Solidification phenomena examination. Black-Right-Pointing-Pointer TiC crystal formation and growth mechanisms. Black-Right-Pointing-Pointer Sliding wear examination.« less
Effect of vacuum roasting on acrylamide formation and reduction in coffee beans.
Anese, Monica; Nicoli, Maria Cristina; Verardo, Giancarlo; Munari, Marina; Mirolo, Giorgio; Bortolomeazzi, Renzo
2014-02-15
Coffea arabica beans were roasted in an oven at 200 °C for increasing lengths of time under vacuum (i.e. 0.15 kPa). The samples were then analysed for colour, weight loss, acrylamide concentration and sensory properties. Data were compared with those obtained from coffee roasted at atmospheric pressure (i.e. conventional roasting), as well as at atmospheric pressure for 10 min followed by vacuum treatment (0.15 kPa; i.e. conventional-vacuum roasting). To compare the different treatments, weight loss, colour and acrylamide changes were expressed as a function of the thermal effect received by the coffee beans during the different roasting processes. Vacuum-processed coffee with medium roast degree had approximately 50% less acrylamide than its conventionally roasted counterpart. It was inferred that the low pressure generated inside the oven during the vacuum process exerted a stripping effect preventing acrylamide from being accumulated. Vacuum-processed coffee showed similar colour and sensory properties to conventionally roasted coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.
Broda, D M; Boerema, J A; Brightwell, G
2009-07-01
To determine possible preslaughter and processing sources of psychrophilic and psychrotolerant clostridia causing spoilage of vacuum-packed chilled meats. Molecular methods based on the polymerase chain reaction (PCR) amplification of specific 16S rDNA fragments were used to detect the presence of Clostridium gasigenes, Clostridium estertheticum, Clostridium algidicarnis and Clostridium putrefaciens in a total of 357 samples collected from ten slaughter stock supply farms, slaughter stock, two lamb-processing plants, their environments, dressed carcasses and final vacuum-packed meat stored at -0.5 degrees C for 5(1/2) weeks. Clostridium gasigenes, C. estertheticum and C. algidicarnis/C. putrefaciens were commonly detected in farm, faeces, fleece and processing environmental samples collected at the slaughter floor operations prior to fleece removal, but all these micro-organisms were detected in only 4 out of 26 cooling floor and chiller environmental samples. One out of 42 boning room environmental samples tested positive for the presence of C. gasigenes and C. estertheticum, but 25 out of 42 of these samples were positive for C. algidicarnis/C. putrefaciens. Nearly all of the 31 faecal samples tested positive for the presence of C. gasigenes and C. estertheticum; however, only two of these samples were positive for C. algidicarnis and/or C. putrefaciens. Clostridial species that were subject to this investigation were frequently detected on chilled dressed carcasses. The major qualitative and quantitative differences between the results of PCR detection obtained with the primers specific for 'blown pack' -causing clostridia (C. gasigenes and C. estertheticum) and those obtained with primers specific for C. algidicarnis and C. putrefaciens suggest that the control of meat spoilage caused by different groups of meat clostridia is best approached individually for each group. This paper provides information significant for controlling meat spoilage-causing clostridia in the meat-processing plants.
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1984-01-01
An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1982-01-01
The processing of wafer devices to form multilevel interconnects for microelectronic circuits is described. The method is directed to performing the sequential steps of etching the via, removing the photo resist pattern, back sputtering the entire wafer surface and depositing the next layer of interconnect material under common vacuum conditions without exposure to atmospheric conditions. Apparatus for performing the method includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a DC magnetron sputtering system. A gas inlet is provided in the chamber for the introduction of various gases to the vacuum chamber and the creation of various gas plasma during the sputtering steps.
NASA Astrophysics Data System (ADS)
Kim, Sang-Young; Shim, Chun Sik; Sturtevant, Caleb; Kim, Dave (Dae-Wook); Song, Ha Cheol
2014-09-01
Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties
Innovative Vacuum Distillation for Magnesium Recycling
NASA Astrophysics Data System (ADS)
Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang
Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.
Impact of vacuum cooking process on the texture degradation of selected apple cultivars.
Bourles, E; Mehinagic, E; Courthaudon, J L; Jourjon, F
2009-01-01
Thermal treatments are known to affect the textural properties of fruits and vegetables. This study was conducted to evaluate the influence of vacuum cooking process on the mechanical properties of various apple cultivars. A total of 10 apple cultivars were industrially processed by vacuum pasteurization at 95 degrees C for 25 min. The raw material was characterized by penetrometry, uniaxial double compression, soluble solid content, and titrable acidity. Textural properties of processed apples were analyzed by uniaxial double compression. As expected, for all cultivars, fruit resistance was lower after processing than before. Results showed that texture degradation due to vacuum pasteurization was different from one cultivar to another. Indeed, some cultivars, initially considered as the most resistant ones, such as Braeburn, were less suitable for processing, and became softer than others after thermal treatment. Consequently, it is worth noting that the texture classification of the investigated apple cultivars was changed by the vacuum-cooking process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Restivo, M.
SRNL Environmental and Chemical Process Technology (E&CPT) was requested to perform testing of vacuum pumps per a verbal request from the Customer, SRNL Hydrogen Processing Technology. Tritium Operations is currently having difficulties procuring the Normetex™® Model 15 m 3/hr (9 CFM) vacuum pump (formerly Normetex Pompes, now Eumeca SARL). One possible solution proposed by Hydrogen Processing Technology personnel is to use two Senior Aerospace Metal Bellows MB-601 vacuum pumps piped with the heads in series, and the pumps in series (Figure 1 below). This memorandum documents the ultimate vacuum testing that was performed to determine if this concept was amore » viable alternate vacuum pump strategy. This testing dovetails with previous pump evaluations documented in references 1 and 2.« less
Yamaner, F Yalçın; Zhang, Xiao; Oralkan, Ömer
2015-05-01
This paper introduces a simplified fabrication method for vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using anodic bonding. Anodic bonding provides the established advantages of wafer-bondingbased CMUT fabrication processes, including process simplicity, control over plate thickness and properties, high fill factor, and ability to implement large vibrating cells. In addition to these, compared with fusion bonding, anodic bonding can be performed at lower processing temperatures, i.e., 350°C as opposed to 1100°C; surface roughness requirement for anodic bonding is more than 10 times more relaxed, i.e., 5-nm rootmean- square (RMS) roughness as opposed to 0.5 nm for fusion bonding; anodic bonding can be performed on smaller contact area and hence improves the fill factor for CMUTs. Although anodic bonding has been previously used for CMUT fabrication, a CMUT with a vacuum cavity could not have been achieved, mainly because gas is trapped inside the cavities during anodic bonding. In the approach we present in this paper, the vacuum cavity is achieved by opening a channel in the plate structure to evacuate the trapped gas and subsequently sealing this channel by conformal silicon nitride deposition in the vacuum environment. The plate structure of the fabricated CMUT consists of the single-crystal silicon device layer of a silicon-on-insulator wafer and a thin silicon nitride insulation layer. The presented fabrication approach employs only three photolithographic steps and combines the advantages of anodic bonding with the advantages of a patterned metal bottom electrode on an insulating substrate, specifically low parasitic series resistance and low parasitic shunt capacitance. In this paper, the developed fabrication scheme is described in detail, including process recipes. The fabricated transducers are characterized using electrical input impedance measurements in air and hydrophone measurements in immersion. A representative design is used to demonstrate immersion operation in conventional, collapse-snapback, and collapse modes. In collapsemode operation, an output pressure of 1.67 MPa pp is shown at 7 MHz on the surface of the transducer for 60-Vpp, 3-cycle sinusoidal excitation at 30-V dc bias.
NASA Astrophysics Data System (ADS)
Ma, Qing; Zhao, Zijian; Yi, Songlin; Wang, Tianlong
In this study, Chinese Fir was impregnated with unsaturated polyester resin to enhance its properties. Samples 20 mm × 20 mm × 20 mm in size were split into different sections with epoxy resin and tinfoil and subjected to an impregnation experiment under various parameters. Vacuum degree was -0.04 MPa, -0.06 MPa or -0.08 MPa and vacuum duration was 15 min, 30 min, or 45 min. The results indicated that impregnation weight percent gain is linearly dependent on curing weight percent gain. Vacuum duration appears to have less influence on the curing weight percent gain than vacuum degree, and impregnation was most successful at the transverse section compared to other sections. The optimal impregnation parameters were 30 min modification under -0.08 MPa vacuum followed by 120 min at atmospheric pressure for samples 200 mm × 100 mm × 20 mm in size. Uneven distribution of weight percent gain and cracking during the curing process suggested that 30 min post-processing at -0.09 MPa vacuum was the most effective way to complete the impregnation process. The sample's bending strength and modulus of elasticity increased after impregnation treatment. Bending strength after impregnation without post-processing reached 112.85%, but reached 71.65% with vacuum-processing; modulus of elasticity improved 67.13% and 58.28% without and with post-processing, respectively.
A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks.
Farrugia, Kevin J; Fraser, Joanna; Friel, Lauren; Adams, Duncan; Attard-Montalto, Nicola; Deacon, Paul
2015-12-01
A number of pseudo-operational trials were set up to compare the atmospheric/humidity and vacuum cyanoacrylate fuming processes on plastic carrier bags. The fuming processes were compared using two-step cyanoacrylate fuming with basic yellow 40 (BY40) staining and a one-step fluorescent cyanoacrylate fuming, Lumicyano 4%. Preliminary work using planted fingermarks and split depletions were performed to identify the optimum vacuum fuming conditions. The first pseudo-operational trial compared the different fuming conditions (atmospheric/humidity vs. vacuum) for the two-step process where an additional 50% more marks were detected with the atmospheric/humidity process. None of the marks by the vacuum process could be observed visually; however, a significant number of marks were detected by fluorescence after BY40 staining. The second trial repeated the same work in trial 1 using the one-step cyanoacrylate process, Lumicyano at a concentration of 4%. Trial 2 provided comparable results to trial 1 and all the items were then re-treated with Lumicyano 4% at atmospheric/humidity conditions before dyeing with BY40 to provide the sequences of process A (Lumicyano 4% atmospheric-Lumicyano 4% atmospheric-BY40) and process B (Lumicyano 4% vacuum-Lumicyano 4% atmospheric-BY40). The number of marks (visual and fluorescent) was counted after each treatment with a substantial increase in the number of detected marks in the second and third treatments of the process. The increased detection rate after the double Lumicyano process was unexpected and may have important implications. Trial 3 was performed to investigate whether the amount of cyanoacrylate and/or fuming time had an impact on the results observed in trial 2 whereas trial 4 assessed if the double process using conventional cyanoacrylate, rather than Lumicyano 4%, provided an increased detection rate. Trials 3 and 4 confirmed that doubling the amount of Lumicyano 4% cyanoacrylate and fuming time produced a lower detection rate than the double process with Lumicyano 4%. Furthermore, the double process with conventional cyanoacrylate did not provide any benefit. Scanning electron microscopy was also performed to investigate the morphology of the cyanoacrylate polymer under different conditions. The atmospheric/humidity process appears to be superior to the vacuum process for both the two-step and one-step cyanoacrylate fuming, although the two-step process performed better in comparison to the one-step process under vacuum conditions. Nonetheless, the use of vacuum cyanoacrylate fuming may have certain operational advantages and its use does not adversely affect subsequent cyanoacrylate fuming with atmospheric/humidity conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo
1989-01-01
The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.
Vaporizable Scaffolds for Fabricating Thermoelectric Modules
NASA Technical Reports Server (NTRS)
Sakamoto, Jeffrey; Yen, Shiao-pin; Fleurial, Jean-Pierre; Paik, Jong-Ah
2006-01-01
A process for fabricating thermoelectric modules with vacuum gaps separating the thermoelectric legs has been conceived, and the feasibility of some essential parts of the process has been demonstrated. The vacuum gaps are needed to electrically insulate the legs from each other. The process involves the use of scaffolding in the form of sheets of a polymer to temporarily separate the legs by the desired distance, which is typically about 0.5 mm. During a bonding subprocess that would take place in a partial vacuum at an elevated temperature, the polymer would be vaporized, thereby creating the vacuum gaps.
A new device to estimate abundance of moist-soil plant seeds
Penny, E.J.; Kaminski, R.M.; Reinecke, K.J.
2006-01-01
Methods to sample the abundance of moist-soil seeds efficiently and accurately are critical for evaluating management practices and determining food availability. We adapted a portable, gasoline-powered vacuum to estimate abundance of seeds on the surface of a moist-soil wetland in east-central Mississippi and evaluated the sampler by simulating conditions that researchers and managers may experience when sampling moist-soil areas for seeds. We measured the percent recovery of known masses of seeds by the vacuum sampler in relation to 4 experimentally controlled factors (i.e., seed-size class, sample mass, soil moisture class, and vacuum time) with 2-4 levels per factor. We also measured processing time of samples in the laboratory. Across all experimental factors, seed recovery averaged 88.4% and varied little (CV = 0.68%, n = 474). Overall, mean time to process a sample was 30.3 ? 2.5 min (SE, n = 417). Our estimate of seed recovery rate (88%) may be used to adjust estimates for incomplete seed recovery, or project-specific correction factors may be developed by investigators. Our device was effective for estimating surface abundance of moist-soil plant seeds after dehiscence and before habitats were flooded.
NASA Astrophysics Data System (ADS)
Niu, Deliang; Liu, Qingcai; Wang, Zhu; Ren, Shan; Lan, Yuanpei; Xu, Minren
Removal of gas is the major function of RH degasser. To optimize the RH refining craft in Chongqing Iron and Steel Co. Ltd, the degassing effect of RH degasser at different degrees of vacuum was investigated using a vacuum induction furnace. In addition, the effect of processing time on the gas content dissolved in molten steel was also studied. The results showed that degree of vacuum was one of the important factors that determined the degassing efficiency in RH refining process. High vacuum degree is helpful in the removal of gas, especially in the removal of [H] dissolved in molten steel. The processing time could be reduced from 25-30 min to 15 minutes and gas content could also meet the demand of RH refining.
Failure of non-vacuum steam sterilization processes for dental handpieces.
Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B
2017-12-01
Dental handpieces are used in critical and semi-critical operative interventions. Although some dental professional bodies recommend that dental handpieces are sterilized between patient use there is a lack of clarity and understanding of the effectiveness of different steam sterilization processes. The internal mechanisms of dental handpieces contain narrow lumens (0.8-2.3 mm) which can impede the removal of air and ingress of saturated steam required to achieve sterilization conditions. To identify the extent of sterilization failure in dental handpieces using a non-vacuum process. In-vitro and in-vivo investigations were conducted on widely used UK bench-top steam sterilizers and three different types of dental handpieces. The sterilization process was monitored inside the lumens of dental handpieces using thermometric (TM; dataloggers), chemical indicator (CI), and biological indicator (BI) methods. All three methods of assessing achievement of sterility within dental handpieces that had been exposed to non-vacuum sterilization conditions demonstrated a significant number of failures [CI: 8/3024 (fails/no. of tests); BI: 15/3024; TM: 56/56] compared to vacuum sterilization conditions (CI: 2/1944; BI: 0/1944; TM: 0/36). The dental handpiece most likely to fail sterilization in the non-vacuum process was the surgical handpiece. Non-vacuum sterilizers located in general dental practice had a higher rate of sterilization failure (CI: 25/1620; BI: 32/1620; TM: 56/56) with no failures in vacuum process. Non-vacuum downward/gravity displacement, type N steam sterilizers are an unreliable method for sterilization of dental handpieces in general dental practice. The handpiece most likely to fail sterilization is the type most frequently used for surgical interventions. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Particle monitoring and control in vacuum processing equipment
NASA Astrophysics Data System (ADS)
Borden, Peter G., Dr.; Gregg, John
1989-10-01
Particle contamination during vacuum processes has emerged as the largest single source of yield loss in VLSI manufacturing. While a number of tools have been available to help understand the sources and nature of this contamination, only recently has it been possible to monitor free particle levels within vacuum equipment in real-time. As a result, a better picture is available of how particle contamination can affect a variety of processes. This paper reviews some of the work that has been done to monitor particles in vacuum loadlocks and in processes such as etching, sputtering and ion implantation. The aim has been to make free particles in vacuum equipment a measurable process parameter. Achieving this allows particles to be controlled using statistical process control. It will be shown that free particle levels in load locks correlate to wafer surface counts, device yield and process conditions, but that these levels are considerable higher during production than when dummy wafers are run to qualify a system. It will also be shown how real-time free particle monitoring can be used to monitor and control cleaning cycles, how major episodic events can be detected, and how data can be gathered in a format suitable for statistical process control.
Ceramic vacuum tubes for geothermal well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, R.D.
1977-01-01
Useful design data acquired in the evaluation of ceramic vacuum tubes for the development of a 500/sup 0/C instrumentation amplifier are presented. The general requirements for ceramic vacuum tubes are discussed for application to the development of high temperature well logs. Commercially available tubes are described and future contract activities that specifically relate to ceramic vacuum tubes are detailed. Supplemental data are presented in the appendix.
Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan
2009-02-25
The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.
Troubleshooting crude vacuum tower overhead ejector systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, J.R.; Frens, L.L.
1995-03-01
Routinely surveying tower overhead vacuum systems can improve performance and product quality. These vacuum systems normally provide reliable and consistent operation. However, process conditions, supplied utilities, corrosion, erosion and fouling all have an impact on ejector system performance. Refinery vacuum distillation towers use ejector systems to maintain tower top pressure and remove overhead gases. However, as with virtually all refinery equipment, performance may be affected by a number of variables. These variables may act independently or concurrently. It is important to understand basic operating principles of vacuum systems and how performance is affected by: utilities, corrosion and erosion, fouling, andmore » process conditions. Reputable vacuum-system suppliers have service engineers that will come to a refinery to survey the system and troubleshoot performance or offer suggestions for improvement. A skilled vacuum-system engineer may be needed to diagnose and remedy system problems. The affect of these variables on performance is discussed. A case history is described of a vacuum system on a crude tower in a South American refinery.« less
NASA Technical Reports Server (NTRS)
Raj, S. V.
2017-01-01
This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.
NASA Astrophysics Data System (ADS)
Raj, S. V.
2017-11-01
This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.
Analysis of the moisture evaporation process during vacuum freeze-drying of koumiss and shubat
NASA Astrophysics Data System (ADS)
Shingisov, Azret Utebaevich; Alibekov, Ravshanbek Sultanbekovich
2017-05-01
The equation for the calculating of a moisture evaporation rate in the vacuum freeze-drying, wherein as a driving force instead of the generally accepted in the drying theory of Δt temperature difference, Δp pressure difference, Δc concentration difference, a difference of water activity in the product and the relative air humidity (a_{{w}} - \\varphi) is suggested. By using the proposed equation, the processes of vacuum freeze-drying of koumiss and shubat were analyzed, and it was found two drying periods: constant and falling. On the first drying period, a moisture evaporation rate of koumiss is j = 2.75 × 10-3 kg/(m2 h) and of shubat is j = 2.37 × 10-3 kg/(m2 h). On the second period, values decrease for koumiss from j = 2.65 × 10-3 kg/(m2 h) to j = 1.60 × 10-3 kg/(m2 h), and for shubat from j = 2.25 × 10-3 kg/(m2 h) to j = 1.62 × 10-3 kg/(m2 h). Specific humidity for koumiss is ueq = 0.61 kg/kg and for shubat is ueq = 0.58 kg/kg. The comparative analyze of the experimental data of the moisture evaporation rate versus the theoretical calculation shows that the approximation reliability is R2 = 0.99. Consequently, the proposed equation is useful for the analyzing a moisture evaporation rate during a vacuum freeze-drying of dairy products, including cultured milk foods.
Vacuum pull down method for an enhanced bonding process
Davidson, James C.; Balch, Joseph W.
1999-01-01
A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.
Beruto, Dario T; Botter, Rodolfo; Converti, Attilio
2009-02-01
Aluminum hydroxide gels were washed with water, ethanol, methanol and isopropanol to obtain new gels with different liquid phases that were dried either in air at 120 degrees C or under vacuum at 80 degrees C. Drying in air leads to alcoholic xerogels with BET surface areas larger than the aqueous ones. The effect of the alcoholic groups as substitutes of the hydroxyl ones has been discussed to account for the final size of xerogel crystallites. Drying under vacuum decreases the BET surface of the methanol xerogels, but no micropores are formed in all the alcoholic xerogel matrixes. On the contrary, the vacuum drying process changes significantly the microstructure of the aqueous xerogels. Their BET surface increases by 34 m(2)/g, and micropores are formed within their crystallite aggregates. It has been experimentally shown that these changes are due to a shear transformation that occurs in the boehmite xerogels obtained under vacuum. To discuss these data, the existence of chemical compounds such as AlOOHnH(2)O was postulated. On this ground, a neat analogy between vacuum drying process and vacuum interfacial decomposition reactions of inorganic salts can be drawn. This analogy explains how a state of stresses forms in aqueous xerogel matrix during vacuum drying process.
Vacuum casting of thick polymeric films
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Moacanin, J.
1979-01-01
Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2014-07-01
Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2014-07-01
Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.
Enhanced Photocatalytic Activity of Vacuum-activated TiO2 Induced by Oxygen Vacancies.
Dong, Guoyan; Wang, Xin; Chen, Zhiwu; Lu, Zhenya
2018-05-01
TiO 2 (Degussa P25) photocatalysts harboring abundant oxygen vacancies (Vacuum P25) were manufactured using a simple and economic Vacuum deoxidation process. Control experiments showed that temperature and time of vacuum deoxidation had a significant effect on Vacuum P25 photocatalytic activity. After 240 min of visible light illumination, the optimal Vacuum P25 photocatalysts (vacuum deoxidation treated at 330 °C for 3 h) reach as high as 94% and 88% of photodegradation efficiency for rhodamine B (RhB) and tetracycline, respectively, which are around 4.5 and 4.9 times as that of pristine P25. The XPS, PL and EPR analyses indicated that the oxygen vacancies were produced in the Vacuum P25 during the vacuum deoxidation process. The oxygen vacancy states can produce vacancy energy level located below the conduction band minimum, which resulting in the bandgap narrowing, thus extending the photoresponse wavelength range of Vacuum P25. The positron annihilation analysis indicated that the concentrations ratio of bulk and surface oxygen vacancies could be adjusted by changing the vacuum deoxidation temperature and time. Decreasing the ratio of bulk and surface oxygen vacancies was shown to improve photogenerated electron-hole pair separation efficiency, which leads to an obvious enhancement of the visible photocatalytic activities of Vacuum P25. © 2017 The American Society of Photobiology.
Low Cost Processing of Commingled Thermoplastic Composites
NASA Astrophysics Data System (ADS)
Chiasson, Matthew Lee
A low cost vacuum consolidation process has been investigated for use with commingled thermoplastic matrix composites. In particular, the vacuum consolidation behaviour of commingled polypropylene/glass fibre and commingled nylon/carbon fibre precursors were studied. Laminates were consolidated in a convection oven under vacuum pressure. During processing, the consolidation of the laminate packs was measured by use of non-contact eddy current sensors. The consolidation curves are then used to tune an empirical consolidation model. The overall quality of the resulting laminates is also discussed. Dynamic mechanical analysis, differential scanning calorimetry and mechanical tensile testing were also performed in order to determine the effects of varying processing parameters on the physical and mechanical properties of the laminates. Through this analysis, it was determined that the nylon/carbon fibre blend was not suitable for vacuum consolidation, while the polypropylene/glass fibre blend is a viable option for vacuum consolidation. The ultimate goal of this work is to provide a foundation from which low cost unmanned aerial vehicle (UAV) components can be designed and manufactured from thermoplastic matrix composites using a low cost processing technique as an alternative to traditional thermoset composite materials.
Code of Federal Regulations, 2012 CFR
2012-04-01
... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...
Code of Federal Regulations, 2010 CFR
2010-04-01
... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...
Code of Federal Regulations, 2011 CFR
2011-04-01
... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...
Code of Federal Regulations, 2013 CFR
2013-04-01
... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...
Code of Federal Regulations, 2014 CFR
2014-04-01
... respective volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor... volumes of alcohol and water and the specific gravity in both air and vacuum of spirituous liquor. This... gallon of water in air by the specific gravity in air of the spirits—8.32823 by 0.88862—the product (7...
Ceramic vacuum tubes for geothermal well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, R.D.
1977-01-12
The results of investigations carried out into the availability and suitability of ceramic vacuum tubes for the development of logging tools for geothermal wells are summarized. Design data acquired in the evaluation of ceramic vacuum tubes for the development of a 500/sup 0/C instrumentation amplifier are presented. The general requirements for ceramic vacuum tubes for application to the development of high temperature well logs are discussed. Commercially available tubes are described and future contract activities that specifically relate to ceramic vacuum tubes are detailed. Supplemental data is presented in the appendix. (MHR)
Breakdown Conditioning Chacteristics of Precision-Surface-Treatment-Electrode in Vacuum
NASA Astrophysics Data System (ADS)
Kato, Kastumi; Fukuoka, Yuji; Inagawa, Yukihiko; Saitoh, Hitoshi; Sakaki, Masayuki; Okubo, Hitoshi
Breakdown (BD) characteristics in vacuum are strongly dependent on the electrode surface condition, like the surface roughness etc. Therefore, in order to develop a high voltage vacuum circuit breaker, it is important to optimize the surface treatment process. This paper discusses about the effect of precision-surface-treatment of the electrode on breakdown conditioning characteristics under non-uniform electric field in vacuum. Experimental results reveal that the electrode surface treatment affects the conditioning process, especially the BD voltage and the BD field strength at the initial stage of the conditioning.
Boiling process modelling peculiarities analysis of the vacuum boiler
NASA Astrophysics Data System (ADS)
Slobodina, E. N.; Mikhailov, A. G.
2017-06-01
The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.
NASA Astrophysics Data System (ADS)
Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo
2017-11-01
Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.
NASA Astrophysics Data System (ADS)
Vallerga, J. V.; McPhate, J. B.; Tremsin, A. S.; Siegmund, O. H. W.; Mikulec, B.; Clark, A. G.
2004-12-01
Future wavefront sensors in adaptive optics (AO) systems for the next generation of large telescopes (> 30 m diameter) will require large formats (512x512) , kHz frame rates, low readout noise (<3 electrons) and high optical QE. The current generation of CCDs cannot achieve the first three of these specifications simultaneously. We present a detector scheme that can meet the first three requirements with an optical QE > 40%. This detector consists of a vacuum tube with a proximity focused GaAs photocathode whose photoelectrons are amplified by microchannel plates and the resulting output charge cloud counted by a pixelated CMOS application specific integrated circuit (ASIC) called the Medipix2 (http://medipix.web.cern.ch/MEDIPIX/). Each 55 micron square pixel of the Medipix2 chip has an amplifier, discriminator and 14 bit counter and the 256x256 array can be read out in 287 microseconds. The chip is 3 side abuttable so a 512x512 array is feasible in one vacuum tube. We will present the first results with an open-faced, demountable version of the detector where we have mounted a pair of MCPs 500 microns above a Medipix2 readout inside a vacuum chamber and illuminated it with UV light. The results include: flat field response, spatial resolution, spatial linearity on the sub-pixel level and global event counting rate. We will also discuss the vacuum tube design and the fabrication issues associated with the Medipix2 surviving the tube making process.
Plates for vacuum thermal fusion
Davidson, James C.; Balch, Joseph W.
2002-01-01
A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.
Superconducting Vacuum-Gap Crossovers for High Performance Microwave Applications
NASA Technical Reports Server (NTRS)
Denis, Kevin L.; Brown, Ari D.; Chang, Meng-Ping; Hu, Ron; U-Yen, Kongpop; Wollack, Edward J.
2016-01-01
The design and fabrication of low-loss wide-bandwidth superconducting vacuum-gap crossovers for high performance millimeter wave applications are described. In order to reduce ohmic and parasitic losses at millimeter wavelengths a vacuum gap is preferred relative to dielectric spacer. Here, vacuum-gap crossovers were realized by using a sacrificial polymer layer followed by niobium sputter deposition optimized for coating coverage over an underlying niobium signal layer. Both coplanar waveguide and microstrip crossover topologies have been explored in detail. The resulting fabrication process is compatible with a bulk micro-machining process for realizing waveguide coupled detectors, which includes sacrificial wax bonding, and wafer backside deep reactive ion etching for creation of leg isolated silicon membrane structures. Release of the vacuum gap structures along with the wax bonded wafer after DRIE is implemented in the same process step used to complete the detector fabrication. ?
Vacuum pumps and systems: A review of current practice
NASA Technical Reports Server (NTRS)
Giles, Stuart
1986-01-01
A review of the fundamental characteristics of the many types of vacuum pumps and vacuum pumping systems is given. The optimum pumping range, relative cost, performance limitations, maintenance problems, system operating costs and similar subjects are discussed. Experiences from the thin film deposition, chemical processing, material handling, food processing and other industries, as well as space simulation are used to support conclusions and recommendations.
Development of a modified dry curing process for beef.
Hayes, J E; Kenny, T A; Ward, P; Kerry, J P
2007-11-01
The development of a dry curing process using physical treatments to promote the diffusion of the cure ingredients was studied. Vacuum pulsing with and without tumbling, continuous vacuum, and tumbling only treatments were compared with a conventional static dry cure control method on beef M. supraspinatus. Vacuum tumble and tumble only treatments gave highest core salt content after 7 days conditioning (3.3% and 3.1%, respectively). All test treatments resulted in higher colour uniformity and lower % cook loss in comparison to control (P<0.001). The control and vacuum pulsed samples were tougher (P<0.001). Vacuum tumble and tumble only treatments gave higher acceptability (P<0.001). Based on these findings for M. supraspinatus, indicating that the vacuum tumble treatments gave the best results, further testing of this method was conducted using the M. biceps femoris in addition to the M. supraspinatus. Cured beef slices were stored in modified atmosphere packs (MAP) (80%N(2):20%CO(2)) for up to 28 day at 4°C. Redness (a(∗), P<0.001) decreased over storage time in M. biceps femoris. Vacuum tumble treatment increased (P<0.05) redness in M. supraspinatus. Results obtained demonstrate the benefits of vacuum tumbling over the other physical treatments as a method for accelerating the dry curing process, producing dry cured beef products with enhanced organoleptic quality and increased yields.
Vacuum Brazing of Accelerator Components
NASA Astrophysics Data System (ADS)
Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.
2012-11-01
Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.
Double Vacuum Bag Process for Resin Matrix Composite Manufacturing
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)
2007-01-01
A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.
Evaluation of Double-Vacuum-Bag Process For Composite Fabrication
NASA Technical Reports Server (NTRS)
Hou, T. H.; Jensen, B. J.
2004-01-01
A non-autoclave vacuum bag process using atmospheric pressure alone that eliminates the need for external pressure normally supplied by an autoclave or a press is an attractive method for composite fabrication. This type of process does not require large capital expenditures for tooling and processing equipment. In the molding cycle (temperature/pressure profile) for a given composite system, the vacuum application point has to be carefully selected to achieve the final consolidated laminate net shape and resin content without excessive resin squeeze-out. The traditional single-vacuum- bag (SVB) process is best suited for molding epoxy matrix based composites because of their superior flow and the absence of reaction by-products or other volatiles. Other classes of materials, such as polyimides and phenolics, generate water during cure. In addition, these materials are commonly synthesized as oligomers using solvents to facilitate processability. Volatiles (solvents and reaction byproducts) management therefore becomes a critical issue. SVB molding, without additional pressure, normally fails to yield void-free quality composites for these classes of resin systems. A double-vacuum- bag (DVB) process for volatile management was envisioned, designed and built at the NASA Langley Research Center. This experimental DVB process affords superior volatiles management compared to the traditional SVB process. Void-free composites are consistently fabricated as measured by C-scan and optical photomicroscopy for high performance polyimide and phenolic resins.
High specific surface area aerogel cryoadsorber for vacuum pumping applications
Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.
2000-01-01
A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.
NASA Astrophysics Data System (ADS)
Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong
2016-06-01
The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.
Theoretical and experimental researches of the liquid evaporation during thermal vacuum influences
NASA Astrophysics Data System (ADS)
Trushlyakov, V.; Panichkin, A.; Prusova, O.; Zharikov, K.; Dron, M.
2018-01-01
The mathematical model of the evaporation process of model liquid with the free surface boundary conditions of the "mirror" type under thermal vacuum influence and the numerical estimates of the evaporation process parameters are developed. An experimental stand, comprising a vacuum chamber, an experimental model tank with a heating element is designed; the experimental data are obtained. A comparative analysis of numerical and experimental results showed their close match.
Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg
2016-01-01
Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287
Ion-plasma protective coatings for gas-turbine engine blades
NASA Astrophysics Data System (ADS)
Kablov, E. N.; Muboyadzhyan, S. A.; Budinovskii, S. A.; Lutsenko, A. N.
2007-10-01
Evaporated, diffusion, and evaporation—diffusion protective and hardening multicomponent ionplasma coatings for turbine and compressor blades and other gas-turbine engine parts are considered. The processes of ion surface treatment (ion etching and ion saturation of a surface in the metallic plasma of a vacuum arc) and commercial equipment for the deposition of coatings and ion surface treatment are analyzed. The specific features of the ion-plasma coatings deposited from the metallic plasma of a vacuum arc are described, and the effect of the ion energy on the phase composition of the coatings and the processes occurring in the surface layer of an article to be treated are discussed. Some properties of ion-plasma coatings designed for various purposes are presented. The ion surface saturation of articles made from structural materials is shown to change the structural and phase states of their surfaces and, correspondingly, the related properties of these materials (i.e., their heat resistance, corrosion resistance, fatigue strength, and so on).
Carbon Nanotube Bundle Array Cold Cathodes for THz Vacuum Tube Sources
NASA Astrophysics Data System (ADS)
Manohara, Harish M.; Toda, Risaku; Lin, Robert H.; Liao, Anna; Bronikowski, Michael J.; Siegel, Peter H.
2009-12-01
We present high performance cold cathodes composed of arrays of carbon nanotube bundles that routinely produce > 15 A/cm2 at applied fields of 5 to 8 V/µm without any beam focusing. They have exhibited robust operation in poor vacuums of 10-6 to 10-4 Torr- a typically achievable range inside hermetically sealed microcavities. A new double-SOI process was developed to monolithically integrate a gate and additional beam tailoring electrodes. The ability to design the electrodes for specific requirements makes carbon nanotube field emission sources extremely flexible. The lifetime of these cathodes is found to be affected by two effects: a gradual decay of emission due to anode sputtering, and catastrophic failure because of dislodging of CNT bundles at high fields ( > 10 V/µm).
Vacuum distillation residue upgrading by an indigenous bacillus cereus
2013-01-01
Background Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. Results A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Conclusion Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils. PMID:24499629
Vacuum distillation residue upgrading by an indigenous Bacillus cereus.
Tabatabaee, Mitra Sadat; Mazaheri Assadi, Mahnaz
2013-07-16
Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils.
Drying performance of fermented cassava (fercaf) using a convective multiple flash dryer
NASA Astrophysics Data System (ADS)
Handojo, Lienda A.; Zefanya, Samuel; Christanto, Yohanes
2017-05-01
Fermented cassava (fercaf) is a tropical versatile carbohydrate source flour which is produced by modifying the characteristics of cassava. Drying process is one of the processes that could influence the quality of fercaf. In general, for food application, convective and vacuum drying were used, however recently another advanced method using combination of both convective and vacuum, i.e. convective multiple flash drying (CMFD), was proposed. This method is conducted by repeating cycles of convective and vacuum drying in intermittent manner. Cassava chips with thickness of 0.1-0.2 cm were fermented for 24 hours at room condition. Then, the drying process was conducted by using 3 techniques, i.e. convective, vacuum, and combined method (CMFD), with operation temperatures between 50 and 70°C for 10 hours or until fermented cassava reached a moisture content of less than 20%. The study shows that CMFD was the fastest drying method with only 5-6 hours period compared to 8-10 hours using vacuum and more than 10 hours using convective method. CMFD also produces harder fercaf chips than those of vacuum and convective methods. Moreover, this research also proves that the operating pressure and temperature influence the moisture content.
Vacuum Technology Considerations For Mass Metrology
Abbott, Patrick J.; Jabour, Zeina J.
2011-01-01
Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593
Apparatus and processes for the mass production of photovoltaic modules
Barth, Kurt L [Ft. Collins, CO; Enzenroth, Robert A [Fort Collins, CO; Sampath, Walajabad S [Fort Collins, CO
2007-05-22
An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.
Apparatus and processes for the mass production of photovotaic modules
Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.
2002-07-23
An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.
NASA Astrophysics Data System (ADS)
Zhou, Wenting; Rizzuto, Lucia; Passante, Roberto
2018-04-01
We investigate the resonance dipole-dipole interaction energy between two identical atoms, one in the ground state and the other in the excited state, interacting with the electromagnetic field in the presence of a perfectly reflecting plane boundary. The atoms are prepared in a correlated (symmetric or antisymmetric) Bell-type state. Following a procedure due to Dalibard et al. [J. Dalibard et al., J. Phys. (Paris) 43, 1617 (1982);, 10.1051/jphys:0198200430110161700 J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], we separate the contributions of vacuum fluctuations and radiation reaction (source) field to the resonance interaction energy between the two atoms and show that only the source field contributes to the interatomic interaction, while vacuum field fluctuations do not. By considering specific geometric configurations of the two-atom system with respect to the mirror and specific choices of dipole orientations, we show that the presence of the mirror significantly affects the resonance interaction energy and that different features appear with respect to the case of atoms in free space, for example, a change in the spatial dependence of the interaction. Our findings also suggest that the presence of a boundary can be exploited to tailor and control the resonance interaction between two atoms, as well as the related energy transfer process. The possibility of observing these phenomena is also discussed.
NASA Technical Reports Server (NTRS)
Minor, Robert
2002-01-01
Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.
Multipurpose Vacuum Induction Processing System
NASA Astrophysics Data System (ADS)
Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.
2012-11-01
Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.
NASA Astrophysics Data System (ADS)
Son, Hui-Jeong; Song, Rak-Hyun; Lim, Tak-Hyoung; Lee, Seung-Bok; Kim, Sung-Hyun; Shin, Dong-Ryul
The process of vacuum slurry coating for the fabrication of a dense and thin electrolyte film on a porous anode tube is investigated for application in solid oxide fuel cells. 8 mol% yttria stabilized zirconia is coated on an anode tube by vacuum slurry-coating process as a function of pre-sintering temperature of the anode tube, vacuum pressure, slurry concentration, number of coats, and immersion time. A dense electrolyte layer is formed on the anode tube after final sintering at 1400 °C. With decrease in the pre-sintering temperature of the anode tube, the grain size of the coated electrolyte layer increases and the number of surface pores in the coating layer decreases. This is attributed to a reduced difference in the respective shrinkage of the anode tube and the electrolyte layer. The thickness of the coated electrolyte layer increases with the content of solid powder in the slurry, the number of dip-coats, and the immersion time. Although vacuum pressure has no great influence on the electrolyte thickness, higher vacuum produces a denser coating layer, as confirmed by low gas permeability and a reduced number of defects in the coating layer. A single cell with the vacuum slurry coated electrolyte shows a good performance of 620 mW cm -2 (0.7 V) at 750 °C. These experimental results indicate that the vacuum slurry-coating process is an effective method to fabricate a dense thin film on a porous anode support.
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1993-11-09
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of standard polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1995-03-07
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1993-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers apparatus
Affinito, John D.
1996-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1995-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
NASA Astrophysics Data System (ADS)
Bianchi, Eugenio; De Lorenzo, Tommaso; Smerlak, Matteo
2015-06-01
We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole "exterior entropy" and "radiation entropy." For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the "black hole fireworks" model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that ( i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, ( ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the "purifying" phase, ( iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.
Method of physical vapor deposition of metal oxides on semiconductors
Norton, David P.
2001-01-01
A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.
U.S. Army Oxygen Generation System Development
2010-04-01
engines), scroll pumps , and rotary vane pumps . The turbo compressor is a design that trades the size and weight of the low speed compressors for a...is exposed to water. A guard bed of silica gel is used to protect the bed from moisture. A variation of the process ends the cycle using a vacuum ...phase. With the vacuum assist the total change of pressure is the same as the PSA process, but the maximum pressure is lower. Not only does the vacuum
Steam jet ejectors for the process industries. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Power, R.B.
1994-01-01
Steam jet ejectors were for many years the workhorse of the chemical process industries for producing vacuum. With increasing emphasis on stricter pollution control, their use was curtailed. There are still many applications, however, such as those with large capacity requirements, where ejectors are the only equipment that can produce sufficient vacuum. Chapter 1 is a short overview on how to use the text. Chapter 2 discusses what an ejector is and how it works. How ejector stages work is reviewed in Chapter 3. Engineering calculations for ejector stages is thoroughly discussed in Chapter 4. In Chapter 5, contact andmore » surface condensers are reviewed, and calculation procedures are presented. The various types of pressure control are discussed in Chapter 6. Chapter 7 is an excellent review of installation of ejector vacuum systems. The final chapter of Part 2 (Chapters 3--8) thoroughly covers all aspects of operation, testing, troubleshooting and maintenance. Part 3, consisting of two chapters, is devoted to specifying and purchasing steam jet ejectors. Part 4 on other ejector applications and upgrading ejector usage also consists of two chapters. Chapter 11 reviews steam-jet refrigeration, steam-jet and gas-jet compressors, liquid jet eductors, desuperheaters, special design situations, and designing one's own systems. Upgrading of existing ejector procedures and hardware is reviewed in Chapter 12. The 12 appendixes cover: physical properties of common fluids; handy vacuum engineering data and rules of thumb; SI unit conversions; sizing air and steam metering orifices for testing; drill sizes; ejector operating costs and design optimization; forms for ejector calculations, tests, and inspections; instructions for preparing ejector specifications; test kit contents list; ejector manufacturers and suppliers of referenced hardware and information; and failure modes and symptoms.« less
Evaluation of vacuum pycnometer : final report.
DOT National Transportation Integrated Search
1977-06-01
This report is concerned with the evaluation of the Yale vacuum pycnometer to determine the feasibility of its use for the rapid determination of maximum specific gravity and asphalt content of bituminous paving mixtures. Asphalt contents of plant-mi...
Wurzbacher, Jan Andre; Gebald, Christoph; Piatkowski, Nicolas; Steinfeld, Aldo
2012-08-21
A temperature-vacuum swing (TVS) cyclic process is applied to an amine-functionalized nanofibrilated cellulose sorbent to concurrently extract CO(2) and water vapor from ambient air. The promoting effect of the relative humidity on the CO(2) capture capacity and on the amount of coadsorbed water is quantified. The measured specific CO(2) capacities range from 0.32 to 0.65 mmol/g, and the corresponding specific H(2)O capacities range from 0.87 to 4.76 mmol/g for adsorption temperatures varying between 10 and 30 °C and relative humidities varying between 20 and 80%. Desorption of CO(2) is achieved at 95 °C and 50 mbar(abs) without dilution by a purge gas, yielding a purity exceeding 94.4%. Sorbent stability and a closed mass balance for both H(2)O and CO(2) are demonstrated for ten consecutive adsorption-desorption cycles. The specific energy requirements of the TVS process based on the measured H(2)O and CO(2) capacities are estimated to be 12.5 kJ/mol(CO2) of mechanical (pumping) work and between 493 and 640 kJ/mol(CO2) of heat at below 100 °C, depending on the air relative humidity. For a targeted CO(2) capacity of 2 mmol/g, the heat requirement would be reduced to between 272 and 530 kJ/mol(CO2), depending strongly on the amount of coadsorbed water.
Purifying Aluminum by Vacuum Distillation
NASA Technical Reports Server (NTRS)
Du Fresne, E. R.
1985-01-01
Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.
Vapor Hydrogen Peroxide as Alternative to Dry Heat Microbial Reduction
NASA Technical Reports Server (NTRS)
Cash, Howard A.; Kern, Roger G.; Chung, Shirley Y.; Koukol, Robert C.; Barengoltz, Jack B.
2006-01-01
The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with appropriate specification, in NPG8020.12C as a low temperature complementary technique to the dry heat sterilization process. A series of experiments were conducted in vacuum to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. With this knowledge of D values, sensible margins can be applied in a planetary protection specification. The outcome of this study provided an optimization of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D value may be imposed, a process humidity range for which the worst case D value may be imposed, and robustness to selected spacecraft material substrates.
Complex technology of vacuum-arc processing of structural material surface
NASA Astrophysics Data System (ADS)
Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.
2015-08-01
The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.
Kinetics of scrap tyre pyrolysis under vacuum conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Gartzen; Aguado, Roberto; Olazar, Martin
2009-10-15
Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies themore » kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.« less
Kinetics of scrap tyre pyrolysis under vacuum conditions.
Lopez, Gartzen; Aguado, Roberto; Olazar, Martín; Arabiourrutia, Miriam; Bilbao, Javier
2009-10-01
Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12K in the reaction starting temperature. The kinetic constant at 503K for devolatilization of volatile additives at 0.25atm is 1.7 times higher than that at 1atm, and that corresponding to styrene-butadiene rubber at 723K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.
Processing and Properties of a Phenolic Composite System
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung; Bai, J. M.; Baughman, James M.
2006-01-01
Phenolic resin systems generate water as a reaction by-product via condensation reactions during curing at elevated temperatures. In the fabrication of fiber reinforced phenolic resin matrix composites, volatile management is crucial in producing void-free quality laminates. A commercial vacuum-bag moldable phenolic prepreg system was selected for this study. The traditional single-vacuum-bag (SVB) process was unable to manage the volatiles effectively, resulting in inferior voidy laminates. However, a double vacuum bag (DVB) process was shown to afford superior volatile management and consistently yielded void-free quality parts. The DVB process cure cycle (temperature /pressure profiles) for the selected composite system was designed, with the vacuum pressure application point carefully selected, to avoid excessive resin squeeze-outs and achieve the net shape and target resin content in the final consolidated laminate parts. Laminate consolidation quality was characterized by optical photomicrography for the cross sections and measurements of mechanical properties. A 40% increase in short beam shear strength, 30% greater flexural strength, 10% higher tensile and 18% higher compression strengths were obtained in composite laminates fabricated by the DVB process.
NASA Astrophysics Data System (ADS)
Nadi, Fatemeh; Tzempelikos, Dimitrios
2018-01-01
In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.
NASA Astrophysics Data System (ADS)
Nadi, Fatemeh; Tzempelikos, Dimitrios
2018-07-01
In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy ( ΔH), entropy ( ΔS) and Gibbs free energy ( ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.
Vacuum system transient simulator and its application to TFTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sredniawski, J.
The vacuum system transient simulator (VSTS) models transient gas transport throughout complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. VSTS is capable of treating gas models of up to 10 species, for all flow regimes from pure molecular to continuum. Viscous interactions between species are considered as well as non-uniform temperature of a system. Although this program was specifically developed for use on the Tokamak Fusion Test Reactor (TFTR) project at Princeton, it is a generalized tool capable of handling a broad range of vacuum system problems. During the TFTR engineering design phase, VSTSmore » has been used in many applications. Two applications selected for presentation are: torus vacuum pumping system performance between 400 Ci tritium pulses and tritium backstreaming to neutral beams during pulses.« less
Vacuum deposition and curing of liquid monomers apparatus
Affinito, J.D.
1996-08-20
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface. 3 figs.
Ultrahigh vacuum focused ion beam micromill and articles therefrom
Lamartine, Bruce C.; Stutz, Roger A.
1998-01-01
An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.
Vacuum-induced Berry phases in single-mode Jaynes-Cummings models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu; Wei, L. F.; Jia, W. Z.
2010-10-15
Motivated by work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode JCM, certain atom-field states also acquired photon-number-dependent Berry phases after the parameter slowly changed and eventually returned to its initial value. This geometric effect related to the field quantization still exists, even if the field is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with a cavity quantum electrodynamics system is designed to detect the vacuum-induced Berry phase.
Microfabricated triggered vacuum switch
Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM
2010-05-11
A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.
Out of the Autoclave Fabrication of LaRC[TradeMark] PETI-9 Polyimide Laminates
NASA Technical Reports Server (NTRS)
Cano, Robert J.; Jensen, Brian J.
2013-01-01
The NASA Langley Research Center developed polyimide system, LaRC PETI-9, has successfully been processed into composites by high temperature vacuum assisted resin transfer molding (HT-VARTM). To extend the application of this high use temperature material to other out-of-autoclave (OOA) processing techniques, the fabrication of PETI- 9 laminates was evaluated using only a vacuum bag and oven cure. A LaRC PETI-9 polyimide solution in NMP was prepared and successfully utilized to fabricate unidirectional IM7 carbon fiber prepreg that was subsequently processed into composites with a vacuum bag and oven cure OOA process. Composite panels of good quality were successfully fabricated and mechanically tested. Processing characteristics, composite panel quality and mechanical properties are presented in this work. The resultant properties are compared to previously developed LaRC material systems processed by both autoclave and OOA techniques including the well characterized, autoclave processed LaRC PETI-5.
Commercial aspects of epitaxial thin film growth in outer space
NASA Technical Reports Server (NTRS)
Ignatiev, Alex; Chu, C. W.
1988-01-01
A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.
Resin impregnation process for producing a resin-fiber composite
NASA Technical Reports Server (NTRS)
Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)
1994-01-01
Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.
Spent nuclear fuel project cold vacuum drying facility operations manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
IRWIN, J.J.
This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of themore » CVDF until the CVDF final ORR is approved.« less
State-of-the-art of recycling e-wastes by vacuum metallurgy separation.
Zhan, Lu; Xu, Zhenming
2014-12-16
In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.
Wafer-Level Vacuum Packaging of Smart Sensors.
Hilton, Allan; Temple, Dorota S
2016-10-31
The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.
Wafer-level vacuum/hermetic packaging technologies for MEMS
NASA Astrophysics Data System (ADS)
Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil
2010-02-01
An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.
Wafer-Level Vacuum Packaging of Smart Sensors
Hilton, Allan; Temple, Dorota S.
2016-01-01
The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology. PMID:27809249
Study of Performance of Coaxial Vacuum Tube Solar Collector on Ethanol Distillation Process
NASA Astrophysics Data System (ADS)
Sutomo; Ramelan, A. H.; Mustafa; Tristono, T.
2017-07-01
Coaxial vacuum tube solar collectors can generate heat up to 80°C is possibly used for ethanol distillation process that required temperature 79°C only. This study reviews the performance of coaxial collector vacuum tube used for ethanol distillation process. This experimental research was conducted in a closed space using a halogen lamp as a solar radiation simulator. We had done on three different of the radiation values, i.e. 998 W/m2, 878 W/m2 and 782 W/m2. The pressure levels of vacuum tube collector cavity in the research were 1; 0.5; 0.31; 0.179; and 0.043 atmospheres. The Research upgraded the 30% of ethanol to produce the concentration of 77% after distillation. The result shows that the performance of coaxial collector vacuum tube used for ethanol distillation process has the negative correlation to the level of the collector tube cavity pressure. The productivity will increase while the collector tube cavity pressure decreased. Therefore, the collector efficiency has the negative correlation also to the level of collector tube cavity pressure. The best performance achieved when it operated at a pressure of 0.043 atmosphere with radiation intensity 878 W / m2, and the value of efficiency is 57.8%.
Vacuum status-display and sector-conditioning programs
NASA Astrophysics Data System (ADS)
Skelly, J.; Yen, S.
1990-08-01
Two programs have been developed for observation and control of the AGS vacuum system, which include the following notable features: (1) they incorporate a graphical user interface and (2) they are driven by a relational database which describes the vacuum system. The vacuum system comprises some 440 devices organized into 28 vacuum sectors. The status-display program invites menu selection of a sector, interrogates the relational database for relevant vacuum devices, acquires live readbacks and posts a graphical display of their status. The sector-conditioning program likewise invites sector selection, produces the same status display and also implements process control logic on the sector devices to pump the sector down from atmospheric pressure to high vacuum over a period extending several hours. As additional devices are installed in the vacuum system, the devices are added to the relational database; these programs then automatically include the new devices.
Dynamical emergence of the Universe into the false vacuum
NASA Astrophysics Data System (ADS)
Rafelski, Johann; Birrell, Jeremiah
2015-11-01
We study how the hot Universe evolves and acquires the prevailing vacuum state, demonstrating that in specific conditions which are believed to apply, the Universe becomes frozen into the state with the smallest value of Higgs vacuum field v=langle hrangle, even if this is not the state of lowest energy. This supports the false vacuum dark energy Λ-model. Under several likely hypotheses we determine the temperature in the evolution of the Universe at which two vacuua v1, v2 can swap between being true and false. We evaluate the dynamical surface pressure on domain walls between low and high mass vaccua due to the presence of matter and show that the low mass state remains the preferred vacuum of the Universe.
Ultrahigh vacuum focused ion beam micromill and articles therefrom
Lamartine, B.C.; Stutz, R.A.
1998-02-24
An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.
Calculation of the process of vacuum drying of a metal-concrete container with spent nuclear fuel
NASA Astrophysics Data System (ADS)
Karyakin, Yu. E.; Lavrent'ev, S. A.; Pavlyukevich, N. V.; Pletnev, A. A.; Fedorovich, E. D.
2012-01-01
An algorithm and results of calculation of the process of vacuum drying of a metal-concrete container intended for long-term "dry" storage of spent nuclear fuel are presented. A calculated substantiation of the initial amount of moisture in the container is given.
This paper presents an EPA evaluation of the patented Terra Vac, Inc.'s in situ vacuum extraction process that was field-demonstrated on a trichloroethylene (TCE) contaminated soil in Groveland, MA, under the EPA Superfund Innovative Technology Evaluation (SITE) program. he Terra...
Internal motion in high vacuum systems
NASA Astrophysics Data System (ADS)
Frank, J. M.
Three transfer and positioning mechanisms have been developed for the non-air exposed, multistep processing of components in vacuum chambers. The functions to be performed in all of the systems include ultraviolet/ozone cleaning, vacuum baking, deposition of thin films, and thermocompression sealing of the enclosures. Precise positioning of the components is required during the evaporation and sealing processes. The three methods of transporting and positioning the components were developed to accommodate the design criteria and goals of each individual system. The design philosophy, goals, and operation of the three mechanisms are discussed.
Silicon crystal growth in vacuum
NASA Technical Reports Server (NTRS)
Khattak, C. P.; Schmid, F.
1982-01-01
The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.
Application of programmable logic controllers to space simulation
NASA Technical Reports Server (NTRS)
Sushon, Janet
1992-01-01
Incorporating a state-of-the-art process control and instrumentation system into a complex system for thermal vacuum testing is discussed. The challenge was to connect several independent control systems provided by various vendors to a supervisory computer. This combination will sequentially control and monitor the process, collect the data, and transmit it to color a graphic system for subsequent manipulation. The vacuum system upgrade included: replacement of seventeen diffusion pumps with eight cryogenic pumps and one turbomolecular pump, replacing a relay based control system, replacing vacuum instrumentation, and upgrading the data acquisition system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... APPROVAL ENGINEERING EQUIPMENT General Provisions; Valves, Pressure-Vacuum Relief, for Tank Vessels § 162.017-2 Type. This specification covers the design and construction of pressure-vacuum relief valves intended for use in venting systems on all tank vessels transporting inflammable or combustible liquids...
Code of Federal Regulations, 2014 CFR
2014-10-01
... APPROVAL ENGINEERING EQUIPMENT General Provisions; Valves, Pressure-Vacuum Relief, for Tank Vessels § 162.017-2 Type. This specification covers the design and construction of pressure-vacuum relief valves intended for use in venting systems on all tank vessels transporting inflammable or combustible liquids...
Code of Federal Regulations, 2012 CFR
2012-10-01
... APPROVAL ENGINEERING EQUIPMENT General Provisions; Valves, Pressure-Vacuum Relief, for Tank Vessels § 162.017-2 Type. This specification covers the design and construction of pressure-vacuum relief valves intended for use in venting systems on all tank vessels transporting inflammable or combustible liquids...
Pishvar, Maya; Amirkhosravi, Mehrad; Altan, M Cengiz
2018-05-17
This work demonstrates a protocol to improve the quality of composite laminates fabricated by wet lay-up vacuum bag processes using the recently developed magnet assisted composite manufacturing (MACM) technique. In this technique, permanent magnets are utilized to apply a sufficiently high consolidation pressure during the curing stage. To enhance the intensity of the magnetic field, and thus, to increase the magnetic compaction pressure, the magnets are placed on a magnetic top plate. First, the entire procedure of preparing the composite lay-up on a magnetic bottom steel plate using the conventional wet lay-up vacuum bag process is described. Second, placement of a set of Neodymium-Iron-Boron permanent magnets, arranged in alternating polarity, on the vacuum bag is illustrated. Next, the experimental procedures to measure the magnetic compaction pressure and volume fractions of the composite constituents are presented. Finally, methods used to characterize microstructure and mechanical properties of composite laminates are discussed in detail. The results prove the effectiveness of the MACM method in improving the quality of wet lay-up vacuum bag laminates. This method does not require large capital investment for tooling or equipment and can also be used to consolidate geometrically complex composite parts by placing the magnets on a matching top mold positioned on the vacuum bag.
Fabrication of boron sputter targets
Makowiecki, Daniel M.; McKernan, Mark A.
1995-01-01
A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.
21 CFR 155.120 - Canned green beans and canned wax beans.
Code of Federal Regulations, 2010 CFR
2010-04-01
... net weight, and the container is closed under conditions creating a high vacuum in the container. (d... processed by heat, in an appropriate manner before or after being sealed in a container, as to prevent...”. (c) The words “vacuum pack” or “vacuum packed” when the weight of the liquid in the container, as...
Thermo-Rheometric Studies of New Class Ionic Liquid Lubricants
NASA Astrophysics Data System (ADS)
Bakhtiyarov, Sayavur; Street, Kenneth; Scheiman, Daniel; van Dyke, Alan
2010-11-01
Due to their specific properties, such as small volatility, nonflammability, extreme thermal stability, low melting point, wide liquid range, and good miscibility with organic materials, ionic liquids attracted particular interest in various industrial processes. Recently, the unique properties of ionic liquids caught the attention of space tribologists. The traditional lubricating materials used in space have limited lifetimes in vacuum due to the catalytic degradation on metal surfaces, high vaporization at high temperatures, dewetting, and other disadvantages. The lubricants for the space applications must have vacuum stability, high viscosity index, low creep tendency, good elastohydrodynamic and boundary lubrication properties, radiation atomic oxygen resistance, optical or infrared transparency. Unfortunately, the properties such as heat flow, heat capacity, thermogravimetric weight loss, and non-linearity in the rheological behavior of the lubricants are not studied well for newly developed systems. These properties are crucial to analyzing thermodynamic and energy dissipative aspects of the lubrication process. In this paper we will present the rheological and heat and mass transfer measurements for the ionic liquid lubricants, their mixtures with and without additive.
NASA Astrophysics Data System (ADS)
Ueki, Takayuki; Yoshihara, Akifumi; Teramura, Yuji; Takai, Madoka
2016-01-01
Since circulating tumor cells (CTCs) are tumor cells which are found in the blood of cancer patients, CTCs are potential tumor markers, so a rapid isolation of CTCs is desirable for clinical applications. In this paper, a three-dimensional polystyrene (PS) microfiber fabric with vacuum aspiration system was developed for capturing CTCs within a short time. Various microfiber fabrics with different diameters were prepared by the electrospinning method and optimized for contact frequency with cells. Vacuum aspiration utilizing these microfiber fabrics could filter all cells within seconds without mechanical damage. The microfiber fabric with immobilized anti-EpCAM antibodies was able to specifically capture MCF-7 cells that express EpCAM on their surfaces. The specificity of the system was confirmed by monitoring the ability to isolate MCF-7 cells from a mixture containing CCRF-CEM cells that do not express EpCAM. Furthermore, the selective capture ability of the microfiber was retained even when the microfiber was exposed to the whole blood of pigs spiked with MCF-7 cells. The specific cell capture ratio of the vacuum aspiration system utilizing microfiber fabric could be improved by increasing the thickness of the microfiber fabric through electrospinning time.
Recycling of waste lead storage battery by vacuum methods.
Lin, Deqiang; Qiu, Keqiang
2011-07-01
Waste lead storage battery is the most important recyclable lead material not only in various European and other OECD countries but also in China. Pollution control of lead has become the focus of people's attention in the world. A vacuum process for recycling waste lead storage battery was developed in this work. The experimental results showed that all the valuable materials in waste lead storage battery could be satisfactorily recycled by vacuum technologies. The vacuum melting of lead grids and the vacuum reduction of lead pastes produce the lead bullion with the direct recovery ratio of 96.29% and 98.98%, respectively. The vacuum pyrolysis of plastics can produce pyrolysis oil with yield of more than 93 wt.%. These vacuum recycling technologies offer improvements in metallurgical and environmental performance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Window-assisted nanosphere lithography for vacuum micro-nano-electronics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nannan; Institute of Electronic Engineering, Chinese Academy of Engineering Physics, Mianyang, 621900; Pang, Shucai
2015-04-15
Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided amore » new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics.« less
NASA Astrophysics Data System (ADS)
Anikeev, V. N.; Dokukin, M. Yu
2017-05-01
In the modern technics there is a requirement in micro- and macrorough surfaces of products for improvement of their operational characteristics (improvement of adhesive properties of various coverings, decrease in deterioration of rubbing details because of the best deduction of greasing, increase of the heat exchanging coefficient from a surface, stimulation of adhesive processes on sites of contact to a bone fabric of medical implants in stomatology and orthopedy etc.). In the given work the modes of reception regulated micro- and macrorough surfaces on samples from a titanic alloy and stainless steel by electrothermal influence of moving cathodic stains in the vacuum arc discharge are investigated. Chaotically moving stains, possessing high specific power allocation (∼ 107 W/cm2), “scan” the difficult design of a product, including “shadow” sites, doing rough its blanket. The sizes of roughnesses are regulated by a current and time of influence of the discharge, pressure in the vacuum chamber and a number of other parameters. The scheme of experimental device, photo and the characteristic of rough surfaces and technological modes of their reception are resulted.
Preparation of titanium dioxide films on etched aluminum foil by vacuum infiltration and anodizing
NASA Astrophysics Data System (ADS)
Xiang, Lian; Park, Sang-Shik
2016-12-01
Al2O3-TiO2 (Al-Ti) composite oxide films are a promising dielectric material for future use in capacitors. In this study, TiO2 films were prepared on etched Al foils by vacuum infiltration. TiO2 films prepared using a sol-gel process were annealed at various temperatures (450, 500, and 550 °C) for different time durations (10, 30, and 60 min) for 4 cycles, and then anodized at 100 V. The specimens were characterized using X-ray diffraction, field emission scanning electron microscopy, and field emission transmission electron microscopy. The results show that the tunnels of the specimens feature a multi-layer structure consisting of an Al2O3 outer layer, an Al-Ti composite oxide middle layer, and an aluminum hydrate inner layer. The electrical properties of the specimens, such as the withstanding voltage and specific capacitance, were also measured. Compared to specimens without TiO2 coating, the specific capacitances of the TiO2-coated specimens are increased. The specific capacitance of the anode Al foil with TiO2 coating increased by 42% compared to that of a specimen without TiO2 coating when annealed at 550 °C for 10 min. These composite oxide films could enhance the specific capacitance of anode Al foils used in dielectric materials.
Kelly, Caroline A; Cruz-Romero, Malco; Kerry, Joseph P; Papkovsky, Dmitri P
2018-05-02
The commercially-available optical oxygen-sensing system Optech-O₂ Platinum was applied to nondestructively assess the in situ performance of bulk, vacuum-packaged raw beef in three ~300 kg containers. Twenty sensors were attached to the inner surface of the standard bin-contained laminate bag (10 on the front and back sides), such that after filling with meat and sealing under vacuum, the sensors were accessible for optical interrogation with the external reader device. After filling and sealing each bag, the sensors were measured repetitively and nondestructively over a 15-day storage period at 1 °C, thus tracking residual oxygen distribution in the bag and changes during storage. The sensors revealed a number of unidentified meat quality and processing issues, and helped to improve the packaging process by pouring flakes of dry ice into the bag. Sensor utility in mapping the distribution of residual O₂ in sealed bulk containers and optimising and improving the packaging process, including handling and storage of bulk vacuum-packaged meat bins, was evident.
Vacuum-deposited polymer/silver reflector material
NASA Astrophysics Data System (ADS)
Affinito, John D.; Martin, Peter M.; Gross, Mark E.; Bennett, Wendy D.
1994-09-01
Weatherable, low cost, front surface, solar reflectors on flexible substrates would be highly desirable for lamination to solar concentrator panels. The method to be described in this paper may permit such reflector material to be fabricated for less the 50$CNT per square foot. Vacuum deposited Polymer/Silver/Polymer reflectors and Fabry-Perot interference filters were fabricated in a vacuum web coating operation on polyester substrates. Reflectivities were measured in the wavelength range from .4 micrometers to .8 micrometers . It is hoped that a low cost substrate can be used with the substrate laminated to the concentrator and the weatherable acrylic polymer coating facing the sun. This technique should be capable of deposition line speeds approaching 1500 linear feet/minute2. Central to this technique is a new vacuum deposition process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process- for Polymer Multi- Layer.
Cosmological implications of quantum mechanics parametrization of dark energy
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander; Urbanowski, Krzysztof
2017-08-01
We consider the cosmology with the running dark energy. The parametrization of dark energy is derived from the quantum process of transition from the false vacuum state to the true vacuum state. This model is the generalized interacting CDM model. We consider the energy density of dark energy parametrization, which is given by the Breit-Wigner energy distribution function. The idea of the process of the quantum mechanical decay of unstable states was formulated by Krauss and Dent. We used this idea in our considerations. In this model is an energy transfer in the dark sector. In this evolutional scenario the universe starts from the false vacuum state and goes to the true vacuum state of the present day universe. The intermediate regime during the passage from false to true vacuum states takes place. In this way the cosmological constant problem can be tried to solve. We estimate the cosmological parameters for this model. This model is in a good agreement with the astronomical data and is practically indistinguishable from CDM model.
Lepper-Blilie, A N; Berg, E P; Buchanan, D S; Keller, W L; Maddock-Carlin, K R; Berg, P T
2014-03-01
A 3×3×2 factorial was utilized to determine if roast size (small, medium, large), cooking method (open-pan, oven bag, vacuum bag), and heating process (fresh, reheated) prevented warmed-over flavor (WOF) in beef clod roasts. Fresh vacuum bag and reheated open-pan roasts had higher cardboardy flavor scores compared with fresh open-pan roast scores. Reheated roasts in oven and vacuum bags did not differ from fresh roasts for cardboardy flavor. Brothy and fat intensity were increased in reheated roasts in oven and vacuum bags compared with fresh roasts in oven and vacuum bags. Differences in TBARS were found in the interaction of heating process and roast size with the fresh and reheated large, and reheated medium roasts having the lowest values. Based on TBARS data, to prevent WOF in reheated beef roasts, a larger size roast in a cooking bag is the most effective method. Copyright © 2013 Elsevier Ltd. All rights reserved.
Research regarding the vacuuming of liquid steel on steel degassing
NASA Astrophysics Data System (ADS)
Magaon, M.; Radu, M.; Şerban, S.; Zgripcea, L.
2018-01-01
When the liquid steel comes in contact with the atmosphere of the elaboration aggregates, a process of gas diffusion into the metal bath takes place on the one hand, and on the other hand a process that allows them to pass from the metal bath into the atmosphere. The meaning of these processes is determined by a number of factors as follows: the quality of raw and auxiliary materials (moisture content, oils, etc.), the boiling intensity, the evacuation duration, the properties of used slags, the values of the casting ladle processing parameters (bubbling, vacuuming, etc.). The research was carried out at an electrical steelwork, equipped with an electric arc furnace type EBT (Electric Bottom Tapping) capacity 100t, LF (Ladle-Furnace) and VD (Vacuum Degassing) facilities, establishing some correlations between the vacuuming parameters from the V.D.facility and the amounts of hydrogen and nitrogen removed from the metal bath, as well as their removal efficiency, were taken into consideration. The obtained data was processed in MATLAB calculation program, the established correlations form was presented both in analytical and graphical form. The validity of these correlations was verified in practice, being particularly useful in research.
Red rubber bulb, cheap and effective vacuum drainage.
Vatanasapt, V; Areemit, S; Jeeravipoolvarn, P; Kuyyakanond, T; Kuptarnond, C
1989-04-01
Red rubber bulbs have been used for vacuum drainage in head, neck, breast and several other operations by the authors since 1975 quite effectively without any major problems. The vacuum pressure of the red rubber bulbs was found to be higher than the expensive commercially available vacuum wound drainage device. The question of remaining old blood and infective microorganisms inside the reservoir for the reused ones were tested by the manual cleaning process and the standard sterile technique using steam under increased pressure (autoclave). The result is quite satisfactory. We encourage the use of this cheap and effective (made in Thailand) vacuum wound drainage in Thai hospitals and Thai medical schools.
Use of space ultra-vacuum for high quality semiconductor thin film growth
NASA Technical Reports Server (NTRS)
Ignatiev, A.; Sterling, M.; Sega, R. M.
1992-01-01
The utilization of space for materials processing is being expanded through a unique concept of epitaxial thin film growth in the ultra-vacuum of low earth orbit (LEO). This condition can be created in the wake of an orbiting space vehicle; and assuming that the vehicle itself does not pertub the environment, vacuum levels of better than 10 exp -14 torr can be attained. This vacuum environment has the capacity of greatly enhancing epitaxial thin film growth and will be the focus of experiments conducted aboard the Wake Shield Facility (WSF) currently being developed by the Space Vacuum Epitaxy Center (SVEC), Industry, and NASA.
Method for producing titanium aluminide weld rod
Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.
1995-01-01
A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.
[Evaluation of the quality of poultry meat and its processing for vacuum packaging].
Swiderski, F; Russel, S; Waszkiewicz-Robak, B; Cholewińska, E
1997-01-01
The aim of study was to evaluate the quality of poultry meat, roasted and smoked chicken and poultry pie packing under low and high vacuum. All investigated products were stored at +4 degrees C and evaluated by microbiological analysis. It was showed that packing under low and high vacuum inhibited development of aerobic microorganisms, proteolytic bacteria, yeasts and moulds. Vacuum-packaged storage of poultry meat and its products stimulated activity of anaerobic, nonsporeforming bacteria. The fast spoilage of fresh poultry meat was observed both under vacuum and conventional storage. The microbiology quality of poultry products depended on technology of production and microbiological quality of raw material.
Dynamical emergence of the Universe into the false vacuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafelski, Johann; Birrell, Jeremiah, E-mail: rafelski@physics.arizona.edu, E-mail: jbirrell@email.arizona.edu
We study how the hot Universe evolves and acquires the prevailing vacuum state, demonstrating that in specific conditions which are believed to apply, the Universe becomes frozen into the state with the smallest value of Higgs vacuum field v=( h), even if this is not the state of lowest energy. This supports the false vacuum dark energy Λ-model. Under several likely hypotheses we determine the temperature in the evolution of the Universe at which two vacuua v{sub 1}, v{sub 2} can swap between being true and false. We evaluate the dynamical surface pressure on domain walls between low and high mass vaccuamore » due to the presence of matter and show that the low mass state remains the preferred vacuum of the Universe.« less
NASA Technical Reports Server (NTRS)
Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine
2013-01-01
The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.
Dong, Wenjiang; Cheng, Ke; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Long, Yuzhou
2018-05-11
The aim of this study is to investigate the effect of microwave vacuum drying (MVD) on the drying characteristics and quality attributes of green coffee beans. We specifically focused on the effective moisture diffusion coefficient ( D eff ), surface temperature, glass transition temperature ( T g ), water state, and microstructure. The kinetics of color changes during drying, total phenolic content (TPC), and antioxidant activity (DPPH, FRAP, and ABTS) were also characterized. Microwave power during MVD affected the porosity of coffee beans, their color, TPC, and antioxidant activity. The Allometric 1 model was the most suitable for simulating surface temperature rise kinetics. Thermal processing of green coffee beans resulted in increased b* , L* , Δ E , and TPC values, and greater antioxidant capacity. These findings may provide a theoretical reference for the technical improvement, mechanisms of flavor compound formation, and quality control of dried green coffee beans.
Plasma Chamber Design and Fabrication Activities
NASA Astrophysics Data System (ADS)
Parodi, B.; Bianchi, A.; Cucchiaro, A.; Coletti, A.; Frosi, P.; Mazzone, G.; Pizzuto, A.; Ramogida, G.; Coppi, B.
2006-10-01
A fabrication procedure for a typical Plasma Chamber (PC) sector has been developed to cover all the manufacturing phases, from the raw materials specification (including metallurgical processes) to the machining operations, acceptance procedures and vacuum tests. Basically, the sector is made of shaped elements (forged or rolled) welded together using special fixtures and then machined to achieve the final dimensional accuracy. An upgraded design of the plasma chamber's vertical support that can withstand the estimated electromagnetic loads (Eddy and Halo current plus horizontal net force resulting from the worst plasma disruption scenario VDE, Vertical Displacement Event) has been completed. The maintenance of the radial support can take place hands-on with a direct access from outside the cryostat. With the present design, vacuum tightness is achieved by welding conducted with automatic welding heads. On the outer surface of the PC a dedicated duct system, filled by helium gas, is included to cool down the PC to room temperature when needed.
Vacuum Compatibility of Flux-Core Arc Welding (FCAW)
NASA Astrophysics Data System (ADS)
Arose, Dana; Denault, Martin; Jurcznski, Stephan
2010-11-01
Typically, vacuum chambers are welded together using gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW). This is demonstrated in the vacuum chamber of Princeton Plasma Physics Lab's (PPPL) National Spherical Torus Experiment (NSTX). These processes are slow and apply excess heat to the base metal, which may cause the vacuum chamber to deform beyond designed tolerance. Flux cored arc welding (FCAW) avoids these problems, but may produce an unacceptable amount of outgasing due to the flux shielding. We believe impurities due to outgasing from FCAW will not greatly exceed those found in GTAW and GMAW welding. To test this theory, samples welded together using all three welding processes will be made and baked in a residual gas analyzer (RGA). The GTAW and GMAW welds will be tested to establish a metric for permissible outgasing. By testing samples from all three processes we hope to demonstrate that FCAW does not significantly outgas, and is therefore a viable alternative to GTAW and GMAW. Results from observations will be presented.
All-aluminum-alloy UHV chamber for molecular beam epitaxy, 1
NASA Astrophysics Data System (ADS)
Suemitsu, M.; Miyamoto, N.
1984-03-01
The first all aluminum alloy (ex. JIS.6263-t6,2219-t87 etc) MBE chamber is constructed and described. After exposure to atmosphere, the chamber is drown to 10(-9) torr in 24 hours, and reaches an ultrahigh vacuum of 1.6x10(-10) torr by a 115 C, 24 bakeout process. The light weight and low cost as well as the short pump-down time and the law outgassing rate of the all aluminum alloy vacuum system seems to have a considerable applicative potentiality for equipment used in semiconductor ultrahigh vacuum processes.
NASA Technical Reports Server (NTRS)
Sankaran, K. K.
1987-01-01
The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.
Wireless Integrated Microelectronic Vacuum Sensor System
NASA Technical Reports Server (NTRS)
Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun
2013-01-01
NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum-gauge measurements automatically and wirelessly, in near-real time - using a low-maintenance, lowpower sensor mesh network. The WIMVSS operates by using a self-configuring mesh network of wireless sensor units. Mesh networking is a type of networking where each sensor or node can capture and disseminate its own data, but also serve as a relay to receive and transmit data from other sensors. Each sensor node can synchronize with adjacent sensors, and propagate data from one sensor to the next, until the destination is reached. In this case, the destination is a Network Interface Unit (NIU). The WIMVSS sensors are mounted on the existing vacuum gauges. Information gathered by the sensors is sent to the NIU. Because of the mesh networking, if a sensor cannot directly send the data to the NIU, it can be propagated through the network of sensors. The NIU requires antenna access to the sensor units, AC power, and an Ethernet connection. The NIU bridges the sensor network to a WIMVSS server via an Ethernet connection. The server is configured with a database, a Web server, and proprietary interface software that makes it possible for the vacuum measurements from vacuum jacketed fluid lines to be saved, retrieved, and then displayed from any Web-enabled PC that has access to the Internet. Authorized users can then simply access the data from any PC with Internet connection. Commands can also be sent directly from the Web interface for control and maintenance of the sensor network. The technology enabled by the WIMVSS decreases labor required for gathering vacuum measurements, increases access to vacuum data by making it available on any computer with access to the Internet, increases the frequency with which data points can be acquired for evaluating the system, and decreases the recurring cost of the sensors by using off-the-shelf components and integrating these with heritage vacuum gauges.
Vacuum Deposition From A Welding Torch
NASA Technical Reports Server (NTRS)
Poorman, R. M.
1993-01-01
Process derived from arc welding produces films of high quality. Modified gas/tungsten-arc welding process developed for use in outer space. Welding apparatus in process includes hollow tungsten electrode through which inert gas flows so arc struck between electrode and workpiece in vacuum of space. Offers advantages of fast deposition, possibility of applying directional impetus to flow of materials, very low pressure at surface being coated, and inert environment.
Okut, Dilara; Devseren, Esra; Koç, Mehmet; Ocak, Özgül Özdestan; Karataş, Haluk; Kaymak-Ertekin, Figen
2018-01-01
Purpose of this study was to develop prototype cooking equipment that can work at reduced pressure and to evaluate its performance for production of strawberry jam. The effect of vacuum cooking conditions on color soluble solid content, reducing sugars total sugars HMF and sensory properties were investigated. Also, the optimum vacuum cooking conditions for strawberry jam were optimized for Composite Rotatable Design. The optimum cooking temperature and time were determined targeting maximum soluble solid content and sensory attributes (consistency) and minimum Hue value and HMF content. The optimum vacuum cooking conditions determined were 74.4 °C temperature and 19.8 time. The soluble solid content strawberry jam made by vacuum process were similar to those prepared by traditional method. HMF contents of jams produced with vacuum cooking method were well within limit of standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... APPROVAL ENGINEERING EQUIPMENT Valves, Pressure-Vacuum Relief, for Tank Vessels § 162.017-2 Type. This specification covers the design and construction of pressure-vacuum relief valves intended for use in venting systems on all tank vessels transporting inflammable or combustible liquids. [56 FR 35827, July 29, 1991] ...
Code of Federal Regulations, 2010 CFR
2010-10-01
... APPROVAL ENGINEERING EQUIPMENT Valves, Pressure-Vacuum Relief, for Tank Vessels § 162.017-2 Type. This specification covers the design and construction of pressure-vacuum relief valves intended for use in venting systems on all tank vessels transporting inflammable or combustible liquids. [56 FR 35827, July 29, 1991] ...
40 CFR 65.44 - External floating roof (EFR).
Code of Federal Regulations, 2013 CFR
2013-07-01
... external floating roof except for automatic bleeder vents (vacuum breaker vents) and rim space vents does... floating roof shall meet the following specifications: (i) Except for automatic bleeder vents (vacuum breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a...
40 CFR 65.44 - External floating roof (EFR).
Code of Federal Regulations, 2014 CFR
2014-07-01
... external floating roof except for automatic bleeder vents (vacuum breaker vents) and rim space vents does... floating roof shall meet the following specifications: (i) Except for automatic bleeder vents (vacuum breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a...
40 CFR 65.44 - External floating roof (EFR).
Code of Federal Regulations, 2012 CFR
2012-07-01
... external floating roof except for automatic bleeder vents (vacuum breaker vents) and rim space vents does... floating roof shall meet the following specifications: (i) Except for automatic bleeder vents (vacuum breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a...
Fabrication of boron sputter targets
Makowiecki, D.M.; McKernan, M.A.
1995-02-28
A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.
Indigenous Manufacturing realization of TWIN Source
NASA Astrophysics Data System (ADS)
Pandey, R.; Bandyopadhyay, M.; Parmar, D.; Yadav, R.; Tyagi, H.; Soni, J.; Shishangiya, H.; Sudhir Kumar, D.; Shah, S.; Bansal, G.; Pandya, K.; Parmar, K.; Vuppugalla, M.; Gahlaut, A.; Chakraborty, A.
2017-04-01
TWIN source is two RF driver based negative ion source that has been planned to bridge the gap between single driver based ROBIN source (currently operational) and eight river based DNB source (to be operated under IN-TF test facility). TWIN source experiments have been planned at IPR keeping the objective of long term domestic fusion programme to gain operational experiences on vacuum immersed multi driver RF based negative ion source. High vacuum compatible components of twin source are designed at IPR keeping an aim on indigenous built in attempt. These components of TWIN source are mainly stainless steel and OFC-Cu. Being high heat flux receiving components, one of the major functional requirements is continuous heat removal via water as cooling medium. Hence for the purpose stainless steel parts are provided with externally milled cooling lines and that shall be covered with a layer of OFC-cu which would be on the receiving side of high heat flux. Manufacturability of twin source components requires joining of these dissimilar materials via process like electrode position, electron beam welding and vacuum brazing. Any of these manufacturing processes shall give a vacuum tight joint having proper joint strength at operating temperature and pressure. Taking the indigenous development effort vacuum brazing (in non-nuclear environment) has been opted for joining of dissimilar materials of twin source being one of the most reliable joining techniques and commercially feasible across the suppliers of country. Manufacturing design improvisation for the components has been done to suit the vacuum brazing process requirement and to ease some of the machining without comprising over the functional and operational requirements. This paper illustrates the details on the indigenous development effort, design improvisation to suits manufacturability, vacuum brazing basics and its procedures for twin source components.
Vacuum/compression valving (VCV) using parrafin-wax on a centrifugal microfluidic CD platform.
Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Moebius, Jacob; Joseph, Karunan; Arof, Hamzah; Madou, Marc
2013-01-01
This paper introduces novel vacuum/compression valves (VCVs) utilizing paraffin wax. A VCV is implemented by sealing the venting channel/hole with wax plugs (for normally-closed valve), or to be sealed by wax (for normally-open valve), and is activated by localized heating on the CD surface. We demonstrate that the VCV provides the advantages of avoiding unnecessary heating of the sample/reagents in the diagnostic process, allowing for vacuum sealing of the CD, and clear separation of the paraffin wax from the sample/reagents in the microfluidic process. As a proof of concept, the microfluidic processes of liquid flow switching and liquid metering is demonstrated with the VCV. Results show that the VCV lowers the required spinning frequency to perform the microfluidic processes with high accuracy and ease of control.
Vacuum/Compression Valving (VCV) Using Parrafin-Wax on a Centrifugal Microfluidic CD Platform
Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Moebius, Jacob; Joseph, Karunan; Arof, Hamzah; Madou, Marc
2013-01-01
This paper introduces novel vacuum/compression valves (VCVs) utilizing paraffin wax. A VCV is implemented by sealing the venting channel/hole with wax plugs (for normally-closed valve), or to be sealed by wax (for normally-open valve), and is activated by localized heating on the CD surface. We demonstrate that the VCV provides the advantages of avoiding unnecessary heating of the sample/reagents in the diagnostic process, allowing for vacuum sealing of the CD, and clear separation of the paraffin wax from the sample/reagents in the microfluidic process. As a proof of concept, the microfluidic processes of liquid flow switching and liquid metering is demonstrated with the VCV. Results show that the VCV lowers the required spinning frequency to perform the microfluidic processes with high accuracy and ease of control. PMID:23505528
2012-08-03
the growth conditions and to improve film quality. Mechanical Scroll Pump The sputtering system requires a mechanical scroll pump to bring the...load lock and main processing chamber from atmospheric pressure to medium vacuum . This particular type of pump does not expose any part of the vacuum ...additional pump to bring the main processing chamber from medium vacuum to ultrahigh vacuum . Cryogenic pumps have no mechanical components and are
Vacuum field-effect transistor with a deep submicron channel fabricated by electro-forming
NASA Astrophysics Data System (ADS)
Wang, Xiao; Shen, Zhihua; Wu, Shengli; Zhang, Jintao
2017-06-01
Vacuum field-effect transistors (VFETs) with channel lengths down to 500 nm (i.e., the deep submicron scale) were fabricated with the mature technology of the surface conduction electron emitter fabrication process in our former experiments. The vacuum channel of this new VFET was generated by using the electro-forming process. During electro-forming, the joule heat cracks the conductive film and then generates the submicron scale gap that serves as the vacuum channel. The gap separates the conductive film into two plane-to-plane electrodes, which serve as a source (cathode) electrode and a drain (anode) electrode of the VFET, respectively. Experimental results reveal that the fabricated device demonstrates a clear triode behavior of the gate modulation. Fowler-Nordheim theory was used to analyze the electron emission mechanism and operating principle of the device.
PREFACE: International Symposium on `Vacuum Science and Technology' (IVS 2007)
NASA Astrophysics Data System (ADS)
Mittal, K. C.; Gupta, S. K.
2008-03-01
The Indian Vacuum Society (established in 1970) has organized a symposium every alternate year on various aspects of vacuum science and technology. There has been considerable participation from R & D establishments, universities and Indian industry in this event. In view of the current global scenario and emerging trends in vacuum technology, this year, the executive committee of IVS felt it appropriate to organize an international symposium at Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 from 29-30 November 2007. This symposium provided a forum for exchange of information among vacuum scientists, technologists and industrialists on recent advances made in the areas of large vacuum systems, vacuum production, its measurement and applications in industry, and material processing in vacuum. Vacuum science and technology has made vital contributions in high tech areas like space, high energy particle accelerators, large plasma systems, electronics, thin films, melting and refining of metals, extraction and processing of advanced materials etc. The main areas covered in the symposium were the production and measurement of vacuums, leak detection, large vacuum systems, vacuum metallurgy, vacuum materials and processing inclusive of applications of vacuum in industry. Large vacuum systems for high energy particle accelerators, plasma devices and light sources are of special significance for this symposium. Vacuum evaporation, hard coatings, thin films, joining techniques, sintering, melting and heat treatment, furnaces and thermo dynamics are also covered in this symposium. There were eighteen invited talks from the best experts in the respective fields and more than one hundred contributed papers. This fact itself indicates the interest that has been generated amongst the scientists, technologists and industrialists in this field. In view of the industrial significance of the vacuum technology, an exhibition of vacuum and vacuum processing related equipments, accessories, products etc by different manufacturers and suppliers has been organized at the venue of the symposium hall for the benefit of the participants. The interest shown by the exhibitors reveals that the industry has come of age and the advances that have taken place over the years is quite significant. During the symposium, the Indian Vacuum Society felicitated two distinguished personalities who have contributed significantly for the development of vacuum science and technology in the country. The C AMBASANKARAN memorial and Smt SHAKUNTALABAI VYAWAHARE memorial Awards were also conferred on the two best contributed papers. A committee constituted by the Symposium Organizing Committee evaluated the relevance, scientific content, and clarity of presentation to decide the award winning papers. It is hoped that the discussion generated by the delegates at the symposium will help in a better understanding vacuum science and technology. K C Mittal Convener S K Gupta Co Convener International Advisory Committee Kakodkar, Anil DAE/India, Chairman Badve, Cdr A.V.(IN Retd.) Pfeiffer Vac India Banerjee, S. BARC/India Bhandari, R.K. BRNS/India Chander, Shekhar CEERI/India Chopra, K.L. IIT Delhi/India Day, Chris ITER Grover, R.B DAE,BARC/India Jakub, Szajman VSA/ Australia Jayaraj, R.N. NFC/India Kamath, H.S. BARC/India Kaw, P.K. IPR/India Kobayashi, M. VSJ/Japan Kumar, Lalit MTRDC, India Kumar, Vikram NPL., India Langley, Robert AVS, USA Larour, Jean Ecole/France Mendonsa, R.H. Lawrence and Mayo Myneni, Ganapatirao Jlab/USA Narsaiah, S.V. HHV Padamsee, Hasan Cornell/USA Pillay, R.G. TIFR Raj, Baldev IGCAR/India Raju, P.T. IVS/India Ramasami, T. DST/India Ray, A.K. BARC/India Reid, RJ IUVSTA/UK Roy, Amit IUAC/india Sahni, V.C. RRCAT, BARC/India Schamiloglu, E. UNM/USA Shankara, K.N. VSSC,ISRO/India Sinha, Bikash VEC,SINP/India Strubin, P. CERN/Switzerland Local Organizing Committee Ray, A.K. BARC (Chairman) Kailas, S. BARC, (Co Chairman) Chakravarty, D.P. BARC Chandrachoodan, P.P. BRNS Desai, Tushar Mumbai Univ. Dhamija, Lokesh BOC Edwards Dixit, Anand New Poona Ind. Gadkari, S.C. BARC Gantayet, L.M BARC Gupta, A.C. NPL Gupta, S.K. BARC (Co Convener) Handu, V.K. BARC Jathar, Rajendra Varian Joshi, S.N. CEERI Korgaonkar, A.V. IVS Kotaiah, S. CAT Kumar, Vijay BARC Matkar, A.W. BARC Mittal, K.C. BARC (Convener) Nema, P.K. BRNS Pandit, V.S. VEC Puranik, S.G. Ashwani Enterprises Puri, R.R. BARC Ranga Rao, Y. Vac. Techniques Sabharwal, Rajat Alcatel Sakhamuri, Prashant HHV Bangalore Sanyal, T. NFC Sarkar, S.K. TIFR Sarma, K.R. Atomic Vacuum Saxena, Y.C. IPR Sharma, B.P. BARC Shukla, S.K. RRCAT Singh, R.P. BARC Suri, A.K. BARC Suthar ,R.L. BARC Venugopa,l V. BARC Vyavahare, Mohan Ultimate Technologies Yakhmi, J.V. BARC
Four wave mixing as a probe of the vacuum
NASA Astrophysics Data System (ADS)
Tennant, Daniel M.
2016-06-01
Much attention has been paid to the quantum structure of the vacuum. Higher order processes in quantum electrodynamics are strongly believed to cause polarization and even breakdown of the vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments. Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as opposed to coupling to virtual fluctuations. In this article, I will demonstrate how vacuum four wave mixing has the possibility to differentiate between these two types of vacuum responses: quantum effects on one hand and nonlinear classical extensions on the other.
Cathode surface effects and H.F.-behaviour of vacuum arcs
NASA Astrophysics Data System (ADS)
Fu, Yan Hong
To gain a better understanding of the essential processes occurring during a vacuum arc interruption for the further development of the vacuum arc circuit breaker, cathode spot behavior, current interruption, dielectrical recovery and overvoltage generation are investigated. An experimental study on cathode spot behavior of the DC vacuum arc in relation to cathode surface roughness and a qualitative physical model to interpret the results are reported. An experimental investigation on the High Frequency (HF) current interruption, multiple recognitions and voltage escalation phenomena is reported. A calculation program to predict the level of overvoltages generated by the operation of a vacuum breaker in a realistic single phase circuit is developed. Detailed results are summarized.
Use of Vacuum Degreasing for Precision Cleaning
NASA Technical Reports Server (NTRS)
Fox, Eric; Edwards, Kevin; Mitchell, Mark; Boothe, Richard
2017-01-01
Increasingly strict environmental regulations and the consequent phase out of many effective cleaning solvents has necessitated the development of novel cleaning chemistries and technologies. Among these is vacuum degreasing, a fully enclosed process that eliminates fugitive solvent emissions, thereby reducing cost, environmental, and health related exposure impacts. The effectiveness of vacuum degreasing using modified alcohol for common aerospace contaminants is reported and compared to current and legacy solvents.
Microorganisms and biomolecules in space hard environment
NASA Technical Reports Server (NTRS)
Horneck, G.
1981-01-01
Microorganisms and biomolecules exposed to space vacuum and to different intensities of selected wavelengths of solar ultraviolet radiation is studied. The influence of these factors, applied singly or simultaneously, on the integrity of microbial systems and biomolecules is measured. Specifically, this experiment will study in Bacillus subtilis spores (1) disturbances in subsequent germination, outgrowth, and colony formation; (2) photochemical reactions of the DNA and protein in vivo and in vitro and their role in biological injury; and (3) the efficiency of repair processes in these events.
Impact of vacuum frying on quality of potato crisps and frying oil.
Belkova, Beverly; Hradecky, Jaromir; Hurkova, Kamila; Forstova, Veronika; Vaclavik, Lukas; Hajslova, Jana
2018-02-15
This research was focused on a critical assessment of vacuum frying as a technology enabling minimization of acrylamide formation in potato crisps and reducing undesirable chemical changes that occur in frying oil at high temperatures. The potato slices were fried in rapeseed oil under vacuum at 125°C and atmospheric pressure at 165°C. The experiments were performed on two potato varieties, Saturna and Impala. Vacuum frying reduced the formation of acrylamide by 98% and also other Maillard reaction products, specifically alkylpyrazines. Concurrently a lower extent of oxidative changes was observed in the frying oil, while 3-MCPD esters decreased fairly quickly during conventional frying. Sensory characteristics of the vacuum and conventionally fried potato crisps were evaluated by a 23-member panel. The majority of panellists preferred the flavour of 'conventional crisps', while only a few of them appreciated potato-like fresh flavour of 'vacuum crisps' and classified this product as 'tasty'. Copyright © 2017. Published by Elsevier Ltd.
Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.
Long, Laishou; Sun, Shuiyu; Zhong, Sheng; Dai, Wencan; Liu, Jingyong; Song, Weifeng
2010-05-15
The constant growth in generation of waste printed circuit boards (WPCB) poses a huge disposal problem because they consist of a heterogeneous mixture of organic and metallic chemicals as well as glass fiber. Also the presence of heavy metals, such as Pb and Cd turns this scrap into hazardous waste. Therefore, recycling of WPCB is an important subject not only from the recovery of valuable materials but also from the treatment of waste. The aim of this study was to present a recycling process without negative impact to the environment as an alternative for recycling WPCB. In this work, a process technology containing vacuum pyrolysis and mechanical processing was employed to recycle WPCB. At the first stage of this work, the WPCB was pyrolyzed under vacuum in a self-made batch pilot-scale fixed bed reactor to recycle organic resins contained in the WPCB. By vacuum pyrolysis the organic matter was decomposed to gases and liquids which could be used as fuels or chemical material resources, however, the inorganic WPCB matter was left unaltered as solid residues. At the second stage, the residues obtained at the first stage were investigated to separate and recover the copper through mechanical processing such as crushing, screening, and gravity separation. The copper grade of 99.50% with recovery of 99.86% based on the whole WPCB was obtained. And the glass fiber could be obtained by calcinations in a muffle furnace at 600 degrees C for 10 min. This study had demonstrated the feasibility of vacuum pyrolysis and mechanical processing for recycling WPCB. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Zhou, Yihui; Wu, Wenbiao; Qiu, Keqiang
2010-11-01
In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, A. P., E-mail: Alexei.Belyaev@pharminnotech.com; Antipov, V. V.; Rubets, V. P.
Structural and technological studies of processes in which cadmium-sulfide nanowhiskers are synthesized in a quasi-closed volume by the method of vacuum evaporation and condensation are reported. It is demonstrated that the processes are in agreement with the classical vapor–liquid–crystal model. Micrographs of the objects in different formation stages are presented.
Ma, Yunjian; Qiu, Keqiang
2015-06-01
Lead sulfate, lead oxides and lead metal are the main component of lead paste in spent lead acid battery. When lead sulfate was desulfurized and transformed into lead carbonate by sodium carbonate, lead metal and lead oxides remained unchanged. Lead carbonate is easily decomposed to lead oxide and carbon dioxide under high temperature. Namely, vacuum thermal process is the reduction reaction of lead oxides. A compatible environmental process consisted of hydrometallurgical desulfurization and vacuum thermal reduction to recycle lead was investigated in this research. Lead paste was firstly desulfurized with sodium carbonate, by which, the content of sulfur declined from 7.87% to 0.26%. Then, the desulfurized lead paste was reduced by charcoal under vacuum. Under the optimized reaction conditions, i.e., vacuum thermal reduction at temperature 850°C under 20 Pa for 45 min, a 22.11×10(-2) g cm(-2) min(-1) reduction rate, and a 98.13% direct recovery ratio of fine lead (99.77%) had been achieved, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yi; Yang, Fei; Sun, Hao; Wu, Yi; Niu, Chunping; Rong, Mingzhe
2017-06-01
After current zero, which is the moment when the vacuum circuit breaker interrupts a vacuum arc, sheath development is the first process in the dielectric recovery process. An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted. Therefore, it is very important to study the influence of different AMF amplitudes on the sheath development. The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective. Thus, the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model. We compared the simulation results with the experimental results and then validated the simulation. We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes. The results showed that the larger the AMF amplitudes are, the faster the sheath develops and the lower the ion energy density is, meaning the breakdown is correspondingly more difficult.
Conceptual design of ACB-CP for ITER cryogenic system
NASA Astrophysics Data System (ADS)
Jiang, Yongcheng; Xiong, Lianyou; Peng, Nan; Tang, Jiancheng; Liu, Liqiang; Zhang, Liang
2012-06-01
ACB-CP (Auxiliary Cold Box for Cryopumps) is used to supply the cryopumps system with necessary cryogen in ITER (International Thermonuclear Experimental Reactor) cryogenic distribution system. The conceptual design of ACB-CP contains thermo-hydraulic analysis, 3D structure design and strength checking. Through the thermohydraulic analysis, the main specifications of process valves, pressure safety valves, pipes, heat exchangers can be decided. During the 3D structure design process, vacuum requirement, adiabatic requirement, assembly constraints and maintenance requirement have been considered to arrange the pipes, valves and other components. The strength checking has been performed to crosscheck if the 3D design meets the strength requirements for the ACB-CP.
Materials for Heated Head Automated Thermoplastic Tape Placement
NASA Technical Reports Server (NTRS)
Jensen, Brian J.; Kinney, Megan C.; Cano, Roberto J.; Grimsley, Brian W.
2012-01-01
NASA Langley Research Center (LaRC) is currently pursuing multiple paths to develop out of autoclave (OOA) polymeric composite materials and processes. Polymeric composite materials development includes the synthesis of new and/or modified thermosetting and thermoplastic matrix resins designed for specific OOA processes. OOA processes currently under investigation include vacuum bag only (VBO) prepreg/composite fabrication, resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM) and heated head automated thermoplastic tape placement (HHATP). This paper will discuss the NASA Langley HHATP facility and capabilities and recent work on characterizing thermoplastic tape quality and requirements for quality part production. Samples of three distinct versions of APC-2 (AS4/PEEK) thermoplastic dry tape were obtained from two materials vendors, TENCATE, Inc. and CYTEC Engineered Materials** (standard grade and an experimental batch). Random specimens were taken from each of these samples and subjected to photo-microscopy and surface profilometry. The CYTEC standard grade of APC-2 tape had the most voids and splits and the highest surface roughness and/or waviness. Since the APC-2 tape is composed of a thermoplastic matrix, it offers the flexibility of reprocessing to improve quality, and thereby improve final quality of HHATP laminates. Discussions will also include potential research areas and future work that is required to advance the state of the art in the HHATP process for composite fabrication.
Densification control and analysis of outer shell of new high-temperature vacuum insulated composite
NASA Astrophysics Data System (ADS)
Wang, Yang; Chen, Zhaofeng; Jiang, Yun; Yu, Shengjie; Xu, Tengzhou; Li, Binbin; Chen, Zhou
2017-11-01
A novel high temperature vacuum insulated composite with low thermal conductivity composed of SiC foam core material and sealing outer shell is discussed, which will have a great potential to be used as thermal protection system material. In this composite, the outer shell is the key to maintain its internal vacuum, which is consisted of 2.5D C/C and SiC coating. So the densification processes of outer shell, including 2.5D braiding process, chemical vapor infiltration (CVI) pyrolytic carbon (PyC) process, polymer infiltration and pyrolysis (PIP) glassy carbon (GC) process and chemical vapor deposition (CVD) SiC process, are focused in this paper. The measuring result of the gas transmission quantity of outer shell is only 0.14 cm3/m2 · d · Pa after 5 times CVD processes, which is two order of magnitude lower than that sample deposited one time. After 10 times thermal shock cycles, the gas transmission quantity increases to 1.2 cm3/m2 · d · Pa. The effective thermal conductivity of high temperature vacuum insulated composite ranged from 0.19 W m-1 K-1 to 0.747 W m-1 K-1 within the temperature from 20 °C to 900 °C. Even after 10 thermal shock cycles, the variation of the effective thermal conductivity is still consistent with that without treatments.
Cannon, Anna Maria; Sakalidis, Vanessa Susanna; Lai, Ching Tat; Perrella, Sharon Lisa; Geddes, Donna Tracy
2016-05-01
The importance of an infant's intra-oral vacuum in milk removal from the breast has been established. However, the relationship between the vacuum curve and milk transfer is not well understood. To investigate the parameters of the infant suck cycle in relation to the volume of milk removed from the breast. Cross-sectional study to elucidate the role of infant intra-oral vacuum in efficient milk removal from the breast. Nineteen fully breastfed term infants. Intra-oral vacuum was recorded during monitored breastfeeds using a pressure transducer. Ultrasound imaging (milk flow) and respiratory inductive plethysmography (swallowing) were used to determine the nutritive sucking (NS) portion of the feed. Milk intake was determined by weighing infants before and after feeds. Vacuum traces of the first and next 2min of NS from the first breast were analysed. The volumes of milk removed during both NS periods were negatively associated with peak vacuum (p<0.001) and rate of vacuum application (p<0.001), and positively related to area under first half of the suck cycle (p<0.001). Most parameters changed significantly from the first 2min of NS to the next 2min including significant reduction in peak vacuum and area under first half of the suck cycle. These results further support the role of intra-oral vacuum, specifically optimal peak vacuum, in effective and efficient milk removal during breastfeeding. It also appears that infants modify their sucking dynamics to adapt to changes in milk flow during milk ejection as the breast empties. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Researches on Position Detection for Vacuum Switch Electrode
NASA Astrophysics Data System (ADS)
Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan
2018-03-01
Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.
Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)
2013-01-01
A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.
Alignment Fixtures For Vacuum-Plasma-Spray Gun
NASA Technical Reports Server (NTRS)
Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.
1993-01-01
Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.
Rigidity in vacuum under conformal symmetry
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Vega, Carlos
2018-04-01
Motivated in part by Eardley et al. (Commun Math Phys 106(1):137-158, 1986), in this note we obtain a rigidity result for globally hyperbolic vacuum spacetimes in arbitrary dimension that admit a timelike conformal Killing vector field. Specifically, we show that if M is a Ricci flat, timelike geodesically complete spacetime with compact Cauchy surfaces that admits a timelike conformal Killing field X, then M must split as a metric product, and X must be Killing. This gives a partial proof of the Bartnik splitting conjecture in the vacuum setting.
NASA Technical Reports Server (NTRS)
Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)
2002-01-01
The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.
2010-01-01
a vacuum controller. A vacuum of < 1 µ torr was achieved with a combination of a turbo pump and a scroll pump system. The sample probing is...the polymer was reprecipitated in heptane non-solvent. The filtered polymer was washed with heptane and was finally dried in vacuum at 100ºC for three...solution was added to a large excess of methanol to precipitate the polymer. After soxhlet extraction with methanol and vacuum drying, the polymer was
The Influence of AN Interacting Vacuum Energy on the Gravitational Collapse of a Star Fluid
NASA Astrophysics Data System (ADS)
Campos, M.
2014-02-01
To explain the accelerated expansion of the universe, models with interacting dark components has been considered in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy. However, at the other side of the same coin, the influence of the vacuum energy in the gravitational collapse is a topic of scientific interest. Based in a simple assumption on the collapsed rate of the matter fluid density that is altered by the inclusion of a vacuum energy component that interacts with the matter fluid, we study the final fate of the collapse process.
A highly miniaturized vacuum package for a trapped ion atomic clock
Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; ...
2016-05-12
We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm 3 in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, the packagemore » was sealed with a copper pinch-off and was then pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of 171Yb +. The fractional frequency stability of the clock was measured to be 2 × 10 -11 / τ 1/2.« less
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
1997-11-01
Many industrial and scientific processes like electron beam melting and welding, material modification by ion implantation, dry etching, and micro-fabrication, as well as generation of synchrotron radiation are performed almost exclusively in vacuum nowadays, since the electron and ion guns and their extractors must be kept at a reasonably high vacuum. Consequently, there are numerous drawbacks, among which are low production rates due to required pumping time, limits the vacuum volume sets on the size of target objects. In a small number of applications like non-vacuum electron beam welding, and various processes involving UV and x-ray radiation, thin vacuum walls or long stages of differential pumping are used. But, the resultant degradations of particle and radiation beams severely limit those applications. A novel apparatus, which utilized a short plasma arc, was successfully used to maintain a pressure of 7.6 x exp(-6) Torr in a vacuum chamber with a 2.36mm aperture to atmosphere, i.e., a plasma was successfully used to "plug" a hole to atmosphere while maintaining a reasonably high vacuum in the chamber. Successful transmission of charged particle beams from a vacuum through the plasma to atmosphere was accomplished. More details can be found in A. Hershcovitch, J. Appl. Physics 78, p. 5283 (1995). In addition to sustaining a vacuum atmosphere interface, the plasma has very strong lensing effect on charged particles. The plasma current generates an azimuthal magnetic field which exerts a radial Lorentz on charged particles moving parallel to the current channel. With proper orientation of the current direction, the Lorentz force is radially inward. This feature can be used to focus in beams to a very small spot size, and to overcome beam dispersion due to scattering by atmospheric atoms and molecules. Relatively hot plasma at the atmosphere boundary rarefies the atmospheric gases to further enhance particle beam propagation to the materials to target. Recent experimental results, with a plasma window coupled to a venturi, show a factor of three further enhancement in vacuum-atmosphere separation.
Treatment of surfaces with low-energy electrons
NASA Astrophysics Data System (ADS)
Frank, L.; Mikmeková, E.; Lejeune, M.
2017-06-01
Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.
Matrix Characterization and Development for the Vacuum Assisted Resin Transfer Molding Process
NASA Technical Reports Server (NTRS)
Grimsley, B. W.; Hubert, P.; Hou, T. H.; Cano, R. J.; Loos, A. C.; Pipes, R. B.
2001-01-01
The curing kinetics and viscosity of an epoxy resin system, SI-ZG-5A, have been characterized for application in the vacuum assisted resin transfer molding (VARTM) process. Impregnation of a typical carbon fiber perform provided the test bed for the characterization. Process simulations were carried out using the process model, COMPRO, to examine heat transfer and curing kinetics for a fully impregnated panel, neglecting resin flow. The predicted viscosity profile and final degree of cure were found to be in good agreement with experimental observations.
A theoretical analysis of vacuum arc thruster performance
NASA Technical Reports Server (NTRS)
Polk, James E.; Sekerak, Mike; Ziemer, John K.; Schein, Jochen; Qi, Niansheng; Binder, Robert; Anders, Andre
2001-01-01
In vacuum arc discharges the current is conducted through vapor evaporated from the cathode surface. In these devices very dense, highly ionized plasmas can be created from any metallic or conducting solid used as the cathode. This paper describes theoretical models of performance for several thruster configurations which use vacuum arc plasma sources. This analysis suggests that thrusters using vacuum arc sources can be operated efficiently with a range of propellant options that gives great flexibility in specific impulse. In addition, the efficiency of plasma production in these devices appears to be largely independent of scale because the metal vapor is ionized within a few microns of the cathode electron emission sites, so this approach is well-suited for micropropulsion.
Vacuum infusion method for woven carbon/Kevlar reinforced hybrid composite
NASA Astrophysics Data System (ADS)
Hashim, N.; Majid, D. L.; Uda, N.; Zahari, R.; Yidris, N.
2017-12-01
The vacuum assisted resin transfer moulding (VaRTM) or Vacuum Infusion (VI) is one of the fabrication methods used for composite materials. Compared to other methods, this process costs lower than using prepregs because it does not need to use the autoclave to cure. Moreover, composites fabricated using this VI method exhibit superior mechanical properties than those made through hand layup process. In this study, the VI method is used in fabricating woven carbon/Kevlar fibre cloth with epoxy matrix. This paper reports the detailed methods on fabricating the hybrid composite using VI process and several precautions that need to be taken to avoid any damage to the properties of the composite material. The result highlights that the successfully fabricated composite has approximately 60% of fibres weight fraction. Since the composites produced by the VI process have a higher fibre percentage, this process should be considered for composites used in applications that are susceptible to the conditions where the fibres need to be the dominant element such as in tension loading.
Near-Net-Shape Processing of Sintered Fibrous Ceramics Achieved
NASA Technical Reports Server (NTRS)
Angel, Paul W.
2000-01-01
A variety of sintered fibrous ceramic (SFC) materials have been developed over the last 50 years as thermal barrier materials for reentry applications. SFC materials typically exhibit very low thermal conductivities combined with low densities and good thermal stability up to 2500 F. These materials have flown successfully on the space shuttle orbiters since the 1960's. More recently, the McDonnell Douglas Corporation successfully used SFC tiles as a heat shield on the underside of its DC X test vehicle. For both of these applications, tiles are machined from blocks of a specific type of SFC called an alumina-enhanced thermal barrier (AETB). The sizes of these blocks have been limited by the manufacturing process. In addition, as much as 80 to 90 percent of the material can be lost during the machining of tiles with significant amounts of curvature. To address these problems, the NASA Glenn Research Center at Lewis Field entered a cooperative contract with the Boeing Company to develop a vacuum-assisted forming process that can produce large (approximately 4 square feet), severely contoured panels of AETB while saving costs in comparison to the conventional cast-and-machine billet process. For shuttle use, AETB is slurry cast, drained, and fired to form square billets conforming to the shape of the filtration box. The billets are then cut into tiles of the appropriate size for thermally protecting the space shuttle. Processing techniques have limited the maximum size of AETB billets to 21.5 square inches by 6.5-in. thick, but the space shuttles use discrete heat shield tiles no more than 8 to 12 square inches. However, in other applications, large, complex shapes are needed, and the tiling approach is undesirable. For such applications, vacuum-assisted forming can produce large parts with complex shapes while reducing machining waste and eliminating cemented joints between bonded billets. Because it allows contoured shapes to be formed, material utilization is inherently high. Initial estimates show that the amount of material lost during machining can be reduced by 50 percent or more. In addition, a fiber alignment favorable for minimum heat transfer is maintained for all panel shapes since the fibers are aligned parallel to the contoured surface of the forming tool or mold. The vacuum-assisted forming process can complete the entire forming operation in a matter of minutes and can produce multiple parts whose size is limited only by the size of the forming tool. To date, panels as large as 2 square feet have been demonstrated The vacuum-assisted forming process starts with the fabrication of a permeable forming tool, or mold, with the proper part contour. This reusable tool is mounted over an internal rib support structure, as depicted in the diagram, such that a vacuum can be pulled on the bottom portion of the tool. AETB slurry is then poured over and around the tool, liquid is drawn from the slurry, and the part forms over the tool surface. The part is then dried, fired, and finished machined. Future plans include an evaluation of the need for additional coatings and surface-toughness treatments to extend the durability and performance of this material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lionti, K.; Volksen, W.; Darnon, M.
2015-03-21
As of today, plasma damage remains as one of the main challenges to the reliable integration of porous low-k materials into microelectronic devices at the most aggressive node. One promising strategy to limit damage of porous low-k materials during plasma processing is an approach we refer to as post porosity plasma protection (P4). In this approach, the pores of the low-k material are filled with a sacrificial agent prior to any plasma treatment, greatly minimizing the total damage by limiting the physical interactions between plasma species and the low-k material. Interestingly, the contribution of the individual plasma species to themore » total plasma damage is not fully understood. In this study, we investigated the specific damaging effect of vacuum-ultraviolet (v-UV) photons on a highly porous, k = 2.0 low-k material and we assessed the P4 protective effect against them. It was found that the impact of the v-UV radiation varied depending upon the v-UV emission lines of the plasma. More importantly, we successfully demonstrated that the P4 process provides excellent protection against v-UV damage.« less
Thermal runaway of metal nano-tips during intense electron emission
NASA Astrophysics Data System (ADS)
Kyritsakis, A.; Veske, M.; Eimre, K.; Zadin, V.; Djurabekova, F.
2018-06-01
When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finite-size and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.
Su, Ya; Zhang, Min; Bhandari, Bhesh; Zhang, Weiming
2018-06-01
The combination of ultrasound and microwave in vacuum frying system was investigated to achieve higher drying efficiency and quality attributes of fried products. Purple-fleshed potato were used as test specimen and different power levels of microwave (0 W, 600 W, 800 W) and ultrasound (0 W, 300 W, 600 W) during vacuum frying. Drying kinetics, dielectric properties, moisture state variation and quality attributes of fried samples were measured in a vacuum frying (VF), and an innovatively designed ultrasound and microwave assisted vacuum frying (USMVF) equipment. The USMVF process markedly increased the moisture evaporation rate and effective moisture diffusivity compared to VF process. The oil uptake was reduced by about 16-34%, the water activity and the shrinkage was lowered, the texture (crispness) and the color of fried samples were greatly improved. The higher ultrasound and microwave power level in USMVF made a greater improvement. The total anthocyanin levels and retention of fried purple-fleshed potato chips was the highest (123.52 mg/100 g solids and 79.51% retention, respectively) among all treatments in US600M800VF process. The SEM analysis revealed a more porous and disruption microstructure in USMVF sample. Copyright © 2018 Elsevier B.V. All rights reserved.
Preanalytical management: serum vacuum tubes validation for routine clinical chemistry.
Lima-Oliveira, Gabriel; Lippi, Giuseppe; Salvagno, Gian Luca; Montagnana, Martina; Picheth, Geraldo; Guidi, Gian Cesare
2012-01-01
The validation process is essential in accredited clinical laboratories. Aim of this study was to validate five kinds of serum vacuum tubes for routine clinical chemistry laboratory testing. Blood specimens from 100 volunteers in five different serum vacuum tubes (Tube I: VACUETTE, Tube II: LABOR IMPORT, Tube III: S-Monovette, Tube IV: SST and Tube V: SST II) were collected by a single, expert phlebotomist. The routine clinical chemistry tests were analyzed on cobas 6000
Preanalytical management: serum vacuum tubes validation for routine clinical chemistry
Lima-Oliveira, Gabriel; Lippi, Giuseppe; Salvagno, Gian Luca; Montagnana, Martina; Picheth, Geraldo; Guidi, Gian Cesare
2012-01-01
Introduction The validation process is essential in accredited clinical laboratories. Aim of this study was to validate five kinds of serum vacuum tubes for routine clinical chemistry laboratory testing. Materials and methods: Blood specimens from 100 volunteers in five diff erent serum vacuum tubes (Tube I: VACUETTE®, Tube II: LABOR IMPORT®, Tube III: S-Monovette®, Tube IV: SST® and Tube V: SST II®) were collected by a single, expert phlebotomist. The routine clinical chemistry tests were analyzed on cobas® 6000
Chao, P.J.
1974-01-01
A method is given for protecting Si--Ge and Si-- Mo alloys for use in thermocouples. The alloys are coated with silicon to inhibit the evaporation of the alloys at high tempenatures in a vacuum. Specific means and methods are provided. (5 fig) (Official Gazette)
Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata
NASA Astrophysics Data System (ADS)
Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava
2015-03-01
The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.
Naguwa, S M; Gershwin, M E
2001-01-01
Indoor pollution is one of the most common problems addressed by allergists and troublesome for their patients. Although a large variety of products are available for removing such pollutants, including house dust, there is a relative paucity of data on the effectiveness of such devices. In many cases, central vacuum systems are recommended, particularly in new homes. To specifically address the question of whether a central vacuum system produces an improvement in the well characterized domains of Juniper Rhinoconjunctivitis Quality of Life Questionnaire, we selected 25 individuals with a history of documented type I hypersensitivity to house dust. Each of these individuals used either a Beam Central Vacuum System or their own conventional vacuum for a period of 3 months. At the end of this period, the individual switched over to the opposite limb of the study for 3 additional months. Interestingly, in all seven domains of the evaluation, including activity, sleep, nonnasal symptoms, practical problems, nasal symptoms, eye symptoms and emotions, use of the central vacuum proved to be superior.
VACUUM TRAP AND VALVE COMBINATION
Milleron, N.; Levenson, L.
1963-02-19
This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)
Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata.
Roy, Anindya; Bhole, R B; Nandy, Partha P; Yadav, R C; Pal, Sarbajit; Roy, Amitava
2015-03-01
The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.
Broda, D M; Boerema, J A; Bell, R G
2003-01-01
To develop a practical molecular procedure that directly, without isolation, and specifically detects the presence of clostridia which cause 'blown pack' spoilage of vacuum-packed meat. Primer sets and PCR amplification procedures were developed that detect the presence of 16S rDNA gene and/or 16S-23S rDNA internal transcribed spacer fragments of 'blown pack' causing clostridia in meat. The specificity of the developed procedures was evaluated with DNA obtained from close phylogenetic neighbours of 'blown pack' causing clostridia, food clostridia and common meat spoilage microorganisms. The sensitivity of detection was assessed in non-enriched and low-temperature-enriched beef mince inoculated with serially diluted pure cultures of Clostridium estertheticum DSMZ 8809T and Cl. gasigenes DB1AT. The efficacy of detection procedures was evaluated for naturally contaminated vacuum-packed meat samples. Three primer sets, 16SE, 16SDB and EISR, produced amplicons of the expected size with DNA templates from target clostridia, but failed to yield PCR products with DNAs from any other microorganisms tested. With 16SE and 16SDB primers, minimum levels of detection were 104 CFU g(-1) for non-enriched, and 102 CFU g(-1) for enriched meat samples. Based on the established specificity of these primers, as well as DNA sequencing of amplicons, Cl. gasigenes was confirmed as the causative agent of 'blown pack' spoilage in two packs, and Cl. estertheticum as the causative agent in the third. The developed method can be used for rapid detection of 'blown pack' causing clostridia in commercial blown packs, or following low temperature enrichment, for detection of these microorganisms in meat containing as few as 100 clostridial cells per gram. The paper reports practical procedures that can be used for rapid confirmation of the causative agents of clostridial 'blown pack' spoilage in commercial spoiled packs, or for detection of psychrophilic clostridia in epidemiological trace back of 'blown pack' spoilage incidents in meat processing plants.
NASA Astrophysics Data System (ADS)
Tang, Chien-Jen; Wang, Chun-Yuan; Jaing, Cheng-Chung
2011-10-01
Alumina-doped zinc oxide (AZO) films have wide range of applications in optical and optoelectronic devices. AZO films have advantage in high transparency, high stability to hydrogen plasma and low cost to alternative ITO film. AZO film was prepared by direct-current (DC) magnetron sputtering from ceramic ZnO:Al2O3 target. The AZO films were compared in two different conditions. The first is substrate heating process, in which AZO film was deposited by different substrate temperature, room temperature, 150 °C and 250 °C. The second is vacuum annealing process, in which AZO film with deposited at room temperature have been annealed at 250 °C and 450 °C in vacuum. The optical properties, electrical properties, grain size and surface structure properties of the films were studied by UV-VIS-NIR spectrophotometer, Hall effect measurement equipment, x-ray diffraction, and scanning electron microscopy. The resistivity, carrier mobility, carrier concentration, and grain size of AZO films were 1.92×10-3 Ω-cm, 6.38 cm2/Vs, 5.08×1020 #/cm3, and 31.48 nm respectively, in vacuum annealing of 450 °C. The resistivity, carrier mobility, carrier concentration, and grain size of AZO films were 8.72×10-4 Ω-cm, 6.32 cm2/Vs, 1.13×1021 #/cm3, and 31.56 nm, respectively, when substrate temperature was at 250 °C. Substrate heating process is better than vacuum annealed process for AZO film deposited by DC Magnetron Sputtering.
Making Microscopic Cubes Of Boron
NASA Technical Reports Server (NTRS)
Faulkner, Joseph M.
1993-01-01
Production of finely divided cubes of boron involves vacuum-deposition technology and requires making of template. Template supports pattern of checkered squares 25 micrometers on side, which are etched 25 micrometers into template material. Template coasted uniformly with paralyene or some similar vacuum coating with low coefficient of adhesion. Intended application to solid rocket fuels, explosives, and pyrotechnics; process used for other applications, from manufacture of pharmaceuticals to processing of nuclear materials.
Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process
NASA Technical Reports Server (NTRS)
Holko, K. H. (Inventor)
1974-01-01
Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.
Advanced performance of small diaphragm vacuum pumps through the use of mechatronics
NASA Astrophysics Data System (ADS)
Lachenmann, R.; Dirscherl, J.
Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .
Evaporation in equilibrium, in vacuum, and in hydrogen gas
NASA Technical Reports Server (NTRS)
Nagahara, Hiroko
1993-01-01
Evaporation experiments were conducted for SiO2 in three different conditions: in equilibrium, in vacuum, and in hydrogen gas. Evaporation rate in vacuum is about two orders of magnitude smaller than that in equilibrium, which is consistent with previous works. The rate in hydrogen gas changes depending on hydrogen pressure. The rate at 10 exp -7 bar of hydrogen pressure is as small as that of free evaporation, but at 10 exp -5 bar of hydrogen pressure it is larger than that in equilibrium. In equilibrium and in vacuum, the evaporation rate is limited by decomposition of SiO2 on the crystal surface, but it is limited by a diffusion process for evaporation in hydrogen gas. Therefore, evaporation rate of minerals in the solar nebula can be shown neither by that in equilibrium nor by that in vacuum. The maximum temperature of the solar nebula at the midplane at 2-3 AU where chondrites are believed to have originated is calculated to be as low as 150 K, 1500 K, or in between them. The temperature is, in any case, not high enough for total evaporation of the interstellar materials. Therefore, evaporation of interstellar materials is one of the most important processes for the origin and fractionation of solid materials. The fundamental process of evaporation of minerals has been intensively studied for these several years. Those experiments were carried out either in equilibrium or in vacuum; however, evaporation in the solar nebula is in hydrogen (and much smaller amount of helium) gas. In order to investigate evaporation rate and compositional (including isotopic) fractionation during evaporation, vaporization experiments for various minerals in various conditions are conducted. At first, SiO2 was adopted for a starting material, because thermochemical data and its nature of congruent vaporization are well known. Experiments were carried out in a vacuum furnace system.
Flexural Fatigue Response of Repaired S2-Glass/Vinyl Ester Composites
2009-08-01
of Mechanical Engineering & Applied Mechanics, North Dakota State University, Fargo, ND 58105 14. ABSTRACT Vacuum-assisted resin transfer molding ...Introduction 1 2. Vacuum-Assisted Resin Transfer Molding 2 3. Repair Strategies 2 4. Processing and Repairing Laminates 4 5. Experimental 4 5.1 Set 1...vacuum-assisted resin transfer molding (VARTM) (2), performance evaluations have assumed increasing importance due to the lack of historical databases on
Liquid-Oxygen-Compatible Cement for Gaskets
NASA Technical Reports Server (NTRS)
Elmore, N. L.; Neale, B. C.
1984-01-01
Fluorelastomer and metal bonded reliably by new procedure. To cure fluoroelastomer cement, metal plate/gasket assembly placed in vacuum bag evacuated to minimum vacuum of 27 inches (69 cm) of mercury. Vacuum maintained throughout heating process and until assembly returns to ambient room temperature. Used to seal gaskets and O-rings or used to splice layers of elastomer to form non-standard sized O-rings. Another possible use is to apply protective, liquid-oxygen-compatible coating to metal parts.
2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation.
Jeon, Sangjun; Kim, Duk-Ki; Song, Hyohak; Lee, Hee Jong; Park, Sunghoon; Seung, Doyoung; Chang, Yong Keun
2014-04-01
This study presents a new and effective downstream process to recover 2,3-butanediol (2,3-BD) from fermentation broth which is produced by a recombinant Klebsiella pneumoniae strain. The ldhA-deficient K. pneumoniae strain yielded about 90 g/L of 2,3-BD, along with a number of by-products, such as organic acids and alcohols, in a 65 h fed-batch fermentation. The pH-adjusted cell-free fermentation broth was firstly concentrated until 2,3-BD reached around 500 g/L by vacuum evaporation at 50°C and 50 mbar vacuum pressure. The concentrated solution was further treated using light alcohols, including methanol, ethanol, and isopropanol, for the precipitation of organic acids and inorganic salts. Isopropanol showed the highest removal efficiency, in which 92.5% and 99.8% of organic acids and inorganic salts were precipitated, respectively. At a final step, a vacuum distillation process enabled the recovery of 76.2% of the treated 2,3-BD, with 96.1% purity, indicating that fermentatively produced 2,3-BD is effectively recovered by a simple alcohol precipitation and vacuum distillation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Garcia, Sammy; Homan, Jonathan; Montz, Michael
2016-01-01
NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.
Cosmological implications of the transition from the false vacuum to the true vacuum state
NASA Astrophysics Data System (ADS)
Stachowski, Aleksander; Szydłowski, Marek; Urbanowski, Krzysztof
2017-06-01
We study cosmology with running dark energy. The energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. We use the Breit-Wigner energy distribution function to model the quantum unstable systems and obtain the energy density of the dark energy parametrization ρ _ {de}(t). We also use Krauss and Dent's idea linking properties of the quantum mechanical decay of unstable states with the properties of the observed Universe. In the cosmological model with this parametrization there is an energy transfer between dark matter and dark energy. The intensity of this process, measured by a parameter α , distinguishes two scenarios. As the Universe starts from the false vacuum state, for the small value of α (0<α <0.4) it goes through an intermediate oscillatory (quantum) regime of the density of dark energy, while for α > 0.4 the density of the dark energy jumps down. In both cases the present value of the density of dark energy is reached. From a statistical analysis we find this model to be in good agreement with the astronomical data and practically indistinguishable from the Λ CDM model.
NASA Technical Reports Server (NTRS)
McKim, Stephen A.
2016-01-01
This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
NASA Technical Reports Server (NTRS)
Mckim, Stephen A.
2016-01-01
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.
New evaporator station for the center for accelerator target science
NASA Astrophysics Data System (ADS)
Greene, John P.; Labib, Mina
2018-05-01
As part of an equipment grant provided by DOE-NP for the Center for Accelerator Target Science (CATS) initiative, the procurement of a new, electron beam, high-vacuum deposition system was identified as a priority to insure reliable and continued availability of high-purity targets. The apparatus is designed to contain TWO electron beam guns; a standard 4-pocket 270° geometry source as well as an electron bombardment source. The acquisition of this new system allows for the replacement of TWO outdated and aging vacuum evaporators. Also included is an additional thermal boat source, enhancing our capability within this deposition unit. Recommended specifications for this system included an automated, high-vacuum pumping station, a deposition chamber with a rotating and heated substrate holder for uniform coating capabilities and incorporating computer-controlled state-of-the-art thin film technologies. Design specifications, enhanced capabilities and the necessary mechanical modifications for our target work are discussed.
Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K. Johanna
2015-01-01
Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2% ± 5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces. PMID:26231646
Scintillation screen applications in a vacuum arc ion source with composite hydride cathode
NASA Astrophysics Data System (ADS)
Wang, X. H.; Tuo, X. G.; Yang, Z.; Peng, Y. F.; Li, J.; Lv, H. Y.; Li, J. H.; Long, J. D.
2018-05-01
Vacuum arc ion source with composite hydride cathode was developed to produce intense ion beams which can be applied in particle accelerator injections. Beam profile and beam composition are two fundamental parameters of the beam for the vacuum arc ion source in such specific applications. An aluminum-coated scintillation screen with an ICCD camera readout was used to show the space-time distribution of the beam directly. A simple magnetic analysis assembly with the scintillation screen shows the beam composition information of this kind ion source. Some physical and technical issues are discussed and analyzed in the text.
Experimental study on the effect of calcination on the volcanic ash activity of diatomite
NASA Astrophysics Data System (ADS)
Xiao, Liguang; Pang, Bo
2017-09-01
The volcanic ash activity of diatomite was studied under the conditions of aerobic calcination and vacuum calcination by the combined water rate method, it was characterized by XRD, BET and SEM. The results showed that the volcanic ash activity of diatomite under vacuum conditions was higher than that of aerobic calcination, 600°C vacuum calcination 2h, the combined water rate of diatomite-Ca(OH)2-H2O system was increased from 6.24% to 71.43%, the volcanic ash activity reached the maximum value, the specific surface
Liaros, N G; Katsanidis, E; Bloukas, J G
2009-12-01
The effect of vacuum ripening of low-fat fermented sausages packaged in films with different permeabilities on their microbiological, physicochemical and sensorial characteristics was studied. High-fat control sausages were produced with 30% initial fat and low-fat sausages with 10% initial fat. The low-fat sausages were separated into: (a) non-packaged (control) and (b) packaged under vacuum on 7th, 12th and 17th day of processing, remaining under vacuum during the ripening period for 21, 16 and 11days, respectively, in three different oxygen (100, 38 and⩽5cm(3)/m(2)/24h/1atm) and water vapour (4.5, <2.5 and 1g/m(2)24h) permeability plastic bags. Vacuum packaging reduced (p<0.05) the weight loss, the hardness and extent of lipid oxidation in the sausages, increased (p<0.05) their lightness, but had no effect (p>0.05) on the redness, compared to the control sausages. Packaging low-fat fermented sausages under vacuum for the last 11days of ripening in packaging film with high permeability increased (p<0.05) the lactic acid bacteria count. The same product packaged in film with medium permeability had a higher (p<0.05) Micrococcaceae count and the same (p>0.05) hardness and overall acceptability as the high-fat control sausages. A ripening time of 11days and the medium packaging film permeability were the most appropriate conditions for the vacuum packaging of low-fat fermented sausages.
Meirte, Jill; Moortgat, Peter; Anthonissen, Mieke; Maertens, Koen; Lafaire, Cynthia; De Cuyper, Lieve; Hubens, Guy; Van Daele, Ulrike
2016-01-01
Vacuum massage is a non-invasive mechanical massage technique invented to treat burns and scars. To date, no effects of vacuum massage on thickness and density of human scar tissue have been reported. The process in which external stimuli are converted into biochemical responses in the cell is known as mechanotransduction. In the skin endothelial cells, fibroblasts and myofibroblasts embedded in the extracellular matrix (ECM) sense mechanical stimuli (created by vacuum massage) and may promote intracellular processes leading to matrix remodelling. Since mechanotransduction could be a plausible working mechanism for vacuum massage as an anti-scarring therapy, this study aims to investigate the short-term effects of vacuum massage on thickness and density of epidermis and dermis in burn scars in order to find proof of ECM remodelling. A one group experimental study was performed. Patients with burn scars on upper extremities, lower extremities, and trunk were recruited for participation in this study. The DUB®cutis 22 MHz ultrasound scanner was used to assess thickness and density of the epidermal and dermal skin layers. After baseline measurements, vacuum massage was performed according to a pre-defined protocol. Measurements were carried out at 5 min, 30 min, 1 h, and 2 h post-intervention. Thirteen scar sites from 9 different patients were investigated. In 8 out of the 13 scar sites, a disruption of the epidermis was noticed after the vacuum massage. Five minutes after the intervention, epidermal density decreased statistically significantly (p = .022) and dermal thickness increased (p = .018). Both changes lasted for more than 1 h, but after 2 h, the changes were no longer statistically significant. Dermal density decreased significantly (p = .048) immediately after the intervention, and this decrease was still present after 2 h (p = .011). Preliminary results show that the disruption of the epidermis may indicate that vacuum massage could be able to actually breach the skin barrier. The statistically significant changes in the dermal layers could suggest an increased ECM production after vacuum massage.
Vacuum-integrated electrospray deposition for highly reliable polymer thin film.
Park, Soohyung; Lee, Younjoo; Yi, Yeonjin
2012-10-01
Vacuum electrospray deposition (ESD) equipment was designed to prepare polymer thin films. The polymer solution can be injected directly into vacuum system through multi-stage pumping line, so that the solvent residues and ambient contaminants are highly reduced. To test the performance of ESD system, we fabricated organic photovoltaic cells (OPVCs) by injecting polymer solution directly onto the substrate inside a high vacuum chamber. The OPVC fabricated has the structure of Al∕P3HT:PCBM∕PEDOT:PSS∕ITO and was optimized by varying the speed of solution injection and concentration of the solution. The power conversion efficiency (PCE) of the optimized OPVC is 3.14% under AM 1.5G irradiation without any buffer layer at the cathode side. To test the advantages of the vacuum ESD, we exposed the device to atmosphere between the deposition steps of the active layer and cathode. This showed that the PCE of the vacuum processed device is 24% higher than that of the air exposed device and confirms the advantages of the vacuum prepared polymer film for high performance devices.
A highly miniaturized vacuum package for a trapped ion atomic clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather
2016-05-15
We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it wasmore » sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.« less
Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.
Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos
2017-07-01
Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50 ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.
NASA Astrophysics Data System (ADS)
Mateo-Marti, Eva
2014-08-01
The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.
Degassing procedure for ultrahigh vacuum
NASA Technical Reports Server (NTRS)
Moore, B. C.
1979-01-01
Calculations based on diffusion coefficients and degassing rates for stainless-steel vacuum chambers indicate that baking at lower temperatures for longer periods give lower ultimate pressures than rapid baking at high temperatures. Process could reduce pressures in chambers for particle accelerators, fusion reactors, material research, and other applications.
Numerical Simulation of the Working Process in the Twin Screw Vacuum Pump
NASA Astrophysics Data System (ADS)
Lu, Yang; Fu, Yu; Guo, Bei; Fu, Lijuan; Zhang, Qingqing; Chen, Xiaole
2017-08-01
Twin screw vacuum pumps inherit the advantages of screw machinery, such as high reliability, stable medium conveying, small vibration, simple and compact structures, convenient operation, etc, which have been widely used in petrochemical and air industry. On the basis of previous studies, this study analyzed the geometric features of variable pitch of the twin screw vacuum pump such as the sealing line, the meshing line and the volume between teeth. The mathematical model of numerical simulation of the twin screw vacuum pump was established. The leakage paths of the working volume including the sealing line and the addendum arc were comprehensively considered. The corresponding simplified geometric model of leakage flow was built up for different leak paths and the flow coefficients were calculated. The flow coefficient value range of different leak paths was given. The results showed that the flow coefficient of different leak paths can be taken as constant value for the studied geometry. The analysis of recorded indicator diagrams showed that the increasing rotational speed can dramatically decrease the exhaust pressure and the lower rotational speed can lead to over-compression. The pressure of the isentropic process which was affected by leakage was higher than the theoretical process.
Reactivity study on thermal cracking of vacuum residues
NASA Astrophysics Data System (ADS)
León, A. Y.; Díaz, S. D.; Rodríguez, R. C.; Laverde, D.
2016-02-01
This study focused on the process reactivity of thermal cracking of vacuum residues from crude oils mixtures. The thermal cracking experiments were carried out under a nitrogen atmosphere at 120psi between 430 to 500°C for 20 minutes. Temperature conditions were established considering the maximum fractional conversion reported in tests of thermogravimetry performed in the temperature range of 25 to 600°C, with a constant heating rate of 5°C/min and a nitrogen flow rate of 50ml/min. The obtained products were separated in to gases, distillates and coke. The results indicate that the behaviour of thermal reactivity over the chemical composition is most prominent for the vacuum residues with higher content of asphaltenes, aromatics, and resins. Finally some correlations were obtained in order to predict the weight percentage of products from its physical and chemical properties such as CCR, SARA (saturates, aromatics, resins, asphaltenes) and density. The results provide new knowledge of the effect of temperature and the properties of vacuum residues in thermal conversion processes.
Starobinsky-Like Inflation and Running Vacuum in the Context of Supergravity
NASA Astrophysics Data System (ADS)
Basilakos, Spyros; Mavromatos, Nick; Solà, Joan
2016-07-01
We describe the primeval inflationary phase of the early Universe within a quantum field theoretical (QFT) framework that can be viewed as the effective action of vacuum decay in the early times. Interestingly enough, the model accounts for the "graceful exit" of the inflationary phase into the standard radiation regime. The underlying QFT framework considered here is Supergravity (SUGRA), more specifically an existing formulation in which the Starobinsky-type inflation (de-Sitter background) emerges from the quantum corrections to the effective action after integrating out the gravitino fields in their (dynamically induced) massive phase. We also demonstrate that the structure of the effective action in this model is consistent with the generic idea of renormalization group (RG) running of the cosmological parameters, specifically it follows from the corresponding RG equation for the vacuum energy density as a function of the Hubble rate, $\\rho_{\\Lambda}(H)$. Overall our combined approach amounts to a concrete-model realization of inflation triggered by vacuum decay in a fundamental physics context which, as it turns out, can also be extended for the remaining epochs of the cosmological evolution until the current dark energy era.
David Florida Laboratory Thermal Vacuum Data Processing System
NASA Technical Reports Server (NTRS)
Choueiry, Elie
1994-01-01
During 1991, the Space Simulation Facility conducted a survey to assess the requirements and analyze the merits for purchasing a new thermal vacuum data processing system for its facilities. A new, integrated, cost effective PC-based system was purchased which uses commercial off-the-shelf software for operation and control. This system can be easily reconfigured and allows its users to access a local area network. In addition, it provides superior performance compared to that of the former system which used an outdated mini-computer and peripheral hardware. This paper provides essential background on the old data processing system's features, capabilities, and the performance criteria that drove the genesis of its successor. This paper concludes with a detailed discussion of the thermal vacuum data processing system's components, features, and its important role in supporting our space-simulation environment and our capabilities for spacecraft testing. The new system was tested during the ANIK E spacecraft test, and was fully operational in November 1991.
Outgassing of Out-of-Autoclave Composite Primary Structures for Small Satellites
NASA Astrophysics Data System (ADS)
Komus, Alastair
Out-of-autoclave vacuum-bagged-only (VBO) processing is capable of producing lower cost composite primary structures for small satellites than autoclave processing. However, the outgassing performance of VBO structures in a vacuum environment has not been examined. Panels were manufactured from CYCOM 5320-1 and TC275-1 carbon fiber/epoxy prepreg using VBO processing. The humidity level, pre-cure dwell time, and cure cycle parameters were varied during manufacturing. The degree of cure and glass transition temperature were shown to increase with increasing oven temperature. Processing humidity levels and the length of pre-cure dwell times had no discernable effect on the total mass loss (TML) and collected volatile condensable material (CVCM) that were outgassed under vacuum. Instead the TML was controlled by moisture saturation after manufacturing. Fourier transform infrared spectroscopy showed that epoxy oligomers were the primary CVCM. The study showed the VBO laminates had outgassing values that were comparable to the autoclave-cured laminates.
Gutiérrez, Gemma; Lobo, Alberto; Benito, José M; Coca, José; Pazos, Carmen
2011-01-30
A process is proposed for the treatment of a waste oil-in-water (O/W) emulsion generated in an industrial copper-rolling operation. The use of demulsifier agents improves the subsequent treatment by techniques such as ultrafiltration (UF) or evaporation. The effluent COD is reduced up to 50% when the O/W emulsion is treated by UF using a flat 30 nm TiO(2) ceramic membrane (ΔP = 0.1 MPa) and up to 70% when it is treated by vacuum evaporation, after an emulsion destabilization pretreatment in both cases. Increases in the UF permeate flux and in the evaporation rate are observed when a chemical demulsifier is used in the pretreatment step. A combined process consisting of destabilization/settling, UF, and vacuum evaporation can yield a very high-quality aqueous effluent that could be used for process cooling or emulsion reformulation. Copyright © 2010 Elsevier B.V. All rights reserved.
Cold-Worked Inconel(R) 718 Bars
NASA Technical Reports Server (NTRS)
Montano, J. W.
1988-01-01
Cold working and double aging yield high strength without sacrifice of resistance to corrosion. Report presents data on mechanical properties and stress-corrosion resistance of triple-melted, solution-treated, work-strengthened, direct-double-aged Inconel(R) 718 alloy. Triple melting consists of vacuum induction melting, electro-slag remelting, and vacuum arm remelting. Data indicate advance in processing of large-diameter bars. New process increases yield strength without reducing the elongation, reduction of area, and grain size.
Generation of high-power subpicosecond pulses at 155 nm.
Mossavi, K; Fricke, L; Liu, P; Wellegehausen, B
1995-06-15
Subpicosecond vacuum-ultraviolet radiation at 155 nm with pulse energies above 0.2 mJ has been obtained by near-resonant four-wave difference-frequency mixing in a Xe gas jet. Laser fields for the mixing process have been generated by a short-pulse KrF dye excimer laser system and a Raman converter. The process permits tuning in a broad vacuum-ultraviolet range and can be scaled up to higher output energies.
NASA Astrophysics Data System (ADS)
Gashkov, M. A.; Zubarev, N. M.
2018-01-01
Conditions of the liquid-metal jets formation in a cathode spot of a vacuum arc discharge are studied. Our consideration is based on the analogy between the processes, occurring in the liquid phase of the cathode spot, and the processes, accompanying a liquid drop impact on a flat solid surface. In the latter case there exists a wide variety of experimental data on the conditions under which the spreading regime of fluid motion (i.e., without formation of jets and secondary droplets) changes into the splashing one. In the present work, using the hydrodynamic similarity principle (processes in geometrically similar systems will proceed similarly when their Weber and Reynolds numbers coincide), criteria for molten metal splashing are formulated for different materials of the cathode. They are compared with the experimental data on the threshold conditions for vacuum arc burning.
Effect of vacuum processing on outgassing within an orbiting molecular shield
NASA Technical Reports Server (NTRS)
Outlaw, R. A.
1982-01-01
The limiting hydrogen number density in an orbiting molecular shield is highly dependent on the outgassing rates from the materials of construction for the shield, experimental apparatus, and other hardware contained within the shield. Ordinary degassing temperatures used for ultrahigh vacuum studies (less than 450 C) are not sufficient to process metals so that the contribution to the number density within the shield due to outgassing is less than the theoretically attainable level (approximately 200 per cu. cm). Pure aluminum and type 347 stainless steel were studied as candidate shield materials. Measurements of their hydrogen concentration and diffusion coefficients were made, and the effects of high temperature vacuum processing (greater than 600 C) on their resulting outgassing rates was determined. The densities in a molecular shield due to the outgassing from either metal were substantially less ( 0.003) than the density due to the ambient atomic hydrogen flux at an orbital altitude of 500 km.
High vacuum measurements and calibrations, molecular flow fluid transient effects
Leishear, Robert A.; Gavalas, Nickolas A.
2015-04-29
High vacuum pressure measurements and calibrations below 1 × 10 -8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreasedmore » during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.« less
Note: A simple sample transfer alignment for ultra-high vacuum systems.
Tamtögl, A; Carter, E A; Ward, D J; Avidor, N; Kole, P R; Jardine, A P; Allison, W
2016-06-01
The alignment of ultra-high-vacuum sample transfer systems can be problematic when there is no direct line of sight to assist the user. We present the design of a simple and cheap system which greatly simplifies the alignment of sample transfer devices. Our method is based on the adaptation of a commercial digital camera which provides live views from within the vacuum chamber. The images of the camera are further processed using an image recognition and processing code which determines any misalignments and reports them to the user. Installation has proven to be extremely useful in order to align the sample with respect to the transfer mechanism. Furthermore, the alignment software can be easily adapted for other systems.
Comparison of three different collectors for process heat applications
NASA Astrophysics Data System (ADS)
Brunold, Stefan; Frey, R.; Frei, Ulrich
1994-09-01
In general vacuum tube collectors are used in solar process heat systems. Another possibility is to use transparent insulated flat plate collectors. A critical point however, is that most of the common transparent insulating materials can not withstand high temperatures because they consist of plastics. Thus, temperature resistive collector covers combining a high tranmisivity with a low U-value are required. One possibility is to use capillaries made of glass instead of plastics. Measurement results of collector efficiency and incident angle modifier will be presented as well as calculated energy gains for three different collectors: a vacuum tube collector (Giordano Ind., France), a CPC vacuum tube collector (microtherm Energietechnik Germany; a new flat plate collector using glass capillary as transparent insulation (SET, Germany).
Cyclic membrane separation process
Nemser, Stuart M.
2005-05-03
A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.
Vacuum polarization effects on flat branes due to a global monopole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezerra de Mello, E.R.
2006-05-15
In this paper we analyze the vacuum polarization effects associated with a massless scalar field in the higher-dimensional spacetime. Specifically we calculate the renormalized vacuum expectation value of the square of the field, <{phi}{sup 2}(x)>{sub Ren}, induced by a global monopole in the 'braneworld' scenario. In this context the global monopole lives in a n=3-dimensional submanifold of the higher-dimensional (bulk) spacetime, and our universe is represented by a transverse flat (p-1)-dimensional brane. In order to develop this analysis we calculate the general Green function admitting that the scalar field propagates in the bulk. Also a general curvature coupling parameter betweenmore » the field and the geometry is assumed. We explicitly show that the vacuum polarization effects depend crucially on the values attributed to p. We also investigate the general structure of the renormalized vacuum expectation value of the energy-momentum tensor,
Relaxation of vacuum energy in q-theory
NASA Astrophysics Data System (ADS)
Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.
2017-08-01
The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1980-01-01
The scientific aspects of the Materials Processing in Space program are described with emphasis on the major categories of interest: (1) crystal growth; (2) solidification of metals, alloys, and composites; (3) fluids and chemical processes; (4) containerless processing, glasses, and refractories; (5) ultrahigh vacuum processes; and (6) bioprocessing. An index is provided for each of these areas. The possible contributions that materials science experiments in space can make to the various disciplines are summarized, and the necessity for performing experiments in space is justified. What has been learned from previous experiments relating to space processing, current investigations, and remaining issues that require resolution are discussed. Recommendations for the future direction of the program are included.
NASA Technical Reports Server (NTRS)
Tamir, David
1992-01-01
As we venture into space, it becomes necessary to assemble, expand, and repair space-based structures for our housing, research, and manufacturing. The zero gravity-vacuum of space challenges us to employ construction options which are commonplace on Earth. Rockwell International (RI) has begun to undertake the challenge of space-based construction via numerous options, of which one is welding. As of today, RI divisions have developed appropriate resources and technologies to bring space-based welding within our grasp. Further work, specifically in the area of developing space experiments to test RI technology, is required. RI Space Welding Project's achievements to date, from research and development (R&E) efforts in the areas of microgravity, vacuum, intra- / extra- vehicular activity and spinoff technologies, are reviewed. Special emphasis is given to results for G-169's (Get Away Special) microgravity flights aboard a NASA KC-135. Based on these achievements, a path to actual development of a space welding system is proposed with options to explore spinoff in-space metal processing technologies. This path is constructed by following a series of milestone experiments, of which several are to utilize NASA's Shuttle Small Payload Programs. Conceptual designs of the proposed shuttle payload experiments are discussed with application of lessons learned from G-169's design, development, integration, testing, safety approval process, and KC-135 flights.
Controlling superconductivity in La 2-xSr xCuO 4+δ by ozone and vacuum annealing
Leng, Xiang; Bozovic, Ivan
2014-11-21
In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La 2-xSr xCuO 4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship between the effective doping and the vacuum annealing time has been studied. Short-time ozone annealing at 470 °C oxidizes an underdoped film all the way to the overdoped regime. The subsequent vacuum annealing at 350 °C to 380 °C slowly brings the sample across the optimal doping point back to the undoped, non-superconducting state. Several ozone and vacuum annealing cycles have beenmore » done on the same sample and the effects were found to be repeatable and reversible Vacuum annealing of ozone-loaded LSCO films is a very controllable process, allowing one to tune the doping level of LSCO in small steps across the superconducting dome, which can be used for fundamental physics studies.« less
Controlling superconductivity in La 2-xSr xCuO 4+δ by ozone and vacuum annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Xiang; Bozovic, Ivan
In this study we performed a series of ozone and vacuum annealing experiments on epitaxial La 2-xSr xCuO 4+δ thin films. The transition temperature after each annealing step has been measured by the mutual inductance technique. The relationship between the effective doping and the vacuum annealing time has been studied. Short-time ozone annealing at 470 °C oxidizes an underdoped film all the way to the overdoped regime. The subsequent vacuum annealing at 350 °C to 380 °C slowly brings the sample across the optimal doping point back to the undoped, non-superconducting state. Several ozone and vacuum annealing cycles have beenmore » done on the same sample and the effects were found to be repeatable and reversible Vacuum annealing of ozone-loaded LSCO films is a very controllable process, allowing one to tune the doping level of LSCO in small steps across the superconducting dome, which can be used for fundamental physics studies.« less
Qiu, Chenchen; Li, Yande
2017-01-01
China is a country with vast territory, but economic development and population growth have reduced the usable land resources in recent years. Therefore, reclamation by pumping and filling is carried out in eastern coastal regions of China in order to meet the needs of urbanization. However, large areas of reclaimed land need rapid drainage consolidation treatment. Based on past researches on how to improve the treatment efficiency of soft clay using vacuum preloading combined with electro-osmosis, a two-dimensional drainage plane model was proposed according to the Terzaghi and Esrig consolidation theory. However, the analytical solution using two-dimensional plane model was never involved. Current analytical solutions can’t have a thorough theoretical analysis of practical engineering and give relevant guidance. Considering the smearing effect and the rectangle arrangement pattern, an analytical solution is derived to describe the behavior of pore-water and the consolidation process by using EKG (electro-kinetic geo synthetics) materials. The functions of EKG materials include drainage, electric conduction and corrosion resistance. Comparison with test results is carried out to verify the analytical solution. It is found that the measured value is larger than the applied vacuum degree because of the stacking effect of the vacuum preloading and electro-osmosis. The trends of the mean measured value and the mean analytical value processes are comparable. Therefore, the consolidation model can accurately assess the change in pore-water pressure and the consolidation process during vacuum preloading combined with electro-osmosis. PMID:28771496
NASA Astrophysics Data System (ADS)
Lin, Jun; Pakhomov, Andrew V.
2005-04-01
This work concludes our discussion of the image processing technique developed earlier for determination of specific impulse (Isp) for Ablative Laser Propulsion (ALP). The plasma plumes are recorded with a time-resolved intensified charge-coupled device (ICCD) camera. The plasma was formed in vacuum (˜ 3×10-3 Torr) by focusing output pulses of a laser system (100-ps pulsewidth at 532 nm wavelength and ˜35 mJ energy) on surfaces of C (graphite), Al, Si, Fe, Cu, Zn, Sn, and Pb elements. Angular profiles for integrated intensity and plasma expansion velocity were determined for the tested elements. Such profiles were used further for assessment of specific impulse. Specific impulses derived from angular distributions of plasma expansion velocity and integral intensity appeared in excellent agreement with the data derived earlier from force measurements.
DEMONSTRATION BULLETIN: IN-SITU VACUUM EXRACTION: TERRA VAC, INC.
This in-situ vacuum extraction technology is a process for the removal and venting of volatile organic compounds (VOCs) from the vadose or unsaturated zone of soils. Often, these compounds can be removed from the vadose zone before they have a chance to contaminate groundwater. ...
Dall'Asta, Andrea; Ghi, Tullio; Pedrazzi, Giuseppe; Frusca, Tiziana
2016-09-01
Vacuum extractor has been increasingly used over the last decades and is acknowledged as a risk factor for shoulder dystocia (SD). In this meta-analysis we assess the actual risk of SD following a vacuum delivery compared to spontaneous vaginal delivery (SVD) and forceps. Systematic literature search (English literature only) on MEDLINE, EMBASE, ScienceDirect, the Cochrane library and ClinicalTrials.gov conducted up to May 2015. Key search terms included: Operative/Vacuum/Forceps delivery [Mesh] and shoulder dystocia and subheadings. 2 stage-process study selection. We included only studies where data concerning the occurrence of SD following operative vaginal delivery were reported as adjusted odds ratio (AOR) and no significant difference in confounding factors for SD was recorded. Included trials clustered according to the delivery mode (1) vacuum vs. SVD, (2) forceps vs. vacuum. Methodological quality of each study evaluated with the Newcastle-Ottawa System (NOS). 87 potentially relevant papers. After applying inclusion and exclusion criteria only 7 were selected for the meta-analysis. Vacuum delivery appeared associated with a higher risk of SD than SVD in both fixed and random model (OR 2.87 and 2.98 respectively). No difference in the rate of SD was found between vacuum and forceps (p>0.05). Vacuum extractor carries an increased risk of SD compared with spontaneous vaginal delivery whereas the occurrence of SD does not seem to vary following vacuum or forceps. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zeng, Shu-Rong; Jiang, Bo; Xiao, Xiao-Rong
2007-06-01
Discuss sterilization effect of B-class pulsation table top vacuum pressure steam sterilizer for dental handpiece. Analysis selection of sterilizer for dental handpiece and sterilization management processes and sterilization effect monitoring, evaluation of monitoring result and effective sterilization method. The B-class pulsation table top vacuum pressure steam sterilizer to dental handpiece in West China Stomatological Hospital of Sichuan University met the requirement of the chemical and biological monitoring. Its efficiency of sterilization was 100%. The results of aerobic culture, anaerobic culture, B-type hepatitis mark monitoring to sterilized dental handpiece were negative. It is effective method for dental handpiece sterilization to use B-class pulsation table top vacuum pressure steam sterilizer.
Mechanism of vacuum breakdown in radio-frequency accelerating structures
NASA Astrophysics Data System (ADS)
Barengolts, S. A.; Mesyats, V. G.; Oreshkin, V. I.; Oreshkin, E. V.; Khishchenko, K. V.; Uimanov, I. V.; Tsventoukh, M. M.
2018-06-01
It has been investigated whether explosive electron emission may be the initiating mechanism of vacuum breakdown in the accelerating structures of TeV linear electron-positron colliders (Compact Linear Collider). The physical processes involved in a dc vacuum breakdown have been considered, and the relationship between the voltage applied to the diode and the time delay to breakdown has been found. Based on the results obtained, the development of a vacuum breakdown in an rf electric field has been analyzed and the main parameters responsible for the initiation of explosive electron emission have been estimated. The formation of craters on the cathode surface during explosive electron emission has been numerically simulated, and the simulation results are discussed.
NASA Astrophysics Data System (ADS)
Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic
2002-11-01
This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.
Low Voltage Electron Beam Processing Final Report CRADA No. TC-645-93-A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H.; Wakalopulos, G.
This CRADA project was established to develop a small, inexpensive sealed-tube electron beam processing system having immediate applications in industrial, high speed manufacturing processes, and in the Department of Energy (DOE) waste treatment/cleanup operations. The technical work involved the development and demonstration of a compact, sealed, 50-75 kilovolt (kV) EB generator prototype, including controls and power supply. The specific goals of this project were to develop a low cost vacuum tube capable of shooting an electron beam several inches into the air, and to demonstrate that wide area materials processing is feasible by stacking the tubes to produce continuous beams.more » During the project, we successfully demonstrated the producibility of a low cost electron beam system and several material processing operations of interest to US industry, DOE and, since September 11, 2001, the Homeland Security.« less
Bulk specific gravity round-robin using the Corelok vacuum sealing device
DOT National Transportation Integrated Search
2002-11-01
This project conducted an evaluation of the Corelok device for the determination of the bulk specific gravity of compacted hot mix asphalt samples. The project consisted of the bulk specific gravity determination for compacted HMA mixes utilizing the...
Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems
Ströbel, Ulrich; Rose-Meierhöfer, Sandra; Öz, Hülya; Brunsch, Reiner
2013-01-01
Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated. PMID:23765272
Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Anindya, E-mail: r-ani@vecc.gov.in; Bhole, R. B.; Nandy, Partha P.
2015-03-15
The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A setmore » of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.« less
Development of Optical Crystals for High Power and Tunable Visible and Infrared Light Generation
2015-02-11
ultra high chemical purity (5N), 95% isotopically enriched 6Li was purified in a multi-stage vacuum distillation process previously reported by...enriched 6Li was purified in a multi-stage vacuum distillation process previously reported by Stowe et al.[4]. 6LiIn alloy was synthesized in a... quantum mechanics, it has been determined that atoms, molecules, ions have discrete energy levels. Therefore there exists allowed atomic transitions
Process Options for Nominal 2-K Helium Refrigeration System Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Knudsen, Venkatarao Ganni
Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).
Lunar concrete for construction
NASA Technical Reports Server (NTRS)
Cullingford, Hatice S.; Keller, M. Dean
1992-01-01
Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Treatment. 319.8-23 Section 319.8-23 Agriculture....8-23 Treatment. (a)(1) Vacuum fumigation as required in this subpart shall consist of fumigation, in... the substitution of processing, utilization, or other form of treatment for vacuum fumigation when in...
Improving Cull Cow Meat Quality Using Vacuum Impregnation.
Leal-Ramos, Martha Y; Alarcón-Rojo, Alma D; Gutiérrez-Méndez, Néstor; Mújica-Paz, Hugo; Rodríguez-Almeida, Felipe; Quintero-Ramos, Armando
2018-05-07
Boneless strip loins from mature cows (50 to 70 months of age) were vacuum impregnated (VI) with an isotonic solution (IS) of sodium chloride. This study sought to determine the vacuum impregnation and microstructural properties of meat from cull cows. The experiments were conducted by varying the pressure, p 1 (20.3, 71.1 kPa), and time, t 1 (0.5, 2.0, 4.0 h), of impregnation. After the VI step, the meat was kept for a time, t 2 (0.0, 0.5, 2.0, 4.0 h), in the IS under atmospheric pressure. The microstructural changes, impregnation, deformation, and porosity of the meat were measured in all the treatments. Impregnation and deformation levels in terms of volume fractions of the initial sample at the end of the vacuum step and the VI processes were calculated according to the mathematical model for deformation-relaxation and hydrodynamic mechanisms. Scanning electron microscopy (SEM) was used to study the microstructure of the vacuum-impregnated meat samples. Results showed that both the vacuum and atmospheric pressures generated a positive impregnation and deformation. The highest values of impregnation X (10.5%) and deformation γ (9.3%) were obtained at p 1 of 71.1 kPa and t 1 of 4.0 h. The sample effective porosity ( ε e ) exhibited a significant interaction ( p < 0.01) between p 1 × t 1 . The highest ε e (14.0%) was achieved at p 1 of 20.3 kPa and t 1 of 4.0 h, whereas the most extended distension of meat fibers (98 μm) was observed at the highest levels of p ₁, t ₁, and t ₂. These results indicate that meat from mature cows can undergo a vacuum-wetting process successfully, with an IS of sodium chloride to improve its quality.
NASA Astrophysics Data System (ADS)
Kumar, B. Ramesh; Gangradey, R.
2012-11-01
Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.
[Assessment of vacuum-assisted vaginal delivery in a frank breech presentation].
Bleu, G; Deruelle, P; Demetz, J; Michel, S; Dufour, P; Depret, S; Subtil, D
2015-02-01
After verification of the eligibility criteria and with an obstetrician familiar with the specific maneuvers likely to be needed, vaginal delivery of breech presentations is possible. If problems arise during the active pushing phase of labor, vacuum extraction has been described in the literature for this uncommon condition with limited series. The aim of this study is to assess retrospectively vacuum extraction in frank breech presentation in our center. This retrospective study of trials of vaginal delivery of fetuses in breech presentation at term compares cases according to whether they did or did not use a vacuum extraction. During a two-year period, 83 patients, whom had trials of vaginal delivery in breech presentations, reached the active pushing/bearing down stage after complete cervical dilatation. Vacuum assistance was applied in six of these (7.2 %). The failure rate for vaginal delivery was significantly higher in the group with compared to without vacuum extraction (33.3 % versus 6.5 %, P<0.05). Moreover, the mean pH at birth was significantly lower in the group with vacuum extraction (7.12±0.11 versus 7.20±0.08, P<0.05), and these infants more frequently had deep cutaneous injuries (66.7 % versus 26.0 %, P<0.05). In fetuses in breech presentation, when vaginal delivery failed, it seems to be safer for the fetuses to perform caesarean section rather than attempt vacuum extraction. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Vacuum Stability in Split SUSY and Little Higgs Models
NASA Astrophysics Data System (ADS)
Datta, Alakabha; Zhang, Xinmin
We study the stability of the effective Higgs potential in the split supersymmetry and Little Higgs models. In particular, we study the effects of higher dimensional operators in the effective potential on the Higgs mass predictions. We find that the size and sign of the higher dimensional operators can significantly change the Higgs mass required to maintain vacuum stability in Split SUSY models. In the Little Higgs models the effects of higher dimensional operators can be large because of a relatively lower cutoff scale. Working with a specific model we find that a contribution from the higher dimensional operator with coefficient of O(1) can destabilize the vacuum.
Fermionic vacuum polarization in a higher-dimensional global monopole spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezerra de Mello, E. R.
2007-12-15
In this paper we analyze the vacuum polarization effects associated with a massless fermionic field in a higher-dimensional global monopole spacetime in the 'braneworld' scenario. In this context we admit that our Universe, the bulk, is represented by a flat (n-1)-dimensional brane having a global monopole in an extra transverse three-dimensional submanifold. We explicitly calculate the renormalized vacuum average of the energy-momentum tensor,
Process-time Optimization of Vacuum Degassing Using a Genetic Alloy Design Approach
Dilner, David; Lu, Qi; Mao, Huahai; Xu, Wei; van der Zwaag, Sybrand; Selleby, Malin
2014-01-01
This paper demonstrates the use of a new model consisting of a genetic algorithm in combination with thermodynamic calculations and analytical process models to minimize the processing time during a vacuum degassing treatment of liquid steel. The model sets multiple simultaneous targets for final S, N, O, Si and Al levels and uses the total slag mass, the slag composition, the steel composition and the start temperature as optimization variables. The predicted optimal conditions agree well with industrial practice. For those conditions leading to the shortest process time the target compositions for S, N and O are reached almost simultaneously. PMID:28788286
Space Research Results Purify Semiconductor Materials
NASA Technical Reports Server (NTRS)
2010-01-01
While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.
Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC
Roberts, George W.; Tao, John C.
1985-01-01
In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.
The application of vacuum redistillation of patchouli oil to improve patchouli alcohol compound
NASA Astrophysics Data System (ADS)
Asnawi, T. M.; Alam, P. N.; Husin, H.; Zaki, M.
2018-04-01
Patchouli oil produced by traditional distillation of patchouli leaves and stems by farmers in Aceh still has low patchouli alcohol compound. In order to increase patchouli alcohol concentration, vacuum redistillation process using packed column was introduced. This research was conducted to fractionate terpene (alpha-copinene) from oxygenated hydrocarbon (patchouli alcohol) compound. The operation condition was conducted at two variables that was dependent variable and independent variable. The dependent variable was the 30 cm height distillation packed column, by using raschig ring with 8 mm x 8 mm dimension. And the independent variable was operating temperature 130 °C and 140 °C., vacuum pressure 143,61 mbar, 121,60 mbar and 88,59 mbar and operation time 2 hours, 3 hours and 5 hours. Total of treatments applied in this works were 3 x 3 x 3 or equal to 27 treatments. Patchouli oil used in this research was obtained from Desa Teladan-Lembah Seulawah, Aceh Province. The initial patchouli alcohol compound which analyzed with GC-MS contained 16,02% before treatment applied. After vacuum redistillation process treatment applied patchouli oil concentration increase up to 34,67%. Physico-chemical test of patchouli oil after vacuum redistillation is in accordance with SNI 06-23852006 standard.
Dyonic Flux Tube Structure of Nonperturbative QCD Vacuum
NASA Astrophysics Data System (ADS)
Chandola, H. C.; Pandey, H. C.
We study the flux tube structure of the nonperturbative QCD vacuum in terms of its dyonic excitations by using an infrared effective Lagrangian and show that the dyonic condensation of QCD vacuum has a close connection with the process of color confinement. Using the fiber bundle formulation of QCD, the magnetic symmetry condition is presented in a gauge covariant form and the gauge potential has been constructed in terms of the magnetic vectors on global sections. The dynamical breaking of the magnetic symmetry has been shown to lead the dyonic condensation of QCD vacuum in the infrared energy sector. Deriving the asymptotic solutions of the field equations in the dynamically broken phase, the dyonic flux tube structure of QCD vacuum is explored which has been shown to lead the confinement parameters in terms of the vector and scalar mass modes of the condensed vacuum. Evaluating the charge quantum numbers and energy associated with the dyonic flux tube solutions, the effect of electric excitation of monopole is analyzed using the Regge slope parameter (as an input parameter) and an enhancement in the dyonic pair correlations and the confining properties of QCD vacuum in its dyonically condensed mode has been demonstrated.
Vacuum Processing Technique for Development of Primary Standard Blackbodies
Navarro, M.; Bruce, S. S.; Johnson, B. Carol; Murthy, A. V.; Saunders, R. D.
1999-01-01
Blackbody sources with nearly unity emittance that are in equilibrium with a pure freezing metal such as gold, silver, or copper are used as primary standard sources in the International Temperature Scale of 1990 (ITS-90). Recently, a facility using radio-frequency induction heating for melting and filling the blackbody crucible with the freeze metal under vacuum conditions was developed at the National Institute of Standards and Technology (NIST). The blackbody development under a vacuum environment eliminated the possibility of contamination of the freeze metal during the process. The induction heating, compared to a resistively heated convection oven, provided faster heating of crucible and resulted in shorter turn-around time of about 7 h to manufacture a blackbody. This paper describes the new facility and its application to the development of fixed-point blackbodies.
Ukwuani, Anayo T; Tao, Wendong
2016-12-01
To prevent acetoclastic methanogens from ammonia inhibition in anaerobic digestion of protein-rich substrates, ammonia needs to be removed or recovered from digestate. This paper presents an innovative ammonia recovery process that couples vacuum thermal stripping with acid absorption. Ammonia is stripped out of digestate boiling at a temperature below the normal boiling point due to vacuum. Stripped ammonia is absorbed to a sulfuric acid solution, forming ammonium sulfate crystals as a marketable product. Three common types of digestate were found to have boiling point temperature-vacuum curves similar to water. Seven combinations of boiling temperature and vacuum (50 °C 16.6 kPa, 58 °C 20.0 kPa, 65 °C 25.1 kPa, 70 °C 33.6 kPa, 80 °C 54.0 kPa, 90 °C 74.2 kPa, and 100 °C 101.3 kPa) were tested for batch stripping of ammonia in dairy manure digestate. 93.3-99.9% of ammonia was stripped in 3 h. The Lewis-Whitman model fitted ammonia stripping process well. Ammonia mass transfer coefficient was significantly higher at boiling temperature 65-100 °C and vacuum pressure 25.1-101.3 kPa than 50-58 °C and 16.6-20.0 kPa. The low ammonia saturation concentrations (0-24 mg N/L) suggested a large driving force to strip ammonia. The optimum boiling point temperature - vacuum pressure for ammonia recovery in a recirculation line of a mesophilic digester was 65 °C and 25.1 kPa, at which the ammonia mass transfer coefficient was as high as 37.3 mm/h. Installation of a demister and liquid trap could avoid negative effects of higher stripping temperature and stronger vacuum on formation of ammonium sulfate crystals. Pilot tests demonstrated that high-purity ammonium sulfate crystals could be produced by controlling sulfuric acid content and maintaining acid solution saturated with ammonium sulfate. Although volatile organic compounds such as cyclohexene were found in the final acid solutions, no volatile organic compounds were found in the recovered crystals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pan, Cong-Yuan; Du, Xue-Wei; An, Ning; Han, Zhen-Yu; Wang, Sheng-Bo; Wei, Wei; Wang, Qiu-Ping
2013-12-01
Laser-induced breakdown spectroscopy (LIBS) is one of the most promising technologies to be applied to metallurgical composition online monitoring in these days. In order to study the spectral characters of LIBS spectrum and to investigate the quantitative analysis method of material composition under vacuum and high temperature environment, a LIBS measurement system was designed and set up which can be used for conducting experiments with high-temperature or molten samples in different vacuum environment. The system consists of a Q-switched Nd : YAG laser used as the light source, lens with different focus lengths used for laser focusing and spectrum signal collecting, a spectrometer used for detecting the signal of LIBS spectrums, and a vacuum system for holding and heating the samples while supplying a vacuum environment. The vacuum was achieved and maintained by a vacuum pump and an electric induction furnace was used for heating the system. The induction coil was integrated to the vacuum system by attaching to a ceramic sealing flange. The system was installed and testified, and the results indicate that the vacuum of the system can reach 1X 10(-4) Pa without heating, while the heating temperature could be about 1 600 degreeC, the system can be used for melting metal samples such as steel and aluminum and get the LIBS spectrum of the samples at the same time. Utilizing this system, LIBS experiments were conducted using standard steel samples under different vacuum or high-temperature conditions. Results of comparison between LIBS spectrums of solid steel samples under different vacuum were achieved, and so are the spectrums of molten and solid steel samples under vacuum environment. Through data processing and theoretical analyzing of these spectrums, the initial results of those experiments are in good agreement with the results that are presently reported, which indicates that the whole system functions well and is available for molten metal LIBS experiment under vacuum environment.
Ejector/liquid ring pump provides <0. 30 mm Hg vacuum for polymerization vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, A.; Gaines, A.
1982-03-01
Firestone Fibers and Textiles Company, a division of Firestone Tire and Rubber Company, manufactures tire and industrial yarns of polyester and nylon-6. Nylon-6 molding and extrusion resins are also produced at the plant in Hopewell, Virginia. The process for making polyester requires an extremely low vacuum on the polymerization reactor. A consistent polymerization vessel vacuum of 0.3 mm Hg is needed, but the existing vacuum source, a five-stage steam jet ejector, could only provide a 0.5 mm Hg level. Two options were considered when the company decided to replace the original system with a system designed for 0.15 mm Hgmore » with a non-condensible gas load of 10.8 lb/hr. A new five-stage jet ejector system to meet these requirements would use 1395 lb/hr of 100 psig steam. The other option was a hybrid vacuum source composed of a three-stage steam ejector system and a liquid ring vacuum pump that is more energy efficient than ejectors for low vacuum applications. The hybrid system was selected because the three-stage jet ejector would use only 1240 lb/hr of 100 psig steam. The liquid ring vacuum pump would increase the material and installation cost of the system by about $4000, but the savings in steam consumption would pay back the added cost in less than two years. The jet ejector/liquid ring vacuum pump system has provided both the capacity and the extremely low vacuum needed for the polyester polymerization vessel, after making a small modification. The hybrid vacuum source is reliable, requires only routine maintenance, and will contiue to save substantial amounts of steam each year compared to the five-stage steam jet ejector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiersen, W.; Heitzenroeder, P.; Neilson, G. H.
The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The stellarator core is designed to produce a compact 3-D plasma that combines stellarator and tokamak physics advantages. The engineering challenges of NCSX stem from its complex geometry. From the project's start in April, 2003 to September, 2004, the fabrication specifications for the project's two long-lead components, the modular coil winding forms and the vacuum vessel, were developed. An industrial manufacturing R&D program refined the processes for their fabrication as well as production cost andmore » schedule estimates. The project passed a series of reviews and established its performance baseline with the Department of Energy. In September 2004, fabrication was approved and contracts for these components were awarded. The suppliers have completed the engineering and tooling preparations and are in production. Meanwhile, the project completed preparations for winding the coils at PPPL by installing a coil manufacturing facility and developing all necessary processes through R&D. The main activities for the next two years will be component manufacture, coil winding, and sub-assembly of the vacuum vessel and coil subsets. Machine sector sub-assembly, machine assembly, and testing will follow, leading to First Plasma in July 2009.« less
Wernke, Matthew M; Schroeder, Ryan M; Haynes, Michael L; Nolt, Lonnie L; Albury, Alexander W; Colvin, James M
2017-07-01
Objective: Prosthetic sockets are custom made for each amputee, yet there are no quantitative tools to determine the appropriateness of socket fit. Ensuring a proper socket fit can have significant effects on the health of residual limb soft tissues and overall function and acceptance of the prosthetic limb. Previous work found that elevated vacuum pressure data can detect movement between the residual limb and the prosthetic socket; however, the correlation between the two was specific to each user. The overall objective of this work is to determine the relationship between elevated vacuum pressure deviations and prosthetic socket fit. Approach: A tension compression machine was used to apply repeated controlled forces onto a residual limb model with sockets of different internal volume. Results: The vacuum pressure-displacement relationship was dependent on socket fit. The vacuum pressure data were sensitive enough to detect differences of 1.5% global volume and can likely detect differences even smaller. Limb motion was reduced as surface area of contact between the limb model and socket was maximized. Innovation: The results suggest that elevated vacuum pressure data provide information to quantify socket fit. Conclusions: This study provides evidence that the use of elevated vacuum pressure data may provide a method for prosthetists to quantify and monitor socket fit. Future studies should investigate the relationship between socket fit, limb motion, and limb health to define optimal socket fit parameters.
Overview of High Power Vacuum Dry RF Load Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnykh, Anatoly
2015-08-27
A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is tomore » use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.« less
Cold Vacuum Drying facility civil structural system design description (SYS 06)
DOE Office of Scientific and Technical Information (OSTI.GOV)
PITKOFF, C.C.
This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document.
2012-07-01
Composites 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Larry R. Holmes, Jr., James P. Wolbert, and Jared M...greater than 10 kPa (1.5 psi) pressure change in the vacuum bag. A redundant second vacuum bag was applied over the entire layup to further protect...In order to maintain the increased fvf and decrease the processing time, a second experimental process was conducted using a compacted and pre
Optimized photonic gauge of extreme high vacuum with Petawatt lasers
NASA Astrophysics Data System (ADS)
Paredes, Ángel; Novoa, David; Tommasini, Daniele; Mas, Héctor
2014-03-01
One of the latest proposed applications of ultra-intense laser pulses is their possible use to gauge extreme high vacuum by measuring the photon radiation resulting from nonlinear Thomson scattering within a vacuum tube. Here, we provide a complete analysis of the process, computing the expected rates and spectra, both for linear and circular polarizations of the laser pulses, taking into account the effect of the time envelope in a slowly varying envelope approximation. We also design a realistic experimental configuration allowing for the implementation of the idea and compute the corresponding geometric efficiencies. Finally, we develop an optimization procedure for this photonic gauge of extreme high vacuum at high repetition rate Petawatt and multi-Petawatt laser facilities, such as VEGA, JuSPARC and ELI.
Vacuum-induced quantum memory in an opto-electromechanical system
NASA Astrophysics Data System (ADS)
Qin, Li-Guo; Wang, Zhong-Yang; Wu, Shi-Chao; Gong, Shang-Qing; Ma, Hong-Yang; Jing, Jun
2018-03-01
We propose a scheme to implement electrically controlled quantum memory based on vacuum-induced transparency (VIT) in a high-Q tunable cavity, which is capacitively coupled to a mechanically variable capacitor by a charged mechanical cavity mirror as an interface. We analyze the changes of the cavity photons arising from vacuum-induced-Raman process and discuss VIT in an atomic ensemble trapped in the cavity. By slowly adjusting the voltage on the capacitor, the VIT can be adiabatically switched on or off, meanwhile, the transfer between the probe photon state and the atomic spin state can be electrically and adiabatically modulated. Therefore, we demonstrate a vacuum-induced quantum memory by electrically manipulating the mechanical mirror of the cavity based on electromagnetically induced transparency mechanism.
NASA Astrophysics Data System (ADS)
Jin, Chul Kyu; Kang, Chung Gil
2011-10-01
There are various methods for the fabrication of bipolar plates, but these are still limited to machining and stamping processes. High-pressure die casting (HPDC) is an ideal process for the manufacture of bipolar plates This study aims to investigate the formability of bipolar plates for polymer electrolyte membrane fuel cells (PEMFCs) fabricated by vacuum HPDC of an Al-Mg alloy (ALDC6). The cavity of the mold consisted of a thin-walled plate (200 mm × 200 mm × 0.8 mm) with a layer of serpentine channel (50 mm × 50 mm). The location and direction of the channel in the final mold design was determined by computational simulation (MAGMA soft). In addition, simulation results for different conditions of plunger stroke control were compared to those from actual die-casting experiments. Under a vacuum pressure of 35 kPa and for injection speeds of 0.3 and 2.5 m s-1 in the low and high speed regions, respectively, the samples had few casting defects. In addition, the hardness was higher and porosity in microstructure was less than those of the samples made under other injection speed conditions. In case of thin-walled plates, vacuum die casting is beneficial in terms of formability compared to conventional die casting.
Xiao, Jiefeng; Li, Jia; Xu, Zhenming
2017-10-17
Lithium is a rare metal because of geographical scarcity and technical barrier. Recycling lithium resource from spent lithium ion batteries (LIBs) is significant for lithium deficiency and environmental protection. A novel approach for recycling lithium element as Li 2 CO 3 from spent LIBs is proposed. First, the electrode materials preobtained by mechanical separation are pyrolyzed under enclosed vacuum condition. During this process the Li is released as Li 2 CO 3 from the crystal structure of lithium transition metal oxides due to the collapse of the oxygen framework. An optimal Li recovery rate of 81.90% is achieved at 973 K for 30 min with a solid-to-liquid ratio of 25 g L -1 , and the purity rate of Li 2 CO 3 is 99.7%. The collapsed mechanism is then presented to explain the release of lithium element during the vacuum pyrolysis. Three types of spent LIBs including LiMn 2 O 4 , LiCoO 2 , and LiCo x Mn y Ni z O 2 are processed to prove the validity of in situ recycling Li 2 CO 3 from spent LIBs under enclosed vacuum condition. Finally, an economic assessment is taken to prove that this recycling process is positive.
Hultman, Jenni; Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K Johanna
2015-10-01
Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2%±5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
The Emergent Universe scheme and tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labraña, Pedro
We present an alternative scheme for an Emergent Universe scenario, developed previously in Phys. Rev. D 86, 083524 (2012), where the universe is initially in a static state supported by a scalar field located in a false vacuum. The universe begins to evolve when, by quantum tunneling, the scalar field decays into a state of true vacuum. The Emergent Universe models are interesting since they provide specific examples of non-singular inflationary universes.
Lunar concrete for construction
NASA Technical Reports Server (NTRS)
Cullingford, Hatice S.; Keller, M. Dean
1988-01-01
Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.
ERIC Educational Resources Information Center
Filer, Herb; Windram, Kendall
Three types of vacuum filters and their operation are described in this lesson. Typical filter cycle, filter components and their functions, process control parameters, expected performance, and safety/historical aspects are considered. Conditioning methods are also described, although it is suggested that lessons on sludge characteristics, sludge…
Vacuum Baking To Remove Volatile Materials
NASA Technical Reports Server (NTRS)
Muscari, J. A.
1985-01-01
Outgassing reduced in some but not all nonmetallic materials. Eleven polymeric materials tested by determining outgassing species as temperature of conditioned and unconditioned materials raised to 300 degrees C. Conditioning process consisted of vacuum bake for 24 hours at 80 degrees C in addition to usual cure. Baking did not change residual gas percentage of water molecules.
Gudro, Ilze; Valeika, Virgilijus; Sirvaitytė, Justa
2014-01-01
The objective of this work was to investigate vacuum influence on hide preservation time and how it affects hide structure. It was established that vacuum prolongs the storage time without hide tissue putrefaction up to 21 days when the storage temperature is 4°C. The microorganisms act for all storage times, but the action is weak and has no observable influence on the quality of hide during the time period mentioned. The hide shrinkage temperature decrease is negligible, which shows that breaking of intermolecular bonds does not occur. Optical microscopy, infrared spectroscopy and differential scanning calorimetry also did not show any structural changes which can influence the quality of leather produced from such hide. The qualitative indexes of wet blue processed under laboratory conditions and of leather produced during industrial trials are presented. Indexes such as chromium compounds exhaustion, content of chromium in leather, content of soluble matter in dichloromethane, strength properties, and shrinkage temperature were determined. Properties of the leather produced from vacuumed hide under industrial conditions conformed to the requirements of shoe upper leather. PMID:25393637
A low cost imaging displacement measurement system for spacecraft thermal vacuum testing
NASA Technical Reports Server (NTRS)
Dempsey, Brian
2006-01-01
A low cost imaging displacement technique suitable for use in thermal vacuum testing was built and tested during thermal vacuum testing of the space infrared telescope facility (SIRTF, later renamed Spitzer infrared telescope facility). The problem was to measure the relative displacement of different portions of the spacecraft due to thermal expansion or contraction. Standard displacement measuring instrumentation could not be used because of the widely varying temperatures on the spacecraft and for fear of invalidating the thermal vacuum testing. The imaging system was conceived, designed, purchased, and installed in approximately 2 months at very low cost. The system performed beyond expectations proving that sub millimeter displacements could be measured from over 2 meters away. Using commercial optics it was possible to make displacement measurements down to 10 (mu)m. An automated image processing tool was used to process the data, which not only speeded up data reduction, but showed that velocities and accelerations could also be measured. Details of the design and capabilities of the system are discussed along with the results of the test on the observatory. Several images from the actual test are presented.
Drücker, Sven; Krautstrunk, Isabell; Paulick, Maria; Saleh, Khashayar; Morgeneyer, Martin; Kwade, Arno
2016-01-01
The Discrete Element Method is used for the simulation of particulate systems to describe and analyze them, to predict and afterwards optimize their behavior for single stages of a process or even an entire process. For the simulation with occurring particle-particle and particle-wall contacts, the value of the coefficient of restitution is required. It can be determined experimentally. The coefficient of restitution depends on several parameters like the impact velocity. Especially for fine particles the impact velocity depends on the air pressure and under atmospheric pressure high impact velocities cannot be reached. For this, a new experimental setup for free-fall tests under vacuum conditions is developed. The coefficient of restitution is determined with the impact and rebound velocity which are detected by a high-speed camera. To not hinder the view, the vacuum chamber is made of glass. Also a new release mechanism to drop one single particle under vacuum conditions is constructed. Due to that, all properties of the particle can be characterized beforehand. PMID:27077671
Shen, Xu; Zhang, Min; Bhandari, Bhesh; Guo, Zhimei
2018-02-15
In order to investigate the effect of ultrasound dielectric pretreatment on the oxidation resistance of vacuum-fried apple chips, apple slices were pretreated at ultrasonic powers of 150, 250 and 400 W for times of 10, 20 and 30 min before vacuum frying. The quality and oxidation resistance of fried apple were evaluated by testing the dielectric properties and comparing the moisture content, oil uptake, color, acid value (AV) and peroxide value (PV) of apple chips. Ultrasonic treatment significantly changed the dielectric properties of apple slices. Moisture and oil contents of apple chips decreased with increasing ultrasonic power and time. During storage, the color retention of fried apple chips processed by ultrasound was improved. AV and PV values of fried apple chips processed by ultrasound were lower, which improved their antioxidant properties. The results of the present study indicated that ultrasound dielectric pretreatment improved not only the quality of vacuum-fried apple chips but also their antioxidant properties. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Drücker, Sven; Krautstrunk, Isabell; Paulick, Maria; Saleh, Khashayar; Morgeneyer, Martin; Kwade, Arno
2016-03-29
The Discrete Element Method is used for the simulation of particulate systems to describe and analyze them, to predict and afterwards optimize their behavior for single stages of a process or even an entire process. For the simulation with occurring particle-particle and particle-wall contacts, the value of the coefficient of restitution is required. It can be determined experimentally. The coefficient of restitution depends on several parameters like the impact velocity. Especially for fine particles the impact velocity depends on the air pressure and under atmospheric pressure high impact velocities cannot be reached. For this, a new experimental setup for free-fall tests under vacuum conditions is developed. The coefficient of restitution is determined with the impact and rebound velocity which are detected by a high-speed camera. To not hinder the view, the vacuum chamber is made of glass. Also a new release mechanism to drop one single particle under vacuum conditions is constructed. Due to that, all properties of the particle can be characterized beforehand.
Effect of osmotic dehydration and vacuum-frying parameters to produce high-quality mango chips.
Nunes, Yolanda; Moreira, Rosana G
2009-09-01
Mango (Mangifera indica L.) is a fruit rich in flavor and nutritional values, which is an excellent candidate for producing chips. The objective of this study was to develop high-quality mango chips using vacuum frying. Mango ("Tommy Atkins") slices were pretreated with different maltodextrin concentrations (40, 50, and 65, w/v), osmotic dehydration times (45, 60, and 70 min), and solution temperatures (22 and 40 degrees C). Pretreated slices were vacuum fried at 120, 130, and 138 degrees C and product quality attributes (oil content, texture, color, carotenoid content) determined. The effect of frying temperatures at optimum osmotic dehydration times (65 [w/v] at 40 degrees C) was assessed. All samples were acceptable (scores > 5) to consumer panelists. The best mango chips were those pretreated with 65 (w/v) concentration for 60 min and vacuum fried at 120 degrees C. Mango chips under atmospheric frying had less carotenoid retention (32%) than those under vacuum frying (up to 65%). These results may help further optimize vacuum-frying processing of high-quality fruit-based snacks.
Ethanol production from food waste at high solids content with vacuum recovery technology.
Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay
2015-03-18
Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).
Dueik, V; Bouchon, P
2011-03-01
Consumers look for products that contribute to their wellness and health, however, even health-conscious consumers are not willing to sacrifice organoleptic properties, and intense full-flavor snacks remain an important trend. The objective of this study was to examine most important quality parameters of vacuum (1.92 inHg) and atmospheric-fried carrot, potato, and apple slices to determine specific advantages of vacuum technology. Slices were fried using equivalent thermal driving forces, maintaining a constant difference between oil temperature and the boiling point of water at the working pressure (ΔT = 60 and 80 °C). This resulted in frying temperatures of 160 and 180 °C, and 98 and 118 °C, for atmospheric and vacuum frying, respectively. Vacuum-fried carrot and potato chips absorbed about 50% less oil than atmospheric-fried chips, whereas vacuum-fried apple chips reduced oil absorption by 25%. Total carotenoids and ascorbic acid (AA) were greatly preserved during vacuum frying. Carrot chips vacuum fried at 98 °C retained about 90% of total carotenoids, whereas potato and apple slices vacuum fried at 98 °C, preserved around 95% of their initial AA content. Interestingly, results showed that the antioxidant capacity of chips may be related to both the presence of natural antioxidants and brown pigments developed at elevated temperatures. A way to reduce detrimental effects of deep-fat frying is through operating-pressure reduction, the essence behind vacuum deep-fat frying. In this way, it is possible to remove product moisture at a low temperature in a low-oxygen environment. The objective of this research was to study the effect of oil temperature reduction when vacuum frying traditional (potatoes) and nontraditional products (carrots and apples) on most important quality attributes (vitamins, color, and oil uptake). Results are promising and show that vacuum frying can be an alternative to produce nutritious and novel snacks with desired quality attributes, since vitamins and color were greatly preserved and oil absorption could be substantially reduced.
Customizing vacuum fluctuations for enhanced entanglement creation
NASA Astrophysics Data System (ADS)
Wang, Jin
2018-07-01
This paper connects the creation of entanglement through cavity enhanced decay rate with practical design parameters such as cavity dimension and cavity mirror reflectivity. The clarification of specific physical parameters on cavity enhanced emission in relation to entanglement creation is discussed. It is found that entanglement increases as the size of the cavity decreases, or the reflectivity of the cavity mirrors increases. Additionally, the negative effect of individual qubit decoherence on the entanglement is discussed. These results can be used to design or choose a practical system for implementing entanglement between two qubits for quantum computation and information processing.
Examinations on Laser Remote Welding of Ultra-thin Metal Foils Under Vacuum Conditions
NASA Astrophysics Data System (ADS)
Petrich, Martin; Stambke, Martin; Bergmann, Jean Pierre
Metal foils are commonly used for catalytic converters, vacuum insulations, in medical and electrical industry as well as for sensor applications and packaging. The investigations in this paper determine the influence of reduced atmospheric pressure during the welding process with a highly brilliant 400 W single-mode fiber laser combined with a 2D-scanning system. The laser beam is transmitted through a highly transparent glass into a vacuum chamber, where AISI 304 stainless steel foils with a thickness of 25 μm, 50 μm and 100 μm are positioned. The effects of reduced atmospheric pressure on the plasma formation are investigated by means of high-speed videography. Furthermore, the geometry of the weld seam is compared to atmospheric conditions as well as means of the process stability and the process efficiency. The welds were also evaluated by means of metallography. The research is a contribution for extending the range of micro welding applications and shows new aspects for future developments.
Ma, En; Xu, Zhenming
2013-12-15
In this study, a technology process including vacuum pyrolysis and vacuum chlorinated separation was proposed to convert waste liquid crystal display (LCD) panels into useful resources using self-design apparatuses. The suitable pyrolysis temperature and pressure are determined as 300°C and 50 Pa at first. The organic parts of the panels were converted to oil (79.10 wt%) and gas (2.93 wt%). Then the technology of separating indium was optimized by central composite design (CCD) under response surface methodology (RSM). The results indicated the indium recovery ratio was 99.97% when the particle size is less than 0.16 mm, the weight percentage of NH4Cl to glass powder is 50 wt% and temperature is 450°C. The research results show that the organic materials, indium and glass of LCD panel can be recovered during the recovery process efficiently and eco-friendly. Copyright © 2013 Elsevier B.V. All rights reserved.
Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir
2016-07-15
Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample. Copyright © 2016 Elsevier Ltd. All rights reserved.
Surface cleaning for negative electron affinity GaN photocathode
NASA Astrophysics Data System (ADS)
Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang
2012-10-01
In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.
Double-Vacuum-Bag Process for Making Resin-Matrix Composites
NASA Technical Reports Server (NTRS)
Bradford, Larry J.
2007-01-01
A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.
Plasma Shield for In-Air and Under-Water Beam Processes
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2007-11-01
As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1973-01-01
The environmental heat flux routine version 4, (EHFR-4) is a generalized computer program which calculates the steady state and/or transient thermal environments experienced by a space system during lunar surface, deep space, or thermal vacuum chamber operation. The specific environments possible for EHFR analysis include: lunar plain, lunar crater, combined lunar plain and crater, lunar plain in the region of spacecraft surfaces, intervehicular, deep space in the region of spacecraft surfaces, and thermal vacuum chamber generation. The EHFR was used for Extra Vehicular Mobility Unit environment analysis of the Apollo 11-17 missions, EMU manned and unmanned thermal vacuum qualification testing, and EMU-LRV interface environmental analyses.
Thermal Vacuum Chamber Repressurization with Instrument Purging
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2016-01-01
At the end of James Webb Space Telescope (JWST) OTIS (Optical Telescope Element-OTE-Integrated Science Instrument Module-ISIM) cryogenic vacuum testing in NASA Johnson Space Centers (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are mooting the idea that chamber particulate material stirred up by the repressurization process may be kept from falling into the ISIM interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This memo describes development of a series of models designed to describe this process. These are strung together in tandem to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.
Thermal Vacuum Chamber Repressurization with Instrument Purging
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2017-01-01
At the end of James Webb Space Telescope (JWST) OTIS (Optical Telescope Element-OTE-Integrated Science Instrument Module-ISIM) cryogenic vacuum testing in NASA Johnson Space Centers (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are mooting the idea that chamber particulate material stirred up by the repressurization process may be kept from falling into the ISIM interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This memo describes development of a series of models designed to describe this process. These are strung together in tandem to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scargill, James H. C.
Theories with more than one vacuum allow quantum transitions between them, which may proceed via bubble nucleation; theories with more than two vacua posses additional decay modes in which the wall of a bubble may further decay. The instantons which mediate such a process have O(3) symmetry (in four dimensions, rather than the usual O(4) symmetry of homogeneous vacuum decay), and have been called ‘barnacles’; previously they have been studied in flat space, in the thin wall limit, and this paper extends the analysis to include gravity. It is found that there are regions of parameter space in which, givenmore » an initial bubble, barnacles are the favoured subsequent decay process, and that the inclusion of gravity can enlarge this region. The relation to other heterogeneous vacuum decay scenarios, as well as some of the phenomenological implications of barnacles are briefly discussed.« less
An experimental study of permeability within an out-of-autoclave vacuum-bag-only CFRP laminate
NASA Astrophysics Data System (ADS)
Wallace, Landon F.
The out-of-autoclave vacuum-bag-only (OOA-VBO) manufacturing process is a process that eliminates an autoclave when manufacturing aerospace quality carbon fiber reinforced plastics (CFRP). OOA-VBO pre-impregnated resin tow systems rely on air channel networks that guide unwanted voids out of the laminate. The air path networks can be characterized by measuring the permeability of a pre-cured laminate. Permeability results were successfully obtained for a laminate with a compaction similar to that found in a typical vacuum bagging setup. A study was done to find the relationship between compaction of the laminate and permeability. Permeability was measured as the laminate cured, using a constant temperature ramp rate. An experimental nodal analysis was performed to find the permeability at the midpoint of the in-plane direction.
Collective behavior of light in vacuum
NASA Astrophysics Data System (ADS)
Briscese, Fabio
2018-03-01
Under the action of light-by-light scattering, light beams show collective behaviors in vacuum. For instance, in the case of two counterpropagating laser beams with specific initial helicity, the polarization of each beam oscillates periodically between the left and right helicity. Furthermore, the amplitudes and the corresponding intensities of each polarization propagate like waves. Such polarization waves might be observationally accessible in future laser experiments, in a physical regime complementary to those explored by particle accelerators.
1991-10-01
classical image potential in an ideal creasing gap separation, that is specific to the form of the metal- insulator -semiconductor (MIS) junction...with which one can precisely adjust s, and hence continuously vary the vacvuum barrier, is a potentially valuable tool for investigating this effect- By... insulator -semiconductor (MIS) junction similar to that shown in Fig. I diverge at the semiconductor-vacuum and vacuum-metal interfaces [7,81. These
Fabrication of n-type Si nanostructures by direct nanoimprinting with liquid-Si ink
NASA Astrophysics Data System (ADS)
Takagishi, Hideyuki; Masuda, Takashi; Yamazaki, Ken; Shimoda, Tatsuya
2018-01-01
Nanostructures of n-type amorphous silicon (a-Si) and polycrystalline silicon (poly-Si) with a height of 270 nm and line widths of 110-165 nm were fabricated directly onto a substrate through a simple imprinting process that does not require vacuum conditions or photolithography. The n-type Liquid-Si ink was synthesized via photopolymerization of cyclopentasilane (Si5H10) and white phosphorus (P4). By raising the temperature from 160 °C to 200 °C during the nanoimprinting process, well-defined angular patterns were fabricated without any cracking, peeling, or deflections. After the nanoimprinting process, a-Si was produced by heating the nanostructures at 400°C-700 °C, and poly-Si was produced by heating at 800 °C. The dopant P diffuses uniformly in the Si films, and its concentration can be controlled by varying the concentration of P4 in the ink. The specific resistance of the n-type poly-Si pattern was 7.0 × 10-3Ω ṡ cm, which is comparable to the specific resistance of flat n-type poly-Si films.
Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy
Lübbe, Jannis; Temmen, Matthias; Rode, Sebastian; Rahe, Philipp; Kühnle, Angelika
2013-01-01
Summary The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip–surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d z at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d Δ f at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip–surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d z, we predict d Δ f for specific filter settings, a given level of detection-system noise spectral density d z ds and the cantilever-thermal-noise spectral density d z th. We find an excellent agreement between the calculated and measured values for d Δ f. Furthermore, we demonstrate that thermal noise in d Δ f, defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth. PMID:23400758
Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy.
Lübbe, Jannis; Temmen, Matthias; Rode, Sebastian; Rahe, Philipp; Kühnle, Angelika; Reichling, Michael
2013-01-01
The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip-surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d(z) at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d(Δ) (f) at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip-surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d(z), we predict d(Δ) (f) for specific filter settings, a given level of detection-system noise spectral density d(z) (ds) and the cantilever-thermal-noise spectral density d(z) (th). We find an excellent agreement between the calculated and measured values for d(Δ) (f). Furthermore, we demonstrate that thermal noise in d(Δ) (f), defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.
Comparison of nonfried apple snacks with commercially available fried snacks.
Joshi, A P K; Rupasinghe, H P V; Pitts, N L
2011-06-01
The study was carried out to evaluate the selected quality attributes of a prototype nonfried apple snack produced by application of vacuum impregnation (VI) of maple syrup and vacuum drying. When maple syrup concentration was adjusted to 20-40% in the VI solution, vacuum-dried apple slices are resulted in the greatest textural attributes, whiteness index, and desirable moisture content and water activity. Comparison of the VI-treated, vacuum-dried apple slices with commercially fried apple and potato snacks revealed that the consumer acceptability was greater for the fried snack products due to their flavor and texture; however, in addition to higher oil content (>30%), commercial fried apple and potato snacks possessed lower antioxidant capacity than nonfried apple snacks. VI process enhanced the calcium content of the nonfried apple snack products.
Ultrahigh vacuum process for the deposition of nanotubes and nanowires
Das, Biswajit; Lee, Myung B
2015-02-03
A system and method A method of growing an elongate nanoelement from a growth surface includes: a) cleaning a growth surface on a base element; b) providing an ultrahigh vacuum reaction environment over the cleaned growth surface; c) generating a reactive gas of an atomic material to be used in forming the nanoelement; d) projecting a stream of the reactive gas at the growth surface within the reactive environment while maintaining a vacuum of at most 1.times.10.sup.-4 Pascal; e) growing the elongate nanoelement from the growth surface within the environment while maintaining the pressure of step c); f) after a desired length of nanoelement is attained within the environment, stopping direction of reactive gas into the environment; and g) returning the environment to an ultrahigh vacuum condition.
Vacuum melting and mechanical testing of simulated lunar glasses
NASA Technical Reports Server (NTRS)
Carsley, J. E.; Blacic, J. D.; Pletka, B. J.
1992-01-01
Lunar silicate glasses may possess superior mechanical properties compared to terrestrial glasses because the anhydrous lunar environment should prevent hydrolytic weakening of the strong Si-O bonds. This hypothesis was tested by melting, solidifying, and determining the fracture toughness of simulated mare and highlands composition glasses in a high vacuum chamber. The fracture toughness, K(IC), of the resulting glasses was obtained via microindentation techniques. K(IC) increased as the testing environment was changed from air to a vacuum of 10 exp -7 torr. However, this increase in toughness may not result solely from a reduction in the hydrolytic weakening effect; the vacuum-melting process produced both the formation of spinel crystallites on the surfaces of the glass samples and significant changes in the compositions which may have contributed to the improved K(IC).
USDA-ARS?s Scientific Manuscript database
Murta (Ugni molinae T.) berries were vacuum dried at a constant pressure of 15 kPa. The effects of processing temperatures (50, 60, 70, 80 and 90 °C) on the physico-chemical characteristics, the phenolic and flavonoid compounds, the antioxidant activity (measured by DPPH and ORAC) and the sugar and ...
USDA-ARS?s Scientific Manuscript database
Seamless co-processing of pyrolysis bio-oil within existing petroleum refineries is the most synergistic and economic way to improve biorefinery output. Coprocessing bio-oil with vacuum gas oil (VGO) is one logical pathway. Bio-oil has a viscosity and molecular weight range similar to that of VGO, a...
Zhang, Lingen; Xu, Zhenming
2017-01-05
Germanium, as strategic reserve metal, plays critical role in high-tech industry. However, a contradiction of increasing consumption and scarcity of germanium resource is becoming more and more prominent. This paper proposed an integrated process to recycle germanium from coal fly ash. This technological process mainly consisted of two procedures: vacuum reduction with the purposes of enriching germanium and chlorinated distillation with the purposes of purifying germanium. Several highlights are summarized as follows: (i) Separation principle and reaction mechanism were discussed to understand this integrated process. (ii) Optimum designs and product analysis were developed to guide industrial recycling. The appropriate parameters for vacuum reduction process on the basis of response surface methodology (RSM) were 920.53°C and 259.63Pa, with 16.64wt.% reductant, and for the chlorinated distillation process, adding 8mol/l HCl and L/S 7, 8wt.% MnO 2 . The global recovery rate of germanium was 83.48±0.36% for the integrated process. (iii) This process overcomes the shortages of traditional process and shows its efficiency and environmental performance. It is significant in accordance with the "Reduce, Reuse and Recycle Principle" for solid waste and further provides a new opportunity for germanium recovery from waste by environment-friendly way. Copyright © 2016. Published by Elsevier B.V.
Anodized aluminum coatings for thermal control. I - Coating process and stresses
NASA Technical Reports Server (NTRS)
Alwitt, R. S.; Mcclung, R. C.; Jacobs, S.
1992-01-01
Anodized aluminum is a candidate material for use as a thermal radiator surface on Space Station Freedom. Here, results of measurements of coating stress at room temperature are presented. The effects of coating process conditions and also subsequent exposure to different humidities, from above ambient to vacuum, are reported. The most important observation with regard to space applications is that the coating stress is very dependent on humidity, changing from compressive at ambient humidity to strongly tensile in 10 exp -6 torr vacuum. The increase in stress is accompanied by loss of water from the coating, and the process is reversible.
Thin film coating process using an inductively coupled plasma
Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.
1990-01-30
Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.
Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries
NASA Astrophysics Data System (ADS)
Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.
Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.
NASA Astrophysics Data System (ADS)
Buttler, W. T.; Hixson, R. S.; King, N. S. P.; Olson, R. T.; Rigg, P. A.; Zellner, M. B.; Routley, N.; Rimmer, A.
2007-04-01
The authors consider a mathematical method to separate and determine the amount of ejecta produced in a second-shock material-fragmentation process. The technique is theoretical and assumes that a material undergoing a shock release at a vacuum interface ejects particulate material or fragments as the initial shock unloads and reflects at the vacuum-surface interface. In this case it is thought that the reflected shock may reflect again at the source of the shock and return to the vacuum-surface interface and eject another amount of fragments or particulate material.
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Yamada, Masatoshi
2017-09-01
The null result in the LHC may indicate that the standard model is not drastically modified up to very high scales, such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops a large vacuum expectation value in the early universe, a lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with higher-dimensional operators.
Optical Analysis Of The Vacuum Arc Plasma Generated In Cup-Shape Contacts
NASA Astrophysics Data System (ADS)
Pavelescu, G.; Pavelescu, D.; Dumitrescu, G.; Anghelita, P.; Gherendi, F.
2007-04-01
In this paper are presented the results of the optical analysis on the rotating arc plasma, generated in the vacuum low voltage circuit breaker with cup-shaped contacts. An adequate experimental setup was used for single shot time and spatial resolved spectroscopy in order to analyze the evolution of the vacuum arc plasma. Different current interruption situations are correlated with plasma spectral diagnosis. The study is aimed to contribute to a better understanding of the complex phenomena that take place in the interruption process of high currents that appears in the short-circuit regime of electrical networks.
Method for vacuum fusion bonding
Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.
2001-01-01
An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.
NASA Astrophysics Data System (ADS)
Karyakin, Yu. E.; Nekhozhin, M. A.; Pletnev, A. A.
2013-07-01
A method for calculating the quantity of moisture in a metal-concrete container in the process of its charging with spent nuclear fuel is proposed. A computing method and results obtained by it for conservative estimation of the time of vacuum drying of a container charged with spent nuclear fuel by technologies with quantization and without quantization of the lower fuel element cluster are presented. It has been shown that the absence of quantization in loading spent fuel increases several times the time of vacuum drying of the metal-concrete container.
Fermentative alcohol production
Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.
1982-01-01
An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).
Vacuum infusion manufacturing and experimental characterization of Kevlar/epoxy composites
NASA Astrophysics Data System (ADS)
Ricciardi, M. R.; Giordano, M.; Langella, A.; Nele, L.; Antonucci, V.
2014-05-01
Epoxy/Kevlar composites have been manufactured by conventional Vacuum Infusion process and the Pulse Infusion technique. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The realized composite panel have been mechanically characterized by performing tensile and short beam shear tests according with the ASTM D3039 and ASTM D2344/D 2344M standard respectively in order to investigate the effect of Pulse Infusion on the tensile strength and ILSS.
Vacuum infusion manufacturing and experimental characterization of Kevlar/epoxy composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricciardi, M. R.; Giordano, M.; Antonucci, V.
2014-05-15
Epoxy/Kevlar composites have been manufactured by conventional Vacuum Infusion process and the Pulse Infusion technique. Pulse Infusion allows to control the pressure of the vacuum bag on the dry fiber reinforcement by using a proper designed pressure distributor that induces a pulsed transverse action and promotes the through thickness resin flow. The realized composite panel have been mechanically characterized by performing tensile and short beam shear tests according with the ASTM D3039 and ASTM D2344/D 2344M standard respectively in order to investigate the effect of Pulse Infusion on the tensile strength and ILSS.
Wernke, Matthew M.; Schroeder, Ryan M.; Haynes, Michael L.; Nolt, Lonnie L.; Albury, Alexander W.; Colvin, James M.
2017-01-01
Objective: Prosthetic sockets are custom made for each amputee, yet there are no quantitative tools to determine the appropriateness of socket fit. Ensuring a proper socket fit can have significant effects on the health of residual limb soft tissues and overall function and acceptance of the prosthetic limb. Previous work found that elevated vacuum pressure data can detect movement between the residual limb and the prosthetic socket; however, the correlation between the two was specific to each user. The overall objective of this work is to determine the relationship between elevated vacuum pressure deviations and prosthetic socket fit. Approach: A tension compression machine was used to apply repeated controlled forces onto a residual limb model with sockets of different internal volume. Results: The vacuum pressure–displacement relationship was dependent on socket fit. The vacuum pressure data were sensitive enough to detect differences of 1.5% global volume and can likely detect differences even smaller. Limb motion was reduced as surface area of contact between the limb model and socket was maximized. Innovation: The results suggest that elevated vacuum pressure data provide information to quantify socket fit. Conclusions: This study provides evidence that the use of elevated vacuum pressure data may provide a method for prosthetists to quantify and monitor socket fit. Future studies should investigate the relationship between socket fit, limb motion, and limb health to define optimal socket fit parameters. PMID:28736683
Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2017-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
Vacuum plasma coatings for turbine blades
NASA Technical Reports Server (NTRS)
Holmes, R. R.
1985-01-01
Turbine blades, vacuum plasma spray coated with NiCrAlY, CoCrAlY or NiCrAlY/Cr2O3, were evaluated and rated superior to standard space shuttle main engine (SSME) coated blades. Ratings were based primarily on 25 thermal cycles in the MSFC Burner Rig Tester, cycling between 1700 F (gaseous H2) and -423 F (liquid H2). These tests showed no spalling on blades with improved vacuum plasma coatings, while standard blades spalled. Thermal barrier coatings of ZrO2, while superior to standard coatings, lacked the overall performance desired. Fatigue and tensile specimens, machined from MAR-M-246(Hf) test bars identical to the blades were vacuum plasma spray coated, diffusion bond treated, and tested to qualify the vacuum plasma spray process for flight hardware testing and application. While NiCrAlY/Cr2O3 offers significant improvement over standard coatings in durability and thermal protection, studies continue with an objective to develop coatings offering even greater improvements.
NASA Astrophysics Data System (ADS)
Abdurohman, K.; Siahaan, Mabe
2018-04-01
Composite materials made of glass fiber EW-135 with epoxy lycal resin with vacuum infusion method have been performed. The dried glass fiber is arranged in a mold then connected to a vacuum machine and a resin tube. Then, the vacuum machine is turned on and at the same time the resin is sucked and flowed into the mold. This paper reports on the effect of using mesh- peel ply singles on upper-side laminates called A and the effect of using double mesh-peel ply on upper and lower-side laminates call B with glass fiber arrangement is normal and ± 450 in vacuum infusion process. Followed by the manufacture of tensile test specimen and tested its tensile strength with universal test machine 100kN Tensilon RTF 2410, at room temperature with constant crosshead speed. From tensile test results using single and double layers showed that double mesh-peel ply can increase tensile strength 14% and Young modulus 17%.
Waveguide quantum electrodynamics in squeezed vacuum
NASA Astrophysics Data System (ADS)
You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail
2018-02-01
We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.
Rolling-element fatigue life of AMS 5749 corrosion resistant, high temperature bearing steel
NASA Technical Reports Server (NTRS)
Parker, R. J.; Hodder, R. S.
1977-01-01
The rolling element fatigue lives of AMS 5749 and AISI M-50 were compared in tests run in the five ball fatigue tester and the rolling contact fatigue tester. The effects of double vacuum melting and retained austenite on the life of AMS 5749 were determined in five ball fatigue tests. The double vacuum melting process consisted of induction vacuum melting followed by vacuum arc remelting (VIM-VAR). In the five ball tests, VIM-VAR AMS 5749 gave lives at least six times that of VIM-VAR AISI M-50. Similar tests in the rolling contact fatigue tester showed no significant difference in the lives of the two materials. The rolling element fatigue life of VIM-VAR AMS 5749 was at least 14 times that of vacuum induction melted AMS 5749. A trend toward increased rolling element fatigue life with decreased retained austenite is apparent, but the confidence that all experimental differences are significant is not great.
NASA Astrophysics Data System (ADS)
Hakim, Issa; Laquai, Rene; Walter, David; Mueller, Bernd; Graja, Paul; Meyendorf, Norbert; Donaldson, Steven
2017-02-01
Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Discontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified through-thickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite's internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar fracture toughness and a decrease in Mode I cyclic strain energy release rates fatigue life. Finally, all approaches were correlated: the resulted NDE percentages and parameters were correlated with the features revealed by the destructive test of serial sectioning and static and fatigue values in order to quantify discontinuities such as delamination and voids.
Castle, M A; Harvey, S M; Beckman, L; Coeytaux, F; Garrity, J M
1995-01-01
The careful, reflective, and honest way in which the women in the study analyzed, questioned, and explored the benefits and disadvantages of a mifepristone abortion compared with vacuum aspiration yielded an extensive list of information needed by women to make informed choices as well as an understanding of the diverse social contexts in which choices are made. Needed information identified by this study included technical information about the drugs themselves and their mechanisms of action, roles and responsibilities of health personnel, and descriptions of other women's experiences with mifepristone. A multiplicity of factors entered the decision-making process, demonstrating at the same time a complexity and flexibility of thought. In their hypothetical evaluation of mifepristone, women weighed such factors as experience with childbirth, spontaneous abortion and vacuum aspiration, specific issues for teenagers, lack of a support system, experience with herbal emenagogues and nonprescription drugs intended as abortifacients, and the relative dependence on health care providers. Social, personal, and cultural factors entered into women's interpretation of the different options. These socio-cultural contexts can profoundly influence decisions and potentially affect clinical outcomes. If health care professionals are not proactive, do not fully provide answers to questions (even if unasked), and fail to probe for specific life circumstances, then poor choices and poor outcomes may follow with long term negative consequences for clients.(ABSTRACT TRUNCATED AT 250 WORDS)
Beryllium Manufacturing Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, A
2006-06-30
This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product.more » Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.« less
Deposition and characterization of ZnS/Si heterojunctions produced by vacuum evaporation
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland
1988-01-01
Isotype heterojunctions of ZnS (lattice constant 5.41 A) were grown on silicon (lattice constant 5.43 A) p-n junctions to form a minority-carrier mirror. The deposition process was vacuum evaporation from a ZnS powder source onto a heated (450 C) substrate. Both planar (100) and textured (111) surfaces were used. A reduction of the minority-carrier recombination at the surface was seen from increased short-wavelength quantum response and increased illuminated open-circuit voltage. The minority-carrier diffusion length was not degraded by the process.
NASA Technical Reports Server (NTRS)
Parker, Ray O.
2012-01-01
The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to operate the near-infrared spectrometer and GC-MS instruments during ETU testing. Ray will be working with Modified Commercial off the Shelf (MCOTS) instruments and characterizing their analytical behavior for optimization. Ray will be offered the opportunity to suggest testing modifications or configuration changes at any time to improve the experimental effectiveness. He will gain many skills needed for working in a technical team setting requiring flexibility and critical thinking.
40 CFR 455.21 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...
40 CFR 455.21 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...
40 CFR 455.21 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...
NASA Astrophysics Data System (ADS)
Irfiana, D.; Utami, R.; Khasanah, L. U.; Manuhara, G. J.
2017-04-01
The purpose of this study was to determine the effect of two stage cinnamon bark oleoresin microcapsules (0%, 0.5% and 1%) on the TPC (Total Plate Count), TBA (thiobarbituric acid), pH, and RGB color (Red, Green, and Blue) of vacuum-packed ground beef during refrigerated storage (at 0, 4, 8, 12, and 16 days). This study showed that the addition of two stage cinnamon bark oleoresin microcapsules affected the quality of vacuum-packed ground beef during 16 days of refrigerated storage. The results showed that the TPC value of the vacuum-packed ground beef sample with the addition 0.5% and 1% microcapsules was lower than the value of control sample. The TPC value of the control sample, sample with additional 0.5% and 1% microcapsules were 5.94; 5.46; and 5.16 log CFU/g respectively. The TBA value of vacuum-packed ground beef were 0.055; 0.041; and 0.044 mg malonaldehyde/kg, resepectively on the 16th day of storage. The addition of two-stage cinnamon bark oleoresin microcapsules could inhibit the growth of microbia and decrease the oxidation process of vacuum-packed ground beef. Moreover, the change of vacuum-packed ground beef pH and RGB color with the addition 0.5% and 1% microcapsules were less than those of the control sample. The addition of 1% microcapsules showed the best effect in preserving the vacuum-packed ground beef.
Sievers, David A; Tao, Ling; Schell, Daniel J
2014-09-01
Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Research of vacuum polymer film on three-dimension surface (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bau, Yung-Han
2016-09-01
This study focused on UV-curable acrylic hybrid of solute in vacuum-deposited on the surface and make it smooth. On the surface coating of the entire process, including the pre-treatment of organic solutes, vacuum, nozzle pressure, airflow, frequency ratio, the surface of the rotation rate, nozzle angle, UV light irradiation time, waste solute recycling.Organic solutes through a flow meter and precise measured,by high pressure or vibration of a piezoelectric material, spray our organic solute in a certain degree of vacuum,leaving nozzle of tiny micro-mist volatiles in a vacuum to form secondary atomization,deposited our surface,Since no UV light irradiation, the surface is a liquid having fluidity, so the non-planar substrates can have good performance, finally it is irradiated by UV light of sufficient energy solidify to form a solid film.The advantage of this approach is that a smooth surface,Strong adhesion, low-cost equipment, low temperature, a wide range of high deposition rate can be combined with other deposition method,Under vacuum have not waste because excess paint can be recycled.Avoid solute direct contact with human, relative to the environment-friendly.
Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment
NASA Technical Reports Server (NTRS)
Golliher, Eric L.; Yao, S. C.
2015-01-01
Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.
Thermal vacuum chamber repressurization with instrument purging
NASA Astrophysics Data System (ADS)
Woronowicz, Michael S.
2016-09-01
At the conclusion of cryogenic vacuum testing of the James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (JWST-OTIS) in NASA Johnson Space Center's (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are postulating that chamber particulate material stirred up by the repressurization process may be kept from falling into the Integrated Science Instrument Module (ISIM) interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This manuscript describes development of a series of models designed to describe this process. The models are strung together in tandem with a fictitious set of conditions to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.
Scargill, James H. C.
2017-09-18
Theories with more than one vacuum allow quantum transitions between them, which may proceed via bubble nucleation; theories with more than two vacua posses additional decay modes in which the wall of a bubble may further decay. The instantons which mediate such a process have O(3) symmetry (in four dimensions, rather than the usual O(4) symmetry of homogeneous vacuum decay), and have been called ‘barnacles’; previously they have been studied in flat space, in the thin wall limit, and this paper extends the analysis to include gravity. It is found that there are regions of parameter space in which, givenmore » an initial bubble, barnacles are the favoured subsequent decay process, and that the inclusion of gravity can enlarge this region. The relation to other heterogeneous vacuum decay scenarios, as well as some of the phenomenological implications of barnacles are briefly discussed.« less
Combination of supercritical CO2 and vacuum distillation for the fractionation of bergamot oil.
Fang, Tao; Goto, Motonobu; Sasaki, Mitsuru; Hirose, Tsutomu
2004-08-11
Supercritical CO2 can be used to separate oxygenated compounds from essential oils. This technique still cannot replace vacuum distillation as an industrial process because of low recoveries and inconsistent results. In the present work, a comparison between the two methods was made in terms of composition, recovery, and color. Vacuum distillation and supercritical CO2 are complementary processes for producing high quality oxygenated compounds with high recovery rates. The former is more suitable for removing monoterpenes at low fraction temperatures (< or =308 K), and the latter is more suitable for separating oxygenated compounds from pigments and waxes. Consequently, the two methods were combined. For supercritical CO2 fractionation, the parameters of pressure, temperature gradient, and the ratio of solvent to feed were investigated for the fractionation of oxygenated compounds with high recoveries (> or =85%) and without other macromolecules, such as pigments and waxes.
Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates.
Wang, Gou-Jen; Lin, Yan-Cheng; Li, Ching-Wen; Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan
2009-08-01
In this research, two simple fabrication methods to fabricate orderly nanostructured PLGA scaffolds using anodic aluminum oxide (AAO) template were conducted. In the vacuum air-extraction approach, the PLGA solution was cast on an AAO template first. The vacuum air-extraction process was then applied to suck the semi-congealed PLGA into the nanopores of the AAO template to form a bamboo sprouts array of PLGA. The surface roughness of the nanostructured scaffolds, ranging from 20 nm to 76 nm, can be controlled by the sucking time of the vacuum air-extraction process. In the replica molding approach, the PLGA solution was cast on the orderly scraggy barrier-layer surface of an AAO membrane to fabricate a PLGA scaffold of concave nanostructure. Cell culture experiments using the bovine endothelial cells (BEC) demonstrated that the nanostructured PLGA membrane can increase the cell growing rate, especially for the bamboo sprouts array scaffolds with smaller surface roughness.
Shao, Yuchuan; Wang, Qi; Dong, Qingfeng; ...
2015-06-25
The efficiency of organometal trihalide perovskites (OTP) solar cells have reached that parity of single crystal silicon, and its nature abundant raw material and solution-process capability promise a bright future for commercialization. However, the vacuum based techniques for metal electrode deposition and additional encapsulation layer increase the cost of the perovskite solar cells dramatically and impede their commercialization process. Here, we report a vacuum-free low temperature lamination technique to fabricate the top electrode by commercial conductive tapes (C-tape). The simple fabrication method yields good quality contact and high efficiency device of 12.7%. The C-tapes also encapsulated the devices effectively, resultingmore » in greatly improved device stability. As a result, the combination of lamination of electrodes and encapsulation layers into a single step significantly reduce the cost of device fabrication.« less
Thermal Vacuum Chamber Repressurization with Instrument Purging
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.
2014-01-01
At the conclusion of cryogenic vacuum testing of the James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (JWST-OTIS) in NASA Johnson Space Center’s (JSCs) thermal vacuum (TV) Chamber A, contamination control (CC) engineers are postulating that chamber particulate material stirred up by the repressurization process may be kept from falling into the Integrated Science Instrument Module (ISIM) interior to some degree by activating instrument purge flows over some initial period before opening the chamber valves. This manuscript describes development of a series of models designed to describe this process. The models are strung together in tandem with a fictitious set of conditions to estimate overpressure evolution from which net outflow velocity behavior may be obtained. Creeping flow assumptions are then used to determine the maximum particle size that may be kept suspended above the ISIM aperture, keeping smaller particles from settling within the instrument module.
The Generating Mechanism of Non-Sustained Disruptive Discharges in Vacuum Interrupters
NASA Astrophysics Data System (ADS)
Hara, Daisuke; Taki, Masayuki; Tanaka, Hitoshi; Okawa, Mikio; Yanabu, Satoru
To develop vacuum circuit breaker (VCB) for higher voltage application, it may be important to understand generating mechanism and its influence of non-sustained disruptive discharges (NSDD) to the systems. So, we carried out the tests using equivalent testing circuit and observed the contacts after testing, For the test, by using commercial vacuum circuit interrupters, AC voltages of 50Hz was applied between contacts for 4 seconds after current interruption, and measured generating frequencies of NSDD vs. the voltages and vs. currents. Typical contact material used in the commercial switching equipment, such as AgWC, CuW, CuCr were tested and compared. Then CuCr's of different composition and manufacturing process are investigated. And CuCr-50 (manufactured by melting process) showed the best performance in all tests. We point out that surface condition may affect the generation of NSDD and also conditioning effect is very important.
Recent advancements in low cost solar cell processing
NASA Technical Reports Server (NTRS)
Ralph, E. L.
1975-01-01
A proof-of-concept solar cell process has been developed that is adaptable to automation. This involved the development of a new contact system, a new antireflection coating system, a drift field cell design and a new contoured surface treatment. All these processes are performed without the use of vacuum chambers and expensive masking techniques, thus providing the possibility of reduced costs by automation using conventional semiconductor processing machinery. The contacts were printed on the cells by conventional silk screen machinery. The P(+) back field was formed by diffusing in aluminum from a printed aluminum back contact. The antireflection coating was formed by spinning on and baking a TiO2-SiO2 glass film. Air-mass-zero efficiencies of over 10% were achieved using this completely vacuum-free process.
Aerospace applications of batteries
NASA Technical Reports Server (NTRS)
Habib, Shahid
1993-01-01
NASA has developed battery technology to meet the demanding requirements for aerospace applications; specifically, the space vacuum, launch loads, and high duty cycles. Because of unique requirements and operating environments associated with space applications, NASA has written its own standards and specifications for batteries.
Integration Test of the High Voltage Hall Accelerator System Components
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John
2013-01-01
NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.
Quartz resonator processing system
Peters, Roswell D. M.
1983-01-01
Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.
Random numbers from vacuum fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com; Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
2016-07-25
We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.
The Radial Distribution Function (RDF) of Amorphous Selenium Obtained through the Vacuum Evaporator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guda, Bardhyl; Dede, Marie
2010-01-21
After the amorphous selenium obtained through the vacuum evaporator, the relevant diffraction intensity is taken and its processing is made. Further on the interferential function is calculated and the radial density function is defined. For determining these functions are used two methods, which were compared with each other and finally are received results for amorphous selenium RDF.
Fabricate-On-Demand Vacuum Insulating Glazings
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCamy, James W.
PPG proposed to design a fabricate-on-demand manufacturing process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulated glazing (VIG) units. To do so, we focused on improving three areas of VIG manufacturing that drive high costs and limit the ability for smaller manufacturers to enter the market: edge sealing, pillar design/placement, and evacuating the VIG.
2004-04-15
The Wake Shield Facility is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers. The WSF Free-Flyer is a 12-foot-diameter stainless steel disk that, while traveling in orbit at approximately 18,000 mph, leaves in its wake a vacuum 1,000 to 10,000 times better than the best vacuums currently achieved on Earth. While it is carried into orbit by the Space Shuttle, the WSF is a fully equipped spacecraft in its own right, with cold gas propulsion for separation from the orbiter and a momentum bias attitude control system. All WSF functions are undertaken by a spacecraft computer with the WSF remotely controlled from the ground. The ultra vacuum, nearly empty of all molecules, is then used to conduct a series of thin film growths by a process called epitaxy which produces exceptionally pure and atomically ordered thin films of semiconductor compounds such as gallium arsenide. Using this process, the WSF offers the potential of producing thin film materials, and the devices they will make possible.
Protection of polyphenols in blueberry juice by vacuum-assisted block freeze concentration.
Orellana-Palma, Patricio; Petzold, Guillermo; Pierre, Lissage; Pensaben, José Manuel
2017-11-01
Block freeze concentration allows produces high-quality cryoconcentrates with important protection of valuable components from fresh fruit juices. The aim of this study was to investigate the use of vacuum-assisted block freeze concentration under different experimental conditions to protect polyphenols in the elaboration of concentrated blueberry juice. Fresh blueberry juice was radial or unidirectional frozen at -20 and -80 °C for 12 h and vacuum process was performed at 80 kPa during 120 min. Results showed a significant solute increased in the concentrated fraction in all treatments, and the best treatment was - 20 °C/unidirectional with a value of ≈63 °Brix, equivalent to an increase of 3.8 times in the total polyphenol content (76% of retention). The color of concentrated samples was darker than the initial sample, with ΔE* values of >25 CIELab units in all treatments. The vacuum-assisted block freeze concentrations was an effective technology for protecting polyphenols and obtain a concentrated with a higher concentration of solids from blueberry juice, as well as interesting values of process parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.
2016-06-01
Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. Finally, the coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45⁰ angle of incidence (AOI), in P-polarization (P-pol).« less
Field, Ella S.; Bellum, John C.; Kletecka, Damon E.
2016-07-15
Here, optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low-base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence and high-reflection coatings for 527 nm at 45-deg angle of incidence in P-polarization.« less
Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2
NASA Technical Reports Server (NTRS)
Ziemke, Robert A.
2013-01-01
In June 2011, the multi-university sponsored Cosmic Ray Electron Synchrotron Telescope (CREST) has undergone thermal-vacuum qualification testing at the NASA Glenn Research Center (GRC), Plum Brook Station, Sandusky, Ohio. The testing was performed in the B- 2 Space Propulsion Facility vacuum chamber. The CREST was later flown over the Antarctic region as the payload of a stratospheric balloon. Solar simulation was provided by a system of planar infrared lamp arrays specifically designed for CREST. The lamp arrays, in conjunction with a liquid-nitrogen-cooled cryoshroud, achieved the required thermal conditions for the qualification tests. This report focuses on the design and analysis of the planar arrays based on first principles. Computational spreadsheets are included in the report.
A lattice calculation of the hadronic vacuum polarization contribution to (g - 2)µ
NASA Astrophysics Data System (ADS)
Della Morte, M.; Francis, A.; Gérardin, A.; Gülpers, V.; Herdoíza, G.; von Hippel, G.; Horch, H.; Jäger, B.; Meyer, H. B.; Nyffeler, A.; Wittig, H.
2018-03-01
We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for finite-size effects by combining the Gounaris-Sakurai parameterisation of the timelike pion form factor with the Lüscher formalism. The impact of quark-disconnected diagrams and the precision of the scale determination is discussed and included in our final result in two-flavour QCD, which carries an overall uncertainty of 6%. We present preliminary results computed on ensembles with Nf = 2 + 1 dynamical flavours and discuss how the long-distance contribution can be accurately constrained by a dedicated spectrum calculation in the iso-vector channel.
Thin film microelectronics materials production in the vacuum of space
NASA Astrophysics Data System (ADS)
Ignatiev, A.; Sterling, M.; Horton, C.; Freundlich, A.; Pei, S.; Hill, R.
1997-01-01
The international Space Station era will open up a new dimension in the use of one of the unique attributes of space, vacuum, for the production of advanced semiconductor materials and devices for microelectronics applications. Ultra-vacuum is required for the fabrication in thin film form of high quality semiconductors. This can be accomplished behind a free flying platform similar to the current Wake Shield Facility which is specifically designed to support in-space production. The platform will require apparatus for thin film growth, a robotics interface to allow for the change out of raw materials and the harvesting of finished product, and a servicing plant incorporating Space Station that will support long-term utilization of the platform.
FINAL REPORT: Transformational electrode drying process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus Daniel, C.; Wixom, M.
2013-12-19
This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheatingmore » and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.« less
Sodium Heat Pipe Module Processing For the SAFE-100 Reactor Concept
NASA Technical Reports Server (NTRS)
Martin, James; Salvail, Pat
2003-01-01
To support development and hardware-based testing of various space reactor concepts, the Early Flight Fission-Test Facility (EFF-TF) team established a specialized glove box unit with ancillary systems to handle/process alkali metals. Recently, these systems have been commissioned with sodium supporting the fill of stainless steel heat pipe modules for use with a 100 kW thermal heat pipe reactor design. As part of this effort, procedures were developed and refined to govern each segment of the process covering: fill, leak check, vacuum processing, weld closeout, and final "wet in". A series of 316 stainless steel modules, used as precursors to the actual 321 stainless steel modules, were filled with 35 +/- 1 grams of sodium using a known volume canister to control the dispensed mass. Each module was leak checked to less than10(exp -10) std cc/sec helium and vacuum conditioned at 250 C to assist in the removal of trapped gases. A welding procedure was developed to close out the fill stem preventing external gases from entering the evacuated module. Finally the completed modules were vacuum fired at 750 C allowing the sodium to fully wet the internal surface and wick structure of the heat pipe module.
High Vacuum Creep Facility in the Materials Processing Laboratory
1973-01-21
Technicians at work in the Materials Processing Laboratory’s Creep Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The technicians supported the engineers’ studies of refractory materials, metals, and advanced superalloys. The Materials Processing Laboratory contained laboratories and test areas equipped to prepare and develop these metals and materials. The ultra-high vacuum lab, seen in this photograph, contained creep and tensile test equipment. Creep testing is used to study a material’s ability to withstand long durations under constant pressure and temperatures. The equipment measured the strain over a long period of time. Tensile test equipment subjects the test material to strain until the material fails. The two tests were used to determine the strength and durability of different materials. The Materials Processing Laboratory also housed arc and electron beam melting furnaces, a hydraulic vertical extrusion press, compaction and forging equipment, and rolling mills and swagers. There were cryogenic and gas storage facilities and mechanical and oil diffusion vacuum pumps. The facility contained both instrumental and analytical chemistry laboratories for work on radioactive or toxic materials and the only shop to machine toxic materials in the Midwest.
Sodium Heat Pipe Module Processing For the SAFE-100 Reactor Concept
NASA Astrophysics Data System (ADS)
Martin, James; Salvail, Pat
2004-02-01
To support development and hardware-based testing of various space reactor concepts, the Early Flight Fission-Test Facility (EFF-TF) team established a specialized glove box unit with ancillary systems to handle/process alkali metals. Recently, these systems have been commissioned with sodium supporting the fill of stainless steel heat pipe modules for use with a 100 kW thermal heat pipe reactor design. As part of this effort, procedures were developed and refined to govern each segment of the process covering: fill, leak check, vacuum processing, weld closeout, and final ``wet in''. A series of 316 stainless steel modules, used as precursors to the actual 321 stainless steel modules, were filled with 35 +/-1 grams of sodium using a known volume canister to control the dispensed mass. Each module was leak checked to <10-10 std cc/sec helium and vacuum conditioned at 250 °C to assist in the removal of trapped gases. A welding procedure was developed to close out the fill stem preventing external gases from entering the evacuated module. Finally the completed modules were vacuum fired at 750 °C allowing the sodium to fully wet the internal surface and wick structure of the heat pipe module.
Thermal Vacuum Control Systems Options for Test Facilities
NASA Technical Reports Server (NTRS)
Marchetti, John
2008-01-01
This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.
Giant vacuum forces via transmission lines
Shahmoon, Ephraim; Mazets, Igor; Kurizki, Gershon
2014-01-01
Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry and in emerging technologies involving, e.g., microelectromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension, we find a much stronger and longer-range interaction than in free space. This enhancement may have profound implications on many-particle and bulk systems and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line. PMID:25002503
Comparison of blood specimens from plain and gel vacuum blood collection tubes.
Wiwanitkit, V
2001-05-01
This study was set in the Division of Laboratory Medicine, Chulalongkorn Hospital. All 2,000 blood specimens were randomly collected using evacuated blood collection by plain or gel vacuum tubes. After collection, each specimen was considered and judged using criteria of specimen rejection to determine how proper the specimen presentations were. All data were reviewed, collected and interpreted. It revealed that there were only 20 (1%) improper specimens and all were improper in quality. There was no significant difference between the ratio of improper specimens in both groups (P > 0.30). From this study, it revealed that efficacy of both types of vacuum tubes was not different. The new gel vacuum tube seems to be an effective tool in the evacuated blood collection system due to its advantage in reduction of time in specimen processing.
Better vacuum by removal of diffusion-pump-oil contaminants
NASA Technical Reports Server (NTRS)
Buggele, A. E.
1975-01-01
The complex problem of why large space simulation chambers do not realize true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance were identified, and some advances in vacuum distillation-fractionation technology were achieved which resulted in a two-decade-or-more lower ultimate pressure. Data are presented to show the overall or individual contaminating effects of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and for reclaiming contaminated oil by high-vacuum molecular distillation are described. Conceptual self-cleansing designs and operating procedures are proposed for modifying large diffusion pumps into high-efficiency distillation devices. The potential exists for application of these technological advancements to other disciplines, such as medicine, biomedical materials, metallurgy, refining, and chemical (diffusion-enrichment) processing.
Vacuum quantum stress tensor fluctuations: A diagonalization approach
NASA Astrophysics Data System (ADS)
Schiappacasse, Enrico D.; Fewster, Christopher J.; Ford, L. H.
2018-01-01
Large vacuum fluctuations of a quantum stress tensor can be described by the asymptotic behavior of its probability distribution. Here we focus on stress tensor operators which have been averaged with a sampling function in time. The Minkowski vacuum state is not an eigenstate of the time-averaged operator, but can be expanded in terms of its eigenstates. We calculate the probability distribution and the cumulative probability distribution for obtaining a given value in a measurement of the time-averaged operator taken in the vacuum state. In these calculations, we study a specific operator that contributes to the stress-energy tensor of a massless scalar field in Minkowski spacetime, namely, the normal ordered square of the time derivative of the field. We analyze the rate of decrease of the tail of the probability distribution for different temporal sampling functions, such as compactly supported functions and the Lorentzian function. We find that the tails decrease relatively slowly, as exponentials of fractional powers, in agreement with previous work using the moments of the distribution. Our results lend additional support to the conclusion that large vacuum stress tensor fluctuations are more probable than large thermal fluctuations, and may have observable effects.
Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity
NASA Astrophysics Data System (ADS)
Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro
2018-06-01
A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.
Extended Operation of Stirling Convertors in a Thermal Vacuum Environment
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.
2006-01-01
A 110 watt Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA exploration missions. The development effort is being performed by Lockheed Martin under contract to the Department of Energy (DOE). Infinia, Corp. supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been initiated at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG110, however the requirement for low mass was not considered. This test demonstrates the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The status of the test as well as the data gathered will be presented in this paper.
Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2
NASA Technical Reports Server (NTRS)
Ziemke, Robert A.
2012-01-01
In June 2011, the multi-university sponsored Cosmic Ray Electron Synchrotron Telescope (CREST) has undergone thermal-vacuum qualification testing at the NASA Glenn Research Center (GRC), Plum Brook Station, Sandusky, Ohio. The testing was performed in the B-2 Space Propulsion Facility vacuum chamber. The CREST was later flown over the Antarctic region as the payload of a stratospheric balloon. Solar simulation was provided by a system of planar infrared lamp arrays specifically designed for CREST. The lamp arrays, in conjunction with a liquid-nitrogen-cooled cold wall, achieved the required thermal conditions for the qualification tests. The following slides accompanied the presentation of the report entitled Solar Simulation for the CREST Preflight Thermal-Vacuum Test at B-2, at the 27th Aerospace Testing Seminar, October 2012. The presentation described the test article, the test facility capability, the solar simulation requirements, the highlights of the engineering approach, and the results achieved. The presentation was intended to generate interest in the report and in the B-2 test facility.
Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber
NASA Astrophysics Data System (ADS)
Naidu, M. C. A.; Nolakha, Dinesh; Saharkar, B. S.; Kavani, K. M.; Patel, D. R.
2012-11-01
In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of "Open loop, auto reversing liquid nitrogen based thermal system". System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.
Design and Fabrication of a Stirling Thermal Vacuum Test
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.; Schreiber, Jeffrey G.
2004-01-01
A Stirling Radioisotope Generator (SRG110) is being developed for potential use on future NASA space science missions. The development effort is being conducted by Lockheed Martin under contract to the Department of Energy (DOE). The Stirling Technology Company supplies the free-piston Stirling power convertors, and NASA Glenn Research Center (GRC) provides support to the effort in a range of technologies. This generator features higher efficiency and specific power compared to the currently used alternatives. One potential application for the generator would entail significant cruise time in the vacuum of deep space. A test has been conceived at GRC to demonstrate functionality of the Stirling convertors in a thermal vacuum environment. The test article resembles the configuration of the SRG, however the requirement for low mass was not considered. This test will demonstrate the operation of the Stirling convertors in the thermal vacuum environment, simulating deep space, over an extended period of operation. The analysis, design, and fabrication of the test article will be described in this paper.
The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane
NASA Astrophysics Data System (ADS)
Sharma, H. N.; McLean, W.; Maxwell, R. S.; Dinh, L. N.
2016-09-01
A silica-filled polydimethylsiloxane (PDMS) composite M9787 was investigated for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environment applications at room temperature (˜300 K). The main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (˜30 ppm by volume of H2O) for even a couple of days was the formation, on the silica surface fillers, of ˜60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. The presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, H. N.; McLean, W.; Maxwell, R. S.
We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less
The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane
Sharma, H. N.; McLean, W.; Maxwell, R. S.; ...
2016-09-21
We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less
Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy
NASA Technical Reports Server (NTRS)
Decker, R. F.; Rowe, John P.; Freeman, J. W.
1959-01-01
The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.
NASA Astrophysics Data System (ADS)
Lee, Sangyeob; Koo, Hyun; Cho, Sunghwan
2015-04-01
Wet process of soluble organic light emitting diode (OLED) materials has attracted much attention due to its potential as a large-area manufacturing process with high productivity. Electrospray (ES) deposition is one of candidates of organic thin film formation process for OLED. However, to fabricate red, green, and blue emitters for color display, a fine metal mask is required during spraying emitter materials. We demonstrate a mask-less color pixel patterning process using ES of soluble OLED materials and selective biasing on pixel electrodes and a spray nozzle. We show red and green line patterns of OLED materials. It was found that selective patterning can be allowed by coulomb repulsion between nozzle and pixel. Furthermore, we fabricated blue fluorescent OLED devices by vacuum evaporation and ES processes. The device performance of ES processed OLED showed nearly identical current-voltage characteristics and slightly lower current efficiency compared to vacuum processed OLED.
NASA Astrophysics Data System (ADS)
Rosida, D. F.; Happyanto; Anggraeni; Sugiarto; Hapsari
2018-01-01
Agropolitan Program is one form of regional development to improve agribusiness system and effort to improve the welfare of the community. One of the leading commodities in Bangkalan agroclimates is salak which is a potentially very large commodity to be developed. Salak commodities in Kramat Bangkalan Indonesia have developed varous salak produced such as dates of salak, syrup and dodol salak. Salak chips was the target of innovation from processed salak. The Production of salak chips using frying technology with vacuum system to obtain crunchy chips. To get the results need to be developed synergy technology to combine the process conditions and the right system in producing good quality salak chips. Bangkalan Regency is the potential to continue to develop products using a variety of salak to the processed form of vacuum frying machine based on expert system so that the resulting product would be great texture, aroma and taste. This will make the area of Bangkalan, Indonesia be more independent in producing and increasing revenue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng
2016-06-15
The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under amore » higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.« less
NASA Astrophysics Data System (ADS)
Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng
2016-06-01
The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.
Repair techniques for celion/LARC-160 graphite/polyimide composite structures
NASA Technical Reports Server (NTRS)
Jones, J. S.; Graves, S. R.
1984-01-01
The large stiffness-to-weight and strength-to-weight ratios of graphite composite in combination with the 600 F structural capability of the polyimide matrix can reduce the total structure/TPS weight of reusable space vehicles by 20-30 percent. It is inevitable that with planned usage of GR/PI structural components, damage will occur either in the form of intrinsic flaw growth or mechanical damage. Research and development programs were initiated to develop repair processes and techniques specific to Celion/LARC-160 GR/PI structure with emphasis on highly loaded and lightly loaded compression critical structures for factory type repair. Repair processes include cocure and secondary bonding techniques applied under vacuum plus positive autoclave pressure. Viable repair designs and processes are discussed for flat laminates, honeycomb sandwich panels, and hat-stiffened skin-stringer panels. The repair methodology was verified through structural element compression tests at room temperature and 315 C (600 F).
Thermophysical Property Measurements in the MSFC ESL
NASA Technical Reports Server (NTRS)
Hyers, R. W.; Rogers, J. R.; Robinson, M. B.; Rathz, T. J.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Electrostatic Levitation (ESL) is an advanced technique for containerless processing of metals, ceramics, and semiconductors. Because no container is required, there is no contamination from reaction with a crucible, allowing processing of high temperature, highly reactive melts. The high vacuum processing environment further reduces possible contamination of the samples. Finally, there is no container to provide heterogeneous nucleation sites, so the undercooled range is also accessible for many materials. For these reasons, ESL provides a unique environment for measuring thermophysical properties of liquid materials. The properties that can be measured in ESL include density, surface tension, viscosity, electrical and thermal conductivity, specific heat, phase diagram, TTT- and CCT- curves, and other thermodynamic properties. In this paper, we present data on surface tension and viscosity, measured by the oscillating drop technique, and density, measured by an automated photographic technique, measured in the ESL at NASA Marshall Space Flight Center.
NASA Astrophysics Data System (ADS)
Chang, Chin-Chun; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen
2017-05-01
Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10-8 Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.
Apparatus and process for passivating an SRF cavity
Myneni, Ganapati Rao; Wallace, John P
2014-12-02
An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.
Sensor for the working surface cleanliness definition in vacuum
NASA Astrophysics Data System (ADS)
Deulin, E. A.; Mashurov, S. S.; Gatsenko, A. A.
2016-07-01
Modern development of nanotechnology as one of the modern science priority directions is impossible to imagine without the use of vacuum systems and technologies. And the better the vacuum (lower the pressure), the “cleaner” we get a surface, which is very important for nanotechnology. Determination of the cleanliness of the surface or the amount of molecular layers of adsorbed gases on the working surface of the products especially in industry, where the cleanliness of the working surface is a key parameter of the technological process and has a significant influence on the output parameters of the final product is the main goal of this work.
NASA Technical Reports Server (NTRS)
Knox, J.; Fulda, P.; Howard, D.; Ritter, J.; Levan, M.
2007-01-01
The design and testing of a vacuum-swing adsorption process to remove metabolic 'water and carbon dioxide gases from NASA's Orion crew exploration vehicle atmosphere is presented. For the Orion spacecraft, the sorbent-based atmosphere revitalization (SBAR) system must remove all metabolic water, a technology approach 1Lhathas not been used in previous spacecraft life support systems. Design and testing of a prototype SBAR in sub-scale and full-scale configurations is discussed. Experimental and analytical investigations of dual-ended and single-ended vacuum desorption are presented. An experimental investigation of thermal linking between adsorbing and desorbing columns is also presented.
The development of a portable ultrahigh vacuum chamber via silicon block.
Chuang, Ho-Chiao; Huang, Chia-Shiuan
2014-05-01
This paper describes a nonmetallic, light weight portable chamber for ultra-high vacuum (UHV) applications. The chamber consists of a processed silicon block anodically bonding five polished Pyrex glass windows and a Pyrex glass adapter, without using any screws, bolts or vacuum adhesives. The design features provide an alternative chamber for UHV applications which require nonmetallic components. We have cyclically baked the chamber up to 180 °C for 160 h and have achieved an ultimate pressure of 1.4 × 10(-9) Torr (limited by our pumping station), with no leak detected. Both Pyrex glass windows and Pyrex glass adapter have been used successfully.
Mechanism of Small Current Generation under Impulse Voltage Applications in Vacuum
NASA Astrophysics Data System (ADS)
Aoki, Keita; Yasukawa, Hideaki; Kojima, Hiroki; Homma, Mitsutaka; Shioiri, Tetsu; Okubo, Hitoshi
Small discharge not to accompany breakdown can occur under high electric field in vacuum, however the mechanism is not well clarified. We have found that the current of small discharge decreases with repeated voltage applications, and leads to electrode conditioning effect of raising withstand voltage. The inception of the current is delayed with the decrease of current, and the inception time and waveform change by gap length. On the other hand, under low vacuum condition, the current increases and reaches saturation with repeated voltage applications. From these discussions, we concluded that the generating process of small current depended on the adsorption and absorption gas of electrodes.
Improved fermentative alcohol production. [Patent application
Wilke, C.R.; Maiorella, B.L.; Blanch, H.W.; Cysewski, G.R.
1980-11-26
An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).
Factors concerned in the efficient steam sterilization of surgical dressings
Fallon, R. J.
1961-01-01
Some of the factors affecting the efficient steam sterilization of dressings have been examined. A jacketed sterilizer will process a load more quickly than a sterilizer without a jacket. The level of fore-vacuum is critical and must reach an absolute pressure of 20 mm. Hg (29·2 in.Hg vacuum) or less. This will overcome all conditions of overpacking studied. The level of after-vacuum should be 100 mm. Hg absolute or less, preferably near 50 mm. Hg absolute. Overpacking cannot be defined in terms of weight of a fabric per unit volume of container but occurs when a load is compressed in its container. PMID:13891475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlueter, R.D.; Halbach, K.
1991-12-04
This memo presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.
Vacuum instability in Kaluza–Klein manifolds
NASA Astrophysics Data System (ADS)
Fucci, Guglielmo
2018-05-01
The purpose of this work in to analyze particle creation in spaces with extra dimensions. We consider, in particular, a massive scalar field propagating in a Kaluza–Klein manifold subject to a constant electric field. We compute the rate of particle creation from vacuum by using techniques rooted in the spectral zeta function formalism. The results we obtain show explicitly how the presence of the extra-dimensions and their specific geometric characteristics, influence the rate at which pairs of particles and anti-particles are generated.
2010-03-31
A Extruder B Melt Pump B Melt Pump A AB Feedblock Layer Multipliers Surface Layer Feedblock Surface Layer Extruder Skin Skin Nanolayers Number of...enough to enable accurate machining. Customarily, optics are held in place using vacuum chucks during the diamond turning process. The force with...which optics can be secured this way is proportional to their surface area. By ensuring that the vacuum force is larger than any forces imparted on
JPRS Report, Science and Technology, Europe.
1991-02-15
VIDP furnace is a further development of the conventional vacuum induction melter (VIM). It has an independent smelting and processing unit, to...which various casting systems can be linked according to the modular principle. Unlike the conventional vacuum induction melter, the VIDP furnace does... induction coil and the crucible. The furnace body can be extracted for relining or replacement with another, ready-lined, fur- nace body. This
Simulating Pressure Profiles for the Free-Electron Laser Photoemission Gun Using Molflow+
NASA Astrophysics Data System (ADS)
Song, Diego; Hernandez-Garcia, Carlos
2012-10-01
The Jefferson Lab Free Electron Laser (FEL) generates tunable laser light by passing a relativistic electron beam generated in a high-voltage DC electron gun with a semiconducting photocathode through a magnetic undulator. The electron gun is in stringent vacuum conditions in order to guarantee photocathode longevity. Considering an upgrade of the electron gun, this project consists of simulating pressure profiles to determine if the novel design meets the electron gun vacuum requirements. The method of simulation employs the software Molflow+, developed by R. Kersevan at the Organisation Europ'eene pour la Recherche Nucl'eaire (CERN), which uses the test-particle Monte Carlo method to simulate molecular flows in 3D structures. Pressure is obtained along specified chamber axes. Results are then compared to measured pressure values from the existing gun for validation. Outgassing rates, surface area, and pressure were found to be proportionally related. The simulations indicate that the upgrade gun vacuum chamber requires more pumping compared to its predecessor, while it holds similar vacuum conditions. The ability to simulate pressure profiles through tools like Molflow+, allows researchers to optimize vacuum systems during the engineering process.
A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons
NASA Astrophysics Data System (ADS)
Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho
2013-03-01
We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.
Rodríguez, Diana; Barrero, Marinela; Kodaira, Makie
2009-06-01
Salting fish in the south Venezuelan towns are still the main method of preserving fish including cutt, and salting fish process, storage and commercialization. As the result, salted-dried fish is particularly susceptible to spoilage by a number of factors, including lipid oxidation, browning meat. Packing salted fish product is an alternative increasing storage life time reducing lost of quality and enhancing the storage time. The present study evaluated the physic, chemist, and sensory quality of fish fillet from cat fish (Pseudoplatystoma sp.) from Apure state, Venezuela. Fillet fish were placed in brine solution at 36% of sodium chloride 1:2 fillet: brine solution; after, they were packed under followed conditions: vacuum, vacuum and storage under refrigeration condition, and room temperature. The results showed significant differences (p < 0.01) for moisture, salt content, and Aw. The fillets packed at vacuum and storage at 4 degrees C were significant different from the resting treatments; not significant differences were presented at room and refrigeration temperature after three moths. The best conditions treatment was vacuum packing and refrigeration at 4 degrees C.
Coleman-de Luccia instanton in dRGT massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying-li; Saito, Ryo; Yeom, Dong-han
2014-02-01
We study the Coleman-de Luccia (CDL) instanton characterizing the tunneling from a false vacuum to the true vacuum in a semi-classical way in dRGT (deRham-Gabadadze-Tolley) massive gravity theory, and evaluate the dependence of the tunneling rate on the model parameters. It is found that provided with the same physical Hubble parameters for the true vacuum H{sub T} and the false vacuum H{sub F} as in General Relativity (GR), the thin-wall approximation method implies the same tunneling rate as GR. However, deviations of tunneling rate from GR arise when one goes beyond the thin-wall approximation and they change monotonically until themore » Hawking-Moss (HM) case. Moreover, under the thin-wall approximation, the HM process may dominate over the CDL one if the value for the graviton mass is larger than the inverse of the radius of the bubble.« less
Dynamic simulation of relief line during loss of insulation vacuum of the ITER cryoline
NASA Astrophysics Data System (ADS)
Badgujar, S.; Kosek, J.; Grillot, D.; Forgeas, A.; Sarkar, B.; Shah, N.; Choukekar, K.; Chang, H.-S.
2017-12-01
The ITER cryoline (CL) system consists of 37 types of vacuum jacketed transfer lines which forms a complex structured network with a total length of about 5 km, spread inside the Tokamak building, on a dedicated plant bridge and in the Cryoplant building/area. One of them, the low pressure relief line (RL) recovers helium discharged from process safety relief valves of the different cryogenic users and is sent it back to the Cryoplant via heater and recovery system. The process pipe diameters of the RL vary from DN 50 to DN 200 and the length is more than 1500 m. Loss of insulation vacuum (LIV) of a CL is one of the worst scenarios apart from LIV in Auxiliary Cold Boxes (ACBs). The Torus and Cryostat CL is chosen to simulate the virtual LIV and to study the anticipated behavior of the RL. Both helium LIV (LIV due to leak in helium pipe) and air LIV (LIV due to air ingress in outer vacuum jacket of the cryoline) with and without fire) have been simulated during this study. After the brief description of the CL system, the paper will describe the EcosimPro® model prepared for the dynamic study. The paper will also describe the results like minimum temperature of RL, mass flow and maximum pressure in the RL which are essentially used to choose the type and location of safety relief devices to protect the CL process pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delahoy, A. E.; Chen, L.
2004-05-01
The objective of this subcontract is to develop and integrate the various pieces of new technology that EPV considers enabling for cost-effective production of CIGS modules. EPV has conducted research to help generate a technology base for production of CIGS PV modules using vacuum deposition of CIGS onto glass. This strategy is consistent with the observation that, despite there being several approaches to forming device-quality CIGS, vacuum deposition has maintained the world record for the highest-efficiency CIGS device. A record thin-film solar cell efficiency of 19.2% (with Ni-Al grid and MgF2 ARC) for a 0.41-cm2 device was achieved by NRELmore » in 2003 using vacuum-deposited CIGS. The deposition employed four point sources and detection of the Cu-poor to Cu-rich transition for process control. To extend this type of processing to the realm of large-area substrates, EPV developed vacuum equipment designed for heating and coating 0.43-m2 moving substrates, with a projected further scale up to 0.79 m2. The substrates are typically low-cost, soda-lime glass, and the materials are supplied to the moving substrates using novel linear-source technology developed by EPV. The use of elemental selenium rather than toxic H2Se gas helps make for a safe manufacturing environment. These choices concerning film deposition, substrates, and source materials help to minimize the processing costs of CIGS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Hikichi, Yusuke; Kinsho, Michikazu
For the vacuum systems of high-intensity beam accelerators, low radioactivation materials with good vacuum characteristics and high mechanical strength are required. The titanium alloy Ti-6Al-4V was investigated as a potential low activation vacuum material with high mechanical strength for the fabrication of vacuum components, particularly the flanges of beam pipes, in the J-PARC 3 GeV synchrotron. The dose rate of Ti-6Al-4V when irradiated by a 400 MeV proton was observed to decrease more rapidly than that of stainless steel. Furthermore, the generated radioactive isotopes were nuclides with relatively short half-lives. The outgassing rate per unit area of Ti-6Al-4V was approximately 10{sup −8 }Pamore » m{sup 3}/s m{sup 2} after pumping for 100 h, which is the same as the typical value for stainless steel. Additionally, the hydrogen concentration in bulk Ti-6Al-4V was reduced to approximately 1 ppm by vacuum firing at 700 °C for 9 h; the mechanical strength was not reduced by this process. These results indicate that Ti-6Al-4V is a good candidate for use as a low activation vacuum material with high mechanical strength.« less
FOREWORD: 7th Symposium on Vacuum-based Science and Technology (SVBST2013)
NASA Astrophysics Data System (ADS)
Gulbiński, W.
2014-11-01
These are the proceedings of the 7th Symposium on Vacuum based Science and Technology organized in Kołobrzeg (PL) on November 19-21, 2013 by the Institute of Technology and Education, Koszalin University of Technology and the Clausius Tower Society under auspices of the Polish Vacuum Society (PTP) and the German Vacuum Society (DVG) and in collaboration with the BalticNet PlasmaTec and the Society of Vacuum Coaters (SVC). It was accompanied by the 12-th Annual Meeting of the German Vacuum Society. The mission of the Symposium is to provide a forum for presentation and exchange of expertise and research results in the field of vacuum and plasma science. After already six successful meetings organized alternately in Poland and Germany our goal is to continue and foster cooperation within the vacuum and plasma science community. This year, the Rudolf-Jaeckel Prize, awarded by the DVG for outstanding achievements in the field of vacuum based sciences, was presented to Dr Ute Bergner, president of the VACOM Vakuum Komponenten & Messtechnik GmbH and a member of our community. The full-day course organized in the framework of the Educational Program by the Society of Vacuum Coaters (SVC) and entitled: An Introduction to Physical Vapor Deposition (PVD) Processes was held on November 18, 2013 as a satellite event of the Symposium. The instructor was Prof. Ismat Shah from Delaware University (US). The Clausius Session, already traditionally organized during the Symposium was addressed this year to young generation. We invited our young colleagues to attend a series of educational lectures reporting on achievements in graphene science, scanning probe microscopy and plasma science. Lectures were given by: Prof. Jacek Baranowski from the Institute of Electronic Materials Technology in Warsaw, Prof. Teodor Gotszalk from the Wroclaw University of Technology and Prof. Holger Kersten from the Christian Albrechts University in Kiel. The Symposium was accompanied by an industry exhibition attended by the representatives of leading companies offering vacuum equipment, complete solutions for plasma based technology as well as advanced research equipment. Witold Gulbiński Michael Kopnarski Frank Richter Jan Walkowicz
Evolution of gettering technologies for vacuum tubes to getters for MEMS
NASA Astrophysics Data System (ADS)
Amiotti, M.
2008-05-01
Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The development of Micro Electro Mechanical Systems (MEMS) with moving parts in a vacuum environment required the development of a new generation of getter film, few microns thick, that can be selectively patterned onto a silicon or glass wafer (usually 4'' or 8''). This wafer with patterned getter film can be used directly as the cap wafer of a wafer to wafer bonded MEMS structure, assuring long life and reliability to the moving MEMS structure especially in automotive applications where thermal cycles are required for qualification.
NASA Technical Reports Server (NTRS)
Packard, Ed
2016-01-01
This presentation describes the test objectives, test summary, test configuration and test performance of the James Webb Space Telescope Integrated Science Instrument Module CryoVac 3 Thermal Vacuum Test. Verify the ISIM System in its final configuration after environmental exposure and provide a post-environmental performance baseline, including critical ground calibrations needed for science data processing in flight.
Worldline approach to helicity flip in plane waves
NASA Astrophysics Data System (ADS)
Ilderton, Anton; Torgrimsson, Greger
2016-04-01
We apply worldline methods to the study of vacuum polarization effects in plane wave backgrounds, in both scalar and spinor QED. We calculate helicity-flip probabilities to one loop order and treated exactly in the background field, and provide a toolkit of methods for use in investigations of higher-order processes. We also discuss the connections between the worldline, S-matrix, and lightfront approaches to vacuum polarization effects.
Vacuum MOCVD fabrication of high efficience cells
NASA Technical Reports Server (NTRS)
Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.
1985-01-01
Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.
Loomis, C.C.; Ash, W.J.
1957-11-26
An improved retort assembly useful in the thermal reduction of volatilizable metals such as magnesium and calcium is described. In this process a high vacuum is maintained in the retort, however the retort must be heated to very high temperatures while at the same time the unloading end must bo cooled to condense the metal vapors, therefore the retention of the vacuum is frequently difficult due to the thermal stresses involved. This apparatus provides an extended condenser sleeve enclosed by the retort cover which forms the vacuum seal. Therefore, the seal is cooled by the fluid in the condenser sleeve and the extreme thermal stresses found in previous designs together with the deterioration of the sealing gasket caused by the high temperatures are avoided.
Kinetic study of the carbothermic synthesis of uranium monocarbide microspheres
NASA Astrophysics Data System (ADS)
Mukerjee, S. K.; Dehadraya, J. V.; Vaidya, V. N.; Sood, D. D.
1990-06-01
Uranium monocarbide microspheres were synthesized by carbothermic reduction of porous uranium oxide microspheres with uniformly dispersed carbon black. Kinetics of the reduction was studied under vacuum and flowing inert gas from 1250 to 1550° C. The carbon monoxide gas concentration in the effluent stream during reduction was used to determine the rate of carbide formation. Under vacuum, reduction was found to be controlled by reaction at the reactant-product interface whereas under flowing gas conditions, the diffusion of carbon monoxide gas through the carbide layer was the rate controlling process. The activation energy was 335.1 ± 8.6 and 363.7 ± 7.6 kJ/mol for reduction under vacuum and flowing gas, respectively.
Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers
NASA Astrophysics Data System (ADS)
Anderson, Brian E.; Schmittberger, Bonnie L.; Gupta, Prasoon; Jones, Kevin M.; Lett, Paul D.
2017-06-01
The SU(1,1) interferometer can be thought of as a Mach-Zehnder interferometer with its linear beam splitters replaced with parametric nonlinear optical processes. We consider the cases of bright- and vacuum-seeded SU(1,1) interferometers using intensity or homodyne detectors. A simplified truncated scheme with only one nonlinear interaction is introduced, which not only beats conventional intensity detection with a bright seed, but can saturate the phase-sensitivity bound set by the quantum Fisher information. We also show that the truncated scheme achieves a sub-shot-noise phase sensitivity in the vacuum-seeded case, despite the phase-sensing optical beams having no well-defined phase.
Process for making a cesiated diamond film field emitter and field emitter formed therefrom
Anderson, D.F.; Kwan, S.W.
1999-03-30
A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10{sup {minus}4} Torr and about 10{sup {minus}7} Torr, (b) increasing the vacuum to at least about 10{sup {minus}8} Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters. 2 figs.
Process for making a cesiated diamond film field emitter and field emitter formed therefrom
Anderson, David F.; Kwan, Simon W.
1999-01-01
A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10.sup.-4 Torr and about 10.sup.-7 Torr, (b) increasing the vacuum to at least about 10.sup.-8 Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters.
Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum
NASA Technical Reports Server (NTRS)
Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc
2008-01-01
Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.
Optimizing Polymer Infusion Process for Thin Ply Textile Composites with Novel Matrix System
Bhudolia, Somen K.; Perrotey, Pavel; Joshi, Sunil C.
2017-01-01
For mass production of structural composites, use of different textile patterns, custom preforming, room temperature cure high performance polymers and simplistic manufacturing approaches are desired. Woven fabrics are widely used for infusion processes owing to their high permeability but their localised mechanical performance is affected due to inherent associated crimps. The current investigation deals with manufacturing low-weight textile carbon non-crimp fabrics (NCFs) composites with a room temperature cure epoxy and a novel liquid Methyl methacrylate (MMA) thermoplastic matrix, Elium®. Vacuum assisted resin infusion (VARI) process is chosen as a cost effective manufacturing technique. Process parameters optimisation is required for thin NCFs due to intrinsic resistance it offers to the polymer flow. Cycles of repetitive manufacturing studies were carried out to optimise the NCF-thermoset (TS) and NCF with novel reactive thermoplastic (TP) resin. It was noticed that the controlled and optimised usage of flow mesh, vacuum level and flow speed during the resin infusion plays a significant part in deciding the final quality of the fabricated composites. The material selections, the challenges met during the manufacturing and the methods to overcome these are deliberated in this paper. An optimal three stage vacuum technique developed to manufacture the TP and TS composites with high fibre volume and lower void content is established and presented. PMID:28772654
Optimizing Polymer Infusion Process for Thin Ply Textile Composites with Novel Matrix System.
Bhudolia, Somen K; Perrotey, Pavel; Joshi, Sunil C
2017-03-15
For mass production of structural composites, use of different textile patterns, custom preforming, room temperature cure high performance polymers and simplistic manufacturing approaches are desired. Woven fabrics are widely used for infusion processes owing to their high permeability but their localised mechanical performance is affected due to inherent associated crimps. The current investigation deals with manufacturing low-weight textile carbon non-crimp fabrics (NCFs) composites with a room temperature cure epoxy and a novel liquid Methyl methacrylate (MMA) thermoplastic matrix, Elium ® . Vacuum assisted resin infusion (VARI) process is chosen as a cost effective manufacturing technique. Process parameters optimisation is required for thin NCFs due to intrinsic resistance it offers to the polymer flow. Cycles of repetitive manufacturing studies were carried out to optimise the NCF-thermoset (TS) and NCF with novel reactive thermoplastic (TP) resin. It was noticed that the controlled and optimised usage of flow mesh, vacuum level and flow speed during the resin infusion plays a significant part in deciding the final quality of the fabricated composites. The material selections, the challenges met during the manufacturing and the methods to overcome these are deliberated in this paper. An optimal three stage vacuum technique developed to manufacture the TP and TS composites with high fibre volume and lower void content is established and presented.
Slurry hydrocracking of Arab heavy vacuum resid with new bifunctional catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankel, L.A.
1993-12-31
Co-processing coal with hydrogenated vacuum resids can solubilize coal and aid in metals removals from the hydrotreated resid. Several bifunctional NiW catalysts were evaluated for resid hydrocracking in a slurry reactor. Autoclave runs were made to determine whether a hydrogenative metal function (NiW) plus support with cracking activity might be an effective catalyst for high resid 1000F{degrees}{sup +} conversion, H-content enrichment, deS, and demetallation at low coke make. An Arab Heavy 895{degrees}F{sup +} vacuum resid (262 ppm Ni+V, 5.3% S and 24% CCR) was hydrocracked over sulfided and unsulfided NiW catalysts on alumina, silica-alumina, US-Y, etc. at 800{degrees}F and 2000more » psig hydrogen in a batch reactor and compared to oil soluble mixtures of Ni and W homogenous organometallics. Of the catalysts tested here, results indicate that addition of sulfided NiW/aluminum to slurry type processing might improve hydrogenation activity and produce more 1000{degrees}F{sup +} conversion at a particular severity while generating the low coke make necessary for a continuous process. Once the resid is hydrotreated, coal could be added to the NiW bifunctional catalyst/resid slurry for co-processing.« less
Heat Flow Measurement and Analysis of Thermal Vacuum Insulation
NASA Astrophysics Data System (ADS)
Laa, C.; Hirschl, C.; Stipsitz, J.
2008-03-01
A new kind of calorimeter has been developed at Austrian Aerospace to measure specific material parameters needed for the analysis of thermal vacuum insulation. A detailed description of the measuring device and the measurement results will be given in this paper. This calorimeter facility allows to measure the heat flow through the insulation under vacuum conditions in a wide temperature range from liquid nitrogen to ambient. Both boundary temperatures can be chosen within this range. Furthermore the insulation can be characterized at high vacuum or under degraded vacuum, the latter is simulated by using helium or nitrogen gas. The mechanisms of heat transfer have been investigated, namely infrared radiation between the reflective layers of the insulation and conduction through the interleaving spacer material. A mathematical description of the heat flow through the insulation has been derived. Based on this, the heat flow for a typical insulation material has been calculated by finite element analysis by use of the sotware tool Ansys®. Such a transient calculation is needed to determine the time to reach thermal equilibrium, which is mandatory for a proper interpretation and evaluation of the measurement. The new insulation measurement results combined with the proposed type of analysis can be applied to better understand the thermal behavior of any kind of cryogenic system.
Statistics of vacuum breakdown in the high-gradient and low-rate regime
NASA Astrophysics Data System (ADS)
Wuensch, Walter; Degiovanni, Alberto; Calatroni, Sergio; Korsbäck, Anders; Djurabekova, Flyura; Rajamäki, Robin; Giner-Navarro, Jorge
2017-01-01
In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental set-ups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12 GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DC to 12 GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.
Development of a relatchable cover mechanism for a cryogenic IR-sensor
NASA Technical Reports Server (NTRS)
Birner, R.; Lange, G.; Roth, M.; Voit, A.
1991-01-01
A cover mechanism for use on the Infrared Background Signature Survey (IBSS) cryostat was developed. The IBSS IR-instrument is scheduled for STS launch in early 1991 as a payload of the Shuttle Payload Satellite (SPS) 2. The cover is hinged, with a motorized rope drive. During ground processing, launch, entry, and landing, the cryostat, which houses the IR-instrument, is required to be a sealed vacuum tight container for cooling purposes and contamination prevention. When on orbit, the cover is opened to provide an unobstructed field of view for the IR-instrument. A positive seal is accomplished through the use of latch mechanism. The cover and the latch are driven by a common redundant actuator consisting of dc motors, spur gears, and a differential gear. Hall probe limit switches and position sensors (rotary variable transformer) are used to determine the position of the cover and the latch. The cover mechanism was successfully qualified for thermal vacuum (-25 to 35 C), acoustic noise, vibration (6 Gs sine, 9.7 G RMS) and life cycles. Constricting requirements, mechanical and electronic control design, specific design details, test results of functional performance, and environmental and life tests are described.
Experiments on Nucleation in Different Flow Regimes
NASA Technical Reports Server (NTRS)
Bayuzick, R. J.; Hofmeister, W. H.; Morton, C. M.; Robinson, M. B.
1998-01-01
The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys. Early experiments in nucleation kinetics were accomplished by droplet dispersion methods. Dilitometry was used by Turnbull and others, and more recently differential thermal analysis and differential scanning calorimetry have been used for kinetic studies. These techniques have enjoyed success; however, there are difficulties with these experiments. Since materials are dispersed in a medium, the character of the emulsion/metal interface affects the nucleation behavior. Statistics are derived from the large number of particles observed in a single experiment, but dispersions have a finite size distribution which adds to the uncertainty of the kinetic determinations. Even though temperature can be controlled quite well before the onset of nucleation, the release of the latent heat of fusion during nucleation of particles complicates the assumption of isothermality during these experiments. Containerless processing has enabled another approach to the study of nucleation kinetics. With levitation techniques it is possible to undercool one sample to nucleation repeatedly in a controlled manner, such that the statistics of the nucleation process can be derived from multiple experiments on a single sample. The authors have fully developed the analysis of nucleation experiments on single samples following the suggestions of Skripov. The advantage of these experiments is that the samples are directly observable. The nucleation temperature can be measured by noncontact optical pyrometry, the mass of the sample is known, and post-processing analysis can be conducted on the sample. The disadvantages are that temperature measurement must have exceptionally high precision, and it is not possible to isolate specific heterogeneous sites as in droplet dispersions. Levitation processing of refractory materials in ultra high vacuum provides an avenue to conduct these kinetic studies on single samples. Two experimental methods have been identified where ultra high vacuum experiments are possible; electrostatic levitation in ground-based experiments and electromagnetic processing in low earth orbit on TEMPUS. Such experiments, reported here, were conducted on zirconium. Liquid zirconium is an excellent solvent and has a high solubility for contaminants contained in the bulk material as well as those contaminants found in the vacuum environment. Oxides, nitrides, and carbides do not exist in the melt, and do not form on the surface of molten zirconium, for the materials and vacuum levels used in this study. Ground-based experiments with electrostatic levitation have shown that the statistical nucleation kinetic experiments are viable and yield results which are consistent with classical nucleation theory. The advantage of low earth orbit experiments is the ability to vary the flow conditions in the liquid prior to nucleation. The put-pose of nucleation experiments in TEMPUS was to examine.
Butt Welding Joint of Aluminum Alloy by Space GHTA Welding Process in Vacuum
NASA Astrophysics Data System (ADS)
Suita, Yoshikazu; Shinike, Shuhei; Ekuni, Tomohide; Terajima, Noboru; Tsukuda, Yoshiyuki; Imagawa, Kichiro
Aluminum alloys have been used widely in constructing various space structures including the International Space Station (ISS) and launch vehicles. For space applications, welding experiments on aluminum alloy were performed using the GHTA (Gas Hollow Tungsten Arc) welding process using a filler wire feeder in a vacuum. We investigated the melting phenomenon of the base metal and filler wire, bead formation, and the effects of wire feed speed on melting characteristics. The melting mechanism in the base metal during the bead on a plate with wire feed was similar to that for the melt run without wire feed. We clarified the effects of wire feed speed on bead sizes and configurations. Furthermore, the butt welded joint welded using the optimum wire feed speed, and the joint tensile strengths were evaluated. The tensile strength of the square butt joint welded by the pulsed DC GHTA welding with wire feed in a vacuum is nearly equal to that of the same joint welded by conventional GTA (Gas Tungsten Arc) welding in air.
Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming
2014-12-31
An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.
Safety studies on vacuum insulated liquid helium cryostats
NASA Astrophysics Data System (ADS)
Weber, C.; Henriques, A.; Zoller, C.; Grohmann, S.
2017-12-01
The loss of insulating vacuum is often considered as a reasonable foreseeable accident for the dimensioning of cryogenic safety relief devices (SRD). The cryogenic safety test facility PICARD was designed at KIT to investigate such events. In the course of first experiments, discharge instabilities of the spring loaded safety relief valve (SRV) occurred, the so-called chattering and pumping effects. These instabilities reduce the relief flow capacity, which leads to impermissible over-pressures in the system. The analysis of the process dynamics showed first indications for a smaller heat flux than the commonly assumed 4W/cm2. This results in an oversized discharge area for the reduced relief flow rate, which corresponds to the lower heat flux. This paper presents further experimental investigations on the venting of the insulating vacuum with atmospheric air under variation of the set pressure (p set) of the SRV. Based on dynamic process analysis, the results are discussed with focus on effective heat fluxes and operating characteristics of the spring-loaded SRV.
Pu, Yuan-Yuan; Sun, Da-Wen
2015-12-01
Mango slices were dried by microwave-vacuum drying using a domestic microwave oven equipped with a vacuum desiccator inside. Two lab-scale hyperspectral imaging (HSI) systems were employed for moisture prediction. The Page and the Two-term thin-layer drying models were suitable to describe the current drying process with a fitting goodness of R(2)=0.978. Partial least square (PLS) was applied to correlate the mean spectrum of each slice and reference moisture content. With three waveband selection strategies, optimal wavebands corresponding to moisture prediction were identified. The best model RC-PLS-2 (Rp(2)=0.972 and RMSEP=4.611%) was implemented into the moisture visualization procedure. Moisture distribution map clearly showed that the moisture content in the central part of the mango slices was lower than that of other parts. The present study demonstrated that hyperspectral imaging was a useful tool for non-destructively and rapidly measuring and visualizing the moisture content during drying process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods.
Wray, Derek; Ramaswamy, Hosahalli S
2015-12-01
A novel drying method for frozen-thawed whole cranberries was developed by combining microwave osmotic dehydration under continuous flow medium spray (MWODS) conditions with microwave vacuum finish-drying. A central composite rotatable design was used to vary temperature (33 to 67 °C), osmotic solution concentration (33 to 67 °B), contact time (5 to 55 min), and flow rate (2.1 to 4.1 L/min) in order to the determine the effects of MWODS input parameters on quality of the dried berry. Quality indices monitored included colorimetric and textural data in addition to anthocyanin retention and cellular structure. Overall it was found that the MWODS-MWV process was able to produce dried cranberries with quality comparable to freeze dried samples in much shorter time. Additionally, cranberries dried via the novel process exhibited much higher quality than those dried via either vacuum or convective air drying in terms of color, anthocyanin content, and cellular structure. © 2015 Institute of Food Technologists®
The Safe and Efficient Evaporation of a Solvent from Solution
NASA Astrophysics Data System (ADS)
Mahon, Andrew R.
1997-02-01
The process of evaporating a solvent from a solution can cause problems for many students. By using a water-vacuum aspirator, backflashes of water can flood the sample tube and be detrimental to the experiment. This type of apparatus can also cause problems by drawing the solution it is evaporating back into the vacuum hose, causing the student to lose part or all of the products of their experiment. Macroscale and Microscale Organic Experiments, 2nd edition (1), suggested two techniques to dissolve solvents from a mixture. It suggested blowing a stream of air over the solution from a Pasteur pipet, or attaching a Pasteur pipet to an aspirator and drawing air over the surface of the liquid. Again, the danger of blowing air over the solution leaves the risk of splattering the solution, and drawing air over the surface of the liquid as described further endangers the products of the experiment through the risk of sucking the products up into the pipet aspirator. In an effort to eliminate these problems, a new technique has been developed. By inverting an ordinary 200-mL vacuum flask and pulling a steady current of air from the vacuum apparatus through it, any type of small container can be placed under it, allowing the solvent to be evaporated in a steady, mistake-free manner . By evaporating the solvent from the container that the products will be submitted in, no sample is lost through the process of transferring it from a vacuum flask or beaker to the final container.
NASA Technical Reports Server (NTRS)
Chung, Shirley; Barengoltz, Jack; Kern, Roger; Koukol, Robert; Cash, Howard
2006-01-01
The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected the vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with an appropriate specification, in NPR 8020.12C as a low temperature complementary technique to the dry heat sterilization process.To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions, various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process. This process could be the elevated temperature dry heat sterilization process (115 C for 40 hours) which was used to sterilize the Viking lander spacecraft. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements.The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material properties. Our goal for this study was to determine the minimum VHP process conditions to achieve microbial reduction levels acceptable for planetary protection.
Jiao, Rui; Gao, Jina; Zhang, Xiyan; Zhang, Maofeng; Chen, Jiren; Wu, Qingping; Zhang, Jumei; Ye, Yingwang
2017-03-01
Vacuum freeze-drying is an important food-processing technology for valid retention of nutrients and bioactive compounds. Cronobacter sakazakii has been reported to be associated with severe infections in neonates through consumption of contaminated powdered infant formula. In this study, effects of vacuum freeze-drying treatment for 12, 24, and 36 h on inactivation of C. sakazakii with different initial inoculum levels in sterile water, tryptic soy broth (TSB), skim milk, and whole milk were determined. Results indicated that the lethality rate of C. sakazakii in each sample increased with the extension of vacuum freeze-drying time. With initial inoculum levels of 10 2 and 10 3 cfu/mL, the survival of C. sakazakii in different liquid media was significantly affected by vacuum freeze-drying for 12, 24, and 36 h. In addition, the lethality rates of C. sakazakii in whole milk, skim milk, and TSB was significantly reduced compared with those in sterile water. Furthermore, whole milk showed the strongest protective role for C. sakazakii cells, followed by skim milk and TSB medium. Using the scanning electron microscope, the intracellular damage and obvious distortion of C. sakazakii cells were observed after vacuum freeze-drying for 24 and 36 h compared with the untreated sample, and the injured cells increased with the extension of vacuum-drying time. We concluded that inactivation of vacuum freeze-drying on C. sakazakii cells is related to the food matrix, and a combination with other methods for inactivating C. sakazakii is required for ensuring microbial safety of powdered infant formula. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Collisional and radiative processes in high-pressure discharge plasmas
NASA Astrophysics Data System (ADS)
Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.
2002-05-01
Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.
Simulation and flavor compound analysis of dealcoholized beer via one-step vacuum distillation.
Andrés-Iglesias, Cristina; García-Serna, Juan; Montero, Olimpio; Blanco, Carlos A
2015-10-01
The coupled operation of vacuum distillation process to produce alcohol free beer at laboratory scale and Aspen HYSYS simulation software was studied to define the chemical changes during the dealcoholization process in the aroma profiles of 2 different lager beers. At the lab-scale process, 2 different parameters were chosen to dealcoholize beer samples, 102mbar at 50°C and 200mbar at 67°C. Samples taken at different steps of the process were analyzed by HS-SPME-GC-MS focusing on the concentration of 7 flavor compounds, 5 alcohols and 2 esters. For simulation process, the EoS parameters of the Wilson-2 property package were adjusted to the experimental data and one more pressure was tested (60mbar). Simulation methods represent a viable alternative to predict results of the volatile compound composition of a final dealcoholized beer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oxidation resistant slurry coating for carbon-based materials
NASA Technical Reports Server (NTRS)
Smialek, J. L.; Rybicki, G. C. (Inventor)
1985-01-01
An oxidation resistant coating is produced on carbon-base materials, and the same processing step effects an infiltration of the substrate with silicon containing material. The process comprises making a slurry of nickel and silicon powders in a nitrocellulose lacquer, spraying onto the graphite or carbon-carbon substrate, and sintering in vacuum to form a fused coating that wets and covers the surface as well as penetrates into the pores of the substrate. Optimum wetting and infiltration occurs in the range of Ni-60 w/o Si to Ni-90 w/o Si with deposited thicknesses of 25-100 mg/sq. cm. Sintering temperatures of about 1200 C to about 1400 C are used, depending on the melting point of the specific coating composition. The sintered coating results in Ni-Si intermetallic phases and SiC, both of which are highly oxidation resistant.
7 CFR 58.217 - Evaporators and/or vacuum pans.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Equipment and Utensils § 58... from the condensing of product (cow water) in this equipment may be utilized for prerinsing and...
7 CFR 58.217 - Evaporators and/or vacuum pans.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Equipment and Utensils § 58... from the condensing of product (cow water) in this equipment may be utilized for prerinsing and...
7 CFR 58.217 - Evaporators and/or vacuum pans.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Equipment and Utensils § 58... from the condensing of product (cow water) in this equipment may be utilized for prerinsing and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2013 CFR
2013-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2012 CFR
2012-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2014 CFR
2014-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
Code of Federal Regulations, 2011 CFR
2011-07-01
... circuit interrupters. (ii) Glove bag systems may be used to remove PACM and/or ACM from straight runs of.... (2) The HEPA vacuum cleaner or other device used to prevent collapse of bag during removal shall run... PACM from pipe runs with the following specifications and work practices. (A) Specifications: (1) Glove...
49 CFR 178.346-1 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Specifications for Containers for Motor Vehicle Transportation § 178.346-1 General requirements. (a) Each Specification DOT 406 cargo tank motor vehicle must meet the general design and construction requirements in... each cargo tank must be no lower than 2.65 psig and no higher than 4 psig. (c) Vacuum loaded cargo...
NASA Technical Reports Server (NTRS)
Lieberman, S. L.
1974-01-01
Tables are presented which include: material properties; elemental analysis; silicone RTV formulations; polyester systems and processing; epoxy preblends and processing; urethane materials and processing; epoxy-urethanes elemental analysis; flammability test results, and vacuum effects.
Revisiting photon-statistics effects on multiphoton ionization
NASA Astrophysics Data System (ADS)
Mouloudakis, G.; Lambropoulos, P.
2018-05-01
We present a detailed analysis of the effects of photon statistics on multiphoton ionization. Through a detailed study of the role of intermediate states, we evaluate the conditions under which the premise of nonresonant processes is valid. The limitations of its validity are manifested in the dependence of the process on the stochastic properties of the radiation and found to be quite sensitive to the intensity. The results are quantified through detailed calculations for coherent, chaotic, and squeezed vacuum radiation. Their significance in the context of recent developments in radiation sources such as the short-wavelength free-electron laser and squeezed vacuum radiation is also discussed.
Radiative processes of uniformly accelerated entangled atoms
NASA Astrophysics Data System (ADS)
Menezes, G.; Svaiter, N. F.
2016-05-01
We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms traveling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.
Salting by Vacuum Brine Impregnation in Nitrite-Free Lonza: Effect on Enterobacteriaceae.
Serio, Annalisa; Chaves-López, Clemencia; Rossi, Chiara; Pittia, Paola; Rosa, Marco Dalla; Paparella, Antonello
2017-01-24
Lonza is a traditional Italian meat product made from whole pork muscles, which is typically cured by dry salting. In this work, we study the effects of vacuum brine impregnation (VBI) as an alternative salting method on the survival of Enterobacteriaceae, in presence and in absence of nitrites. In comparison with the traditional brining process, VBI contributed to reducing the Enterobacteriaceae population on product surface but induced contamination of the inner muscle tissues. Our results suggest that the species isolated became adapted to processing conditions, and salt tolerance was species- or strain-dependent. This result is of particular importance for future applications of VBI in lonza manufacturing.
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.
2016-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.
2016-09-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
Method for sealing an ultracapacitor, and related articles
Day, James; Shapiro, Andrew Philip; Jerabek, Elihu Calvin
2000-08-29
An improved process for sealing at least one ultracapacitor which includes a multi-layer structure is disclosed. The process includes the step of applying a substantial vacuum to press together an uppermost layer of the structure and a lowermost layer of the structure and to evacuate ambient gasses, wherein a sealant situated in a peripheral area between the facing surfaces of the layers forms a liquid-impermeable seal for the structure under the vacuum. In some embodiments, a press is used to apply pressure to the peripheral area on which the sealant is disposed. Usually, the ultracapacitor would be situated within an enclosable region of the press, and a collapsible membrane would be fastened over the ultracapacitor to fully enclose the region and transmit the vacuum force to the multi-layer structure. The force applied by the press itself causes the sealant to flow, thereby ensuring a complete seal upon curing of the sealant. This process can be employed to seal one ultracapacitor or a stack of at least two ultracapacitors. Another embodiment of this invention is directed to an apparatus for sealing a multi-layer ultracapacitor, comprising the elements described above.
Solid-state electron spin lifetime limited by phononic vacuum modes.
Astner, T; Gugler, J; Angerer, A; Wald, S; Putz, S; Mauser, N J; Trupke, M; Sumiya, H; Onoda, S; Isoya, J; Schmiedmayer, J; Mohn, P; Majer, J
2018-04-01
Longitudinal relaxation is the process by which an excited spin ensemble decays into its thermal equilibrium with the environment. In solid-state spin systems, relaxation into the phonon bath usually dominates over the coupling to the electromagnetic vacuum 1-9 . In the quantum limit, the spin lifetime is determined by phononic vacuum fluctuations 10 . However, this limit was not observed in previous studies due to thermal phonon contributions 11-13 or phonon-bottleneck processes 10, 14,15 . Here we use a dispersive detection scheme 16,17 based on cavity quantum electrodynamics 18-21 to observe this quantum limit of spin relaxation of the negatively charged nitrogen vacancy (NV - ) centre 22 in diamond. Diamond possesses high thermal conductivity even at low temperatures 23 , which eliminates phonon-bottleneck processes. We observe exceptionally long longitudinal relaxation times T 1 of up to 8 h. To understand the fundamental mechanism of spin-phonon coupling in this system we develop a theoretical model and calculate the relaxation time ab initio. The calculations confirm that the low phononic density of states at the NV - transition frequency enables the spin polarization to survive over macroscopic timescales.
Plaza, Lucía; Sánchez-Moreno, Concepción; de Pascual-Teresa, Sonia; de Ancos, Begoña; Cano, M Pilar
2009-04-22
Avocado ( Persea americana Mill.) is a good source of bioactive compounds such as monounsaturated fatty acids and sterols. The impact of minimal processing on its health-promoting attributes was investigated. Avocados cut into slices or halves were packaged in plastic bags under nitrogen, air, or vacuum and stored at 8 degrees C for 13 days. The stabilities of fatty acids and sterols as well as the effect on antioxidant activity were evaluated. The main fatty acid identified and quantified in avocado was oleic acid (about 57% of total content), whereas beta-sitosterol was found to be the major sterol (about 89% of total content). In general, after refrigerated storage, a significant decrease in fatty acid content was observed. Vacuum/halves and air/slices were the samples that maintained better this content. With regard to phytosterols, there were no significant changes during storage. Antioxidant activity showed a slight positive correlation against stearic acid content. At the end of refrigerated storage, a significant increase in antiradical efficiency (AE) was found for vacuum samples. AE values were quite similar among treatments. Hence, minimal processing can be a useful tool to preserve health-related properties of avocado fruit.
Thermophysical properties of Apollo 12 fines.
NASA Technical Reports Server (NTRS)
Cremers, C. J.
1973-01-01
The vacuum thermal conductivity of the Apollo 12 fines is presented as a function of temperature for densities of 1300, 1640 and 1970 kg/cu m. It is found to vary from about .001 W/m-K at 100 K to about .003 W/m-K at 400 K. The conductivity of the fines is found to be close to that of terrestrial basalt both under vacuum and at higher pressures. The thermal diffusivity is calculated from conductivity and specific heat data. Average values of the thermal conductivity, thermal diffusivity and thermal parameter are also presented.
Magnetic shielding and vacuum test for passive hydrogen masers
NASA Technical Reports Server (NTRS)
Gubser, D. U.; Wolf, S. A.; Jacoby, A. B.; Jones, L. D.
1982-01-01
Vibration tests on high permeability magnetic shields used in the SAO-NRL Advanced Development Model (ADM) hydrogen maser were made. Magnetic shielding factors were measured before and after vibration. Preliminary results indicate considerable (25%) degradation. Test results on the NRL designed vacuum pumping station for the ADM hydrogen maser are also discussed. This system employs sintered zirconium carbon getter pumps to pump hydrogen plus small ion pumps to pump the inert gases. In situ activation tests and pumping characteristics indicate that the system can meet design specifications.
The target vacuum storage facility at iThemba LABS
NASA Astrophysics Data System (ADS)
Neveling, R.; Kheswa, N. Y.; Papka, P.
2018-05-01
A number of nuclear physics experiments at iThemba LABS require target foils that consist of specific isotopes of elements which are reactive in air. Not only is it important to prepare these targets in a suitable environment to prevent oxidation, but consideration should also be given to the long term storage and handling facilities of such targets. The target vacuum storage facility at iThemba LABS, as well as additional hardware necessary to transport and install the target foils in the experimental chamber, will be discussed.
Experimental evaluation of a 600 lbf spacecraft rocket engine.
NASA Technical Reports Server (NTRS)
Hoehn, F. W.
1972-01-01
Experimental results are presented for a long-duration-capability (1000-sec), space-storable, bipropellant liquid rocket motor burning fluorine/hydrazine or FLOX/monomethylhydrazine. The interrelationship between injected mixture ratio and the per cent film cooling on vacuum specific impulse performance and chamber heat transfer is given. Experimental sea level measurements are used to predict space vacuum performance based upon simplified JANNAF reference procedures. Dynamic combustion stability is demonstrated over a wide range of operating conditions. Analytical results of char penetration, erosion, and ablative wall temperature distributions are presented for prototype chamber designs.
Automatisms in EMIR instrument to improve operation, safety and maintenance
NASA Astrophysics Data System (ADS)
Fernández Izquierdo, Patricia; Núñez Cagigal, Miguel; Barreto Rodríguez, Roberto; Martínez Rey, Noelia; Santana Tschudi, Samuel; Barreto Cabrera, Maria; Patrón Recio, Jesús; Garzón López, Francisco
2014-08-01
EMIR is the NIR imager and multiobject spectrograph being built as a common user instrument for the 10-m class GTC. Big cryogenic instruments demand a reliable design and a specific hardware and software to increase its safety and productivity. EMIR vacuum, cooling and heating systems are monitored and partially controlled by a Programmable Logic Controller (PLC) in industrial format with a touch screen. The PLC aids the instrument operator in the maintenance tasks recovering autonomously vacuum if required or proposing preventive maintenance actions. The PLC and its associated hardware improve EMIR safety having immediate reactions against eventual failure modes in the instrument or in external supplies, including hardware failures during the heating procedure or failure in the PLC itself. EMIR PLC provides detailed information periodically about status and alarms of vacuum and cooling components or external supplies.
Effects of vigorous mixing of blood vacuum tubes on laboratory test results.
Lima-Oliveira, Gabriel; Lippi, Giuseppe; Salvagno, Gian Luca; Montagnana, Martina; Gelati, Matteo; Volanski, Waldemar; Boritiza, Katia Cristina; Picheth, Geraldo; Guidi, Gian Cesare
2013-02-01
To evaluate the effect of tubes mixing (gentle vs. vigorous) on diagnostic blood specimens collected in vacuum tube systems by venipuncture. Blood was collected for routine coagulation, immunochemistry and hematological testing from one hundred volunteers into six vacuum tubes: two 3.6 mL vacuum tubes containing 0.4 mL of buffered sodium citrate (9NC) 0.109 mol/L: 3.2 W/V%; two 3.5 mL vacuum tubes with clot activator and gel separator; and two 3.0 mL vacuum tubes containing 5.9 mg K(2)EDTA (Terumo Europe, Belgium). Immediately after the venipuncture all vacuum tubes (each of one additive type) were processed through two different procedures: i) Standard: blood specimens in K(2)EDTA- or sodium citrate-vacuum tubes were gently inverted five times whereas the specimens in tubes with clot activator and gel separator were gently inverted ten times, as recommended by the manufacturer; ii) Vigorous mix: all blood specimens were shaken up vigorously during 3-5s independently of the additive type inside the tubes. The significance of the differences between samples was assessed by Student's t-test or Wilcoxon ranked-pairs test after checking for normality. The level of statistical significance was set at P<0.05. No significant difference (P<0.05) was detected between the procedures for all tested parameters. Surprisingly only a visual alteration (presence of foam on the top) was shown by all the tubes mixed vigorously before centrifugation (Fig. 1 A, B and C). Moreover the serum tubes from vigorous mixing procedure shows a "blood ring" on the tube top after stopper removal (Fig. 1 D). Our results drop out a paradigm suggesting that the incorrect primary blood tubes mixing promotes laboratory variability. We suggest that similar evaluation should be done using other brands of vacuum tubes by each laboratory manager. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dameron, Arrelaine
During the duration of this CRADA, V-Glass and NREL will partner in testing, analysis, performance forecasting, costing, and evaluation of V-Glass’s GRIPWELD™ process technology for creating a low cost hermetic seal for conventional and vacuum glazing. Upon successful evaluation of hermeticity, V-Glass’s GRIPWELD™ will be evaluated for its potential use in highly insulating window glazing.
Studying dynamic processes in liquids by TEM/STEM/DTEM
NASA Astrophysics Data System (ADS)
Abellan, Patricia; Evans, James; Woehl, Taylor; Jungjohann, Katherine; Parent, Lucas; Arslan, Ilke; Ristenpart, William; Browning, Nigel; Mater. Sci. Group Team; Microsc. Group Team; Catal. Sci. Group Collaboration; Ristenpart Res. Group Collaboration
2013-03-01
In order to study dynamic phenomena such as corrosion or catalysis, extreme environmental conditions must be reproduced around the specimen - these include high-temperatures, high-pressures, specific oxidizing/reducing atmospheres or a liquid environment. The use of environmental stages specifically designed to fit in any transmission electron microscope (TEM) allows us to apply the distinct capabilities of each instrument to study dynamic processes. Localized gas/fluid conditions are created around the sample and separated from the high vacuum inside the microscope using hermetically sealed windowed-cells. Advanced capabilities of these techniques include spatial resolutions of ~1 Angstrom or better in aberration corrected instruments or temporal resolutions in the microsecond-nanosecond range in a dynamic TEM (DTEM). Here, unique qualities of the DTEM that benefit the in-situ experiments with gas/fluid environmental cells will be discussed. We also present our results with a liquid stage allowing atomic resolution imaging of nanomaterials in a colloidal suspension, core EEL spectra acquisition, continuous flow, controlled growth of nanocrystals and systematic calibration of the effect of the electron dose on silver nuclei formation.
ERIC Educational Resources Information Center
Hunt, James L.; Tegart, Tracy L.
1994-01-01
Uses common equipment (tea kettle and vacuum bottles) to precisely measure the specific heat, latent heat of fusion, and latent heat of vaporization of water. Provides descriptions for all three experiments. (MVL)
NASA Astrophysics Data System (ADS)
Lee, J.; Graves, D. B.
2010-10-01
Damage incurred during plasma processing, leading to increases in dielectric constant k, is a persistent problem with porous ultra-low-k dielectric films, such as SiCOH. Although most of the proposed mechanisms of plasma-induced damage focus on the role of ion bombardment and radical attack, we show that plasma-generated vacuum ultraviolet (VUV) photons can play a role in creating damage leading to increases in the dielectric constant of this material. Using a vacuum beam apparatus with a calibrated VUV lamp, we show that 147 nm VUV photons impacting SiCOH results in post-exposure adsorption and reaction with water vapour from the atmosphere to form silanol bonds, thereby raising the dielectric constant. Furthermore, the level of damage increases synergistically under simultaneous exposure to VUV photons and O2. The vacuum beam photon fluences are representative of typical plasma processes, as measured in a separate plasma tool. Fourier-transform infrared (FTIR) spectroscopy (ex situ) and mass spectrometry (in situ) imply that O2 reacts with methyl radicals formed from scissioned Si-C bonds to create CO2 and H2O, the latter combining with Si dangling bonds to generate more SiOH groups than with photon exposure alone. In addition, sample near-surface diffusivity, manipulated through ion bombardment and sample heating, can be seen to affect this process. These results demonstrate that VUV photo-generated surface reactions can be potent contributors to ultra-low-k dielectric SiCOH film plasma-induced damage, and suggest that they could play analogous roles in other plasma-surface interactions.
Vacuum application of thermal barrier plasma coatings
NASA Technical Reports Server (NTRS)
Holmes, R. R.; Mckechnie, T. N.
1988-01-01
Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.
NASA Astrophysics Data System (ADS)
Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung
2017-01-01
In Fe-3%Si-0.3%C steel sheet, a relatively strong <100>//ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the <100>//ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the <100>//ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.
Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System
NASA Astrophysics Data System (ADS)
Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.
2018-01-01
The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.
High Tech Art: Chameleon Glass
NASA Technical Reports Server (NTRS)
1993-01-01
Dichroic Glass is a technology wherein extremely thin films of metal are vacuum deposited on a glass surface. The coated glass shields spacecraft instruments from cosmic radiation and protects human vision from unfiltered sunlight in space. Because the coating process allows some wavelengths of light and color to reflect and others to pass through, a chameleon effect is produced. Murray Schwartz, a former aerospace engineer, has based his business KROMA on this NASA optical technology. He produces dichroic stained glass windows, mobiles and jewelry. The technique involves deposition of super thin layers of metal oxides applied one layer at a time in a specific order and thickness for the desired effect. His product line is unique and has been very successful.
Tappi, Silvia; Tylewicz, Urszula; Romani, Santina; Siroli, Lorenzo; Patrignani, Francesca; Dalla Rosa, Marco; Rocculi, Pietro
2016-10-05
Vacuum impregnation (VI) is a processing operation that permits the impregnation of fruit and vegetable porous tissues with a fast and more homogeneous penetration of active compounds compared to the classical diffusion processes. The objective of this research was to investigate the impact on VI treatment with the addition of calcium lactate on qualitative parameters of minimally processed melon during storage. For this aim, this work was divided in 2 parts. Initially, the optimization of process parameters was carried out in order to choose the optimal VI conditions for improving texture characteristics of minimally processed melon that were then used to impregnate melons for a shelf-life study in real storage conditions. On the basis of a 2 3 factorial design, the effect of Calcium lactate (CaLac) concentration between 0% and 5% and of minimum pressure (P) between 20 and 60 MPa were evaluated on color and texture. Processing parameters corresponding to 5% CaLac concentration and 60 MPa of minimum pressure were chosen for the storage study, during which the modifications of main qualitative parameters were evaluated. Despite of the high variability of the raw material, results showed that VI allowed a better maintenance of texture during storage. Nevertheless, other quality traits were negatively affected by the application of vacuum. Impregnated products showed a darker and more translucent appearance on the account of the alteration of the structural properties. Moreover microbial shelf-life was reduced to 4 d compared to the 7 obtained for control and dipped samples. © 2016 Institute of Food Technologists®.
Factors influencing microinjection molding replication quality
NASA Astrophysics Data System (ADS)
Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane
2018-01-01
In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.
NASA Astrophysics Data System (ADS)
Lee, G. W.; Jeon, S.; Park, C.; Kang, D. H.; Choi, B. I.; Park, S. N.
2013-09-01
An electrostatic levitation (ESL) device is developed to study the radiation-properties of liquid metals at high temperature. The technique provides good advantage, such as fast response of temperature change on a sample, clear features of recalescence and plateau during freezing, no contamination or no reaction with environment, easy control of supercooling deducing hypercooling limit, and relatively simple analysis of thermodynamic quantities because of only radiative cooling process under vacuum. In this study, we could obtain a hypercooling limit (i.e., maximum supercooling) of liquid Ti, 341 K using the ESL. An accurate ratio of the specific heat to total hemispherical emissivity of liquid Ti was obtained by Stefan-Boltzmann law. Then, the specific heat and total hemispherical emissivity of Ti liquid metal can be estimated with the hypercooling limit and known fusion enthalpy values of Ti, which has been rarely reported.
Assessment of molecular contamination in mask pod
NASA Astrophysics Data System (ADS)
Foray, Jean Marie; Dejaune, Patrice; Sergent, Pierre; Gough, Stuart; Cheung, D.; Davenet, Magali; Favre, Arnaud; Rude, C.; Trautmann, T.; Tissier, Michel; Fontaine, H.; Veillerot, M.; Avary, K.; Hollein, I.; Lerit, R.
2008-04-01
Context/ study Motivation: Contamination and especially Airbone Molecular Contamination (AMC) is a critical issue for mask material flow with a severe and fairly unpredictable risk of induced contamination and damages especially for 193 nm lithography. It is therefore essential to measure, to understand and then try to reduce AMC in mask environment. Mask material flow was studied in a global approach by a pool of European partners, especially within the frame of European MEDEA+ project, so called "MUSCLE". This paper deals with results and assessment of mask pod environment in term of molecular contamination in a first step, then in a second step preliminary studies to reduce mask pod influence and contamination due to material out gassing. Approach and techniques: A specific assessment of environmental / molecular contamination along the supply chain was performed by all partners. After previous work presented at EMLC 07, further studies were performed on real time contamination measurement pod at different sites locations (including Mask manufacturing site, blank manufacturing sites, IC fab). Studies were linked to the main critical issues: cleaning, storage, handling, materials and processes. Contamination measurement campaigns were carried out along the mask supply chain using specific Adixen analyzer in order to monitor in real time organic contaminants (ppb level) in mask pods. Key results would be presented: VOC, AMC and humidity level on different kinds of mask carriers, impact of basic cleaning on pod outgassing measurement (VOC, NH3), and process influence on pod contamination... In a second step, preliminary specific pod conditioning studies for better pod environment were performed based on Adixen vacuum process. Process influence had been experimentally measured in term of molecular outgassing from mask pods. Different AMC experimental characterization methods had been carried out leading to results on a wide range of organic and inorganic contaminants: by inline techniques based on Adixen humidity, also VOC and organic sensors, together by off-line techniques already used in the extensive previous mask pods benchmark (TD-GCMS & Ionic Chromatography). Humidity and VOC levels from mask carriers had shown significant reduction after Adixen pod conditioning process. Focus had been made on optimized vacuum step (for AMC) after particles carrier cleaning cycle. Based upon these key results new procedures, as well as guidelines for mask carrier cleaning optimization are proposed to improve pod contamination control. Summary results/next steps: This paper reports molecular contamination measurement campaigns performed by a pool of European partners along the mask supply chain. It allows us to investigate, identify and quantify critical molecular contamination in mask pod, as well as VOC and humidity, issues depending on locations, uses, and carrier's type. Preliminary studies highlight initial process solutions for pods conditioning that are being used for short term industrialization and further industrialized.
Topological Structures of Gravitational Vacuum as a Factor of Unclustered DM
NASA Astrophysics Data System (ADS)
Burdyuzha, V.; Pacheco, J.; Vereshkov, G.
2003-03-01
Topological structures of gravitational vacuum which could be produced in the result of the first relativistic phase transition or in the result of defect creation of the Universe from "nothing" are discussed. The concrete physical meaning is imparted to the parametrizational noninvariant members of Wheeler -DeWitt equation which may be considered as vacuum topological defects of different dimensions (worm-holes, micromembranes, microstrings and monopoles). After Universe inflation defects smoothed, stretches and broken up. They must be isotropic distributed on background of the expanding Universe. The part of them has survived and now they are perceiving as the structures of Λ -term, quintessence and unclustered dark matter. Mathematical illustration of these processes may be spontaneous breaking of global Lorentz-invariance of quantum geometrodynamics equations.
Vacuum encapsulated, high temperature diamond amplified cathode capsule and method for making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Triveni; Walsh, Josh; Gangone, Elizabeth
2015-12-29
A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first high-temperature solder weld disposed between the diamond window element and the annular insulating spacer and a second high-temperature solder weld disposed between the annular insulating spacer and the cathode element. The cathode capsulemore » is formed by a high temperature weld process under vacuum such that the first solder weld forms a hermetical seal between the diamond window element and the annular insulating spacer and the second solder weld forms a hermetical seal between the annular spacer and the cathode element whereby a vacuum encapsulated chamber is formed within the capsule.« less
Thermoelectric properties of CVD grown large area graphene
NASA Astrophysics Data System (ADS)
Sherehiy, Andriy; Jayasinghe, Ruwantha; Stallard, Robert; Sumanasekera, Gamini; Sidorov, Anton; Benjamin, Daniel; Jiang, Zhigang; Yu, Qingkai; Wu, Wei; Bao, Jiming; Liu, Zhihong; Pei, Steven; Chen, Yong
2010-03-01
The thermoelectric power (TEP) of CVD (Chemical Vapor Deposition) grown large area graphene transferred onto a Si/SiO2 substrate was measured by simply attaching two miniature thermocouples and a resistive heater. Availability of such large area graphene facilitates straight forward TEP measurement without the use of any microfabrication processes. All investigated graphene samples showed a positive TEP ˜ + 30 μV/K in ambient conditions and saturated at a negative value as low as ˜ -75 μV/K after vacuum-annealing at 500 K in a vacuum of ˜10-7 Torr. The observed p-type behavior under ambient conditions is attributed to the oxygen doping, while the n-type behavior under degassed conditions is due to electron doping from SiO2 surface states. It was observed that the sign of the TEP switched from negative to positive for the degassed graphene when exposed to acceptor gases. Conversely, the TEP of vacuum-annealed graphene exposed to the donor gases became even more negative than the TEP of vacuum-annealed sample.
Yilmaz, I; Demirci, M
2010-06-01
The objective of this research was to determine physicochemical changes and microbiological quality of the different packaged meatball samples. Meatball samples in polystyrene tray were closed with polyethylene film (PS packs), vacuumed and modified atmosphere packaged, (MAP) (65% N(2), 35% CO(2)), and held under refrigerated display (4 °C) for 8, 16 and 16 days for PS packs, vacuum and MAP, respectively. Microbial load, free fatty acids and thiobarbituric acid values of the samples tended to increase with storage time. Bacteria counts of the raw meatball samples increased 2 log cycles at the end of storage compared with initial values. Meatball samples can be stored without any microbiological problem for 7 days at 4 °C. Results from this study suggested that shelf-life assigned to modified-MAP and vacuum-packed meatballs may be appropriate. Meatball samples underwent physical deformation when they were packed before vacuum process. With these negative factors considered, MAP is superior to other two packs methods.
Quality control of FWC during assembly and commissioning in SST-1 Tokamak
NASA Astrophysics Data System (ADS)
Patel, Hitesh; Santra, Prosenjit; Parekh, Tejas; Biswas, Prabal; Jayswal, Snehal; Chauhan, Pradeep; Paravastu, Yuvakiran; George, Siju; Semwal, Pratibha; Thankey, Prashant; Ramesh, Gattu; Prakash, Arun; Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Pradhan, Subrata
2017-04-01
First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma, comprises of limiters, divertors, baffles, passive stabilizers designed to operate long duration (∼1000 s) discharges of elongated plasma. All FWC consist of copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at inter-connected ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a rigorous quality control and checks at every stage of the assembly process. This paper will present the quality control aspects and checks of FWC from commencement of assembly procedure, namely material test reports, leak testing of high temperature baked components, assembled dimensional tolerances, leak testing of all welded joints, graphite tile tightening torques, electrical continuity and electrical isolation of passive stabilizers from vacuum vessel, baking and cooling hydraulic connections inside vacuum vessel.
Siemiaszko, Dariusz; Kowalska, Beata; Jóźwik, Paweł; Kwiatkowska, Monika
2015-01-01
This paper presents the results of studies on the influence of oxygen partial pressure (vacuum level in the chamber) on the properties of FeAl intermetallics. One of the problems in the application of classical methods of prepared Fe-Al intermetallic is the occurrence of oxides. Applying a vacuum during sintering should reduce this effect. In order to analyze the effect of oxygen partial pressure on sample properties, five samples were processed (by a pressure-assisted induction sintering—PAIS method) under the following pressures: 3, 8, 30, 80, and 300 mbar (corresponding to oxygen partial pressures of 0.63, 1.68, 6.3, 16.8, and 63 mbar, respectively). The chemical and phase composition, hardness, density, and microstructure observations indicate that applying a vacuum significantly impacts intermetallic samples. The compact sintered at pressure 3 mbar is characterized by the most homogeneous microstructure, the highest density, high hardness, and nearly homogeneous chemical composition. PMID:28788015