An experimental investigation of electric flashover across solid insulators in vacuum
NASA Technical Reports Server (NTRS)
Vonbaeyer, H. C.
1984-01-01
The insulation of high voltage conductors often employs solid insulators for many applications. In such applications, an unexpected electric flashover may occur along the insulator surface. Under conditions of high vacuum, the flashover voltage across the insulator is observed to be lower compared with that of the same electrode separation without an insulator. The reason for such an extreme reduction of flashover voltage is not well understood. Several models based on the secondary electron emission, were proposed to explain the onset of the surface flashover. The starting point and the developing velocity of the surface flashover were determined. An intensified image converter camera was used to observe the initial stage of electrical flashover along the insulator surface parallel to the electric field. Several different insulator materials were used as test pieces to determine the effect of the dielectric constant on the flashover voltage characteristics.
Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation
NASA Astrophysics Data System (ADS)
Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki
This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng
2016-06-15
The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under amore » higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.« less
NASA Astrophysics Data System (ADS)
Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng
2016-06-01
The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.
NASA Astrophysics Data System (ADS)
Yamano, Yasushi; Takahashi, Masahiro; Kobayashi, Shinichi; Hanada, Masaya; Ikeda, Yoshitaka
Neutral beam injectors (NBI) used for JT-60 are required to generate negative ions of 500 keV energies. To produce such high-energy ions, the electrostatic accelerators consisting of 3-stage of electrodes and three insulator rings are applied. The insulators are made of Fiberglass Reinforced Plastic (FRP) which is composed of epoxy resin and glass fibers. The surface discharges along the insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP and epoxy resin insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for epoxy resin, FRP and Alumina samples under vacuum condition. In addition, the measurements of secondary electron emission (SEE) characteristics are also reported. These are important parameters to analyze surface discharge characteristics of insulators in vacuum.
A multi-functional high voltage experiment apparatus for vacuum surface flashover switch research.
Zeng, Bo; Su, Jian-cang; Cheng, Jie; Wu, Xiao-long; Li, Rui; Zhao, Liang; Fang, Jin-peng; Wang, Li-min
2015-04-01
A multifunctional high voltage apparatus for experimental researches on surface flashover switch and high voltage insulation in vacuum has been developed. The apparatus is composed of five parts: pulse generating unit, axial field unit, radial field unit, and two switch units. Microsecond damped ringing pulse with peak-to-peak voltage 800 kV or unipolar pulse with maximum voltage 830 kV is generated, forming transient axial or radial electrical field. Different pulse waveforms and field distributions make up six experimental configurations in all. Based on this apparatus, preliminary experiments on vacuum surface flashover switch with different flashover dielectric materials have been conducted in the axial field unit, and nanosecond pulse is generated in the radial field unit which makes a pulse transmission line in the experiment. Basic work parameters of this kind of switch such as lifetime, breakdown voltage are obtained.
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Zhao, Wen-Bin; Ma, Xin-Pei; Li, Guang-Xin; Ma, Kui; Zheng, Nan; Yan, Zhang
Ceramic material has been widely used as insulator in vacuum. Their high hardness and brittle property brings some difficulty in the application. A new kind of machinable ceramic was invented recently. The ceramic can be machined easily and accurately after being sintered, which provides the possibility of making the insulator with fine and complicated configuration. The paper studies its surface insulation performance and flashover phenomena under pulsed excitation in vacuum. The ceramic samples with different crystallization parameters are tested under the vacuum level of 10-4 Pa. The machinable ceramic behaves better surface insulation performance than comparative the Al2O3 and glass sample. The effect of crystallization level on the trap density and flashover current is also presented. After flashover shots many times, the surface microscopic patterns of different samples are observed to investigate the damage status, which can be explained by the thermal damage mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng
Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etchmore » the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.« less
NASA Astrophysics Data System (ADS)
Chen, Sile; Wang, Shuai; Wang, Yibo; Guo, Baohong; Li, Guoqiang; Chang, Zhengshi; Zhang, Guan-Jun
2017-08-01
For enhancing the surface electric withstanding strength of insulating materials, epoxy resin (EP) samples are treated by atmospheric pressure plasma jet (APPJ) with different time interval from 0 to 300s. Helium (He) and tetrafluoromethane (CF4) mixtures are used as working gases with the concentration of CF4 ranging 0%-5%, and when CF4 is ∼3%, the APPJ exhibits an optimal steady state. The flashover withstanding characteristics of modified EP in vacuum are greatly improved under appropriate APPJ treatment conditions. The surface properties of EP samples are evaluated by surface roughness, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. It is considered that both physical and chemical effects lead to the enhancement of flashover strength. The physical effect is reflected in the increase of surface roughness, while the chemical effect is reflected in the graft of fluorine groups.
2D particle-in-cell simulation of the entire process of surface flashover on insulator in vacuum
NASA Astrophysics Data System (ADS)
Wang, Hongguang; Zhang, Jianwei; Li, Yongdong; Lin, Shu; Zhong, Pengfeng; Liu, Chunliang
2018-04-01
With the introduction of an external circuit model and a gas desorption model, the surface flashover on the plane insulator-vacuum interface perpendicular to parallel electrodes is simulated by a Particle-In-Cell method. It can be seen from simulations that when the secondary electron emission avalanche (SEEA) occurs, the current sharply increases because of the influence of the insulator surface charge on the cathode field emission. With the introduction of the gas desorption model, the current keeps on increasing after SEEA, and then the feedback of the external circuit causes the voltage between the two electrodes to decrease. The cathode emission current decreases, while the anode current keeps growing. With the definition that flashover occurs when the diode voltage drops by more than 20%, we obtained the simulated flashover voltage which agrees with the experimental value with the use of the field enhancement factor β = 145 and the gas molecule desorption coefficient γ=0.25 . From the simulation results, we can also see that the time delay of flashover decreases exponentially with voltage. In addition, from the gas desorption model, the gas density on the insulator surface is found to be proportional to the square of the gas desorption rate and linear with time.
Sharp improvement of flashover strength from composite micro-textured surfaces
NASA Astrophysics Data System (ADS)
Huo, Yankun; Liu, Wenyuan; Ke, Changfeng; Chang, Chao; Chen, Changhua
2017-09-01
A composite micro-textured surface structure is proposed and demonstrated to enhance the surface flashover strength of polymer insulators used in vacuum. The structure is fabricated in two stages, with periodic triangular grooves of approximately 210 μm in width formed in the first stage and micro-holes of approximately 2 μm coated on the inner surface of grooves in the second. The aim is to exploit the synergistic effects between the grooves and micro-holes to suppress the secondary electron yield to obtain a better flashover performance. To acquire insulators with the composite micro-textured surface, the CO2 laser processing technique is applied to treat the surface of the PMMA insulators. The test results show that the flashover voltages of the insulators with the two-stage fabricated structure increase by 150% compared with the untreated samples in the best state. Compared with the traditional macro-groove structures on insulators, the proposed composite micro-textured insulators exhibit a better surface flashover performance.
NASA Astrophysics Data System (ADS)
Sun, Guang-Yu; Guo, Bao-Hong; Song, Bai-Peng; Su, Guo-Qiang; Mu, Hai-Bao; Zhang, Guan-Jun
2018-06-01
A 2D simulation based on particle-in-cell and Monte Carlo collision algorithm is implemented to investigate the accumulation and dissipation of surface charges on an insulator during flashover with outgassing in vacuum. A layer of positive charges is formed on the insulator after the secondary electrons emission (SEE) reaches saturation. With the build-up of local pressure resulting from gas desorption, the incident energy of electrons is affected by electron-neutral collisions and field distortion, remarkably decreasing the charge density on the insulator. Gas desorption ionization initiates near the anode, culminating, and then abates, followed by a steady and gradual augmentation as the negatively charged surface spreads towards the cathode and halts the SEE nearby. The initiation of flashover development is discussed in detail, and a subdivision of flashover development is proposed, including an anode-initiated desorption ionization avalanche, establishment of a plasma sheath, and plasma expansion. The transform from saturation to explosion of space charges and dissipation of the surface charge are revealed, which can be explained by the competition between multipactor electrons and ionized electrons.
NASA Astrophysics Data System (ADS)
Zhu, Mingdong; Song, Falun; Li, Fei; Jin, Xiao; Wang, Xiaofeng; Wang, Langping
2017-09-01
The insulating property of the alumina ceramic in vacuum under high voltage is mainly limited by its surface properties. Plasma immersion ion implantation (PIII) is an effective method to modify the surface chemical and physical properties of the alumina ceramic. In order to improve the surface flashover voltage of the alumina ceramic in vacuum, titanium ions with an energy of about 20 keV were implanted into the surface of the alumina ceramic using the PIII method. The surface properties of the as-implanted samples, such as the chemical states of the titanium, morphology and surface resistivity, were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and electrometer, respectively. The surface flashover voltages of the as-implanted alumina samples were measured by a vacuum surface flashover experimental system. The XPS spectra revealed that a compound of Ti, TiO2 and Al2O3 was formed in the inner surface of the alumina sample. The electrometer results showed that the surface resistivity of the implanted alumina decreased with increased implantation time. In addition, after the titanium ion implantation, the maximum hold-off voltage of alumina was increased to 38.4 kV, which was 21.5% higher than that of the unimplanted alumina ceramic.
Yamano, Y; Takahashi, M; Kobayashi, S; Hanada, M; Ikeda, Y
2008-02-01
Neutral beam injection (NBI) used for JT-60U is required to generate negative ions of 500 keV energies. To produce such high-energy ions, three-stage electrostatic accelerators consisting of three insulator rings made of fiberglass reinforced plastic (FRP) are applied. The surface discharges along FRP insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for FRP and alumina samples under vacuum condition. The results show that the fold-off voltages for FRP samples are inferior to those of alumina ceramics. In addition, measurement results of surface resistivity and volume resistivity under vacuum and atmospheric conditions, secondary electron emission characteristics, and cathodoluminescence under some keV electron beam irradiation are also reported. These are important parameters to analyze surface discharge of insulators in vacuum.
NASA Astrophysics Data System (ADS)
Yamano, Y.; Takahashi, M.; Kobayashi, S.; Hanada, M.; Ikeda, Y.
2008-02-01
Neutral beam injection (NBI) used for JT-60U is required to generate negative ions of 500keV energies. To produce such high-energy ions, three-stage electrostatic accelerators consisting of three insulator rings made of fiberglass reinforced plastic (FRP) are applied. The surface discharges along FRP insulators are one of the most serious problems in the development of NBI. To increase the hold-off voltage against surface flashover events, it is necessary to investigate the FRP insulator properties related to surface discharges in vacuum. This paper describes surface flashover characteristics for FRP and alumina samples under vacuum condition. The results show that the fold-off voltages for FRP samples are inferior to those of alumina ceramics. In addition, measurement results of surface resistivity and volume resistivity under vacuum and atmospheric conditions, secondary electron emission characteristics, and cathodoluminescence under some keV electron beam irradiation are also reported. These are important parameters to analyze surface discharge of insulators in vacuum.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong
2017-11-01
Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.
Time- and space-resolved light emission and spectroscopic research of the flashover plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleizer, J. Z.; Krasik, Ya. E.; Leopold, J.
2015-02-21
The results of an experimental study of the evolution of surface flashover across the surface of an insulator in vacuum subject to a high-voltage pulse and the parameters of the flashover plasma are reported. For the system studied, flashover is always initiated at the cathode triple junctions. Using time-resolved framing photography of the plasma light emission the velocity of the light emission propagation along the surface of the insulator was found to be ∼2.5·10{sup 8} cm/s. Spectroscopic measurements show that the flashover is characterized by a plasma density of 2–4 × 10{sup 14} cm{sup −3} and neutral and electron temperatures of 2–4 eV and 1–3 eV,more » respectively, corresponding to a plasma conductivity of ∼0.2 Ω{sup −1} cm{sup −1} and a discharge current density of up to ∼10 kA/cm{sup 2}.« less
Low Current Surface Flashover for Initiation of Electric Propulsion Devices
NASA Astrophysics Data System (ADS)
Dary, Omar G.
There has been a recent increase in interest in miniaturization of propulsion systems for satellites. These systems are needed to propel micro- and nano-satellites, where platforms are much smaller than conventional satellites and require smaller levels of thrust. Micro-propulsion systems for these satellites are in their infancy and they must manage with smaller power systems and smaller propellant volumes. Electric propulsion systems operating on various types of electric discharges are typically used for these needs. One of the central components of such electrical micropropulsion systems are ignitor subsystems, which are required for creation the breakdown and initiation of the main discharge. Ignitors have to provide reliable ignition for entire lifetime of the micropropulsion system. Electric breakdown in vacuum usually require high voltage potentials of hundreds of kilovolts per mm to induce breakdown. The breakdown voltage can be significantly decreased (down to several kVs per mm) if dielectric surface flashover is utilized. However, classical dielectric surface flashover operates at large electric current (100s of Amperes) and associated with overheating and damage of the electrodes/dielectric assembly after several flashover events. The central idea of this work was to eliminate the damage to the flashover electrode assembly by limiting the flashover currents to low values in milliampere range (Low Current Surface Flashover -LCSF) and utilize LCSF system as an ignition source for the main discharge on the micropropulsion system. The main objective of this research was to create a robust LCSF ignition system, capable producing a large number of surface flashover triggering events without significant damage to the LCSF electrode assembly. The thesis aims to characterize the plasma plume created at LCSF, study electrodes ablation and identify conditions required for robust triggering of main discharge utilized on micro-propulsion system. Conditioning of a new LCSF assembly (flashover current was limited to <100 mA in all experiments) was measured and breakdown voltages in the range of 8kV to 12kV were observed for the fully conditioned assembly. No damage to the LCSF electrode assembly was observed after about 104 LCSF events. The LCSF assembly created sufficient amount of seed plasma in order to bridge a vacuum gap between the high-current electrodes and to reliably ignite high-current arcs (10A-12A arc were used in this work). Ignition of the high-current arc was observed at three different cases of LCSF with limiting currents 100 mA, 33 mA and 20 mA respectively. Plasma parameter measurements were conducted with variety of Langmuir probes inside the LCSF plume. Ion currents created by the LCSF were primarily expelled directly perpendicular from the insulator surface. The plasma expansion for the LCSF assembly was measured to be 2 x 106-6 x 106 cm/s. Plasma density was measured to range 10 10-1011 cm-3. The plasma density was maximal near the LCSF assembly and quickly reduced radially. Temporal decay of the plasma was observed on a time scale of about 5 micros after the LCSF event. The results of this work are significant for creation of ignitor for micropropulsion systems. LCSF system offers reliable triggering for numerous ignition pulses for entire lifetime of the micropropulsion system and reduces complexity and volume of the system by excluding moving parts and the need for an external gas tanks.
Surface Electric Strength of Thermoplastic Materials in Vacuum
1981-11-27
For all the 1 lengths of investigated samples the flashover voltage showed the tendency of going down as the pressure increased from 133.322xi0" 6 Pa to...0,4 =326%10-8 133.32?*0 133= 322 -10V Figure 5.1. Flashover voltage as a function of pressure for samplesfrom polymethylmethacrylate. Direct...course of switching surge 400/2000 ýis L -76 AV L 1t0 01 1 01’O Tr W33.322.106 033.32210-" I33.322-10Ŗ 133.)2210- W3. 322 . 10-" Pa Figure 5.2
Characterization of a Surface-Flashover Ion Source with 10-250 ns Pulse Widths
NASA Astrophysics Data System (ADS)
Falabella, S.; Guethlein, G.; Kerr, P. L.; Meyer, G. A.; Morse, J. D.; Sampayan, S.; Tang, V.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact ion source is needed. Towards that end, we are testing a pulsed, surface flashover source, with deuterated titanium films deposited on alumina substrates as the electrodes. An electrochemically-etched mask was used to define the electrode areas on the substrate during the sputtered deposition of the titanium films. Deuterium loading of the films was performed in an all metal-sealed vacuum chamber containing a heated stage. Deuterium ion current from the source was determined by measuring the neutrons produced when the ions impacted a deuterium-loaded target held at -90 kV. As the duration of the arc current is varied, it was observed that the integrated deuteron current per pulse initially increases rapidly, then reaches a maximum near a pulse length of 100 ns.
NASA Astrophysics Data System (ADS)
Wang, Weiwang; Li, Shengtao; Min, Daomin
2016-04-01
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiwang; Li, Shengtao, E-mail: sli@xjtu.edu.cn; Min, Daomin
2016-04-15
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al{sub 2}O{sub 3} nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al{sub 2}O{sub 3} nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and themore » strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al{sub 2}O{sub 3} nanodielectrics is improved.« less
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Mundson, Chris
1993-01-01
Kapton polyimide wiring insulation was found to be vulnerable to pyrolization, arc tracking, and flashover when momentary short-circuit arcs have occurred on aircraft power systems. Short-circuit arcs between wire pairs can pyrolize the polyimide resulting in a conductive char between conductors that may sustain the arc (arc tracking). Furthermore, the arc tracking may spread (flashover) to other wire pairs within a wire bundle. Polyimide Kapton will also be used as the insulating material for the flexible current carrier (FCC) of Space Station Freedom (SSF). The FCC, with conductors in a planar type geometric layout as opposed to bundles, is known to sustain arc tracking at proposed SSF power levels. Tests were conducted in a vacuum bell jar that was designed to conduct polyimide pyrolysis, arc tracking, and flashover studies on samples of SSF's FCC. Test results will be reported concerning the minimal power level needed to sustain arc tracking and the FCC susceptibility to flashover. Results of the FCC arc tracking tests indicate that only 22 volt amps were necessary to sustain arc tracking (proposed SSF power level is 400 watts). FCC flashover studies indicate that the flashover event is highly unlikely.
Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation
NASA Astrophysics Data System (ADS)
Huang, Yin; Min, Daomin; Li, Shengtao; Li, Zhen; Xie, Dongri; Wang, Xuan; Lin, Shengjun
2017-06-01
The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al2O3 microcomposite was investigated. Epoxy resin/Al2O3 microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.
An experimental and theoretical investigation into the ``worm-hole'' effect
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jiancang; Zhang, Xibo; Pan, Yafeng; Wang, Limin; Fang, Jinpeng; Sun, Xu; Li, Rui; Zeng, Bo; Cheng, Jie
2013-08-01
On a nanosecond time scale, solid insulators abnormally fail in bulk rather than on surface, which is termed as the "worm-hole" effect. By using a generator with adjustable output pulse width and dozens of organic glass (PMMA) and polystyrene (PS) samples, experiments to verify this effect are conducted. The results show that under short pulses of 10 ns, all the samples fail due to bulk breakdown, whereas when the pulse width is tuned to a long pulse of 7 μs, the samples fail as a result of surface flashover. The experimental results are interpreted by analyzing the conditions for the bulk breakdown and the surface flashover. It is found that under short pulses, the flashover threshold would be as high as the bulk breakdown strength (EBD) and the flashover time delay (td) would be longer than the pulse width (τ), both of which make the dielectrics' cumulative breakdown occur easily; whereas under long pulses, that Ef is much lower than EBD and td is smaller than τ is advantageous to the occurrence of the surface flashover. In addition, a general principle on solid insulation design under short pulse condition is proposed based on the experimental results and the theoretical analysis.
A ceramic radial insulation structure for a relativistic electron beam vacuum diode.
Xun, Tao; Yang, Hanwu; Zhang, Jiande; Liu, Zhenxiang; Wang, Yong; Zhao, Yansong
2008-06-01
For one kind of a high current diode composed of a small disk-type alumina ceramic insulator water/vacuum interface, the insulation structure was designed and experimentally investigated. According to the theories of vacuum flashover and the rules for radial insulators, a "cone-column" anode outline and the cathode shielding rings were adopted. The electrostatic field along the insulator surface was obtained by finite element analysis simulating. By adjusting the outline of the anode and reshaping the shielding rings, the electric fields were well distributed and the field around the cathode triple junction was effectively controlled. Area weighted statistical method was applied to estimate the surface breakdown field. In addition, the operating process of an accelerator based on a spiral pulse forming line (PFL) was simulated through the PSPICE software to get the waveform of charging and diode voltage. The high voltage test was carried out on a water dielectric spiral PFL accelerator with long pulse duration, and results show that the diode can work stably in 420 kV, 200 ns conditions. The experimental results agree with the theoretical and simulated results.
Vacuum-surface flashover switch with cantilever conductors
Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.
2001-01-01
A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
Surface Flashover of Semiconductors: A Fundamental Study
1993-06-16
surface electric fields for a number of samples with aluminum and gold contacts. Effects of processing varia- tions such as anneal method (rapid thermal...more uniform pre- breakdown surface fields. 3. Various contact materials and processing methods were used to determine effects on flashover...diffusion depths determined by this method were generally consistent with the estimated depths. 2-4 In order to characterize better the diffused layers
Anode initiated surface flashover switch
Brainard, John P.; Koss, Robert J.
2003-04-29
A high voltage surface flashover switch has a pair of electrodes spaced by an insulator. A high voltage is applied to an anode, which is smaller than the opposing, grounded, cathode. When a controllable source of electrons near the cathode is energized, the electrons are attracted to the anode where they reflect to the insulator and initiate anode to cathode breakdown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong-bo, E-mail: walkman67@163.com; Liu, Jin-liang
2014-04-15
In this paper, the inner surface flash-over of high-voltage self-breakdown switch, which is used as a main switch of pulse modulator, is analyzed in theory by employing the method of distributed element equivalent circuit. Moreover, the field distortion of the switch is simulated by using software. The results of theoretical analysis and simulation by software show that the inner surface flash-over usually starts at the junction points among the stainless steel, insulator, and insulation gas in the switch. A switch with improved structure is designed and fabricated according to the theoretical analysis and simulation results. Several methods to avoid innermore » surface flash-over are used to improve the structure of switch. In experiment, the inductance of the switch is no more than 100 nH, the working voltage of the switch is about 600 kV, and the output voltage and current of the accelerator is about 500 kV and 50 kA, respectively. And the zero-to-peak rise time of output voltage at matched load is less than 30 ns due to the small inductance of switch. The original switch was broken-down after dozens of experiments, and the improved switch has been worked more than 200 times stably.« less
NASA Astrophysics Data System (ADS)
Li, Manping; Wu, Kai; Yang, Zhanping; Ding, Man; Liu, Xin; Cheng, Yonghong
2014-09-01
In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characteristics of two typical solid-solid interfaces (epoxy-ceramic and epoxy-PMMA) under steep high-voltage impulse for different electrode systems (coaxial electrodes and finger electrodes) and different types of epoxy resin (neat epoxy resin, polyether modified epoxy resin and polyurethane modified epoxy resin). Results showed that, the flashover of solid-solid interface is similar to the breakdown of solid dielectric, and there are unrecoverable carbonated tracks after flashover. Under the same distance of electrodes, the electric stress of coaxial electrodes is lower than that of finger electrodes; and after the flashover, there are more severe breakdown and larger enhanced surface conductivity at interface for coaxial electrodes, as compared with the case of finger electrode. The dielectric properties are also discussed.
High voltage insulation of bushing for HTS power equipment
NASA Astrophysics Data System (ADS)
Kim, Woo-Jin; Choi, Jae-Hyeong; Kim, Sang-Hyun
2012-12-01
For the operation of high temperature superconducting (HTS) power equipments, it is necessary to develop insulating materials and high voltage (HV) insulation technology at cryogenic temperature of bushing. Liquid nitrogen (LN2) is an attractive dielectric liquid. Also, the polymer insulating materials are expected to be used as solid materials such as glass fiber reinforced plastic (GFRP), polytetra-fluoroethylene (PTFE, Teflon), Silicon (Si) rubber, aromatic polyamide (Nomex), EPDM/Silicon alloy compound (EPDM/Si). In this paper, the surface flashover characteristics of various insulating materials in LN2 are studied. These results are studied at both AC and impulse voltage under a non-uniform field. The use of GFRP and Teflon as insulation body for HTS bushing should be much desirable. Especially, GFRP is excellent material not only surface flashover characteristics but also mechanical characteristics at cryogenic temperature. The surface flashover is most serious problem for the shed design in LN2 and operation of superconducting equipments.
NASA Astrophysics Data System (ADS)
Zhang, Ruiqi; Cai, Li; Chen, Junwu; Wang, Luo; Tan, Xuefeng
2018-04-01
This paper presents a new method to improve 110kV porcelain insulator flashover voltage by adding a metal ring on the insulator cap, which can not only effectively reduce the field strength of the steel cap, but also reduce the tangential field intensity of the umbrella group and inhibit the development of the discharge process, thus the flashover voltage can be increased. The surface strength calculation model of 110kV porcelain insulator is established by the finite element method (FEM), and the parameters of the metal ring are designed by neural network genetic algorithm (BP-GA). Then the experiments were carried out to verify the results, and the results show that the metal ring plate under the optimum parameters can greatly improve the flashover voltage.
Process for manufacturing hollow fused-silica insulator cylinder
Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.
2001-01-01
A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.
Neutron Yield With a Pulsed Surface Flashover Deuterium Source
NASA Astrophysics Data System (ADS)
Guethlein, G.; Falabella, S.; Sampayan, S. E.; Meyer, G.; Tang, V.; Kerr, P.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact, low average power ion source is needed. Towards that end, we are testing a high current, pulsed surface flashover ion source, with deuterated titanium as the spark contacts. Neutron yield and source lifetime data will be presented using a low voltage (<100 kV) deuterated target. With 20 ns spark drive pulses we have shown >106 neutrons/s with 1 kHz PRF
NASA Astrophysics Data System (ADS)
Hoang, Bao; Wong, Frankie; Redick, Tod; Masui, Hirokazu; Endo, Taishi; Toyoda, Kazuhiro; Cho, Mengu
2011-10-01
A series of electrostatic discharge (ESD) tests was performed on solar array test coupons consisting of Advanced Triple Junction InGaP2/InGaAs/Ge solar cells. The motivation for these tests was to evaluate the effects of ESD on solar array design without room temperature vulcanized (RTV) adhesive grout between the string-to-string parallel gaps. To investigate the threshold of permanently sustained secondary arcs, various combinations of gap width, load voltage and string current were tested in a vacuum chamber equipped with an electron beam gun. This ESD test program included the ESD test circuit with simulated panel coverglass flashover. Although ESD events did not result in permanent sustained arcs, the insulation resistance between strings was found to decrease as the number of secondary arcs accumulated in the gap.
Morphology and FT-IR analysis of anti-pollution flashover coatings with adding nano SiO2 particles
NASA Astrophysics Data System (ADS)
Guo, Kai; Du, Yishu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong
2017-12-01
By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM), infrared spectrometer (FT-IR) and EDS characterization were carried out on the coating surface analysis. Those results has been use to optimize the further design and platform of the enhanced K-PRTV pollution flash coating experiment. It is also to improve the plan formulation, formulation optimization and preparation of the hydrophobic modified K-PRTV which is based on anti-pollution coating experiment. More importantly, the anti-pollution flashover K-PRTV coating with super hydrophobic modified is the great significance for K-PRTV coating.
NASA Astrophysics Data System (ADS)
Qing, XIE; Haofan, LIN; Shuai, ZHANG; Ruixue, WANG; Fei, KONG; Tao, SHAO
2018-02-01
Non-thermal plasma surface modification for epoxy resin (EP) to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulated transmission line. In this paper, a pulsed Ar dual dielectrics atmospheric-pressure plasma jet (APPJ) was used for SiC x H y O z thin film deposition on EP samples. The film deposition was optimized by varying the treatment time while other parameters were kept at constants (treatment distance: 10 mm, precursor flow rate: 0.6 l min-1, maximum instantaneous power: 3.08 kW and single pulse energy: 0.18 mJ). It was found that the maximum value of flashover voltages for negative and positive voltage were improved by 18% and 13% when the deposition time was 3 min, respectively. The flashover voltage reduced as treatment time increased. Moreover, all the surface conductivity, surface charge dissipation rate and surface trap level distribution reached an optimal value when thin film deposition time was 3 min. Other measurements, such as atomic force microscopy and scanning electron microscope for EP surface morphology, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy for EP surface compositions, optical emission spectra for APPJ deposition process were carried out to better understand the deposition processes and mechanisms. The results indicated that the original organic groups (C-H, C-C, C=O, C=C) were gradually replaced by the Si containing inorganic groups (Si-O-Si and Si-OH). The reduction of C=O in ester group and C=C in p-substituted benzene of the EP samples might be responsible for shallowing the trap level and then enhancing the flashover voltage. However, when the plasma treatment time was longer than 3 min, the significant increase of the surface roughness might increase the trap level depth and then deteriorate the flashover performance.
Vacuum Flashover Characteristics of Laminated Polystyrene Insulators
1999-06-01
space charge dominated. A minimum wafer thickness and/or the number of wafers required for the application can be calculated. Equation 1 represents...toward the anode. qn is the fraction of charge deposited on that section of the stack. Equation 1 comes from the assumption that a space charge ...Rodriguez, A.E., and Honig, E.M., "Characterization of an Insulated Space Charge Limited Non-Relativistic Electron Beam Diode Operating at 300 kV/cm
Temporal response of a surface flashover on a velvet cathode in a relativistic diode
Coleman, J. E.; Moir, D. C.; Crawford, M. T.; ...
2015-03-11
Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. Our objective is to quantify the dynamics over the ~100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. We present a qualitative comparison of calculated and measured results, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. Additionally, initial visible spectroscopy measurements will also be presentedmore » confirming the ion species are dominated by hydrogen.« less
Temporal response of a surface flashover on a velvet cathode in a relativistic diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, J. E.; Moir, D. C.; Crawford, M. T.
2015-03-15
Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. The principal objective of these experiments is to quantify the dynamics over the ∼100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. A qualitative comparison of calculated and measured results is presented, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. In addition, initial visible spectroscopy measurements willmore » also be presented confirming the ion species are dominated by hydrogen.« less
NASA Astrophysics Data System (ADS)
Huang, Meng; Wang, Lei; Ge, Yang; Lv, Yu-zhen; Qi, Bo; Li, Cheng-rong
2018-03-01
Creeping flashover easily occurs at the interface between oil and pressboard in transformer and thus results in outage of power transmission system. Investigations have shown that creeping flashover characteristics at oil/pressboard interface can be improved by the addition of TiO2 nanoparticles, but the mechanism is still not thoroughly known. In this work, creeping flashover performance at nanofluid/pressboard interface modified by different sizes of nanoparticles were studied and the mechanism was presented as well. Nanofluids with the same concentration but with different sizes of TiO2 nanoparticles were prepared, and pressboards impregnated with them were prepared as well. After that, their creeping flashover characteristics were measured and compared. Nanoparticle's size affected the creeping flashover performance along oil/pressboard greatly under both AC and lightning impulse voltages. The highest creeping flashover voltage can be enhanced by as high as 12.2% and 32.0% respectively. The underlying electric field distribution and charge transportation behaviors were analyzed to demonstrate the influence of nanoparticle's size. By the addition of nanoparticles with a smaller size, the dielectric constant of nanofluid was increased closer to that of the pressboard, thus they were matched better. Moreover, charge was easier to dissipate from the oil/pressboard interface and electric field distortion at the interface was consequently reduced. Therefore, the electric field was more like a uniform field and the forward development of flashover was more difficult, leading to a better performance of creeping flashover of oil-impregnated pressboard.
Pulse power switch development
NASA Astrophysics Data System (ADS)
Harvey, R.; Gallagher, H.; Hansen, S.
1980-01-01
The objective of this study program has been to define an optimum technical approach to the longer range goal of achieving practical high repetition rate high power spark gap switches. Requirements and possible means of extending the state of the art of crossed field closing switches, vacuum spark gaps, and pressurized spark gaps are presented with emphasis on reliable, efficient and compact devices operable in burst mode at 250-300 kV, 40-60 kA, =1 kHz with approximately 50 nsec pulses rising in approximately 3 ns. Models of these devices are discussed which are based upon published and generated design data and on underlying physical principles. Based upon its relative advantages, limitations and tradeoffs we conclude that the Hughes Crossatron switch is the nearest term approach to reach the switch goal levels. Theoretical, experimental, and computer simulation models of the plasma show a collective ion acceleration mechanism to be active which is predicted to result in current rise times approaching 10 nsec. A preliminary design concept is presented. For faster rise times we have shown a vacuum surface flashover switch to be an interesting candidate. This device is limited by trigger instabilities and will require further basic development. The problem areas relevant to high pressure spark gaps are reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong, E-mail: tjuliuyong@tju.edu.cn; Li, Zhonglei; Du, Boxue
Compared with neat silicone rubber composites (SiRCs), SiRCs filled with nano-sized SiO{sub 2} particles at weight ratios from 0.1 to 1.0 wt. % exhibit a higher surface flashover voltage and a greater resistance to surface tracking. Scanning electron microscopy images of tracking morphologies indicate that the SiO{sub 2} particles are situated in close proximity to the polymeric chains and act as bridges to stabilize the chains and maintain the structure of the composite. Higher concentrations of nano-sized SiO{sub 2} particles, however, (above 0.3 wt. %) produce defects in the molecular network which lead to reductions in both the surface flashover voltage and the resistancemore » to surface tracking, although these reduced values are still superior to those of neat SiRCs. Therefore, SiRCs filled with nano-sized SiO{sub 2} particles, especially at an optimal weight ratio (0.1 to 0.3 wt. %), may have significant potential applications as outdoor insulators for power systems.« less
Modeling of surface flashover on spacecraft
NASA Technical Reports Server (NTRS)
Kushner, Mark J.
1991-01-01
A model for predicting the onset of surface flashover discharges (SFDs) in the context of high voltage pulse power modulators was developed and used to investigate mechanisms leading to the onset of SFDs. We demonstrated that it is possible to analyze surface discharges in a manner similar to gas phase discharges using transport coefficients such as the first Townsend coefficient. Our parameterization of various methods to prevent, or at least delay, the onset of SFDs was not particularly successful in that many of the strategies that we investigated do not yield significantly improved performance. The only safe strategy to reduce the occurrence of SFDs is to prevent the dielectric from being charged in the first place. This leads one to consider passive or active schemes which employ the low pressure of attaching gases which flood the surface prior or coincident to pulsing the high voltage apparatus. Our calculations indicate that only small amounts gas (10s Torr effective pressure at substrate) would be sufficient for many of the anticipated applications. If the surface is flooded only when high voltage is applied across the dielectric, the gas consumption would be nominal.
Skin Effect Simulation for Area 11 Dense Plasma Focus Hot Plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meehan, B. Timothy
Two arc flashover events occurred at the DPF Area 11 facility. These flashover events happened in the same location on the bank current delivery plates. The damage from one of these events can be seen on the left-hand side of Figure 1. Since the flashovers occurred in the same area of the bank, and the reliability of the bank is important for future DPF experiments, a failure analysis effort was initiated. Part of this failure analysis effort was an effort to understand the physical reasons behind why the flashover happened, and why it happened in the same place twice. Thismore » paper summarizes an effort to simulate the current flow in the bank in order to understand the reasons for the flashover.« less
Voltage Sag due to Pollution Induced Flashover Across Ceramic Insulator Strings
NASA Astrophysics Data System (ADS)
Reddy B, Subba; Goswami, Arup Kumar
2017-11-01
Voltage sag or voltage dips are significant to industrial reliability. There is a necessity to characterize the feeder level power quality (PQ) and the PQ performance among various utility companies. Contamination/pollution induced flashover is the ultimate consequence of the creeping discharges across the insulator strings which induce voltage sag. These have a severe threat on the safe and reliable operation of power systems. In the present work an attempt has been made to experimentally investigate the occurrence of voltage sag/dips during pollution induced flashovers. Results show significant dip/sag in the voltage magnitude during the flashover process.
External insulation of electrified railway and energy saving analysis
NASA Astrophysics Data System (ADS)
Dun, Xiaohong
2018-04-01
Through the analysis of the formation process of insulator surface fouling and the cause of fouling of the insulator, the electrified railway was explored to utilize the coating material on the surface of the insulator to achieve the effect of flashover prevention. At the same time the purpose of energy conservation can be achieved.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jian Cang; Li, Rui; Zeng, Bo; Cheng, Jie; Zheng, Lei; Yu, Bin Xiong; Wu, Xiao Long; Zhang, Xi Bo; Pan, Ya Feng
2015-04-01
The critical pulse width (τc) is a pulse width at which the surface flashover threshold (Ef) is equal to the bulk breakdown threshold (EBD) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854-857]. In this paper, the mechanism of τc is interpreted in perspective of the threshold and the time delay (td) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse width decreases which are responsible for the existence of τc: (1) EBD is lower than Ef; (2) td of bulk breakdown is shorter than td of surface flashover. In addition, factors which have influences on τc are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τc is expected to increase: (1) factors causing EBD to decrease, such as increasing the pulse number or employing a dielectric of lower EBD; (2) factors causing Ef to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing EBD and Ef to increase together, but Ef increases faster than EBD, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τc for solid insulation design is presented and the significance of τc on solid insulation design and on solid demolition are discussed.
On the surface trapping parameters of polytetrafluoroethylene block
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Zhao, Wen-Bin; Yan, Zhang
2006-12-01
Surface flashover phenomena under high electric field are closely related to the surface characteristics of a solid insulating material between energized electrodes. Based on measuring the surface potential decaying curve of polytetrafluoroethylene (PTFE) block charged by a needle-plane corona discharge, its surface trapping parameters are calculated with the isothermal current theory, and the correlative curve between the surface trap density and its energy level is obtained. The maximum density of electron traps and hole traps in the surface layer of PTFE presents a similar value of ∼2.7 × 1017 eV-1 m-3, and the energy level of its electron and hole traps is of about 0.85-1.0 eV and 0.80-0.90 eV, respectively. Via the X-ray photoelectron spectroscopy (XPS) technique, the F, C, K and O elements are detected on the surface of PTFE samples, and F shows a remarkable atom proportion of ∼73.3%, quite different from the intrinsic distribution corresponding to its chemical formula. The electron traps are attributed to quantities of F atoms existing on the surface of PTFE due to its molecular chain with C atoms surrounded by F atoms spirally. It is considered that the distortions of chemical and electronic structure on solid surface are responsible for the flashover phenomena occurring at a low applied voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, V.; Grant, C. D.; McCarrick, J. F.
2012-03-01
A flashover arc source that delivered up to 200 mJ on the 100s-of-ns time-scale to the arc and a user-selected dielectric surface was characterized for studying high-explosive kinetics under plasma conditions. The flashover was driven over thin pentaerythritol tetranitrate (PETN) and poly(methyl methacrylate) (PMMA) dielectric films and the resultant plasma was characterized in detail. Time- and space-resolved temperatures and electron densities of the plasma were obtained using atomic emission spectroscopy. The hydrodynamics of the plasma was captured through fast, visible imaging. Fourier transform infrared spectroscopy (FTIR) was used to characterize the films pre- and post-shot for any chemical alterations. Time-resolvedmore » infrared spectroscopy (TRIR) provided PETN depletion data during the plasma discharge. For both types of films, temperatures of 1.6-1.7 eV and electron densities of {approx}7-8 x 10{sup 17}/cm{sup 3}{approx}570 ns after the start of the discharge were observed with temperatures of 0.6-0.7 eV persisting out to 15 {mu}s. At 1.2 {mu}s, spatial characterization showed flat temperature and density profiles of 1.1-1.3 eV and 2-2.8 x 10{sup 17}/cm{sup 3} for PETN and PMMA films, respectively. Images of the plasma showed an expanding hot kernel starting from radii of {approx}0.2 mm at {approx}50 ns and reaching {approx}1.1 mm at {approx}600 ns. The thin films ablated or reacted several hundred nm of material in response to the discharge. First TRIR data showing the in situ reaction or depletion of PETN in response to the flashover arc were successfully obtained, and a 2-{mu}s, 1/e decay constant was measured. Preliminary 1 D simulations compared reasonably well with the experimentally determined plasma radii and temperatures. These results complete the first steps to resolving arc-driven PETN reaction pathways and their associated kinetic rates using in situ spectroscopy techniques.« less
NASCAP simulation of laboratory charging tests using multiple electron guns
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Katz, I.; Parks, D. E.
1981-01-01
NASCAP calculations have been performed simulating exposure of a spacecraft-like model to multiple electron guns. The results agree well with experiment. It is found that magnetic field effects are fairly small, but substantial differential charging can result from electron gun placement. Conditions for surface flashover are readily achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Liang, E-mail: zhaoliang@ninit.ac.cn; Li, Rui; Zheng, Lei
2015-04-15
The critical pulse width (τ{sub c}) is a pulse width at which the surface flashover threshold (E{sub f}) is equal to the bulk breakdown threshold (E{sub BD}) for liquid-polymer composite insulation systems, which is discovered by Zhao et al. [Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE Dielectrics and Electrical Insulation Society, Shenzhen, China, 2013), Vol. 2, pp. 854–857]. In this paper, the mechanism of τ{sub c} is interpreted in perspective of the threshold and the time delay (t{sub d}) of surface flashover and bulk breakdown, respectively. It is found that two changes appear as the pulse widthmore » decreases which are responsible for the existence of τ{sub c}: (1) E{sub BD} is lower than E{sub f}; (2) t{sub d} of bulk breakdown is shorter than t{sub d} of surface flashover. In addition, factors which have influences on τ{sub c} are investigated, such as the dielectric type, the insulation length, the dielectric thickness, the dielectrics configuration, the pulse number, and the liquid purity. These influences of factors are generalized as three types if τ{sub c} is expected to increase: (1) factors causing E{sub BD} to decrease, such as increasing the pulse number or employing a dielectric of lower E{sub BD}; (2) factors causing E{sub f} to increase, such as complicating the insulator's configuration or increasing the liquid purity; (3) factors causing E{sub BD} and E{sub f} to increase together, but E{sub f} increases faster than E{sub BD}, such as decreasing the dielectric thickness or the insulation length. With the data in references, all the three cases are verified experimentally. In the end, a general method based on τ{sub c} for solid insulation design is presented and the significance of τ{sub c} on solid insulation design and on solid demolition are discussed.« less
NASA Astrophysics Data System (ADS)
Chen, Li; Yang, Lanjun; Qiu, Aici; Huang, Dong; Liu, Shuai
2018-01-01
Based on the surface flashover discharge, the injected plasma was generated, and the effects on the breakdown process of the trigatron gas switch were studied in this paper. The breakdown model caused by the injected plasma under the low working coefficient (<0.7) was established. The captured framing images showed that the injected plasma distorted the electrical field of the gap between the frontier of the injected plasma and the opposite electrode, making it easier to achieve the breakdown critical criterion. The calculation results indicated that the breakdown delay time was mainly decided by the development of the injected plasma, as without considering the effects of the photo-ionization and the invisible expansion process, the breakdown delay time of the calculation results was 20% higher than the experimental results. The morphology of the injected plasma generated by polyethylene surface flashover was more stable and regular than ceramic, leading to a 30% lower breakdown delay time when the working coefficient is larger than 0.2, and the difference increased sharply when the working coefficient is lower than 0.2. This was significant for improving the trigger performance of the trigatron gas switch under low working coefficient.
Room/corner tests of wall linings with 100/300 kW burner
M. A. Dietenberger; O. Grexa; R. H. White; M. S. Sweet; M. Janssens
1995-01-01
Six room/comer tests of common wall linings were conducted with gypsum-lined ceiling exposed to propane burning at 100 kW for 10 min followed by 300 kW for 10 min. This test protocol is an option provided by ISO 9705. The flashover event occurred at 1,000 kW rate of heat release within several seconds of observing flames out the doorway. The time to flashover of the...
Protection of Electrical Systems from EM Hazards - Design Guide.
1981-09-01
cm) Surface flashover Voltage (KV/cm) This criterion should be met for lighting voltage stresses of either polarity applied at up to 1000 KV/v sec rate...suppressor devices can be predicted. The part failure rate models in the handbook include the effects of part electrical stress , thermal stress , operating... stress . This test series contained over one million device hours of operation at temperatures uF to 145°C. The average duration of testing ranges from
Characterization of the Electrostatic Environment of Launchers
NASA Astrophysics Data System (ADS)
Soyah, Jamila; Mantion, Pascal; Herlem, Yannick
2016-05-01
The purpose of this study was to update knowledge in characterization of the electrostatic environment of launchers in order to be able to propose reductions of design constraints.The first part of this study showed that flashover discharges are the most energetic discharges likely to occur on a launcher. They are mostly due to accumulations of charges by triboelectricity on the external surface of the launcher while flying through clouds containing a lot of small solid particles.Actually flashover discharges are mitigated by limiting the surface's resistance of dielectric materials such as thermal protection set on the external skin of the launcher, thanks to antistatic paints that avoid significant accumulations of charges.But this specified limitation leads to a lot of non- conformances during production phases and, as a result, this leads to additional costs and delays in launches campaigns. That is why on-ground tests have been defined in order to assess the accessibility of a relaxation of those specifications, which would reduce non-conformances.On-ground tests have been carried out, in the second part, on samples of thermal protections covered with antistatic paints with different degraded values of surface resistance. These tests aimed at checking in which conditions a surface discharge can occur in order to deduce a relationship between characteristics of the samples (surface resistance, half-discharge time) and the occurrence of a surface discharge, at ambient pressure and at low pressure.In the third part, in-flight experiments have been defined in order to confirm some hypotheses considered in the study and to assess some parameters in a more accurate way like the incoming charges density per surface unit or the voltage between stages when they get separated, in order to assess more accurately whether the unwinding equalization wire dedicated to maintain the electrostatic balance between stages is necessary or not.
Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, G.; McGrath, P.B.; Burns, C.W.
1996-12-31
Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some ofmore » the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.« less
Investigation of the delay time distribution of high power microwave surface flashover
NASA Astrophysics Data System (ADS)
Foster, J.; Krompholz, H.; Neuber, A.
2011-01-01
Characterizing and modeling the statistics associated with the initiation of gas breakdown has proven to be difficult due to a variety of rather unexplored phenomena involved. Experimental conditions for high power microwave window breakdown for pressures on the order of 100 to several 100 torr are complex: there are little to no naturally occurring free electrons in the breakdown region. The initial electron generation rate, from an external source, for example, is time dependent and so is the charge carrier amplification in the increasing radio frequency (RF) field amplitude with a rise time of 50 ns, which can be on the same order as the breakdown delay time. The probability of reaching a critical electron density within a given time period is composed of the statistical waiting time for the appearance of initiating electrons in the high-field region and the build-up of an avalanche with an inherent statistical distribution of the electron number. High power microwave breakdown and its delay time is of critical importance, since it limits the transmission through necessary windows, especially for high power, high altitude, low pressure applications. The delay time distribution of pulsed high power microwave surface flashover has been examined for nitrogen and argon as test gases for pressures ranging from 60 to 400 torr, with and without external UV illumination. A model has been developed for predicting the discharge delay time for these conditions. The results provide indications that field induced electron generation, other than standard field emission, plays a dominant role, which might be valid for other gas discharge types as well.
Research on plasma-puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Venable, Demetrius D.; Han, Kwang S.
1993-01-01
The plasma-puff triggering mechanism based on hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. Research is presented and resulting conference papers are attached. These papers include 'Characteristics of Plasma-Puff Trigger for an Inverse-Pinch Plasma Switch'; 'Ultra-High-Power Plasma Switch INPUTS for Pulse Power Systems'; 'Characteristics of Switching Plasma in an Inverse-Pinch Switch'; 'Comparative Study of INPIStron and Spark Gap'; and 'INPIStron Switched Pulsed Power for Dense Plasma Pinches.'
The Principle and the Application of Self-cleaning Anti-pollution Coating in Power System
NASA Astrophysics Data System (ADS)
Zhao, Y. J.; Zhang, Z. B.; Liu, Y.; Wang, J. H.; Teng, J. L.; Wu, L. S.; Zhang, Y. L.
2017-11-01
The common problem existed in power system is analyzed in this paper. The main reason for the affection of the safe and stable operation to power equipment is flash-over caused by dirt and discharge. Using the self-cleaning anti-pollution coating in the power equipment surface is the key to solve the problem. In the work, the research progress and design principle about the self-cleaning anti-pollution coating was summarized. Furthermore, the preparation technology was also studied. Finally, the application prospect of hard self-cleaning anti-pollution coating in power system was forecast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menge, P.R.; Cuneo, M.E.; Hanson, D.L.
A magnetic spectrometer has been fielded on the coaxial magnetically insulated transmission line (MITL) of the SABRE ten-cavity inductive voltage adder operated in positive polarity (6 MV, 300 kA, 50 ns). Located 1 m upstream from an extraction ion diode, this diagnostic is capable of measuring the SABRE voltage pulse with a 2 ns resolution. Ions (protons and carbon) from either a flashover or plasma gun source are accelerated from the inner anode across the gap to the outer cathode and into a drift tube terminated by the magnetic spectrometer. The magnetically deflected ions are recorded on up to sixteenmore » PIN diodes (diameter = 1 mm, thickness = 35 {mu}). The voltage waveform is produced from the time-of-flight information. Results confirm previous observations of a vacuum wave precursor separated from the magnetically insulated wave. Verification of upstream precursor erosion techniques are possible with this instrument. Measurements of peak voltage show good agreement with other time-integrated voltage diagnostics. Comparisons with theoretical voltage predictions derived from a flow impedance model of MITL behavior will be presented.« less
NASA Astrophysics Data System (ADS)
Ueno, Hideki; Kawano, Taichi; Sakamoto, Naoki; Nakayama, Hiroshi
For a needle-plane electrode system with a barrier, which establishes the electric field across the axis of a groove, creeping discharge characteristics in N2 gas under µs pulse voltage applications have been investigated. The distance h between the barrier surface and the needle tip as well as the distance M between the groove center and the needle tip were changed. In the case of h=0.3mm, when the needle tip is located near the far-side groove edge from the plane electrode (M=0.6mm), the flashover voltage has the maximum value. At that time, a growth of a corona is suppressed near the groove edge. These unique characteristics should associate with a field relaxation.
Development of a head-phantom and measurement setup for lightning effects.
Machts, Rene; Hunold, Alexander; Leu, Carsten; Haueisen, Jens; Rock, Michael
2016-08-01
Direct lightning strikes to human heads lead to various effects ranging from Lichtenberg figures, over loss of consciousness to death. The evolution of the induced current distribution in the head is of great interest to understand the effect mechanisms. This work describes a technique to model a simplified head-phantom to investigate effects during direct lightning strike. The head-phantom geometry, conductive and dielectric parameters were chosen similar to that of a human head. Three layers (brain, skull, and scalp) were created for the phantom using agarose hydrogel doped with sodium chloride and carbon. The head-phantom was tested on two different impulse generators, which reproduce approximate lightning impulses. The effective current and the current distribution in each layer were analyzed. The biggest part of the current flowed through the brain layer, approx. 70 % in cases without external flashover. Approx. 23 % of the current flowed through skull layer and 6 % through the scalp layer. However, the current decreased within the head-phantom to almost zero after a complete flashover on the phantom occurred. The flashover formed faster with a higher impulse current level. Exposition time of current through the head decreases with a higher current level of the lightning impulse. This mechanism might explain the fact that people can survive a lightning strike. The experiments help to understand lightning effects on humans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacvarov, D.C.
1981-01-01
A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewari, Somesh Vinayak, E-mail: somesh-vinayak@yahoo.com, E-mail: svtewari@barc.gov.in; Sharma, Archana; Mittal, K. C.
An experimental investigation of surface flashover characteristics of PMMA and POM is studied in compressed nitrogen gas environment with nitrogen as the background gas. The operating pressure range is from 1kg/cm{sup 2} to 4kg/cm{sup 2}. It is observed that the breakdown voltage of PMMA is higher than POM owing to a higher permittivity mismatch between POM- nitrogen interface as compared to the PMMA- nitrogen interface. The reduction in spacer efficiency with pressure for PMMA is 11% as compared to POM which shows a higher reduction of 18%. This paper further emphasizes on the role of energy level and density ofmore » charge carrier trapping centers for a reduced breakdown voltage in POM as compared to PMMA.« less
NASA Astrophysics Data System (ADS)
Fang, Z.; Qiu, Y.; Kuffel, E.
2004-08-01
Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics.
Pulsed Plasma Electron Sources
NASA Astrophysics Data System (ADS)
Krasik, Yakov
2008-11-01
Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E < 10^5 V/cm this plasma is not uniform and there is a time delay in its formation. Thus, there is a continuous interest in research of electron sources which can be used for generation of uniform electron beams produced at E <= 10^5 V/cm. In the present report, several types of plasma electron source (PES) will be considered. The first type of PES is fiber-based cathodes, with and without CsI coating. The operation of these cathodes is governed by the formation of the flashover plasma which serves as a source of electrons. The second type of PES is the ferroelectric plasma source (FPS). The operation of FPS, characterized by the formation of dense surface flashover plasma is accompanied also by the generation of fast microparticles and energetic neutrals. The latter was explained by Coulomb micro-explosions of the ferroelectric surface due to an large time-varying electric field at the front of the expanding plasma. A short review of recent achievements in the operation of a multi-FPS-assisted hollow anode to generate a large area electron beam will be presented as well. Finally, parameters of the plasma produced by a multi-capillary cathode with FPS and velvet igniters will be discussed. Ya. E. Krasik, J. Z. Gleizer, D. Yarmolich, A. Krokhmal, V. Ts. Gurovich, S.Efimov, J. Felsteiner V. Bernshtam, and Yu. M. Saveliev, J. Appl. Phys. 98, 093308 (2005). Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, Phys. Plasmas 8, 2466 (2001). D. Yarmolich, V. Vekselman, V. Tz. Gurovich, and Ya. E. Krasik, Phys. Rev. Lett. 100, 075004 (2008). J. Z. Gleizer, Y. Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).
Breakdown Conditioning Chacteristics of Precision-Surface-Treatment-Electrode in Vacuum
NASA Astrophysics Data System (ADS)
Kato, Kastumi; Fukuoka, Yuji; Inagawa, Yukihiko; Saitoh, Hitoshi; Sakaki, Masayuki; Okubo, Hitoshi
Breakdown (BD) characteristics in vacuum are strongly dependent on the electrode surface condition, like the surface roughness etc. Therefore, in order to develop a high voltage vacuum circuit breaker, it is important to optimize the surface treatment process. This paper discusses about the effect of precision-surface-treatment of the electrode on breakdown conditioning characteristics under non-uniform electric field in vacuum. Experimental results reveal that the electrode surface treatment affects the conditioning process, especially the BD voltage and the BD field strength at the initial stage of the conditioning.
Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Xilin; Hong, Xiao; Wang, Han; Chen, Can; Zhao, Chenlong; Jia, Zhidong; Wang, Liming; Zou, Lin
2017-10-01
Silicone rubber composite materials have been widely used in high voltage transmission lines for anti-pollution flashover. The aging surface of silicone rubber materials decreases service properties, causing loss of the anti-pollution ability. In this paper, as an analysis method requiring no sample preparation that is able to be conducted on site and suitable for nearly all types of materials, laser-induced breakdown spectroscopy (LIBS) was used for the analysis of newly prepared and aging (out of service) silicone rubber composites. With scanning electron microscopy (SEM) and hydrophobicity test, LIBS was proven to be nearly non-destructive for silicone rubber. Under the same LIBS testing parameters, a linear relationship was observed between ablation depth and laser pulses number. With the emission spectra, all types of elements and their distribution in samples along the depth direction from the surface to the inner part were acquired and verified with EDS results. This research showed that LIBS was suitable to detect the aging layer depth and element distribution of the silicone rubber surface.
NASA Technical Reports Server (NTRS)
Zahlava, B. A. (Inventor)
1973-01-01
A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.
Development of a Modified Vacuum Cleaner for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.
2009-01-01
The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities varying pressure environments.
Development of a Modified Vacuum Cleaner for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.
2010-01-01
The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities at varying pressure environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyshev, Oleg B., E-mail: oleg.malyshev@stfc.ac.uk; Hogan, Benjamin T.; Pendleton, Mark
2014-09-01
The reduction of thermal outgassing from stainless steel by surface polishing or vacuum firing is well-known in vacuum technology, and the consequent use of both techniques allows an even further reduction of outgassing. The aim of this study was to identify the effectiveness of surface polishing and vacuum firing for reducing electron-stimulated desorption (ESD) from 316LN stainless steel, which is a frequently used material for particle accelerator vacuum chambers and components. It was found that, unlike for thermal outgassing, surface polishing does not reduce the ESD yield and may even increase it, while vacuum firing of nonpolished sample reduces onlymore » the H{sub 2} ESD yield by a factor 2.« less
NASA Astrophysics Data System (ADS)
Li, Jian; Wei, Yuan; Huang, Zhengyong; Wang, Feipeng; Yan, Xinzhu; Wu, Zhuolin
2017-05-01
Moisture is a significant factor that affects the insulation performance of outdoor high-voltage insulators in power systems. Accumulation of water droplets on insulators causes severe problems such as flashover of insulators and power outage. In this study, we develop a method to fabricate a micro/nano hierarchical super hydrophobic surface. The as-prepared super hydrophobic surface exhibits a water contact angle (WCA) of 160.4 ± 2°, slide angle (SA) less than 1° and surface free energy (SFE) of 5.99 mJ/m2. We investigated the electrohydropdynamic behavior of water droplet on a horizontal super hydrophobic surface compared with hydrophobic RTV silicone rubber surface which was widely used as anti-pollution coating or shed material of composite insulator. Results show that water droplet tended to a self-propelled motion on the super hydrophobic surface while it tended to elongate and break up on the RTV surface. The micro/nano hierarchical surface structure and chemical components with low surface free energy of the super hydrophobic surface jointly contributed to the reduction of skin fraction drag and subsequently made it possible for the motion of water droplet driven by electric field. Furthermore, the self-propelled motion of water droplets could also sweep away contaminations along its moving trace, which provides super hydrophobic surface a promising anti-pollution prospect in power systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkham, Harold
2012-08-31
In earlier work, a study done at the Pacific Northwest National Laboratory examined a NERC proposed standard specifying clearances between vegetation and power lines. The method proposed for calculating the clearances was based on the results of testing for high-voltage line designs. An equation developed to relate the results of testing with rod-plane gaps to proposed tower window sizes was incorporated into the calculations. The equation in question, sometimes called the “Gallet equation,” describes the insulation performance of the atmosphere for air gaps of a few meters. The equation was described in the PNNL study as a good and simple-to-usemore » way to solve a problem made difficult by the nonlinear interactions of the variables. For calculations based on this equation, a certain set of assumptions must be made. In particular, a value for a quantity called the “gap factor” is needed. This is the amount by which the gap to be modeled by the equation is stronger than the reference gap that was used in developing the Gallet equation. That reference gap is the gap between a rod and a plane. This follow-on report examines the effect on flashover probabilities of assuming an incorrect value for the gap factor. In particular, the flashover probability is found that would result from using a value of 1.3 when a gap factor of 1.0 should be applied. It is shown that with these assumptions the probability of a flashover changes from being extremely unlikely (about 1 in 1000 chance) to a virtual certainty (about 97% chance).« less
Complex technology of vacuum-arc processing of structural material surface
NASA Astrophysics Data System (ADS)
Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.
2015-08-01
The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.
NASA Astrophysics Data System (ADS)
Fang, Zhi; Qiu, Yuchang; Wang, Hui; E, Kuffel
2007-10-01
Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly.
BROMINATED FLAME RETARDANTS: WHY DO WE CARE?
Brominated flame retardants (BFRs) save lives and property by preventing the spread of fires or delaying the time of flashover, enhancing the time people have to escape. The worldwide production of BFRs exceeded 200,000 metric tons in 2003 placing them in the high production vol...
Research of vacuum polymer film on three-dimension surface (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bau, Yung-Han
2016-09-01
This study focused on UV-curable acrylic hybrid of solute in vacuum-deposited on the surface and make it smooth. On the surface coating of the entire process, including the pre-treatment of organic solutes, vacuum, nozzle pressure, airflow, frequency ratio, the surface of the rotation rate, nozzle angle, UV light irradiation time, waste solute recycling.Organic solutes through a flow meter and precise measured,by high pressure or vibration of a piezoelectric material, spray our organic solute in a certain degree of vacuum,leaving nozzle of tiny micro-mist volatiles in a vacuum to form secondary atomization,deposited our surface,Since no UV light irradiation, the surface is a liquid having fluidity, so the non-planar substrates can have good performance, finally it is irradiated by UV light of sufficient energy solidify to form a solid film.The advantage of this approach is that a smooth surface,Strong adhesion, low-cost equipment, low temperature, a wide range of high deposition rate can be combined with other deposition method,Under vacuum have not waste because excess paint can be recycled.Avoid solute direct contact with human, relative to the environment-friendly.
Comparative Evaluation of Vacuum-based Surface Sampling ...
Journal Article Following a biological contamination incident, collection of surface samples is necessary to determine the extent and level of contamination, and to deem an area safe for reentry upon decontamination. Current sampling strategies targeting Bacillus anthracis spores prescribe vacuum-based methods for rough and/or porous surfaces. In this study, four commonly-used B. anthracis spore sampling devices (vacuum socks, 37 mm 0.8 µm MCE filter cassettes, 37 mm 0.3 µm PTFE filter cassettes, and 3MTM forensic filters) were comparatively evaluated for their ability to recover surface-associated spores. The vacuum sock device was evaluated at two sampling speeds (slow and fast), resulting in five total methods evaluated. Aerosolized spores (~105 cm-2) of a surrogate Bacillus species (Bacillus atrophaeus) were allowed to settle onto three material types (concrete, carpet, and upholstery). Ten replicate samples were collected using each vacuum method, from each of the three material types. In addition, stainless steel (i.e., nonporous) surfaces inoculated simultaneously were sampled with pre-moistened wipes. Recoveries from wipes of steel surfaces were utilized to verify the inoculum, and to normalize vacuum-based recoveries across trials. Recovery (CFU cm-2) and relative recovery (vacuum recovery/wipe recovery) were determined for each method and material type. Relative recoveries were compared by one-way and three-way ANOVA. Data analysis by one-
41 CFR 102-80.145 - What is meant by “flashover”?
Code of Federal Regulations, 2010 CFR
2010-07-01
...”? Flashover means fire conditions in a confined area where the upper gas layer temperature reaches 600 °C (1100 °F) and the heat flux at floor level exceeds 20 kW/m2 (1.8 Btu/ft2/sec). Reasonable Worst Case...
41 CFR 102-80.145 - What is meant by “flashover”?
Code of Federal Regulations, 2011 CFR
2011-01-01
...”? Flashover means fire conditions in a confined area where the upper gas layer temperature reaches 600 °C (1100 °F) and the heat flux at floor level exceeds 20 kW/m2 (1.8 Btu/ft2/sec). Reasonable Worst Case...
Apparatus for coating a surface with a metal utilizing a plasma source
Brown, I.G.; MacGill, R.A.; Galvin, J.E.
1991-05-07
An apparatus and method are disclosed for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time. 10 figures.
Apparatus for coating a surface with a metal utilizing a plasma source
Brown, Ian G.; MacGill, Robert A.; Galvin, James E.
1991-01-01
An apparatus and method for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time.
Gordon, H.S.
1959-09-15
An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.
Norrgard, E B; Sitaraman, N; Barry, J F; McCarron, D J; Steinecker, M H; DeMille, D
2016-05-01
We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping, and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces. We describe a vacuum apparatus which uses multiple blackened copper surfaces for sensitive, low-background detection of molecules using laser-induced fluorescence.
NASA Astrophysics Data System (ADS)
Wang, Guodong; Ji, Huiqiang; Shen, Junling; Xu, Yonghao; Liu, Xiaolian; Fu, Ziyi
2018-04-01
The strong influences of temperature and vacuum on the optical properties of In0.3Ga0.7As surface quantum dots (SQDs) are systematically investigated by photoluminescence (PL) measurements. For comparison, optical properties of buried quantum dots (BQDs) are also measured. The line-width, peak wavelength, and lifetime of SQDs are significantly different from the BQDs with the temperature and vacuum varied. The differences in PL response when temperature varies are attributed to carrier transfer from the SQDs to the surface trap states. The obvious distinctions in PL response when vacuum varies are attributed to the SQDs intrinsic surface trap states inhibited by the water molecules. This research provides necessary information for device application of SQDs as surface-sensitivity sensors.
Ultrahigh vacuum process for the deposition of nanotubes and nanowires
Das, Biswajit; Lee, Myung B
2015-02-03
A system and method A method of growing an elongate nanoelement from a growth surface includes: a) cleaning a growth surface on a base element; b) providing an ultrahigh vacuum reaction environment over the cleaned growth surface; c) generating a reactive gas of an atomic material to be used in forming the nanoelement; d) projecting a stream of the reactive gas at the growth surface within the reactive environment while maintaining a vacuum of at most 1.times.10.sup.-4 Pascal; e) growing the elongate nanoelement from the growth surface within the environment while maintaining the pressure of step c); f) after a desired length of nanoelement is attained within the environment, stopping direction of reactive gas into the environment; and g) returning the environment to an ultrahigh vacuum condition.
Extreme-UV lithography vacuum chamber zone seal
Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.
2001-01-01
Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.
Extreme-UV lithography vacuum chamber zone seal
Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.
2003-04-08
Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.
Extreme-UV lithography vacuum chamber zone seal
Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.
2003-04-15
Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, HT; Lu, SH; Kuo, SH
2016-06-15
Purpose: When treating lung cancer patients with stereotactic body radiation therapy (SBRT), better immobilization is needed for accurate delivery of high-dose radiation. However, using a treatment couch (TrueBeamTM) and vacuum bag (BlueBAGTM) may increase the surface dose and skin toxicity. This study investigated the influence of couch and vacuum bag on the surface dose. Methods: The relative surface dose (D{sub 0}/DMAX) was measured in an ion-chamber (Markus-type PTW, 0.05cm{sup 3}) with a solid water phantom and SSD to 100 cm. A comprehensive comparison of different parameter settings, including the different energies (6MV-FFF, 10MV-FF, and 10MV-FFF), field sizes (3 X 3more » cm{sup 2}, 5 × 5 cm{sup 2}, 8 × x cm{sup 2} , 10 × 10 cm{sup 2}, and 15 × 15 cm{sup 2}), thickness of the vacuum bag (5mm, 15mm, 30mm, 39mm and 55mm), and couch (with and without), was performed. Results: The FFF increases the surface dose as compared to FF mode. In a similar setting with field of 10 × 10 cm{sup 2}, FFF mode increases the surface dose from 26.0% to 32.8% for 6 MV, and 17.4% to 21.5% for 10 MV. When the beam passes through the couch, the surface dose increases to 3.6, 4.6, 2.9, and 3.7 times for 6 MV-FF, 10 MV-FF, 6 MV-FFF, and 10 MV-FFF, respectively. At the same energy, the surface dose increases to 3.93, 4.11, 4.23, 4.16 and 4.24 times at 5 mm, 15 mm, 30 mm, 39 mm and 55 mm thickness of the vacuum, respectively. Conclusion: Using a couch and vacuum significantly increases the surface dose. For SBRT with a superficial target close to the couch and immobilization vacuum, reduction of vacuum thickness and careful attention to skin dose in planning would be helpful in avoiding severe skin toxicity.« less
NASA Astrophysics Data System (ADS)
Kesler, V. G.; Seleznev, V. A.; Kovchavtsev, A. P.; Guzev, A. A.
2010-05-01
X-ray photoelectron spectroscopy and atomic force microscopy were used to examine the chemical composition and surface morphology of InAs(1 1 1)A surface chemically etched in isopropanol-hydrochloric acid solution (HCl-iPA) and subsequently annealed in vacuum in the temperature range 200-500 °C. Etching for 2-30 min resulted in the formation of "pits" and "hillocks" on the sample surface, respectively 1-2 nm deep and high, with lateral dimensions 50-100 nm. The observed local formations, whose density was up to 3 × 10 8 cm -2, entirely vanished from the surface after the samples were vacuum-annealed at temperatures above 300 °C. Using a direct method, electron beam microanalysis, we have determined that the defects of the hillock type includes oxygen and excessive As, while the "pits" proved to be identical in their chemical composition to InAs. Vacuum anneals were found to cause a decrease in As surface concentration relative to In on InAs surface, with a concomitant rise of surface recombination rate.
Sensor for the working surface cleanliness definition in vacuum
NASA Astrophysics Data System (ADS)
Deulin, E. A.; Mashurov, S. S.; Gatsenko, A. A.
2016-07-01
Modern development of nanotechnology as one of the modern science priority directions is impossible to imagine without the use of vacuum systems and technologies. And the better the vacuum (lower the pressure), the “cleaner” we get a surface, which is very important for nanotechnology. Determination of the cleanliness of the surface or the amount of molecular layers of adsorbed gases on the working surface of the products especially in industry, where the cleanliness of the working surface is a key parameter of the technological process and has a significant influence on the output parameters of the final product is the main goal of this work.
Active hold-down for heat treating
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr. (Inventor)
1986-01-01
The object of the disclosure is to provide a vacuum hold-down for holding thin sheets to a support surface, which permits the thin sheet to change dimensions as it is held down. The hold-down includes numerous holes in the support surface, through which a vacuum is applied from a vacuum source. The holes are arranged in zones. The vacuum is repeatedly interrupted at only one or a few zones, while it continues to be applied to other zones, to allow the workpiece to creep along that interrupted zone. The vacuum to different zones is interrupted at different times, as by a slowly turning valve number, to allow each zone of the workpiece to creep. A positive pressure may be applied from a pressured air source to a zone when the vacuum is interrupted there, to help lift the corresponding workpiece zone off the surface to aid in creeping. The workpiece may undergo dimensional changes because of heating, cooling, drying, or other procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., complete sprinkler protection can be expected to prevent flashover in the room of fire origin, limit fire... the times required for egress. If a combination of fire protection systems provides a margin of safety... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., complete sprinkler protection can be expected to prevent flashover in the room of fire origin, limit fire... the times required for egress. If a combination of fire protection systems provides a margin of safety... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., complete sprinkler protection can be expected to prevent flashover in the room of fire origin, limit fire... the times required for egress. If a combination of fire protection systems provides a margin of safety... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., complete sprinkler protection can be expected to prevent flashover in the room of fire origin, limit fire... the times required for egress. If a combination of fire protection systems provides a margin of safety... Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...
Vacuum stability requirements of polymeric material for spacecraft application
NASA Technical Reports Server (NTRS)
Craig, J. W.
1984-01-01
The purpose of this document is to establish outgassing requirements and test guidelines for polymeric materials used in the space thermal/vacuum environment around sensitive optical or thermal control surfaces. The scope of this document covers the control of polymeric materials used near or adjacent to optical or thermal control surfaces that are exposed to the thermal/vacuum environment of space. This document establishes the requirements and defines the test method to evaluate polymeric materials used in the vicinity of these surfaces in space applications.
Surface cleaning for negative electron affinity GaN photocathode
NASA Astrophysics Data System (ADS)
Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang
2012-10-01
In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.
Beruto, Dario T; Botter, Rodolfo; Converti, Attilio
2009-02-01
Aluminum hydroxide gels were washed with water, ethanol, methanol and isopropanol to obtain new gels with different liquid phases that were dried either in air at 120 degrees C or under vacuum at 80 degrees C. Drying in air leads to alcoholic xerogels with BET surface areas larger than the aqueous ones. The effect of the alcoholic groups as substitutes of the hydroxyl ones has been discussed to account for the final size of xerogel crystallites. Drying under vacuum decreases the BET surface of the methanol xerogels, but no micropores are formed in all the alcoholic xerogel matrixes. On the contrary, the vacuum drying process changes significantly the microstructure of the aqueous xerogels. Their BET surface increases by 34 m(2)/g, and micropores are formed within their crystallite aggregates. It has been experimentally shown that these changes are due to a shear transformation that occurs in the boehmite xerogels obtained under vacuum. To discuss these data, the existence of chemical compounds such as AlOOHnH(2)O was postulated. On this ground, a neat analogy between vacuum drying process and vacuum interfacial decomposition reactions of inorganic salts can be drawn. This analogy explains how a state of stresses forms in aqueous xerogel matrix during vacuum drying process.
Solid-state acquisition of fingermark topology using dense columnar thin films.
Lakhtakia, Akhlesh; Shaler, Robert C; Martín-Palma, Raúl J; Motyka, Michael A; Pulsifer, Drew P
2011-05-01
Various vacuum techniques are employed to develop fingermarks on evidentiary items. In this work, a vacuum was used to deposit columnar thin films (CTFs) on untreated, cyanoacrylate-fumed or dusted fingermarks on a limited selection of nonporous surfaces (microscope glass slides and evidence tape). CTF deposition was not attempted on fingermarks deposited on porous surfaces. The fingermarks were placed in a vacuum chamber with the fingermark side facing an evaporating source boat containing either chalcogenide glass or MgF(2). Thermal evaporation of chalcogenide glass or MgF(2) under a 1 μTorr vacuum for 30 min formed dense CTFs on fingermark ridges, capturing the topographical features. The results show that it is possible to capture fingermark topology using CTFs on selected untreated, vacuumed cyanoacrylate-fumed or black powder-dusted nonporous surfaces. Additionally, the results suggested this might be a mechanism to help elucidate the sequence of deposition. © 2011 American Academy of Forensic Sciences.
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1993-11-09
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of standard polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, J.D.
1995-03-07
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1993-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers apparatus
Affinito, John D.
1996-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Vacuum deposition and curing of liquid monomers
Affinito, John D.
1995-01-01
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.
Metal sponge for cryosorption pumping applications
Myneni, Ganapati R.; Kneisel, Peter
1995-01-01
A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area.
Cathode surface effects and H.F.-behaviour of vacuum arcs
NASA Astrophysics Data System (ADS)
Fu, Yan Hong
To gain a better understanding of the essential processes occurring during a vacuum arc interruption for the further development of the vacuum arc circuit breaker, cathode spot behavior, current interruption, dielectrical recovery and overvoltage generation are investigated. An experimental study on cathode spot behavior of the DC vacuum arc in relation to cathode surface roughness and a qualitative physical model to interpret the results are reported. An experimental investigation on the High Frequency (HF) current interruption, multiple recognitions and voltage escalation phenomena is reported. A calculation program to predict the level of overvoltages generated by the operation of a vacuum breaker in a realistic single phase circuit is developed. Detailed results are summarized.
Leak test fixture and method for using same
Hawk, Lawrence S.
1976-01-01
A method and apparatus are provided which are especially useful for leak testing seams such as an end closure or joint in an article. The test does not require an enclosed pressurized volume within the article or joint section to be leak checked. A flexible impervious membrane is disposed over an area of the seamed surfaces to be leak checked and sealed around the outer edges. A preselected vacuum is applied through an opening in the membrane to evacuate the area between the membrane and the surface being leak checked to essentially collapse the membrane to conform to the article surface or joined adjacent surfaces. A pressure differential is concentrated at the seam bounded by the membrane and only the seam experiences a pressure differential as air or helium molecules are drawn into the vacuum system through a leak in the seam. A helium detector may be placed in a vacuum exhaust line from the membrane to detect the helium. Alternatively, the vacuum system may be isolated at a preselected pressure and leaks may be detected by a subsequent pressure increase in the vacuum system.
Fire endurance research at the Forest Products Laboratory
R. H. White
1990-01-01
Fire endurance research activities and facilities at the FPL concern the ability of a wood member or assembly to withstand the effects of fire while acting as a fire barrier and supporting a load. Fire endurance is generally concerned with the post-flashover portion of the fire. The importance of fire endurance in fire safety is reflected in building code requirements...
Metal sponge for cryosorption pumping applications
Myneni, G.R.; Kneisel, P.
1995-12-26
A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.
Wall Climbing Micro Ground Vehicle (MGV)
2013-09-01
magnetic attraction, (2) vacuum suction, (3) bio-mimetic techniques such as gecko pads, and (4) adhesion forces generated by aerodynamic principles, also...large attractive forces, but are limited to ferrous surfaces. Vacuum suction, such as in suction cups, also has the ability to create large adhesion...clean. Vortex adhesion does not require a perfect seal like vacuum suction and has the ability to travel over porous surfaces such as brick and
Recent advances in vacuum sciences and applications
NASA Astrophysics Data System (ADS)
Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.
2014-04-01
Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.
Vacuum deposition and curing of liquid monomers apparatus
Affinito, J.D.
1996-08-20
The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface. 3 figs.
Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.
Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J
2015-03-28
Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).
Sulfur in vacuum - Sublimation effects on frozen melts, and applications to Io's surface and torus
NASA Astrophysics Data System (ADS)
Nash, D. B.
1987-10-01
The author has found from laboratory experiments that vacuum sublimation has a profound effect on the molecular composition, microtexture, bulk density (porosity), and the UV/visible spectral reflectance of the surface of solid sulfur samples, both when the sulfur is in the form of frozen or quenched melts and as laboratory-grade sulfur powder. These sublimation effects produce a unique surface material, the understanding of which may have important implications for deciphering the many enigmatic optical and textural properties of the surface of Jupiter's satellite Io. This planetary body is thought to have a surface greatly enriched in volcanically produced elemental sulfur and sulfur compounds and to have a surface atmospheric pressure with an upper limit of ≡10-7atm, comparable to a good laboratory vacuum, and surface hotspots at temperatures of about 300K covering about 0.3% of its global surface.
Enhanced Photocatalytic Activity of Vacuum-activated TiO2 Induced by Oxygen Vacancies.
Dong, Guoyan; Wang, Xin; Chen, Zhiwu; Lu, Zhenya
2018-05-01
TiO 2 (Degussa P25) photocatalysts harboring abundant oxygen vacancies (Vacuum P25) were manufactured using a simple and economic Vacuum deoxidation process. Control experiments showed that temperature and time of vacuum deoxidation had a significant effect on Vacuum P25 photocatalytic activity. After 240 min of visible light illumination, the optimal Vacuum P25 photocatalysts (vacuum deoxidation treated at 330 °C for 3 h) reach as high as 94% and 88% of photodegradation efficiency for rhodamine B (RhB) and tetracycline, respectively, which are around 4.5 and 4.9 times as that of pristine P25. The XPS, PL and EPR analyses indicated that the oxygen vacancies were produced in the Vacuum P25 during the vacuum deoxidation process. The oxygen vacancy states can produce vacancy energy level located below the conduction band minimum, which resulting in the bandgap narrowing, thus extending the photoresponse wavelength range of Vacuum P25. The positron annihilation analysis indicated that the concentrations ratio of bulk and surface oxygen vacancies could be adjusted by changing the vacuum deoxidation temperature and time. Decreasing the ratio of bulk and surface oxygen vacancies was shown to improve photogenerated electron-hole pair separation efficiency, which leads to an obvious enhancement of the visible photocatalytic activities of Vacuum P25. © 2017 The American Society of Photobiology.
InP Transferred Electron Cathodes: Basic to Manufacturing Methods
2007-08-29
Source: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films ; January/February 2003; v.21, no.1, p.219-225 Optimization and...Vacuum, Surfaces and Films ; Sept/Oct 2007 V. 25, No. 5 List of papers submitted or published that acknowledge ARO support during this reporting period...technologies. Night vision devices gather existing ambient light (starlight, moonlight or infra-red light) through a front lens. This light goes into a
Flow Visualization Proposed for Vacuum Cleaner Nozzle Designs
NASA Technical Reports Server (NTRS)
2005-01-01
In 1995, the NASA Lewis Research Center and the Kirby Company (a major vacuum cleaner company) began negotiations for a Space Act Agreement to conduct research, technology development, and testing involving the flow behavior of airborne particulate flow behavior. Through these research efforts, we hope to identify ways to improve suction, flow rate, and surface agitation characteristics of nozzles used in vacuum cleaner nozzles. We plan to apply an advanced visualization technology, known as Stereoscopic Imaging Velocimetry (SIV), to a Kirby G-4 vacuum cleaner. Resultant data will be analyzed with a high-speed digital motion analysis system. We also plan to evaluate alternative vacuum cleaner nozzle designs. The overall goal of this project is to quantify both velocity fields and particle trajectories throughout the vacuum cleaner nozzle to optimize its "cleanability"--its ability to disturb and remove embedded dirt and other particulates from carpeting or hard surfaces. Reference
Brown, Gary S; Betty, Rita G; Brockmann, John E; Lucero, Daniel A; Souza, Caroline A; Walsh, Kathryn S; Boucher, Raymond M; Tezak, Matthew S; Wilson, Mollye C
2007-07-01
Vacuum filter socks were evaluated for recovery efficiency of powdered Bacillus atrophaeus spores from two non-porous surfaces, stainless steel and painted wallboard and two porous surfaces, carpet and bare concrete. Two surface coupons were positioned side-by-side and seeded with aerosolized Bacillus atrophaeus spores. One of the surfaces, a stainless steel reference coupon, was sized to fit into a sample vial for direct spore removal, while the other surface, a sample surface coupon, was sized for a vacuum collection application. Deposited spore material was directly removed from the reference coupon surface and cultured for enumeration of colony forming units (CFU), while deposited spore material was collected from the sample coupon using the vacuum filter sock method, extracted by sonication and cultured for enumeration. Recovery efficiency, which is a measure of overall transfer effectiveness from the surface to culture, was calculated as the number of CFU enumerated from the filter sock sample per unit area relative to the number of CFU enumerated from the co-located reference coupon per unit area. The observed mean filter sock recovery efficiency from stainless steel was 0.29 (SD = 0.14, n = 36), from painted wallboard was 0.25 (SD = 0.15, n = 36), from carpet was 0.28 (SD = 0.13, n = 40) and from bare concrete was 0.19 (SD = 0.14, n = 44). Vacuum filter sock recovery quantitative limits of detection were estimated at 105 CFU m(-2) from stainless steel and carpet, 120 CFU m(-2) from painted wallboard and 160 CFU m(-2) from bare concrete. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling for biological agents such as Bacillus anthracis.
VACUUM SEALING MEANS FOR LOW VACUUM PRESSURES
Milleron, N.
1962-06-12
S>A vacuum seal is designed in which the surface tension of a thin layer of liquid metal of low vapor pressure cooperates with adjacent surfaces to preclude passages of gases across pressure differentials as low as 10/sup -8/ mm Hg. Mating contiguous surfaces composed of copper, brass, stainless steel, nickel, molybdenum, tungsten, tantalum, glass, quartz, and/or synthetic mica are disposed to provide a maximum tolerance, D, expressed by 2 gamma /P/sub 1/, where gamma is the coefflcient of the surface tension of the metal sealant selected in dynes/cm/sub 2/. Means for heating the surfaces remotely is provided where temperatures drop below about 250 deg C. A sealant consisting of an alloy of gallium, indium, and tin, among other combinations tabulated, is disposed therebetween after treating the surfaces to improve wettability, as by ultrasonic vibrations, the surfaces and sealants being selected according to the anticipated experimental conditions of use. (AEC)
2012-08-01
AFRL-RX-WP-TP-2012-0412 VACUUM LEVELS NEEDED TO SIMULATE INTERNAL FATIGUE CRACK GROWTH IN TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS...LEVELS NEEDED TO SIMULATE INTERNAL FATIGUE CRACK GROWTH IN TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS: THERMAODYNAMIC CONSIDERATIONS (PREPRINT) 5a...have examined fatigue growth of surface cracks in vacuum to simulate sub-surface growth in Ti- alloys and Ni - base superalloys. Even with the highest
Friction and wear of plasma-deposited diamond films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.
1993-01-01
Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.
Surface plasmon polaritons and waveguide modes at structured and inhomogeneous surfaces
NASA Astrophysics Data System (ADS)
Polanco, Javier
In chapter 1, properties of a p-polarized surface plasmon polariton are studied, propagating circumferentially around a portion of a cylindrical interface between vacuum and a metal, a situation investigated earlier by M. V. Berry (J. Phys. A: Math. Gen. 8, (1975) 1952). When the metal is convex toward the vacuum this mode is radiative and consequently is attenuated as it propagates on the cylindrical surface. An approximate analytic solution of the dispersion relation for this wave is obtained by an approach different from the one used by Berry, and plots of the real and imaginary parts of its wave number are presented. When the metal is concave to the vacuum, the resulting dispersion relation possesses a multiplicity of solutions that have the nature of waveguide modes that owe their existence to the curvature of the interface. In chapter 2, the reduced Rayleigh equation for the scattering of a surface plasmon polariton incident normally on a one-dimensional ridge or groove on an otherwise planar metal surface is solved by a purely numerical approach. The solution is used to calculate the reflectivity and transmissivity of the surface plasmon polariton, and its conversion into volume electromagnetic waves in the vacuum above the metal surface. The results obtained are compared with those of earlier calculations of these quantities. In chapter 3, the results of the previous chapter are extended to the scattering of a surface plasmon polariton incident non-normally on a one-dimensional ridge or groove on an otherwise planar metal surface. As before, the reflectivity and transmissivity of the surface plasmon polariton are calculated, and its conversion into volume electromagnetic waves in the vacuum above the metal surface. In chapter 4, the dynamics of the scattering of surface plasmon polariton (SPP) pulses are investigated theoretically, by single nanoscale metal Gaussian defects through a rigorous calculation of the time dependence of the reflected and transmitted SPP and of the angular distribution of the scattered light.
NASA Astrophysics Data System (ADS)
Burton, A. S.; Berger, E. L.; Locke, D. R.; Lewis, E. K.; Moore, J. F.
2018-04-01
Laser microprobe of surfaces utilizing a two laser setup whereby the desorption laser threshold is lowered below ionization, and the resulting neutral plume is examined using 157nm Vacuum Ultraviolet laser light for mass spec surface mapping.
Method of radiation degradation of PTFE under vacuum conditions
NASA Astrophysics Data System (ADS)
Korenev, Sergey
2004-09-01
A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.
Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K
2010-10-15
Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.
Surface enhanced Raman scattering of aged graphene: Effects of annealing in vacuum
NASA Astrophysics Data System (ADS)
Wang, Yingying; Ni, Zhenhua; Li, Aizhi; Zafar, Zainab; Zhang, Yan; Ni, Zhonghua; Qu, Shiliang; Qiu, Teng; Yu, Ting; Xiang Shen, Ze
2011-12-01
In this paper, we report a simple method to recover the surface enhanced Raman scattering activity of aged graphene. The Raman signals of Rhodamine molecules absorbed on aged graphene are dramatically increased after vacuum annealing and comparable to those on fresh graphene. Atomic force microscopy measurements indicate that residues on aged graphene surface can efficiently be removed by vacuum annealing, which makes target molecule closely contact with graphene. We also find that the hole doping in graphene will facilitate charge transfer between graphene and molecule. These results confirm the strong Raman enhancement of target molecule absorbed on graphene is due to the charge transfer mechanism.
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Gregory, Don A.
2006-01-01
Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.
Laser Surface Melting of Stainless Steel Anodes for Reduced Hydrogen Outgassing (Postprint)
2016-12-29
including baking [8– 12], vacuum baking [8,11,13,14], polishing [8,14], and surface treatments to create oxide or other protective surface films. Elec...quantity [15] and may necessitate an additional bake to thoroughly degas the surface [8]. The purpose of the work described here was to determine the...9] M. Bernardini, Air bake -out to reduce hydrogen outgassing from stainless steel, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 16 (1998) 188–193.4
Sulfur in vacuum - Sublimation effects on frozen melts, and applications to Io's surface and torus
NASA Technical Reports Server (NTRS)
Nash, Douglas B.
1987-01-01
Vacuum sublimation effects on solid sulfur yield a form of the element that is white at room temperature, is fluffy in texture, and forms on frozen sulfur in vacuum through differential evaporation of molecular species in the solid. This vacuum sulfur should exist in large quantity on Io, if the solid free sulfur there has solidified from a melt; a sulfur volcanism model for Io is accordingly developed on this basis which implies that the color and spectra of different sulfur regions of Io could indicate their relative crystallization ages and cooling histories. The flux of sublimating hotspot sulfur appears consistent with estimated turnover rates of the Io surface.
High voltage pulse conditioning
Springfield, Ray M.; Wheat, Jr., Robert M.
1990-01-01
Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.
2010-03-31
A Extruder B Melt Pump B Melt Pump A AB Feedblock Layer Multipliers Surface Layer Feedblock Surface Layer Extruder Skin Skin Nanolayers Number of...enough to enable accurate machining. Customarily, optics are held in place using vacuum chucks during the diamond turning process. The force with...which optics can be secured this way is proportional to their surface area. By ensuring that the vacuum force is larger than any forces imparted on
Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments
NASA Astrophysics Data System (ADS)
Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.
1999-02-01
We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.
Characteristics of plasma-puff trigger for a inverse-pinch plasma switch
NASA Technical Reports Server (NTRS)
Choi, Eun H.; Venable, Demetrius D.; Han, Kwang S.; Lee, Ja H.
1993-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressure of Ar, He and N2. The optimal fill-gas pressure range for the azimuthally uniform plasma-puff was about 120 mTorr less than or equal to P(sub op) less than or equal to 450 Torr for He and N2. For Argon 120 mTorr is less than or equal to P(sub op) is less than or equal to 5 Torr. The inverse-pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. The azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff will be discussed in comparison with the current hypocycloidal-pinch plasma-puff triggering.
Modified corrosion protection coatings for Concrete tower of Transmission line
NASA Astrophysics Data System (ADS)
Guo, Kai; Jing, Xiangyang; Wang, Hongli; Yue, Zengwu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong; Fan, Zhibin
2017-12-01
By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM) and infrared spectrometer (FT-IR) characterization were carried out on the coating surface analysis. With the use of modified epoxy resin as the base material, the supplemented by phosphate as a corrosion stabilizer, to achieve a corrosion of steel and galvanized steel with rust coating. Paint with excellent adhesion, more than 10MPa (1), resistant to neutral salt spray 1000h does not appear rust point. At the same time coating a large amount of ultra-fine zinc powder can be added for the tower galvanized layer zinc repair function, while the paint in the zinc powder for the tower to provide sacrificial anode protection, to achieve self-repair function of the coating. Compared to the market with a significant reduction in the cost of rust paint, enhance the anti-corrosion properties.
Compact vacuum tubes with GaAs(Cs,O) photocathodes for studying spin-dependent phenomena
NASA Astrophysics Data System (ADS)
Alperovich, V. L.; Orlov, D. A.; Grishaev, V. G.; Kosolobov, S. N.; Jaroshevich, A. S.; Scheibler, H. E.; Terekhov, A. S.
2009-08-01
Compact proximity focused vacuum tubes with GaAs(Cs,O) photocathodes are used for experimental studying spindependent phenomena. Firstly, spin-dependent emission of optically oriented electrons from p-GaAs(Cs,O) into vacuum in a magnetic field normal to the surface was observed in a nonmagnetic vacuum diode. This phenomenon is explained by the jump in the electron g-factor at the semiconductor-vacuum interface. Due to this jump, the effective electron affinity on the semiconductor surface depends on the mutual direction of optically oriented electron spins and the magnetic field, resulting in the spin-dependent photoemission. It is demonstrated that the observed effect can be used for the determination of spin diffusion length in semiconductors. Secondly, we developed a prototype of a new spin filter, which consists of a vacuum tube with GaAs(Cs,O) photocathode and a nickel-covered venetian blind dynode. Preliminary results on spin-dependent reflection of electrons from the oxidized polycrystal nickel layer are presented.
NASA Astrophysics Data System (ADS)
Kövér, László
2014-10-01
This Special Issue of the journal Applied Surface Science contains full papers from a selection of contributions presented in the Applied Surface Science sessions of the 19th International Vacuum Congress (IVC-19) held in the Palais des Congrès, Paris, between September 9 and 13, 2013. The triennial IVC conferences represent major meetings in the field of the vacuum related sciences and are the largest scientific events of the International Union for Vacuum Science, Technique and Applications (IUVSTA). The IVC-19 and partner conferences had altogether 2555 participants. Supported by the Applied Surface Science Division of IUVSTA, the Applied Surface Science part was one of the most attended among the sub-conferences of the IVC-19. This Special Issue - without trying to achieve completeness - intends to provide a cross section of the topics of the Applied Surface Science and joint sessions of the IVC-19, covering important fields such as Surface Analysis, Surface Modifications, Surface Chemistry and Catalysis, Quantitative Surface and Interface Analysis, Coatings, Tribology, Adhesion, Characterization of Nanomaterials, Energy and Sustainable Development, Self Assembly, Nano-instrumentation, SPM and Novel Probe Techniques, New Approaches and Novel Applications of Surface/Interface Analytical Methods.
Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments
NASA Astrophysics Data System (ADS)
Moeller, Trevor M.; Montgomery Smith, L.; Collins, Frank G.; Labello, Jesse M.; Rogers, James P.; Lowry, Heard S.; Crider, Dustin H.
2012-11-01
Standard vacuum practices mitigate the presence of water vapor and contamination inside cryogenic vacuum chambers. However, anomalies can occur in the facility that can cause the accumulation of amorphous water ice on optics and test articles. Under certain conditions, the amorphous ice on optical components shatters, which leads to a reduction in signal or failure of the component. An experiment was performed to study and measure the deposition of water (H2O) ice on optical surfaces under high-vacuum cryogenic conditions. Water was introduced into a cryogenic vacuum chamber, via a hydrated molecular sieve zeolite, through an effusion cell and impinged upon a quartz-crystal microbalance (QCM) and first-surface gold-plated mirror. A laser and photodiode setup, external to the vacuum chamber, monitored the multiple-beam interference reflectance of the ice-mirror configuration while the QCM measured the mass deposition. Data indicates that water ice, under these conditions, accumulates as a thin film on optical surfaces to thicknesses over 45 microns and can be detected and measured by nonintrusive optical methods which are based upon multiple-beam interference phenomena. The QCM validated the interference measurements. This experiment established proof-of-concept for a miniature system for monitoring ice accumulation within the chamber.
Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling
NASA Astrophysics Data System (ADS)
Donnarumma, Fabrizio; Camp, Eden E.; Cao, Fan; Murray, Kermit K.
2017-09-01
Infrared laser ablation coupled to vacuum capture was employed to collect material from fingermarks deposited on surfaces of different porosity and roughness. Laser ablation at 3 μm was performed in reflection mode with subsequent capture of the ejecta with a filter connected to vacuum. Ablation and capture of standards from fingermarks was demonstrated on glass, plastic, aluminum, and cardboard surfaces. Using matrix assisted laser desorption ionization (MALDI), it was possible to detect caffeine after spiking with amounts as low as 1 ng. MALDI detection of condom lubricants and detection of antibacterial peptides from an antiseptic cream was demonstrated. Detection of explosives from fingermarks left on plastic surfaces as well as from direct deposition on the same surface using gas chromatography mass spectrometry (GC-MS) was shown. [Figure not available: see fulltext.
Low earth orbit durability evaluation of Haynes 188 solar receiver material
NASA Technical Reports Server (NTRS)
De Groh, Kim K.; Rutledge, Sharon K.; Burke, Christopher A.; Dever, Therese M.; Olle, Raymond M.; Terlep, Judith A.
1992-01-01
The effects of elevated-temperature vacuum and elevated-temperature atomic oxygen exposure on the mass, surface chemistry, surface morphology, and optical properties of Haynes 188, a possible heat receiver material for space-based solar dynamic power systems, have been studied. Pristine and surface modified Haynes 188 were exposed to vacuum less than or equal to 10 exp -6 torr at 820 C for 5215.5 h, and to atomic oxygen in an air plasma asher at 34 and 827 C for fluences up to 5.6 x 10 exp 21 atoms/sq cm. Results obtained indicate that vacuum heat treatment caused surface morphology and chemistry changes with corresponding optical property changes. Atomic oxygen exposure caused optical property changes which diminished with time. Mass changes are considered to be negligible for both exposures.
Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling.
Donnarumma, Fabrizio; Camp, Eden E; Cao, Fan; Murray, Kermit K
2017-09-01
Infrared laser ablation coupled to vacuum capture was employed to collect material from fingermarks deposited on surfaces of different porosity and roughness. Laser ablation at 3 μm was performed in reflection mode with subsequent capture of the ejecta with a filter connected to vacuum. Ablation and capture of standards from fingermarks was demonstrated on glass, plastic, aluminum, and cardboard surfaces. Using matrix assisted laser desorption ionization (MALDI), it was possible to detect caffeine after spiking with amounts as low as 1 ng. MALDI detection of condom lubricants and detection of antibacterial peptides from an antiseptic cream was demonstrated. Detection of explosives from fingermarks left on plastic surfaces as well as from direct deposition on the same surface using gas chromatography mass spectrometry (GC-MS) was shown. Graphical Abstract ᅟ.
Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1999-01-01
The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1973-01-01
The environmental heat flux routine version 4, (EHFR-4) is a generalized computer program which calculates the steady state and/or transient thermal environments experienced by a space system during lunar surface, deep space, or thermal vacuum chamber operation. The specific environments possible for EHFR analysis include: lunar plain, lunar crater, combined lunar plain and crater, lunar plain in the region of spacecraft surfaces, intervehicular, deep space in the region of spacecraft surfaces, and thermal vacuum chamber generation. The EHFR was used for Extra Vehicular Mobility Unit environment analysis of the Apollo 11-17 missions, EMU manned and unmanned thermal vacuum qualification testing, and EMU-LRV interface environmental analyses.
X-Ray Photoelectron Spectroscopy and Tribology Studies of Annealed Fullerene-like WS2 Nanoparticles
NASA Astrophysics Data System (ADS)
Kopnov, F.; Tenne, R.; Späth, B.; Jägermann, W.; Cohen, H.; Feldman, Y.; Zak, A.; Moshkovich, A.; Rapoport, L.
The temporal chemical changes occurring at the surface of fullerene-like (IF) nanoparticles of WS2 were investigated using X-ray photo-electron spectroscopy (XPS) and compared to those of bulk powder (2H) of the same material. It is possible to follow the long term (surface oxidation and carbonization) occurring at defects on the outermost surface (0001) layer of the fullerene-like nanoparticles. Similar but perhaps more distinctive changes are observed on the prismatic (hk0) surfaces of the 2H powder. Vacuum annealing is shown to remove most of these changes and bring the surface close to its stoichiometric composition. In accordance with previous measurements, further evidence is obtained for the existence of water molecules which are entrapped in the hollow core and interstitial defects of the fullerene-like nanoparticles during the synthesis. They are also shown to be removed by the vacuum annealing process. Chemically resolved electrical measurements (CREM) in the XPS show that the vacuum annealed IF samples become more intrinsic. Finally, tribological measurements show that the vacuum annealed IF samples perform better as an additive to oil than the non-annealed IF samples and the bulk (2H) platelets powder.
Guillemot, F; Porté, M C; Labrugère, C; Baquey, Ch
2002-11-01
Because of the Ti(3+) defects responsibility for dissociative adsorption of water onto TiO(2) surfaces and due to the hydroxyls influence on the biological behavior of titanium, controlling the Ti(3+) surface defects density by means of low-temperature vacuum annealing is proposed to improve the bone/implant interactions. Experiments have been carried out on Ti-6Al-4V alloys exhibiting a porous surface generated primarily by chemical treatment. XPS investigations have shown that low-temperature vacuum annealing can create a controlled number of Ti(3+) defects (up to 21% Ti(3+)/Ti(4+) at 573 K). High Ti(3+) defect concentration is linked to surface porosity. Such surfaces, exhibiting high hydrophilicity and microporosity, would confer to titanium biomaterials a great ability to interact with surrounding proteins and cells and hence would favor the bone anchorage of as-treated implants.
Vacuum boilers developed heating surfaces technic and economic efficiency evaluation
NASA Astrophysics Data System (ADS)
Slobodina, E. N.; Mikhailov, A. G.; Semenov, B. A.
2018-01-01
The vacuum boilers as manufacturing proto types application analysis was carried out, the possible directions for the heating surfaces development are identified with a view to improving the energy efficiency. Economic characteristics to evaluate the vacuum boilers application efficiency (Net Discounted Income (NDI), Internal Rate of Return (IRR), Profitability Index (PI) and Payback Period) are represented. The given type boilers application technic and economic efficiency criteria were established. NDI changing curves depending on the finning coefficient and operating pressure were obtained as a result of the conducted calculation studies.
Veronese geometry and the electroweak vacuum moduli space
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Jejjala, Vishnu; Matti, Cyril; Nelson, Brent D.
2014-09-01
We explain the origin of the Veronese surface in the vacuum moduli space geometry of the MSSM electroweak sector. While this result appeared many years ago using techniques of computational algebraic geometry, it has never been demonstrated analytically. Here, we present an analytical derivation of the vacuum geometry of the electroweak theory by understanding how the F- and D-term relations lead to the Veronese surface. We moreover give a detailed description of this geometry, realising an extra branch as a zero-dimensional point when quadratic Higgs lifting deformations are incorporated into the superpotential.
Modelling of crater formation on anode surface by high-current vacuum arcs
NASA Astrophysics Data System (ADS)
Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura
2016-11-01
Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.
Pseudo ribbon metal ion beam source.
Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A
2014-02-01
The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.
Preparation of W/CuCrZr mono-block test mock-up using vacuum brazing technique
NASA Astrophysics Data System (ADS)
Premjit Singh, K.; Khirwadkar, S.; Bhope, Kedar; Patel, Nikunj; Mokaria, Prakash
2017-04-01
Development of the joining for W/CuCrZr mono-block PFC test mock-up is an interesting area in Fusion R&D. W/Cu bimetallic material has been prepared using OFHC Copper casting approach on the radial surface of W mono-block tile surface. The W/Cu bimetallic material has been joined with CuCrZr tube (heat sink) material with the vacuum brazing route. Vacuum brazing of W/Cu-CuCrZr has been performed @ 970°C for 10 min using NiCuMn-37 filler material under deep vacuum environment (10-6 mbar). Graphite fixture was used for OFHC Copper casting and vacuum brazing experiments. The joint integrity of W/Cu-CuCrZr mono-block mock-up of W/Cu and Cu-CuCrZr interface has been checked using ultrasonic immersion technique. The result of the experimental work is presented in the paper.
NASA Technical Reports Server (NTRS)
Wang, J. T.
1972-01-01
A flight test was conducted and compared with ground test data. Sixteen typical spacecraft material couples were mounted on an experimental research satellite in which a motor intermittently drove the spherical moving specimens across the faces of the fixed flat specimens in an oscillating motion. Friction coefficients were measured over a period of 14-month orbital time. Surface-to-surface sliding was found to be the controlling factor of generating friction in a vacuum environment. Friction appears to be independent of passive vacuum exposure time. Prelaunch and postlaunch tests identical to the flight test were performed in an oil-diffusion-pumped ultrahigh vacuum chamber. Only 50% of the resultant data agreed with the flight data owing to pump oil contamination. Identical ground tests were run in an ultrahigh vacuum facility and a ion-pumped vacuum chamber. The agreement (90%) between data from these tests and flight data established the adequacy of these test environments and facilities.
Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piallat, Fabien, E-mail: fabien.piallat@gmail.com; CEA, LETI, Campus Minatec, F-38054 Grenoble; LTM-CNRS, 17 rue des Martyrs, 38054 Grenoble
2016-09-15
Due to the reduction of the thickness of the layers used in the advanced technology nodes, there is a growing importance of the surface phenomena in the definition of the general properties of the materials. One of the least controlled and understood phenomenon is the oxidation of metals after deposition, at the vacuum break. In this study, the influence of the sample temperature at vacuum break on the oxidation level of TiN deposited by metalorganic chemical vapor deposition is investigated. TiN resistivity appears to be lower for samples which underwent vacuum break at high temperature. Using X-ray photoelectron spectrometry analysis,more » this change is correlated to the higher oxidation of the TiN layer. Moreover, angle resolved XPS analysis reveals that higher is the temperature at the vacuum break, higher is the surface oxidation of the sample. This surface oxidation is in turn limiting the diffusion of oxygen in the volume of the layer. Additionally, evolution of TiN layers resistivity was monitored in time and it shows that resistivity increases until a plateau is reached after about 10 days, with the lowest temperature at vacuum break resulting in the highest increase, i.e., the resistivity of the sample released to atmosphere at high temperature increased by a factor 1.7 whereas the resistivity of the sample cooled down under vacuum temperature increased by a factor 2.7.« less
Method of mounting a PC board to a hybrid
NASA Technical Reports Server (NTRS)
O'Coin, James R. (Inventor)
1999-01-01
A system for mounting a hybrid electronic component to a PC board is disclosed. The system includes a set of brackets for mutually engaging a first surface of the PC board and a cover surface of the hybrid electronic component, wherein the cover surface has an arcuate shape when in a vacuum environment. The brackets are designed with legs having lengths and thicknesses for providing clearance between the cover surface of the hybrid and the first surface of the PC board for use when the hybrid electronic component is in a vacuum environment.
Alignment Fixtures For Vacuum-Plasma-Spray Gun
NASA Technical Reports Server (NTRS)
Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.
1993-01-01
Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.
Special treatment reduces helium permeation of glass in vacuum systems
NASA Technical Reports Server (NTRS)
Bryant, P. J.; Gosselin, C. M.
1966-01-01
Internal surfaces of the glass component of a vacuum system are exposed to cesium in gaseous form to reduce helium permeation. The cesium gas is derived from decomposition of cesium nitrate through heating. Several minutes of exposure of the internal surfaces of the glass vessel are sufficient to complete the treatment.
Purifying Aluminum by Vacuum Distillation
NASA Technical Reports Server (NTRS)
Du Fresne, E. R.
1985-01-01
Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.
Arsenic interactions with a fullerene-like BN cage in the vacuum and aqueous phase.
Beheshtian, Javad; Peyghan, Ali Ahmadi; Bagheri, Zargham
2013-02-01
Adsorption of arsenic ions, As (III and V), on the surface of fullerene-like B(12)N(12) cage has been explored in vacuum and aqueous phase using density functional theory in terms of Gibbs free energies, enthalpies, geometry, and density of state analysis. It was found that these ions can be strongly chemisorbed on the surface of the cluster in both vacuum and aqueous phase, resulting in significant changes in its electronic properties so that the cluster transforms from a semi-insulator to a semiconductor. The solvent significantly affects the geometry parameters and electronic properties of the As/B(12)N(12) complexes and the interaction between components is considerably weaker in the aqueous phase than that in the vacuum.
In-Vacuum Dissociator for Atomic-Hydrogen Masers
NASA Technical Reports Server (NTRS)
Vessot, R. F.
1987-01-01
Thermal control and vacuum sealing achieved while contamination avoided. Simple, relatively inexpensive molecular-hydrogen dissociator for atomic-hydrogen masers used on Earth or in vacuum of space. No air cooling required, and absence of elastomeric O-ring seals prevents contamination. In-vacuum dissociator for atomic hydrogen masers, hydrogen gas in glass dissociator dissociated by radio-frequency signal transmitted from surrounding 3-turn coil. Heat in glass conducted away by contacting metal surfaces.
Kapton wire concerns for aerospace vehicles
NASA Technical Reports Server (NTRS)
Vanlaak, J.
1994-01-01
This presentation outlines the background to the concern of using Kapton wire for aerospace vehicles and proposes it should not be utilized in new builds for spacecraft power applications. A NASA HQ investigation concluded that the risk of Kapton arc-tracking/flashover is a credible threat to the shuttle orbiter, but rationale is presented for continued flight for the time being. Recommendations for the protection of the shuttle and the build of the space station are given.
NASA Astrophysics Data System (ADS)
Wilmsmeyer, Amanda R.; Gordon, Wesley O.; Davis, Erin Durke; Mantooth, Brent A.; Lalain, Teri A.; Morris, John R.
2014-01-01
A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.
Wilmsmeyer, Amanda R; Gordon, Wesley O; Davis, Erin Durke; Mantooth, Brent A; Lalain, Teri A; Morris, John R
2014-01-01
A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.
Surface currents on the plasma-vacuum interface in MHD equilibria
NASA Astrophysics Data System (ADS)
Hanson, James
2017-10-01
The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the interface. While this surface current may be small in MHD equilibrium, it is readily computed in terms of the magnetic potentials in both the interior and exterior regions, evaluated on the surface. If only the external magnetic potential is known (as in VMEC), then the surface current can be computed from the discontinuity of the tangential field across the interface. Examples of the surface current for VMEC equilibria will be shown for a zero-pressure stellarator equilibrium. Field-line following of the vacuum magnetic field shows magnetic islands within the plasma region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilmsmeyer, Amanda R.; Morris, John R.; Gordon, Wesley O.
2014-01-15
A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry tomore » study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.« less
NASA Astrophysics Data System (ADS)
Morita, Hiroshi; Hatanaka, Ayumu; Yokosuka, Toshiyuki; Seki, Yoshitaka; Tsumuraya, Yoshiaki; Doi, Motomichi
The measurement system of the surface electrostatic potential on a solid insulation board in vacuum has been developed. We used this system to measure the electrostatic potential distribution of the surface of a borosilicate glass plate applied a high voltage. A local increase in the electric field was observed. It is considered that this phenomenon is caused by a positive electrostatic charge generated by a secondary emission of field emission electrons from an electrode. On the other hand, a local increase in the electric field was not observed on a glass plate coated with silica particles and a glass plate roughened by sandblast. We reasoned that this could be because the electrons were trapped by the roughness of the surface. It is considered that these phenomena make many types of equipment using the vacuum insulation more reliable.
2014-01-02
of the formation of a hydrogen-bonded hydroxyl. Characteristic modes of the sarin molecule itself are also ob- served. These experimental results show...chemical warfare agent, surface science, uptake, decontamination, filtration , UHV, XPS, FTIR, TPD REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S...challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science
Mancebo, Lloyd
1976-01-01
A bakeable high pressure-vacuum seal is provided in which an inductile sealing element having a butterfly shaped crosssection with protruding sharp edges at each of the four corners, is sandwiched between two ductile sealing elements, the sandwiched assembly then being compressed between the surfaces of the flange elements of a high pressure or high vacuum vessel to coin the ductile sealing element into the surface of the inductile sealing element as well as the surfaces of the flange elements.
Atomic force microscopy of lead iodide crystal surfaces
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.
1994-03-01
Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.
NASA Technical Reports Server (NTRS)
Nash, D. B.
1987-01-01
A form of sulfur that is white at room temperature and very fluffy in texture has been found in laboratory experiments on the effects of vacuum sublimation (evaporation) on solid sulfur. This work is an outgrowth of proton sputtering experiments on sulfur directed toward understanding Jovian magnetospheric effects on the surface of Io. Fluffy white sulfur is formed on the surface of solid yellow, tan, or brown sulfur melt freezes in vacuum by differential (fractional) evaporation of two or more sulfur molecular species present in the original sulfur; S(8) ring sulfur is thought to be the dominant sublimination phase lost to the vacuum sink, and polymeric chain sulfur S(u) the dominant residual phase that remains in place, forming the residual fluffy surface layer. The reflectance spectrum of the original sulfur surface is greaty modified by formation of the fluffy layer: the blue absorption band-edge and shoulder move 0.05 to 0.06 microns toward shorter wavelengths resulting in a permanent increase in reflectivity near 0.42 to 0.46 microns; the UV reflectivity below 0.40 microns is reduced. This form of sulfur should exist in large quantity on the surface of Io, especially in hotspot regions if there is solid free sulfur there that has solidified from a melt. Its color and spectra will indicate relative crystallization age on a scale of days to months and/or surface temperature distribution history.
Static black hole and vacuum energy: thin shell and incompressible fluid
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming; Matsuo, Yoshinori
2018-03-01
With the back reaction of the vacuum energy-momentum tensor consistently taken into account, we study static spherically symmetric black-hole-like solutions to the semi-classical Einstein equation. The vacuum energy is assumed to be given by that of 2-dimensional massless scalar fields, as a widely used model in the literature for black holes. The solutions have no horizon. Instead, there is a local minimum in the radius. We consider thin shells as well as incompressible fluid as the matter content of the black-hole-like geometry. The geometry has several interesting features due to the back reaction of vacuum energy. In particular, Buchdahl's inequality can be violated without divergence in pressure, even if the surface is below the Schwarzschild radius. At the same time, the surface of the star can not be far below the Schwarzschild radius for a density not much higher than the Planck scale, and the proper distance from its surface to the origin can be very short even for very large Schwarzschild radius. The results also imply that, contrary to the folklore, in principle the Boulware vacuum can be physical for black holes.
NASA Astrophysics Data System (ADS)
Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung
2017-01-01
In Fe-3%Si-0.3%C steel sheet, a relatively strong <100>//ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the <100>//ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the <100>//ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.
NASA Astrophysics Data System (ADS)
Kuznetsov, V. G.; Kurbanov, T. A.; Kostrin, D. K.
2017-07-01
In this work are presented the installations for cleaning the surface of rolled products (wire and ribbon) from scale and technological lubricant with gateway systems of open type. The calculation of gateway devices and the optimal selection of pumping systems are shown.
NASA Technical Reports Server (NTRS)
Makarova, V. I.; Zyabrev, A. A.
1979-01-01
The influence of surface oxide layers on the kinetics of hydrogen emission at the high vacuum of 10 to the minus 8th power torr was investigated at temperatures from 20 to 450 C using samples of pure AB00 aluminum and the cast alloy AMg. Cast and deformed samples of AMts alloy were used to study the effect of oxide film thickness on the rate of hydrogen emission. Thermodynamic calculations of the reactions of the generation and dissociation of aluminum oxide show that degasification at elevated temperatures (up to 600 C) and high vacuum will not reduce the thickness of artificially-generated surface oxide layers on aluminum and its alloys.
Rubber-coated bellows improves vibration damping in vacuum lines
NASA Technical Reports Server (NTRS)
Hegland, D. E.; Smith, R. J.
1966-01-01
Compact-vibration damping systems, consisting of rubber-coated metal bellows with a sliding O-ring connector, are used in vacuum lines. The device presents a metallic surface to the vacuum system and combines flexibility with the necessary stiffness. It protects against physical damage, reduces fatigue failure, and provides easy mating of nonparallel lines.
Takaku, Yasuharu; Suzuki, Hiroshi; Ohta, Isao; Ishii, Daisuke; Muranaka, Yoshinori; Shimomura, Masatsugu; Hariyama, Takahiko
2013-01-01
Most multicellular organisms can only survive under atmospheric pressure. The reduced pressure of a high vacuum usually leads to rapid dehydration and death. Here we show that a simple surface modification can render multicellular organisms strongly tolerant to high vacuum. Animals that collapsed under high vacuum continued to move following exposure of their natural extracellular surface layer (or that of an artificial coat-like polysorbitan monolaurate) to an electron beam or plasma ionization (i.e., conditions known to enhance polymer formation). Transmission electron microscopic observations revealed the existence of a thin polymerized extra layer on the surface of the animal. The layer acts as a flexible “nano-suit” barrier to the passage of gases and liquids and thus protects the organism. Furthermore, the biocompatible molecule, the component of the nano-suit, was fabricated into a “biomimetic” free-standing membrane. This concept will allow biology-related fields especially to use these membranes for several applications. PMID:23589878
Evaluation of a standardized micro-vacuum sampling method for collection of surface dust.
Ashley, Kevin; Applegate, Gregory T; Wise, Tamara J; Fernback, Joseph E; Goldcamp, Michael J
2007-03-01
A standardized procedure for collecting dust samples from surfaces using a micro-vacuum sampling technique was evaluated. Experiments were carried out to investigate the collection efficiency of the vacuum sampling method described in ASTM Standard D7144, "Standard Practice for Collection of Surface Dust by Micro-Vacuum Sampling for Subsequent Metals Determination." Weighed masses ( approximately 5, approximately 10 and approximately 25 mg) of three NIST Standard Reference Materials (SRMs) were spiked onto surfaces of various substrates. The SRMs used were: (1) Powdered Lead-Based Paint; (2) Urban Particulate Matter; and (3) Trace Elements in Indoor Dust. Twelve different substrate materials were chosen to be representative of surfaces commonly encountered in occupational and/or indoor settings: (1) wood, (2) tile, (3) linoleum, (4) vinyl, (5) industrial carpet, (6) plush carpet, (7,8) concrete block (painted and unpainted), (9) car seat material, (10) denim, (11) steel, and (12) glass. Samples of SRMs originally spiked onto these surfaces were collected using the standardized micro-vacuum sampling procedure. Gravimetric analysis of material collected within preweighed Accucapinserts (housed within the samplers) was used to measure SRM recoveries. Recoveries ranged from 21.6% (+/- 10.4%, 95% confidence limit [CL]) for SRM 1579 from industrial carpet to 59.2% (+/- 11.0%, 95% CL) for SRM 1579 from glass. For most SRM/substrate combinations, recoveries ranged from approximately 25% to approximately 50%; variabilities differed appreciably. In general, SRM recoveries were higher from smooth and hard surfaces and lower from rough and porous surfaces. Material captured within collection nozzles attached to the sampler inlets was also weighed. A significant fraction of SRM originally spiked onto substrate surfaces was captured within collection nozzles. Percentages of SRMs captured within collection nozzles ranged from approximately 13% (+/- 4 - +/- 5%, 95% CLs) for SRMs 1579 and 2583 from industrial carpet to approximately 45% (+/- 7 - +/- 26%, 95% CLs) for SRM 1648 from glass, tile and steel. For some substrates, loose material from the substrate itself (i.e., substrate particles and fibers) was sometimes collected along with the SRM, both within Accucaps as well as collection nozzles. Co-collection of substrate material can bias results and contribute to sampling variability. The results of this work have provided performance data on the standardized micro-vacuum sampling procedure.
Tunneling of Bloch electrons through vacuum barrier
NASA Astrophysics Data System (ADS)
Mazin, I. I.
2001-08-01
Tunneling of Bloch electrons through a vacuum barrier introduces new physical effects in comparison with the textbook case of free (plane wave) electrons. For the latter, the exponential decay rate in the vacuum is minimal for electrons with the parallel component of momentum kparallel = 0, and the prefactor is defined by the electron momentum component in the normal to the surface direction. However, the decay rate of Bloch electrons may be minimal at an arbitrary kparallel ("hot spots" ), and the prefactor is determined by the electron's group velocity, rather than by its quasimomentum. We illustrate this by first-principles calculations for (110) Pd surface.
NASA Astrophysics Data System (ADS)
Buttler, W. T.; Hixson, R. S.; King, N. S. P.; Olson, R. T.; Rigg, P. A.; Zellner, M. B.; Routley, N.; Rimmer, A.
2007-04-01
The authors consider a mathematical method to separate and determine the amount of ejecta produced in a second-shock material-fragmentation process. The technique is theoretical and assumes that a material undergoing a shock release at a vacuum interface ejects particulate material or fragments as the initial shock unloads and reflects at the vacuum-surface interface. In this case it is thought that the reflected shock may reflect again at the source of the shock and return to the vacuum-surface interface and eject another amount of fragments or particulate material.
Method for vacuum fusion bonding
Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.
2001-01-01
An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.
Experimental Determination of Air Density Using a 1 kg Mass Comparator in Vacuum
NASA Astrophysics Data System (ADS)
Gläser, M.; Schwartz, R.; Mecke, M.
1991-01-01
The density of ambient air has been determined by a straightforward experimental method. The apparent masses of two artefacts having about the same mass and surface, but different well-known volumes, have been compared by using a 1 kg balance in vacuum and in air. The differences of apparent masses and volumes yield the air density with a relative uncertainty (1σ) of 5 × 10-5. From measurements made using a third artefact, surface sorption effects caused by the change between vacuum and air conditions gave a coefficient of about 0,2 μg cm-2.
Ejection of Particles from the Free Surface of Shock-Loaded Lead into Vacuum and Gas Medium
NASA Astrophysics Data System (ADS)
Ogorodnikov, V. A.; Mikhailov, A. L.; Erunov, S. V.; Antipov, M. V.; Fedorov, A. V.; Syrunin, M. A.; Kulakov, E. V.; Kleshchevnikov, O. A.; Yurtov, I. V.; Utenkov, A. A.; Finyushin, S. A.; Chudakov, E. A.; Kalashnikov, D. A.; Pupkov, A. S.; Chapaev, A. V.; Mishanov, A. V.; Glushikhin, V. V.; Fedoseev, A. V.; Tagirov, R. R.; Kostyukov, S. A.; Tagirova, I. Yu.; Saprykina, E. V.
2017-12-01
The presence and behavior of a gas-metal interfacial layer at the free surface of shock-wave driven flying vehicles in gases of various compositions and densities has not been sufficiently studied so far. We present new comparative data on "dusting" from the free surface of lead into vacuum and gas as dependent on the surface roughness, pressure amplitude at the shock-wave front, and phase state of the material. Methods of estimating the mass flux of ejected particles in the presence of a gas medium at the free metal surface are proposed.
Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, A.; Department of Physics, University of York, Heslington, York YO10 5DD; Graziosi, P.
We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy andmore » Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.« less
Friction and wear behavior of single-crystal silicon carbide in contact with titanium
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1977-01-01
Sliding friction experiments were conducted with single crystal silicon carbide in sliding contact with titanium. Results indicate that the friction coefficient is greater in vacuum than in argon and that this is due to the greater adhesion or adhesive transfer in vacuum. Thin films of silicon carbide transferred to titanium also adhered to silicon carbide both in argon at atmospheric pressure and in high vacuum. Cohesive bonds fractured on both the silicon carbide and titanium surfaces. The wear debris of silicon carbide created by fracture plowed the silicon carbide surface in a plastic manner. The friction characteristics of titanium in contact with silicon carbide were sensitive to the surface roughness of silicon carbide, and the friction coefficients were higher for a rough surface of silicon carbide than for a smooth one. The difference in friction results was due to plastic deformation (plowing of titanium).
High specific surface area aerogel cryoadsorber for vacuum pumping applications
Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.
2000-01-01
A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.
Performance Evaluation of an Actuator Dust Seal for Lunar Operation
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Gaier, James R.; Handschuh, Michael; Panko, Scott; Sechkar, Ed
2013-01-01
Exploration of extraterrestrial surfaces (e.g. moon, Mars, asteroid) will require durable space mechanisms that will survive potentially dusty surface conditions in addition to the hard vacuum and extreme temperatures of space. Baseline tests with lunar simulant were recently completed at NASA GRC on a new Low-Temperature Mechanism (LTM) dust seal for space actuator application. Following are top-level findings of the tests completed to date in vacuum using NU-LHT-2M lunar-highlands simulant. A complete set of findings are found in the conclusions section.Tests were run at approximately 10-7 torr with unidirectional rotational speed of 39 RPM.Initial break-in runs were performed at atmospheric conditions with no simulant. During the break-in runs, the maximum torque observed was 16.7 lbf-in. while the maximum seal outer diameter temperature was 103F. Only 0.4 milligrams of NU-LHT-2M simulant passed through the sealshaft interface in the first 511,000 cycles while under vacuum despite a chip on the secondary sealing surface.Approximately 650,000 of a planned 1,000,000 cycles were completed in vacuum with NU-LHT-2M simulant.Upon test disassembly NU-LHT-2M was found on the secondary sealing surface.
1980-07-01
the polarity indicators. Martin’s relationship describes the conditions present when flashover occurs. W. C. Crewson of Pulsar Associates, Inc...I 0 co I I II I I I L- - a’ S-- CD cm 40 S - L Cd) 00 00r 0- L- a’OI CMI 0~ >’i I C 0 u 0CJ CA 0 0 0 m. r- Lo . fl Lo V’ 41.0 r - C 09 4 J -C O O l .oC
Reaction-to-Fire of Wood Products and Other Building Materials: Part 1, Room/Corner Test Performance
Ondrej Grexa; Mark A. Dietenberger; Robert H. White
2012-01-01
This project researched the assessment of reaction-to-fire of common materials using the full-scale room/corner test (ISO 9705) protocol and the predictions of time to flashover using results from the bench-scale cone calorimeter test (ISO 5660-1). Using a burner protocol of 100 kW for 10 min, followed by 300 kW for 10 min and the test materials on the walls only, we...
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George
2010-01-01
A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.
Surface currents on the plasma-vacuum interface in MHD equilibria
NASA Astrophysics Data System (ADS)
Hanson, James D.
2016-10-01
The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the plasma-vacuum interface. While this current may be small in MHD equilibrium, this current may be readily computed in terms of a magnetic potential in both the interior and exterior regions. Examples of the surface current for VMEC equilibria will be shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-03ER54692.
Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics.
Kafka, Kyle R P; Talisa, Noah; Tempea, Gabriel; Austin, Drake R; Neacsu, Catalin; Chowdhury, Enam A
2016-12-12
A systematic study of few-cycle pulse laser induced damage threshold (LIDT) determination was performed for commercially-available ultra-broadband optics, (i.e. chirped mirrors, silver mirrors, beamsplitters, etc.) in vacuum and in air, for single and multi-pulse regime (S-on-1). Multi-pulse damage morphology at fluences below the single-pulse LIDT was studied in order to investigate the mechanisms leading to the onset of damage. Stark morphological contrast was observed between multi-pulse damage sites formed in air versus those in vacuum. One effect of vacuum testing compared to air included suppression of laser-induced periodic surface structures (LIPSS) formation, possibly influenced by a reduced presence of damage debris. Another effect of vacuum was occasional lowering of LIDT, which appears to be due to the stress-strain performance of the coating design during laser irradiation and under the external stress of vacuum ambience. A fused silica substrate is also examined, and a non-LIPSS nanostructuring is observed on the surface. Possible mechanisms are discussed.
NASA Astrophysics Data System (ADS)
Qian, Gang; Feng, Yi; Li, Bin; Huang, Shiyin; Liu, Hongjuan; Ding, Kewang
2013-03-01
As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5 N/cm2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2, elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.
Vacuum-isolation vessel and method for measurement of thermal noise in microphones
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J. (Inventor); Ngo, Kim Chi T. (Inventor)
1992-01-01
The vacuum isolation vessel and method in accordance with the present invention are used to accurately measure thermal noise in microphones. The apparatus and method could be used in a microphone calibration facility or any facility used for testing microphones. Thermal noise is measured to determine the minimum detectable sound pressure by the microphone. Conventional isolation apparatus and methods have been unable to provide an acoustically quiet and substantially vibration free environment for accurately measuring thermal noise. In the present invention, an isolation vessel assembly comprises a vacuum sealed outer vessel, a vacuum sealed inner vessel, and an interior suspension assembly coupled between the outer and inner vessels for suspending the inner vessel within the outer vessel. A noise measurement system records thermal noise data from the isolation vessel assembly. A vacuum system creates a vacuum between an internal surface of the outer vessel and an external surface of the inner vessel. The present invention thus provides an acoustically quiet environment due to the vacuum created between the inner and outer vessels and a substantially vibration free environment due to the suspension assembly suspending the inner vessel within the outer vessel. The thermal noise in the microphone, effectively isolated according to the invention, can be accurately measured.
Microfabricated triggered vacuum switch
Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM
2010-05-11
A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.
Ultra-high-vacuum electrical feedthrough
NASA Technical Reports Server (NTRS)
Gavaler, J. R.; Janocko, M. A.
1976-01-01
Device for cathodic sputtering utilizes cathode dark-space region adjacent to high negative-potential surfaces. Feedthrough is made of metal and glass, is helium leaktight, and is bakeable; it can be incorporated into any vacuum apparatus.
In-situ vacuum deposition technique of lithium on neutron production target for BNCT
NASA Astrophysics Data System (ADS)
Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.
2012-10-01
For the purpose of avoiding the radiation blistering of the lithium target for neutron production in BNCT (Boron Neutron Capture Therapy) device, trilaminar Li target, of which palladium thin layer was inserted between cupper substrate and Li layer, was newly designed. In-situ vacuum deposition and electrolytic coating techniques were applied to validate the method of fabrication of the Li/Pd/Cu target, and the layered structures of the synthesized target were characterized. In-situ vacuum re-deposition technique was also established for repairing and maintenance for lithium target damaged. Following conclusions were derived; (1) Uniform lithium layers with the thickness from 1.6 nm to a few hundreds nanometer were formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. (2) Re-deposition of lithium layer on Li surface can be achieved by in situ vacuum deposition technique. (3) Small amount of water and carbonate was observed on the top surface of Li. But the thickness of the adsorbed layer was less than monolayer, which will not affect the quality of the Li target. (4) The formation of Pd-Li alloy layer was observed at the Pd and Li interface. The alloy layer would contribute to the stability of the Li layer.
Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas
2015-12-19
Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.
Optimal nonimaging integrated evacuated solar collector
NASA Astrophysics Data System (ADS)
Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland
1993-11-01
A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.
Overall behaviour of PFC integrated SST-1 vacuum system
NASA Astrophysics Data System (ADS)
Khan, Ziauddin; Raval, Dilip C.; Paravasu, Yuvakiran; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; George, Siju; Shoaib, Mohammad; Prakash, Arun; Babu, Gattu R.; Thankey, Prashant; Pathan, Firozkhan S.; Pradhan, Subrata
2017-04-01
As a part of phase-I up-gradation of Steady-state Superconducting Tokamak (SST-1), Graphite Plasma Facing Components (PFCs) have been integrated inside SST-1 vacuum vessel as a first wall (FW) during Nov 14 and May 2015. The SST-1 FW has a total surface area of the installed PFCs exposed to plasma is ∼ 40 m2 which is nearly 50% of the total surface area of stainless steel vacuum chamber (∼75 m2). The volume of the vessel within the PFCs is ∼ 16 m3. After the integration of PFCs, the entire vessel as well as the PFC cooling/baking circuits has been qualified with an integrated helium leak tightness of < 1.0 x 10-8 mbar 1/s. The pumping system of the SST-1 vacuum vessel comprises of one number of Roots’ pump, four numbers of turbomolecular pumps and a cryopump. After the initial pump down, the PFCs were baked at 250 °C for nearly 20 hours employing hot nitrogen gas to remove the absorbed water vapours. Thereafter, Helium glow discharges cleaning were carried out towards the removal of surface impurities. The pump down characteristics of SST-1 vacuum chamber and the changes in the residual gaseous impurities after the installation of the PFCs will be discussed in this paper.
Friction and surface chemistry of some ferrous-base metallic glasses
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1982-01-01
The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.
Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA
2011-12-20
An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.
Design and calibration of a vacuum compatible scanning tunneling microscope
NASA Technical Reports Server (NTRS)
Abel, Phillip B.
1990-01-01
A vacuum compatible scanning tunneling microscope was designed and built, capable of imaging solid surfaces with atomic resolution. The single piezoelectric tube design is compact, and makes use of sample mounting stubs standard to a commercially available surface analysis system. Image collection and display is computer controlled, allowing storage of images for further analysis. Calibration results from atomic scale images are presented.
Liquefaction and Storage of In-Situ Oxygen on the Surface of Mars
NASA Technical Reports Server (NTRS)
Hauser, Daniel M.; Johnson, Wesley L.; Sutherlin, Steven G.
2016-01-01
ISRU is currently base-lined for the production of oxygen on the Martian surface in the Evolvable Mars Campaign Over 50 of return vehicle mass is oxygen for propulsion. There are two key cryogenic fluid-thermal technologies that need to be investigated to enable these architectures. High lift refrigeration systems. Thermal Insulation systems, either lightweight vacuum jackets of soft vacuum insulation systems.
Thermal Vacuum Integrated System Test at B-2
NASA Technical Reports Server (NTRS)
Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.
Investigation on the storage of benzotriazole corrosion inhibitor in TiO2 nanotube
NASA Astrophysics Data System (ADS)
Nguyen, Thi Dieu Hang; Tiep Nong, Thanh; Quang Nguyen, Van; Quyen Nguyen, The; Le, Quang Trung
2018-06-01
The present paper describes different methods for storing the benzotriazole (BTA) corrosion inhibitor in the titanium dioxide nanotubes (TNT) as nanocontainers. Three methods were used, including the vacuum impregnation at ambient temperature, the vacuum impregnation at cooling temperature () and the rotary vacuum evaporation. TNT, BTA and BTA/TNT products were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. nanotube powder was synthesized by hydrothermal treatment from the inexpensive spherical commercial precursor. The results obtained from SEM, TEM images and BET values showed the successful synthesis of TNT with a homogeneous morphology of nano size tubes and a large specific surface . The existence of BTA in TNT was demonstrated. The BTA/TNT obtained via the rotary vacuum evaporation contained a very significant amount of BTA (66.6 weight %) but BTA existed mostly outside the nanotubes. Two processes of vacuum impregnation at ambient temperature and vacuum impregnation at cooling temperature revealed that there was about 8 weight % BTA stored in BTA/TNT product and BTA was present mostly inside the nanotubes.
Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment
NASA Technical Reports Server (NTRS)
Golliher, Eric L.; Yao, S. C.
2015-01-01
Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.
NASA Technical Reports Server (NTRS)
1988-01-01
The in-situ optical surface measurement system is a facility designed to study the deleterious effects of particulate materials on the surface reflectivities of optical materials in the vacuum ultraviolet (VUV). This arrangement is designed to simulate the on-orbit effects of contamination and degradation of optical surfaces. This simulation is accomplished through the use of non-coherent VUV sources illuminating optical surfaces located in a high vacuum chamber. Several sources of contamination are employed. The reflectivity is measured both at the specular reflection as well as at two scattered positions, forward and reverse. The system components are described and an operating procedure is given.
[Establishment and application of mechanical strain loading system of multi-channel cells].
Li, Yongming; Wang, Hua; Zhang, Xiaodong; Tang, Lin
2012-02-01
Based on single-chip microcomputer, we have established a mechanical strain loading system with multi-channel to study the biological behavior of cultured cells in vitro under mechanical strain. We developed a multi-channel cell strain loading device controlled by single-chip microcomputer. We controlled the vacuum pump with vacuum chamber to make negative pressure changing periodically in the vacuum chamber. The tested cells were seeded on the surface of an elastic membrane mounted on the vacuum chamber, and could be strained or relaxed by cyclic pressure. Since the cells are attached to the surface of the membrane, they presumably experience the same deformation as that was applied to the membrane. The system was easy to carry and to operate, with deformation rate (1%-21%) and frequency (0-0. 5Hz) which could be adjusted correctly according to experimental requirement, and could compare different deformation rate of three channels at the same time. The system ran stably and completely achieved design aims, and provided a method to study the biological behavior of cultured cells attached to the surface of the elastic membrane under mechanical strain in vitro.
Laboratory Simulation of Electrical Discharge in Surface Lunar Regolith
NASA Astrophysics Data System (ADS)
Shusterman, M.; Izenberg, N.; Wing, B. R.; Liang, S.
2016-12-01
Physical, chemical, and optical characteristics of space-weathered surface materials on airless bodies are produced primarily from bombardment by solar energetic particles and micrometeoroid impacts. On bodies such as the Moon and Mercury, soils in permanently shadowed regions (PSRs) are very cold, have low electrical conductivities, and are subjected to a high flux of incoming energetic particles accelerated by solar events. Theoretical models predict that up to 25% of gardened soils in the lunar polar regions are altered by dielectric breakdown; a potentially significant weathering process that is currently unconfirmed. Although electrical properties of lunar soils have been studied in relation to flight electronics and spacecraft safety, no studies have characterized potential alterations to soils resulting from electrical discharge. To replicate the surface charge field in PSRs, lunar regolith simulant JSC-1A was placed between two parallel plane electrodes under both low and high vacuum environments, 10e-3 torr and 2.5e-6 torr, respectively. Voltage was increased until discharge occurred within the sample. Grains were analyzed using an SVC fiber-fed point spectrometer, Olympus BX51 upright metallurgical microscope, and a Hitachi TM3000 scanning electron microscope with Bruker Quantax-70 X-ray spectrometer. Discharges occurring in samples under low vacuum resulted in surficial melting, silicate vapor deposition, coalescence of metallic iron, and micro-scale changes to surface topography. Samples treated under a high vacuum environment showed similar types of effects, but fewer in number compared to low vacuum samples. The variation in alteration abundances between the two environments implies that discharges may be occurring across surface contaminants, even at high vacuum conditions, inhibiting dielectric breakdown in our laboratory simulations.
Mobile system for microwave removal of concrete surfaces
White, Terry L.; Bigelow, Timothy S.; Schaich, Charles R.; Foster, Jr., Don
1997-01-01
A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.
Mobile system for microwave removal of concrete surfaces
White, T.L.; Bigelow, T.S.; Schaich, C.R.; Foster, D. Jr.
1997-06-03
A method and apparatus are disclosed for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface. 7 figs.
Surface oxidation of GaN(0001): Nitrogen plasma-assisted cleaning for ultrahigh vacuum applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangopadhyay, Subhashis; Schmidt, Thomas, E-mail: tschmidt@ifp.uni-bremen.de; Kruse, Carsten
The cleaning of metal-organic vapor-phase epitaxial GaN(0001) template layers grown on sapphire has been investigated. Different procedures, performed under ultrahigh vacuum conditions, including degassing and exposure to active nitrogen from a radio frequency nitrogen plasma source have been compared. For this purpose, x-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy have been employed in order to assess chemical as well as structural and morphological surface properties. Initial degassing at 600 °C under ultrahigh vacuum conditions only partially eliminates the surface contaminants. In contrast to plasma assisted nitrogen cleaning at temperatures as low as 300 °C, active-nitrogen exposure at temperaturesmore » as high as 700 °C removes the majority of oxide species from the surface. However, extended high-temperature active-nitrogen cleaning leads to severe surface roughening. Optimum results regarding both the removal of surface oxides as well as the surface structural and morphological quality have been achieved for a combination of initial low-temperature plasma-assisted cleaning, followed by a rapid nitrogen plasma-assisted cleaning at high temperature.« less
Investigation of Optically Induced Avalanching in GaAs
1989-06-01
by Bovino , et al 4 to increase the hold off voltage. The button switch design of Fig. 4c has been used by several researchers5 ’ 7 to obtain the...ul Long flashover palh Figure 3b. 434 Optical Jlatlern a. Mourou Switch b. Bovino Switch c. Button Switch Figure 4. Photoconductive Switches...Technology and Devices Laboratory, ERADCOM (by L. Bovino , et. all) 4 • The deposition recipe for the contacts is 1) 50 ANi (provides contact to GaAs
2006-07-01
sites. The strength member of the safety core insulators is a fiberglass belt wrapped around pins in the end fittings. Porcelain tubes cover the belt... porcelain tube and heavily tracked the fiberglass belt but left the belt intact structurally (Figure 1). Figure 1. Cutler safety core insulator ...fail-safe insulators . For these tests, the porcelain tube of the safety core insulator was replaced with a plastic see-through tube. The test report [5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkham, Harold
2012-03-31
NERC has proposed a standard to use to specify clearances between vegetation and power lines. The purpose of the rule is to reduce the probability of flashover to a calculably low level. This report was commissioned by FERC’s Office of Electrical Reliability. The scope of the study was analysis of the mathematics and documentation of the technical justification behind the application of the Gallet equation and the assumptions used in the technical reference paper
Advanced Radiation Theory Support Annual Report 2003, Final Report
2004-04-19
diameter wires would lose a higher mass fraction. Table 2. Energy Transfers for Ti Loads Dia. & Case H 2 H13 Mass -a-m Z,DE kJ kJ Pg 1000 - Z 428.2...issues covered are (1) issues and directions for future research, (2) zero- and one-dimensional modeling of DQ experiments, (3) enhanced energy ...coupling and x-ray emission in z-pinch implosions, (4) confinement and compression of magnetic flux by plasma shells, and (6) flashover and energy coupling
Investigations of Heat Transfer in Vacuum between Room Temperature and 80 K
NASA Astrophysics Data System (ADS)
Hooks, J.; Demko, J. A.; E Fesmire, J.; Matsumoto, T.
2017-12-01
The heat transfer between room temperature and 80 K is controlled using various insulating material combinations. The modes of heat transfer are well established to be conduction and thermal radiation when in a vacuum. Multi-Layer Insulation (MLI) in a vacuum has long been the best approach. Typically this layered system is applied to the cold surface. This paper investigates the application of MLI to both the cold and warm surface to see whether there is a significant difference. In addition if MLI is on the warm surface, the cold side of the MLI may be below the critical temperature of some high temperature superconducting (HTS) materials. It has been proposed that HTS materials can serve to block thermal radiation. An experiment is conducted to measure this effect. Boil-off calorimetry is the method of measuring the heat transfer.
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber
NASA Technical Reports Server (NTRS)
Routh, D. E.; Sharma, G. C. (Inventor)
1982-01-01
The processing of wafer devices to form multilevel interconnects for microelectronic circuits is described. The method is directed to performing the sequential steps of etching the via, removing the photo resist pattern, back sputtering the entire wafer surface and depositing the next layer of interconnect material under common vacuum conditions without exposure to atmospheric conditions. Apparatus for performing the method includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a DC magnetron sputtering system. A gas inlet is provided in the chamber for the introduction of various gases to the vacuum chamber and the creation of various gas plasma during the sputtering steps.
Study of Vacuum Energy Physics for Breakthrough Propulsion
NASA Technical Reports Server (NTRS)
Millis, Marc G. (Technical Monitor); Maclay, G. Jordan; Hammer, Jay; Clark, Rod; George, Michael; Kim, Yeong; Kir, Asit
2004-01-01
This report summarizes the accomplishments during a three year research project to investigate the use of surfaces, particularly in microelectromechanical systems (MEMS), to exploit quantum vacuum forces. During this project, we developed AFM instrumentation to repeatably measure Casimir forces in the nanoNewton range at 10 6 torr, designed an experiment to measure attractive and repulsive quantum vacuum forces, developed a QED based theory of Casimir forces that includes non-ideal material properties for rectangular cavities and for multilayer slabs, developed theoretical models for a variety of microdevices utilizing vacuum forces, applied vacuum physics to a gedanken spacecraft, and investigated a new material with a negative index of refraction.
Analysis of RFQ vacuum system for HINS tests at MDB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piekarz, Henryk; /Fermilab
The arrangement of RFQ vacuum system is briefly described. The projections of the vacuum level using standard out-gassing rates for the RFQ major components are compared with measurements. The permeation of water through the Viton O-rings of the LCW manifold inside the RFQ vacuum vessel is analyzed and compared with RGA data. A model where the out-gassing water from the vanes inner surfaces affects seriously RFQ operation is devised and compared with RFQ performance. The rate of a hydrogen gas spill from the LEBT into the RFQ vacuum space is also projected. Suggestions to correct and improve RFQ operation aremore » presented.« less
PREFACE: 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6)
NASA Astrophysics Data System (ADS)
Ahsan Bhatti, Javaid; Hussain, Talib; Khan, Wakil
2013-06-01
The Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA) conference series has been organized to create a new forum in Asia and Australia to discuss vacuum, surface and related sciences, techniques and applications. The conference series is officially endorsed by the International Union for Vacuum Science, Technique and Application (IUVSTA). The International Steering Committee of VASSCAA is comprised of Vacuum Societies in seven countries: Australia, China, India, Iran, Japan, South Korea and Pakistan. VASSCAA-1 was organized by the Vacuum Society of Japan in 1999 in Tokyo, Japan. VASSCAA-2 was held in 2002 in Hong Kong, VASSCAA-3 in Singapore in 2005. VASSCAA-4 was held in Matsue, Japan in 2008 and VASSCAA-5 in 2010 in Beijing, China. The 6th Vacuum and Surface Sciences Conference of Asia and Australia (VASSCAA-6) was held from 9-13 October 2012 in the beautiful city of Islamabad, Pakistan. The venue of the conference was the Pak-China Friendship Centre, Islamabad. More than six hundred local delgates and around seventy delegates from different countries participated in this mega event. These delegates included scientists, researchers, engineers, professors, plant operators, designers, vendors, industrialists, businessmen and students from various research organizations, technical institutions, universities, industries and companies from Pakistan and abroad. The focal point of the event was to enhance cooperation between Pakistan and the international community in the fields of vacuum, surface science and other applied technologies. At VASSCAA-6 85 oral presentations were delivered by local and foreign speakers. These were divided into different sessions according to their fields. A poster session was organized at which over 70 researchers and students displayed their posters. The best three posters won prizes. In parallel to the main conference sessions four technical short courses were held. The participants showed keen interest in all these courses. The most significant part of this event was an international exhibition of science, technology, energy and industry. In this international exhibition over 60 prominent international as well as local industrialists and vendors displayed their products. For the recreation of conference participants a cultural program and dinner was arranged. This entertaining program was fully enjoyed by all the participants especially the foreign guests. Recreational trips were also arranged for the foreign delegates. This mega event provided a unique opportunity to our scientific community to benefit from the rich international experience. The conference was a major forum for the exchange of knowledge and provided numerous scientific, technical and social opportunities for meeting leading experts. Editors Dr Javaid Ahsan Bhatti, Dr Talib Hussain, Dr Suleman Qaiser and Dr Wakil Khan National Institute of Vacuum Science and Technology (NINVAST) NCP Complex, Quaid-e-Azam University, Islamabad, Pakistan The PDF also contains a list of delegates.
Systems and methods for analyzing liquids under vacuum
Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua
2013-10-15
Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.
Ultra-Compact Accelerator Technologies for Application in Nuclear Techniques
NASA Astrophysics Data System (ADS)
Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Carazo, V.; Falabella, S.; Guethlein, G.; Guse, S.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Paul, A. C.; Pearson, D.; Poole, B.; Schmidt, R.; Sanders, D.; Selenes, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.
2009-12-01
We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve ˜10 MV/m gradients for 10 s of nanoseconds pulses and ˜100 MV/m gradients for ˜1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.
Plasma puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Venable, D. D.; Choi, E. H.
1990-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for the azimuthally uniform surface flashover which initiates plasma-puff under wide range of fill gas pressure of Ar, He and N2. The optimal fill gas pressure for the azimuthally uniform plasma-puff was about 120 mTorr and 450 Torr for He and N2, and between 120 mTorr and 5 Torr for Ar. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr.
Vacuum ultraviolet photon fluxes in argon-containing inductively coupled plasmas
NASA Astrophysics Data System (ADS)
Radovanov, S. B.; Persing, H. M.; Wang, S.; Culver, C. L.; Boffard, J. B.; Lin, C. C.; Wendt, A. E.
2013-09-01
Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. Damage of materials is induced by energy transfer from the VUV photons to the surface, causing disorder in the surface region, surface reactions, and affecting bonds in the material bulk. Monitoring of the surface flux of VUV photons from inductively coupled plasmas (ICP) and its dependence on discharge parameters is thus highly desirable. Results of non-invasive, direct windowless VUV detection using a photosensitive diode will be presented. Relative VUV fluxes were also obtained using a sodium salicylate coating on the inside of a vacuum window, converting VUV into visible light detected through the vacuum window. The coating is sensitive to wavelengths in the range 80-300 nm, while the photodiode is only sensitive to wavelengths below 120 nm. In argon the VUV emissions are primarily produced by spontaneous decay from 3p5 4 s resonance levels (1s2,1s4) and may be reabsorbed by ground state atoms. Real-time resonance level concentrations were measured and used to predict the VUV photon flux at the detector for a range of different ICP pressures, powers, and for various admixtures of Ar with N2, and H2. This work was supported in part by NSF grant PHY-1068670.
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)
2003-01-01
A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.
Method of physical vapor deposition of metal oxides on semiconductors
Norton, David P.
2001-01-01
A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.
Method of forming ultra thin film devices by vacuum arc vapor deposition
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor)
2005-01-01
A method for providing an ultra thin electrical circuit integral with a portion of a surface of an object, including using a focal Vacuum Arc Vapor Deposition device having a chamber, a nozzle and a nozzle seal, depressing the nozzle seal against the portion of the object surface to create an airtight compartment in the chamber and depositing one or more ultra thin film layer(s) only on the portion of the surface of the object, the layers being of distinct patterns such that they form the circuit.
NASA Astrophysics Data System (ADS)
Dinca-Balan, Virginia; Vladoiu, Rodica; Mandes, Aurelia; Prodan, Gabriel
2017-11-01
The synthesis of Ag, Mg and Si nanocrystalline, embedded in a hydrogen-free amorphous carbon (a-C) matrix, deposited by a high vacuum and free buffer gas technique, were investigated. The films with compact structures and extremely smooth surfaces were prepared using the thermionic vacuum arc method in one electron gun configuration, on glass and silicon substrates. The surface morphology and wettability of the obtained multifunctional thin films were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and free surface energy (FSE) by See System. The results from the TEM measurements show how the Ag, Mg and Si interacted with carbon and the influence these materials have on the thin film structure formation and the grain size distribution. SEM correlated with EDX results reveal a very precise comparative study, regarding the quantity of the elements that morphed into carbides nanostructures. Also, the FSE results prove how different materials in combination with carbon can make changes to the surface properties.
NASA Astrophysics Data System (ADS)
Bernardi, Michael P.; Milovich, Daniel; Francoeur, Mathieu
2016-09-01
Using Rytov's fluctuational electrodynamics framework, Polder and Van Hove predicted that radiative heat transfer between planar surfaces separated by a vacuum gap smaller than the thermal wavelength exceeds the blackbody limit due to tunnelling of evanescent modes. This finding has led to the conceptualization of systems capitalizing on evanescent modes such as thermophotovoltaic converters and thermal rectifiers. Their development is, however, limited by the lack of devices enabling radiative transfer between macroscale planar surfaces separated by a nanosize vacuum gap. Here we measure radiative heat transfer for large temperature differences (~120 K) using a custom-fabricated device in which the gap separating two 5 × 5 mm2 intrinsic silicon planar surfaces is modulated from 3,500 to 150 nm. A substantial enhancement over the blackbody limit by a factor of 8.4 is reported for a 150-nm-thick gap. Our device paves the way for the establishment of novel evanescent wave-based systems.
Convenient mounting method for electrical measurements of thin samples
NASA Technical Reports Server (NTRS)
Matus, L. G.; Summers, R. L.
1986-01-01
A method for mounting thin samples for electrical measurements is described. The technique is based on a vacuum chuck concept in which the vacuum chuck simultaneously holds the sample and established electrical contact. The mounting plate is composed of a glass-ceramic insulating material and the surfaces of the plate and vacuum chuck are polished. The operation of the vacuum chuck is examined. The contacts on the sample and mounting plate, which are sputter-deposited through metal masks, are analyzed. The mounting method was utilized for van der Pauw measurements.
2013-09-13
electric fields due to charge build up on the vacuum viewport. For some experiments a non-evaporable getter (NEG) pump is placed 3.3mm away from the...trap, between the trap and the solid aluminum ground shield, to reduce the vacuum pressure close to the ion. The vacuum chamber is constantly pumped by...an ion pump , a titanium sublimation pump and the NEG pump . The pressure of the vacuum system was below what is measurable by the ion gage used (ə.9
Vacuum insulation of the high energy negative ion source for fusion application.
Kojima, A; Hanada, M; Hilmi, A; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Kobayashi, S; Yamano, Y; Grisham, L R
2012-02-01
Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of ∼2 m(2). The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D(-) ion beams for 100 s.
Gledhill, H C; Turner, I G; Doyle, C
1999-02-01
Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.
The surface variation of Ti-14Al-21Nb as a function of temperature under ultrahigh vacuum conditions
NASA Technical Reports Server (NTRS)
Lee, W. S.; Sankaran, S. N.; Outlaw, R. A.; Clark, R. K.
1990-01-01
The effect of temperature, at conditions of ultrahigh vacuum, on the surface composition of the Ti-14Al-21Nb (in wt pct) alloy was investigated in samples heated to 1000 C in 100 C increments. Results of AES spectroscopy revealed that the Ti-14Al-21Nb alloy surface is extremely sensitive to temperature. At 300 C, the carbon and oxygen began to rapidly dissolve into the alloy, and at 600 C, bulk S segregated to the surface. The variation in the surface composition was extensive and different over the temperature range studied, indicating that there may be substantial changes in the hydrogen transport.
NASA Astrophysics Data System (ADS)
Gunko, Yuri F.; Gunko, Natalia A.
2018-05-01
In this paper we consider the problem of determining the structure of the electric field near the surface of a flat insulated body under conditions of a deep vacuum. It is assumed that the emitted particles are electrons leaving the body surface under the influence of ionizing radiation whose velocities distribution near the surface is isotropic. It is estimated the thickness of the screening layer under conditions of stationary emission from a flat surface. The solutio of the problem of determining a stationary self-consistent electric field near the surface is found in a simple analytical form. The thickness of the screening layer is calculated from this formula.
Cooling arrangement for a superconducting coil
Herd, K.G.; Laskaris, E.T.
1998-06-30
A superconducting device is disclosed, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet. 3 figs.
NASA Technical Reports Server (NTRS)
Schneider, Horst W. (Inventor)
1981-01-01
Cleaning devices are described which include a vacuum cleaner nozzle with a sharp rim for directing incoming air down against the floor; a vacuum cleaner wherein electrostatically charged brushes that brush dirt off a floor, are electrically grounded to remove charges that could tend to hold dirt to the brushes; a vacuum cleaner head having slots that form a pair of counter-rotating vortices, and that includes an outlet that blows a stream of air at the floor region which lies between the vortices; a cleaning device that sweeps a group of brushes against the ground along a first direction, and then sweeps them along the same ground area but in a second direction angled from the first by an amount such as 90.degree., to sweep up particles lying in crevices extending along any direction; a device that gently cleans a surface to remove bacteria for analysis, including an inclined wall along which cleaning fluid flows onto the surface, a vacuum chamber for drawing in the cleaning fluid, and a dividing wall spaced slightly from the surface to separate the fluid source from the vacuum cleaner chamber; and a device for providing pulses of pressured air including a chamber to which pressured air is supplied, a ball that circulates around the chamber to repeatedly close an outlet, and an air source that directs air circumferentially to move the ball around the chamber.
The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane
NASA Astrophysics Data System (ADS)
Sharma, H. N.; McLean, W.; Maxwell, R. S.; Dinh, L. N.
2016-09-01
A silica-filled polydimethylsiloxane (PDMS) composite M9787 was investigated for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environment applications at room temperature (˜300 K). The main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (˜30 ppm by volume of H2O) for even a couple of days was the formation, on the silica surface fillers, of ˜60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. The presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, H. N.; McLean, W.; Maxwell, R. S.
We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less
Development and Testing of an ISRU Soil Mechanics Vacuum Test Facility
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie E.; Wilkinson, R. Allen
2014-01-01
For extraterrestrial missions, earth based testing in relevant environments is key to successful hardware development. This is true for both early component level development and system level integration. For In-Situ Resource Utilization (ISRU) on the moon, hardware must interface with the surface material, or regolith, in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, properly conditioned bed of lunar regolith simulant. However, in earth-based granular media, such as lunar regolith simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. A mid-size chamber (3.66 m tall, 1.5 m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64 m deep by 0.914 m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types were used. Data obtained from an electric cone penetrometer can be used to determine strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off-gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5 Torr, regardless of the pump rate. The slow off-gassing of the soil at low pressure lead to long test times; a full week to reach 10(exp -5) Torr. Robotic soil manipulation would enable multiple ISRU hardware test within the same vacuum cycle. The feasibility of a robotically controlled auger and tamper was explored at vacuum conditions.
The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane
Sharma, H. N.; McLean, W.; Maxwell, R. S.; ...
2016-09-21
We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less
Vacuum-Induction, Vacuum-Arc, and Air-Induction Melting of a Complex Heat-Resistant Alloy
NASA Technical Reports Server (NTRS)
Decker, R. F.; Rowe, John P.; Freeman, J. W.
1959-01-01
The relative hot-workability and creep-rupture properties at 1600 F of a complex 55Ni-20Cr-15Co-4Mo-3Ti-3Al alloy were evaluated for vacuum-induction, vacuum-arc, and air-induction melting. A limited study of the role of oxygen and nitrogen and the structural effects in the alloy associated with the melting process was carried out. The results showed that the level of boron and/or zirconium was far more influential on properties than the melting method. Vacuum melting did reduce corner cracking and improve surface during hot-rolling. It also resulted in more uniform properties within heats. The creep-rupture properties were slightly superior in vacuum heats at low boron plus zirconium or in heats with zirconium. There was little advantage at high boron levels and air heats were superior at high levels of boron plus zirconium. Vacuum heats also had fewer oxide and carbonitride inclusions although this was a function of the opportunity for separation of the inclusions from high oxygen plus nitrogen heats. The removal of phosphorous by vacuum melting was not found to be related to properties. Oxygen plus nitrogen appeared to increase ductility in creep-rupture tests suggesting that vacuum melting removes unidentified elements detrimental to ductility. Oxides and carbonitrides in themselves did not initiate microcracks. Carbonitrides in the grain boundaries of air heats did initiate microcracks. The role of microcracking from this source and as a function of oxygen and nitrogen content was not clear. Oxygen and nitrogen did intensify corner cracking during hot-rolling but were not responsible for poor surface which resulted from rolling heats melted in air.
Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates.
Wang, Gou-Jen; Lin, Yan-Cheng; Li, Ching-Wen; Hsueh, Cheng-Chih; Hsu, Shan-Hui; Hung, Huey-Shan
2009-08-01
In this research, two simple fabrication methods to fabricate orderly nanostructured PLGA scaffolds using anodic aluminum oxide (AAO) template were conducted. In the vacuum air-extraction approach, the PLGA solution was cast on an AAO template first. The vacuum air-extraction process was then applied to suck the semi-congealed PLGA into the nanopores of the AAO template to form a bamboo sprouts array of PLGA. The surface roughness of the nanostructured scaffolds, ranging from 20 nm to 76 nm, can be controlled by the sucking time of the vacuum air-extraction process. In the replica molding approach, the PLGA solution was cast on the orderly scraggy barrier-layer surface of an AAO membrane to fabricate a PLGA scaffold of concave nanostructure. Cell culture experiments using the bovine endothelial cells (BEC) demonstrated that the nanostructured PLGA membrane can increase the cell growing rate, especially for the bamboo sprouts array scaffolds with smaller surface roughness.
Glow discharge cleaning of vacuum switch tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, T.; Toya, H.
1991-10-01
This paper reports that glow discharge cleaning has ben advancing as a means of degassing vacuum chambers constructed for a large accelerator or for nuclear fusion research. To clean the whole surface of parts inside a vacuum switch tube (VST), a new technique is tried which generates glow discharge between the inner electrodes and copper grid surrounding it. Photographic observation reveals that the glow discharge spreads out and cleans the whole surface inside the VST. A breakdown test between the inner electrodes shows the effect of the cleaning with this technique. Higher breakdown voltage between the inner electrodes is attainedmore » by performing this glow discharge cleaning in argon rather than hydrogen gas. The difference of the cleaning effect seems to be attributed to that of the energy transfer from ion species to the absorbed molecules and microprotrusions on the surfaces.« less
Pantoja, Carlos Augusto de Morais Souto; Silva, Diogo Henrique da; Soares, Adriana de Jesus; Ferraz, Caio Cezar Randi; Gomes, Brenda Paula Figueiredo de Almeida; Zaia, Alexandre Augusto; Almeida, José Flávio Affonso de
2018-01-01
This study aimed to evaluate the influence of different ethanol concentrations on dentin roughness, surface free energy, and contact angle between AH Plus and the root canal dentin. One hundred human maxillary anterior teeth were split longitudinally and 200 dentin specimens were polished to make the surface flatter and smoother. An acrylic bar was positioned between two dentin specimens and impression material was added to create a block, simulating an instrumented root canal space. Specimens were removed from the mold and cleaned in an ultrasonic bath for 10 min. Thereafter, dentin specimens were divided into four groups (n = 50) according to the drying methods used: a) wet: vacuum only, b) paper points: vacuum + absorbent paper points, c) 70% alcohol: 70% alcohol (1 min) + vacuum + absorbent paper points, and d) 100% alcohol: 100% alcohol (1 min) + vacuum + absorbent paper points. A rugosimeter and a goniometer were used to verify the roughness (Ra) and to measure the surface free energy and the contact angle between the AH Plus sealer and the root canal dentin. ANOVA and Tukey tests (α = 0.05) were used for statistical analysis. The 70% and 100% ethanol groups showed significantly decreased roughness as well as increased surface free energy in the root canal dentin when compared to the wet and paper point groups. In addition, ethanol significantly reduced the contact angle between the AH Plus sealer and the root canal dentin. Ethanol solutions (70% and 100%) provide better wettability of AH Plus sealer on dentin surfaces.
Reaction of water with MgO(100) surfaces: Part III. X-ray standing wave studies
NASA Astrophysics Data System (ADS)
Liu, P.; Kendelewicz, T.; Nelson, E. J.; Brown, G. E.
1998-09-01
Clean MgO(100) surfaces cleaved in vacuum and exposed to water vapor or bulk water were studied using the X-ray standing wave (XSW) technique in back reflection mode and surface sensitive, element specific O KLL and Mg KLL Auger electron yield detection. The effects of surface charging were mitigated, but not entirely eliminated, by using a low-energy electron flood gun. Simulation of the XSW signal showed that the effect of surface charging on the XSW data could be minimized with careful experimental design. We demonstrate that the XSW method can be applied to studies of insulating surfaces, and our results for MgO(100) surfaces exposed to water vapor or bulk water indicate the following: (1) the vacuum-cleaved clean surface undergoes no surface reconstruction or significant relaxation perpendicular to the surface; (2) Mg-OH distances on surfaces exposed to water vapor or bulk water measured perpendicular to the (100) surface are the same as in bulk MgO; and (3) the z-position of the surface Mg atoms does not change within the estimated error [±2% of the (200) spacing] after the surface is fully hydroxylated. Our results for the clean, vacuum-cleaved surface disagree with results from impact collision ion-scattering spectroscopy and surface-extended electron-loss fine structure for MgO(100), which indicate 15 and 17% inward relaxation, respectively, and they support results from low-energy electron diffraction, reflection high-energy electron diffraction, and photoelectron diffraction that show little, if any, relaxation or rumpling of the surface.
Cryopumping of hydrogen in vacuum chambers is aided by catalytic oxidation of hydrogen
NASA Technical Reports Server (NTRS)
Childs, J. H.; Grobman, J.; Rayle, W.
1964-01-01
Vacuum test facilities are required for high speed cryopumping of gaseous hydrogen at low pressures. One method involves the catalytic oxidation of hydrogen and condensation of the resulting water on a liquid nitrogen-cooled surface.
Properties data for opening the Galileo's partially unfurled main antenna
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Pepper, Stephen V.
1992-01-01
An investigation was conducted into the friction and wear behavior of both unlubricated and dry-film-lubricated (Tiolube 460) titanium alloy (Ti-6Al-4V) in contact with an uncoated high-nickel-content superalloy (Inconel 718) both in vacuum and in air. The acquisition of friction and wear data for this sliding couple was motivated by the need for input data for the 'antenna stuck ribs model' effort to free Galileo's High Gain Antenna. The results of the investigation indicate that galling occurred in the unlubricated system in vacuum and that the coefficient of friction increased to 1.2. The abnormally high friction (1.45) was observed when relatively large wear debris clogged at the sliding interface. The coefficient of friction for the dry-film-lubricated system in vacuum is 0.04, while the value in air is 0.13. The endurance life of the dry-film lubricant is about three orders of magnitude greater in vacuum than in air. The worn surfaces of the dry-film-lubricated Ti-6Al-4V pin and Inconel 718 disk first run in humid air and then rerun in vacuum was completely different from that of the pin and disk run only in vacuum. When galling occurred in the humid-air and vacuum contact, coefficient of friction rose to 0.32 when sliding in humid air and to 1.4 when sliding in vacuum. The galling was accompanied by severe surface damage and extensive transfer of the Ti-6Al-4V to the Inconel 718, or vice versa. When spalling occurred in the dry-film-lubricated Ti-6Al-4V pin run only in vacuum, the coefficient of friction rose to 0.36 or greater. The wear damage caused by spalling can self-heal when rerun in vacuum - the coefficient of friction decreased to 0.05. The friction and wear data obtained can be used for the 'antenna stuck ribs model' effort to free Galileo's high gain antenna.
Theoretical and experimental researches of the liquid evaporation during thermal vacuum influences
NASA Astrophysics Data System (ADS)
Trushlyakov, V.; Panichkin, A.; Prusova, O.; Zharikov, K.; Dron, M.
2018-01-01
The mathematical model of the evaporation process of model liquid with the free surface boundary conditions of the "mirror" type under thermal vacuum influence and the numerical estimates of the evaporation process parameters are developed. An experimental stand, comprising a vacuum chamber, an experimental model tank with a heating element is designed; the experimental data are obtained. A comparative analysis of numerical and experimental results showed their close match.
NASA Astrophysics Data System (ADS)
Berthold, Theresa; Rombach, Julius; Stauden, Thomas; Polyakov, Vladimir; Cimalla, Volker; Krischok, Stefan; Bierwagen, Oliver; Himmerlich, Marcel
2016-12-01
The influence of oxygen plasma treatments on the surface chemistry and electronic properties of unintentionally doped and Mg-doped In2O3(111) films grown by plasma-assisted molecular beam epitaxy or metal-organic chemical vapor deposition is studied by photoelectron spectroscopy. We evaluate the impact of semiconductor processing technology relevant treatments by an inductively coupled oxygen plasma on the electronic surface properties. In order to determine the underlying reaction processes and chemical changes during film surface-oxygen plasma interaction and to identify reasons for the induced electron depletion, in situ characterization was performed implementing a dielectric barrier discharge oxygen plasma as well as vacuum annealing. The strong depletion of the initial surface electron accumulation layer is identified to be caused by adsorption of reactive oxygen species, which induce an electron transfer from the semiconductor to localized adsorbate states. The chemical modification is found to be restricted to the topmost surface and adsorbate layers. The change in band bending mainly depends on the amount of attached oxygen adatoms and the film bulk electron concentration as confirmed by calculations of the influence of surface state density on the electron concentration and band edge profile using coupled Schrödinger-Poisson calculations. During plasma oxidation, hydrocarbon surface impurities are effectively removed and surface defect states, attributed to oxygen vacancies, vanish. The recurring surface electron accumulation after subsequent vacuum annealing can be consequently explained by surface oxygen vacancies.
Mechanical Stress Measurement During Thin-Film Fabrication
NASA Technical Reports Server (NTRS)
Broadway, David M. (Inventor)
2017-01-01
A method and system are provided for determining mechanical stress experienced by a film during fabrication thereof on a substrate positioned in a vacuum deposition chamber. The substrate's first surface is disposed to have the film deposited thereon and the substrate's opposing second surface is a specular reflective surface. A portion of the substrate is supported. An optical displacement sensor is positioned in the vacuum deposition chamber in a spaced-apart relationship with respect to a portion of the substrate's second surface. During film deposition on the substrate's first surface, displacement of the portion of the substrate's second surface is measured using the optical displacement sensor. The measured displacement is indicative of a radius of curvature of the substrate, and the radius of curvature is indicative of mechanical stress being experienced by the film.
Vacuum insulation of the high energy negative ion source for fusion application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, A.; Hanada, M.; Inoue, T.
2012-02-15
Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A,more » 500 keV D{sup -} ion beams for 100 s.« less
Preheat effect on titanium plate fabricated by sputter-free selective laser melting in vacuum
NASA Astrophysics Data System (ADS)
Sato, Yuji; Tsukamoto, Masahiro; Shobu, Takahisa; Yamashita, Yorihiro; Yamagata, Shuto; Nishi, Takaya; Higashino, Ritsuko; Ohkubo, Tomomasa; Nakano, Hitoshi; Abe, Nobuyuki
2018-04-01
The dynamics of titanium (Ti) melted by laser irradiation was investigated in a synchrotron radiation experiment. As an indicator of wettability, the contact angle between a selective laser melting (SLM) baseplate and the molten Ti was measured by synchrotron X-rays at 30 keV during laser irradiation. As the baseplate temperature increased, the contact angle decreased, down to 28° at a baseplate temperature of 500 °C. Based on this result, the influence of wettability of a Ti plate fabricated by SLM in a vacuum was investigated. It was revealed that the improvement of wettability by preheating suppressed sputtering generation, and a surface having a small surface roughness was fabricated by SLM in a vacuum.
Large area, surface discharge pumped, vacuum ultraviolet light source
Sze, Robert C.; Quigley, Gerard P.
1996-01-01
Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.
Surface Fatigue Tests Of M50NiL Gears And Bars
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.; Bamberger, Eric N.
1994-01-01
Report presents results of tests of steels for use in gears and bearings of advanced aircraft. Spur-gear endurance tests and rolling-element surface fatigue tests performed on gear and bar specimens of M50NiL steel processed by vacuum induction melting and vacuum arc remelting (VIM-VAR). Compares results of tests with similar tests of specimens of VIM-VAR AISI 9310 steel and of AISI 9310 steel subjected to VAR only.
Development of a compact bushing for NBI
NASA Astrophysics Data System (ADS)
de Esch, H. P. L.; Simonin, A.; Grand, C.; Lepetit, B.; Lemoine, D.; Márquez-Mijares, M.; Minea, T.; Caillault, L.; Seznec, B.; Jager, T.; Odic, E.; Kirkpatrick, M. J.; Teste, Ph.; Dessante, Ph.; Almaksour, K.
2017-08-01
Research into a novel type of compact bushing is being conducted through the HVIV (High Voltage holding In Vacuum) partnership between CEA-Cadarache1, GeePs-Centralesupélec4, LPGP3 and LCAR2. The bushing aims to concentrate the high electric field inside its interior, rather than in the vacuum tank. Hence the field emission current is also concentrated inside the bushing and it can be attempted to suppress this so-called dark current by conditioning the internal surfaces and by adding gas. LCAR have performed theoretical quantum mechanical studies of electron field emission and the role of adsorbates in changing the work function. LPGP studied the ionization of gas due to field emission current and the behavior of micro particles exposed to emissive electron current in the vacuum gap under high electric fields. Experiments at Geeps have clarified the role of surface conditioning in reducing the dark current. Geeps also found that adding low pressure nitrogen gas to the vacuum is much more effective than helium in reducing the field emission. An interesting observation is the growth of carbon structures after exposure of an electrode to the electric field. Finally, IRFM have performed experiments on a single stage test bushing that features a 36 cm high porcelain insulator and two cylindrical electrode surfaces in vacuum or low-pressure gas. Using 0.1 Pa N2 gas, the voltage holding exceeded 185 kV over a 40 mm "vacuum" gap without dark current. Above this voltage, exterior breakdowns occurred over the insulator, which was in air. The project will finish with the fabrication of a 2-stage compact bushing, capable to withstand 400 kV.
Euston, S R; Hughes, P; Naser, Md A; Westacott, R E
2008-11-01
Molecular dynamic simulations have been carried out on systems containing a mixture of barley lipid transfer protein (LTP) and cis-isocohumulone (a hop derived iso-alpha-acid) in one of its enol forms, in bulk water and at the vacuum-water interface. In solution, the cis-isocohumulone molecules bind to the surface of the LTP molecule. The mechanism of binding appears to be purely hydrophobic in nature via desolvation of the protein surface. Binding of hop acids to the LTP leads to a small change in the 3-D conformation of the protein, but no change in the proportion of secondary structure present in helices, even though there is a significant degree of hop acid binding to the helical regions. At the vacuum-water interface, cis-isocohumulone shows a high surface activity and adsorbs rapidly at the interface. LTP then shows a preference to bind to the preadsorbed hop acid layer at the interface rather than to the bare water-vacuum interface. The free energy of adsorption of LTP at the hop-vacuum-water interface is more favorable than for adsorption at the vacuum-water interface. Our results support the view that hop iso-alpha-acids promote beer foam stability by forming bridges between separate adsorbed protein molecules, thus strengthening the adsorbed protein layer and reducing foam breakdown by lamellar phase drainage. The results also suggest a second mechanism may also occur, whereby the concentration of protein at the interface is increased via enhanced protein adsorption to adsorbed hop acid layers. This too would increase foam stability through its effect on the stabilizing protein layer around the foam bubbles.
General and crevice corrosion study of the in-wall shielding materials for ITER vacuum vessel
NASA Astrophysics Data System (ADS)
Joshi, K. S.; Pathak, H. A.; Dayal, R. K.; Bafna, V. K.; Kimihiro, Ioki; Barabash, V.
2012-11-01
Vacuum vessel In-Wall Shield (IWS) will be inserted between the inner and outer shells of the ITER vacuum vessel. The behaviour of IWS in the vacuum vessel especially concerning the susceptibility to crevice of shielding block assemblies could cause rapid and extensive corrosion attacks. Even galvanic corrosion may be due to different metals in same electrolyte. IWS blocks are not accessible until life of the machine after closing of vacuum vessel. Hence, it is necessary to study the susceptibility of IWS materials to general corrosion and crevice corrosion under operations of ITER vacuum vessel. Corrosion properties of IWS materials were studied by using (i) Immersion technique and (ii) Electro-chemical Polarization techniques. All the sample materials were subjected to a series of examinations before and after immersion test, like Loss/Gain weight measurement, SEM analysis, and Optical stereo microscopy, measurement of surface profile and hardness of materials. After immersion test, SS 304B4 and SS 304B7 showed slight weight gain which indicate oxide layer formation on the surface of coupons. The SS 430 material showed negligible weight loss which indicates mild general corrosion effect. On visual observation with SEM and Metallography, all material showed pitting corrosion attack. All sample materials were subjected to series of measurements like Open Circuit potential, Cyclic polarization, Pitting potential, protection potential, Critical anodic current and SEM examination. All materials show pitting loop in OC2 operating condition. However, its absence in OC1 operating condition clearly indicates the activity of chloride ion to penetrate oxide layer on the sample surface, at higher temperature. The critical pitting temperature of all samples remains between 100° and 200°C.
NASA Technical Reports Server (NTRS)
Lee, R. B., III
1972-01-01
Experimental investigations of the percent polarization of sunlight reflected from the surfaces of each of the Echo 2 Satellite and PAGEOS (Passive Geodetic Earth Orbiting Satellite) were performed to determine the stability of their surfaces in the space environment. The Echo 2 surface material was amorphous phosphate chemically bonded to a rolled aluminum substrate while the PAGEOS 1 surface material is vapor deposited aluminum on a poly (ethylene terephthalate) film. The stability of the satellites' surfaces was analyzed by comparing the light polarizing properties of the satellites, to those of test surfaces representative of the satellites' surfaces. The properties of flat test surfaces were measured experimentally in the laboratory, and the effects of surface strain, surface geometry, and vacuum upon these properties were examined. The laboratory analyses revealed that the polarization properties of the Echo 2 surface were significantly affected by surface geometry and vacuum, and that the properties of the PAGEOS 1 surface were not significantly altered by any of the above mechanisms.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1995-04-18
An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1995-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.
The Preliminary Evaluation of Liquid Lubricants for Space Applications by Vacuum Tribometry
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Pepper, S. V.; Herrera-Fierro, P.; Feuchter, D.; Toddy, T. J.; Jayne, D. T.; Wheeler, D. R.; Abel, P. B.; Kingsbury, E.; Morales, W.
1994-01-01
Four different vacuum tribometers for the evaluation of liquid lubricants for space applications are described. These range from simple ball-on-flat sliders with maximum in-situ control and surface characterization to an instrument bearing apparatus having no in-situ characterization. Thus, the former provides an abundance of surface chemical information but is not particularly simulative of most triboelements. On the other hand, the instrument bearing apparatus is completely simulative, but only allows post-mortem surface chemical information. Two other devices, a four-ball apparatus and a ball-on-plate tribometer, provide varying degrees of surface chemical information and tribo-simulation. Examples of data from each device are presented.
Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources
NASA Astrophysics Data System (ADS)
Kulevoy, Timur V.; Chalyhk, Boris B.; Fedin, Petr A.; Sitnikov, Alexey L.; Kozlov, Alexander V.; Kuibeda, Rostislav P.; Andrianov, Stanislav L.; Orlov, Nikolay N.; Kravchuk, Konstantin S.; Rogozhkin, Sergey V.; Useinov, Alexey S.; Oks, Efim M.; Bogachev, Alexey A.; Nikitin, Alexander A.; Iskandarov, Nasib A.; Golubev, Alexander A.
2016-02-01
Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.
Self-Lubricating, Wear-Resistant Diamond Films Developed for Use in Vacuum Environment
NASA Technical Reports Server (NTRS)
1996-01-01
Diamond's outstanding properties--extreme hardness, chemical and thermal inertness, and high strength and rigidity--make it an ideal material for many tribological applications, such as the bearings, valves, and engine parts in the harsh environment found in internal-combustion engines, jet engines, and space propulsion systems. It has been demonstrated that chemical-vapor-deposited diamond films have low coefficients of friction (on the order of 0.01) and low wear rates (less than 10(sup -7) mm (sup 3/N-m)) both in humid air and dry nitrogen but that they have both high coefficients of friction (greater than 0.4) and high wear rates (on the order of 1(sup -4) mm sup 3/N-m)) in vacuum. It is clear that surface modifications that provide acceptable levels of friction and wear properties will be necessary before diamond films can be used for tribological applications in a space-like, vacuum environment. Previously, it was found that coatings of amorphous, non-diamond carbon can provide low friction in vacuum. Therefore, to reduce the friction and wear of diamond film in vacuum, carbon ions were implanted in an attempt to form a surface layer of amorphous carbon phases on the diamond films.
Euston, S R; Hughes, P; Naser, Md A; Westacott, R E
2008-05-01
Molecular dynamics simulation is used to model the adsorption of the barley lipid transfer protein (LTP) at the decane-water and vacuum-water interfaces. Adsorption at both surfaces is driven by displacement of water molecules from the interfacial region. LTP adsorbed at the decane surface exhibits significant changes in its tertiary structure, and penetrates a considerable distance into the decane phase. At the vacuum-water interface LTP shows small conformational changes away from its native structure and does not penetrate into the vacuum space. Modification of the conformational stability of LTP by reduction of its four disulphide bonds leads to an increase in conformational entropy of the molecules, which reduces the driving force for adsorption. Evidence for changes in the secondary structure are also observed for native LTP at the decane-water interface and reduced LTP at the vacuum-water interface. In particular, intermittent formation of short (six-residue) regions of beta-sheet is found in these two systems. Formation of interfacial beta-sheet in adsorbed proteins has been observed experimentally, notably in the globular milk protein beta-lactoglobulin and lysozyme.
Safety shield for vacuum/pressure chamber viewing port
NASA Technical Reports Server (NTRS)
Shimansky, R. A.; Spencer, R. S. (Inventor)
1981-01-01
Observers are protected from flying debris resulting from a failure of a vacuum or pressure chamber viewing port following an implosion or explosion by an optically clear shatter resistant safety shield which spaced apart from the viewing port on the outer surface of the chamber.
Dynamical emergence of the Universe into the false vacuum
NASA Astrophysics Data System (ADS)
Rafelski, Johann; Birrell, Jeremiah
2015-11-01
We study how the hot Universe evolves and acquires the prevailing vacuum state, demonstrating that in specific conditions which are believed to apply, the Universe becomes frozen into the state with the smallest value of Higgs vacuum field v=langle hrangle, even if this is not the state of lowest energy. This supports the false vacuum dark energy Λ-model. Under several likely hypotheses we determine the temperature in the evolution of the Universe at which two vacuua v1, v2 can swap between being true and false. We evaluate the dynamical surface pressure on domain walls between low and high mass vaccua due to the presence of matter and show that the low mass state remains the preferred vacuum of the Universe.
Vacuum encapsulated, high temperature diamond amplified cathode capsule and method for making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Triveni; Walsh, Josh; Gangone, Elizabeth
2015-12-29
A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first high-temperature solder weld disposed between the diamond window element and the annular insulating spacer and a second high-temperature solder weld disposed between the annular insulating spacer and the cathode element. The cathode capsulemore » is formed by a high temperature weld process under vacuum such that the first solder weld forms a hermetical seal between the diamond window element and the annular insulating spacer and the second solder weld forms a hermetical seal between the annular spacer and the cathode element whereby a vacuum encapsulated chamber is formed within the capsule.« less
Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same
Rao, Triveni; Walsh, John; Gangone, Elizabeth
2014-12-30
A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.
Origin of the transition voltage in gold-vacuum-gold atomic junctions.
Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin
2013-01-18
The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments.
Electrical properties of double layer dielectric structures for space technology
NASA Astrophysics Data System (ADS)
Lian, Anqing
1993-04-01
Polymeric films such as polyimide (PI) and polyethylene terephthalate (PET) are used in space technology as thermal blankets. Thin SiO2 and SiN coatings plasma deposited onto PI and PET surfaces were proposed to protect the blanket materials against the space environment. The electrical properties of this kind of dual layer dielectric structure were investigated to understand the mechanisms for suppressing charge accumulation and flashover. Bulk and surface electrical conductivities of thin single-layer PI and PET samples and of the dual layer SiO2 and SiN combinations with PI and PET were measured in a range of applied electrical fields. The capacitance voltage (CV) technique was used for analyzing charge transport and distribution in the structures. The electric current in the bulk of the SiO2/PI and SiN/PI samples was found to depend on the polarity of the electric field. Other samples did not exhibit any such polarity effect. The polarity dependence is attributed to charge trapping at the PI/plasma deposit interface. The CV characteristics of the Al-PI-SiO2-Si structure confirm that charges which can modify the local electric field can be trapped near the interface. A model is proposed to interpret the properties of the currents in dual layer structures. This model can semi-quantitatively explain all the observed results.
Arc initiation in cathodic arc plasma sources
Anders, Andre
2002-01-01
A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.
NASA Astrophysics Data System (ADS)
Anikeev, V. N.; Dokukin, M. Yu
2017-05-01
In the modern technics there is a requirement in micro- and macrorough surfaces of products for improvement of their operational characteristics (improvement of adhesive properties of various coverings, decrease in deterioration of rubbing details because of the best deduction of greasing, increase of the heat exchanging coefficient from a surface, stimulation of adhesive processes on sites of contact to a bone fabric of medical implants in stomatology and orthopedy etc.). In the given work the modes of reception regulated micro- and macrorough surfaces on samples from a titanic alloy and stainless steel by electrothermal influence of moving cathodic stains in the vacuum arc discharge are investigated. Chaotically moving stains, possessing high specific power allocation (∼ 107 W/cm2), “scan” the difficult design of a product, including “shadow” sites, doing rough its blanket. The sizes of roughnesses are regulated by a current and time of influence of the discharge, pressure in the vacuum chamber and a number of other parameters. The scheme of experimental device, photo and the characteristic of rough surfaces and technological modes of their reception are resulted.
Takaku, Yasuharu; Suzuki, Hiroshi; Ohta, Isao; Tsutsui, Takami; Matsumoto, Haruko; Shimomura, Masatsugu; Hariyama, Takahiko
2015-01-01
Although extremely useful for a wide range of investigations, the field emission scanning electron microscope (FE-SEM) has not allowed researchers to observe living organisms. However, we have recently reported that a simple surface modification consisting of a thin extra layer, termed ‘NanoSuit’, can keep organisms alive in the high vacuum (10−5 to 10−7 Pa) of the SEM. This paper further explores the protective properties of the NanoSuit surface-shield. We found that a NanoSuit formed with the optimum concentration of Tween 20 faithfully preserves the integrity of an organism's surface without interfering with SEM imaging. We also found that electrostatic charging was absent as long as the organisms were alive, even if they had not been coated with electrically conducting materials. This result suggests that living organisms possess their own electrical conductors and/or rely on certain properties of the surface to inhibit charging. The NanoSuit seems to prolong the charge-free condition and increase survival time under vacuum. These findings should encourage the development of more sophisticated observation methods for studying living organisms in an FE-SEM. PMID:25631998
NASA Astrophysics Data System (ADS)
Mateo-Marti, Eva
2014-08-01
The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.
Estill, Cheryl Fairfield; Baron, Paul A.; Beard, Jeremy K.; Hein, Misty J.; Larsen, Lloyd D.; Rose, Laura; Schaefer, Frank W.; Noble-Wang, Judith; Hodges, Lisa; Lindquist, H. D. Alan; Deye, Gregory J.; Arduino, Matthew J.
2009-01-01
After the 2001 anthrax incidents, surface sampling techniques for biological agents were found to be inadequately validated, especially at low surface loadings. We aerosolized Bacillus anthracis Sterne spores within a chamber to achieve very low surface loading (ca. 3, 30, and 200 CFU per 100 cm2). Steel and carpet coupons seeded in the chamber were sampled with swab (103 cm2) or wipe or vacuum (929 cm2) surface sampling methods and analyzed at three laboratories. Agar settle plates (60 cm2) were the reference for determining recovery efficiency (RE). The minimum estimated surface concentrations to achieve a 95% response rate based on probit regression were 190, 15, and 44 CFU/100 cm2 for sampling steel surfaces and 40, 9.2, and 28 CFU/100 cm2 for sampling carpet surfaces with swab, wipe, and vacuum methods, respectively; however, these results should be cautiously interpreted because of high observed variability. Mean REs at the highest surface loading were 5.0%, 18%, and 3.7% on steel and 12%, 23%, and 4.7% on carpet for the swab, wipe, and vacuum methods, respectively. Precision (coefficient of variation) was poor at the lower surface concentrations but improved with increasing surface concentration. The best precision was obtained with wipe samples on carpet, achieving 38% at the highest surface concentration. The wipe sampling method detected B. anthracis at lower estimated surface concentrations and had higher RE and better precision than the other methods. These results may guide investigators to more meaningfully conduct environmental sampling, quantify contamination levels, and conduct risk assessment for humans. PMID:19429546
Estill, Cheryl Fairfield; Baron, Paul A; Beard, Jeremy K; Hein, Misty J; Larsen, Lloyd D; Rose, Laura; Schaefer, Frank W; Noble-Wang, Judith; Hodges, Lisa; Lindquist, H D Alan; Deye, Gregory J; Arduino, Matthew J
2009-07-01
After the 2001 anthrax incidents, surface sampling techniques for biological agents were found to be inadequately validated, especially at low surface loadings. We aerosolized Bacillus anthracis Sterne spores within a chamber to achieve very low surface loading (ca. 3, 30, and 200 CFU per 100 cm(2)). Steel and carpet coupons seeded in the chamber were sampled with swab (103 cm(2)) or wipe or vacuum (929 cm(2)) surface sampling methods and analyzed at three laboratories. Agar settle plates (60 cm(2)) were the reference for determining recovery efficiency (RE). The minimum estimated surface concentrations to achieve a 95% response rate based on probit regression were 190, 15, and 44 CFU/100 cm(2) for sampling steel surfaces and 40, 9.2, and 28 CFU/100 cm(2) for sampling carpet surfaces with swab, wipe, and vacuum methods, respectively; however, these results should be cautiously interpreted because of high observed variability. Mean REs at the highest surface loading were 5.0%, 18%, and 3.7% on steel and 12%, 23%, and 4.7% on carpet for the swab, wipe, and vacuum methods, respectively. Precision (coefficient of variation) was poor at the lower surface concentrations but improved with increasing surface concentration. The best precision was obtained with wipe samples on carpet, achieving 38% at the highest surface concentration. The wipe sampling method detected B. anthracis at lower estimated surface concentrations and had higher RE and better precision than the other methods. These results may guide investigators to more meaningfully conduct environmental sampling, quantify contamination levels, and conduct risk assessment for humans.
Lightning protection of distribution lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, T.E.; Short, T.A.; Anderson, J.G.
1994-01-01
This paper reports a study of distribution line lightning performance, using computer simulations of lightning overvoltages. The results of previous investigations are extended with a detailed model of induced voltages from nearby strokes, coupled into a realistic power system model. The paper also considers the energy duty of distribution-class surge arresters exposed to direct strokes. The principal result is that widely separated pole-top arresters can effectively protect a distribution line from induced-voltage flashovers. This means that nearby lightning strokes need not be a significant lightning performance problem for most distribution lines.
Field enhancement in plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Piltan, Shiva; Sievenpiper, Dan
2018-05-01
Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of {{W}} {{{c}}{{m}}}-2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.
Orkusz, A; Haraf, G; Okruszek, A; Werenska-Sudnik, M
2017-03-01
The objective of the work was to investigate the color and lipid oxidation changes of goose breast meat packaged in vacuum and modified atmosphere (MA) conditions consisting of 80% O2, 20% CO2, and stored in refrigerated conditions at 4°C. Color stability was monitored by determining total heme pigments concentration; relative concentration of myoglobin, oxymyoglobin, and metmyoglobin; parameters of color L*, a*, b*, and sensory evaluation of the surface color. Lipid stability was measured by determining thiobarbituric acid reactive substances (TBARS). The samples were examined in 24 h after slaughter (unpacked muscles) and on d 4, 7, 9, 11 of storage (muscles packed in vacuum and in MA). Through the time of storage, samples packed in MA had higher TBARS values in comparison to the meat packed in vacuum. For samples packed in two types of atmospheres, the total pigments concentration decreased gradually within 11 d of storage. It was observed that relative metmyoglobin concentration increased whereas relative oxymyoglobin concentration decreased in total heme pigments in the MA stored muscle. The relative concentration of all three myoglobin forms sample packed in vacuum remained unchanged. The color parameters (L*, a*, b*) did not change for 11 d of storage for the vacuum packed meat. The value of the color parameter a* decreased and the value of the color parameters L* and b* increased in the samples packaged in MA. The data prove that if you store goose meat in MA (consisting of 80% O2, 20% CO2) or vacuum, the unchanged surface color is preserved for 9 and 11 day, respectively.Vacuum appears to be a better method as regards the maintaining of lipid stability in goose meat. © 2016 Poultry Science Association Inc.
Pokharel, S; Brooks, J C; Martin, J N; Brashears, M M
2016-12-01
As the incidence of multidrug resistance (MDR) Salmonella enterica serotype Typhimurium is increasing, data regarding the antimicrobial interventions and pathogen internalization in marinated meat products are important. This study evaluated the antimicrobial intervention and internalization of Salm. Typhimurium in marinated beef sirloin steaks. Beef bottom sirloin flaps (IMPS #185A; USDA Select) inoculated (10 8 log 10 CFU ml -1 ) with Salm. Typhimurium were sprayed (lactic acid (4%) and buffered vinegar (2%)) prior to vacuum-tumbled marination (0·35% sodium chloride and 0·45% sodium tripolyphosphate) for 30 min. Pathogen presence after antimicrobial spray, vacuum-tumbled marination, and translocation was determined by direct plating on Xylose Lysine Deoxycholate (XLD) agar with tryptic soy agar (TSA) overlay. The data imply varied internalization and antimicrobial susceptibility pattern of Salm. Typhimurium in marinated meat. Lactic acid (4%) spray (P < 0·0001) and buffered vinegar (2%; P < 0·0001) reduced surface populations of Salm. Typhimurium on inoculated beef sirloin flaps prior to vacuum marination. However, lactic acid treated sirloin flaps had greater reductions (~2 log 10 CFU cm -2 ) than buffered vinegar when compared with control prior to vacuum marination. However, the translocation of Salm. Typhimurium following vacuum marination was not influenced (P < 0·333) by the application of a surface organic acid spray prior to marination. As detailed in the Federal Register FSIS final rule (9 CFR part 317), vacuum-marinated, vacuum-tumbled meat products are not designated as 'mechanically tenderized'. As such, the internalization and potential survival of Salmonella spp. in marinated beef products is a major concern. These results highlight the internalization of pathogens in vacuum-tumbled meat products and emphasize the importance of considering these products as nonintact. Similarly, these data confirm the efficacy and utility of interventions prior to vacuum-tumbled marination. Further research is needed to identify additional strategies to mitigate internalization and translocation of pathogens into vacuum-marinated meat products. © 2016 The Society for Applied Microbiology.
Rich, David Q; Rhoads, George G; Yiin, Lih-Ming; Zhang, Junfeng; Bai, Zhipeng; Adgate, John L; Ashley, Peter J; Lioy, Paul J
2002-01-01
High efficiency particulate air filter (HEPA) vacuums, which collect particles > 0.3 micro m, and trisodium phosphate (TSP), a detergent claimed to selectively remove lead, have been included in the HUD Guidelines for the Evaluation and Control of Lead Based Paint Hazards in Housing without systematic validation of their effectiveness. At the time the study was initiated, both HEPA vacuums and TSP were relatively expensive, they were not readily found in urban retail centers, and there were environmental concerns about the use and disposal of high-phosphate detergents. A randomized, controlled trial was conducted in urban high-risk homes in northern New Jersey to determine whether a more readily available and less expensive low-phosphate, non-TSP detergent and non-HEPA vacuum could perform as well as TSP and a HEPA vacuum in a cleaning protocol. Homes were randomized to one of three cleaning methods: TSP/HEPA vacuum, TSP/non-HEPA vacuum, or non-TSP/non-HEPA vacuum. Change in log-transformed lead loading was used in mixed models to compare the efficacy of the three cleaning techniques separately for uncarpeted floors, window sills, and window troughs. After we adjusted for baseline lead loading, the non-HEPA vacuum produced larger reductions on hard floors [19%; 95% confidence interval (CI), 3-38%], but the HEPA vacuum produced larger reductions on window sills (22%; 95% CI, 11-32%) and larger reductions on window troughs (16%; 95% CI, -4 to 33%). The non-TSP produced larger reductions on window troughs (21%; 95% CI, -2 to 50%), but TSP produced larger reductions on hard floors (5%; 95% CI, -12 to 19%) and window sills (8%; 95% CI, -5 to 20%). TSP/HEPA produced larger reductions on window sills (28%; 95% CI, 18-37%) and larger reductions on window troughs (2%; 95% CI, -24 to 23%), whereas the non-TSP/non-HEPA method produced larger reductions on hard floors (13%; 95% CI, -5 to 34%). Because neither vacuum nor detergent produced consistent results across surface types, the use of low-phosphate detergents and non-HEPA vacuums in a temporary control measure is supported. PMID:12204823
Rich, David Q; Rhoads, George G; Yiin, Lih-Ming; Zhang, Junfeng; Bai, Zhipeng; Adgate, John L; Ashley, Peter J; Lioy, Paul J
2002-09-01
High efficiency particulate air filter (HEPA) vacuums, which collect particles > 0.3 micro m, and trisodium phosphate (TSP), a detergent claimed to selectively remove lead, have been included in the HUD Guidelines for the Evaluation and Control of Lead Based Paint Hazards in Housing without systematic validation of their effectiveness. At the time the study was initiated, both HEPA vacuums and TSP were relatively expensive, they were not readily found in urban retail centers, and there were environmental concerns about the use and disposal of high-phosphate detergents. A randomized, controlled trial was conducted in urban high-risk homes in northern New Jersey to determine whether a more readily available and less expensive low-phosphate, non-TSP detergent and non-HEPA vacuum could perform as well as TSP and a HEPA vacuum in a cleaning protocol. Homes were randomized to one of three cleaning methods: TSP/HEPA vacuum, TSP/non-HEPA vacuum, or non-TSP/non-HEPA vacuum. Change in log-transformed lead loading was used in mixed models to compare the efficacy of the three cleaning techniques separately for uncarpeted floors, window sills, and window troughs. After we adjusted for baseline lead loading, the non-HEPA vacuum produced larger reductions on hard floors [19%; 95% confidence interval (CI), 3-38%], but the HEPA vacuum produced larger reductions on window sills (22%; 95% CI, 11-32%) and larger reductions on window troughs (16%; 95% CI, -4 to 33%). The non-TSP produced larger reductions on window troughs (21%; 95% CI, -2 to 50%), but TSP produced larger reductions on hard floors (5%; 95% CI, -12 to 19%) and window sills (8%; 95% CI, -5 to 20%). TSP/HEPA produced larger reductions on window sills (28%; 95% CI, 18-37%) and larger reductions on window troughs (2%; 95% CI, -24 to 23%), whereas the non-TSP/non-HEPA method produced larger reductions on hard floors (13%; 95% CI, -5 to 34%). Because neither vacuum nor detergent produced consistent results across surface types, the use of low-phosphate detergents and non-HEPA vacuums in a temporary control measure is supported.
Scanning Tunneling Microscope For Use In Vacuum
NASA Technical Reports Server (NTRS)
Abel, Phillip B.
1993-01-01
Scanning tunneling microscope with subangstrom resolution developed to study surface structures. Although instrument used in air, designed especially for use in vacuum. Scanning head is assembly of small, mostly rigid components made of low-outgassing materials. Includes coarse-positioning mechanical-translation stage, on which specimen mounted by use of standard mounting stub. Tunneling tip mounted on piezoelectric fine-positioning tube. Application of suitable voltages to electrodes on piezoelectric tube controls scan of tunneling tip across surface of specimen. Electronic subsystem generates scanning voltages and collects data.
Diffusely Reflecting Paints Containing TFE
NASA Technical Reports Server (NTRS)
Shai, M. C.; Schutt, J. B.
1985-01-01
Highly reflective, diffused coatings developed by incorporating polytetrafluoroethylene (TFE) pigment with alcohol-soluble binders. Alcohol and binder mixed together in blender before adding TFE. TFE preferably outgassed in mechanical-pump vacuum for typical interval of 4 hours before adding to liquid. Like wetting agent, vacuum treatment helps to prevent clumping of TFE and eases dispersion throughout mixture. Mixture blended for 3 to 5 minutes before used. Coatings useful on reflectance-standard surfaces for calibrating radiometric instruments in both laboratory and field. Paints washable and usable as optical reference surfaces.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wheeler, Donald R.; Zabinski, Jeffrey S.
1996-01-01
An investigation was conducted to examine the surface chemistry, friction, and wear behavior of untreated and annealed tungsten disulfide (WS2) coatings in sliding contact with a 6-mm-diameter 440C stainless-steel ball. The WS2 coatings and annealing were performed using the pulsed-laser-deposition technique. All sliding friction experiments were conducted with a load of 0.98 N (100 g), an average Hertzian contact pressure of 0.44 GPa, and a constant rotating speed of 120 rpm. The sliding velocity ranged from 31 to 107 mm/s because of the range of wear track radii involved in the experiments. The experiment was performed at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7X(exp -10) Pa), dry nitrogen (relative humidity, less than 1 percent), and humid air (relative humidity, 15 to 40 percent). Analytical techniques, including scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), x-ray photo electron spectroscopy (XPS), surface profilometry, and Vickers hardness testing, were used to characterize the tribological surfaces of WS2 coatings. The results of the investigation indicate that the laser annealing decreased the wear of a WS2 coating in an ultrahigh vacuum. The wear rate was reduced by a factor of 30. Thus, the laser annealing increased the wear life and resistance of the WS2 coating. The annealed WS 2 coating had a low coefficient of friction (less than O.1) and a low wear rate ((10(exp -7) mm(exp 3)/N-m)) both of which are favorable in an ultrahigh vacuum.
Bowers, Joel M.
1994-01-01
An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz.
Bowers, J.M.
1994-04-19
An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz. 10 figures.
Electron acceleration by surface plasma waves in double metal surface structure
NASA Astrophysics Data System (ADS)
Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.
2007-12-01
Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.
Carter, H. Kennon; Mlekodaj, Ronald L.
1977-01-01
A seal is provided for allowing a thin flexible tape to be pulled from a high vacuum region (less than 10.sup.-.sup.6 torr) into atmospheric pressure. The tape first passes through a slit in an elastomer and thence through a pool of vacuum pump fluid into a differentially pumped volume. A second slit in an elastomer is the final seal element prior to exit of the tape to atmospheric pressure. The vacuum seal is utilized in a system for the rapid removal of samples, implanted in the surface of the tape, from a vacuum system to atmospheric pressure.
Mass measurement of 1 kg silicon spheres to establish a density standard
NASA Astrophysics Data System (ADS)
Mizushima, S.; Ueki, M.; Fujii, K.
2004-04-01
Air buoyancy causes a significant systematic effect in precision mass determination of 1 kg silicon spheres. In order to correct this effect accurately, mass measurement of the silicon sphere was conducted using buoyancy artefacts; additionally, in order to stabilize atmospheric conditions, we used a vacuum chamber in which a mass comparator had been installed. The silicon sphere was also weighed in vacuum to verify the air buoyancy correction. Mass differences measured in air and in vacuum showed good agreement with each other in spite of the desorption effect from weight surfaces. Furthermore, the result of weighing under vacuum conditions demonstrated better repeatability than that obtained in air.
Roberts, F Sloan; Anderson, Scott L
2013-12-01
The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.
Collecting cometary soil samples? Development of the ROSETTA sample acquisition system
NASA Technical Reports Server (NTRS)
Coste, P. A.; Fenzi, M.; Eiden, Michael
1993-01-01
In the reference scenario of the ROSETTA CNRS mission, the Sample Acquisition System is mounted on the Comet Lander. Its tasks are to acquire three kinds of cometary samples and to transfer them to the Earth Return Capsule. Operations are to be performed in vacuum and microgravity, on a probably rough and dusty surface, in a largely unknown material, at temperatures in the order of 100 K. The concept and operation of the Sample Acquisition System are presented. The design of the prototype corer and surface sampling tool, and of the equipment for testing them at cryogenic temperatures in ambient conditions and in vacuum in various materials representing cometary soil, are described. Results of recent preliminary tests performed in low temperature thermal vacuum in a cometary analog ice-dust mixture are provided.
DEVELOPMENT OF TITANIUM NITRIDE COATING FOR SNS RING VACUUM CHAMBERS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HE,P.; HSEUH,H.C.; MAPES,M.
2001-06-18
The inner surface of the ring vacuum chambers of the US Spallation Neutron Source (SNS) will be coated with {approximately}100 nm of Titanium Nitride (TiN). This is to minimize the secondary electron yield (SEY) from the chamber wall, and thus avoid the so-called e-p instability caused by electron multipacting as observed in a few high-intensity proton storage rings. Both DC sputtering and DC-magnetron sputtering were conducted in a test chamber of relevant geometry to SNS ring vacuum chambers. Auger Electron Spectroscopy (AES) and Rutherford Back Scattering (RBS) were used to analyze the coatings for thickness, stoichiometry and impurity. Excellent resultsmore » were obtained with magnetron sputtering. The development of the parameters for the coating process and the surface analysis results are presented.« less
NASA Astrophysics Data System (ADS)
Janicki, Łukasz; Ramírez-López, Manolo; Misiewicz, Jan; Cywiński, Grzegorz; Boćkowski, Michał; Muzioł, Grzegorz; Chèze, Caroline; Sawicka, Marta; Skierbiszewski, Czesław; Kudrawiec, Robert
2016-05-01
Ga-polar, N-polar, and nonpolar m-plane GaN UN+ structures have been examined in air and vacuum ambient by contactless electroreflectance (CER). This technique is very sensitive to the surface electric field that varies with the Fermi level position at the surface. For UN+ GaN structures [i.e., GaN (undoped)/GaN (n-type)/substrate], a homogeneous built-in electric field is expected in the undoped GaN layer that is manifested by Franz-Keldysh oscillation (FKO) in CER spectra. A clear change in FKO has been observed in CER spectra for N-polar and nonpolar m-plane structures when changing from air to vacuum ambient. This means that those surfaces are very sensitive to ambient atmosphere. In contrast to that, only a small change in FKO can be seen in the Ga-polar structure. This clearly shows that the ambient sensitivity of the Fermi level position at the GaN surface varies with the crystallographic orientation and is very high for N-polar and nonpolar m-plane surfaces. This feature of the N-polar and nonpolar m-plane surfaces can be very important for GaN-based devices grown on these crystallographic orientations and can be utilized in some of the devices, e.g., sensors.
Method of bonding silver to glass and mirrors produced according to this method
Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.
1984-07-31
A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.
Method of bonding silver to glass and mirrors produced according to this method
Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.
1985-01-01
A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.
Tritium release from SS316 under vacuum condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torikai, Y.; Penzhorn, R.D.
The plasma facing surface of the ITER vacuum vessel, partly made of low carbon austenitic stainless steel type 316L, will incorporate tritium during machine operation. In this paper the kinetics of tritium release from stainless steel type 316 into vacuum and into a noble gas stream are compared and modelled. Type 316 stainless steel specimens loaded with tritium either by exposure to 1.2 kPa HT at 573 K or submersion into liquid HTO at 298 K showed characteristic thin surface layers trapping tritium in concentrations far higher than those determined in the bulk. The evolution of the tritium depth profilemore » in the bulk during heating under vacuum was non-discernible from that of tritium liberated into a stream of argon. Only the relative amount of the two released tritium-species, i.e. HT or HTO, was different. Temperature-dependent depth profiles could be predicted with a one-dimensional diffusion model. Diffusion coefficients derived from fitting of the tritium release into an evacuated vessel or a stream of argon were found to be (1.4 ± 1.0)*10{sup -7} and (1.3 ± 0.9)*10{sup -9} cm{sup 2}/s at 573 and 423 K, respectively. Polished surfaces on type SS316 stainless steel inhibit considerably the thermal release rate of tritium.« less
Simulating Extraterrestrial Ices in the Laboratory
NASA Astrophysics Data System (ADS)
Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.
2017-12-01
Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.
Marquardt, Christian; Paulheim, Alexander; Rohbohm, Nils; Merkel, Rudolf; Sokolowski, Moritz
2017-08-01
We modified an epi-illumination light microscope and mounted it on an ultra high vacuum chamber for investigating samples used in a surface science experiment. For easy access and bake out, all optical components are placed outside the vacuum and the sample is imaged through a glass window. The microscope can be operated in reflection brightfield or epifluorescence mode to image the sample surface or fluorescent dye molecules adsorbed on it. The homemade sample mounting was made compatible for the use under the microscope; sample temperatures as low as 6 K can be achieved. The performance of the microscope is demonstrated on two model samples: Brightfield-images of a well-prepared Ag(100) surface show a macroscopic corrugation of the surface, although low energy electron diffraction data indicate a highly ordered crystalline surface. The surface shows macroscopic protrusions with flat regions, about 20-200 μm in diameter, in between. Fluorescence images of diluted 3,4,9,10-perylene tetracarboxylicacid dianhydride (PTCDA) molecules adsorbed on an ultrathin epitaxial KCl film on the Ag(100) surface show a shading effect at surface protrusions due to an inclined angle of incidence of the PTCDA beam during deposition. For some preparations, the distribution of the fluorescence intensity is inhomogeneous and shows a dense network of bright patches about 5 μm in diameter related to the macroscopic corrugation of the surface. We propose that such a light microscope can aid many surface science experiments, especially those dealing with epitaxial growth or fluorescent materials.
NASA Technical Reports Server (NTRS)
Albyn, Keith; Burns, Dewitt
2006-01-01
Recent quartz crystal microbalance measurements made in the Marshall Space Flight Center, Photo-Deposition Facility, for several materials, recorded a significant loss of deposited contaminants when the deposition surface of the microbalance was illuminated by a deuterium lamp. These measurements differ from observations made by other investigators in which the rate of deposition increased significantly when the deposition surface was illuminated with vacuum ultraviolet radiation. These observations suggest that the accelerated deposition of molecular contaminants on optically sensitive surfaces is dependant upon the contaminant being deposited and must be addressed during the materials selection process by common material screening techniques.
Large area, surface discharge pumped, vacuum ultraviolet light source
Sze, R.C.; Quigley, G.P.
1996-12-17
Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.
Vacuum Plasma Spraying Replaces Electrodeposition
NASA Technical Reports Server (NTRS)
Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.
1992-01-01
Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.
2012-03-01
AFRL-RX-WP-TP-2012-0250 VACUUM LEVELS NEEDED TO SIMULATE INTERNAL FATIGUE CRACK GROWTH IN TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS...TITANIUM ALLOYS AND NICKEL - BASE SUPERALLOYS: THERMODYNAMIC CONSIDERATIONS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM...surface growth in Ti- alloys and Ni - base superalloys. Even with the highest vacuum level attained using “state-of-the-art” pumps, it is unclear if
Dynamical emergence of the Universe into the false vacuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafelski, Johann; Birrell, Jeremiah, E-mail: rafelski@physics.arizona.edu, E-mail: jbirrell@email.arizona.edu
We study how the hot Universe evolves and acquires the prevailing vacuum state, demonstrating that in specific conditions which are believed to apply, the Universe becomes frozen into the state with the smallest value of Higgs vacuum field v=( h), even if this is not the state of lowest energy. This supports the false vacuum dark energy Λ-model. Under several likely hypotheses we determine the temperature in the evolution of the Universe at which two vacuua v{sub 1}, v{sub 2} can swap between being true and false. We evaluate the dynamical surface pressure on domain walls between low and high mass vaccuamore » due to the presence of matter and show that the low mass state remains the preferred vacuum of the Universe.« less
Charging Characteristics of an Insulating Hollow Cylinder in Vacuum
NASA Astrophysics Data System (ADS)
Yamamoto, Osamu; Hayashi, Hirotaka; Wadahama, Toshihiko; Takeda, Daisuke; Hamada, Shoji; Ohsawa, Yasuharu
This paper deals with charging characteristics of the inner surface of an insulating hollow cylinder in vacuum. We conducted measurements of electric field strength near the triple points on cathode by using an electrostatic probe. Also we conducted a computer simulation of charging based on the Secondary Electron Emission Avalanche (SEEA) mechanism. These results are compared with those obtained previously for solid cylinders. As a result, we have clarified that hollow cylinders acquire surface charge which is larger than that of solid cylinders. We have also found that charge controlling effect by roughening the inner surface, which have been proved effective to depress charging on the surface of solid cylinders in our previous studies, is limited for hollow cylinders.
Effect of electronic structure of the diamond surface on the strength of the diamond-metal interface
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1981-01-01
A diamond surface undergoes a transformation in its electronic structure by a vacuum anneal at approximately 900 C. The polished surface has no electronic states in the band gap, whereas the annealed surface has both occupied and unoccupied states in the and gap and exhibits some electrical conductivity. The effect of this transformation on the strength of the diamond metal interface was investigated by measuring the static friction force of an atomically clean meta sphere on a diamond flat in ultrahigh vacuum. It was found that low friction (weak bonding) is associated with the diamond surface devoid of gap states whereas high friction (strong bonding) is associated with the diamond surface with gap states. Exposure of the annealed surface to excited hydrogen also leads to weak bonding. The interfacial bond is discussed in terms of interaction of the metal conduction band electrons with the band gap states on the diamond surface. Effects of surface electrical conductivity on the interfacial bond are also be considered.
NASA Astrophysics Data System (ADS)
Parvan, V.; Mizrak, A.; Majumdar, I.; Ümsür, B.; Calvet, W.; Greiner, D.; Kaufmann, C. A.; Dittrich, T.; Avancini, E.; Lauermann, I.
2018-06-01
Either metallic Na or NaF were deposited onto Cu(In,Ga)Se2 surfaces and studied by photoelectron spectroscopy and surface photovoltage spectroscopy without breaking the ultra-high vacuum. The deposition of elemental Na at room temperature led to the formation of an intermediate Cu and Ga rich layer at the CIGSe surface, whereas for NaF the composition of the CIGSe surface remained unchanged. A metal like surface induced by an inverted near surface region with a reduced number of defect states was formed after the deposition of Na. Under the chosen experimental conditions, the near surface layer was independent on the amount of Na and stable in time. In contrast, the usage of NaF weakened the inversion and led to an increased band bending compared to the untreated CIGSe sample. The SPV signals decreased with proceeding time after the deposition of NaF.
NASA Technical Reports Server (NTRS)
Berkebile, Stephen; Gaier, James R.
2012-01-01
During the Apollo missions, the adhesion of dust to critical spacecraft systems was a greater problem than anticipated and resulted in functional degradation of thermal control surfaces, spacesuit seals, and other spacecraft components. Notably, Earth-based simulation efforts did not predict the magnitude and effects of dust adhesion in the lunar environment. Forty years later, we understand that the ultrahigh vacuum (UHV) environment, coupled with micrometeorite impacts and constant ion and photon bombardment from the sun result in atomically clean and high surface energy dust particles and spacecraft surfaces. However, both the dominant mechanism of adhesion in airless environments and the conditions for high fidelity simulation tests have still to be determined. The experiments presented in here aim to aid in the development of dust mitigation techniques for airless bodies (e.g., lunar surface, asteroids, moons of outer planets). The approach taken consists of (a) quantifying the adhesion between common polymer and metallic spacecraft materials and a synthetic noritic volcanic glass, as a function of surface cleanliness and of triboelectric charge transfer in a UHV environment, and (b) determining parameters for high fidelity tests through investigation of adhesion dependence on vacuum environment and sample treatment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is generally observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10. Furthermore, electrostatically-induced adhesion is found to decrease rapidly above pressures of 10-6 torr. It is concluded that high-fidelity tests should be conducted in high to ultrahigh vacuum and include an ionized surface cleaning process.
LETS: Lunar Environments Test System
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Schneider, Todd; Craven, Paul; Norwood, Joey
2008-01-01
The Environmental Effects Branch (EM50) at the Marshall Space Flight Center has developed a unique capability within the agency, namely the Lunar Environment Test System (LETS). LETS is a cryo-pumped vacuum chamber facility capable of high vacuum (10-7 Torr). LETS is a cylindrical chamber, 30 in. (0.8 m) diameter by 48 in. (1.2 m) long thermally controlled vacuum system. The chamber is equipped with a full array of radiation sources including vacuum ultraviolet, electron, and proton radiation. The unique feature of LETS is that it contains a large lunar simulant bed (18 in. x 40 in. x 6 in.) holding 75 kg of JSC-1a simulant while operating at a vacuum of 10-7 Torr. This facility allows three applications: 1) to study the charging, levitation and migration of dust particles, 2) to simulate the radiation environment on the lunar surface, and 3) to electrically charge the lunar simulant enhancing the attraction and adhesion of dust particles to test articles more closely simulating the lunar surface dust environment. LETS has numerous diagnostic instruments including TREK electrostatic probes, residual gas analyzer (RGA), temperature controlled quartz crystal microbalance (TQCM), and particle imaging velocimeter (PIV). Finally, LETS uses continuous Labview data acquisition for computer monitoring and system control.
NASA Technical Reports Server (NTRS)
Dicus, D. L.
1981-01-01
Compact specimens of 25 mm thick aluminum alloy plate were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Crack growth rates were determined at frequencies of 1 Hz and 10 Hz in hard vacuum and laboratory air, and in mixtures of water vapor and nitrogen at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. A significant effect of water vapor on fatigue crack growth rates was observed at the lowest water vapor pressure tested. Crack rates changed little for pressures up to 1.03 kPa, but abruptly accelerated at higher pressures. At low stress intensity factor ranges, cracking rates at the lowest and highest water vapor pressure tested were, respectively, two and five times higher than rates in vacuum. Although a frequency was observed in laboratory air, cracking rates in water vapor and vacuum are insensitive to a ten-fold change in frequency. Surfaces of specimens tested in water vapor and vacuum exhibited different amounts of residual deformation. Reduced deformation on the fracture surfaces of the specimens tested in water vapor suggests embrittlement of the plastic zone ahead of the crack tip as a result of environmental interaction.
Gregg, H.R.; Meltzer, M.P.
1996-05-28
The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.
Gregg, Hugh R.; Meltzer, Michael P.
1996-01-01
The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.
Studies of Oxidation of the Cu(100) Surface Using Low Energy Positrons
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Maddox, W. B.; Nadesalingam, M.; Rajeshwar, K.; Weiss, A. H.
2009-03-01
Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300° C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600° C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature is proposed.
Studies of oxidation of the Cu(100) surface using low energy positrons.
NASA Astrophysics Data System (ADS)
Maddox, W. B.; Fazleev, N. G.; Weiss, A. H.
2009-03-01
Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300^o C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600^o C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature is proposed.
NASA Astrophysics Data System (ADS)
Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.
2013-03-01
Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.
Cheng, Xin-bing; Liu, Jin-liang; Qian, Bao-liang; Zhang, Yu; Zhang, Hong-bo
2009-11-01
A high voltage pulse transformer (HVPT) is usually used as a charging device for the pulse forming line (PFL) of intense electron-beam accelerators (IEBAs). Insulation of the HVPT is one of the important factors that restrict the development of the HVPT. Until now, considerable effort has been focused on minimizing high field regions to avoid insulation breakdown between windings. Characteristics of the HVPT have been widely discussed to achieve these goals, but the effects of the PFL and load resistance on HVPT are usually neglected. In this paper, a HVPT is used as a charging device for the PFL of an IEBA and the effect of the change in the load resistance on the HVPT of the IEBA is presented. When the load resistance does not match the wave impedance of the PFL, a high-frequency bipolar oscillating voltage will occur, and the amplitude of the oscillating voltage will increase with the decrease in the load resistance. The load resistance approximates to zero and the amplitude of the oscillating voltage is much higher. This makes it easier for surface flashover along the insulation materials to form and decrease the lifetime of the HVPT.
A study of dielectric breakdown along insulators surrounding conductors in liquid argon
Lockwitz, Sarah; Jostlein, Hans
2016-03-22
High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of highmore » voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.« less
NASA Astrophysics Data System (ADS)
Lee, J.-W.; Jeong, J.-R.; Kim, D.-H.; Ahn, J. S.; Kim, J.; Shin, S.-C.
2000-10-01
We have constructed a three-configurational surface magneto-optical Kerr effect system, which provides the simultaneous measurements of the "polar," "longitudinal," and "transverse" Kerr hysteresis loops at the position where deposition is carried out in an ultrahigh vacuum growth chamber. The present system enables in situ three-dimensional vectorial studies of ultrathin film magnetism with a submonolayer sensitivity. We present three-configurational hysteresis loops measured during the growth of Co films on Pd(111), glass, and Pd/glass substrates.
Deposition and characterization of ZnS/Si heterojunctions produced by vacuum evaporation
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland
1988-01-01
Isotype heterojunctions of ZnS (lattice constant 5.41 A) were grown on silicon (lattice constant 5.43 A) p-n junctions to form a minority-carrier mirror. The deposition process was vacuum evaporation from a ZnS powder source onto a heated (450 C) substrate. Both planar (100) and textured (111) surfaces were used. A reduction of the minority-carrier recombination at the surface was seen from increased short-wavelength quantum response and increased illuminated open-circuit voltage. The minority-carrier diffusion length was not degraded by the process.
Gas adsorption on crushed quartz and basalt. [in vacuum
NASA Technical Reports Server (NTRS)
Barker, C.; Torkelson, B. E.
1975-01-01
The new surfaces generated by crushing rocks and minerals adsorb gases. Different gases are adsorbed to different extents so that both the total amount and composition of the released gases are changed. This affects the interpretation of the composition of the gases obtained by vacuum crushing lunar basalts, meteorites and minerals with fluid inclusions.
Apparatus and method for rapid cooling of large area substrates in vacuum
Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.
2012-11-06
The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.
Measurement of eddy-current distribution in the vacuum vessel of the Sino-UNIted Spherical Tokamak.
Li, G; Tan, Y; Liu, Y Q
2015-08-01
Eddy currents have an important effect on tokamak plasma equilibrium and control of magneto hydrodynamic activity. The vacuum vessel of the Sino-UNIted Spherical Tokamak is separated into two hemispherical sections by a toroidal insulating barrier. Consequently, the characteristics of eddy currents are more complex than those found in a standard tokamak. Thus, it is necessary to measure and analyze the eddy-current distribution. In this study, we propose an experimental method for measuring the eddy-current distribution in a vacuum vessel. By placing a flexible printed circuit board with magnetic probes onto the external surface of the vacuum vessel to measure the magnetic field parallel to the surface and then subtracting the magnetic field generated by the vertical-field coils, the magnetic field due to the eddy current can be obtained, and its distribution can be determined. We successfully applied this method to the Sino-UNIted Spherical Tokamak, and thus, we obtained the eddy-current distribution despite the presence of the magnetic field generated by the external coils.
Mechanism of vacuum breakdown in radio-frequency accelerating structures
NASA Astrophysics Data System (ADS)
Barengolts, S. A.; Mesyats, V. G.; Oreshkin, V. I.; Oreshkin, E. V.; Khishchenko, K. V.; Uimanov, I. V.; Tsventoukh, M. M.
2018-06-01
It has been investigated whether explosive electron emission may be the initiating mechanism of vacuum breakdown in the accelerating structures of TeV linear electron-positron colliders (Compact Linear Collider). The physical processes involved in a dc vacuum breakdown have been considered, and the relationship between the voltage applied to the diode and the time delay to breakdown has been found. Based on the results obtained, the development of a vacuum breakdown in an rf electric field has been analyzed and the main parameters responsible for the initiation of explosive electron emission have been estimated. The formation of craters on the cathode surface during explosive electron emission has been numerically simulated, and the simulation results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloan Roberts, F.; Anderson, Scott L.
2013-12-15
The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase massmore » spectrometry.« less
Irradiation and measurements of fluorinated ethylene-propylene-A on silicon solar cells in vacuum
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Broder, J. D.
1975-01-01
Silicon monoxide (SiO) coated silicon solar cells covered with fluorinated ethylene-propylene-A (FEP-A) were irradiated by 1-MeV electrons in vacuum. The effect of irradiation on the light transmittance of FEP-A was checked by measuring the short-circuit current of the cells while in vacuum after each dose increment, immediately after the irradiation, and again after a minimum elapsed time of 16 hr. The results indicated no apparent loss in transmission due to irradiation of FEP-A and no delamination from the SiO surface while the cells were in vacuum, but embrittlement of FEP-A occurred at the accumulated dose.
NASA Astrophysics Data System (ADS)
Hou, Lili; Zhang, Min; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun
2018-01-01
The surface and bulk oxygen vacancy have a prominent effect on the photocatalytic performance of TiO2. In this study, TiO2 possessing different types and concentration of oxygen vacancies were prepared by annealing nanotube titanic acid (NTA) at various temperatures in air or vacuum atmosphere. TiO2 with the unitary bulk single-electron-trapped oxygen vacancies (SETOVs) formed when NTA were calcined in air. Whereas, TiO2 with both bulk and surface oxygen vacancies were obtained when NTA were annealed in vacuum. The series of TiO2 with different oxygen vacancies were systematically characterized by TEM, XRD, PL, XPS, ESR, and TGA. The PL and ESR analysis verified that surface oxygen vacancies and more bulk oxygen vacancies could form in vacuum atmosphere. Surface oxygen vacancies can trap electron and hinder the recombination of photo-generated charges, while bulk SETOVs act as the recombination center. The surface or bulk oxygen vacancies attributed different roles on the photo-absorbance and activity, leading that the sample of NTA-A400 displayed higher hydrogen evolution rate under UV light, whereas NTA-V400 displayed higher hydrogen evolution rate under visible light because bulk SETOVs can improve visible light absorption because sub-band formed by bulk SETOVs prompted the secondary transition of electron excited.
Turning the Moon into a Solar Photovoltaic Paradise
NASA Technical Reports Server (NTRS)
Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter
2006-01-01
Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.
Effect of noncovalent basal plane functionalization on the quantum capacitance in graphene.
Ebrish, Mona A; Olson, Eric J; Koester, Steven J
2014-07-09
The concentration-dependent density of states in graphene allows the capacitance in metal-oxide-graphene structures to be tunable with the carrier concentration. This feature allows graphene to act as a variable capacitor (varactor) that can be utilized for wireless sensing applications. Surface functionalization can be used to make graphene sensitive to a particular species. In this manuscript, the effect on the quantum capacitance of noncovalent basal plane functionalization using 1-pyrenebutanoic acid succimidyl ester and glucose oxidase is reported. It is found that functionalized samples tested in air have (1) a Dirac point similar to vacuum conditions, (2) increased maximum capacitance compared to vacuum but similar to air, (3) and quantum capacitance "tuning" that is greater than that in vacuum and ambient atmosphere. These trends are attributed to reduced surface doping and random potential fluctuations as a result of the surface functionalization due to the displacement of H2O on the graphene surface and intercalation of a stable H2O layer beneath graphene that increases the overall device capacitance. The results are important for future application of graphene as a platform for wireless chemical and biological sensors.
Muranaka, Yoshinori; Shimomura, Masatsugu; Hariyama, Takahiko
2013-01-01
Self-standing biocompatible films have yet to be prepared by physical or chemical vapor deposition assisted by plasma polymerization because gaseous monomers have thus far been used to create only polymer membranes. Using a nongaseous monomer, we previously found a simple fabrication method for a free-standing thin film prepared from solution by plasma polymerization, and a nano-suit made by polyoxyethylene (20) sorbitan monolaurate can render multicellular organisms highly tolerant to high vacuum. Here we report thin films prepared by plasma polymerization from various monomer solutions. The films had a flat surface at the irradiated site and were similar to films produced by vapor deposition of gaseous monomers. However, they also exhibited unique characteristics, such as a pinhole-free surface, transparency, solvent stability, flexibility, and a unique out-of-plane molecular density gradient from the irradiated to the unirradiated surface of the film. Additionally, covering mosquito larvae with the films protected the shape of the organism and kept them alive under the high vacuum conditions in a field emission-scanning electron microscope. Our method will be useful for numerous applications, particularly in the biological sciences. PMID:24236023
Evolution of gettering technologies for vacuum tubes to getters for MEMS
NASA Astrophysics Data System (ADS)
Amiotti, M.
2008-05-01
Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The development of Micro Electro Mechanical Systems (MEMS) with moving parts in a vacuum environment required the development of a new generation of getter film, few microns thick, that can be selectively patterned onto a silicon or glass wafer (usually 4'' or 8''). This wafer with patterned getter film can be used directly as the cap wafer of a wafer to wafer bonded MEMS structure, assuring long life and reliability to the moving MEMS structure especially in automotive applications where thermal cycles are required for qualification.
The Effect of Temperature on the Survival of Microorganisms in a Deep Space Vacuum
NASA Technical Reports Server (NTRS)
Hagen, C. A.; Godfrey, J. F.; Green, R. H.
1971-01-01
A space molecular sink research facility (Molsink) was used to evaluate the ability of microorganisms to survive the vacuum of outer space. This facility could be programmed to simulate flight spacecraft vacuum environments at pressures in the .1 nanotorr range and thermal gradients (30 to 60 C) closely associated to surface temperatures of inflight spacecraft. Initial populations of Staphylococcus epidermidis and a Micrococcus sp. were reduced approximately 1 log while exposed to -105 and 34 C, and approximately 2 logs while exposed to 59 C for 14 days in the vacuum environment. Spores of Bacillus subtilis var. niger were less affected by the environment. Initial spore populations were reduced 0.2, 0.3, and 0.8 log during the 14-day vacuum exposure at -124, 34, and 59 C, respectively.
Cu self-sputtering MD simulations for 0.1-5 keV ions at elevated temperatures
NASA Astrophysics Data System (ADS)
Metspalu, Tarvo; Jansson, Ville; Zadin, Vahur; Avchaciov, Konstantin; Nordlund, Kai; Aabloo, Alvo; Djurabekova, Flyura
2018-01-01
Self-sputtering of copper under high electric fields is considered to contribute to plasma buildup during a vacuum breakdown event frequently observed near metal surfaces, even in ultra high vacuum condition in different electric devices. In this study, by means of molecular dynamics simulations, we analyze the effect of surface temperature and morphology on the yield of self-sputtering of copper with ion energies of 0.1-5 keV. We analyze all three low-index surfaces of Cu, {1 0 0}, {1 1 0} and {1 1 1}, held at different temperatures, 300 K, 500 K and 1200 K. The surface roughness relief is studied by either varying the angle of incidence on flat surfaces, or by using arbitrary roughened surfaces, which result in a more natural distribution of surface relief variations. Our simulations provide detailed characterization of copper self-sputtering with respect to different material temperatures, crystallographic orientations, surface roughness, energies, and angles of ion incidence.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1993-10-05
An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1993-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.
Surface temperature determination in surface analytic systems by infrared optical pyrometry
NASA Technical Reports Server (NTRS)
Wheeler, Donald R.; Jones, William R., Jr.; Pepper, Stephen V.
1988-01-01
An IR pyrometric technique for measuring the surface temperatures of metal specimens in an ultrahigh-vacuum analytic chamber is described and demonstrated. The experimental setup comprises a commercial IR microscope with a long-working-distance right-angle objective (focal spot diameter 1 mm at 53 cm), a metal-coated glass vacuum chamber with a Ta-mesh-covered quartz viewport, an Mo specimen stub with an internal heating element, and a Ta disk test specimen with a flat side coated with a high-emissivity graphite film. The results of an initial calibration test are presented graphically and briefly characterized. The measurement error at 450 C is found to be less than 10 C.
Performance and durability of high emittance heat receiver surfaces for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Roig, David M.; Burke, Christopher A.; Shah, Dilipkumar R.
1994-01-01
Haynes 188, a cobalt-based superalloy, will be used to make thermal energy storage (TES) containment canisters for a 2 kW solar dynamic ground test demonstrator (SD GTD). Haynes 188 containment canisters with a high thermal emittance (epsilon) are desired for radiating heat away from local hot spots, improving the heating distribution, which will in turn improve canister service life. In addition to needing a high emittance, the surface needs to be durable in an elevated temperature, high vacuum environment for an extended time period. Thirty-five Haynes 188 samples were exposed to 14 different types of surface modification techniques for emittance and vacuum heat treatment (VHT) durability enhancement evaluation. Optical properties were obtained for the modified surfaces. Emittance enhanced samples were exposed to VHT for up to 2692 hours at 827 C and less than or equal to 10(exp -6) torr with integral thermal cycling. Optical properties were taken intermittently during exposure, and after final VHT exposure. The various surface modification treatments increased the emittance of pristine Haynes 188 from 0.11 up to 0.86. Seven different surface modification techniques were found to provide surfaces which met the SD GTD receiver VHT durability requirement. Of the 7 surface treatments, 2 were found to display excellent VHT durability: an alumina based (AB) coating and a zirconia based coating. The alumina based coating was chosen for the epsilon enhancement surface modification technique for the SD GTD receiver. Details of the performance and vacuum heat treatment durability of this coating and other Haynes 188 emittance surface modification techniques are discussed. Technology from this program will lead to successful demonstration of solar dynamic power for space applications, and has potential for application in other systems requiring high emittance surfaces.
Polarity compensation mechanisms on the perovskite surface KTaO3(001)
NASA Astrophysics Data System (ADS)
Setvin, Martin; Reticcioli, Michele; Poelzleitner, Flora; Hulva, Jan; Schmid, Michael; Boatner, Lynn A.; Franchini, Cesare; Diebold, Ulrike
2018-02-01
The stacking of alternating charged planes in ionic crystals creates a diverging electrostatic energy—a “polar catastrophe”—that must be compensated at the surface. We used scanning probe microscopies and density functional theory to study compensation mechanisms at the perovskite potassium tantalate (KTaO3) (001) surface as increasing degrees of freedom were enabled. The as-cleaved surface in vacuum is frozen in place but immediately responds with an insulator-to-metal transition and possibly ferroelectric lattice distortions. Annealing in vacuum allows the formation of isolated oxygen vacancies, followed by a complete rearrangement of the top layers into an ordered pattern of KO and TaO2 stripes. The optimal solution is found after exposure to water vapor through the formation of a hydroxylated overlayer with ideal geometry and charge.
Formation of a dual-stage pinch-accelerator in a Z-pinch (plasma focus) device
NASA Astrophysics Data System (ADS)
Behbahani, R. A.; Hirose, A.; Xiao, C.
2018-01-01
A novel dense plasma focus configuration with two separate concentric current sheet run-down regions has been demonstrated to produce several consecutive plasma focusing events. In a proof-of-principle experiment on a low-energy plasma focus device, the measured tube voltages and discharge current have been explained by using circuit analyses of the device. Based on the calculated plasma voltages the occurrence of flash-over phase, axial phase, and compression phase has been discussed. The electrical signals along with the calculated plasma voltages suggest the occurrence of several focusing events in the new structure.
NASA Technical Reports Server (NTRS)
Phillips, G. B.; Pace, V. A., Jr.
1972-01-01
The sampler utilizes permanent magnets and soft metal pole pieces to connect the cone/filter assembly to the sampling head and vacuum supply. The cone/filter assembly is packaged in a plastic container and presterilized so that the need for any human contact during the sampling procedure is completely eliminated. Microbiological tests have demonstrated that the sampling efficiency is not affected by the magnetic coupling apparatus and that the probe appears to function as efficiently as the conventional plastic and Sandia vacuum probes.
Rigidity in vacuum under conformal symmetry
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Vega, Carlos
2018-04-01
Motivated in part by Eardley et al. (Commun Math Phys 106(1):137-158, 1986), in this note we obtain a rigidity result for globally hyperbolic vacuum spacetimes in arbitrary dimension that admit a timelike conformal Killing vector field. Specifically, we show that if M is a Ricci flat, timelike geodesically complete spacetime with compact Cauchy surfaces that admits a timelike conformal Killing field X, then M must split as a metric product, and X must be Killing. This gives a partial proof of the Bartnik splitting conjecture in the vacuum setting.
The effect of vacuum birefringence on the polarization of X-ray binaries and pulsars
NASA Technical Reports Server (NTRS)
Novick, R.; Weisskopf, M. C.; Angel, J. R. P.; Sutherland, P. G.
1977-01-01
In a strong magnetic field the vacuum becomes birefringent. This effect is especially important for pulsars at X-ray wavelengths. Any polarized X-ray emission from the surface of a magnetic neutron star becomes depolarized as it propagates through the magnetic field. The soft X-ray emission from AM Her, believed to be a magnetic white dwarf, may show about one radian of phase retardation. In this case, circular polarization of the X-ray flux would be a characteristic signature of vacuum birefringence.
Impact of Vacuum Cooling on Escherichia coli O157:H7 Infiltration into Lettuce Tissue▿
Li, Haiping; Tajkarimi, Mehrdad; Osburn, Bennie I.
2008-01-01
Vacuum cooling is a common practice in the California leafy green industry. This study addressed the impact of vacuum cooling on the infiltration of Escherichia coli O157:H7 into lettuce as part of the risk assessment responding to the E. coli O157:H7 outbreaks associated with leafy green produce from California. Vacuum cooling significantly increased the infiltration of E. coli O157:H7 into the lettuce tissue (2.65E+06 CFU/g) compared to the nonvacuumed condition (1.98E+05 CFU/g). A stringent surface sterilization and quadruple washing could not eliminate the internalized bacteria from lettuce. It appeared that vacuuming forcibly changed the structure of lettuce tissue such as the stomata, suggesting a possible mechanism of E. coli O157:H7 internalization. Vacuuming also caused a lower reduction rate of E. coli O157:H7 in stored lettuce leaves than that for the nonvacuumed condition. PMID:18344328
Khan, Fasihullah; Ajmal, Hafiz Muhammad Salman; Huda, Noor Ul; Kim, Ji Hyun; Kim, Sam-Dong
2018-01-01
In this study, the ambient condition for the as-coated seed layer (SL) annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs). The NR crystals of high surface density (~240 rods/μm2) and aspect ratio (~20.3) show greatly enhanced (002) degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002) and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm) of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors. PMID:29373523
NASA Astrophysics Data System (ADS)
Gong, Xing; Marmy, Pierre; Qin, Ling; Verlinden, Bert; Wevers, Martine; Seefeldt, Marc
2016-01-01
Low cycle fatigue properties of a 9Cr-1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead-bismuth eutectic (LBE) environment and in vacuum at 160-450 °C. The results show a clear fatigue endurance "trough" in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160-450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.
NASA Technical Reports Server (NTRS)
Surkov, Y. A.; Rudnitskiy, Y. M.; Glotov, V. A.
1974-01-01
The reception and study of lunar material returned by the Luna 16 space station is described. The layout of a vacuum receiving chamber for working with material in a helium atmosphere is examined along with the main operations involved in extracting the material from the ampule and drill.
Friction, wear, and lubrication in vacuum
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1971-01-01
A review of studies and observations on the friction, wear, and lubrication behavior of materials in a vacuum environment is presented. The factors that determine and influence friction and wear are discussed. They include topographical, physical, mechanical, and the chemical nature of the surface. The effects of bulk properties such as deformation characteristics, fracture behavior, and structure are included.
SnTe microcrystals: Surface cleaning of a topological crystalline insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saghir, M., E-mail: M.Saghir@warwick.ac.uk, E-mail: G.Balakrishnan@warwick.ac.uk; Walker, M.; McConville, C. F.
Investigating nanometer and micron sized materials thought to exhibit topological surface properties that can present a challenge, as clean surfaces are a pre-requisite for band structure measurements when using nano-ARPES or laser-ARPES in ultra-high vacuum. This issue is exacerbated when dealing with nanometer or micron sized materials, which have been prepared ex-situ and so have been exposed to atmosphere. We present the findings of an XPS study where various cleaning methods have been employed to reduce the surface contamination and preserve the surface quality for surface sensitive measurements. Microcrystals of the topological crystalline insulator SnTe were grown ex-situ and transferredmore » into ultra high vacuum (UHV) before being treated with either atomic hydrogen, argon sputtering, annealing, or a combination of treatments. The samples were also characterised using the scanning electron microscopy, both before and after treatment. It was found that atomic hydrogen cleaning with an anneal cycle (200 °C) gave the best clean surface results.« less
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Smith, Daniela C.
1999-01-01
Solar-dynamic space power systems require durable, high-emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. An alumina-titania coating, which has been evaluated for solar-dynamic heat receiver canister applications, has been chosen for a PLR application (an electrical sink for excess power from the turboalternator/compressor) because of its demonstrated high emittance and high-temperature durability in vacuum. Under high vacuum conditions (+/- 10(exp -6) torr), the alumina-titania coating was found to be durable at temperatures of 1520 F (827 C) for approx. 2700 hours with no degradation in optical properties. This coating has been successfully applied to the 2-kW solar-dynamic ground test demonstrator at the NASA Lewis Research Center, to the 500 thermal-energy-storage containment canisters inside the heat receiver and to the PLR radiator. The solar-dynamic demonstrator has successfully operated for over 800 hours in Lewis large thermal/vacuum space environment facility, demonstrating the feasibility of solar-dynamic power generation for space applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.
2016-01-11
Here, the crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism wasmore » confirmed by selective placement of an isotopic layer (5% D 2O in H 2O) at various positions in an ASW (H 2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a “top-down” crystallization mechanism.« less
Photoluminescence in Spray Pyrolysis Deposited β-In2S3 Thin Films
NASA Astrophysics Data System (ADS)
Jayakrishnan, R.
2018-04-01
Spray pyrolysis deposited In2S3 thin films exhibit two prominent photoluminescent emissions. One of the emissions is green in color and centered at around ˜ 540 nm and the other is centered at around ˜ 690 nm and is red in color. The intensity of the green emission decreases when the films are subjected to annealing in air or vacuum. The intensity of red emission increases when films are air annealed and decreases when vacuum annealed. Vacuum annealing leads to an increase in work function whereas air annealing leads to a decrease in work function for this thin film system relative to the as deposited films indicating changes in space charge regions. Surface photovoltage analysis using a Kelvin probe leads to the conclusion that inversion of band bending occurs as a result of annealing. Correlating surface contact potential measurements using a Kelvin probe, x-ray photoelectron spectroscopy and photoluminescence, we conclude that the surface passivation plays a critical role in controlling the photoluminescence from the spray pyrolysis deposited for In2S3 thin films.
Raju, Muralikrishna; van Duin, Adri C T; Fichthorn, Kristen A
2014-01-01
Oriented attachment (OA) of nanocrystals is now widely recognized as a key process in the solution-phase growth of hierarchical nanostructures. However, the microscopic origins of OA remain unclear. We perform molecular dynamics simulations using a recently developed ReaxFF reactive force field to study the aggregation of various titanium dioxide (anatase) nanocrystals in vacuum and humid environments. In vacuum, the nanocrystals merge along their direction of approach, resulting in a polycrystalline material. By contrast, in the presence of water vapor the nanocrystals reorient themselves and aggregate via the OA mechanism to form a single or twinned crystal. They accomplish this by creating a dynamic network of hydrogen bonds between surface hydroxyls and surface oxygens of aggregating nanocrystals. We determine that OA is dominant on surfaces that have the greatest propensity to dissociate water. Our results are consistent with experiment, are likely to be general for aqueous oxide systems, and demonstrate the critical role of solvent in nanocrystal aggregation. This work opens up new possibilities for directing nanocrystal growth to fabricate nanomaterials with desired shapes and sizes.
NASA Astrophysics Data System (ADS)
Guo, Song; Alex Kandel, S.
2008-01-01
Ultrahigh-vacuum scanning tunneling microscopy (STM) was used to study trans-[Cl(dppe)2Ru(CC)6Ru(dppe)2Cl] [abbreviated as Ru2, diphenylphosphinoethane (dppe)] on Au(111). This large organometallic molecule was pulse deposited onto the Au(111) surface under ultrahigh-vacuum (UHV) conditions. UHV STM studies on the prepared sample were carried out at room temperature and 77K in order to probe molecular adsorption and to characterize the surface produced by the pulse deposition process. Isolated Ru2 molecules were successfully imaged by STM at room temperature; however, STM images were degraded by mobile toluene solvent molecules that remain on the surface after the deposition. Cooling the sample to 77K allows the solvent molecules to be observed directly using STM, and under these conditions, toluene forms organized striped domains with regular domain boundaries and a lattice characterized by 5.3 and 2.7Å intermolecular distances. When methylene chloride is used as the solvent, it forms analogous domains on the surface at 77K. Mild annealing under vacuum causes most toluene molecules to desorb from the surface; however, this annealing process may lead to thermal degradation of Ru2 molecules. Although pulse deposition is an effective way to deposit molecules on surfaces, the presence of solvent on the surface after pulse deposition is unavoidable without thermal annealing, and this annealing may cause undesired chemical changes in the adsorbates under study. Preparation of samples using pulse deposition must take into account the characteristics of sample molecules, solvent, and surfaces.
Remote controlled vacuum joint closure mechanism
Doll, D.W.; Hager, E.R.
1984-02-22
A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange and maintain the high vacuum seal established by the displacement of the flange assembly and extension of the bellows without displacing the entire duct.
Determination of the amount of physical adsorption of water vapour on platinum-iridium surfaces
NASA Astrophysics Data System (ADS)
Mizushima, S.; Ueda, K.; Ooiwa, A.; Fujii, K.
2015-08-01
This paper presents the measurement of the physical adsorption of water vapour on platinum-iridium surfaces using a vacuum mass comparator. This value is of importance for redefining the kilogram, which will be realized under vacuum in the near future. Mirror-polished artefacts, consisting of a reference artefact and a test artefact, were manufactured for this experiment. The surface area difference between the reference and test artefacts was 226.2 cm2. This surface area difference was approximately 3.2 times the geometric surface area of the prototype of the kilogram made of platinum-iridium (71.7 cm2). The measurement results indicate that the amount of physical adsorption at a relative humidity of 50% is 0.0129 μg cm{{-}2} , with a standard uncertainty of 0.0016 μg cm{{-}2} . This value is 0.03 to 0.16 times that observed in other studies.
NASA Astrophysics Data System (ADS)
Gashkov, M. A.; Zubarev, N. M.
2018-01-01
Conditions of the liquid-metal jets formation in a cathode spot of a vacuum arc discharge are studied. Our consideration is based on the analogy between the processes, occurring in the liquid phase of the cathode spot, and the processes, accompanying a liquid drop impact on a flat solid surface. In the latter case there exists a wide variety of experimental data on the conditions under which the spreading regime of fluid motion (i.e., without formation of jets and secondary droplets) changes into the splashing one. In the present work, using the hydrodynamic similarity principle (processes in geometrically similar systems will proceed similarly when their Weber and Reynolds numbers coincide), criteria for molten metal splashing are formulated for different materials of the cathode. They are compared with the experimental data on the threshold conditions for vacuum arc burning.
Method for vacuum pressing electrochemical cell components
NASA Technical Reports Server (NTRS)
Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)
2004-01-01
Assembling electrochemical cell components using a bonding agent comprising aligning components of the electrochemical cell, applying a bonding agent between the components to bond the components together, placing the components within a container that is essentially a pliable bag, and drawing a vacuum within the bag, wherein the bag conforms to the shape of the components from the pressure outside the bag, thereby holding the components securely in place. The vacuum is passively maintained until the adhesive has cured and the components are securely bonded. The bonding agent used to bond the components of the electrochemical cell may be distributed to the bonding surface from distribution channels in the components. To prevent contamination with bonding agent, some areas may be treated to produce regions of preferred adhesive distribution and protected regions. Treatments may include polishing, etching, coating and providing protective grooves between the bonding surfaces and the protected regions.
In-vacuum thermolysis of ethane 1,2-diamineborane for the synthesis of ternary borocarbonitrides
NASA Astrophysics Data System (ADS)
Massimi, Lorenzo; Grazia Betti, Maria; Caramazza, Simone; Postorino, Paolo; Mariani, Carlo; Latini, Alessandro; Leardini, Fabrice
2016-10-01
High-temperature (1000 °C) thermolytic decomposition of ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3) deposited onto a Cu foil has been performed in an ultra-high-vacuum environment. A combined thermolytic, structural (x-ray diffraction), microscopic (scanning electron microscopy) and spectroscopic (Raman, x-ray photoemission spectroscopy) analysis, has identified a ternary borocarbonitride (BCN) compound as a result of the process. The obtained BCN compound is nanocrystalline, surrounded by crystallites of ammonium hydroxide borate hydrate. The ternary compound presents a 0.2:0.6:0.2 B:C:N composition in the bulk and 0.11:0.76:0.13 stoichiometry at the very surface, richer in C-C networks with respect to the bulk. Furthermore, the resulting BCN compound does not show oxidation at the surface due to the in-vacuum thermolysis of the single precursor.
A nanoscale vacuum-tube diode triggered by few-cycle laser pulses
NASA Astrophysics Data System (ADS)
Higuchi, Takuya; Maisenbacher, Lothar; Liehl, Andreas; Dombi, Péter; Hommelhoff, Peter
2015-02-01
We propose and demonstrate a nanoscale vacuum-tube diode triggered by few-cycle near-infrared laser pulses. It represents an ultrafast electronic device based on light fields, exploiting near-field optical enhancement at surfaces of two metal nanotips. The sharper of the two tips displays a stronger field-enhancement, resulting in larger photoemission yields at its surface. One laser pulse with a peak intensity of 4.7 × 1011 W/cm2 triggers photoemission of ˜16 electrons from the sharper cathode tip, while emission from the blunter anode tip is suppressed by 19 dB to ˜0.2 electrons per pulse. Thus, the laser-triggered current between two tips exhibit a rectifying behavior, in analogy to classical vacuum-tube diodes. According to the kinetic energy of the emitted electrons and the distance between the tips, the total operation time of this laser-triggered nanoscale diode is estimated to be below 1 ps.
Johnson, Terry A.; Replogle, William C.; Bernardez, Luis J.
2004-06-01
An in-vacuum radiation exposure shutter device can be employed to regulate a large footprint light beam. The shutter device includes (a) a source of radiation that generates an energy beam; (2) a shutter that includes (i) a frame defining an aperture toward which the energy beam is directed and (ii) a plurality of blades that are secured to the frame; and (3) device that rotates the shutter to cause the plurality of blades to intercept or allow the energy beam to travel through the aperture. Each blade can have a substantially planar surface and the plurality of blades are secured to the frame such that the planar surfaces of the plurality of blades are substantially parallel to each other. The shutter device is particularly suited for operation in a vacuum environment and can achieve shuttering speeds from about 0.1 second to 0.001 second or faster.
Realization of MEMS-IC Vertical Integration Utilizing Smart Bumpless Bonding
NASA Astrophysics Data System (ADS)
Shiozaki, Masayoshi; Moriguchi, Makoto; Sasaki, Sho; Oba, Masatoshi
This paper reports fundamental technologies, properties, and new experimental results of SBB (Smart Bumpless Bonding) to realize MEMS-IC vertical integration. Although conventional bonding technologies have had difficulties integrating MEMS and its processing circuit because of their rough bonding surfaces, fragile structures, and thermal restriction, SBB technology realized the vertical integration without thermal treatment, any adhesive materials including bumps, and chemical mechanical polishing. The SBB technology bonds sealing parts for vacuum sealing and electrodes for electrical connection simultaneously as published in previous experimental study. The plasma CVD SiO2 is utilized to realize vacuum sealing as sealing material. And Au projection studs are formed on each electrode and connected electrically between two wafers by compressive plastic deformation and surface activation. In this paper, new experimental results including vacuum sealing properties, electrical improvement, IC bonding results on the described fundamental concept and properties are reported.
Remote vacuum or pressure sealing device and method for critical isolated systems
Brock, James David [Newport News, VA; Keith, Christopher D [Newport News, VA
2012-07-10
A remote vacuum or pressure sealing apparatus and method for making a radiation tolerant, remotely prepared seal that maintains a vacuum or pressure tight seal throughout a wide temperature range. The remote sealing apparatus includes a fixed threaded sealing surface on an isolated system, a gasket, and an insert consisting of a plug with a protruding sample holder. An insert coupling device, provided for inserting samples within the isolated system, includes a threaded fastener for cooperating with the fixed threaded sealing surface on the isolated system. The insert coupling device includes a locating pin for azimuthal orientation, coupling pins, a tooted coaxial socket wrench, and an insert coupling actuator for actuating the coupling pins. The remote aspect of the sealing apparatus maintains the isolation of the system from the user's environment, safely preserving the user and the system from detrimental effect from each respectively.
In-vacuum thermolysis of ethane 1,2-diamineborane for the synthesis of ternary borocarbonitrides.
Massimi, Lorenzo; Betti, Maria Grazia; Caramazza, Simone; Postorino, Paolo; Mariani, Carlo; Latini, Alessandro; Leardini, Fabrice
2016-10-28
High-temperature (1000 °C) thermolytic decomposition of ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3) deposited onto a Cu foil has been performed in an ultra-high-vacuum environment. A combined thermolytic, structural (x-ray diffraction), microscopic (scanning electron microscopy) and spectroscopic (Raman, x-ray photoemission spectroscopy) analysis, has identified a ternary borocarbonitride (BCN) compound as a result of the process. The obtained BCN compound is nanocrystalline, surrounded by crystallites of ammonium hydroxide borate hydrate. The ternary compound presents a 0.2:0.6:0.2 B:C:N composition in the bulk and 0.11:0.76:0.13 stoichiometry at the very surface, richer in C-C networks with respect to the bulk. Furthermore, the resulting BCN compound does not show oxidation at the surface due to the in-vacuum thermolysis of the single precursor.
Vacuum-insulated catalytic converter
Benson, David K.
2001-01-01
A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Street, Kenneth W., Jr.; Andraws, Rodney; Jacques, David; VanderWal, Randy L.; Sayir, Ali
2005-01-01
To evaluate recently developed aligned multiwalled carbon nanotubes (MWNTs) and dispersed MWNTs for solid lubrication applications, unidirectional sliding friction experiments were conducted with 440 C stainless steel balls and hemispherical alumina-yttria stabilized zirconia pins in sliding contact with the MWNTs deposited on quartz disks in air and in vacuum. The results indicate that MWNTs have superior solid lubrication friction properties and endurance lives in air and vacuum under dry conditions. The coefficient of friction of the dispersed MWNTs is close to 0.05 and 0.009 in air and in vacuum, respectively, showing good dry lubricating ability. The wear life of MWNTs exceeds 1 million passes in both air and vacuum showing good durability. In general, the low coefficient of friction can be attributed to the combination of the transferred, agglomerated patches of MWNTs on the counterpart ball or pin surfaces and the presence of tubular MWNTs at interfaces.
A theoretical analysis of vacuum arc thruster performance
NASA Technical Reports Server (NTRS)
Polk, James E.; Sekerak, Mike; Ziemer, John K.; Schein, Jochen; Qi, Niansheng; Binder, Robert; Anders, Andre
2001-01-01
In vacuum arc discharges the current is conducted through vapor evaporated from the cathode surface. In these devices very dense, highly ionized plasmas can be created from any metallic or conducting solid used as the cathode. This paper describes theoretical models of performance for several thruster configurations which use vacuum arc plasma sources. This analysis suggests that thrusters using vacuum arc sources can be operated efficiently with a range of propellant options that gives great flexibility in specific impulse. In addition, the efficiency of plasma production in these devices appears to be largely independent of scale because the metal vapor is ionized within a few microns of the cathode electron emission sites, so this approach is well-suited for micropropulsion.
Effect of Long-Term 1093 K Exposure to Air or Vacuum on the Structure of Several Wrought Superalloys
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1993-01-01
Long-term 1093 K heat treatments of three commercial superalloy sheet materials were undertaken in air -IAI and vacuum. With either exposure, significant precipitation of second phases occurred in the Co-base Haynes(R) Alloy 188 (HA 188) and the Ni-base Haynes(R) Alloy 230 (HA 230); however, much less precipitation was found in the exposed Ni-base alloy Inconel(R) 617 (IN 617). Although some grain growth occurred in HA 198, no changes in the grain size of either HA 230 or IN 617 were observed after 22,500 h at temperature. Oxidation during air heat treatments led to weight gain due to the formation of chromia + spinel scales and surface-connected grain boundary pits/oxides in all three superalloys. Both the weight gain and depth of intergranular attack were dependent on the square root of time, which is indicative of diffusion-controlled phenomena. Because many alloy samples had neighbors in close proximity, most vacuum heat treated specimens did not suffer significant loss of volatile elements. However, some exposed samples were subjected to unrestricted vacuum heat treatments, allowing estimates of volatilization to be made. Based on the data for HA 188, the weight loss during 1093 K vacuum exposure was diffusion controlled once the inhibiting effects of surface films on the as-received alloys were broken down.
Effect of Long-Term 1093 K Exposure to Air or Vacuum on the Structure of Several Wrought Superalloys
NASA Astrophysics Data System (ADS)
Whittenberger, J. D.
1993-10-01
Long-term 1093 K heat treatments of three commercial superalloy sheet materials were undertaken in air and vacuum. With either exposure, significant precipitation of second phases occurred in the Co-base Haynes® Alloy 188 (HA 188) and the Ni-base Haynes® Alloy 230 (HA 230); however, much less precipitation was found in the exposed Ni-base alloy Inconel® 617 (IN 617). Although some grain growth occurred in HA 188, no changes in the grain size of either HA 230 or IN 617 were observed after 22,500 h at temperature. Oxidation during air heat treatments led to weight gain due to the formation of chromia + spinel scales and surface-connected grain boundary pits/oxides in all three superalloys. Both the weight gain and depth of intergranular attack were dependent on the square root of time, which is indicative of diffusion-controlled phenomena. Because many alloy samples had neighbors in close proximity, dmost vacuum heat treated specimens did not suffer significant loss of volatile elements. However, some exposed samples were subjected to unrestricted vacuum heat treatments, allowing estimates of volatilization to be made. Based on the data for HA 188, the weight loss during 1093 K vacuum exposure was diffusion controlled once the inhibiting effects of surface films on the as-received alloys were broken down.
On the instability of a liquid sheet moving in vacuum
NASA Astrophysics Data System (ADS)
Sisoev, G. M.; Osiptsov, A. N.; Koroteev, A. A.
2018-03-01
A linear stability analysis of a non-isothermal liquid sheet moving in vacuum is studied taking into account the temperature dependencies of the liquid viscosity, thermal conductivity, and surface tension coefficients. It is found that there are two mechanisms of instability. The short-wave instability is caused by viscosity stratification across the sheet due to nonuniform temperature profiles developed downstream in the cooling sheet. The long-wave thermocapillary instability is caused by the temperature gradient along the sheet surfaces. Computed examples of steady flows and their instabilities demonstrated that the unstable short waves have much larger amplification factors.
New Technologies for Enhanced Environmental Testing on Spacecraft Structures
NASA Astrophysics Data System (ADS)
Ascani, Maurizio; Alemanno, Leonardo; Rinalducci, Fabrizio
2014-06-01
This paper presents engineering approaches to realize Thermal Vacuum Chambers (TVC) for different R&D applications: (1) testing of propulsion systems, operating as a Hall thruster, (2) increasing of the DUT (device under test) surface temperature up to +550°C, (3) installation of the solar system inside the TVC. Each application implies specific problems that need to be managed by TVC during the tests. In particular, emission of high-energy ionized gas at high temperatures, surface temperatures higher 800 K and optical specimen contamination represent under high vacuum conditions significant challenges for test equipment.
Preparation of high porosity xerogels by chemical surface modification.
Deshpande, Ravindra; Smith, Douglas M.; Brinker, C. Jeffrey
1996-01-01
This invention provides an extremely porous xerogel dried at vacuum-to-below supercritical pressures but having the properties of aerogels which are typically dried at supercritical pressures. This is done by reacting the internal pore surface of the wet gel with organic substances in order to change the contact angle of the fluid meniscus in the pores during drying. Shrinkage of the gel (which is normally prevented by use of high autoclave pressures, such that the pore fluid is at temperature and pressure above its critical values) is avoided even at vacuum or ambient pressures.
Testing of a spacecraft model in a combined environment simulator
NASA Technical Reports Server (NTRS)
Staskus, J. V.; Roche, J. C.
1981-01-01
A scale model of a satellite was tested in a large vacuum facility under electron bombardment and vacuum ultraviolet radiation to investigate the charging of dielectric materials on curved surfaces. The model was tested both stationary and rotating relative to the electron sources as well as grounded through one megohm and floating relative to the chamber. Surface potential measurements are presented and compared with the predictions of computer modelling of the stationary tests. Discharge activity observed during the stationary tests is discussed and signals from sensing devices located inside and outside of the model are presented.
Fusion bonding and alignment fixture
Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.
2000-01-01
An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.
NASA Astrophysics Data System (ADS)
Ullah, S.; Dogar, A. H.; Qayyum, H.; Rehman, Z. U.; Qayyum, A.
2018-04-01
Ions emitted from planar Al and Cu targets irradiated with a 1064 nm pulsed laser were investigated with the help of a time-resolving Langmuir probe. It was found that the intensity of the ions emitted from a target area rapidly decreases with the increasing number of laser shots, and seems to reach saturation after about 10 laser shots. The saturated intensity of Al and Cu ions was approximately 0.1 and 0.3 times the intensity of the respective ions measured at the first laser shot, respectively. The higher target ion intensity for the first few shots is thought to be due to the enhanced ionization of target atoms by vacuum-ultraviolet radiations emitted from the thermally excited/ionized surface contaminants. The reduction of target ion intensity with an increasing number of laser shots thus indicates the removal of contaminants from the irradiated surface area. Laser-cleaned Al and Cu surfaces were then allowed to be recontaminated with residual vacuum gases and the ion intensity was measured at various time delays. The prolonged exposure of the cleaned target to vacuum residual gases completely restores the ion intensity. Regarding surface contaminants removal, laser shots of higher intensities were found to be more effective than a higher number of laser shots having lower intensities.
Polarity compensation mechanisms on the perovskite surface KTaO 3(001)
Setvin, Martin; Reticcioli, Michele; Poelzleitner, Flora; ...
2018-02-02
The stacking of alternating charged planes in ionic crystals creates a diverging electrostatic energy—a “polar catastrophe”—that must be compensated at the surface. We used scanning probe microscopies and density functional theory to study compensation mechanisms at the perovskite potassium tantalate (KTaO 3) (001) surface as increasing degrees of freedom were enabled. The as-cleaved surface in vacuum is frozen in place but immediately responds with an insulator-to-metal transition and possibly ferroelectric lattice distortions. Annealing in vacuum allows the formation of isolated oxygen vacancies, followed by a complete rearrangement of the top layers into an ordered pattern of KO and TaO 2more » stripes. The optimal solution is found after exposure to water vapor through the formation of a hydroxylated overlayer with ideal geometry and charge.« less
Separation of the Magnetic Field into Parts Produced by Internal and External Sources
NASA Astrophysics Data System (ADS)
Lazanja, David
2005-10-01
Given the total magnetic field on a toroidal plasma surface, a method for decomposing the field into a part due to internal currents (often the plasma) and a part due to external currents is presented. The decomposition exploits Laplace theory which is valid in the vacuum region between the plasma surface and the chamber walls. The method does not assume toroidal symmetry, and it is partly based on Merkel's 1986 work on vacuum field computations. A change in the plasma shape is produced by the total normal field perturbation on the plasma surface. This method allows a separation of the total normal field perturbation into a part produced by external currents and a part produced by the plasma response.
Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng
2015-01-01
Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation. PMID:25994377
Characteristics of Surface Sterilization using ECR Plasma
NASA Astrophysics Data System (ADS)
Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya
2015-09-01
Plasma sterilization techniques have superior characteristics such as a short treatment times, non-toxicity and low thermal damages on the sterilized materials. In plasma sterilization, microorganisms can be sterilized by active radicals, energetic charged particles, and vacuum UV radiation. The influence of each factor depends on the plasma operating parameters. Microwave discharges under the electron cyclotron resonance (ECR) condition produce higher electron temperature and density plasma as compared with other plasma generation techniques. In the present study, characteristics of surface sterilization using ECR plasma have been investigated.The experiment was performed in the vacuum chamber which contains a magnet holder. A pair of rectangular Sm-Co permanent magnets is aligned parallel to each other within the magnet holder. The region of the magnetic field for ECR exists near the magnet holder surface. When the microwave is introduced into the vacuum chamber, a ECR plasma is produced around surface of the magnet holder. High energy electrons and oxygen radicals were observed at ECR zone by electric probe method and optical spectroscopic method. Biological indicators (B.I.) having spore of 106 was sterilized in 2min for oxygen discharge. The temperature of the B.I. installation position was about 55°. The sterilization was achieved by the effect of oxygen radicals and high energy electrons.
Treatment of surfaces with low-energy electrons
NASA Astrophysics Data System (ADS)
Frank, L.; Mikmeková, E.; Lejeune, M.
2017-06-01
Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.
An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum
NASA Astrophysics Data System (ADS)
Xu, Shi-zhen; Yao, Cai-zhen; Dou, Hong-qiang; Liao, Wei; Li, Xiao-yang; Ding, Ren-jie; Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong; Zu, Xiao-tao
2017-06-01
Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm2 and 2.1 J/cm2 were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.
NASA Astrophysics Data System (ADS)
Sun, F. Z.; Zhang, P.; Liang, Y. C.; Lu, L. H.
2014-09-01
In the non-critical phase-matching (NCPM) along the Θ =90° direction, ADP and DKDP crystals which have many advantages, including a large effective nonlinear optical coefficient, a small PM angular sensitivity and non beam walk-off, at the non-critical phase-matching become the competitive candidates in the inertial confinement fusion(ICF) facility, so the reasonable temperature control of crystals has become more and more important .In this paper, the fluid-solid coupling models of ADP crystal and DKDP crystal which both have anisotropic thermal conductivity in the states of vacuum and non-vacuum were established firstly, and then simulated using the fluid analysis software Fluent. The results through the analysis show that the crystal surface temperature distribution is a ring shape, the temperature gradients in the direction of the optical axis both the crystals are 0.02°C and 0.01°C due to the air, the lowest temperature points of the crystals are both at the center of surface, and the temperatures are lower than 0.09°C and 0.05°C compared in the vacuum and non-vacuum environment, then propose two designs for heating apparatus.
NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility
NASA Technical Reports Server (NTRS)
Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun
2018-06-01
The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most significant suppression impact on surface charge accumulation.
NASA Technical Reports Server (NTRS)
Mishina, H.; Buckley, D. H.
1984-01-01
Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.
Ion-plasma protective coatings for gas-turbine engine blades
NASA Astrophysics Data System (ADS)
Kablov, E. N.; Muboyadzhyan, S. A.; Budinovskii, S. A.; Lutsenko, A. N.
2007-10-01
Evaporated, diffusion, and evaporation—diffusion protective and hardening multicomponent ionplasma coatings for turbine and compressor blades and other gas-turbine engine parts are considered. The processes of ion surface treatment (ion etching and ion saturation of a surface in the metallic plasma of a vacuum arc) and commercial equipment for the deposition of coatings and ion surface treatment are analyzed. The specific features of the ion-plasma coatings deposited from the metallic plasma of a vacuum arc are described, and the effect of the ion energy on the phase composition of the coatings and the processes occurring in the surface layer of an article to be treated are discussed. Some properties of ion-plasma coatings designed for various purposes are presented. The ion surface saturation of articles made from structural materials is shown to change the structural and phase states of their surfaces and, correspondingly, the related properties of these materials (i.e., their heat resistance, corrosion resistance, fatigue strength, and so on).
Studies of Oxidation of the Cu(100) Surface Using Low Energy Positrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fazleev, N. G.; Kazan State University, Kazan 420008; Maddox, W. B.
2009-03-10
Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the positron annihilation induced Cu M{sub 2,3}VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The intensity then decreases monotonically as the annealing temperature is increased to {approx}600 deg. C. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant coremore » electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. Possible explanation for the observed behavior of the intensity of positron annihilation induced Cu M{sub 2,3}VV Auger peak with changes of the annealing temperature is proposed.« less
NASA Astrophysics Data System (ADS)
Satonik, Alexander J.
Worn Hall effect thrusters (HET) show a variety of unique microstructures and elemental compositions in the boron nitride thruster channel walls. Worn thruster channels are typically created by running test thrusters in vacuum chambers for hundreds of hours. Studies were undertaken to manually modify samples of boron nitride without the use of a hall effect thruster. Samples were manually abraded with an abrasive blaster and sandpaper, in addition to a vacuum heater. Some of these samples were further exposed to a xenon plasma in a magnetron sputter device. Sandpaper and abrasive blaster tests were used to modify surface roughness values of the samples from 10,000 A to 150,000 A, matching worn thruster values. Vacuum heat treatments were performed on samples. These treatments showed the ability to modify chemical compositions of boron nitride samples, but not in a manner matching changes seen in worn thruster channels. Plasma erosion rate was shown to depend on the grade of the BN ceramic and the preparation of the surface prior to plasma exposure. Abraded samples were shown to erode 43% more than their pristine counterparts. Unique surface features and elemental compositions on the worn thruster channel samples were overwritten by new surface features on the ceramic grains. The microscope images of the ceramic surface show that the magnetron plasma source rounded the edges of the ceramic grains to closely match the worn HET surface. This effect was not as pronounced in studies of ion beam bombardment of the surface and appears to be a result of the quasi-neutral plasma environment.
Experimental study on the effect of calcination on the volcanic ash activity of diatomite
NASA Astrophysics Data System (ADS)
Xiao, Liguang; Pang, Bo
2017-09-01
The volcanic ash activity of diatomite was studied under the conditions of aerobic calcination and vacuum calcination by the combined water rate method, it was characterized by XRD, BET and SEM. The results showed that the volcanic ash activity of diatomite under vacuum conditions was higher than that of aerobic calcination, 600°C vacuum calcination 2h, the combined water rate of diatomite-Ca(OH)2-H2O system was increased from 6.24% to 71.43%, the volcanic ash activity reached the maximum value, the specific surface
Particle adhesion to surfaces under vacuum
NASA Technical Reports Server (NTRS)
Barengoltz, Jack B.
1988-01-01
The release of glass beads and standard dust from aluminum and glass substrates under centrifugation (simulating atmospheric pressure, low vacuum, and high vacuum conditions) was measured, with application to the estimation of contaminant particle release during spacecraft launch. For particles in the 10-100 micron range, dust was found to adhere more strongly than glass beads in all the cases considered. For most of the cases, dust and glass beads adhered more strongly to glass than to aluminum at all pressures. The adhesion force for dust on glass at 10 torr was shown to be as small as the value for dust on aluminum.
Lai, Dong; Ho, Wynn C G
2003-08-15
In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.
NASA Astrophysics Data System (ADS)
Lai, Dong; Ho, Wynn C.
2003-08-01
In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Dongqing; Chien Jen, Tien; Li, Tao
2014-01-15
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domainmore » with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.« less
Remote controlled vacuum joint closure mechanism
Doll, David W.; Hager, E. Randolph
1986-01-01
A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.
Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan
2014-12-02
Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS.
NASA Astrophysics Data System (ADS)
Phungyimnoi, N.; Eksinitkun, G.; Phutdhawong, W.
2017-09-01
The vacuum vaporization technique is widely used to develop of visualized latent fingerprints on substrate surface for forensics investigation. In this study, we reported the first utilization of lawsone in the vacuum vaporization technique. The lawsone was sublimation in vacuum and showed the detected latent fingerprints on thermal papers. The method involves hanging the thermal paper samples 5, 10, 15 cm above a heating source with dispersed lawsone solids in a vacuum chamber. The optimized condition for lawsone sublimation are 50, 100, 150 mg with low-vacuum (0.1 mbar) and vaporizing temperature at 40-60°C. The sample fingerprints were left for 1, 3, 7 and 30 days before examination comparison between lawsone and fingerprint ink pad using an Automated Fingerprint Identification (AFIS). The resulted showed that using 100 mg lawsone sublimation on thermal paper at the range of 10 cm evidenced the clear, detectable minutiae which can be used for visualization and identification of latent prints without the background black staining known. Thus, this study might be interested application for developing latent fingerprints as a solvent free technique and non-hazardous materials.
Vacuum melting and mechanical testing of simulated lunar glasses
NASA Technical Reports Server (NTRS)
Carsley, J. E.; Blacic, J. D.; Pletka, B. J.
1992-01-01
Lunar silicate glasses may possess superior mechanical properties compared to terrestrial glasses because the anhydrous lunar environment should prevent hydrolytic weakening of the strong Si-O bonds. This hypothesis was tested by melting, solidifying, and determining the fracture toughness of simulated mare and highlands composition glasses in a high vacuum chamber. The fracture toughness, K(IC), of the resulting glasses was obtained via microindentation techniques. K(IC) increased as the testing environment was changed from air to a vacuum of 10 exp -7 torr. However, this increase in toughness may not result solely from a reduction in the hydrolytic weakening effect; the vacuum-melting process produced both the formation of spinel crystallites on the surfaces of the glass samples and significant changes in the compositions which may have contributed to the improved K(IC).
Method Of Making A Vacuum-Tight Continuous Cable Feedthrough Device
Bazizi, Kamel Abdel; Haelen, Thomas Eugene; Lobkowicz, Frederick; Slattery, Paul Francis
2001-07-17
A vacuum-tight cable feedthrough device includes a metallic first flange that is penetrated by a slot. Passing through the slot is a flat stripline cable that includes a plurality of conductive signal channels encompassed by a dielectric material on whose upper and lower surfaces is disposed a conductive material includes a ground. The stripline cable is sealed within the slot to provide a substantially vacuum-tight seal between the cable and the first flange. In a preferred embodiment, the cable feedthrough device includes a plurality, at least 16, of stripline cables. In a further preferred embodiment, the device includes a second flange and a bellows sealably connecting the first and second flanges, thereby providing a substantially vacuum-tight, flexible housing for the plurality of cables.
NASA Astrophysics Data System (ADS)
Whittenberger, J. D.
1995-12-01
The use of the solid- to- liquid phase transformation of LiF to store thermal energy is under consideration for a space- based solar dynamic system. Although advantageous in terms of its energy density, the melting point of this salt (1121K) is beyond the commonly accepted upper- use temperature of 1100 K for chromium- bearing superalloys in vacuum. However, one commercially available nickel- base superalloy (Hastelloy B- 2) is chromium free; unfortunately, because of its high molybdenum content, this alloy can form phases that cause high- temperature embrittlement. To test the suitability of Hastelloy B- 2, it has been exposed to molten LiF, its vapor and vacuum at 1173 K for 2500, 5000, and 10 h. For control, the chromium- containing cobalt- base Haynes alloy 188 and nickel- base Haynes alloy 230 were also exposed to LiF and vacuum at 1173 K for 5000 h. Neither LiF nor vacuum exposures had any significant effect on Hastelloy B- 2 in terms of microstructural surface damage or weight change. Measurement of the post exposure tensile properties of Hastelloy B- 2, nevertheless, revealed low tensile ductility at 1050 K. Such embrittlement and low strength at elevated temperatures appear to preclude the use of Hastelloy B- 2 as a containment material for LiF. Little evidence of significant attack by LiF was seen in either of the chromium- containing superalloys; however, considerable weight loss and near- surface microstructural damage occurred in both alloys exposed to vacuum. Although measurement of the post exposure room-temperature tensile properties of Haynes alloys 188 and 230 revealed no significant loss of strength or ductility, the severe degree of microstructural damage found in unshielded alloys exposed to vacuum indicates that chromium-bearing superalloys might also be unsuitable for prolonged containment of LiF in space above 1100 K. Keywords
Kelber, J.A.
1987-04-08
Treating polymer surfaces, e.g., Teflon, particularly very thin surfaces, e.g., 50-10,000 A, with low energy electron radiation, e.g., 100-1000 eV, in a high vacuum environment, e.g., less than 10 /sup /minus/6/ Torr, to enhance the ability of the surface to be adhered to a variety of substrates.
Oxidized film structure and method of making epitaxial metal oxide structure
Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA
2003-02-25
A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setvin, Martin; Reticcioli, Michele; Poelzleitner, Flora
The stacking of alternating charged planes in ionic crystals creates a diverging electrostatic energy—a “polar catastrophe”—that must be compensated at the surface. We used scanning probe microscopies and density functional theory to study compensation mechanisms at the perovskite potassium tantalate (KTaO 3) (001) surface as increasing degrees of freedom were enabled. The as-cleaved surface in vacuum is frozen in place but immediately responds with an insulator-to-metal transition and possibly ferroelectric lattice distortions. Annealing in vacuum allows the formation of isolated oxygen vacancies, followed by a complete rearrangement of the top layers into an ordered pattern of KO and TaO 2more » stripes. The optimal solution is found after exposure to water vapor through the formation of a hydroxylated overlayer with ideal geometry and charge.« less
Contamination control and plume assessment of low-energy thrusters
NASA Technical Reports Server (NTRS)
Scialdone, John J.
1993-01-01
Potential contamination of a spacecraft cryogenic surface by a xenon (Xe) ion generator was evaluated. The analysis involves the description of the plume exhausted from the generator with its relative component fluxes on the spacecraft surfaces, and verification of the conditions for condensation, adsorption, and sputtering at those locations. The data describing the plume fluxes and their effects on surfaces were obtained from two sources: the tests carried out with the Xe generator in a small vacuum chamber to indicate deposits and sputter on monitor slides; and the extensive tests with a mercury (Hg) ion thruster in a large vacuum chamber. The Hg thruster tests provided data on the neutrals, on low-energy ion fluxes, on high-energy ion fluxes, and on sputtered materials at several locations within the plume.
Electrically isolated, high melting point, metal wire arrays and method of making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, John T.; Cunningham, Joseph P.; D'Urso, Brian R.
2016-01-26
A method of making a wire array includes the step of providing a tube of a sealing material and having an interior surface, and positioning a wire in the tube, the wire having an exterior surface. The tube is heated to soften the tube, and the softened tube is drawn and collapsed by a mild vacuum to bring the interior surface of the tube into contact with the wire to create a coated wire. The coated wires are bundled. The bundled coated wires are heated under vacuum to fuse the tube material coating the wires and create a fused rodmore » with a wire array embedded therein. The fused rod is cut to form a wire array. A wire array is also disclosed.« less
Nanoscale mechanochemical wear of phosphate laser glass against a CeO2 particle in humid air
NASA Astrophysics Data System (ADS)
Yu, Jiaxin; He, Hongtu; Zhang, Yafeng; Hu, Hailong
2017-01-01
Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO2 particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO2 pair in air was found to be 5-7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65-79%. The capillary water bridge further induced a serious material removal of glass and CeO2 particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Cesbnd Osbnd P bond, accelerating the reaction between water and the glass/CeO2 pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.
Carbon-silicon composite anode electrodes modified with MWCNT for high energy battery applications
NASA Astrophysics Data System (ADS)
Akbulut, H.; Nalci, D.; Guler, A.; Duman, S.; Guler, M. O.
2018-07-01
In this study, we comparatively study the electrochemical characteristics of Si, Si-C and vacuum-assisted filtration fabrication of a novel free-standing Si@C/Mutli Wall Carbon Nanotubes (MWCNT) nanocomposite. The surfaces of the as-received Si nanaoparticles were coated with an amorphous carbon layer and homogenously anchored onto the surfaces of as-received MWCNTs by a simple vacuum filtration method. The samples were then analyzed with field emission scanning electron microscopy and X-ray diffraction (XRD) methods. Si@C/MWCNT samples have shown a stable capacity of 1290 mA h g-1 after 200 cycles. The results have proven that MWCNT's large surface area, highly conductive network which can provide good contact between Si@C nanoparticles, tolerating large volume change sand suppressing aggregation of Si@C nanoparticles during charge/discharge processes. Such a comparison between the performances of carbon-MWCNT-metal materials is reasonably envisaged not only to be useful for understanding the individual contribution from MWCNT and metal but also to form a fundamental basis for energy storage applications. Free-standing Si-C/MWCNT nano paper has been successfully obtained by a facile vacuum filtration method.
NASA Astrophysics Data System (ADS)
Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.
2014-08-01
Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.
NASA Astrophysics Data System (ADS)
Maddox, W.; Fazleev, N. G.; Nadesalingam, M. P.; Weiss, A. H.
2008-03-01
We discuss recent progress in studies of an oxidized Cu(100) single crystal subjected to vacuum annealing over a temperature range from 293K to 1073K using positron annihilation induced Auger electron spectroscopy (PAES). The PAES measurements show a large monotonic increase in the intensity of the positron annihilation induced Cu M2,3 VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 573 K. The intensity then decreases monotonically as the annealing temperature is increased to 873 K. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. The effects of oxygen adsorption and surface reconstruction on localization of positron surface state wave functions and annihilation characteristics are analyzed. Possible explanations are provided for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV Auger peak with changes of the annealing temperature.
The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces.
Cutter, C N
1999-05-01
Triclosan is a nonionic, broad-spectrum, antimicrobial agent that has been incorporated into a variety of personal hygiene products, including hand soaps, deodorants, shower gels, mouthwashes, and toothpastes. In this study, plastic containing 1,500 ppm of triclosan was evaluated in plate overlay assays and meat experiments as a means of reducing populations of bacteria. Plate overlay assays indicated that the triclosan-incorporated plastic (TIP) inhibited the following organisms: Brochothrix thermosphacta ATCC 11509, Salmonella Typhimurium ATCC 14028, Staphylococcus aureus ATCC 12598, Bacillus subtilis ATCC 6051, Shigella flexneri ATCC 12022, Escherichia coli ATCC 25922, and several strains of E. coli O157:H7. In meat experiment 1, irradiated, lean beef surfaces inoculated with B. thermosphacta, Salmonella Typhimurium, E. coli O157:H7, or B. subtilis were covered with TIP, vacuum packaged, and stored for 24 h at 4 degrees C. Of the organisms tested, only populations of B. thermosphacta were slightly reduced. In meat experiment 2, prerigor beef surfaces were inoculated with E. coli O157: H7, Salmonella Typhimurium, or B. thermosphacta incubated at 4 degrees C for 24 h, wrapped in TIP or control plastic, vacuum packaged, and stored at 4 degrees C for up to 14 days. There was a slight reduction in the population of the organisms after initial application with TIP. However, bacterial populations following long-term, refrigerated (4 degrees C), vacuum-packaged storage up to 14 days were not statistically (P< or =0.05) or numerically different than controls. In meat experiment 3, even TIP-wrapped, vacuum-packaged beef samples that were temperature abused at 12 degrees C did not exhibit significant (P< or =0.05) or sustainable reductions after 14 days of 4 degrees C storage. Another study indicated that populations of E. coli O157:H7 or B. thermosphacta added directly to TIP were not affected after 2 h of refrigerated storage or that the antimicrobial activity could be extracted from the plastic. Additional experiments suggest that presence of fatty acids or adipose may diminish the antimicrobial activity of TIP on meat surfaces. This study demonstrates that while antimicrobial activity is detected against bacterial cultures in antimicrobial plate assays, plastic containing 1,500 ppm of triclosan does not effectively reduce bacterial populations on refrigerated, vacuum-packaged meat surfaces.
12. Photocopy of drawing (original in possession of Naval Surface ...
12. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) SUPERSONIC WIND TUNNEL, STEEL VACUUM SPHERE, FOUNDATION PLAN, ELEVATION AND DETAILS, 1947 - Naval Surface Warfare Center, Supersonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator
NASA Astrophysics Data System (ADS)
Hutsel, B. T.; Corcoran, P. A.; Cuneo, M. E.; Gomez, M. R.; Hess, M. H.; Hinshelwood, D. D.; Jennings, C. A.; Laity, G. R.; Lamppa, D. C.; McBride, R. D.; Moore, J. K.; Myers, A.; Rose, D. V.; Slutz, S. A.; Stygar, W. A.; Waisman, E. M.; Welch, D. R.; Whitney, B. A.
2018-03-01
We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator configurations and load-impedance time histories. For these experiments, the apparent fractional current loss varies from 0% to 20%. Results of the circuit simulations agree with data acquired on 52 shots to within 2%.
Modification of polymeric surface for improved adhesion via electron beam exposure
Kelber, Jeffry A.
1989-01-01
Treating polymer surfaces, e.g., Teflon, particularly very thin surfaces, e.g., 50-10,000 .ANG. with low energy electron radiation, e.g., 100-1000 eV, in a high vacuum environment, e.g., less than 10.sup.-6 Torr, to enhance the ability of the surface to be adhered to a variety of substrates.
Achieving ultrahigh vacuum in an unbaked chamber with glow discharge conditioning
NASA Astrophysics Data System (ADS)
Khan, Ziauddin; Semwal, Pratibha; Dhanani, Kalpesh R.; Raval, Dilip C.; Pradhan, Subrata
2017-01-01
Glow discharge conditioning (GDC) has long been accepted as one of the basic wall conditioning techniques for achieving ultrahigh vacuum in an unbaked chamber. As a part of this fundamental experimental study, a test chamber has been fabricated from stainless steel 304 L with its inner surface electropolished on which a detailed investigation has been carried out. Both helium and hydrogen gases have been employed as discharge cleaning medium. The discharge cleaning was carried out at 0.1 A / m 2 current density with working pressure maintained at 1.0 × 10 -2 mbar. It was experimentally observed that the pump-down time to attain the base pressure 10 -8 mbar was reduced by 62% compared to the unbaked chamber being pumped to this ultimate vacuum. The results were similar irrespective of whether the discharge cleaning medium is either hydrogen or helium. It was also experimentally established that a better ultimate vacuum could be achieved as compared to theoretically calculated ultimate vacuum with the help of discharge cleaning.
Gas chromatography/matrix-isolation apparatus
Reedy, G.T.
1986-06-10
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring. 10 figs.
Gas chromatography/matrix-isolation apparatus
Reedy, Gerald T.
1986-01-01
A gas-sample collection device provides matrix isolation of individual gas bands from a gas chromatographic separation and for the spectroscopic analysis of the individual sample bands. The device includes a vacuum chamber containing a rotatably supported, specular carousel having at least one reflecting surface for holding a sample deposited thereon. A gas inlet is provided for depositing a mixture of sample and matrix material on the reflecting surface which is maintained at a sufficiently low temperature to cause solidification. A first parabolic mirror directs an incident beam of electromagnetic radiation, such as in the infrared (IR) spectrum, from a source onto the sample/matrix mixture while a second parabolic mirror directs a second beam of electromagnetic radiation reflected by the specular surface to an IR spectrometer for determining the absorption spectra of the sample material deposited on the reflecting surface. The pair of off-axis parabolic mirrors having a common focal point are positioned outside of the vacuum chamber and may be displaced in combination for improved beam positioning and alignment. The carousel is provided with an aperture for each reflecting surface to facilitate accurate positioning of the incident beam relative to the gas-samples under analysis. Improved gas-sample deposition is insured by the use of a long focal length stereomicroscope positioned outside of the vacuum chamber for monitoring sample formation through a window, while the sample collector is positioned outside of the zone bounded by the incident and reflected electromagnetic beams for improved sample access and monitoring.
Method for in-situ cleaning of carbon contaminated surfaces
Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel
2006-12-12
Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.
Low-temperature direct heterogeneous bonding of polyether ether ketone and platinum.
Fu, Weixin; Shigetou, Akitsu; Shoji, Shuichi; Mizuno, Jun
2017-10-01
Direct heterogeneous bonding between polyether ether ketone (PEEK) and Pt was realized at the temperatures lower than 150°C. In order to create sufficient bondability to diverse materials, the surface was modified by vacuum ultraviolet (VUV) irradiation, which formed hydrate bridges. For comparison, direct bonding between surfaces atomically cleaned via Ar fast atom bombardment (FAB) was conducted in a vacuum. The VUV irradiation was found to be effective for creating an ultrathin hydrate bridge layer from the residual water molecules in the chamber. Tight bonds were formed through dehydration of the hydrate bridges by heating at 150°C, which also contributed to enhancing interdiffusion across the interface. The VUV-modified surfaces showed bondability as good as that of the FAB-treated surfaces, and the VUV-modified samples had shear strengths at the same level as those of FAB-treated surfaces. This technology will be of practical use in the packaging of lightweight, flexible biomedical devices. Copyright © 2017 Elsevier B.V. All rights reserved.
Space Weathering Agent: Solar Wind
NASA Astrophysics Data System (ADS)
Martel, L. M. V.
2009-08-01
In the vacuum of space, the interactions of energetic particles with the surfaces of airless planetary bodies cause radiation damage, chemical changes, optical changes, erosional sputtering, and heat. This is an essential part of the process called space weathering. A group at the Laboratory for Atomic and Surface Physics at the University of Virginia specialize in experiments, among other things, where they bombard surfaces with charged particles to see what happens. Recent work by Mark Loeffler, Cathy Dukes, and Raul Baragiola focused on what happens to olivine mineral grains when they are irradiated by helium ions to better understand the effects of solar wind on the surface composition and, therefore, appearance of asteroids. Their experiments were the first to measure chemical and reflectance changes in olivine before and after irradiation while still under vacuum conditions. The resulting changes in the reflectance spectra of olivine slabs and powders are directly correlated with the formation of metallic iron in the very outer surface of the mineral grains.
NASA Astrophysics Data System (ADS)
Taeg Rim, Kwang; Fitts, Jeffrey; Adib, Kaveh; Camillone, Nicholas, III; Schlosser, Peter; Osgood, Richard, Jr.; Flynn, George; Joyce, Stephen
2001-03-01
Scanning tunneling microscopy and low energy electron diffraction have been used to study a natural a-Fe2O3(0001) surface and the adsorption and degradation of carbon tetrachloride on the reduced Fe3O4(111) terminated surface. A natural a-Fe2O3 (0001) surface was prepared by repeated cycles of Ar+ ion sputtering and annealing in vacuum or in O2 at 850 K. STM images and a LEED pattern indicate that an Fe3O4(111) terminated surface and a bi-phase can be formed depending on annealing conditions. The Fe3O4(111) terminated surface was dosed with CCl4 at room temperature, and flashed up to 590 K and 850 K. STM images show adsorbates on the surface at room temperature and the degradation products of CCl4 are isolated on the surface as the flashing temperature increases up to 850 K. Results from a companion temperature programmed desorption investigation are used in conjunction with the STM images to propose site specific reactions of CCl4 on the Fe3O4(111) terminated surface.
Sherrell, Dennis L.
1990-01-01
A hollow, collapsable seal member normally disposed in a natural expanded state offering fail-safe pressure sealing against a seating surface and adapted to be evacuated by a vacuum force for collapsing the seal member to disengage the same from said seating surface.
Sherrell, D.L.
1983-12-08
A hollow, collapsable seal member normally disposed in a natural expanded state offering fail-safe pressure sealing against a seating surface and adapted to be evacuated by a vacuum force for collapsing the seal member to disengage the same from said seating surface.
TRIZ theory in NEA photocathode preparation system
NASA Astrophysics Data System (ADS)
Qiao, Jianliang; Huang, Dayong; Li, Xiangjiang; Gao, Youtang
2016-09-01
The solutions to the engineering problems were provided according to the innovation principle based on the theory of TRIZ. The ultra high vacuum test and evaluation system for the preparation of negative electron affinity (NEA) photocathode has the characteristics of complex structure and powerful functions. Segmentation principle, advance function principle, curved surface principle, dynamic characteristics principle and nested principle adopted by the design of ultra high vacuum test and evaluation system for cathode preparation were analyzed. The applications of the physical contradiction and the substance-field analysis method of the theory of TRIZ in the cathode preparation ultra high vacuum test and evaluation system were discussed.
Plasma expansion into a vacuum with an arbitrarily oriented external magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Rubio, F., E-mail: fernando.garcia.rubio@upm.es; Sanz, J.; Ruocco, A.
2016-01-15
Plasma expansion into a vacuum with an external magnetic field is studied under the ideal magnetohydrodynamic hypothesis. The inclination of the magnetic field with respect to the expansion direction is arbitrary, and both the perpendicular and the oblique cases are separately analyzed. A self-similar solution satisfying the boundary conditions is obtained. The interface with the vacuum is treated as a fluid surface, and jump conditions concerning the momentum conservation are imposed. The effect of the intensity of the magnetic field and its inclination is thoroughly studied, and the consistency of the solution for small and large inclinations is investigated.
Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming
2014-12-31
An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.
The crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism was confirmedmore » by selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a “top-down” crystallization mechanism.« less
Thermal Vacuum Facility for Testing Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.
2002-01-01
A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.
Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir
2016-07-15
Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample. Copyright © 2016 Elsevier Ltd. All rights reserved.
First wall design of aluminum alloy R-tokamak
NASA Astrophysics Data System (ADS)
Hamada, Y.; Matsuoka, K.; Ogawa, Y.; Kitagawa, S.; Toi, K.; Yamazaki, K.; Abe, Y.; Amano, T.; Fujita, J.; Kaneko, O.; Kawahata, K.; Kuroda, T.; Matsuura, K.; Midzuno, Y.; Naitou, H.; Noda, N.; Ohkubo, K.; Oka, Y.; Sakurai, K.; Tanahashi, S.; Watari, T.
1984-05-01
A design study of a low-activation D-T tokamak Reacting Plasma Project In Nagoya has been finished. The study emphasizes the vacuum vessel and the bumper limiter. Our choice of materials (aluminum vacuum vessel, copper conductors, aluminum TF coil case and lead shield) results in a radiation level of about 1 × 10 -3 times that of a TFTR type design, and 1 × 10 -4 times that of JET type design, at 2 weeks after one D-T shot. Thick graphite tiles will be fixed directly on the aluminum vacuum vessel using aluminum spring washers and bolts. With this simplified structure of the bumper limiter, the inner surface temperature of the thick aluminum vacuum vessel will be less than 120°C which is required to reduce the overaging effect of the aluminum alloy.
Vacuum field-effect transistor with a deep submicron channel fabricated by electro-forming
NASA Astrophysics Data System (ADS)
Wang, Xiao; Shen, Zhihua; Wu, Shengli; Zhang, Jintao
2017-06-01
Vacuum field-effect transistors (VFETs) with channel lengths down to 500 nm (i.e., the deep submicron scale) were fabricated with the mature technology of the surface conduction electron emitter fabrication process in our former experiments. The vacuum channel of this new VFET was generated by using the electro-forming process. During electro-forming, the joule heat cracks the conductive film and then generates the submicron scale gap that serves as the vacuum channel. The gap separates the conductive film into two plane-to-plane electrodes, which serve as a source (cathode) electrode and a drain (anode) electrode of the VFET, respectively. Experimental results reveal that the fabricated device demonstrates a clear triode behavior of the gate modulation. Fowler-Nordheim theory was used to analyze the electron emission mechanism and operating principle of the device.
Tile-based rigidization surface parametric design study
NASA Astrophysics Data System (ADS)
Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee
2018-03-01
Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of variations in geometric design parameters, operating parameters, and architectural variations on the performance evaluation metrics. The results of this study bring insight into the rigidization behavior of this architecture, and provide design guidelines and expose tradeoffs to form the basis for the design of tile-based rigidization surfaces for a wide range of applications.
Generalized surface tension bounds in vacuum decay
NASA Astrophysics Data System (ADS)
Masoumi, Ali; Paban, Sonia; Weinberg, Erick J.
2018-02-01
Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.
The effect of simulated low earth orbit radiation on polyimides (UV degradation study)
NASA Technical Reports Server (NTRS)
Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.
1995-01-01
UV degradation of polyimide films in air and vacuum were studied using UV-visible, ESR, FTIR, and XPS spectroscopies. The UV-visible spectra of polyimide films showed a blue shift in the absorption compared to Kapton. This behavior was attributed to the presence of bulky groups and kinks along the polymer chains which disrupt the formation of a charge transfer complex. The UV-visible spectra showed also that UV irradiation of polyimides result extensively in surface degradation, leaving the bulk of the polymer intact. ESR spectra of polyimides irradiated in vacuum revealed the formation of stable carbon-centered radicals which give a singlet ESR spectrum, while polyimides irradiated in air produced an asymmetric signal shifted to a lower magnetic field, with a higher g value and line width. This signal was attributed to oxygen-cenetered radicals of peroxy and/or alkoxy type. The rate of radical formation in air was two fold higher than for vacuum irradiation, and reached a plateau after a short time. This suggests a continuous depletion of radicals on the surface via an ablative degradation process. FTIR, XPS, and weight loss studies supported this postulate. An XPS study of the surface indicated a substantial increase in the surface oxidation after irradiation in air. The sharp increase in the C-O binding energy peak relative to the C-C peak was believed to be associated with an aromatic ring opening reaction.
Surface Science at the Solid Liquid Interface
1993-10-06
prominent experimental avenue, developed originally by Hubbard et al,_ involves emersing monocrystalline elec- As for metal surfaces in ultrahigh vacuum...reliable means of both preparing and dosateizn ordered monocrystalline metal surfaces in UHV has led to ing appropriate molecular components of...surface atoms in place of bottom panel of Fig. 2, equal intensity contours are shown 23 underlying surface atoms, the compression is 24/23 - I in the
Vacuum Deposition From A Welding Torch
NASA Technical Reports Server (NTRS)
Poorman, R. M.
1993-01-01
Process derived from arc welding produces films of high quality. Modified gas/tungsten-arc welding process developed for use in outer space. Welding apparatus in process includes hollow tungsten electrode through which inert gas flows so arc struck between electrode and workpiece in vacuum of space. Offers advantages of fast deposition, possibility of applying directional impetus to flow of materials, very low pressure at surface being coated, and inert environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goering, J.; Burghaus, Uwe; Arey, Bruce W.
The adsorption kinetics of thiophene on WS2 nanoparticles with fullerene-like (onion-like) structure has been studied at ultra-high vacuum conditions by sample temperature ramping techniques. At low temperatures, thiophene adsorbs molecularly. The formation of H2S and alkanes is evident at greater temperatures on fully sulfided as well as reduced and oxidized WS2 nanoparticles.
Diffusion welding. [heat treatment of nickel alloys following single step vacuum welding process
NASA Technical Reports Server (NTRS)
Holko, K. H. (Inventor)
1974-01-01
Dispersion-strengthened nickel alloys are sanded on one side and chemically polished. This is followed by a single-step welding process wherein the polished surfaces are forced into intimate contact at 1,400 F for one hour in a vacuum. Diffusion, recrystallization, and grain growth across the original weld interface are obtained during postheating at 2,150 F for two hours in hydrogen.
NASA Astrophysics Data System (ADS)
Olson, David H.; Freedy, Keren M.; McDonnell, Stephen J.; Hopkins, Patrick E.
2018-04-01
We experimentally demonstrate the role of oxygen stoichiometry on the thermal boundary conductance across Au/TiOx/substrate interfaces. By evaporating two different sets of Au/TiOx/substrate samples under both high vacuum and ultrahigh vacuum conditions, we vary the oxygen composition in the TiOx layer from 0 ≤ x ≤ 2.85. We measure the thermal boundary conductance across the Au/TiOx/substrate interfaces with time-domain thermoreflectance and characterize the interfacial chemistry with x-ray photoemission spectroscopy. Under high vacuum conditions, we speculate that the environment provides a sufficient flux of oxidizing species to the sample surface such that one essentially co-deposits Ti and these oxidizing species. We show that slower deposition rates correspond to a higher oxygen content in the TiOx layer, which results in a lower thermal boundary conductance across the Au/TiOx/substrate interfacial region. Under the ultrahigh vacuum evaporation conditions, pure metallic Ti is deposited on the substrate surface. In the case of quartz substrates, the metallic Ti reacts with the substrate and getters oxygen, leading to a TiOx layer. Our results suggest that Ti layers with relatively low oxygen compositions are best suited to maximize the thermal boundary conductance.
Li, Jieyin; Ye, Xiuhua; Li, Bohua; Liao, Juankun; Zhuang, Peilin; Ye, Jiantao
2015-08-01
There is a dearth of dental scientific literature on the effect of different oxidation heat treatments (OHTs) (as surface pretreatments) on the bonding performance of cast and milled cobalt-chromium (CoCr) alloys. The objective of this study was to evaluate the effect of different OHTs on the bond strength between a ceramic and cast and milled CoCr alloys. Cobalt-chromium metallic specimens were prepared using either a cast or a milled method. Specimens were subjected to four different OHT methods: without OHT; OHT under normal atmospheric pressure; OHT under vacuum; and OHT under vacuum followed by sandblasting. The metal-ceramic bond strength was evaluated using a three-point bending test according to ISO9693. Scanning electron microscopy and energy-dispersive spectroscopy were used to study the specimens' microstructure and elemental composition. The bond strength was not affected by the CoCr manufacturing method. Oxidation heat treatment performed under normal atmospheric pressure resulted in the highest bond strength. The concentration of oxygen on the alloy surfaces varied with the different pretreatment methods in the following order: OHT under normal atmospheric pressure > OHT under vacuum > without OHT ≈ OHT under vacuum followed by sandblasting. © 2015 Eur J Oral Sci.
NASA Astrophysics Data System (ADS)
Lee, J.; Graves, D. B.
2010-10-01
Damage incurred during plasma processing, leading to increases in dielectric constant k, is a persistent problem with porous ultra-low-k dielectric films, such as SiCOH. Although most of the proposed mechanisms of plasma-induced damage focus on the role of ion bombardment and radical attack, we show that plasma-generated vacuum ultraviolet (VUV) photons can play a role in creating damage leading to increases in the dielectric constant of this material. Using a vacuum beam apparatus with a calibrated VUV lamp, we show that 147 nm VUV photons impacting SiCOH results in post-exposure adsorption and reaction with water vapour from the atmosphere to form silanol bonds, thereby raising the dielectric constant. Furthermore, the level of damage increases synergistically under simultaneous exposure to VUV photons and O2. The vacuum beam photon fluences are representative of typical plasma processes, as measured in a separate plasma tool. Fourier-transform infrared (FTIR) spectroscopy (ex situ) and mass spectrometry (in situ) imply that O2 reacts with methyl radicals formed from scissioned Si-C bonds to create CO2 and H2O, the latter combining with Si dangling bonds to generate more SiOH groups than with photon exposure alone. In addition, sample near-surface diffusivity, manipulated through ion bombardment and sample heating, can be seen to affect this process. These results demonstrate that VUV photo-generated surface reactions can be potent contributors to ultra-low-k dielectric SiCOH film plasma-induced damage, and suggest that they could play analogous roles in other plasma-surface interactions.
Application of Ruze Equation for Inflatable Aperture Antennas
NASA Technical Reports Server (NTRS)
Welch, Bryan W.
2008-01-01
Inflatable aperture reflector antennas are an emerging technology that NASA is investigating for potential uses in science and exploration missions. As inflatable aperture antennas have not been proven fully qualified for space missions, they must be characterized properly so that the behavior of the antennas can be known in advance. To properly characterize the inflatable aperture antenna, testing must be performed in a relevant environment, such as a vacuum chamber. Since the capability of having a radiofrequency (RF) test facility inside a vacuum chamber did not exist at NASA Glenn Research Center, a different methodology had to be utilized. The proposal to test an inflatable aperture antenna in a vacuum chamber entailed performing a photogrammetry study of the antenna surface by using laser ranging measurements. A root-mean-square (rms) error term was derived from the photogrammetry study to calculate the antenna surface loss as described by the Ruze equation. However, initial testing showed that problems existed in using the Ruze equation to calculate the loss due to errors on the antenna surface. This study utilized RF measurements obtained in a near-field antenna range and photogrammetry data taken from a laser range scanner to compare the expected performance of the test antenna (via the Ruze equation) with the actual RF patterns and directivity measurements. Results showed that the Ruze equation overstated the degradation in the directivity calculation. Therefore, when the photogrammetry study is performed on the test antennas in the vacuum chamber, a more complex equation must be used in light of the fact that the Ruze theory overstates the loss in directivity for inflatable aperture reflector antennas.
Pendant-Drop Surface-Tension Measurement On Molten Metal
NASA Technical Reports Server (NTRS)
Man, Kin Fung; Thiessen, David
1996-01-01
Method of measuring surface tension of molten metal based on pendant-drop method implemented in quasi-containerless manner and augmented with digital processing of image data. Electrons bombard lower end of sample rod in vacuum, generating hanging drop of molten metal. Surface tension of drop computed from its shape. Technique minimizes effects of contamination.
Electrospray deposition of organic molecules on bulk insulator surfaces.
Hinaut, Antoine; Pawlak, Rémy; Meyer, Ernst; Glatzel, Thilo
2015-01-01
Large organic molecules are of important interest for organic-based devices such as hybrid photovoltaics or molecular electronics. Knowing their adsorption geometries and electronic structures allows to design and predict macroscopic device properties. Fundamental investigations in ultra-high vacuum (UHV) are thus mandatory to analyze and engineer processes in this prospects. With increasing size, complexity or chemical reactivity, depositing molecules by thermal evaporation becomes challenging. A recent way to deposit molecules in clean conditions is Electrospray Ionization (ESI). ESI keeps the possibility to work with large molecules, to introduce them in vacuum, and to deposit them on a large variety of surfaces. Here, ESI has been successfully applied to deposit triply fused porphyrin molecules on an insulating KBr(001) surface in UHV environment. Different deposition coverages have been obtained and characterization of the surface by in-situ atomic force microscopy working in the non-contact mode shows details of the molecular structures adsorbed on the surface. We show that UHV-ESI, can be performed on insulating surfaces in the sub-monolayer regime and to single molecules which opens the possibility to study a variety of complex molecules.
Dynamics of tokamak plasma surface current in 3D ideal MHD model
NASA Astrophysics Data System (ADS)
Galkin, Sergei A.; Svidzinski, V. A.; Zakharov, L. E.
2013-10-01
Interest in the surface current which can arise on perturbed sharp plasma vacuum interface in tokamaks was recently generated by a few papers (see and references therein). In dangerous disruption events with plasma-touching-wall scenarios, the surface current can be shared with the wall leading to the strong, damaging forces acting on the wall A relatively simple analytic definition of δ-function surface current proportional to a jump of tangential component of magnetic field nevertheless leads to a complex computational problem on the moving plasma-vacuum interface, requiring the incorporation of non-linear 3D plasma dynamics even in one-fluid ideal MHD. The Disruption Simulation Code (DSC), which had recently been developed in a fully 3D toroidal geometry with adaptation to the moving plasma boundary, is an appropriate tool for accurate self-consistent δfunction surface current calculation. Progress on the DSC-3D development will be presented. Self-consistent surface current calculation under non-linear dynamics of low m kink mode and VDE will be discussed. Work is supported by the US DOE SBIR grant #DE-SC0004487.
First-principles study of water desorption from montmorillonite surface.
Zhang, Yao; Meng, Yingfeng; Liu, Houbin; Yang, Mingli
2016-05-01
Knowledge about water desorption is important to give a full picture of water diffusion in montmorillonites (MMT), which is a driving factor in MMT swelling. The desorption paths and energetics of water molecules from the surface of MMT with trapped Li(+), Na(+) or K(+) counterions were studied using periodic density functional theory calculations. Two paths--surface and vacuum desorption--were designed for water desorption starting from a stationary structure in which water bonds with both the counterion and the MMT surface. Surface desorption is energetically more favorable than vacuum desorption due to water-surface hydrogen bonds that help stabilize the intermediate structure of water released from the counterion. The energy barriers of water desorption are in the order of Li(+) > Na(+) > K(+), which can be attributed to the short ionic radius of Li(+), which favors strong binding with the water molecule. The temperature dependence of water adsorption and desorption rates were compared based on the computed activation energies. Our calculations reveal that the water desorption on the MMT surface has a different mechanism from water adsorption, which results from surface effects favoring stabilization of water conformers during the desorption process.
NASA Astrophysics Data System (ADS)
Tian, Xue-Yan; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Xu, Xu-Rong; Yuan, Guang-Cai; Li, Jing; Sun, Qin-Jun; Wang, Ying
2009-11-01
In order to enhance the performance of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs), RR-P3HT FETs are prepared by the spin-coating method followed by vacuum placement and annealing. This paper reports that the crystal structure, the molecule interconnection, the surface morphology, and the charge carrier mobility of RR-P3HT films are affected by vacuum relaxation and annealing. The results reveal that the field-effect mobility of RR-P3HT FETs can reach 4.17 × 10-2 m2/(V · s) by vacuum relaxation at room temperature due to an enhanced local self-organization. Furthermore, it reports that an appropriate annealing temperature can facilitate the crystal structure, the orientation and the interconnection of polymer molecules. These results show that the field-effect mobility of device annealed at 150 °C for 10 minutes in vacuum at atmosphere and followed by placement for 20 hours in vacuum at room temperature is enhanced dramatically to 9.00 × 10-2 cm2/(V · s).
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Degroh, Kim K.; Stidham, Curtis R.; Stueber, Thomas J.; Dever, Therese M.; Rodriguez, Elvin; Terlep, Judith A.
1992-01-01
In order to assess the low Earth orbit (LEO) durability of candidate space materials, it is necessary to use ground laboratory facilities which provide LEO environmental effects. A facility combining vacuum thermal cycling and vacuum ultraviolet (VUV) radiation has been designed and constructed at NASA Lewis Research Center for this purpose. This facility can also be operated without the VUV lamps. An additional facility can be used to provide VUV exposure only. By utilizing these facilities, followed by atomic oxygen exposure in an RF plasma asher, the effects of the individual vacuum thermal cycling and VUV environments can be compared to the effect of the combined vacuum thermal cycling/VUV environment on the atomic oxygen durability of materials. The synergistic effects of simulated LEO environmental conditions on materials were evaluated by first exposing materials to vacuum thermal cycling, VUV, and vacuum thermal cycling/VUV environments followed by exposure to atomic oxygen in an RP plasma asher. Candidate space power materials such as atomic oxygen protected polyimides and solar concentrator mirrors were evaluated using these facilities. Characteristics of the Vacuum Thermal Cycling/VUV Exposure Facility which simulates the temperature sequences and solar ultraviolet radiation exposure that would be experienced by a spacecraft surface in LEO are discussed. Results of durability evaluations of some candidate space power materials to the simulated LEO environmental conditions will also be discussed. Such results have indicated that for some materials, atomic oxygen durability is affected by previous exposure to thermal cycling and/or VUV exposure.
In situ high-temperature characterization of AlN-based surface acoustic wave devices
NASA Astrophysics Data System (ADS)
Aubert, Thierry; Bardong, Jochen; Legrani, Ouarda; Elmazria, Omar; Badreddine Assouar, M.; Bruckner, Gudrun; Talbi, Abdelkrim
2013-07-01
We report on in situ electrical measurements of surface acoustic wave delay lines based on AlN/sapphire structure and iridium interdigital transducers between 20 °C and 1050 °C under vacuum conditions. The devices show a great potential for temperature sensing applications. Burnout is only observed after 60 h at 1050 °C and is mainly attributed to the agglomeration phenomena undergone by the Ir transducers. However, despite the vacuum conditions, a significant oxidation of the AlN film is observed, pointing out the limitation of the considered structure at least at such extreme temperatures. Original structures overcoming this limitation are then proposed and discussed.
Pulsed metallic-plasma generators.
NASA Technical Reports Server (NTRS)
Gilmour, A. S., Jr.; Lockwood, D. L.
1972-01-01
A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.
In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet
NASA Astrophysics Data System (ADS)
Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.
1990-07-01
NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.
Steel bonded dense silicon nitride compositions and method for their fabrication
Landingham, R.L.; Shell, T.E.
1985-05-20
A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500/sup 0/C in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850/sup 0/ to 950/sup 0/C in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.
Vacuum distillation/vapor filtration water recovery, phases 1 and 2
NASA Technical Reports Server (NTRS)
Honegger, R. J.; Remus, G. A.; Krug, E. K.
1973-01-01
The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.
1992-03-01
left bdy = 0 vacuum current incident at left boundary = I type of current incident at left bdy = 0 isotropic surface Src region# cR SigmaR SourceR nc...0 type of current incident at left bdy = 0 isotropic surface Src region# cR SigmaR SourceR nc Right Bdy 1 0.5000 .3OD+00 0.0000D+00 256. 16.0000 2... SigmaR SourceR nc Right Bdy 1 0.1000 1.0000D+00 0.0000D+00 256. 16.0000 2 0.9500 1.0(OOD+00 1.0000D+00 256. 32.0000 type of right bdy = 0 vacuum current
NASA Astrophysics Data System (ADS)
Samoylenko, V. V.; Lozhkina, E. A.; Polyakov, I. A.; Lenivtseva, O. G.; Ivanchik, I. S.; Matts, O. E.
2016-11-01
The effect of the modes of non-vacuum electron-beam cladding of Ta-Zr powder mixtures on the structure and properties of the layers formed on the surface of cp-titanium were studied. The mode of the electron-beam alloying of titanium with zirconium and tantalum, which ensured the formation of a defect-free layer with a high content of alloying elements was selected. Metallographic examination indicated the presence of a dendritic- and plate-type structure of cladded layers. The microhardness of the layers, formed at the optimum mode, was not changed in the cross section and was equal to 450 HV.
Steel bonded dense silicon nitride compositions and method for their fabrication
Landingham, Richard L.; Shell, Thomas E.
1987-01-01
A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500.degree. C. in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850.degree. to 950.degree. C. in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.
In situ measurements of scattering from contaminated optics in the Vacuum Ultraviolet
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Linton, Roger C.; Whitaker, Ann F.
1990-01-01
NASA's In Situ Contamination Effects Facility has been used to measure the time dependence of the angular reflectance from molecularly contaminated optical surfaces in the vacuum ultraviolet. The light scattering measurements are accomplished in situ on optical surfaces in real time during deposition of molecular contaminants. The measurements are taken using noncoherent VUV sources with the predominant wavelengths being the krypton resonance lines at 1236 and 1600 angstroms. Detection of the scattered light is accomplished using a set of three solar blind VUV photomultipliers. An in-plane VUV BRDF (bidirectional reflectance distribution function) experiment is described and details of the on-going program to characterize optical materials exposed to the space environment is reported.
Method and apparatus for producing a thermal atomic oxygen beam
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)
1994-01-01
Atomic oxygen atoms are routed to a material through a sufficiently tortuous path so that vacuum ultraviolet radiation is obstructed from arriving at the surface of the material. However, the material surface continues to be exposed to the atomic oxygen.
The Safe and Efficient Evaporation of a Solvent from Solution
NASA Astrophysics Data System (ADS)
Mahon, Andrew R.
1997-02-01
The process of evaporating a solvent from a solution can cause problems for many students. By using a water-vacuum aspirator, backflashes of water can flood the sample tube and be detrimental to the experiment. This type of apparatus can also cause problems by drawing the solution it is evaporating back into the vacuum hose, causing the student to lose part or all of the products of their experiment. Macroscale and Microscale Organic Experiments, 2nd edition (1), suggested two techniques to dissolve solvents from a mixture. It suggested blowing a stream of air over the solution from a Pasteur pipet, or attaching a Pasteur pipet to an aspirator and drawing air over the surface of the liquid. Again, the danger of blowing air over the solution leaves the risk of splattering the solution, and drawing air over the surface of the liquid as described further endangers the products of the experiment through the risk of sucking the products up into the pipet aspirator. In an effort to eliminate these problems, a new technique has been developed. By inverting an ordinary 200-mL vacuum flask and pulling a steady current of air from the vacuum apparatus through it, any type of small container can be placed under it, allowing the solvent to be evaporated in a steady, mistake-free manner . By evaporating the solvent from the container that the products will be submitted in, no sample is lost through the process of transferring it from a vacuum flask or beaker to the final container.
Mestres, Pedro; Pütz, Norbert; Garcia Gómez de Las Heras, Soledad; García Poblete, Eduardo; Morguet, Andrea; Laue, Michael
2011-05-01
Environmental scanning electron microscopy (ESEM) allows the examination of hydrated and dried specimens without a conductive metal coating which could be advantageous in the imaging of biological and medical objects. The aim of this study was to assess the performance and benefits of wet-mode and low vacuum ESEM in comparison to high vacuum scanning electron microscopy (SEM) using the choroid plexus of chicken embryos as a model, an organ of the brain involved in the formation of cerebrospinal fluid in vertebrates. Specimens were fixed with or without heavy metals and examined directly or after critical point drying with or without metal coating. For wet mode ESEM freshly excised specimens without any pre-treatment were also examined. Conventional high vacuum SEM revealed the characteristic morphology of the choroid plexus cells at a high resolution and served as reference. With low vacuum ESEM of dried but uncoated samples the structure appeared well preserved but charging was a problem. It could be reduced by a short beam dwell time and averaging of images or by using the backscattered electron detector instead of the gaseous secondary electron detector. However, resolution was lower than with conventional SEM. Wet mode imaging was only possible with tissue that had been stabilized by fixation. Not all surface details (e.g. microvilli) could be visualized and other structures, like the cilia, were deformed. In summary, ESEM is an additional option for the imaging of bio-medical samples but it is problematic with regard to resolution and sample stability during imaging. Copyright © 2011 Elsevier GmbH. All rights reserved.
1991-10-01
classical image potential in an ideal creasing gap separation, that is specific to the form of the metal- insulator -semiconductor (MIS) junction...with which one can precisely adjust s, and hence continuously vary the vacvuum barrier, is a potentially valuable tool for investigating this effect- By... insulator -semiconductor (MIS) junction similar to that shown in Fig. I diverge at the semiconductor-vacuum and vacuum-metal interfaces [7,81. These
Life-Cycle Cost Database. Volume II. Appendices E, F, and G. Sample Data Development.
1983-01-01
Bendix Field Engineering Corporation Columbia, Maryland 21045 5 CONTENTS Page GENERAL 8 Introduction Objective Engineering Survey SYSTEM DESCRIPTION...in a typical administrative type building over a 25-year period. 1.3 ENGINEERING SURVEY An on-site survey was conducted by Bendix Field Engineering...Damp Mop and Buff Buff Routine Vacuum Strip and Refinish Heavy Duty Vacuum Machine, Scrub and Surface Shampoo Pick Up Extraction Clean Repair Location
Multipactor experiment on a dielectric surface
NASA Astrophysics Data System (ADS)
Anderson, Rex Beach, III
2001-12-01
Multipactor is an electron multiplication process, or electron avalanche, that occurs on metallic and dielectric surfaces in the presence of rf microwave fields. Just as a rock avalanche only needs one rock to cause a larger slide of destruction, one electron under multipactor conditions can cause a tremendous amount of damage to electrical components. Multipactor is a nuisance that can cause excessive noise in communication satellites and radar, and damage to vacuum windows in particle accelerators. Single-surface multipactor on dielectrics is responsible for poor transmission properties of vacuum windows and can eventually lead to vacuum window failure. The repercussions of multipactor affect a wide range of people. For example, a civilian placing a call on a cell phone, or a captain dependent on radar for his ship's safety could both be affected by multipactor. In order to combat this expensive annoyance, a unique experiment to investigate single-surface multipactor on a dielectric surface was developed and tested. The motivation of this thesis is to introduce a novel experiment for multipactor that is designed to verify theoretical calculations and explore the physics behind the phenomenon. The compact apparatus consists of a small brass microwave cavity in a high vacuum system. Most single-surface multipactor experiments consist of a large resonant ring wave guide with a MW power supply. This experiment is the first to utilize a high Q resonant cavity and kW-level power supply to create multipactor on a dielectric surface. The small brass resonant cavity has an inner length of 9.154 cm with an inner diameter of 9.045 cm. A pulsed, variable frequency microwave source at ˜2.4 GHz, 2 kW peak excites the TE111 mode with a strong electric field parallel to a dielectric plate (˜0.2 cm thickness) that is inserted at the mid-plane of the cavity. The microwave pulses from the power supply are monitored by calibrated microwave diodes. These calibrated diodes along with a bead pull perturbation method are used to calculate the threshold rf fields at the dielectric surface when multipactor occurs. This experiment is the first to measure electron current from the dielectric using an electron probe. The electron probe provides temporal measurements of the multipactor electron current with respect to the microwave pulses. Another unique electron diagnostic utilized in this multipactor experiment is phosphor. Phosphor on the dielectric surface is used to detect multipactor electrons by photoemission. Phosphors with different excitation energies are used as a crude electron energy analyzer. Experimental results from these diagnostics match well with theoretical calculations.
NASA Astrophysics Data System (ADS)
Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott
2014-10-01
We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.
Experimental system for drilling simulated lunar rock in ultrahigh vacuum
NASA Technical Reports Server (NTRS)
Roepke, W. W.
1975-01-01
An experimental apparatus designed for studying drillability of hard volcanic rock in a simulated lunar vacuum of 5 x 10 to the minus 10th power torr is described. The engineering techniques used to provide suitable drilling torque inside the ultrahigh vacuum chamber while excluding all hydrocarbon are detailed. Totally unlubricated bearings and gears were used to better approximate the true lunar surface conditions within the ultrahigh vacuum system. The drilling system has a starting torque of 30 in-lb with an unloaded running torque of 4 in-lb. Nominal torque increase during drilling is 4.5 in-lb or a total drilling torque of 8.5 in-lb with a 100-lb load on the drill bit at 210 rpm. The research shows conclusively that it is possible to design operational equipment for moderate loads operating under UHV conditions without the use of sealed bearings or any need of lubricants whatsoever.
Vibration studies of a lightweight three-sided membrane suitable for space application
NASA Technical Reports Server (NTRS)
Sewell, J. L.; Miserentino, R.; Pappa, R. S.
1983-01-01
Vibration studies carried out in a vacuum chamber are reported for a three-sided membrane with inwardly curved edges. Uniform tension was transmitted by thin steel cables encased in the edges. Variation of ambient air pressure from atmospheric to near vacuum resulted in increased response frequencies and amplitudes. The first few vibration modes measured in a near vacuum are shown to be predictable by a finite element structural analysis over a range of applied tension loads. The complicated vibration mode behavior observed during tests at various air pressures is studied analytically with a nonstructural effective air-mass approximation. The membrane structure is a candidate for reflective surfaces in space antennas.
Effect of electron irradiation in vacuum on FEP-A silicon solar cell covers
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Broder, J. D.
1975-01-01
Fluorinated ethylene-propylene-A (FEP-A) covers on silicon solar cells were irradiated with 1-MeV electrons, in vacuum, to an accumulated fluence equivalent to approximately 28 years in synchronous orbit. The effect of irradiation on the light transmittance of FEP-A was checked by measuring the short-circuit current of the cells after each dose increment. The results indicate no apparent overall loss in transmission due to irradiation of FEP-A. Filter wheel measurements revealed some darkening of the FEP-A at the blue end of the spectrum. Although no delamination from the cell surface was observed while in vacuum, embrittlement of FEP-A occurred at the accumulated dose.
Kujawa, Joanna; Al-Gharabli, Samer; Kujawski, Wojciech; Knozowska, Katarzyna
2017-02-22
Four main tasks were presented: (i) ceramic membrane functionalization (TiO 2 5 kDa and 300 kDa), (ii) extended material characterization (physicochemistry and tribology) of pristine and modified ceramic samples, (iii) evaluation of chemical and mechanical stability, and finally (iv) assessment of membrane efficiency in vacuum membrane distillation applied for volatile organic compounds (VOCs) removal from water. Highly efficient molecular grafting with four types of perfluoroalkylsilanes and one nonfluorinated agent was developed. Materials with controllable tribological and physicochemical properties were achieved. The most meaningful finding is associated with the applicability of fluorinated and nonfluorinated grafting agents. The results of contact angle, hysteresis of contact angle, sliding angle, and critical surface tension as well as Young's modulus, nanohardness, and adhesion force for grafting by these two modifiers are comparable. This provides insight into the potential applicability of environmental friendly hydrophobic and superhydrophobic surfaces. The achieved hydrophobic membranes were very effective in the removal of VOCs (butanol, methyl-tert-butyl ether, and ethyl acetate) from binary aqueous solutions in vacuum membrane distillation. The correlation between membrane effectiveness and separated solvent polarity was compared in terms of material properties and resistance to the wetting (kinetics of wetting and in-depth liquid penetration). Material properties were interpreted considering Zisman theory and using Kao diagram. The significant influence of surface chemistry on the membrane performance was noticed (5 kDa, influence of hydrophobic nanolayer and separation controlled by solution-diffusion model; 300 kDa, no impact of surface chemistry and separation controlled by liquid-vapor equilibrium).
Cleaning of inner vacuum surfaces in the Uragan-3M facility by radio-frequency discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozin, A. V., E-mail: alexlozin@meta.ua; Moiseenko, V. E.; Grigor’eva, L. I.
2013-08-15
A method for cleaning vacuum surfaces by a low-temperature (T{sub e} ∼ 10 eV) relatively dense (n{sub e} ≈ 10{sup 12} cm{sup −3}) plasma of an RF discharge was developed and successfully applied at the Uragan-3M torsatron. The convenience of the method is that it can be implemented with the same antenna system and RF generators that are used to produce and heat the plasma in the operating mode and does not require retuning the frequencies of the antennas and RF generators. The RF discharge has a high efficiency from the standpoint of cleaning vacuum surfaces. After performing a seriesmore » of cleanings by the low-temperature RF discharge plasma (about 20000 pulses), (i) the intensity of the CIII impurity line was substantially reduced, (ii) a quasi-steady operating mode with a duration of up to 50 ms, a plasma density of n{sub e} ≈ 10{sup 12} cm{sup −3}, and an electron temperature of up to T{sub e} ∼ 1 keV was achieved, and (iii) mass spectrometric analysis of the residual gas in the chamber indicated a significant reduction in the impurity content.« less
Changes of electronic properties of p-GaN(0 0 0 1) surface after low-energy N+-ion bombardment
NASA Astrophysics Data System (ADS)
Grodzicki, M.; Mazur, P.; Ciszewski, A.
2018-05-01
The p-GaN(0 0 0 1) crystal with a relatively low acceptor concentration of 5 × 1016 cm-3 is used in these studies, which are carried out in situ under ultrahigh vacuum (UHV) by ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED). The p-GaN(0 0 0 1)-(1 × 1) surface is achieved by thermal cleaning. N+-ion bombardment by a 200 eV ion beam changes the surface stoichiometry, enriches it with nitrogen, and disorders it. Such modified surface layer inverts its semiconducting character from p- into n-type. The electron affinity for the already cleaned p-GaN surface and that just after bombardment shows a shift from 2.2 eV to 3.2 eV, as well as an increase of band bending at the vacuum/surface interface from 1.4 eV to 2.5 eV. Proper post-bombardment heating of the sample restores the initial atomic order of the modified layer, leaving its n-type semiconducting character unchanged. The results of the measurements are discussed based on two types of surface states concepts.
Studies of oxidation and thermal reduction of the Cu(100) surface using low energy positrons
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.
2010-03-01
Changes in the surface of an oxidized Cu(100) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 C. The intensity then decreases monotonically as the annealing temperature is increased to ˜600 C. In contrast, the O KLL PAES intensity is the lowest at 300 C and it starts to increase again as the temperature is increased further. PAES results are analyzed by performing calculations of positron surface states and annihilation characteristics taking into account the charge redistribution at the surface, surface reconstructions, and changes of electronic properties of the surfaces with adsorbed oxygen. Possible explanation is proposed for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV and O KLL Auger peaks and probabilities of annihilation of surface trapped positrons with Cu 3p and O 1s core-level electrons with changes of the annealing temperature.
Vacancy Transport and Interactions on Metal Surfaces
2014-03-06
prevent obtaining systematical pictures with atomic scale resolution. Thus the experiments on adatom and mono -vacancy surface diffusion on Ag(110) were...vacuum conditions with atomic scale resolution with Scanning Tunneling Microscope (STM) and Field Ion Microscope (FIM). For each investigated material...experimental conditions for creation of surface vacancies on Au(100) has been determined and observations of surface diffusion of mono vacancies has been
Wernke, Matthew M; Schroeder, Ryan M; Haynes, Michael L; Nolt, Lonnie L; Albury, Alexander W; Colvin, James M
2017-07-01
Objective: Prosthetic sockets are custom made for each amputee, yet there are no quantitative tools to determine the appropriateness of socket fit. Ensuring a proper socket fit can have significant effects on the health of residual limb soft tissues and overall function and acceptance of the prosthetic limb. Previous work found that elevated vacuum pressure data can detect movement between the residual limb and the prosthetic socket; however, the correlation between the two was specific to each user. The overall objective of this work is to determine the relationship between elevated vacuum pressure deviations and prosthetic socket fit. Approach: A tension compression machine was used to apply repeated controlled forces onto a residual limb model with sockets of different internal volume. Results: The vacuum pressure-displacement relationship was dependent on socket fit. The vacuum pressure data were sensitive enough to detect differences of 1.5% global volume and can likely detect differences even smaller. Limb motion was reduced as surface area of contact between the limb model and socket was maximized. Innovation: The results suggest that elevated vacuum pressure data provide information to quantify socket fit. Conclusions: This study provides evidence that the use of elevated vacuum pressure data may provide a method for prosthetists to quantify and monitor socket fit. Future studies should investigate the relationship between socket fit, limb motion, and limb health to define optimal socket fit parameters.
Construction of vacuum system for Tristan accumulation ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishimaru, H.; Horikoshi, G.; Kobayashi, M.
1983-08-01
An all aluminum-alloy vacuum system for the TRISTAN accumulation ring is now under construction. Aluminum and aluminum alloys are preferred materials for ultrahigh vacuum systems of large electron storage rings because of their good thermal conductivity, extremely low outgassing rate, and low residual radioactivity. Vacuum beam chambers for the dipole and quadrupole magnets are extruded using porthole dies. The aluminum alloy 6063-T6 provides superior performance in extrusion. For ultrahigh vacuum performance, a special extrusion technique is applied which, along with the outgassing procedure used, is described in detail. Aluminum alloy 3004 seamless elliptical bellows are inserted between the dipole andmore » quadrupole magnet chambers. These bellows are produced by the hydraulic forming of a seamless tube. The seamless bellows and the beam chambers are joined by fully automatic welding. The ceramic chambers for the kicker magnets, the fast bump magnets, and the slow beam intensity monitor are inserted in the aluminum alloy beam chambers. The ceramic chamber (98% alumina) and elliptical bellows are brazed with brazing sheets (4003-3003-4003) in a vacuum furnace. The brazing technique is described. The inner surface of the ceramic chamber is coated with a TiMo alloy by vacuum evaporation to permit a smooth flow of the RF wall current. Other suitable aluminum alloy components, including fittings, feedthroughs, gauges, optical windows, sputter ion pumps, turbomolecular pumps, and valves have been developed; their fabrication is described.« less
Simulating Pressure Profiles for the Free-Electron Laser Photoemission Gun Using Molflow+
NASA Astrophysics Data System (ADS)
Song, Diego; Hernandez-Garcia, Carlos
2012-10-01
The Jefferson Lab Free Electron Laser (FEL) generates tunable laser light by passing a relativistic electron beam generated in a high-voltage DC electron gun with a semiconducting photocathode through a magnetic undulator. The electron gun is in stringent vacuum conditions in order to guarantee photocathode longevity. Considering an upgrade of the electron gun, this project consists of simulating pressure profiles to determine if the novel design meets the electron gun vacuum requirements. The method of simulation employs the software Molflow+, developed by R. Kersevan at the Organisation Europ'eene pour la Recherche Nucl'eaire (CERN), which uses the test-particle Monte Carlo method to simulate molecular flows in 3D structures. Pressure is obtained along specified chamber axes. Results are then compared to measured pressure values from the existing gun for validation. Outgassing rates, surface area, and pressure were found to be proportionally related. The simulations indicate that the upgrade gun vacuum chamber requires more pumping compared to its predecessor, while it holds similar vacuum conditions. The ability to simulate pressure profiles through tools like Molflow+, allows researchers to optimize vacuum systems during the engineering process.
A literature review and inventory of the effects of environment on the fatigue behavior of metals
NASA Technical Reports Server (NTRS)
Hudson, C. M.; Seward, S. K.
1976-01-01
The current state of knowledge of the effects of gas environments (at atmospheric pressure and below) on the fatigue behavior of metals is reviewed. Among the topics considered are the mechanisms proposed to explain the differences observed in the fatigue behavior of vacuum- and air-tested specimens, the effects of environment on the surface topography of fatigue cycled specimens, the effect of environment on the various phases of the fatigue phenomenon, the effect of prolonged exposure to vacuum on fatigue life, the variation of fatigue life with decreasing gas pressure, and gas evolution during fatigue cycling. Analysis of the findings of this review indicates that hydrogen embrittlement is primarily responsible for decreased fatigue resistance in humid environments, and that dislocations move more easily during tests in vacuum than during test in air. It was found that fatigue cracks generally initiated and propagated more rapidly in air than in vacuum. Prolonged exposure to vacuum does not adversely affect fatigue resistance. The variation of fatigue life with decreasing gas pressure is sometimes stepped and sometimes continuous.
Honey in combination with vacuum impregnation to prevent enzymatic browning of fresh-cut apples.
Jeon, M; Zhao, Y
2005-05-01
This study evaluated the antioxidative capacity of 13 US Northwest honeys from different floral sources and their anti-browning effect on fresh-cut apples. The inhibitory effect of honey on enzymatic browning of fresh-cut apples were studied by simply immersing apple slices in 10% honey solution for 30 min or vacuum impregnating (vacuum at 75 mmHg for 15 min followed with 30 min restoration at atmospheric pressure) in the same honey solution. The 10% diluted high-fructose corn syrup solution was used as a comparison. The surface color of the apple slices was monitored during 14 days of storage at 3 degrees C and 90% relative humidity. Physicochemical properties of the apples immediately after treatment were also evaluated. Wildflower honey had the darkest color and the highest antioxidative capacity among all test honeys. Vacuum impregnation with honey was more effective in controlling browning discoloration than that of simple immersion treatment. Honey in combination with vacuum impregnating operation may have a great potential for developing high-quality fresh-cut fruits.
Tokita, Kenneth M; Cuttino, Laurie W; Vicini, Frank A; Arthur, Douglas W; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R
2011-01-01
The impact of using the Contura multilumen balloon (MLB) (SenoRx, Inc., Irvine, CA) breast brachytherapy catheter's vacuum port in patients treated with accelerated partial breast irradiation (APBI) was analyzed. Data from 32 patients at two sites were reviewed. Variables analyzed included the seroma fluid (SF):air volume around the MLB before and after vacuum port use and on its ability to improve (1) the eligibility of patients for APBI and (2) dose coverage of the planning target volume for evaluation (PTV_EVAL) in eligible patients. The median SF/air volume before vacuum removal was 6.8 cc vs. 0.8 cc after vacuum removal (median reduction in SF/air volume was 90.5%). Before vacuum port use, the median SF/air volume expressed as percentage of the PTV_EVAL was 7.8% (range, 1.9-26.6) in all patients. After application of the vacuum, this was reduced to 1.2%. Before vacuum port use, 10 (31.3%) patients were not considered acceptable candidates for APBI because the SF/air volume:PTV_EVAL ratio (SF:PTV) was greater than 10% (range, 10.1-26.6%; median, 15.2%). After vacuum port use, the median SF:PTV ratio was 1.6% for a median reduction of 91.5%. In addition, the percentage of the prescribed dose covering greater than or equal to 90% of the PTV_EVAL proportionally increased a median of 8% (range, 3-10%) in eligible patients. Use of the Contura MLB vacuum port significantly improved the conformity of the target tissue to the balloon surface, leading to reproducible dose delivery and increased target volume coverage. In addition, application of the vacuum allowed the safe treatment of unacceptable patients with APBI. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration
NASA Technical Reports Server (NTRS)
Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.;
2010-01-01
Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.
Wang, Jue; Maier, Robert L
2006-08-01
The requirements for optical components have drastically increased for the deep-ultraviolet and vacuum-ultraviolet spectral regions. Low optical loss, high laser damage threshold, and long lifetime fluoride optics are required for microlithographic applications. A nondestructive quasi-Brewster angle technique (qBAT) has been developed for evaluating the quality of optical surfaces including both top surface and subsurface information. By using effective medium approximation, the negative quasi-Brewster angle shift at wavelengths longer than 200 nm has been used to model the distribution of subsurface damage, whereas the positive quasi-Brewster angle shift for wavelengths shorter than 200 nm has been explained by subsurface contamination. The top surface roughness depicted by the qBAT is consistent with atomic force microscopy measurements. The depth and the microporous structure of the subsurface damage measured by the qBAT has been confirmed by magnetorheological finishing. The technique has been extended to evaluate both polished and antireflection-coated CaF(2) components.
NASA Astrophysics Data System (ADS)
Lazanja, David; Boozer, Allen
2006-10-01
Given the total magnetic field on a toroidal plasma surface, a method for decomposing the field into a part due to internal currents (often the plasma) and a part due to external currents is presented. The method exploits Laplace theory which is valid in the vacuum region between the plasma surface and the chamber walls. The method is developed for the full three dimensional case which is necessary for studying stellarator plasma configurations. A change in the plasma shape is produced by the total normal field perturbation on the plasma surface. This method allows a separation of the total normal field perturbation into a part produced by external currents and a part produced by the plasma response. There are immediate applications to coil design. The computational procedure is based on Merkel's 1986 work on vacuum field computations. Several test cases are presented for toroidal surfaces which verify the method and computational robustness of the code.
NASA Technical Reports Server (NTRS)
Albyn, Keith
2005-01-01
The photolysis of three organic materials, by vacuum ultraviolet (VUV) radiation, has been quantified using 15-MHz temperature-controlled quartz microbalances (TQCM's). The rate at which molecular species, released from the individual samples, condensed on two TQCM s was measured for periods of up to 139.9-hours. The individual samples were heated in an effusion cell and the emitted molecular species collected on a pair of TQCM's which were maintained at -40 degrees Celsius. At several points during the deposition measurement, the deposition surface of one TQCM was illuminated by a 30 Watt deuterium lamp, and the loss of material from that surface was observed. V W illumination of the TQCM, concurrent with condensation, reduced the rate that material was lost from the deposition surface. These measurements present a contrasting picture of molecular deposition, in the presence of VUV, to that presented by other investigators who observed an enhanced rate of molecular deposition, when the deposition surface was illuminated by VUV.
Columnar-thin-film acquisition of fingerprint topology
NASA Astrophysics Data System (ADS)
Shaler, Robert C.; Lakhtakia, Akhlesh; Rogers, Jessica W.; Pulsifer, Drew P.; Martín-Palma, Raúl J.
2011-01-01
Fingerprint visualization obtained from physical evidence taken from crime scenes for subsequent comparison typically requires the use of physical and chemical techniques. One physical technique to visualize or develop sebaceous fingerprints on various surfaces employs the deposition of metals such as gold and zinc thereon. We have developed a different vacuum technology: the conformal-evaporated-film-by-rotation technique to deposit dense columnar thin films (CTFs) on latent fingerprints on different types of surfaces. Sample fingerprints, acting as nonplanar substrates, deposited on different surfaces were placed in a vacuum chamber with the fingerprint side facing a boat containing an evaporant material such as chalcogenide glass. Thermal evaporation of the solid material led to the formation of a dense CTF on the fingerprint, thereby capturing the topographical texture with high resolution. Our results show that it is possible to acquire the topology of latent fingerprints on nonporous surfaces. Additionally, deposition of CTFs on overlapping fingerprints suggested ours may be a technique for elucidating the sequence of deposition of the fingerprints at the scene.
Columnar-thin-film acquisition of fingermark topology
NASA Astrophysics Data System (ADS)
Shaler, Robert C.; Lakhtakia, Akhlesh; Rogers, Jessica W.; Pulsifer, Drew P.; Martín-Palma, Raúl J.
2010-08-01
Fingerprint visualization obtained from physical evidence taken from crime scenes for subsequent comparison typically requires the use of physical and chemical techniques. One physical technique to visualize or develop sebaceous fingerprints on various surfaces employs the deposition of metals such as gold and zinc thereon. We have developed a different vacuum technology: the conformal-evaporated-film-by-rotation technique to deposit dense columnar thin films (CTFs) on latent fingerprints on different types of surfaces. Sample fingerprints, acting as nonplanar substrates, deposited on different surfaces were placed in a vacuum chamber with the fingerprint side facing a boat containing an evaporant material such as chalcogenide glass. Thermal evaporation of the solid material led to the formation of a dense CTF on the fingerprint, thereby capturing the topographical texture with high resolution. Our results show that it is possible to acquire the topology of latent fingerprints on non-porous surfaces. Additionally, deposition of CTFs on overlapping fingerprints suggested ours may be a technique for elucidating the sequence of deposition of the fingerprints at the scene.
NASA Technical Reports Server (NTRS)
Mori, Shigeyuki; Morales, Wilfredo
1989-01-01
Reactions of perfluoroalkylpolyethers (PFPE: Fomblin, Demnum and Krytox) were studied during the sliding contact of stainless steel specimens under ultrahigh vacuum conditions. All three fluids reacted with the steel specimens during sliding. Fomblin, which has acetal linkages, decomposed under the sliding conditions generating gaseous products, (COF2 and fluorinated carbons) which were detected by a quadrupole mass spectrometer. Gaseous products were not detected for the Demnum and Krytox fluids. The amount of gaseous products from Fomblin increased with increasing sliding speed. At the end of the sliding experiments, the wear scar and deposits on the specimens were examined by small spot size XPS. The oxide layer on the specimen surface was removed during sliding, and metal fluorides were formed on the worn surface. The surface of the wear scar and deposits were covered with adsorbed PFPE. Based on these results, it was concluded that the decomposition reaction on Fomblin was initiated by contacting the fluid with a fresh metal surface which was formed during sliding.
NASA Astrophysics Data System (ADS)
Ryan, A. J.; Christensen, P. R.
2016-12-01
Laboratory measurements have been necessary to interpret thermal data of planetary surfaces for decades. We present a novel radiometric laboratory method to determine temperature-dependent thermal conductivity of complex regolith simulants under high vacuum and across a wide range of temperatures. Here, we present our laboratory method, strategy, and initial results. This method relies on radiometric temperature measurements instead of contact measurements, eliminating the need to disturb the sample with thermal probes. We intend to determine the conductivity of grains that are up to 2 cm in diameter and to parameterize the effects of angularity, sorting, layering, composition, and cementation. These results will support the efforts of the OSIRIS-REx team in selecting a site on asteroid Bennu that is safe and meets grain size requirements for sampling. Our system consists of a cryostat vacuum chamber with an internal liquid nitrogen dewar. A granular sample is contained in a cylindrical cup that is 4 cm in diameter and 1 to 6 cm deep. The surface of the sample is exposed to vacuum and is surrounded by a black liquid nitrogen cold shroud. Once the system has equilibrated at 80 K, the base of the sample cup is rapidly heated to 450 K. An infrared camera observes the sample from above to monitor its temperature change over time. We have built a time-dependent finite element model of the experiment in COMSOL Multiphysics. Boundary temperature conditions and all known material properties (including surface emissivities) are included to replicate the experiment as closely as possible. The Optimization module in COMSOL is specifically designed for parameter estimation. Sample thermal conductivity is assumed to be a quadratic or cubic polynomial function of temperature. We thus use gradient-based optimization methods in COMSOL to vary the polynomial coefficients in an effort to reduce the least squares error between the measured and modeled sample surface temperature.
The Potential and Equipotentiality of Spacecraft
NASA Astrophysics Data System (ADS)
Afonin, V. V.
2004-01-01
The problem of maintenance of the equipotentiality of spacecraft surfaces is considered. The method under examination is the use of the ``conductive thermal-vacuum multilayer blanket'' (CMLB), whose outer surface represents a fabric woven of threads of glass fiber type with interwoven metal threads. The process of spacecraft potential formation and methods of the potential calculation are described, and the results of such a calculation for the illuminated and shadowed parts of spacecraft surfaces in some characteristic near-Earth plasma environments are presented. The CMLB model is described, and the potential distribution near the CMLB surface is calculated. The conclusion was drawn that the conductive thermal-vacuum multilayer blanket used in some cases on Russian spacecraft does not ensure the equipotentiality of spacecraft surfaces, and in the case of using CMLB, the differential spacecraft charging in outer regions of the Earth's magnetosphere may reach a dangerous level for onboard electronic systems. In spite of the fact that CMLB guards against large-scale powerful discharges, one cannot exclude discharges completely, what may result in broadband noise enhancement and cause onboard systems failures.
Fabrication and testing of Wolter type-I mirrors for soft x-ray microscopes
NASA Astrophysics Data System (ADS)
Hoshino, Masato; Aoki, Sadao; Watanabe, Norio; Hirai, Shinichiro
2004-10-01
Development of a small Wolter type-I mirror that is mainly used as an objective for the X-ray microscope is described. Small Wolter mirrors for X-ray microscopes are fabricated by the vacuum replication method because of their long aspherical shape. Master mandrel is ground and polished by an ultra-precision NC lathe. Tungsten carbide was selected as a material because its thermal expansion coefficient is a little larger than the replica glass. It was ground by ELID (Electrolytic In-process Dressing) grinding technique that is appropriate for the efficient mirror surface grinding. After ultra-precision grinding, the figure error of master mandrel was better than 0.5μm except the boundary between the hyperboloid and the ellipsoid. Before vacuum replication, the mandrel was coated with Au (thickness 50nm) as the parting layer. Pyrex glass was empirically selected as mirror material. The master mandrel was inserted into the Pyrex glass tube and heated up to 675°C in the electric furnace. Although vacuum replication is a proper technique in terms of its high replication accuracy, the surface roughness characterized by the high spatial frequency of the mandrel was replicated less accurate than the figure error characterized by the low spatial frequency. This indicates that the surface roughness and the figure error depend on the glass surface and the figure error of the master mandrel, respectively. A fabricated mirror was evaluated by the imaging performance with a laser plasma X-ray source (λ=3.2nm).
ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Wilkinson, Allen
2012-01-01
Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.
Atmospheres and spectra of strongly magnetized neutron stars - II. The effect of vacuum polarization
NASA Astrophysics Data System (ADS)
Ho, Wynn C. G.; Lai, Dong
2003-01-01
We study the effect of vacuum polarization on the atmosphere structure and radiation spectra of neutron stars with surface magnetic fields B= 1014-1015 G, as appropriate for magnetars. Vacuum polarization modifies the dielectric property of the medium and gives rise to a resonance feature in the opacity; this feature is narrow and occurs at a photon energy that depends on the plasma density. Vacuum polarization can also induce resonant conversion of photon modes via a mechanism analogous to the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism for neutrino oscillation. We construct atmosphere models in radiative equilibrium with an effective temperature of a few ×106 K by solving the full radiative transfer equations for both polarization modes in a fully ionized hydrogen plasma. We discuss the subtleties in treating the vacuum polarization effects in the atmosphere models and present approximate solutions to the radiative transfer problem which bracket the true answer. We show from both analytic considerations and numerical calculations that vacuum polarization produces a broad depression in the X-ray flux at high energies (a few keV <~E<~ a few tens of keV) as compared to models without vacuum polarization; this arises from the density dependence of the vacuum resonance feature and the large density gradient present in the atmosphere. Thus the vacuum polarization effect softens the high-energy tail of the thermal spectrum, although the atmospheric emission is still harder than the blackbody spectrum because of the non-grey opacities. We also show that the depression of continuum flux strongly suppresses the equivalent width of the ion cyclotron line and therefore makes the line more difficult to observe.
Influence of ambient pressure on surface structures generated by ultrashort laser pulse irradiation
NASA Astrophysics Data System (ADS)
JJ Nivas, J.; Allahyari, E.; Gesuele, F.; Maddalena, P.; Fittipaldi, R.; Vecchione, A.; Bruzzese, R.; Amoruso, S.
2018-02-01
We report an experimental investigation on the surface structures induced by linearly polarized ≈ 900 fs laser pulses, at λ = 1055 nm, on silicon at different values of the ambient pressure, from 10-4 mbar to one atmosphere. Our experimental findings address interesting influences of the surrounding pressure on: (1) the spatial period of ripples; (2) the formation of micro-grooves; (3) the shape of the structured area. Moreover, the effects of various states of polarization in vacuum as well as of circularly polarized pulses in air vs vacuum are also addressed. We identify as one possible key element of such experimental observations: the fact that as the pressure raises the ablated nanoparticles produced during the femtosecond ablation process of the target get deposited more and more on the sample surface covering the irradiated spot area and influencing the structuring process.
NASA Astrophysics Data System (ADS)
Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui
2015-01-01
Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.
Status of the Development of Low Cost Radiator for Surface Fission Power - II
NASA Technical Reports Server (NTRS)
Tarau, Calin; Maxwell, Taylor; Anderson, William G.; Wagner, Corey; Wrosch, Matthew; Briggs, Maxwell H.
2016-01-01
NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar and Martian surface power applications. The systems are envisioned in the 10 to 100kWe range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kWe non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. The paper reports on the development of the heat pipe radiator to reject the waste heat from the Stirling convertors. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water Variable Conductance Heat Pipes (VCHPs). By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POCO"TM" foam saddles, aluminum honeycomb, and a second facesheet. As mentioned in previous papers by the authors, the final design of the waste heat radiator is described as being modular with independent GFRC panels for each heat pipe. The present paper reports on test results for a single radiator module as well as a radiator cluster consisting of eight integral modules. These tests were carried out in both ambient and vacuum conditions. While the vacuum testing of the single radiator module was performed in the ACT's vacuum chamber, the vacuum testing of the eight heat pipe radiator cluster took place in NASA GRC's vacuum chamber to accommodate the larger size of the cluster. The results for both articles show good agreement with the predictions and are presented in the paper.
Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2017-01-01
As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.
Cold cathode vacuum discharge tube
Boettcher, Gordon E.
1998-01-01
A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.
Using a Cold Radiometer to Measure Heat Loads and Survey Heat Leaks
NASA Technical Reports Server (NTRS)
Dipirro, M.; Tuttle, J.; Hait, T.; Shirron, P.
2014-01-01
We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.
Using a Cold Radiometer to Measure Heat Loads and Survey Heat Leaks
NASA Technical Reports Server (NTRS)
DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P.
2013-01-01
We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.
NASA Astrophysics Data System (ADS)
Richter, J. H.; Karlsson, P. G.; Sandell, A.
2008-05-01
A TiO2-ZrO2 film with laterally graded stoichiometry has been prepared by metal-organic chemical vapor deposition in ultrahigh vacuum. The film was characterized in situ using synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy. PES depth profiling clearly shows that Ti ions segregate toward the surface region when mixed with ZrO2. The binding energy of the ZrO2 electronic levels is constant with respect to the local vacuum level. The binding energy of the TiO2 electronic levels is aligned to the Fermi level down to a Ti /Zr ratio of about 0.5. At a Ti /Zr ratio between 0.1 and 0.5, the TiO2 related electronic levels become aligned to the local vacuum level. The addition of small amounts of TiO2 to ZrO2 results in a ZrO2 band alignment relative to the Fermi level that is less asymmetric than for pure ZrO2. The band edge positions shift by -0.6eV for a Ti /Zr ratio of 0.03. This is explained in terms of an increase in the work function when adding TiO2, an effect that becomes emphasized by Ti surface segregation.
Successful Cleaning and Study of Contamination of Si(001) in Ultrahigh Vacuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gheorghe, N. G.; Lungu, G. A.; Husanu, M. A.
2011-10-03
This paper presents the very first surface physics experiment performed in ultrahigh vacuum (UHV) in Romania, using a new molecular beam epitaxy (MBE) installation. Cleaning of a Si(001) wafer was achieved by using a very simple technique: sequences of annealing at 900-1000 deg. C in ultrahigh vacuum: low 10{sup -8} mbar, with a base pressure of 1.5x10{sup -10} mbar. The preparation procedure is quite reproducible and allows repeated cleaning of the Si(001) after contamination in ultrahigh vacuum. The Si(001) single crystal surface is characterized by low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED), and Auger electron spectroscopymore » (AES). The latter technique is utilized in order to investigate the sample contamination by the residual gas in the UHV chamber, as determined by a residual gas analyzer (RGA). Unambiguous assignment of oxidized and unoxidized silicon is provided; also, an important feature is that the LVV Auger peak at 90-92 eV cannot be solely attributed to clean Si (i.e. Si surrounded only by Si), but also to silicon atoms bounded with carbon. Even with a sum of partial pressures of oxygen and carbon containing molecules in the range of 5x10{sup -10} mbar, the sample is contaminated very quickly, having a (1/e) lifetime of about 76 minutes.« less
Gunasekaran, Rajendra Kumar; Chinnadurai, Deviprasath; Selvaraj, Aravindha Raja; Rajendiran, Rajmohan; Senthil, Karuppanan; Prabakar, Kandasamy
2018-06-19
Organic-inorganic lead halide perovskite phases segregate (and their structures degrade) under illumination, exhibiting a poor stability with hysteresis and producing halide accumulation at the surface.In this work, we observed structural and interfacial dissociation in methylammonium lead iodide (CH 3 NH 3 PbI 3 ) perovskites even under dark and vacuum conditions. Here, we investigate the origin and consequences of self-degradation in CH 3 NH 3 PbI 3 perovskites stored in the dark under vacuum. Diffraction and photoelectron spectroscopic studies reveal the structural dissociation of perovskites into PbI 2 , which further dissociates into metallic lead (Pb 0 ) and I 2 - ions, collectively degrading the perovskite stability. Using TOF-SIMS analysis, AuI 2 - formation was directly observed, and it was found that an interplay between CH 3 NH 3 + , I 3 - , and mobile I - ions continuously regenerates more I 2 - ions, which diffuse to the surface even in the absence of light. Besides, halide diffusion causes a concentration gradient between Pb 0 and I 2 - and creates other ionic traps (PbI 2 - , PbI - ) that segregate as clusters at the perovskite/gold interface. A shift of the onset of the absorption band edge towards shorter wavelengths was also observed by absorption spectroscopy, indicating the formation of defect species upon aging in the dark under vacuum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.