Sample records for vagally mediated immune-to-brain

  1. Modulation of experimental arthritis by vagal sensory and central brain stimulation.

    PubMed

    Bassi, Gabriel Shimizu; Dias, Daniel Penteado Martins; Franchin, Marcelo; Talbot, Jhimmy; Reis, Daniel Gustavo; Menezes, Gustavo Batista; Castania, Jaci Airton; Garcia-Cairasco, Norberto; Resstel, Leonardo Barbosa Moraes; Salgado, Helio Cesar; Cunha, Fernando Queiróz; Cunha, Thiago Mattar; Ulloa, Luis; Kanashiro, Alexandre

    2017-08-01

    Articular inflammation is a major clinical burden in multiple inflammatory diseases, especially in rheumatoid arthritis. Biological anti-rheumatic drug therapies are expensive and increase the risk of systemic immunosuppression, infections, and malignancies. Here, we report that vagus nerve stimulation controls arthritic joint inflammation by inducing local regulation of innate immune response. Most of the previous studies of neuromodulation focused on vagal regulation of inflammation via the efferent peripheral pathway toward the viscera. Here, we report that vagal stimulation modulates arthritic joint inflammation through a novel "afferent" pathway mediated by the locus coeruleus (LC) of the central nervous system. Afferent vagal stimulation activates two sympatho-excitatory brain areas: the paraventricular hypothalamic nucleus (PVN) and the LC. The integrity of the LC, but not that of the PVN, is critical for vagal control of arthritic joint inflammation. Afferent vagal stimulation suppresses articular inflammation in the ipsilateral, but not in the contralateral knee to the hemispheric LC lesion. Central stimulation is followed by subsequent activation of joint sympathetic nerve terminals inducing articular norepinephrine release. Selective adrenergic beta-blockers prevent the effects of articular norepinephrine and thereby abrogate vagal control of arthritic joint inflammation. These results reveals a novel neuro-immune brain map with afferent vagal signals controlling side-specific articular inflammation through specific inflammatory-processing brain centers and joint sympathetic innervations. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway.

    PubMed

    Zila, I; Mokra, D; Kopincova, J; Kolomaznik, M; Javorka, M; Calkovska, A

    2017-09-22

    Inflammation and other immune responses are involved in the variety of diseases and disorders. The acute response to endotoxemia includes activation of innate immune mechanisms as well as changes in autonomic nervous activity. The autonomic nervous system and the inflammatory response are intimately linked and sympathetic and vagal nerves are thought to have anti-inflammation functions. The basic functional circuit between vagus nerve and inflammatory response was identified and the neuroimmunomodulation loop was called cholinergic anti-inflammatory pathway. Unique function of vagus nerve in the anti-inflammatory reflex arc was found in many experimental and pre-clinical studies. They brought evidence on the cholinergic signaling interacting with systemic and local inflammation, particularly suppressing immune cells function. Pharmacological/electrical modulation of vagal activity suppressed TNF-alpha and other proinflammatory cytokines production and had beneficial therapeutic effects. Many questions related to mapping, linking and targeting of vagal-immune interactions have been elucidated and brought understanding of its basic physiology and provided the initial support for development of Tracey´s inflammatory reflex. This review summarizes and critically assesses the current knowledge defining cholinergic anti-inflammatory pathway with main focus on studies employing an experimental approach and emphasizes the potential of modulation of vagally-mediated anti-inflammatory pathway in the treatment strategies.

  3. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.

    PubMed

    Anselmi, L; Toti, L; Bove, C; Travagli, R A

    2017-11-01

    Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1 ) assess the gastric effects of brain stem DA application, 2 ) identify the DA receptor subtype, and, 3 ) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility. NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.

  4. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse".

    PubMed

    Perez-Burgos, Azucena; Mao, Yu-Kang; Bienenstock, John; Kunze, Wolfgang A

    2014-07-01

    It is generally accepted that intestinal sensory vagal fibers are primary afferent, responding nonsynaptically to luminal stimuli. The gut also contains intrinsic primary afferent neurons (IPANs) that respond to luminal stimuli. A psychoactive Lactobacillus rhamnosus (JB-1) that affects brain function excites both vagal fibers and IPANs. We wondered whether, contrary to its primary afferent designation, the sensory vagus response to JB-1 might depend on IPAN to vagal fiber synaptic transmission. We recorded ex vivo single- and multiunit afferent action potentials from mesenteric nerves supplying mouse jejunal segments. Intramural synaptic blockade with Ca(2+) channel blockers reduced constitutive or JB-1-evoked vagal sensory discharge. Firing of 60% of spontaneously active units was reduced by synaptic blockade. Synaptic or nicotinic receptor blockade reduced firing in 60% of vagal sensory units that were stimulated by luminal JB-1. In control experiments, increasing or decreasing IPAN excitability, respectively increased or decreased nerve firing that was abolished by synaptic blockade or vagotomy. We conclude that >50% of vagal afferents function as interneurons for stimulation by JB-1, receiving input from an intramural functional "sensory synapse." This was supported by myenteric plexus nicotinic receptor immunohistochemistry. These data offer a novel therapeutic target to modify pathological gut-brain axis activity.-Perez-Burgos, A., Mao, Y.-K., Bienenstock, J., Kunze, W. A. The gut-brain axis rewired: adding a functional vagal nicotinic "sensory synapse." © FASEB.

  5. Gut vagal sensory signaling regulates hippocampus function through multi-order pathways.

    PubMed

    Suarez, Andrea N; Hsu, Ted M; Liu, Clarissa M; Noble, Emily E; Cortella, Alyssa M; Nakamoto, Emily M; Hahn, Joel D; de Lartigue, Guillaume; Kanoski, Scott E

    2018-06-05

    The vagus nerve is the primary means of neural communication between the gastrointestinal (GI) tract and the brain. Vagally mediated GI signals activate the hippocampus (HPC), a brain region classically linked with memory function. However, the endogenous relevance of GI-derived vagal HPC communication is unknown. Here we utilize a saporin (SAP)-based lesioning procedure to reveal that selective GI vagal sensory/afferent ablation in rats impairs HPC-dependent episodic and spatial memory, effects associated with reduced HPC neurotrophic and neurogenesis markers. To determine the neural pathways connecting the gut to the HPC, we utilize monosynaptic and multisynaptic virus-based tracing methods to identify the medial septum as a relay connecting the medial nucleus tractus solitarius (where GI vagal afferents synapse) to dorsal HPC glutamatergic neurons. We conclude that endogenous GI-derived vagal sensory signaling promotes HPC-dependent memory function via a multi-order brainstem-septal pathway, thereby identifying a previously unknown role for the gut-brain axis in memory control.

  6. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another

  7. Lymphocyte responses to stress in postpartum women: relationship to vagal tone.

    PubMed

    Redwine, L S; Altemus, M; Leong, Y M; Carter, C S

    2001-04-01

    Although women spend their lives in various phases of the reproductive cycle, including menstrual, pregnancy, postpartum, lactation and menopause, few studies have examined immune responses to stress in women as a function of events associated with reproduction. The objective of this study was to evaluate differential effects of breastfeeding (n = 16), bottlefeeding (n = 10) and non-postpartum (n = 10) status on lymphocyte responses to stressful tasks (public speaking and mental arithmetic). To measure cellular immune responses, lymphocyte proliferation to plant lectins, poke weed mitogen (PWM) and phytohemagglutinin (PHA) were used. The autonomic measures, heart rate, vagal tone, blood pressure and the hormones of the HPA axis, ACTH and cortisol, were measured and their possible roles in mediating lymphocyte proliferation responses were examined. Recently parturient women who were breastfeeding or bottlefeeding had attenuated stress-induced change in lymphocyte responses to PWM compared with non-postpartum women, tested in the follicular phase of their cycle (P < 0.05). Also, lymphocyte responses to PHA were higher in the breastfeeding group compared with non-postpartum controls (P < 0.05). Regression analyses revealed that an index of cardiac vagal tone, but not other autonomic or endocrine measures, was positively predictive of lymphocyte proliferation to PWM. To summarize, these findings suggest that lactation and parturition can influence lymphocyte proliferation and that activity in the vagal system may influence lymphocyte responses to stress.

  8. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    PubMed

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  9. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms.

    PubMed

    Egerod, Kristoffer L; Petersen, Natalia; Timshel, Pascal N; Rekling, Jens C; Wang, Yibing; Liu, Qinghua; Schwartz, Thue W; Gautron, Laurent

    2018-06-01

    G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Na v 1.8-expressing afferents. GPCRs for gut hormones that were the most enriched in Na v 1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Na v 1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Na v 1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

    PubMed Central

    Torres-Rosas, Rafael; Yehia, Ghassan; Peña, Geber; Mishra, Priya; del Rocio Thompson-Bonilla, Maria; Moreno-Eutimio, Mario Adán; Arriaga-Pizano, Lourdes Andrea; Isibasi, Armando; Ulloa, Luis

    2014-01-01

    Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings1-3. Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders3. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency4, increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders. PMID:24562381

  11. Role of intrinsic nitrergic neurones on vagally mediated striated muscle contractions in the hamster oesophagus

    PubMed Central

    Izumi, Noriaki; Matsuyama, Hayato; Ko, Mifa; Shimizu, Yasutake; Takewaki, Tadashi

    2003-01-01

    Oesophageal peristalsis is controlled by vagal motor neurones, and intrinsic neurones have been identified in the striated muscle oesophagus. However, the effect(s) of intrinsic neurones on vagally mediated contractions of oesophageal striated muscles has not been defined. The present study was designed to investigate the role of intrinsic neurones on vagally evoked contractions of oesophageal striated muscles, using hamster oesophageal strips maintained in an organ bath. Stimulation (30 μs, 20 V) of the vagus nerve trunk produced twitch contractions. Piperine inhibited vagally evoked contractions, while capsaicin and NG-nitro-L-arginine methyl ester (L-NAME) abolished the inhibitory effect of piperine. The effect of L-NAME was reversed by subsequent addition of L-arginine, but not by D-arginine. L-NAME did not have any effect on the vagally mediated contractions and presumed 3H-ACh release. NONOate, a nitric oxide donor, and dibutyryl cyclic GMP inhibited twitch contractions. Inhibition of vagally evoked contractions by piperine and NONOate was fully reversed by ODQ, an inhibitor of guanylate cyclase. Immunohistochemical staining showed immunoreactivity for nitric oxide synthase (NOS) in nerve cell bodies and fibres in the myenteric plexus and the presence of choline acetyltransferase and NOS in the motor endplates. Only a few NOS-immunoreactive portions in the myenteric plexus showed vanilloid receptor 1 (VR1) immunoreactivity. Our results suggest that there is a local neural reflex that involves capsaicin-sensitive neurones, nitrergic myenteric neurones and vagal motor neurones. PMID:12813149

  12. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication.

    PubMed

    Bercik, P; Park, A J; Sinclair, D; Khoshdel, A; Lu, J; Huang, X; Deng, Y; Blennerhassett, P A; Fahnestock, M; Moine, D; Berger, B; Huizinga, J D; Kunze, W; McLean, P G; Bergonzelli, G E; Collins, S M; Verdu, E F

    2011-12-01

    The probiotic Bifidobacterium longum NCC3001 normalizes anxiety-like behavior and hippocampal brain derived neurotrophic factor (BDNF) in mice with infectious colitis. Using a model of chemical colitis we test whether the anxiolytic effect of B. longum involves vagal integrity, and changes in neural cell function. Methods  Mice received dextran sodium sulfate (DSS, 3%) in drinking water during three 1-week cycles. Bifidobacterium longum or placebo were gavaged daily during the last cycle. Some mice underwent subdiaphragmatic vagotomy. Behavior was assessed by step-down test, inflammation by myeloperoxidase (MPO) activity and histology. BDNF mRNA was measured in neuroblastoma SH-SY5Y cells after incubation with sera from B. longum- or placebo-treated mice. The effect of B. longum on myenteric neuron excitability was measured using intracellular microelectrodes. Chronic colitis was associated with anxiety-like behavior, which was absent in previously vagotomized mice. B. longum normalized behavior but had no effect on MPO activity or histological scores. Its anxiolytic effect was absent in mice with established anxiety that were vagotomized before the third DSS cycle. B. longum metabolites did not affect BDNF mRNA expression in SH-SY5Y cells but decreased excitability of enteric neurons. In this colitis model, anxiety-like behavior is vagally mediated. The anxiolytic effect of B. longum requires vagal integrity but does not involve gut immuno-modulation or production of BDNF by neuronal cells. As B. longum decreases excitability of enteric neurons, it may signal to the central nervous system by activating vagal pathways at the level of the enteric nervous system. © 2011 Blackwell Publishing Ltd.

  13. The Association of Specific Constituents of the Fecal Microbiota with Immune-Mediated Brain Disease in Dogs

    PubMed Central

    Jeffery, Nick D.; Barker, Andrew K.; Alcott, Cody J.; Levine, Jon M.; Meren, Ilyssa; Wengert, Jane; Jergens, Albert E.; Suchodolski, Jan S.

    2017-01-01

    Meningoencephalomyelitis of unknown origin (MUO) is a common, naturally-occurring, clinical disease of pet dogs. It is an immune-mediated condition that has many similarities with experimental autoimmune encephalitis (EAE) in rodents and so investigation of its pathogenesis may aid in understanding factors that contribute to development of multiple sclerosis in people. Gut microbiota are known to modulate immune responses that influence susceptibility to immune-mediated brain disease. In this study we aimed to compare abundance of specific constituents of the fecal microbiota, namely Faecalibacterium prausnitzii and Prevotellaceae, between dogs diagnosed with MUO and matched controls. Fecal samples were obtained from 20 dogs diagnosed with MUO and 20 control dogs matched for breed, age and gender. Bacterial abundance was measured using qPCR and 16S rRNA sequencing. We found that Prevotellaceae were significantly less abundant in cases compared with controls (p = 0.003) but there was no difference in abundance of F.prausnitzii. There was no evidence of other differences in gut microbiota between groups. These data, derived from this naturally-occurring canine clinical model, provide strong corroborative evidence that high abundance of Prevotellaceae in the gut is associated with reduced risk for developing immune-mediated brain disease. PMID:28125651

  14. The Association of Specific Constituents of the Fecal Microbiota with Immune-Mediated Brain Disease in Dogs.

    PubMed

    Jeffery, Nick D; Barker, Andrew K; Alcott, Cody J; Levine, Jon M; Meren, Ilyssa; Wengert, Jane; Jergens, Albert E; Suchodolski, Jan S

    2017-01-01

    Meningoencephalomyelitis of unknown origin (MUO) is a common, naturally-occurring, clinical disease of pet dogs. It is an immune-mediated condition that has many similarities with experimental autoimmune encephalitis (EAE) in rodents and so investigation of its pathogenesis may aid in understanding factors that contribute to development of multiple sclerosis in people. Gut microbiota are known to modulate immune responses that influence susceptibility to immune-mediated brain disease. In this study we aimed to compare abundance of specific constituents of the fecal microbiota, namely Faecalibacterium prausnitzii and Prevotellaceae, between dogs diagnosed with MUO and matched controls. Fecal samples were obtained from 20 dogs diagnosed with MUO and 20 control dogs matched for breed, age and gender. Bacterial abundance was measured using qPCR and 16S rRNA sequencing. We found that Prevotellaceae were significantly less abundant in cases compared with controls (p = 0.003) but there was no difference in abundance of F.prausnitzii. There was no evidence of other differences in gut microbiota between groups. These data, derived from this naturally-occurring canine clinical model, provide strong corroborative evidence that high abundance of Prevotellaceae in the gut is associated with reduced risk for developing immune-mediated brain disease.

  15. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.

    PubMed

    Peters, James H; Gallaher, Zachary R; Ryu, Vitaly; Czaja, Krzysztof

    2013-10-15

    Vagotomy, a severing of the peripheral axons of the vagus nerve, has been extensively utilized to determine the role of vagal afferents in viscerosensory signaling. Vagotomy is also an unavoidable component of some bariatric surgeries. Although it is known that peripheral axons of the vagus nerve degenerate and then regenerate to a limited extent following vagotomy, very little is known about the response of central vagal afferents in the dorsal vagal complex to this type of damage. We tested the hypothesis that vagotomy results in the transient withdrawal of central vagal afferent terminals from their primary central target, the nucleus of the solitary tract (NTS). Sprague-Dawley rats underwent bilateral subdiaphragmatic vagotomy and were sacrificed 10, 30, or 60 days later. Plastic changes in vagal afferent fibers and synapses were investigated at the morphological and functional levels by using a combination of an anterograde tracer, synapse-specific markers, and patch-clamp electrophysiology in horizontal brain sections. Morphological data revealed that numbers of vagal afferent fibers and synapses in the NTS were significantly reduced 10 days following vagotomy and were restored to control levels by 30 days and 60 days, respectively. Electrophysiology revealed transient decreases in spontaneous glutamate release, glutamate release probability, and the number of primary afferent inputs. Our results demonstrate that subdiaphragmatic vagotomy triggers transient withdrawal and remodeling of central vagal afferent terminals in the NTS. The observed vagotomy-induced plasticity within this key feeding center of the brain may be partially responsible for the response of bariatric patients following gastric bypass surgery. Copyright © 2013 Wiley Periodicals, Inc.

  16. Mechanism of Hyperphagia Contributing to Obesity in Brain-Derived Neurotrophic Factor Knockout Mice

    PubMed Central

    Fox, Edward A.; Biddinger, Jessica E.; Jones, Kevin R.; McAdams, Jennifer; Worman, Amber

    2012-01-01

    Global-heterozygous and brain-specific homozygous knockouts (KO's) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from gut-to-brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal vagal motor nucleus (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. PMID:23069761

  17. Requirement for interleukin-1 to drive brain inflammation reveals tissue-specific mechanisms of innate immunity

    PubMed Central

    Giles, James A; Greenhalgh, Andrew D; Davies, Claire L; Denes, Adam; Shaw, Tovah; Coutts, Graham; Rothwell, Nancy J; McColl, Barry W; Allan, Stuart M

    2015-01-01

    The immune system is implicated in a wide range of disorders affecting the brain and is, therefore, an attractive target for therapy. Interleukin-1 (IL-1) is a potent regulator of the innate immune system important for host defense but is also associated with injury and disease in the brain. Here, we show that IL-1 is a key mediator driving an innate immune response to inflammatory challenge in the mouse brain but is dispensable in extracerebral tissues including the lung and peritoneum. We also demonstrate that IL-1α is an important ligand contributing to the CNS dependence on IL-1 and that IL-1 derived from the CNS compartment (most likely microglia) is the major source driving this effect. These data reveal previously unknown tissue-specific requirements for IL-1 in driving innate immunity and suggest that IL-1-mediated inflammation in the brain could be selectively targeted without compromising systemic innate immune responses that are important for resistance to infection. This property could be exploited to mitigate injury- and disease-associated inflammation in the brain without increasing susceptibility to systemic infection, an important complication in several neurological disorders. PMID:25367678

  18. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice.

    PubMed

    Fox, E A; Biddinger, J E; Jones, K R; McAdams, J; Worman, A

    2013-01-15

    Global-heterozygous and brain-specific homozygous knockouts (KOs) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from the gut to the brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus nerve (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Requirement for interleukin-1 to drive brain inflammation reveals tissue-specific mechanisms of innate immunity.

    PubMed

    Giles, James A; Greenhalgh, Andrew D; Davies, Claire L; Denes, Adam; Shaw, Tovah; Coutts, Graham; Rothwell, Nancy J; McColl, Barry W; Allan, Stuart M

    2015-02-01

    The immune system is implicated in a wide range of disorders affecting the brain and is, therefore, an attractive target for therapy. Interleukin-1 (IL-1) is a potent regulator of the innate immune system important for host defense but is also associated with injury and disease in the brain. Here, we show that IL-1 is a key mediator driving an innate immune response to inflammatory challenge in the mouse brain but is dispensable in extracerebral tissues including the lung and peritoneum. We also demonstrate that IL-1α is an important ligand contributing to the CNS dependence on IL-1 and that IL-1 derived from the CNS compartment (most likely microglia) is the major source driving this effect. These data reveal previously unknown tissue-specific requirements for IL-1 in driving innate immunity and suggest that IL-1-mediated inflammation in the brain could be selectively targeted without compromising systemic innate immune responses that are important for resistance to infection. This property could be exploited to mitigate injury- and disease-associated inflammation in the brain without increasing susceptibility to systemic infection, an important complication in several neurological disorders. © 2014 The Authors. European Journal of Immunology published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim.

  20. Evidence for a vagal pathophysiology for bulimia nervosa and the accompanying depressive symptoms.

    PubMed

    Faris, Patricia L; Eckert, Elke D; Kim, Suck-Won; Meller, William H; Pardo, Jose V; Goodale, Robert L; Hartman, Boyd K

    2006-05-01

    fluctuations in pain thresholds. Depressive symptoms in these subjects also were reduced by ONDAN. Like pain thresholds, depressive symptoms varied dynamically with the bulimic behaviors, with BDI scores increasing (more depressed) as more time elapsed since the last bulimic episode. PET studies indicated that mechanical distention of the stomach with a balloon (a non-nutritive stimulus) was associated with the activation of several brain loci, including those associated with vagal activation (parabrachial nucleus), emotive aspects of eating (lateral inferior frontal and orbitofrontal), and depressive symptoms (anterior cingulate). The results of the ONDAN study in bulimia nervosa subjects suggest that cyclic increases in vagal activity drive the urge to binge-eat and vomit. The alterations in vagal firing patterns are possibly a physiological adaptation to the high levels of vagal stimulation initially provided by voluntarily binge-eating and vomiting for weight control. The depressive symptoms that occur in association with the urge to binge-eat are also likely due to the cyclic increase in vagal activity. This suggestion is supported by the reduction of depressive symptoms during ONDAN treatment in bulimia subjects and PET imaging studies in normal eating subjects showing that brain loci classically involved in depression are activated by vagal stimulation administered by mechanical gastric distention. In normal eating individuals, depressions accompanying visceral diseases may also be vagally mediated. Ondansetron and other drugs known to modulate vagal activity may be helpful in treating depressions of this origin.

  1. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration.

    PubMed

    Kempuraj, Duraisamy; Thangavel, Ramasamy; Selvakumar, Govindhasamy P; Zaheer, Smita; Ahmed, Mohammad E; Raikwar, Sudhanshu P; Zahoor, Haris; Saeed, Daniyal; Natteru, Prashant A; Iyer, Shankar; Zaheer, Asgar

    2017-01-01

    Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aβ1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can

  2. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.

    PubMed

    Iwasaki, Yusaku; Maejima, Yuko; Suyama, Shigetomo; Yoshida, Masashi; Arai, Takeshi; Katsurada, Kenichi; Kumari, Parmila; Nakabayashi, Hajime; Kakei, Masafumi; Yada, Toshihiko

    2015-03-01

    Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca(2+) concentration ([Ca(2+)]i) in single vagal afferent neurons. The Oxt-induced [Ca(2+)]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca(2+)]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity. Copyright © 2015 the American Physiological Society.

  3. Gastric relaxation induced by hyperglycemia is mediated by vagal afferent pathways in the rat

    PubMed Central

    Zhou, Shi-Yi; Lu, Yuan-Xu; Owyang, Chung

    2011-01-01

    Hyperglycemia has a profound effect on gastric motility. However, little is known about site and mechanism that sense alteration in blood glucose level. The identification of glucose-sensing neurons in the nodose ganglia led us to hypothesize that hyperglycemia acts through vagal afferent pathways to inhibit gastric motility. With the use of a glucose clamp rat model, we showed that glucose decreased intragastric pressure in a dose-dependent manner. In contrast to intravenous infusion of glucose, intracisternal injection of glucose at 250 and 500 mg dL−1 had little effect on intragastric pressure. Pretreatment with hexamethonium, as well as truncal vagotomy, abolished the gastric motor responses to hyperglycemia (250 mg dL−1), and perivagal and gastroduodenal applications of capsaicin significantly reduced the gastric responses to hyperglycemia. In contrast, hyperglycemia had no effect on the gastric contraction induced by electrical field stimulation or carbachol (10−5 M). To rule out involvement of serotonergic pathways, we showed that neither granisetron (5-HT3 antagonist, 0.5 g kg−1) nor pharmacological depletion of 5-HT using p-chlorophenylalanine (5-HT synthesis inhibitor) affected gastric relaxation induced by hyperglycemia. Lastly, NG-nitro-L-arginine methyl ester (l-NAME) and a VIP antagonist each partially reduced gastric relaxation induced by hyperglycemia, and in combination, completely abolished gastric responses. In conclusion, hyperglycemia inhibits gastric motility through a capsaicin-sensitive vagal afferent pathway originating from the gastroduodenal mucosa. Hyperglycemia stimulates vagal afferents, which, in turn, activate vagal efferent cholinergic pathways synapsing with intragastric nitric oxide- and VIP-containing neurons to mediate gastric relaxation. PMID:18356537

  4. Innate immune memory in the brain shapes neurological disease hallmarks.

    PubMed

    Wendeln, Ann-Christin; Degenhardt, Karoline; Kaurani, Lalit; Gertig, Michael; Ulas, Thomas; Jain, Gaurav; Wagner, Jessica; Häsler, Lisa M; Wild, Katleen; Skodras, Angelos; Blank, Thomas; Staszewski, Ori; Datta, Moumita; Centeno, Tonatiuh Pena; Capece, Vincenzo; Islam, Md Rezaul; Kerimoglu, Cemil; Staufenbiel, Matthias; Schultze, Joachim L; Beyer, Marc; Prinz, Marco; Jucker, Mathias; Fischer, André; Neher, Jonas J

    2018-04-01

    Innate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished-training and tolerance. These are epigenetically mediated and enhance or suppress subsequent inflammation, respectively. Whether immune memory occurs in tissue-resident macrophages in vivo and how it may affect pathology remains largely unknown. Here we demonstrate that peripherally applied inflammatory stimuli induce acute immune training and tolerance in the brain and lead to differential epigenetic reprogramming of brain-resident macrophages (microglia) that persists for at least six months. Strikingly, in a mouse model of Alzheimer's pathology, immune training exacerbates cerebral β-amyloidosis and immune tolerance alleviates it; similarly, peripheral immune stimulation modifies pathological features after stroke. Our results identify immune memory in the brain as an important modifier of neuropathology.

  5. Vagal tone as an index of mental state

    NASA Technical Reports Server (NTRS)

    Porges, Stephen W.

    1988-01-01

    The utility of monitoring oscillations in the heart rate pattern as a window to the brain is discussed as an index of general central nervous system status. Quantification of the amplitude of respiratory sinus arrhythmia provides an accurate index of cardiac vagal tone. A number of studies have demonstrated the validity of this measure; the relationship between flight performance and vagal tone has also been studied. In general, the vagal tone index appears to monitor global states of the central nervous system and may be useful in screening the general state of pilots.

  6. Differential Activation of Medullary Vagal Nuclei Caused by Stimulation of Different Esophageal Mechanoreceptors

    PubMed Central

    Lang, Ivan M.; Medda, Bidyut K.; Shaker, Reza

    2010-01-01

    Esophageal mechanorecptors, i.e. muscular slowly adapting tension receptors and mucosal rapidly adapting touch receptors, mediate different sets of reflexes. The aim of this study was to determine the medullary vagal nuclei involved in the reflex responses to activation of these receptors. Thirty-three cats were anesthetized with alpha-chloralose and the esophagus was stimulated by slow balloon or rapid air distension. The physiological effects of the stimuli (N=4) were identified by recording responses from the pharyngeal, laryngeal, and hyoid muscles, esophagus, and the lower esophageal sphincter (LES). The effects on the medullary vagal nuclei of the stimuli: slow distension (N=10), rapid distension (N=9), and in control animals (N=10) were identified using the immunohistochemical analysis of c-fos. The experimental groups were stimulated 3 times per minute for 3 hours. After the experiment, the brains were removed and processed for c-fos immunoreactivity or thioinin. We found that slow balloon distension activated the esophago-UES contractile reflex and esophago LES relaxation response, and rapid air injection activated the belch and its component reflexes. Slow balloon distension activated the NTSce, NTSdl, NTSvl, DMNc, DMNr and NAr; and rapid air injection primarily activated AP, NTScd, NTSim, NTSis, NTSdm, NTSvl, NAc and NAr. We concluded that different sets of medullary vagal nuclei mediate different reflexes of the esophagus activated from different sets of mechanoreceptors. The NTScd is the primary NTS subnucleus mediating reflexes from the mucosal rapidly adapting touch receptors, and the NTSce is the primary NTS subnucleus mediating reflexes from the muscular slowly adapting tension receptors. The AP may be involved in mediation of belching. PMID:20971087

  7. Visceral Inflammation and Immune Activation Stress the Brain

    PubMed Central

    Holzer, Peter; Farzi, Aitak; Hassan, Ahmed M.; Zenz, Geraldine; Jačan, Angela; Reichmann, Florian

    2017-01-01

    Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut–brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut–brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience

  8. Modulation of gastrointestinal vagal neurocircuits by hyperglycemia

    PubMed Central

    Browning, Kirsteen N.

    2013-01-01

    Glucose sensing within autonomic neurocircuits is critical for the effective integration and regulation of a variety of physiological homeostatic functions including the co-ordination of vagally-mediated reflexes regulating gastrointestinal (GI) functions. Glucose regulates GI functions via actions at multiple sites of action, from modulating the activity of enteric neurons, endocrine cells, and glucose transporters within the intestine, to regulating the activity and responsiveness of the peripheral terminals, cell bodies and central terminals of vagal sensory neurons, to modifying both the activity and synaptic responsiveness of central brainstem neurons. Unsurprisingly, significant impairment in GI functions occurs in pathophysiological states where glucose levels are dysregulated, such as diabetes. A substantial obstacle to the development of new therapies to modify the disease, rather than treat the symptoms, are the gaps in our understanding of the mechanisms by which glucose modulates GI functions, particularly vagally-mediated responses and a more complete understanding of disease-related plasticity within these neurocircuits may open new avenues and targets for research. PMID:24324393

  9. Vagal Afferent Innervation of the Airways in Health and Disease

    PubMed Central

    Mazzone, Stuart B.

    2016-01-01

    Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions. PMID:27279650

  10. Low vagally-mediated heart rate variability and increased susceptibility to ventricular arrhythmias in rats bred for high anxiety.

    PubMed

    Carnevali, Luca; Trombini, Mimosa; Graiani, Gallia; Madeddu, Denise; Quaini, Federico; Landgraf, Rainer; Neumann, Inga D; Nalivaiko, Eugene; Sgoifo, Andrea

    2014-04-10

    In humans, there is a documented association between anxiety disorders and cardiovascular disease. Putative underlying mechanisms may include an impairment of the autonomic nervous system control of cardiac function. The primary objective of the present study was to characterize cardiac autonomic modulation and susceptibility to arrhythmias in genetic lines of rats that differ largely in their anxiety level. To reach this goal, electrocardiographic recordings were performed in high-anxiety behavior (HAB, n=10) and low-anxiety behavior (LAB, n=10) rats at rest, during stressful stimuli and under autonomic pharmacological manipulations, and analyzed by means of time- and frequency-domain indexes of heart rate variability. During resting conditions, HAB rats displayed a reduced heart rate variability, mostly in terms of lower parasympathetic (vagal) modulation compared to LAB rats. In HAB rats, this relatively low cardiac vagal control was associated with smaller heart rate responsiveness to acute stressors compared to LAB counterparts. In addition, beta-adrenergic pharmacological stimulation induced a larger incidence of ventricular tachyarrhythmias in HABs compared to LABs. At sacrifice, a moderate increase in heart-body weight ratio was observed in HAB rats. We conclude that high levels of anxiety-related behavior in rats are associated with signs of i) impaired autonomic modulation of heart rate (low vagally-mediated heart rate variability), ii) poor adaptive heart rate responsiveness to stressful stimuli, iii) increased arrhythmia susceptibility, and iv) cardiac hypertrophy. These results highlight the utility of the HAB/LAB model for investigating the mechanistic basis of the comorbidity between anxiety disorders and cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Interparental Relationship Dynamics and Cardiac Vagal Functioning in Infancy

    PubMed Central

    Graham, Alice M.; Ablow, Jennifer C.; Measelle, Jeffrey R.

    2010-01-01

    This study examined associations between interparental relationship dynamics and vagus system functioning in infancy. The functioning of the vagus system, part of the parasympathetic nervous system, indexes emotional reactivity and regulation. Interparental avoidance and dyadic adjustment constitute the focus of this study in order to bring attention to relationship dynamics not subsumed under overt conflict. Infants’ baseline vagal tone and change in vagal tone in response to a novel toy were assessed at five months in a sample of high-risk mother-infant dyads (n = 77). Maternal report of interparental avoidance demonstrated an association with infants’ baseline vagal tone, while interparental dyadic adjustment was associated with change in infants’ vagal tone from baseline to the novel toy. Infant gender moderated these associations. Maternal sensitivity did not mediate interparental relationship dynamics and infants’ vagal functioning. Results are discussed in the context of emotional security theory. PMID:20727595

  12. Putative roles of neuropeptides in vagal afferent signaling

    PubMed Central

    de Lartigue, Guillaume

    2014-01-01

    The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553

  13. Domestic Violence and Vagal Reactivity to Peer Provocation

    PubMed Central

    Katz, Lynn Fainsilber

    2007-01-01

    This paper examined whether individual differences in children’s vagal reactivity to peer provocation was related to domestic violence within the family. It also examined the question of whether conduct-problem children who show vagal augmentation to peer provocation come from families with high levels of domestic violence. During the peer provocation, children were expecting to interact with a difficult peer while vagal reactivity was assessed. Groups were divided into children who showed vagal augmentation and vagal suppression to the stressful peer interaction. Findings indicated that conduct-problem children who showed vagal augmentation to interpersonal challenge came from families with the highest levels of domestic violence. Vagal augmentation was also associated with a greater number of conduct-related problems for those children exposed to high levels of domestic violence. Discussion highlights the role of individual differences in physiological reactivity in understanding children’s behavior problems in relation to domestic violence. PMID:17118516

  14. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior

    PubMed Central

    Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.

    2015-01-01

    HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain

  15. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.

    PubMed

    Dantzer, Robert

    2018-01-01

    Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous

  16. Rapid Link of Innate Immune Signal to Adaptive Immunity by Brain–Fat Axis

    PubMed Central

    Kim, Min Soo; Yan, Jingqi; Wu, Wenhe; Zhang, Guo; Zhang, Yalin; Cai, Dongsheng

    2015-01-01

    Innate immunity signals induced by pathogen/damage-associated molecular patterns are essential for adaptive immune responses, but it is unclear if the brain plays a role in this process. Here we show that while tumor necrosis factor (TNF) quickly increased in the brain of mice following bacterial infection, intra-brain TNF delivery mimicked bacterial infection to rapidly increase peripheral lymphocytes, especially in the spleen and fat. Multiple mouse models revealed that hypothalamic responses to TNF were accountable for this increase of peripheral lymphocytes in response to bacterial infection. Finally, hypothalamic induction of lipolysis was found to mediate the brain's action in promoting this increase in peripheral adaptive immune response. Thus, the brain-fat axis is important for rapidly linking innate immunity to adaptive immunity. PMID:25848866

  17. Characteristic Cytokine and Chemokine Profiles in Encephalitis of Infectious, Immune-Mediated, and Unknown Aetiology

    PubMed Central

    Michael, Benedict D.; Griffiths, Michael J.; Granerod, Julia; Brown, David; Davies, Nicholas W. S.; Borrow, Ray; Solomon, Tom

    2016-01-01

    Background Encephalitis is parenchymal brain inflammation due to infectious or immune-mediated processes. However, in 15–60% the cause remains unknown. This study aimed to determine if the cytokine/chemokine-mediated host response can distinguish infectious from immune-mediated cases, and whether this may give a clue to aetiology in those of unknown cause. Methods We measured 38 mediators in serum and cerebrospinal fluid (CSF) of patients from the Health Protection Agency Encephalitis Study. Of serum from 78 patients, 38 had infectious, 20 immune-mediated, and 20 unknown aetiology. Of CSF from 37 patients, 20 had infectious, nine immune-mediated and eight unknown aetiology. Results Heat-map analysis of CSF mediator interactions was different for infectious and immune-mediated cases, and that of the unknown aetiology group was similar to the infectious pattern. Higher myeloperoxidase (MPO) concentrations were found in infectious than immune-mediated cases, in serum and CSF (p = 0.01 and p = 0.006). Serum MPO was also higher in unknown than immune-mediated cases (p = 0.03). Multivariate analysis selected serum MPO; classifying 31 (91%) as infectious (p = 0.008) and 17 (85%) as unknown (p = 0.009) as opposed to immune-mediated. CSF data also selected MPO classifying 11 (85%) as infectious as opposed to immune-mediated (p = 0.036). CSF neutrophils were detected in eight (62%) infective and one (14%) immune-mediated cases (p = 0.004); CSF MPO correlated with neutrophils (p<0.0001). Conclusions Mediator profiles of infectious aetiology differed from immune-mediated encephalitis; and those of unknown cause were similar to infectious cases, raising the hypothesis of a possible undiagnosed infectious cause. Particularly, neutrophils and MPO merit further investigation. PMID:26808276

  18. Characteristic Cytokine and Chemokine Profiles in Encephalitis of Infectious, Immune-Mediated, and Unknown Aetiology.

    PubMed

    Michael, Benedict D; Griffiths, Michael J; Granerod, Julia; Brown, David; Davies, Nicholas W S; Borrow, Ray; Solomon, Tom

    2016-01-01

    Encephalitis is parenchymal brain inflammation due to infectious or immune-mediated processes. However, in 15-60% the cause remains unknown. This study aimed to determine if the cytokine/chemokine-mediated host response can distinguish infectious from immune-mediated cases, and whether this may give a clue to aetiology in those of unknown cause. We measured 38 mediators in serum and cerebrospinal fluid (CSF) of patients from the Health Protection Agency Encephalitis Study. Of serum from 78 patients, 38 had infectious, 20 immune-mediated, and 20 unknown aetiology. Of CSF from 37 patients, 20 had infectious, nine immune-mediated and eight unknown aetiology. Heat-map analysis of CSF mediator interactions was different for infectious and immune-mediated cases, and that of the unknown aetiology group was similar to the infectious pattern. Higher myeloperoxidase (MPO) concentrations were found in infectious than immune-mediated cases, in serum and CSF (p = 0.01 and p = 0.006). Serum MPO was also higher in unknown than immune-mediated cases (p = 0.03). Multivariate analysis selected serum MPO; classifying 31 (91%) as infectious (p = 0.008) and 17 (85%) as unknown (p = 0.009) as opposed to immune-mediated. CSF data also selected MPO classifying 11 (85%) as infectious as opposed to immune-mediated (p = 0.036). CSF neutrophils were detected in eight (62%) infective and one (14%) immune-mediated cases (p = 0.004); CSF MPO correlated with neutrophils (p<0.0001). Mediator profiles of infectious aetiology differed from immune-mediated encephalitis; and those of unknown cause were similar to infectious cases, raising the hypothesis of a possible undiagnosed infectious cause. Particularly, neutrophils and MPO merit further investigation.

  19. Importance of vagal input in maintaining gastric tone in the dog.

    PubMed Central

    Azpiroz, F; Malagelada, J R

    1987-01-01

    1. Using a gastric barostat to quantify variations in gastric tone, we had previously demonstrated that food ingestion or intestinal nutrient perfusion induces gastric relaxation. These data suggested a basal tonic contraction of the stomach during fasting. 2. To determine the role of vagal input in maintaining fasting gastric tone, we prepared two chronic canine models, either isolating both cervical vagal trunks in a cutaneous tunnel or including the supradiaphragmatic vagi within an implanted cooling jacket. In the fasted conscious dogs, we then studied the effect, on gastric tone, of acute and reversible vagal blockade by cooling. 3. Cervical vagal cooling produced a reversible gastric relaxation and increased the heart rate. Supradiaphragmatic vagal cooling produced a similar gastric relaxation without the cardiac effect. 4. Adrenergic blockade did not change either the base-line gastric tone or the cooling-induced relaxation. Adrenaline decreased gastric tone, but vagal cooling still produced a significant relaxation. 5. Atropine alone or combined with adrenergic antagonists produced a gastric relaxation that was not further increased by vagal cooling. Bethanechol increased gastric tone, an effect unchanged by vagal cooling. 6. We conclude that gastric tone during fasting is maintained by a cholinergic input, which is vagally mediated at both the cervical and the supradiaphragmatic levels. Images Fig. 1 PMID:2888879

  20. Electroacupuncture improves burn-induced impairment in gastric motility mediated via the vagal mechanism in rats.

    PubMed

    Song, J; Yin, J; Sallam, H S; Bai, T; Chen, Y; Chen, J D Z

    2013-10-01

    Delayed gastric emptying (GE) is common in patients with severe burns. This study was designed to investigate effects and mechanisms of electroacupuncture (EA) on gastric motility in rats with burns. Male rats (intact and vagotomized) were implanted with gastric electrodes, chest and abdominal wall electrodes for investigating the effects of EA at ST-36 (stomach-36 or Zusanli) on GE, gastric slow waves, autonomic functions, and plasma interleukin 6 (IL-6) 6 and 24 h post severe burns. (i) Burn delayed GE (P < 0.001). Electroacupuncture improved GE 6 and 24 h post burn (P < 0.001). Vagotomy blocked the EA effect on GE. (ii) Electroacupuncture improved burn-induced gastric dysrhythmia. The percentage of normal slow waves was increased with EA 6 and 24 h post burn (P = 0.02). (iii) Electroacupuncture increased vagal activity assessed by the spectral analysis of heart rate variability (HRV). The high-frequency component reflecting vagal component was increased with EA 6 (P = 0.004) and 24 h post burn (P = 0.03, vs sham-EA). (iv) Electroacupuncture attenuated burn-induced increase in plasma IL-6 at both 6 (P = 0.03) and 24 h post burn (P = 0.003). Electroacupuncture at ST-36 improves gastric dysrhythmia and accelerates GE in rats with burns. The improvement seems to be mediated via the vagal pathway involving the inflammatory cytokine IL-6. © 2013 John Wiley & Sons Ltd.

  1. Sluggish vagal brake reactivity to physical exercise challenge in children with selective mutism.

    PubMed

    Heilman, Keri J; Connolly, Sucheta D; Padilla, Wendy O; Wrzosek, Marika I; Graczyk, Patricia A; Porges, Stephen W

    2012-02-01

    Cardiovascular response patterns to laboratory-based social and physical exercise challenges were evaluated in 69 children and adolescents, 20 with selective mutism (SM), to identify possible neurophysiological mechanisms that may mediate the behavioral features of SM. Results suggest that SM is associated with a dampened response of the vagal brake to physical exercise that is manifested as reduced reactivity in heart rate and respiration. Polyvagal theory proposes that the regulation of the vagal brake is a neurophysiological component of an integrated social engagement system that includes the neural regulation of the laryngeal and pharyngeal muscles. Within this theoretical framework, sluggish vagal brake reactivity may parallel an inability to recruit efficiently the structures involved in speech. Thus, the findings suggest that dampened autonomic reactivity during mobilization behaviors may be a biomarker of SM that can be assessed independent of the social stimuli that elicit mutism.

  2. Helminthic therapy: using worms to treat immune-mediated disease.

    PubMed

    Elliott, David E; Weinstock, Joel V

    2009-01-01

    There is an epidemic of immune-mediated disease in highly-developed industrialized countries. Such diseases, like inflammatory bowel disease, multiple sclerosis and asthma increase in prevalence as populations adopt modern hygienic practices. These practices prevent exposure to parasitic worms (helminths). Epidemiologic studies suggest that people who carry helminths have less immune-mediated disease. Mice colonized with helminths are protected from disease in models of colitis, encephalitis, Type 1 diabetes and asthma. Clinical trials show that exposure to helminths reduce disease activity in patients with ulcerative colitis or Crohn's disease. This chapter reviews some of the work showing that colonization with helminths alters immune responses, against dysregulated inflammation. These helminth-host immune interactions have potentially important implications for the treatment of immune-mediated diseases.

  3. Cell-Mediated Immunity and Its Role in Resistance to Infection

    PubMed Central

    Wing, Edward J.; Remington, Jack S.

    1977-01-01

    The recently acquired knowledge of the importance of cell-mediated immunity in many illnesses and the discovery of a variety of substances that can restore certain cell-mediated immune functions has served to focus the attention of physicians on this area of immunity. It is important for practicing physicians to have a clear understanding of current knowledge of the role of cell-mediated immunity in resistance to infection and how this arm of the immune system relates to the diagnosis and therapy of infectious diseases. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:318786

  4. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions.

    PubMed

    Di Benedetto, Svetlana; Müller, Ludmila; Wenger, Elisabeth; Düzel, Sandra; Pawelec, Graham

    2017-04-01

    It is widely accepted that the brain and the immune system continuously interact during normal as well as pathological functioning. Human aging is commonly accompanied by low-grade inflammation in both the immune and central nervous systems, thought to contribute to many age-related diseases. This review of the current literature focuses first on the normal neuroimmune interactions occurring in the brain, which promote learning, memory and neuroplasticity. Further, we discuss the protective and dynamic role of barriers to neuroimmune interactions, which have become clearer with the recent discovery of the meningeal lymphatic system. Next, we consider age-related changes of the immune system and possible deleterious influences of immunosenescence and low-grade inflammation (inflammaging) on neurodegenerative processes in the normally aging brain. We survey the major immunomodulators and neuroregulators in the aging brain and their highly tuned dynamic and reciprocal interactions. Finally, we consider our current understanding of how physical activity, as well as a combination of physical and cognitive interventions, may mediate anti-inflammatory effects and thus positively impact brain aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Resting Vagal Tone and Vagal Response to Stress: Associations with Anxiety, Aggression and Perceived Anxiety Control among Youth

    PubMed Central

    Scott, Brandon G.; Weems, Carl F.

    2014-01-01

    This study tested the associations of both resting vagal tone and vagal response to stress with anxiety control beliefs, anxiety, and aggression among 80 youth (aged 11-17 years). Measures included physiological assessments of emotion regulation along with youth self-report of anxiety control beliefs, anxiety, and aggression and caregiver reports of their child's anxiety and aggression. Resting vagal tone was positively related to anxiety control beliefs, but negatively associated with anxiety. Conversely, higher levels of anxiety and aggression were associated with increased vagal tone during a cognitive stress task. Findings suggest associations between physiological and self-report of emotion regulation (anxiety control beliefs) and that anxiety and aggression may have specific and non-specific relations with physiological indices of emotion regulation. PMID:24708059

  6. Analysis of factors related to vagally mediated reflex bradycardia during gastrectomy.

    PubMed

    Kim, Duk-Kyung; Ahn, Hyun Joo; Lee, Seung Won; Choi, Ji Won

    2015-12-01

    Because vagally mediated reflex bradycardia occurs frequently during gastrectomy and is potentially harmful, we compared the incidence of clinically significant reflex bradycardia between patients undergoing laparoscopic gastrectomy (LG) and open gastrectomy (OG) and examined whether the type of surgery (OG vs. LG) was an independent risk factor for clinically significant reflex bradycardia. This prospective observational study evaluated 358 adult patients (age 18-70 years) who were undergoing elective OG or LG for gastric cancer resection. Symptomatic reflex bradycardia was defined as a sudden decrease in heart rate to <50 beats per minute (bpm), or to 50-59 bpm with a systolic blood pressure <70 mmHg, associated with a specific surgical maneuver. If bradycardia or hypotension developed, atropine or ephedrine was administered, in accordance with a predefined treatment protocol. The overall incidence of symptomatic reflex bradycardia was 24.6% (88/358). Univariate analysis revealed the incidence of symptomatic reflex bradycardia in the LG group was significantly lower than that in the OG group [13.0% (13/100) vs. 29.1% (75/258), p = 0.002]. Multivariate logistic regression analysis revealed that the type of surgery (OG vs. LG), advanced age, preoperative bradycardia, type of muscle relaxant (vecuronium vs. rocuronium), no use of intravenous remifentanil, and low core temperature, were independent risk factors for symptomatic reflex bradycardia (odds ratio 3.184; 95% confidence interval 1.490-6.800; p = 0.003). The LG approach was associated with a reduced risk of clinically significant reflex bradycardia compared with the OG approach.

  7. Learning by heart-the relationship between resting vagal tone and metacognitive judgments: a pilot study.

    PubMed

    Meessen, Judith; Sütterlin, Stefan; Gauggel, Siegfried; Forkmann, Thomas

    2018-05-23

    Metacognitive awareness and resting vagally mediated heart rate variability (HRV) as a physiological trait marker of cognitive inhibitory control capacities are both associated with better well-being and seem to share a common neural basis. Executive functioning which is considered a prerequisite for delivering prospective metacognitive judgments has been found to be correlated with HRV. This pilot study addresses the question, whether metacognitive awareness and resting vagally mediated HRV are positively associated. A sample of 20 healthy participants was analyzed that completed a typical Judgment of Learning task after an electrocardiogram had been recorded. The root-mean-squares of successive differences were used to calculate vagally mediated HRV. Metacognitive awareness was measured by comparing the judgments of learning with the actual memory performance, yielding a deviation score. HRV was found to be positively correlated with metacognitive awareness. Results suggest that metacognitive abilities might relate to physiological trait markers of cognitive inhibitory control capacities. Further experimental studies are needed to investigate causal relations.

  8. Modulation of the masseteric reflex by gastric vagal afferents.

    PubMed

    Pettorossi, V E

    1983-04-01

    Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.

  9. Vagal afferent fibres determine the oxytocin-induced modulation of gastric tone

    PubMed Central

    Holmes, Gregory M; Browning, Kirsteen N; Babic, Tanja; Fortna, Samuel R; Coleman, F Holly; Travagli, R Alberto

    2013-01-01

    Oxytocin (OXT) inputs to the dorsal vagal complex (DVC; nucleus of the tractus solitarius (NTS) dorsal motor nucleus of the vagus (DMV) and area postrema) decrease gastric tone and motility. Our first aim was to investigate the mechanism(s) of OXT-induced gastric relaxation. We demonstrated recently that vagal afferent inputs modulate NTS–DMV synapses involved in gastric and pancreatic reflexes via group II metabotropic glutamate receptors (mGluRs). Our second aim was to investigate whether group II mGluRs similarly influence the response of vagal motoneurons to OXT. Microinjection of OXT in the DVC decreased gastric tone in a dose-dependent manner. The OXT-induced gastric relaxation was enhanced following bethanechol and reduced by l-NAME administration, suggesting a nitrergic mechanism of gastroinhibition. DVC application of the group II mGluR antagonist EGLU induced a gastroinhibition that was not dose dependent and shifted the gastric effects of OXT to a cholinergic-mediated mechanism. Evoked and miniature GABAergic synaptic currents between NTS and identified gastric-projecting DMV neurones were not affected by OXT in any neurones tested, unless the brainstem slice was (a) pretreated with EGLU or (b) derived from rats that had earlier received a surgical vagal deafferentation. Conversely, OXT inhibited glutamatergic currents even in naive slices, but their responses were unaffected by EGLU pretreatment. These results suggest that the OXT-induced gastroinhibition is mediated by activation of the NANC pathway. Inhibition of brainstem group II mGluRs, however, uncovers the ability of OXT to modulate GABAergic transmission between the NTS and DMV, resulting in the engagement of an otherwise silent cholinergic vagal neurocircuit. PMID:23587885

  10. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation.

    PubMed

    Petra, Anastasia I; Panagiotidou, Smaro; Hatziagelaki, Erifili; Stewart, Julia M; Conti, Pio; Theoharides, Theoharis C

    2015-05-01

    Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  11. Factors Regulating Vagal Sensory Development: Potential Role in Obesities of Developmental Origin

    PubMed Central

    Fox, Edward A.; Murphy, Michelle C.

    2008-01-01

    Contributors to increased obesity in children may include perinatal under- or overnutrition. Humans and rodents raised under these conditions develop obesity, which like obesities of other etiologies has been associated with increased meal size. Since vagal sensory innervation of the gastrointestinal (GI) tract transmits satiation signals that regulate meal size, one mechanism through which abnormal perinatal nutrition could increase meal size is by altering vagal development, possibly by causing changes in the expression of factors that control it. Therefore, we have begun to characterize development of vagal innervation of the GI tract and the expression patterns and functions of the genes involved in this process. Important events in development of mouse vagal GI innervation occurred between midgestation and the second postnatal week, suggesting they could be vulnerable to effects of abnormal nutrition preor postnatally. One gene investigated was brain- derived neurotrophic factor (BDNF), which regulates survival of a subpopulation of vagal sensory neurons. BDNF was expressed in some developing stomach wall tissues innervated by vagal afferents. At birth, mice deficient in BDNF exhibited a 50% reduction of putative intraganglionic laminar ending mechanoreceptor precursors, and a 50% increase in axons that had exited fiber bundles. Additionally, BDNF was required for patterning of individual axons and fiber bundles in the antrum and differentiation of intramuscular array mechanoreceptors in the forestomach. It will be important to determine whether abnormal perinatal environments alter development of vagal sensory innervation of the GI tract, involving effects on expression of BDNF, or other factors regulating vagal development. PMID:18234244

  12. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    PubMed

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  13. Immune system participates in brain regeneration and restoration of reproduction in the earthworm Dendrobaena veneta.

    PubMed

    Molnar, Laszlo; Pollak, Edit; Skopek, Zuzanna; Gutt, Ewa; Kruk, Jerzy; Morgan, A John; Plytycz, Barbara

    2015-10-01

    Earthworm decerebration causes temporary inhibition of reproduction which is mediated by certain brain-derived neurohormones; thus, cocoon production is an apposite supravital marker of neurosecretory center functional recovery during brain regeneration. The core aim of the present study was to investigate aspects of the interactions of nervous and immune systems during brain regeneration in adult Dendrobaena veneta (Annelida; Oligochaeta). Surgical brain extirpation was combined, either with (i) maintenance of immune-competent coelomic cells (coelomocytes) achieved by surgery on prilocaine-anesthetized worms or (ii) prior extrusion of fluid-suspended coelomocytes by electrostimulation. Both brain renewal and cocoon output recovery were significantly faster in earthworms with relatively undisturbed coelomocyte counts compared with individuals where coelomocyte counts had been experimentally depleted. These observations provide empirical evidence that coelomocytes and/or coelomocyte-derived factors (e.g. riboflavin) participate in brain regeneration and, by implication, that there is close functional synergy between earthworm neural and immune systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology

    PubMed Central

    Browning, Kirsteen N.

    2015-01-01

    Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870

  15. Roles for gut vagal sensory signals in determining energy availability and energy expenditure.

    PubMed

    Schwartz, Gary J

    2018-08-15

    The gut sensory vagus transmits a wide range of meal-related mechanical, chemical and gut peptide signals from gastrointestinal and hepatic tissues to the central nervous system at the level of the caudal brainstem. Results from studies using neurophysiological, behavioral physiological and metabolic approaches that challenge the integrity of this gut-brain axis support an important role for these gut signals in the negative feedback control of energy availability by limiting food intake during a meal. These experimental approaches have now been applied to identify important and unanticipated contributions of the vagal sensory gut-brain axis to the control of two additional effectors of overall energy balance: the feedback control of endogenous energy availability through hepatic glucose production and metabolism, and the control of energy expenditure through brown adipose tissue thermogenesis. Taken together, these studies reveal the pleiotropic influences of gut vagal meal-related signals on energy balance, and encourage experimental efforts aimed at understanding how the brainstem represents, organizes and coordinates gut vagal sensory signals with these three determinants of energy homeostasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge

    PubMed Central

    Schelegle, Edward S.; Walby, William F.

    2012-01-01

    Brown-Norway rats (n = 113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O3) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0 ppm O3 for 8 hours. There were three groups: 1) control; 2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and 3) vagotomy. O3 inhalation resulted in a significant increase in lung resistance (RL) and an exaggerated response to subsequent allergen challenge. PCT abolished the O3-induced increase in RL and significantly reduced the increase in RL induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O3 inhalation and subsequent challenge with allergen. In this model of O3 exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. PMID:22525484

  17. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists

    PubMed Central

    Lerner, Aaron; Neidhöfer, Sandra; Matthias, Torsten

    2017-01-01

    Objectives: To comprehensively review the scientific knowledge on the gut–brain axis. Methods: Various publications on the gut–brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: “gut-brain axis”, “gut-microbiota-brain axis”, “nutrition microbiome/microbiota”, “enteric nervous system”, “enteric glial cells/network”, “gut-brain pathways”, “microbiome immune system”, “microbiome neuroendocrine system” and “intestinal/gut/enteric neuropeptides”. Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium–enteric nervous, endocrine and immune systems and the brain. The basis of the gut–brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons), the neuroendocrine–hypothalamic–pituitary–adrenal (HPA) axis (represented by the gut hormones), immune routes (represented by multiple cytokines), microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and therapeutic strategies

  18. Genes that mediate breast cancer metastasis to the brain.

    PubMed

    Bos, Paula D; Zhang, Xiang H-F; Nadal, Cristina; Shu, Weiping; Gomis, Roger R; Nguyen, Don X; Minn, Andy J; van de Vijver, Marc J; Gerald, William L; Foekens, John A; Massagué, Joan

    2009-06-18

    The molecular basis for breast cancer metastasis to the brain is largely unknown. Brain relapse typically occurs years after the removal of a breast tumour, suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood-brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the alpha2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood-brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver, suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain, the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood-brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interactions.

  19. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    PubMed Central

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  20. Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews

    PubMed Central

    Meyers, Kelly; Lim, Audrey; Dye, Matthew; Pak, Diana; Rinaman, Linda; Yates, Bill J.

    2014-01-01

    Signals from the vestibular system, area postrema, and forebrain elicit nausea and vomiting, but gastrointestinal (GI) vagal afferent input arguably plays the most prominent role in defense against food poisoning. It is difficult to determine the contribution of GI vagal afferent input on emesis because various agents (e.g., chemotherapy) often act on multiple sensory pathways. Intragastric copper sulfate (CuSO4) potentially provides a specific vagal emetic stimulus, but its actions are not well defined in musk shrews (Suncus murinus), a primary small animal model used to study emesis. The aims of the current study were 1) to investigate the effects of subdiaphragmatic vagotomy on CuSO4-induced emesis and 2) to conduct preliminary transneuronal tracing of the GI-brain pathways in musk shrews. Vagotomy failed to inhibit the number of emetic episodes produced by optimal emetic doses of CuSO4 (60 and 120 mg/kg ig), but the effects of lower doses were dependent on an intact vagus (20 and 40 mg/kg). Vagotomy also failed to affect emesis produced by motion (1 Hz, 10 min) or nicotine administration (5 mg/kg sc). Anterograde transport of the H129 strain of herpes simplex virus-1 from the ventral stomach wall identified the following brain regions as receiving inputs from vagal afferents: the nucleus of the solitary tract, area postrema, and lateral parabrachial nucleus. These data indicate that the contribution of vagal pathways to intragastric CuSO4-induced emesis is dose dependent in musk shrews. Furthermore, the current neural tracing data suggest brain stem anatomical circuits that are activated by GI signaling in the musk shrew. PMID:24430885

  1. Infants' and Mothers' Vagal Reactivity in Response to Anger

    ERIC Educational Resources Information Center

    Moore, Ginger A.

    2009-01-01

    Background: Exposure to anger in the family is a risk factor for disruptive behavior disorders characterized by ineffective vagal regulation. Effects of anger on developing vagal regulation may be due to direct exposure or to effects on parents' regulation of emotion as parents support infants' regulation. Little is known about the impact of anger…

  2. Vagal Flexibility: A Physiological Predictor of Social Sensitivity

    PubMed Central

    Muhtadie, Luma; Akinola, Modupe; Koslov, Katrina; Mendes, Wendy Berry

    2015-01-01

    This research explores vagal flexibility— dynamic modulation of cardiac vagal control—as an individual-level physiological index of social sensitivity. In 4 studies, we test the hypothesis that individuals with greater cardiac vagal flexibility, operationalized as higher cardiac vagal tone at rest and greater cardiac vagal withdrawal (indexed by a decrease in respiratory sinus arrhythmia) during cognitive or attentional demand, perceive social-emotional information more accurately and show greater sensitivity to their social context. Study 1 sets the foundation for this investigation by establishing that vagal flexibility can be elicited consistently in the laboratory and reliably over time. Study 2 demonstrates that vagal flexibility has different associations with psychological characteristics than does vagal tone, and that these characteristics are primarily social in nature. Study 3 links individual differences in vagal flexibility with accurate detection of social and emotional cues depicted in still facial images. Study 4 demonstrates that individuals with greater vagal flexibility respond to dynamic social feedback in a more context-sensitive manner than do individuals with less vagal flexibility. Specifically, compared with their less flexible counterparts, individuals with greater vagal flexibility, when assigned to receive negative social feedback, report more shame, show more pronounced blood pressure responses, and display less sociable behavior, but when receiving positive social feedback display more sociable behavior. Taken together, these findings suggest that vagal flexibility is a useful individual difference physiological predictor of social sensitivity, which may have implications for clinical, developmental, and health psychologists. PMID:25545841

  3. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge.

    PubMed

    Schelegle, Edward S; Walby, William F

    2012-05-31

    Brown-Norway rats (n=113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O(3)) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0ppm O(3) for 8h. There were three groups: (1) control; (2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and (3) vagotomy. O(3) inhalation resulted in a significant increase in lung resistance (R(L)) and an exaggerated response to subsequent allergen challenge. PCT abolished the O(3)-induced increase in R(L) and significantly reduced the increase in R(L) induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O(3) inhalation and subsequent challenge with allergen. In this model of O(3) exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir

    PubMed Central

    Montaner, Luis J.

    2017-01-01

    Abstract Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure. PMID:28520969

  5. Stress and the psyche-brain-immune network in psychiatric diseases based on psychoneuroendocrineimmunology: a concise review.

    PubMed

    Bottaccioli, Anna Giulia; Bottaccioli, Francesco; Minelli, Andrea

    2018-05-15

    In the last decades, psychoneuroendocrineimmunology research has made relevant contributions to the fields of neuroscience, psychobiology, epigenetics, molecular biology, and clinical research by studying the effect of stress on human health and highlighting the close interrelations between psyche, brain, and bodily systems. It is now well recognized that chronic stress can alter the physiological cross-talk between brain and biological systems, leading to long-lasting maladaptive effects (allostatic overload) on the nervous, immune, endocrine, and metabolic systems, which compromises stress resiliency and health. Stressful conditions in early life have been associated with profound alterations in cortical and subcortical brain regions involved in emotion regulation and the salience network, showing relevant overlap with different psychiatric conditions. This paper provides a summary of the available literature concerning the notable effects of stress on the brain and immune system. We highlight the role of epigenetics as a mechanistic pathway mediating the influences of the social and physical environment on brain structure and connectivity, the immune system, and psycho-physical health in psychiatric diseases. We also summarize the evidence regarding the effects of stress management techniques (mainly psychotherapy and meditation practice) on clinical outcomes, brain neurocircuitry, and immune-inflammatory network in major psychiatric diseases. © 2018 New York Academy of Sciences.

  6. Establishment of Stable, Cell-Mediated Immunity that Makes "Susceptible" Mice Resistant to Leishmania major

    NASA Astrophysics Data System (ADS)

    Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle

    1992-07-01

    Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.

  7. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity.

    PubMed

    Sen, Tanusree; Cawthon, Carolina R; Ihde, Benjamin Thomas; Hajnal, Andras; DiLorenzo, Patricia M; de La Serre, Claire B; Czaja, Krzysztof

    2017-05-01

    Obesity is one of the major health issues in the United States. Consumption of diets rich in energy, notably from fats and sugars (high-fat/high-sugar diet: HF/HSD) is linked to the development of obesity and a popular dietary approach for weight loss is to reduce fat intake. Obesity research traditionally uses low and high fat diets and there has been limited investigation of the potential detrimental effects of a low-fat/high-sugar diet (LF/HSD) on body fat accumulation and health. Therefore, in the present study, we investigated the effects of HF/HSD and LF/HSD on microbiota composition, gut inflammation, gut-brain vagal communication and body fat accumulation. Specifically, we tested the hypothesis that LF/HSD changes the gut microbiota, induces gut inflammation and alters vagal gut-brain communication, associated with increased body fat accumulation. Sprague-Dawley rats were fed an HF/HSD, LF/HSD or control low-fat/low-sugar diet (LF/LSD) for 4weeks. Body weight, caloric intake, and body composition were monitored daily and fecal samples were collected at baseline, 1, 6 and 27days after the dietary switch. After four weeks, blood and tissues (gut, brain, liver and nodose ganglia) were sampled. Both HF/HSD and LF/HSD-fed rats displayed significant increases in body weight and body fat compared to LF/LSD-fed rats. 16S rRNA sequencing showed that both HF/HSD and LF/HSD-fed animals exhibited gut microbiota dysbiosis characterized by an overall decrease in bacterial diversity and an increase in Firmicutes/Bacteriodetes ratio. Dysbiosis was typified by a bloom in Clostridia and Bacilli and a marked decrease in Lactobacillus spp. LF/HSD-fed animals showed a specific increase in Sutterella and Bilophila, both Proteobacteria, abundances of which have been associated with liver damage. Expression of pro-inflammatory cytokines, such as IL-6, IL-1β and TNFα, was upregulated in the cecum while levels of tight junction protein occludin were downregulated in both HF

  8. Cell-Mediated Immunity to Target the Persistent Human Immunodeficiency Virus Reservoir.

    PubMed

    Riley, James L; Montaner, Luis J

    2017-03-15

    Effective clearance of virally infected cells requires the sequential activity of innate and adaptive immunity effectors. In human immunodeficiency virus (HIV) infection, naturally induced cell-mediated immune responses rarely eradicate infection. However, optimized immune responses could potentially be leveraged in HIV cure efforts if epitope escape and lack of sustained effector memory responses were to be addressed. Here we review leading HIV cure strategies that harness cell-mediated control against HIV in stably suppressed antiretroviral-treated subjects. We focus on strategies that may maximize target recognition and eradication by the sequential activation of a reconstituted immune system, together with delivery of optimal T-cell responses that can eliminate the reservoir and serve as means to maintain control of HIV spread in the absence of antiretroviral therapy (ART). As evidenced by the evolution of ART, we argue that a combination of immune-based strategies will be a superior path to cell-mediated HIV control and eradication. Available data from several human pilot trials already identify target strategies that may maximize antiviral pressure by joining innate and engineered T cell responses toward testing for sustained HIV remission and/or cure. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Plasticity of gastro-intestinal vagal afferent endings.

    PubMed

    Kentish, Stephen J; Page, Amanda J

    2014-09-01

    Vagal afferents are a vital link between the peripheral tissue and central nervous system (CNS). There is an abundance of vagal afferents present within the proximal gastrointestinal tract which are responsible for monitoring and controlling gastrointestinal function. Whilst essential for maintaining homeostasis there is a vast amount of literature emerging which describes remarkable plasticity of vagal afferents in response to endogenous as well as exogenous stimuli. This plasticity for the most part is vital in maintaining healthy processes; however, there are increased reports of vagal plasticity being disrupted in pathological states, such as obesity. Many of the disruptions, observed in obesity, have the potential to reduce vagal afferent satiety signalling which could ultimately perpetuate the obese state. Understanding how plasticity occurs within vagal afferents will open a whole new understanding of gut function as well as identify new treatment options for obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Immune System and Developmental Programming of Brain and Behavior

    PubMed Central

    Bilbo, Staci D.; Schwarz, Jaclyn M.

    2012-01-01

    The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535

  11. Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine

    NASA Technical Reports Server (NTRS)

    Rudas, L.; Crossman, A. A.; Morillo, C. A.; Halliwill, J. R.; Tahvanainen, K. U.; Kuusela, T. A.; Eckberg, D. L.

    1999-01-01

    We evaluated a method of baroreflex testing involving sequential intravenous bolus injections of nitroprusside followed by phenylephrine and phenylephrine followed by nitroprusside in 18 healthy men and women, and we drew inferences regarding human sympathetic and vagal baroreflex mechanisms. We recorded the electrocardiogram, photoplethysmographic finger arterial pressure, and peroneal nerve muscle sympathetic activity. We then contrasted least squares linear regression slopes derived from the depressor (nitroprusside) and pressor (phenylephrine) phases with 1) slopes derived from spontaneous fluctuations of systolic arterial pressures and R-R intervals, and 2) baroreflex gain derived from cross-spectral analyses of systolic pressures and R-R intervals. We calculated sympathetic baroreflex gain from integrated muscle sympathetic nerve activity and diastolic pressures. We found that vagal baroreflex slopes are less when arterial pressures are falling than when they are rising and that this hysteresis exists over pressure ranges both below and above baseline levels. Although pharmacological and spontaneous vagal baroreflex responses correlate closely, pharmacological baroreflex slopes tend to be lower than those derived from spontaneous fluctuations. Sympathetic baroreflex slopes are similar when arterial pressure is falling and rising; however, small pressure elevations above baseline silence sympathetic motoneurons. Vagal, but not sympathetic baroreflex gains vary inversely with subjects' ages and their baseline arterial pressures. There is no correlation between sympathetic and vagal baroreflex gains. We recommend repeated sequential nitroprusside followed by phenylephrine doses as a simple, efficientmeans to provoke and characterize human vagal and sympathetic baroreflex responses.

  12. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity.

    PubMed

    Shi, Ju; Johansson, Jenny; Woodling, Nathaniel S; Wang, Qian; Montine, Thomas J; Andreasson, Katrin

    2010-06-15

    Peripheral inflammation leads to immune responses in brain characterized by microglial activation, elaboration of proinflammatory cytokines and reactive oxygen species, and secondary neuronal injury. The inducible cyclooxygenase (COX), COX-2, mediates a significant component of this response in brain via downstream proinflammatory PG signaling. In this study, we investigated the function of the PGE2 E-prostanoid (EP) 4 receptor in the CNS innate immune response to the bacterial endotoxin LPS. We report that PGE2 EP4 signaling mediates an anti-inflammatory effect in brain by blocking LPS-induced proinflammatory gene expression in mice. This was associated in cultured murine microglial cells with decreased Akt and I-kappaB kinase phosphorylation and decreased nuclear translocation of p65 and p50 NF-kappaB subunits. In vivo, conditional deletion of EP4 in macrophages and microglia increased lipid peroxidation and proinflammatory gene expression in brain and in isolated adult microglia following peripheral LPS administration. Conversely, EP4 selective agonist decreased LPS-induced proinflammatory gene expression in hippocampus and in isolated adult microglia. In plasma, EP4 agonist significantly reduced levels of proinflammatory cytokines and chemokines, indicating that peripheral EP4 activation protects the brain from systemic inflammation. The innate immune response is an important component of disease progression in a number of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In addition, recent studies demonstrated adverse vascular effects with chronic administration of COX-2 inhibitors, indicating that specific PG signaling pathways may be protective in vascular function. This study supports an analogous and beneficial effect of PGE2 EP4 receptor signaling in suppressing brain inflammation.

  13. Helminths as governors of immune-mediated inflammation.

    PubMed

    Elliott, David E; Summers, Robert W; Weinstock, Joel V

    2007-04-01

    Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.

  14. Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish: cellular organization and neurotransmitters.

    PubMed

    Ikenaga, Takanori; Ogura, Tatsuya; Finger, Thomas E

    2009-09-20

    The sense of taste is crucial in an animal's determination as to what is edible and what is not. This gustatory function is especially important in goldfish, who utilize a sophisticated oropharyngeal sorting mechanism to separate food from substrate material. The computational aspects of this detection are carried out by the medullary vagal lobe, which is a large, laminated structure combining elements of both the gustatory nucleus of the solitary tract and the nucleus ambiguus. The sensory layers of the vagal lobe are coupled to the motor layers via a simple reflex arc. Details of this reflex circuit were investigated with histology and calcium imaging. Biocytin injections into the motor layer labeled vagal reflex interneurons that have radially directed dendrites ramifying within the layers of primary afferent terminals. Axons of reflex interneurons extend radially inward to terminate onto both vagal motoneurons and small, GABAergic interneurons in the motor layer. Functional imaging shows increases in intracellular Ca++ of vagal motoneurons following electrical stimulation in the sensory layer. These responses were suppressed under Ca(++)-free conditions and by interruption of the axons bridging between the sensory and motor layers. Pharmacological experiments showed that glutamate acting via (+/-)-alpha-amino-3-hydroxy- 5-ethylisoxazole-4-propioinc acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA) receptors mediate neurotransmission between reflex interneurons and vagal motoneurons. Thus, the vagal gustatory portion of the viscerosensory complex is linked to branchiomotor neurons of the pharynx via a glutamatergic interneuronal system.

  15. Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish Cellular organization and neurotransmitters

    PubMed Central

    Ikenaga, Takanori; Ogura, Tatsuya; Finger, Thomas E.

    2009-01-01

    The sense of taste is crucial in an animal’s determination as to what is edible and what is not. This gustatory function is especially important in goldfish who utilize a sophisticated oropharyngeal sorting mechanism to separate food from substrate material. The computational aspects of this detection are carried out by the medullary vagal lobe which is a large, laminated structure combining elements of both the gustatory nucleus of the solitary tract and the nucleus ambiguus. The sensory layers of the vagal lobe are coupled to the motor layers via a simple reflex arc. Details of this reflex circuit were investigated with histology and calcium imaging. Biocytin injections into the motor layer labeled vagal reflex interneurons which have radially-directed dendrites ramifying within the layers of primary afferent terminals. Axons of reflex interneurons extend radially inward to terminate onto both vagal motoneurons and small, GABAergic interneurons in the motor layer. Functional imaging shows increases in intracellular Ca++ of vagal motoneurons following electrical stimulation in the sensory layer. These responses were suppressed under Ca++-free conditions and by interruption of the axons bridging between the sensory and motor layers. Pharmacological experiments showed that glutamate acting via (±)-α-amino-3-hydroxy-5-ethylisoxazole-4-propioinc acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA) receptors mediates neurotransmission between reflex interneurons and vagal motoneurons. Thus the vagal gustatory portion of the viscerosensory complex is linked to branchiomotor neurons of the pharynx via a glutamatergic interneuronal system. PMID:19598285

  16. Validation and characterization of a novel method for selective vagal deafferentation of the gut.

    PubMed

    Diepenbroek, Charlene; Quinn, Danielle; Stephens, Ricky; Zollinger, Benjamin; Anderson, Seth; Pan, Annabelle; de Lartigue, Guillaume

    2017-10-01

    There is a lack of tools that selectively target vagal afferent neurons (VAN) innervating the gut. We use saporin (SAP), a potent neurotoxin, conjugated to the gastronintestinal (GI) hormone cholecystokinin (CCK-SAP) injected into the nodose ganglia (NG) of male Wistar rats to specifically ablate GI-VAN. We report that CCK-SAP ablates a subpopulation of VAN in culture. In vivo, CCK-SAP injection into the NG reduces VAN innervating the mucosal and muscular layers of the stomach and small intestine but not the colon, while leaving vagal efferent neurons intact. CCK-SAP abolishes feeding-induced c-Fos in the NTS, as well as satiation by CCK or glucagon like peptide-1 (GLP-1). CCK-SAP in the NG of mice also abolishes CCK-induced satiation. Therefore, we provide multiple lines of evidence that injection of CCK-SAP in NG is a novel selective vagal deafferentation technique of the upper GI tract that works in multiple vertebrate models. This method provides improved tissue specificity and superior separation of afferent and efferent signaling compared with vagotomy, capsaicin, and subdiaphragmatic deafferentation. NEW & NOTEWORTHY We develop a new method that allows targeted lesioning of vagal afferent neurons that innervate the upper GI tract while sparing vagal efferent neurons. This reliable approach provides superior tissue specificity and selectivity for vagal afferent over efferent targeting than traditional approaches. It can be used to address questions about the role of gut to brain signaling in physiological and pathophysiological conditions. Copyright © 2017 the American Physiological Society.

  17. Vagus-brain communication in atherosclerosis-related inflammation: a neuroimmunomodulation perspective of CAD.

    PubMed

    Gidron, Yori; Kupper, Nina; Kwaijtaal, Martijn; Winter, Jobst; Denollet, Johan

    2007-12-01

    The current understanding of the pathophysiology of atherosclerosis leading to coronary artery disease (CAD) emphasizes the role of inflammatory mediators. Given the bidirectional communication between the immune and central nervous systems, an important question is whether the brain can be "informed" about and modulate CAD-related inflammation. A candidate communicator and modulator is the vagus nerve. Until now, the vagus nerve has received attention in cardiology mainly due to its role in the parasympathetic cardiovascular response. However, the vagus nerve can also "inform" the brain about peripheral inflammation since its paraganglia have receptors for interleukin-1. Furthermore, its efferent branch has a local anti-inflammatory effect. These effects have not been considered in research on the vagus nerve in CAD or in vagus nerve stimulation trials in CAD. In addition, various behavioural interventions, including relaxation, may influence CAD prognosis by affecting vagal activity. Based on this converging evidence, we propose a neuroimmunomodulation approach to atherogenesis. In this model, the vagus nerve "informs" the brain about CAD-related cytokines; in turn, activation of the vagus (via vagus nerve stimulation, vagomimetic drugs or relaxation) induces an anti-inflammatory response that can slow down the chronic process of atherogenesis.

  18. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice.

    PubMed

    Zielinski, Mark R; Dunbrasky, Danielle L; Taishi, Ping; Souza, Gianne; Krueger, James M

    2013-08-01

    Systemic tumor necrosis factor-α (TNF-α) is linked to sleep and sleep altering pathologies in humans. Evidence from animals indicates that systemic and brain TNF-α have a role in regulating sleep. In animals, TNF-α or lipopolysaccharide (LPS) enhance brain pro-inflammatory cytokine expression and sleep after central or peripheral administration. Vagotomy blocks enhanced sleep induced by systemic TNF-α and LPS in rats, suggesting that vagal afferent stimulation by TNF-α enhances pro-inflammatory cytokines in sleep-related brain areas. However, the effects of systemic TNF-α on brain cytokine expression and mouse sleep remain unknown. We investigated the role of vagal afferents on brain cytokines and sleep after systemically applied TNF-α or LPS in mice. Spontaneous sleep was similar in vagotomized and sham-operated controls. Vagotomy attenuated TNF-α- and LPS-enhanced non-rapid eye movement sleep (NREMS); these effects were more evident after lower doses of these substances. Vagotomy did not affect rapid eye movement sleep responses to these substances. NREMS electroencephalogram delta power (0.5-4 Hz range) was suppressed after peripheral TNF-α or LPS injections, although vagotomy did not affect these responses. Compared to sham-operated controls, vagotomy did not affect liver cytokines. However, vagotomy attenuated interleukin-1 beta (IL-1β) and TNF-α mRNA brain levels after TNF-α, but not after LPS, compared to the sham-operated controls. We conclude that vagal afferents mediate peripheral TNF-α-induced brain TNF-α and IL-1β mRNA expressions to affect sleep. We also conclude that vagal afferents alter sleep induced by peripheral pro-inflammatory stimuli in mice similar to those occurring in other species.

  19. Central vagal sensory and motor connections: human embryonic and fetal development.

    PubMed

    Cheng, Gang; Zhou, Xiangtian; Qu, Jia; Ashwell, Ken W S; Paxinos, G

    2004-07-30

    The embryonic and fetal development of the nuclear components and pathways of vagal sensorimotor circuits in the human has been studied using Nissl staining and carbocyanine dye tracing techniques. Eight fetal brains ranging from 8 to 28 weeks of development had DiI (1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate) inserted into either the thoracic vagus nerve at the level of the sternal angle (two specimens of 8 and 9 weeks of gestation) or into vagal rootlets at the surface of the medulla (at all other ages), while a further five were used for study of cytoarchitectural development. The first central labeling resulting from peripheral application of DiI to the thoracic vagus nerve was seen at 8 weeks. By 9 weeks, labeled bipolar cells at the ventricular surface around the sulcus limitans (sl) were seen after DiI application to the thoracic vagus nerve. Subnuclear organization as revealed by both Nissl staining and carbocyanine dye tracing was found to be advanced at a relatively early fetal age, with afferent segregation in the medial Sol apparent at 13 weeks and subnuclear organization of efferent magnocellular divisions of dorsal motor nucleus of vagus nerve noticeable at the same stage. The results of the present study also confirm that vagal afferents are distributed to the dorsomedial subnuclei of the human nucleus of the solitary tract, with particular concentrations of afferent axons in the gelatinosus subnucleus. These vagal afferents appeared to have a restricted zone of termination from quite early in development (13 weeks) suggesting that there is no initial exuberance in the termination field of vagal afferents in the developing human nucleus of the solitary tract. On the other hand, the first suggestion of afferents invading 10N from the medial Sol was not seen until 20 weeks and was not well developed until 24 weeks, suggesting that direct monosynaptic connections between the sensory and effector components of the vagal

  20. The function of the Mediator complex in plant immunity.

    PubMed

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  1. Vagal tone during infant contingency learning and its disruption.

    PubMed

    Sullivan, Margaret Wolan

    2016-04-01

    This study used contingency learning to examine changes in infants' vagal tone during learning and its disruption. The heart rate of 160 five-month-old infants was recorded continuously during the first of two training sessions as they experienced an audiovisual event contingent on their pulling. Maternal reports of infant temperament were also collected. Baseline vagal tone, a measure of parasympathetic regulation of the heart, was related to vagal levels during the infants' contingency learning session, but not to their learner status. Vagal tone levels did not vary significantly over session minutes. Instead, vagal tone levels were a function of both individual differences in learner status and infant soothability. Vagal levels of infants who learned in the initial session were similar regardless of their soothability; however, vagal levels of infants who learned in a subsequent session differed as a function of soothability. Additionally, vagal levels during contingency disruption were significantly higher among infants in this group who were more soothable as opposed to those who were less soothable. The results suggest that contingency learning and disruption is associated with stable vagal tone in the majority of infants, but that individual differences in attention processes and state associated with vagal tone may be most readily observed during the disruption phase. © 2015 Wiley Periodicals, Inc.

  2. Vagal Tone During Infant Contingency Learning and Its Disruption

    PubMed Central

    Sullivan, Margaret Wolan

    2015-01-01

    This study used contingency learning to examine changes in infants’ vagal tone during learning and its disruption. The heart rate of 160 five-month-old infants was recorded continuously during the first of two training sessions as they experienced an audiovisual event contingent on their pulling. Maternal reports of infant temperament were also collected. Baseline vagal tone, a measure of parasympathetic regulation of the heart, was related to vagal levels during the infants’ contingency learning session, but not to their learner status. Vagal tone levels did not vary significantly over session minutes. Instead, vagal tone levels were a function of both individual differences in learner status and infant soothability. Vagal levels of infants who learned in the initial session were similar regardless of their soothability; however, vagal levels of infants who learned in a subsequent session differed as a function of soothability. Additionally, vagal levels during contingency disruption were significantly higher among infants in this group who were more soothable as opposed to those who were less soothable. The results suggest that contingency learning and disruption is associated with stable vagal tone in the majority of infants, but that individual differences in attention processes and state associated with vagal tone may be most readily observed during the disruption phase. PMID:26517573

  3. Effects of gastric distension and infusion of umami and bitter taste stimuli on vagal afferent activity.

    PubMed

    Horn, Charles C; Murat, Chloé; Rosazza, Matthew; Still, Liz

    2011-10-24

    Until recently, sensory nerve pathways from the stomach to the brain were thought to detect distension and play little role in nutritional signaling. Newer data have challenged this view, including reports on the presence of taste receptors in the gastrointestinal lumen and the stimulation of multi-unit vagal afferent activity by glutamate infusions into the stomach. However, assessing these chemosensory effects is difficult because gastric infusions typically evoke a distension-related vagal afferent response. In the current study, we recorded gastric vagal afferent activity in the rat to investigate the possibility that umami (glutamate, 150 mM) and bitter (denatonium, 10 mM) responses could be dissociated from distension responses by adjusting the infusion rate and opening or closing the drainage port in the stomach. Slow infusions of saline (5 ml over 2 min, open port) produced no significant effects on vagal activity. Using the same infusion rate, glutamate or denatonium solutions produced little or no effects on vagal afferent activity. In an attempt to reproduce a prior report that showed distention and glutamate responses, we produced a distension response by closing the exit port. Under this condition, response to the infusion of glutamate or denatonium was similar to saline. In summary, we found little or no effect of gastric infusion of glutamate or denatonium on gastric vagal afferent activity that could be distinguished from distension responses. The current results suggest that sensitivity to umami or bitter stimuli is not a common property of gastric vagal afferent fibers. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. An indirect component in the evoked compound action potential of the vagal nerve.

    PubMed

    Ordelman, Simone C M A; Kornet, Lilian; Cornelussen, Richard; Buschman, Hendrik P J; Veltink, Peter H

    2010-12-01

    The vagal nerve plays a vital role in the regulation of the cardiovascular system. It not only regulates the heart but also sends sensory information from the heart back to the brain. We hypothesize that the evoked vagal nerve compound action potential contains components that are indirect via the brain stem or coming via the neural network on the heart. In an experimental study of 15 pigs, we identified four components in the evoked compound action potentials. The fourth component was found to be an indirect component, which came from the periphery. The latency of the indirect component increased when heart rate and contractility were decreased by burst stimulation (P = 0.01; n = 7). When heart rate and contractility were increased by dobutamine administration, the latency of the indirect component decreased (P = 0.01; n = 9). This showed that the latency of the indirect component of the evoked compound action potentials may relate to the state of the cardiovascular system.

  5. Neurosteroid-mediated regulation of brain innate immunity in HIV/AIDS: DHEA-S suppresses neurovirulence.

    PubMed

    Maingat, Ferdinand G; Polyak, Maria J; Paul, Amber M; Vivithanaporn, Pornpun; Noorbakhsh, Farshid; Ahboucha, Samir; Baker, Glen B; Pearson, Keir; Power, Christopher

    2013-02-01

    Neurosteroids are cholesterol-derived molecules synthesized within the brain, which exert trophic and protective actions. Infection by human and feline immunodeficiency viruses (HIV and FIV, respectively) causes neuroinflammation and neurodegeneration, leading to neurological deficits. Secretion of neuroinflammatory host and viral factors by glia and infiltrating leukocytes mediates the principal neuropathogenic mechanisms during lentivirus infections, although the effect of neurosteroids on these processes is unknown. We investigated the interactions between neurosteroid-mediated effects and lentivirus infection outcomes. Analyses of HIV-infected (HIV(+)) and uninfected human brains disclosed a reduction in neurosteroid synthesis enzyme expression. Human neurons exposed to supernatants from HIV(+) macrophages exhibited suppressed enzyme expression without reduced cellular viability. HIV(+) human macrophages treated with sulfated dehydroepiandrosterone (DHEA-S) showed suppression of inflammatory gene (IL-1β, IL-6, TNF-α) expression. FIV-infected (FIV(+)) animals treated daily with 15 mg/kg body weight. DHEA-S treatment reduced inflammatory gene transcripts (IL-1β, TNF-α, CD3ε, GFAP) in brain compared to vehicle-(β-cyclodextrin)-treated FIV(+) animals similar to levels found in vehicle-treated FIV(-) animals. DHEA-S treatment also increased CD4(+) T-cell levels and prevented neurobehavioral deficits and neuronal loss among FIV(+) animals, compared to vehicle-treated FIV(+) animals. Reduced neuronal neurosteroid synthesis was evident in lentivirus infections, but treatment with DHEA-S limited neuroinflammation and prevented neurobehavioral deficits. Neurosteroid-derived therapies could be effective in the treatment of virus- or inflammation-mediated neurodegeneration.

  6. New perspectives on central and peripheral immune responses to acute traumatic brain injury

    PubMed Central

    2012-01-01

    Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain. PMID:23061919

  7. Effect of space flight on cell-mediated immunity

    NASA Technical Reports Server (NTRS)

    Mandel, A. D.; Balish, E.

    1977-01-01

    The cell-mediated immune response to Listeria monocytogenes was studied in rats subjected to 20 days of flight aboard the Soviet biosatellite Kosmos 7820. Groups of rats were immunized with 1,000,000 formalin-killed Listeria suspended in Freunds Complete Adjuvant, 5 days prior to flight. Immunized rats subjected to the same environmental factors as the flight rats, except flight itself, and immunized and nonimmunized rats held in a normal animal colony served as controls. Following recovery, lymphocyte cultures were harvested from spleens of all rats, cultured in vitro in the presence of L. monocytogenes antigens, Phytohemagglutinin, Conconavlin A, or purified protein derivative (PPD), and measured for their uptake of H-3-thymidine. Although individual rats varied considerably, all flight and immunized control rats gave a blastogenic response to the Listeria antigens and PPD. With several mitogens, the lymphocytes of flight rats showed a significantly increased blastogenic response over the controls. The results of this study do not support a hypothesis of a detrimental effect of space flight on cell-mediated immunity. The data suggest a possible suppressive effect of stress and gravity on an in vitro correlate of cell-mediated immunity.

  8. Photodynamic therapy stimulates anti-tumor immune response in mouse models: the role of regulatory Tcells, anti-tumor antibodies, and immune attacks on brain metastases

    NASA Astrophysics Data System (ADS)

    Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.

    2013-02-01

    We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.

  9. Longitudinal relations between child vagal tone and parenting behavior: 2 to 4 years.

    PubMed

    Kennedy, Amy E; Rubin, Kenneth H; Hastings, Paul D; Maisel, Beth

    2004-07-01

    The longitudinal relations between physiological markers of child emotion regulation and maternal parenting practices were examined from 2 to 4 years of age. At Time 1, cardiac vagal tone was assessed for one hundred four 2-year-olds (54 females); their mothers completed an assessment of parenting styles. Two years later, at Time 2, 84 of the original participants were reassessed on measures of cardiac vagal tone and parenting style. Results indicated both baseline cardiac vagal tone and maternal parenting practices to be stable from 2 to 4 years of age. Children's cardiac vagal tone predicted specific parenting practices from the toddler to preschool years. Further, child cardiac vagal tone moderated maternal restrictive-parenting practices from 2 to 4 years of age; mothers of children who were highly or moderately physiologically dysregulated were more likely to report restrictive parenting practices at both 2 and 4 years of age. Copyright 2004 Wiley Periodicals, Inc.

  10. The Innate Immune Receptor CD14 Mediates Lymphocyte Migration in EAE.

    PubMed

    Halmer, Ramona; Davies, Laura; Liu, Yang; Fassbender, Klaus; Walter, Silke

    2015-01-01

    Multiple sclerosis is the most common autoimmune disease of the central nervous system in young adults and histopathologically characterized by inflammation, demyelination and gliosis. It is considered as a CD4+ T cell-mediated disease, but also a disease-promoting role of the innate immune system has been proposed, based e.g. on the observation that innate immune receptors modulate disease severity of experimental autoimmune encephalomyelitis. Recent studies of our group provided first evidence for a key role of the innate immune LPS receptor (CD14) in pathophysiology of experimental autoimmune encephalomyelitis. CD14-deficient experimental autoimmune encephalomyelitis mice showed increased clinical symptoms and enhanced infiltration of monocytes and neutrophils in brain and spinal cord. In the current study, we further investigated the causes of the disease aggravation by CD14-deficiency and examined T cell activation, also focusing on the costimulatory molecules CTLA-4 and CD28, and T cell migration capacity over the blood brain barrier by FACS analysis, in vitro adhesion and transmigration assays. In the results, we observed a significantly increased migration of CD14-deficient lymphocytes across an endothelial monolayer. In contrast, we did not see any differences in expression levels of TCR/CTLA-4 or TCR/CD28 and lymphocyte adhesion to endothelial cells from CD14-deficient compared to wildtype mice. The results demonstrate an important role of CD14 in migration of lymphocytes, and strengthen the importance of innate immune receptors in adaptive immune disorders, such as multiple sclerosis. © 2015 The Author(s) Published by S. Karger AG, Basel.

  11. Biology of the blood-nerve barrier and its alteration in immune mediated neuropathies.

    PubMed

    Kanda, Takashi

    2013-02-01

    The blood-nerve barrier (BNB) is a dynamic and competent interface between the endoneurial microenvironment and the surrounding extracellular space or blood. It is localised at the innermost layer of the multilayered ensheathing perineurium and endoneurial microvessels, and is the key structure that controls the internal milieu of the peripheral nerve parenchyma. Since the endoneurial BNB is the point of entry for pathogenic T cells and various soluble factors, including cytokines, chemokines and immunoglobulins, understanding this structure is important to prevent and treat human immune mediated neuropathies such as Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal protein and skin changes) syndrome and a subset of diabetic neuropathy. However, compared with the blood-brain barrier, only limited knowledge has been accumulated regarding the function, cell biology and clinical significance of the BNB. This review describes the basic structure and functions of the endoneurial BNB, provides an update of the biology of the cells comprising the BNB, and highlights the pathology and pathomechanisms of BNB breakdown in immune mediated neuropathies. The human immortalised cell lines of BNB origin established in our laboratory will facilitate the future development of BNB research. Potential therapeutic strategies for immune mediated neuropathies manipulating the BNB are also discussed.

  12. Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation.

    PubMed

    Biddinger, Jessica E; Fox, Edward A

    2014-07-30

    Brain-derived neurotrophic factor (BDNF) is produced by developing and mature gastrointestinal (GI) tissues that are heavily innervated by autonomic neurons and may therefore control their development or function. To begin investigating this hypothesis, we compared the morphology, distribution, and density of intraganglionic laminar endings (IGLEs), the predominant vagal GI afferent, in mice with reduced intestinal BDNF (INT-BDNF(-/-)) and controls. Contrary to expectations of reduced development, IGLE density and longitudinal axon bundle number in the intestine of INT-BDNF(-/-) mice were increased, but stomach IGLEs were normal. INT-BDNF(-/-) mice also exhibited increased vagal sensory neuron numbers, suggesting that their survival was enhanced. To determine whether increased intestinal IGLE density or other changes to gut innervation in INT-BDNF(-/-) mice altered feeding behavior, meal pattern and microstructural analyses were performed. INT-BDNF(-/-) mice ate meals of much shorter duration than controls, resulting in reduced meal size. Increased suppression of feeding in INT-BDNF(-/-) mice during the late phase of a scheduled meal suggested that increased satiation signaling contributed to reduced meal duration and size. Furthermore, INT-BDNF(-/-) mice demonstrated increases in total daily intermeal interval and satiety ratio, suggesting that satiety signaling was augmented. Compensatory responses maintained normal daily food intake and body weight in INT-BDNF(-/-) mice. These findings suggest a target organ-derived neurotrophin suppresses development of that organ's sensory innervation and sensory neuron survival and demonstrate a role for BDNF produced by peripheral tissues in short-term controls of feeding, likely through its regulation of development or function of gut innervation, possibly including augmented intestinal IGLE innervation. Copyright © 2014 the authors 0270-6474/14/3410379-15$15.00/0.

  13. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  14. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration.

    PubMed

    Cloutier, Nathalie; Allaeys, Isabelle; Marcoux, Genevieve; Machlus, Kellie R; Mailhot, Benoit; Zufferey, Anne; Levesque, Tania; Becker, Yann; Tessandier, Nicolas; Melki, Imene; Zhi, Huiying; Poirier, Guy; Rondina, Matthew T; Italiano, Joseph E; Flamand, Louis; McKenzie, Steven E; Cote, Francine; Nieswandt, Bernhard; Khan, Waliul I; Flick, Matthew J; Newman, Peter J; Lacroix, Steve; Fortin, Paul R; Boilard, Eric

    2018-02-13

    There is a growing appreciation for the contribution of platelets to immunity; however, our knowledge mostly relies on platelet functions associated with vascular injury and the prevention of bleeding. Circulating immune complexes (ICs) contribute to both chronic and acute inflammation in a multitude of clinical conditions. Herein, we scrutinized platelet responses to systemic ICs in the absence of tissue and endothelial wall injury. Platelet activation by circulating ICs through a mechanism requiring expression of platelet Fcγ receptor IIA resulted in the induction of systemic shock. IC-driven shock was dependent on release of serotonin from platelet-dense granules secondary to platelet outside-in signaling by αIIbβ3 and its ligand fibrinogen. While activated platelets sequestered in the lungs and leaky vasculature of the blood-brain barrier, platelets also sequestered in the absence of shock in mice lacking peripheral serotonin. Unexpectedly, platelets returned to the blood circulation with emptied granules and were thereby ineffective at promoting subsequent systemic shock, although they still underwent sequestration. We propose that in response to circulating ICs, platelets are a crucial mediator of the inflammatory response highly relevant to sepsis, viremia, and anaphylaxis. In addition, platelets recirculate after degranulation and sequestration, demonstrating that in adaptive immunity implicating antibody responses, activated platelets are longer lived than anticipated and may explain platelet count fluctuations in IC-driven diseases.

  15. Central command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals.

    PubMed

    Matsukawa, Kanji

    2012-01-01

    Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. Contrary to the traditional idea that vagal withdrawal at the onset of exercise causes the increase in heart rate, central command did not decrease cardiac vagal efferent nerve activity but did allow cardiac sympathetic efferent nerve activity to produce cardiac acceleration. In addition, central command-evoked inhibition of the aortic baroreceptor-heart rate reflex blunted the baroreflex-mediated bradycardia elicited by aortic nerve stimulation, further increasing the heart rate at the onset of exercise. Spontaneous motor activity and associated cardiovascular responses disappeared in animals decerebrated at the midcollicular level. These findings indicate that the brain region including the caudal diencephalon and extending to the rostral mesencephalon may play a role in generating central command. Bicuculline microinjected into the midbrain ventral tegmental area of decerebrate rats produced a long-lasting repetitive activation of renal sympathetic nerve activity that was synchronized with the motor nerve discharge. When lidocaine was microinjected into the ventral tegmental area, the spontaneous motor activity and associated cardiovascular responses ceased. From these findings, we conclude that cerebral cortical outputs trigger activation of neural circuits within the caudal brain, including the ventral tegmental area, which causes central command to augment cardiac sympathetic outflow at the onset of exercise in decerebrate animal models.

  16. From inflammation to sickness and depression: when the immune system subjugates the brain.

    PubMed

    Dantzer, Robert; O'Connor, Jason C; Freund, Gregory G; Johnson, Rodney W; Kelley, Keith W

    2008-01-01

    In response to a peripheral infection, innate immune cells produce pro-inflammatory cytokines that act on the brain to cause sickness behaviour. When activation of the peripheral immune system continues unabated, such as during systemic infections, cancer or autoimmune diseases, the ensuing immune signalling to the brain can lead to an exacerbation of sickness and the development of symptoms of depression in vulnerable individuals. These phenomena might account for the increased prevalence of clinical depression in physically ill people. Inflammation is therefore an important biological event that might increase the risk of major depressive episodes, much like the more traditional psychosocial factors.

  17. Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses

    PubMed Central

    ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.

    2009-01-01

    Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune

  18. Pathogenesis and treatment of immune-mediated neuropathies.

    PubMed

    Lehmann, Helmar C; Meyer Zu Horste, Gerd; Kieseier, Bernd C; Hartung, Hans-Peter

    2009-07-01

    Immune-mediated neuropathies represent a heterogeneous spectrum of peripheral nerve disorders that can be classified according to time course, predominant involvement of motor/sensory fibers, distribution of deficits and paraclinical parameters such as electrophysiology and serum antibodies. In the last few years, significant advances have been achieved in elucidating underlying pathomechanisms, which made it possible to identify potential therapeutic targets. In this review, we discuss the latest development in pathogenesis and treatment of immune-mediated neuropathies.

  19. Cognitive deficits develop 1month after diffuse brain injury and are exaggerated by microglia-associated reactivity to peripheral immune challenge.

    PubMed

    Muccigrosso, Megan M; Ford, Joni; Benner, Brooke; Moussa, Daniel; Burnsides, Christopher; Fenn, Ashley M; Popovich, Phillip G; Lifshitz, Jonathan; Walker, Fredrick Rohan; Eiferman, Daniel S; Godbout, Jonathan P

    2016-05-01

    Traumatic brain injury (TBI) elicits immediate neuroinflammatory events that contribute to acute cognitive, motor, and affective disturbance. Despite resolution of these acute complications, significant neuropsychiatric and cognitive issues can develop and progress after TBI. We and others have provided novel evidence that these complications are potentiated by repeated injuries, immune challenges and stressors. A key component to this may be increased sensitization or priming of glia after TBI. Therefore, our objectives were to determine the degree to which cognitive deterioration occurred after diffuse TBI (moderate midline fluid percussion injury) and ascertain if glial reactivity induced by an acute immune challenge potentiated cognitive decline 30 days post injury (dpi). In post-recovery assessments, hippocampal-dependent learning and memory recall were normal 7 dpi, but anterograde learning was impaired by 30 dpi. Examination of mRNA and morphological profiles of glia 30 dpi indicated a low but persistent level of inflammation with elevated expression of GFAP and IL-1β in astrocytes and MHCII and IL-1β in microglia. Moreover, an acute immune challenge 30 dpi robustly interrupted memory consolidation specifically in TBI mice. These deficits were associated with exaggerated microglia-mediated inflammation with amplified (IL-1β, CCL2, TNFα) and prolonged (TNFα) cytokine/chemokine expression, and a marked reactive morphological profile of microglia in the CA3 of the hippocampus. Collectively, these data indicate that microglia remain sensitized 30 dpi after moderate TBI and a secondary inflammatory challenge elicits robust microglial reactivity that augments cognitive decline. Traumatic brain injury (TBI) is a major risk factor in development of neuropsychiatric problems long after injury, negatively affecting quality of life. Mounting evidence indicates that inflammatory processes worsen with time after a brain injury and are likely mediated by glia. Here

  20. Moderate Baseline Vagal Tone Predicts Greater Prosociality in Children

    PubMed Central

    Miller, Jonas G.; Kahle, Sarah; Hastings, Paul D.

    2016-01-01

    Vagal tone is widely believed to be an important physiological aspect of emotion regulation and associated positive behaviors. However, there is inconsistent evidence for relations between children’s baseline vagal tone and their helpful or prosocial responses to others (Hastings & Miller, 2014). Recent work in adults suggests a quadratic association (inverted U-shape curve) between baseline vagal tone and prosociality (Kogan et al., 2014). The present research examined whether this nonlinear association was evident in children. We found consistent evidence for a quadratic relation between vagal tone and prosociality across 3 samples of children using 6 different measures. Compared to low and high vagal tone, moderate vagal tone in early childhood concurrently predicted greater self-reported prosociality (Study 1), observed empathic concern in response to the distress of others and greater generosity toward less fortunate peers (Study 2), and longitudinally predicted greater self-, mother-, and teacher-reported prosociality 5.5 years later in middle childhood (Study 3). Taken together, our findings suggest that moderate vagal tone at rest represents a physiological preparedness or tendency to engage in different forms of prosociality across different contexts. Early moderate vagal tone may reflect an optimal balance of regulation and arousal that helps prepare children to sympathize, comfort, and share with others. PMID:27819463

  1. Police work stressors and cardiac vagal control.

    PubMed

    Andrew, Michael E; Violanti, John M; Gu, Ja K; Fekedulegn, Desta; Li, Shengqiao; Hartley, Tara A; Charles, Luenda E; Mnatsakanova, Anna; Miller, Diane B; Burchfiel, Cecil M

    2017-09-10

    This study examines relationships between the frequency and intensity of police work stressors and cardiac vagal control, estimated using the high frequency component of heart rate variability (HRV). This is a cross-sectional study of 360 officers from the Buffalo New York Police Department. Police stress was measured using the Spielberger police stress survey, which includes exposure indices created as the product of the self-evaluation of how stressful certain events were and the self-reported frequency with which they occurred. Vagal control was estimated using the high frequency component of resting HRV calculated in units of milliseconds squared and reported in natural log scale. Associations between police work stressors and vagal control were examined using linear regression for significance testing and analysis of covariance for descriptive purposes, stratified by gender, and adjusted for age and race/ethnicity. There were no significant associations between police work stressor exposure indices and vagal control among men. Among women, the inverse associations between the lack of support stressor exposure and vagal control were statistically significant in adjusted models for indices of exposure over the past year (lowest stressor quartile: M = 5.57, 95% CI 5.07 to 6.08, and highest stressor quartile: M = 5.02, 95% CI 4.54 to 5.51, test of association from continuous linear regression of vagal control on lack of support stressor β = -0.273, P = .04). This study supports an inverse association between lack of organizational support and vagal control among female but not male police officers. © 2017 Wiley Periodicals, Inc.

  2. Insensitivity of Astrocytes to Interleukin-10 Signaling following Peripheral Immune Challenge Results in Prolonged Microglial Activation in the Aged Brain

    PubMed Central

    Norden, Diana M.; Trojanowski, Paige J.; Walker, Frederick R.; Godbout, Jonathan P.

    2017-01-01

    Immune-activated microglia from aged mice produce exaggerated levels of cytokines. Despite high levels of microglial IL-10 in the aged brain, neuroinflammation was prolonged and associated with depressive-like deficits. Because astrocytes respond to IL-10 and, in turn, attenuate microglial activation, we investigated if astrocyte-mediated resolution of microglial activation was impaired with age. Here, aged astrocytes had a dysfunctional profile with higher GFAP, lower glutamate transporter expression, and significant cytoskeletal re-arrangement. Moreover, aged astrocytes had reduced expression of growth factors and IL-10 Receptor-1 (IL-10R1). Following in vivo LPS immune challenge, aged astrocytes had a molecular signature associated with reduced responsiveness to IL-10. This IL-10 insensitivity of aged astrocytes resulted in a failure to induce IL-10R1 and TGFβ and resolve microglial activation. Additionally, adult astrocytes reduced microglial activation when co-cultured ex vivo, while aged astrocytes did not. Consistent with the aging studies, IL-10RKO astrocytes did not augment TGFβ after immune challenge and failed to resolve microglial activation. Collectively, a major cytokine-regulatory loop between activated microglia and astrocytes is impaired in the aged brain. PMID:27318131

  3. Cytokine and chemokine expression in the central nervous system associated with protective cell-mediated immunity against Cryptococcus neoformans.

    PubMed

    Uicker, William C; Doyle, Hester A; McCracken, James P; Langlois, Mary; Buchanan, Kent L

    2005-02-01

    Cryptococcus neoformans is a yeast that causes cryptococcosis, a life-threatening disease that develops following inhalation and dissemination of the organisms. C. neoformans has a predilection for the central nervous system (CNS) and mortality is most frequently associated with meningoencephalitis. Susceptibility to cryptococcosis is increased in patients with deficiencies in cell-mediated immunity (CMI). Because cryptococcal CNS infections are associated with mortality and diagnosis of cryptococcosis is often not made until after dissemination to the CNS, a better understanding of host defense mechanisms against C. neoformans in the CNS is needed to design improved therapies for immunocompromised individuals suffering from cryptococcosis. Using a mouse model, we previously described a protective cell-mediated immune response induced in the periphery that limited the growth of C. neoformans in the CNS. In the current investigation, we examined cytokine and chemokine expression in the CNS to identify factors important in achieving protective immunity. We observed increased expression of IL-1beta, TNF-alpha, IFN-gamma, MCP-1, RANTES, and IP-10 in C. neoformans-infected brains of immune mice compared to control mice suggesting that these cytokines and chemokines are associated with the protective immune response. Furthermore, the Th1-type cytokines TNF-alpha and IFN-gamma, but not the Th2 cytokines IL-4 and IL-5, were secreted at significantly higher levels in C. neoformans-infected brains of immune mice compared to control mice. Our results demonstrate that cytokines and chemokines associated with CMI are produced following infection in the CNS of immunized mice, and the expression of these factors correlates with protection against C. neoformans in the CNS.

  4. Individual differences in cardiac vagal tone are associated with differential neural responses to facial expressions at different spatial frequencies: an ERP and sLORETA study.

    PubMed

    Park, Gewnhi; Moon, Eunok; Kim, Do-Won; Lee, Seung-Hwan

    2012-12-01

    A previous study has shown that greater cardiac vagal tone, reflecting effective self-regulatory capacity, was correlated with superior visual discrimination of fearful faces at high spatial frequency Park et al. (Biological Psychology 90:171-178, 2012b). The present study investigated whether individual differences in cardiac vagal tone (indexed by heart rate variability) were associated with different event-related brain potentials (ERPs) in response to fearful and neutral faces. Thirty-six healthy participants discriminated the emotion of fearful and neutral faces at broad, high, and low spatial frequencies, while ERPs were recorded. Participants with low resting heart rate variability-characterized by poor functioning of regulatory systems-exhibited significantly greater N200 activity in response to fearful faces at low spatial frequency and greater LPP responses to neutral faces at high spatial frequency. Source analyses-estimated by standardized low-resolution brain electromagnetic tomography (sLORETA)-tended to show that participants with low resting heart rate variability exhibited increased source activity in visual areas, such as the cuneus and the middle occipital gyrus, as compared with participants with high resting heart rate variability. The hyperactive neural activity associated with low cardiac vagal tone may account for hypervigilant response patterns and emotional dysregulation, which heightens the risk of developing physical and emotional problems.

  5. Association Between Genetic Traits for Immune-Mediated Diseases and Alzheimer Disease.

    PubMed

    Yokoyama, Jennifer S; Wang, Yunpeng; Schork, Andrew J; Thompson, Wesley K; Karch, Celeste M; Cruchaga, Carlos; McEvoy, Linda K; Witoelar, Aree; Chen, Chi-Hua; Holland, Dominic; Brewer, James B; Franke, Andre; Dillon, William P; Wilson, David M; Mukherjee, Pratik; Hess, Christopher P; Miller, Zachary; Bonham, Luke W; Shen, Jeffrey; Rabinovici, Gil D; Rosen, Howard J; Miller, Bruce L; Hyman, Bradley T; Schellenberg, Gerard D; Karlsen, Tom H; Andreassen, Ole A; Dale, Anders M; Desikan, Rahul S

    2016-06-01

    Late-onset Alzheimer disease (AD), the most common form of dementia, places a large burden on families and society. Although epidemiological and clinical evidence suggests a relationship between inflammation and AD, their relationship is not well understood and could have implications for treatment and prevention strategies. To determine whether a subset of genes involved with increased risk of inflammation are also associated with increased risk for AD. In a genetic epidemiology study conducted in July 2015, we systematically investigated genetic overlap between AD (International Genomics of Alzheimer's Project stage 1) and Crohn disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, and psoriasis using summary data from genome-wide association studies at multiple academic clinical research centers. P values and odds ratios from genome-wide association studies of more than 100 000 individuals were from previous comparisons of patients vs respective control cohorts. Diagnosis for each disorder was previously established for the parent study using consensus criteria. The primary outcome was the pleiotropic (conjunction) false discovery rate P value. Follow-up for candidate variants included neuritic plaque and neurofibrillary tangle pathology; longitudinal Alzheimer's Disease Assessment Scale cognitive subscale scores as a measure of cognitive dysfunction (Alzheimer's Disease Neuroimaging Initiative); and gene expression in AD vs control brains (Gene Expression Omnibus data). Eight single-nucleotide polymorphisms (false discovery rate P < .05) were associated with both AD and immune-mediated diseases. Of these, rs2516049 (closest gene HLA-DRB5; conjunction false discovery rate P = .04 for AD and psoriasis, 5.37 × 10-5 for AD, and 6.03 × 10-15 for psoriasis) and rs12570088 (closest gene IPMK; conjunction false discovery rate P = .009 for AD and Crohn disease, P = 5.73 × 10-6 for AD, and 6.57 × 10

  6. Association Between Genetic Traits for Immune-Mediated Diseases and Alzheimer Disease

    PubMed Central

    Yokoyama, Jennifer S.; Wang, Yunpeng; Schork, Andrew J.; Thompson, Wesley K.; Karch, Celeste M.; Cruchaga, Carlos; McEvoy, Linda K.; Witoelar, Aree; Chen, Chi-Hua; Holland, Dominic; Brewer, James B.; Franke, Andre; Dillon, William P.; Wilson, David M.; Mukherjee, Pratik; Hess, Christopher P.; Miller, Zachary; Bonham, Luke W.; Shen, Jeffrey; Rabinovici, Gil D.; Rosen, Howard J.; Miller, Bruce L.; Hyman, Bradley T.; Schellenberg, Gerard D.; Karlsen, Tom H.; Andreassen, Ole A.; Dale, Anders M.; Desikan, Rahul S.

    2016-01-01

    IMPORTANCE Late-onset Alzheimer disease (AD), the most common form of dementia, places a large burden on families and society. Although epidemiological and clinical evidence suggests a relationship between inflammation and AD, their relationship is not well understood and could have implications for treatment and prevention strategies. OBJECTIVE To determine whether a subset of genes involved with increased risk of inflammation are also associated with increased risk for AD. DESIGN, SETTING, AND PARTICIPANTS In a genetic epidemiology study conducted in July 2015, we systematically investigated genetic overlap between AD (International Genomics of Alzheimer’s Project stage 1) and Crohn disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, and psoriasis using summary data from genome-wide association studies at multiple academic clinical research centers. P values and odds ratios from genome-wide association studies of more than 100 000 individuals were from previous comparisons of patients vs respective control cohorts. Diagnosis for each disorder was previously established for the parent study using consensus criteria. MAIN OUTCOMES AND MEASURES The primary outcome was the pleiotropic (conjunction) false discovery rate P value. Follow-up for candidate variants included neuritic plaque and neurofibrillary tangle pathology; longitudinal Alzheimer’s Disease Assessment Scale cognitive subscale scores as a measure of cognitive dysfunction (Alzheimer’s Disease Neuroimaging Initiative); and gene expression in AD vs control brains (Gene Expression Omnibus data). RESULTS Eight single-nucleotide polymorphisms (false discovery rate P < .05) were associated with both AD and immune-mediated diseases. Of these, rs2516049 (closest gene HLA-DRB5; conjunction false discovery rate P = .04 for AD and psoriasis, 5.37 × 10−5 for AD, and 6.03 × 10−15 for psoriasis) and rs12570088 (closest gene IPMK; conjunction false discovery rate P = .009 for

  7. Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones

    PubMed Central

    Li, Y; Wu, X Y; Owyang, C

    2004-01-01

    Recent studies indicate that cholecystokinin (CCK) and serotonin (5-hydroxytryptamine, 5-HT) act via vagal afferent fibres to mediate gastrointestinal functions. In the present study, we characterized the interaction between CCK and 5-HT in the vagal primary afferent neurones. Single neuronal discharges of vagal primary afferent neurones innervating the duodenum were recorded from rat nodose ganglia. Two groups of nodose ganglia neurones were identified: group A neurones responded to intra-arterial injection of low doses of cholecystokinin octapeptide (CCK-8; 10–60 pmol); group B neurones responded only to high doses of CCK-8 (120–240 pmol), and were also activated by duodenal distention. CCK-JMV-180, which acts as an agonist in high-affinity states and as an antagonist in low-affinity states, dose dependently stimulated group A neurones, but inhibited the effect of the high doses of CCK-8 on group B neurones. Duodenal perfusion of 5-HT evoked dose-dependent increases in nodose neuronal discharges. Some neurones that responded to 5-HT showed no response to either high or low doses of CCK-8. A separate group of nodose neurones that possessed high-affinity CCK type A (CCK-A) receptors also responded to luminal infusion of 5-HT. Further, a subthreshold dose of CCK-8 (i.e. 5 pmol) produced no measurable electrophysiological effects but it augmented the neuronal responses to 5-HT. This potentiation effect of CCK-8 was eliminated by CR 1409. From these results we concluded that the vagal nodose ganglion contains neurones that may possess only high- or low-affinity CCK-A receptors or 5-HT3 receptors. Some neurones that express high-affinity CCK-A receptors also express 5-HT3 receptors. Pre-exposure to luminal 5-HT may augment the subsequent response to a subthreshold dose of CCK. PMID:15235095

  8. Nutritionally mediated programming of the developing immune system.

    PubMed

    Palmer, Amanda C

    2011-09-01

    A growing body of evidence highlights the importance of a mother's nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a "layered" expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease.

  9. Fungal mediated innate immune memory, what have we learned?

    PubMed

    Quintin, Jessica

    2018-05-30

    The binary classification of mammalian immune memory is now obsolete. Innate immune cells carry memory characteristics. The overall capacity of innate immune cells to remember and alter their responses is referred as innate immune memory and the induction of a non-specific memory resulting in an enhanced immune status is termed "trained immunity". Historically, trained immunity was first described as triggered by the human fungal pathogen Candida albicans. Since, numerous studies have accumulated and deciphered the main characteristics of trained immunity mediated by fungi and fungal components. This review aims at presenting the newly described aspect of memory in innate immunity with an emphasis on the historically fungal mediated one, covering the known molecular mechanisms associated with training. In addition, the review uncovers the numerous non-specific effect that β-glucans trigger in the context of infectious diseases and septicaemia, inflammatory diseases and cancer. Copyright © 2018. Published by Elsevier Ltd.

  10. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents.

    PubMed

    Perez-Burgos, Azucena; Wang, Bingxian; Mao, Yu-Kang; Mistry, Bhavik; McVey Neufeld, Karen-Anne; Bienenstock, John; Kunze, Wolfgang

    2013-01-15

    Mounting evidence supports the influence of the gut microbiome on the local enteric nervous system and its effects on brain chemistry and relevant behavior. Vagal afferents are involved in some of these effects. We previously showed that ingestion of the probiotic bacterium Lactobacillus rhamnosus (JB-1) caused extensive neurochemical changes in the brain and behavior that were abrogated by prior vagotomy. Because information can be transmitted to the brain via primary afferents encoded as neuronal spike trains, our goal was to record those induced by JB-1 in vagal afferents in the mesenteric nerve bundle and thus determine the nature of the signals sent to the brain. Male Swiss Webster mice jejunal segments were cannulated ex vivo, and serosal and luminal compartments were perfused separately. Bacteria were added intraluminally. We found no evidence for translocation of labeled bacteria across the epithelium during the experiment. We recorded extracellular multi- and single-unit neuronal activity with glass suction pipettes. Within minutes of application, JB-1 increased the constitutive single- and multiunit firing rate of the mesenteric nerve bundle, but Lactobacillus salivarius (a negative control) or media alone were ineffective. JB-1 significantly augmented multiunit discharge responses to an intraluminal distension pressure of 31 hPa. Prior subdiaphragmatic vagotomy abolished all of the JB-1-evoked effects. This detailed exploration of the neuronal spike firing that encodes behavioral signaling to the brain may be useful to identify effective psychoactive bacteria and thereby offer an alternative new perspective in the field of psychiatry and comorbid conditions.

  11. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance.

    PubMed

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL.

  12. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance

    PubMed Central

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL. PMID:28424702

  13. Neuro-immune dysfunction during brain aging: new insights in microglial cell regulation.

    PubMed

    Matt, Stephanie M; Johnson, Rodney W

    2016-02-01

    Microglia, the resident immune cells of the brain, are at the center of communication between the central nervous system and immune system. While these brain-immune interactions are balanced in healthy adulthood, the ability to maintain homeostasis during aging is impaired. Microglia develop a loss of integrated regulatory networks including aberrant signaling from other brain cells, immune sensors, and epigenetic modifiers. The low-grade chronic neuroinflammation associated with this dysfunctional activity likely contributes to cognitive deficits and susceptibility to age-related pathologies. A better understanding of the underlying mechanisms responsible for neuro-immune dysregulation with age is crucial for providing targeted therapeutic strategies to support brain repair and healthy aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Potentiation of T-cell mediated immunity by levamisole.

    PubMed Central

    Renoux, G; Renoux, M; Teller, M N; McMahon, S; Guillaumin, J M

    1976-01-01

    Cell-mediated immunity is a requirement for recognition and elimination of cells and for prevention or treatment of a variety of diseases. Therefore, the development of a product potentially active in increasing immunity involves its testing in assays specific for cell-mediated immunity. The effectiveness of a single administration of levamisole was demonstrated in the rejection of isografts in a male to female C57BL/6 system, and on the enhancement of levels of the delayed type hypersensitivity (DTH) to sheep red cells (SRBC). Indeed, in five on nine tests, an injection of 25 mg/kg of levamisole to female recipients either on the day of grafting or 7 days after grafting resulted in a RT50% rejection time of 25 days, compared with 46 days in untreated controls. Levamisole administered at the time of immunization with various doses of SRBC elicited earlier, higher and more sustained DTH levels than in untreated controls. Such induction of T-cell activation was accompanied by a switch on anti-SRBC antibodies from IgM to IgG. These findings confirm and extend data evidencing the ability of levamisole to recruit and activate T cells for an increased or restored cell-mediated immunity. PMID:782749

  15. Effects of acute exercise on attenuated vagal baroreflex function during bed rest

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Guell, Antonio; Marini, J.-F.

    1992-01-01

    We measured carotid baroreceptor-cardiac reflex responses in six healthy men, 24 h before and 24 h after a bout of leg exercise during 6 deg head-down bed rest to determine if depressed vagal baroreflex function associated with exposure to microgravity environments could be reversed by a single exposure to acute intense exercise. Baroreflex responses were measured before bed rest and on day 7 of bed rest. An exercise bout consisting of dynamic and isometric actions of the quadriceps at graded speeds and resistances was performed on day 8 of bed rest and measurements of baroreflex response were repeated 24 h later. Vagally-mediated cardiac responses were provoked with ramped neck pressure-suction sequences comprising pressure elevations to +40 mm Hg, followed by serial, R-wave triggered 15 mm Hg reductions, to -65 mm Hg. Baroreceptor stimulus-cardiac response relationships were derived by plotting each R-R interval as a function of systolic pressure less the neck chamber pressure applied during the interval. Compared with pre-bed rest baseline measurements, 7 d of bed rest decreased the gain (maximum slope) of the baroreflex stimulus-response relationship by 16.8 +/- 3.4 percent (p less than 0.05). On day 9 of bed rest, 24 h after exercise, the maximum slope of the baroreflex stimulus-response relationship was increased (p less than 0.05) by 10.7 +/- 3.7 percent above pre-bed rest levels and 34.3 +/- 7.9 percent above bed rest day 7. Our data verify that vagally-mediated baroreflex function is depressed by exposure to simulated microgravity and demonstrate that this effect can be acutely reversed by exposure to a single bout of intense exercise.

  16. Relationship between vagal tone, cortisol, TNF-alpha, epinephrine and negative affects in Crohn's disease and irritable bowel syndrome.

    PubMed

    Pellissier, Sonia; Dantzer, Cécile; Mondillon, Laurie; Trocme, Candice; Gauchez, Anne-Sophie; Ducros, Véronique; Mathieu, Nicolas; Toussaint, Bertrand; Fournier, Alicia; Canini, Frédéric; Bonaz, Bruno

    2014-01-01

    Crohn's disease (CD) and irritable bowel syndrome (IBS) involve brain-gut dysfunctions where vagus nerve is an important component. The aim of this work was to study the association between vagal tone and markers of stress and inflammation in patients with CD or IBS compared to healthy subjects (controls). The study was performed in 73 subjects (26 controls, 21 CD in remission and 26 IBS patients). The day prior to the experiment, salivary cortisol was measured at 8:00 AM and 10:00 PM. The day of the experiment, subjects completed questionnaires for anxiety (STAI) and depressive symptoms (CES-D). After 30 min of rest, ECG was recorded for heart rate variability (HRV) analysis. Plasma cortisol, epinephrine, norepinephrine, TNF-alpha and IL-6 were measured in blood samples taken at the end of ECG recording. Compared with controls, CD and IBS patients had higher scores of state-anxiety and depressive symptomatology. A subgroup classification based on HRV-normalized high frequency band (HFnu) as a marker of vagal tone, showed that control subjects with high vagal tone had significantly lower evening salivary cortisol levels than subjects with low vagal tone. Such an effect was not observed in CD and IBS patients. Moreover, an inverse association (r =  -0.48; p<0.05) was observed between the vagal tone and TNF-alpha level in CD patients exclusively. In contrast, in IBS patients, vagal tone was inversely correlated with plasma epinephrine (r =  -0.39; p<0.05). No relationship was observed between vagal tone and IL-6, norepinephrine or negative affects (anxiety and depressive symptomatology) in any group. In conclusion, these data argue for an imbalance between the hypothalamus-pituitary-adrenal axis and the vagal tone in CD and IBS patients. Furthermore, they highlight the specific homeostatic link between vagal tone and TNF-alpha in CD and epinephrine in IBS and argue for the relevance of vagus nerve reinforcement interventions in those diseases.

  17. The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: Implications for neural control of cardiac excitability

    PubMed Central

    Herring, Neil; Cranley, James; Lokale, Michael N.; Li, Dan; Shanks, Julia; Alston, Eric N.; Girard, Beatrice M.; Carter, Emma; Parsons, Rodney L.; Habecker, Beth A.; Paterson, David J.

    2012-01-01

    The autonomic phenotype of congestive cardiac failure is characterised by high sympathetic drive and impaired vagal tone, which are independent predictors of mortality. We hypothesize that impaired bradycardia to peripheral vagal stimulation following high-level sympathetic drive is due to sympatho-vagal crosstalk by the adrenergic co-transmitters galanin and neuropeptide-Y (NPY). Moreover we hypothesize that galanin acts similarly to NPY by reducing vagal acetylcholine release via a receptor mediated, protein kinase-dependent pathway. Prolonged right stellate ganglion stimulation (10 Hz, 2 min, in the presence of 10 μM metoprolol) in an isolated guinea pig atrial preparation with dual autonomic innervation leads to a significant (p < 0.05) reduction in the magnitude of vagal bradycardia (5 Hz) maintained over the subsequent 20 min (n = 6). Immunohistochemistry demonstrated the presence of galanin in a small number of tyrosine hydroxylase positive neurons from freshly dissected stellate ganglion tissue sections. Following 3 days of tissue culture however, most stellate neurons expressed galanin. Stellate stimulation caused the release of low levels of galanin and significantly higher levels of NPY into the surrounding perfusate (n = 6, using ELISA). The reduction in vagal bradycardia post sympathetic stimulation was partially reversed by the galanin receptor antagonist M40 after 10 min (1 μM, n = 5), and completely reversed with the NPY Y2 receptor antagonist BIIE 0246 at all time points (1 μM, n = 6). Exogenous galanin (n = 6, 50–500 nM) also reduced the heart rate response to vagal stimulation but had no effect on the response to carbamylcholine that produced similar degrees of bradycardia (n = 6). Galanin (500 nM) also significantly attenuated the release of 3H-acetylcholine from isolated atria during field stimulation (5 Hz, n = 5). The effect of galanin on vagal bradycardia could be abolished by the galanin receptor antagonist

  18. The relationship of autoantibodies to depression of cell-mediated immunity in infectious mononucleosis.

    PubMed Central

    Russell, A S; Percy, J S; Grace, M

    1975-01-01

    It has been postulated that autoantibody formation occurs as a consequence of a depression of function of certain thymus-derived lymphocytes (T cells). We have examined cell-mediated immunity, a T-cell function, in infectious mononucleosis, a condition in which autoantibodies are known to develop. We have shown some evidence of depressed cell-mediated immunity in patients with infectious mononucleosis but have been unable to correlate this with autoantibody production. These results do not support the hypothesis that depression of T-cell function leads to autoantibody formation. PMID:1081930

  19. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones.

    PubMed

    Browning, Kirsteen N; Fortna, Samuel R; Hajnal, Andras

    2013-05-01

    Diet-induced obesity (DIO) has been shown to alter the biophysical properties and pharmacological responsiveness of vagal afferent neurones and fibres, although the effects of DIO on central vagal neurones or vagal efferent functions have never been investigated. The aims of this study were to investigate whether high-fat diet-induced DIO also affects the properties of vagal efferent motoneurones, and to investigate whether these effects were reversed following weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Whole-cell patch-clamp recordings were made from rat dorsal motor nucleus of the vagus (DMV) neurones in thin brainstem slices. The DMV neurones from rats exposed to high-fat diet for 12-14 weeks were less excitable, with a decreased membrane input resistance and decreased ability to fire action potentials in response to direct current pulse injection. The DMV neurones were also less responsive to superfusion with the satiety neuropeptides cholecystokinin and glucagon-like peptide 1. Roux-en-Y gastric bypass reversed all of these DIO-induced effects. Diet-induced obesity also affected the morphological properties of DMV neurones, increasing their size and dendritic arborization; RYGB did not reverse these morphological alterations. Remarkably, independent of diet, RYGB also reversed age-related changes of membrane properties and occurrence of charybdotoxin-sensitive (BK) calcium-dependent potassium current. These results demonstrate that DIO also affects the properties of central autonomic neurones by decreasing the membrane excitability and pharmacological responsiveness of central vagal motoneurones and that these changes were reversed following RYGB. In contrast, DIO-induced changes in morphological properties of DMV neurones were not reversed following gastric bypass surgery, suggesting that they may be due to diet, rather than obesity. These findings represent the first direct evidence for the plausible effect of RYGB to improve vagal

  20. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones

    PubMed Central

    Browning, Kirsteen N; Fortna, Samuel R; Hajnal, Andras

    2013-01-01

    Diet-induced obesity (DIO) has been shown to alter the biophysical properties and pharmacological responsiveness of vagal afferent neurones and fibres, although the effects of DIO on central vagal neurones or vagal efferent functions have never been investigated. The aims of this study were to investigate whether high-fat diet-induced DIO also affects the properties of vagal efferent motoneurones, and to investigate whether these effects were reversed following weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Whole-cell patch-clamp recordings were made from rat dorsal motor nucleus of the vagus (DMV) neurones in thin brainstem slices. The DMV neurones from rats exposed to high-fat diet for 12–14 weeks were less excitable, with a decreased membrane input resistance and decreased ability to fire action potentials in response to direct current pulse injection. The DMV neurones were also less responsive to superfusion with the satiety neuropeptides cholecystokinin and glucagon-like peptide 1. Roux-en-Y gastric bypass reversed all of these DIO-induced effects. Diet-induced obesity also affected the morphological properties of DMV neurones, increasing their size and dendritic arborization; RYGB did not reverse these morphological alterations. Remarkably, independent of diet, RYGB also reversed age-related changes of membrane properties and occurrence of charybdotoxin-sensitive (BK) calcium-dependent potassium current. These results demonstrate that DIO also affects the properties of central autonomic neurones by decreasing the membrane excitability and pharmacological responsiveness of central vagal motoneurones and that these changes were reversed following RYGB. In contrast, DIO-induced changes in morphological properties of DMV neurones were not reversed following gastric bypass surgery, suggesting that they may be due to diet, rather than obesity. These findings represent the first direct evidence for the plausible effect of RYGB to improve vagal

  1. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain?

    PubMed Central

    Saas, P; Walker, P R; Hahne, M; Quiquerez, A L; Schnuriger, V; Perrin, G; French, L; Van Meir, E G; de Tribolet, N; Tschopp, J; Dietrich, P Y

    1997-01-01

    Astrocytomas are among the most common brain tumors that are usually fatal in their malignant form. They appear to progress without significant impedance from the immune system, despite the presence of intratumoral T cell infiltration. To date, this has been thought to be the result of T cell immunosuppression induced by astrocytoma-derived cytokines. Here, we propose that cell contact-mediated events also play a role, since we demonstrate the in vivo expression of Fas ligand (FasL/CD95L) by human astrocytoma and the efficient killing of Fas-bearing cells by astrocytoma lines in vitro and by tumor cells ex vivo. Functional FasL is expressed by human, mouse, and rat astrocytoma and hence may be a general feature of this nonlymphoid tumor. In the brain, astrocytoma cells can potentially deliver a death signal to Fas+ cells which include infiltrating leukocytes and, paradoxically, astrocytoma cells themselves. The expression of FasL by astrocytoma cells may extend the processes that are postulated to occur in normal brain to maintain immune privilege, since we also show FasL expression by neurons. Overall, our findings suggest that FasL-induced apoptosis by astrocytoma cells may play a significant role in both immunosuppression and the regulation of tumor growth within the central nervous system. PMID:9077524

  2. How positive emotions build physical health: perceived positive social connections account for the upward spiral between positive emotions and vagal tone.

    PubMed

    Kok, Bethany E; Coffey, Kimberly A; Cohn, Michael A; Catalino, Lahnna I; Vacharkulksemsuk, Tanya; Algoe, Sara B; Brantley, Mary; Fredrickson, Barbara L

    2013-07-01

    The mechanisms underlying the association between positive emotions and physical health remain a mystery. We hypothesize that an upward-spiral dynamic continually reinforces the tie between positive emotions and physical health and that this spiral is mediated by people's perceptions of their positive social connections. We tested this overarching hypothesis in a longitudinal field experiment in which participants were randomly assigned to an intervention group that self-generated positive emotions via loving-kindness meditation or to a waiting-list control group. Participants in the intervention group increased in positive emotions relative to those in the control group, an effect moderated by baseline vagal tone, a proxy index of physical health. Increased positive emotions, in turn, produced increases in vagal tone, an effect mediated by increased perceptions of social connections. This experimental evidence identifies one mechanism-perceptions of social connections-through which positive emotions build physical health, indexed as vagal tone. Results suggest that positive emotions, positive social connections, and physical health influence one another in a self-sustaining upward-spiral dynamic.

  3. Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas

    USGS Publications Warehouse

    Work, Thierry M.; Balazs, George H.; Rameyer, Robert; Chang, S.P.; Berestecky, J.

    2000-01-01

    Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freund’s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a

  4. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy.

    PubMed

    Strauss, Kenneth I; Elisevich, Kost V

    2016-10-13

    Epilepsy patients have distinct immune/inflammatory cell profiles and inflammatory mediator levels in the blood. Although the neural origin of inflammatory cells and mediators has been implied, few studies have measured these inflammatory components in the human brain itself. This study examines the brain levels of chemokines (8), cytokines (14), and vascular injury mediators (3) suspected of being altered in epilepsy. Soluble protein extracts of fresh frozen resected hippocampus, entorhinal cortex, and temporal cortex from 58 medically refractory mesial temporal lobe epilepsy subjects and 4 nonepileptic neurosurgical subjects were assayed for 25 inflammation-related mediators using ultrasensitive low-density arrays. Brain mediator levels were compared between regions and between epileptic and nonepileptic cases, showing a number of regional and possible epilepsy-associated differences. Eotaxin, interferon-γ, interleukin (IL)-2, IL-4, IL-12 p70, IL-17A, tumor necrosis factor-α, and intercellular adhesion molecule (ICAM)-1 levels were highest in the hippocampus, the presumptive site of epileptogenesis. Surprisingly, IL-1β and IL-1α were lowest in the hippocampus, compared to cortical regions. In the temporal cortex, IL-1β, IL-8, and MIP-1α levels were highest, compared to the entorhinal cortex and the hippocampus. The most pronounced epilepsy-associated differences were decreased levels of eotaxin, IL-1β, C-reactive protein, and vascular cell adhesion molecule (VCAM)-1 and increased IL-12 p70 levels. Caution must be used in interpreting these results, however, because nonepileptic subjects were emergent neurosurgical cases, not a control group. Correlation analyses of each mediator in each brain region yielded valuable insights into the regulation of these mediator levels in the brain. Over 70 % of the associations identified were between different mediators in a single brain region, providing support for local control of mediator levels. Correlations of

  5. Eicosanoid-mediated immunity in insects

    USDA-ARS?s Scientific Manuscript database

    Eicosanoid is a collective term for oxygenated metabolites of C20 polyunsaturated fatty acids. As seen in mammals, eicosanoids play crucial roles in mediating various physiological processes, including immune responses, in insects. Upon microbial pathogen infection, non-self recognition signals are ...

  6. Relationship between Vagal Tone, Cortisol, TNF-Alpha, Epinephrine and Negative Affects in Crohn’s Disease and Irritable Bowel Syndrome

    PubMed Central

    Pellissier, Sonia; Dantzer, Cécile; Mondillon, Laurie; Trocme, Candice; Gauchez, Anne-Sophie; Ducros, Véronique; Mathieu, Nicolas; Toussaint, Bertrand; Fournier, Alicia; Canini, Frédéric; Bonaz, Bruno

    2014-01-01

    Crohn’s disease (CD) and irritable bowel syndrome (IBS) involve brain-gut dysfunctions where vagus nerve is an important component. The aim of this work was to study the association between vagal tone and markers of stress and inflammation in patients with CD or IBS compared to healthy subjects (controls). The study was performed in 73 subjects (26 controls, 21 CD in remission and 26 IBS patients). The day prior to the experiment, salivary cortisol was measured at 8∶00 AM and 10∶00 PM. The day of the experiment, subjects completed questionnaires for anxiety (STAI) and depressive symptoms (CES-D). After 30 min of rest, ECG was recorded for heart rate variability (HRV) analysis. Plasma cortisol, epinephrine, norepinephrine, TNF-alpha and IL-6 were measured in blood samples taken at the end of ECG recording. Compared with controls, CD and IBS patients had higher scores of state-anxiety and depressive symptomatology. A subgroup classification based on HRV-normalized high frequency band (HFnu) as a marker of vagal tone, showed that control subjects with high vagal tone had significantly lower evening salivary cortisol levels than subjects with low vagal tone. Such an effect was not observed in CD and IBS patients. Moreover, an inverse association (r = −0.48; p<0.05) was observed between the vagal tone and TNF-alpha level in CD patients exclusively. In contrast, in IBS patients, vagal tone was inversely correlated with plasma epinephrine (r = −0.39; p<0.05). No relationship was observed between vagal tone and IL-6, norepinephrine or negative affects (anxiety and depressive symptomatology) in any group. In conclusion, these data argue for an imbalance between the hypothalamus-pituitary-adrenal axis and the vagal tone in CD and IBS patients. Furthermore, they highlight the specific homeostatic link between vagal tone and TNF-alpha in CD and epinephrine in IBS and argue for the relevance of vagus nerve reinforcement interventions in those diseases. PMID

  7. Ascending caudal medullary catecholamine pathways drive sickness-induced deficits in exploratory behavior: brain substrates for fatigue?

    PubMed

    Gaykema, Ronald P A; Goehler, Lisa E

    2011-03-01

    Immune challenges can lead to marked behavioral changes, including fatigue, reduced social interest, anorexia, and somnolence, but the precise neuronal mechanisms that underlie sickness behavior remain elusive. Part of the neurocircuitry influencing behavior associated with illness likely includes viscerosensory nuclei located in the caudal brainstem, based on findings that inactivation of the dorsal vagal complex (DVC) can prevent social withdrawal. These brainstem nuclei contribute multiple neuronal projections that target different components of autonomic and stress-related neurocircuitry. In particular, catecholaminergic neurons in the ventrolateral medulla (VLM) and DVC target the hypothalamus and drive neuroendocrine responses to immune challenge, but their particular role in sickness behavior is not known. To test whether this catecholamine pathway also mediates sickness behavior, we compared effects of DVC inactivation with targeted lesion of the catecholamine pathway on exploratory behavior, which provides an index of motivation and fatigue, and associated patterns of brain activation assessed by immunohistochemical detection of c-Fos protein. LPS treatment dramatically reduced exploratory behavior, and produced a pattern of increased c-Fos expression in brain regions associated with stress and autonomic adjustments paraventricular hypothalamus (PVN), bed nucleus of the stria terminalis (BST), central amygdala (CEA), whereas activation was reduced in regions involved in exploratory behavior (hippocampus, dorsal striatum, ventral tuberomammillary nucleus, and ventral tegmental area). Both DVC inactivation and catecholamine lesion prevented reductions in exploratory behavior and completely blocked the inhibitory LPS effects on c-Fos expression in the behavior-associated regions. In contrast, LPS-induced activation in the CEA and BST was inhibited by DVC inactivation but not by catecholamine lesion. The findings support the idea that parallel pathways from

  8. Ascending caudal medullary catecholamine pathways drive sickness-induced deficits in exploratory behavior: brain substrates for fatigue?

    PubMed Central

    Gaykema, Ronald P.A.; Goehler, Lisa E.

    2010-01-01

    Immune challenges can lead to marked behavioral changes, including fatigue, reduced social interest, anorexia, and somnolence, but the precise neuronal mechanisms that underlie sickness behavior remain elusive. Part of the neurocircuitry influencing behavior associated with illness likely includes viscerosensory nuclei located in the caudal brainstem, based on findings that inactivation of the dorsal vagal complex (DVC) can prevent social withdrawal. These brainstem nuclei contribute multiple neuronal projections that target different components of autonomic and stress-related neurocircuitry. In particular, catecholaminergic neurons in the ventrolateral medulla (VLM) and DVC target the hypothalamus and drive neuroendocrine responses to immune challenge, but their particular role in sickness behavior is not known. To test whether this catecholamine pathway also mediates sickness behavior, we compared effects of DVC inactivation with targeted lesion of the catecholamine pathway on exploratory behavior, which provides an index of motivation and fatigue, and associated patterns of brain activation assessed by immunohistochemical detection of c-Fos protein. LPS treatment dramatically reduced exploratory behavior, and produced a pattern of increased c-Fos expression in brain regions associated with stress and autonomic adjustments paraventricular hypothalamus (PVN), bed nucleus of the stria terminalis (BST), central amygdala (CEA), whereas activation was reduced in regions involved in exploratory behavior (hippocampus, dorsal striatum, ventral tuberomammillary nucleus, and ventral tegmental area). Both DVC inactivation and catecholamine lesion prevented reductions in exploratory behavior and completely blocked the inhibitory LPS effects on c-Fos expression in the behavior-associated regions. In contrast, LPS-induced activation in the CEA and BST was inhibited by DVC inactivation but not by catecholamine lesion. The findings support the idea that parallel pathways from

  9. Vagal activity is quadratically related to prosocial traits, prosocial emotions, and observer perceptions of prosociality.

    PubMed

    Kogan, Aleksandr; Oveis, Christopher; Carr, Evan W; Gruber, June; Mauss, Iris B; Shallcross, Amanda; Impett, Emily A; van der Lowe, Ilmo; Hui, Bryant; Cheng, Cecilia; Keltner, Dacher

    2014-12-01

    In the present article, we introduce the quadratic vagal activity-prosociality hypothesis, a theoretical framework for understanding the vagus nerve's involvement in prosociality. We argue that vagus nerve activity supports prosocial behavior by regulating physiological systems that enable emotional expression, empathy for others' mental and emotional states, the regulation of one's own distress, and the experience of positive emotions. However, we contend that extremely high levels of vagal activity can be detrimental to prosociality. We present 3 studies providing support for our model, finding consistent evidence of a quadratic relationship between respiratory sinus arrhythmia--the degree to which the vagus nerve modulates the heart rate--and prosociality. Individual differences in vagal activity were quadratically related to prosocial traits (Study 1), prosocial emotions (Study 2), and outside ratings of prosociality by complete strangers (Study 3). Thus, too much or too little vagal activity appears to be detrimental to prosociality. The present article provides the 1st theoretical and empirical account of the nonlinear relationship between vagal activity and prosociality.

  10. Accentuated antagonism in vagal heart rate control mediated through muscarinic potassium channels.

    PubMed

    Mizuno, Masaki; Kamiya, Atsunori; Kawada, Toru; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Sugimachi, Masaru

    2008-12-01

    Although muscarinic K(+) (K(ACh)) channels contribute to a rapid heart rate (HR) response to vagal stimulation, whether background sympathetic tone affects the HR control via the K(ACh)channels remains to be elucidated. In seven anesthetized rabbits with sinoaortic denervation and vagotomy, we estimated the dynamic transfer function of the HR response by using random binary vagal stimulation (0-10 Hz). Tertiapin, a selective K(ACh) channel blocker, decreased the dynamic gain (to 2.3+/- 0.9 beats.min(-1).Hz(-1), from 4.6+/- 1.1, P < 0.01, mean+/- SD) and the corner frequency (to 0.05+/- 0.01 Hz, from 0.26+/- 0.04, P < 0.01). Under 5 Hz tonic cardiac sympathetic stimulation (CSS), tertiapin decreased the dynamic gain (to 3.6+/- 1.0 beats.min(-1).Hz(-1), from 7.3+/- 1.1, P < 0.01) and the corner frequency (to 0.06+/- 0.02 Hz, from 0.23+/- 0.06, P < 0.01). Two-way analysis of variance indicated significant interaction between the tertiapin and CSS effects on the dynamic gain. In contrast, no significant interactions were observed between the tertiapin and CSS effects on the corner frequency and the lag time. In conclusion, although a cyclic AMP-dependent mechanism has been well established, an accentuated antagonism also occurred in the direct effect of ACh via the K(ACh) channels. The rapidity of the HR response obtained by the K(ACh) channel pathway was robust during the accentuated antagonism.

  11. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity.

    PubMed

    Patterson, Susan L

    2015-09-01

    Older individuals often experience declines in cognitive function after events (e.g. infection, or injury) that trigger activation of the immune system. This occurs at least in part because aging sensitizes the response of microglia (the brain's resident immune cells) to signals triggered by an immune challenge. In the aging brain, microglia respond to these signals by producing more pro-inflammatory cytokines (e.g. interleukin-1beta or IL-1β) and producing them for longer than microglia in younger brains. This exaggerated inflammatory response can compromise processes critical for optimal cognitive functioning. Interleukin-1β is central to the inflammatory response and is a key mediator and modulator of an array of associated biological functions; thus its production and release is usually very tightly regulated. This review will focus on the impact of dysregulated production of IL-1β on hippocampus dependent-memory systems and associated synaptic plasticity processes. The neurotrophin brain-derived neurotrophic factor (BNDF) helps to protect neurons from damage caused by infection or injury, and it plays a critical role in many of the same memory and hippocampal plasticity processes compromised by dysregulated production of IL-1β. This suggests that an exaggerated brain inflammatory response, arising from aging and a secondary immune challenge, may erode the capacity to provide the BDNF needed for memory-related plasticity processes at hippocampal synapses. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cardiac Vagal Regulation and Early Peer Status

    ERIC Educational Resources Information Center

    Graziano, Paulo A.; Keane, Susan P.; Calkins, Susan D.

    2007-01-01

    A sample of 341 5 1/2-year-old children participating in an ongoing longitudinal study was the focus of a study on the relation between cardiac vagal regulation and peer status. To assess cardiac vagal regulation, resting measures of respiratory sinus arrhythmia (RSA) and RSA change (suppression) to 3 cognitively and emotionally challenging tasks…

  13. Nutritionally Mediated Programming of the Developing Immune System12

    PubMed Central

    Palmer, Amanda C.

    2011-01-01

    A growing body of evidence highlights the importance of a mother’s nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a “layered” expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease. PMID:22332080

  14. Detection of cell mediated immune response to avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    In birds, lymphomyeloid tissues develop from epithelial (Bursa of Fabricus or thymus) or mesenchymal tissue which are populated by heamatopoietic stem cells. These stem cells develop directly into immunologically competent B (bursa) and T (thymus) cells. Cell-mediated immunity (CMI) is a part of the...

  15. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity.

    PubMed

    Li, Minshu; Li, Zhiguo; Yao, Yang; Jin, Wei-Na; Wood, Kristofer; Liu, Qiang; Shi, Fu-Dong; Hao, Junwei

    2017-01-17

    Astrocytes are believed to bridge interactions between infiltrating lymphocytes and neurons during brain ischemia, but the mechanisms for this action are poorly understood. Here we found that interleukin-15 (IL-15) is dramatically up-regulated in astrocytes of postmortem brain tissues from patients with ischemic stroke and in a mouse model of transient focal brain ischemia. We generated a glial fibrillary acidic protein (GFAP) promoter-controlled IL-15-expressing transgenic mouse (GFAP-IL-15 tg ) line and found enlarged brain infarcts, exacerbated neurodeficits after the induction of brain ischemia. In addition, knockdown of IL-15 in astrocytes attenuated ischemic brain injury. Interestingly, the accumulation of CD8 + T and natural killer (NK) cells was augmented in these GFAP-IL-15 tg mice after brain ischemia. Of note, depletion of CD8 + T or NK cells attenuated ischemic brain injury in GFAP-IL-15 tg mice. Furthermore, knockdown of the IL-15 receptor α or blockade of cell-to-cell contact diminished the activation and effector function of CD8 + T and NK cells in GFAP-IL-15 tg mice, suggesting that astrocytic IL-15 is delivered in trans to target cells. Collectively, these findings indicate that astrocytic IL-15 could aggravate postischemic brain damage via propagation of CD8 + T and NK cell-mediated immunity.

  16. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans

    PubMed Central

    Conti, Heather R.; Gaffen, Sarah L.

    2015-01-01

    IL-17 (IL-17A) has emerged as a key mediator of protection against extracellular microbes, but this cytokine also drives pathology in various autoimmune diseases. Overwhelming data in both humans and mice reveal a clear and surprisingly specific role for IL-17 in protection against the fungus Candida albicans, a commensal of the human oral cavity, gastrointestinal tract and reproductive mucosa. The IL-17 pathway regulates antifungal immunity through upregulation of pro-inflammatory cytokines including IL-6, neutrophil-recruiting chemokines such as CXCL1 and CXCL5 and antimicrobial peptides such as the defensins, which act in concert to limit fungal overgrowth. This review will focus on diseases caused by C. albicans, the role of IL-17-mediated immunity in candidiasis, and the implications for clinical therapies for both autoimmune conditions and fungal infections. PMID:26188072

  17. Studying brain-regulation of immunity with optogenetics and chemogenetics; A new experimental platform.

    PubMed

    Ben-Shaanan, Tamar; Schiller, Maya; Rolls, Asya

    2017-10-01

    The interactions between the brain and the immune system are bidirectional. Nevertheless, we have far greater understanding of how the immune system affects the brain than how the brain affects immunity. New technological developments such as optogenetics and chemogenetics (using DREADDs; Designer Receptors Exclusively Activated by Designer Drugs) can bridge this gap in our understanding, as they enable an unprecedented mechanistic and systemic analysis of the communication between the brain and the immune system. In this review, we discuss new experimental approaches for revealing neuronal circuits that can participate in regulation of immunity. In addition, we discuss methods, specifically optogenetics and chemogenetics, that enable targeted neuronal manipulation to reveal how different brain regions affect immunity. We describe how these techniques can be used as an experimental platform to address fundamental questions in psychoneuroimmunology and to understand how neuronal circuits associate with different psychological states can affect physiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Hippocampal-Brainstem Connectivity Associated with Vagal Modulation after an Intense Exercise Intervention in Healthy Men

    PubMed Central

    Bär, Karl-Jürgen; Herbsleb, Marco; Schumann, Andy; de la Cruz, Feliberto; Gabriel, Holger W.; Wagner, Gerd

    2016-01-01

    Regular physical exercise leads to increased vagal modulation of the cardiovascular system. A combination of peripheral and central processes has been proposed to underlie this adaptation. However, specific changes in the central autonomic network have not been described in human in more detail. We hypothesized that the anterior hippocampus known to be influenced by regular physical activity might be involved in the development of increased vagal modulation after a 6 weeks high intensity intervention in young healthy men (exercise group: n = 17, control group: n = 17). In addition to the determination of physical capacity before and after the intervention, we used resting state functional magnetic resonance imaging and simultaneous heart rate variability assessment. We detected a significant increase of the power output at the anaerobic threshold of 11.4% (p < 0.001), the maximum power output Pmax of 11.2% (p < 0.001), and VO2max adjusted for body weight of 4.7% (p < 0.001) in the exercise group (EG). Comparing baseline (T0) and post-exercise (T1) values of parasympathetic modulation of the exercise group, we observed a trend for a decrease in heart rate (p < 0.06) and a significant increase of vagal modulation as indicated by RMSSD (p < 0.026) during resting state. In the whole brain analysis, we found that the connectivity pattern of the right anterior hippocampus (aHC) was specifically altered to the ventromedial anterior cortex, the dorsal striatum and to the dorsal vagal complex (DVC) in the brainstem. Moreover, we observed a highly significant negative correlation between increased RMSSD after exercise and decreased functional connectivity from the right aHC to DVC (r = −0.69, p = 0.003). This indicates that increased vagal modulation was associated with functional connectivity between aHC and the DVC. In conclusion, our findings suggest that exercise associated changes in anterior hippocampal function might be involved in increased vagal modulation. PMID

  19. Vagal Nerve Stimulation Therapy: What Is Being Stimulated?

    PubMed Central

    Kember, Guy; Ardell, Jeffrey L.; Armour, John A.; Zamir, Mair

    2014-01-01

    Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity. PMID:25479368

  20. Vagal nerve stimulation therapy: what is being stimulated?

    PubMed

    Kember, Guy; Ardell, Jeffrey L; Armour, John A; Zamir, Mair

    2014-01-01

    Vagal nerve stimulation in cardiac therapy involves delivering electrical current to the vagal sympathetic complex in patients experiencing heart failure. The therapy has shown promise but the mechanisms by which any benefit accrues is not understood. In this paper we model the response to increased levels of stimulation of individual components of the vagal sympathetic complex as a differential activation of each component in the control of heart rate. The model provides insight beyond what is available in the animal experiment in as much as allowing the simultaneous assessment of neuronal activity throughout the cardiac neural axis. The results indicate that there is sensitivity of the neural network to low level subthreshold stimulation. This leads us to propose that the chronic effects of vagal nerve stimulation therapy lie within the indirect pathways that target intrinsic cardiac local circuit neurons because they have the capacity for plasticity.

  1. Mothers' responses to children's negative emotions and child emotion regulation: the moderating role of vagal suppression.

    PubMed

    Perry, Nicole B; Calkins, Susan D; Nelson, Jackie A; Leerkes, Esther M; Marcovitch, Stuart

    2012-07-01

    The current study examined the moderating effect of children's cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and nonsupportive responses) and children's emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children's negative emotions and children's regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children's vagal suppression moderated the association between mothers' nonsupportive emotion socialization and children's emotion regulation behaviors such that nonsupportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children's emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against nonsupportive emotion socialization. Copyright © 2011 Wiley Periodicals, Inc.

  2. [Experimental study of glioma stem cell-mediated immune tolerance in tumor microenvironment].

    PubMed

    Xie, T; Ma, J W; Liu, B; Dong, J; Huang, Q

    2017-11-23

    Objective: To investigate the tumor microenvironment of immune tolerance induced by glioma stem cells (GSC). Methods: Human GSC SU3 cells transfected with red fluorescent protein (SU3-RFP) gene were implanted into the brain, subcutis (armpit and foot), liver and abdominal cavity of transgenic green fluorescence protein (GFP) nude mice to establish RFP(+) /GFP(+) dual fluorescence solid tumor model. The re-cultured cells derived from implanted tumor tissues, SU3-RFP cells co-cultured with peritoneal fluid of transgenic GFP nude mice and malignant ascites of tumor-bearing mice were observed by fluorescence microscopy and real-time video image tracing to analyze the microenvironment of immune tolerance mediated by RFP(+) /GFP(+) implanted tumor. Results: Dual fluorescence labeled frozen section showed that all of cells in the tumor microenvironment were GFP(+) , while the pressed tissue-patch showed that the tumor blood vessels exhibited a RFP(+) /GFP(+) double-positioning yellow. In the GFP single fluorescence labeled tumor tissue, all of cells in the microenvironment were green, including tumor edge, necrotic foci and blood vessel. Among them, CD68(+) , F4/80(+) , CD11c(+) , CD11b(+) and CD80(+) cells were observed. In the dual fluorescence labeled co-cultured cells, the phagocytosis and fusion between green host cells and red tumor cells were also observed, and these fusion cells might transfer to the malignant dendritic cells and macrophages. Conclusions: The tumor microenvironment of immune tolerance induced by GSC is not affected by the tissue types of tumor-inoculated sites, and the immune tolerance mediated by inflammatory cells is associated with the inducible malignant transformation, which may be driven by cell fusion.

  3. Evaluation of a DLA-79 allele associated with multiple immune-mediated diseases in dogs.

    PubMed

    Friedenberg, Steven G; Buhrman, Greg; Chdid, Lhoucine; Olby, Natasha J; Olivry, Thierry; Guillaumin, Julien; O'Toole, Theresa; Goggs, Robert; Kennedy, Lorna J; Rose, Robert B; Meurs, Kathryn M

    2016-03-01

    Immune-mediated diseases are common and life-threatening disorders in dogs. Many canine immune-mediated diseases have strong breed predispositions and are believed to be inherited. However, the genetic mutations that cause these diseases are mostly unknown. As many immune-mediated diseases in humans share polymorphisms among a common set of genes, we conducted a candidate gene study of 15 of these genes across four immune-mediated diseases (immune-mediated hemolytic anemia, immune-mediated thrombocytopenia, immune-mediated polyarthritis (IMPA), and atopic dermatitis) in 195 affected and 206 unaffected dogs to assess whether causative or predictive polymorphisms might exist in similar genes in dogs. We demonstrate a strong association (Fisher's exact p = 0.0004 for allelic association, p = 0.0035 for genotypic association) between two polymorphic positions (10 bp apart) in exon 2 of one allele in DLA-79, DLA-79*001:02, and multiple immune-mediated diseases. The frequency of this allele was significantly higher in dogs with immune-mediated disease than in control dogs (0.21 vs. 0.12) and ranged from 0.28 in dogs with IMPA to 0.15 in dogs with atopic dermatitis. This allele has two non-synonymous substitutions (compared with the reference allele, DLA-79*001:01), resulting in F33L and N37D amino acid changes. These mutations occur in the peptide-binding pocket of the protein, and based upon our computational modeling studies, are likely to affect critical interactions with the peptide N-terminus. Further studies are warranted to confirm these findings more broadly and to determine the specific mechanism by which the identified variants alter canine immune system function.

  4. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation.

    PubMed

    Paula Neto, Heitor A; Ausina, Priscila; Gomez, Lilian S; Leandro, João G B; Zancan, Patricia; Sola-Penna, Mauro

    2017-01-01

    Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of "lean homeostasis" and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.

  5. Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia.

    PubMed

    Daulatzai, Mak Adam

    2015-01-01

    The non-celiac gluten sensitivity (NCGS) is a chronic functional gastrointestinal disorder which is very common world wide. The human gut harbors microbiota which has a wide variety of microbial organisms; they are mainly symbiotic and important for well being. However, "dysbiosis" - i.e. an alteration in normal commensal gut microbiome with an increase in pathogenic microbes, impacts homeostasis/health. Dysbiosis in NCGS causes gut inflammation, diarrhea, constipation, visceral hypersensitivity, abdominal pain, dysfunctional metabolic state, and peripheral immune and neuro-immune communication. Thus, immune-mediated gut and extra-gut dysfunctions, due to gluten sensitivity with comorbid diarrhea, may last for decades. A significant proportion of NCGS patients may chronically consume alcohol, non-steroidal anti-inflammatory drugs, and fatty diet, as well as suffer from various comorbid disorders. The above pathophysiological substrate and dysbiosis are underpinned by dysfunctional bidirectional "Gut-Brain Axis" pathway. Pathogenic gut microbiota is known to upregulate gut- and systemic inflammation (due to lipopolysaccharide from pathogenic bacteria and synthesis of pro-inflammatory cytokines); they enhance energy harvest, cause obesity, insulin resistance, and dysfunctional vago-vagal gut-brain axis. Conceivably, the above cascade of pathology may promote various pathophysiological mechanisms, neuroinflammation, and cognitive dysfunction. Hence, dysbiosis, gut inflammation, and chronic dyshomeostasis are of great clinical relevance. It is argued here that we need to be aware of NCGS and its chronic pathophysiological impact. Therapeutic measures including probiotics, vagus nerve stimulation, antioxidants, alpha 7 nicotinic receptor agonists, and corticotropin-releasing factor receptor 1 antagonist may ameliorate neuroinflammation and oxidative stress in NCGS; they may therefore, prevent cognitive dysfunction and vulnerability to Alzheimer's disease.

  6. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.

  7. Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation.

    PubMed

    Hsueh, P-T; Lin, H-H; Wang, H-H; Liu, C-L; Ni, W-F; Liu, J-K; Chang, H-H; Sun, D-S; Chen, Y-S; Chen, Y-L

    2018-04-15

    The murine maternal immune activation (MIA) offspring model enables longitudinal studies to explore aberrant social behaviors similar to those observed in humans. High levels of cytokines, chemokines and cell adhesion molecules (CAM) have been found in the plasma and/or brains of psychiatric patients. We hypothesized that upregulation of the systemic or brain immune response has an augmenting effect by potentially increasing the interplay between the neuronal and immune systems during the growth of the MIA offspring. In this study, a C57BL/6j MIA female offspring model exhibiting social deficits was established. The expression of fetal interferon (IFN)-stimulated (gbp3, irgm1, ifi44), adolescent immunodevelopmental transcription factor (eg, r2, tfap2b), hormone (pomc, hcrt), adult selectin (sell, selp) and neuroligin (nlgn2) genes was altered. Systemic upregulation of endogenous IL-10 occurred at the adult stage, while both IL-1β and IL-6 were increased and persisted in the sera throughout the growth of the MIA offspring. The cerebral IL-6 levels were endogenously upregulated, but both MCP-1 (macrophage inflammatory protein-1) and L-selectin levels were downregulated at the adolescent and/or adult stages. However, the MIA offspring were susceptible to lipopolysaccharide (LPS) stimulation. After reinjecting the MIA offspring with LPS in adulthood, a variety of sera and cerebral cytokines, chemokines and CAMs were increased. Particularly, both MCP-1 and L-selectin showed relatively high expression in the brain compared with the expression levels in phosphate-buffered saline (PBS)-treated offspring injected with LPS. Potentially, MCP-1 was attracted to the L-selectin-mediated immune cells due to augmentation of the immune response following stimulation in MIA female offspring. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  8. Principles and approaches to the treatment of immune-mediated movement disorders.

    PubMed

    Mohammad, Shekeeb S; Dale, Russell C

    2018-03-01

    Immune mediated movement disorders include movement disorders in the context of autoimmune encephalitis such as anti-NMDAR encephalitis, post-infectious autoimmune movement disorders such as Sydenham chorea, paraneoplastic autoimmune movement disorders such as opsoclonus myoclonus ataxia syndrome, and infection triggered conditions such as paediatric acute neuropsychiatric syndrome. This review focuses on the approach to treatment of immune mediated movement disorders, which requires an understanding of the immunopathogenesis, whether the disease is destructive or 'altering', and the natural history of disease. Factors that can influence outcome include the severity of disease, the delay before starting therapy, use of multimodal therapy and whether the course is monophasic or relapsing. Although the four main conditions listed above have different pathophysiological processes, there are general themes that broadly apply including: early diagnosis and treatment is better, minimise the severity of disease, escalate treatment if the patient is not responding to initial treatments, and minimise relapse. Copyright © 2017. Published by Elsevier Ltd.

  9. The Role of Baseline Vagal Tone in Dealing with a Stressor during Face to Face and Computer-Based Social Interactions.

    PubMed

    Rigoni, Daniele; Morganti, Francesca; Braibanti, Paride

    2017-01-01

    Facing a stressor involves a cardiac vagal tone response and a feedback effect produced by social interaction in visceral regulation. This study evaluated the contribution of baseline vagal tone and of social engagement system (SES) functioning on the ability to deal with a stressor. Participants ( n = 70) were grouped into a minimized social interaction condition (procedure administered through a PC) and a social interaction condition (procedure administered by an experimenter). The State Trait Anxiety Inventory, the Social Interaction Anxiety Scale, the Emotion Regulation Questionnaire and a debriefing questionnaire were completed by the subjects. The baseline vagal tone was registered during the baseline, stressor and recovery phases. The collected results highlighted a significant effect of the baseline vagal tone on vagal suppression. No effect of minimized vs. social interaction conditions on cardiac vagal tone during stressor and recovery phases was detected. Cardiac vagal tone and the results of the questionnaires appear to be not correlated. The study highlighted the main role of baseline vagal tone on visceral regulation. Some remarks on SES to be deepen in further research were raised.

  10. The Role of Baseline Vagal Tone in Dealing with a Stressor during Face to Face and Computer-Based Social Interactions

    PubMed Central

    Rigoni, Daniele; Morganti, Francesca; Braibanti, Paride

    2017-01-01

    Facing a stressor involves a cardiac vagal tone response and a feedback effect produced by social interaction in visceral regulation. This study evaluated the contribution of baseline vagal tone and of social engagement system (SES) functioning on the ability to deal with a stressor. Participants (n = 70) were grouped into a minimized social interaction condition (procedure administered through a PC) and a social interaction condition (procedure administered by an experimenter). The State Trait Anxiety Inventory, the Social Interaction Anxiety Scale, the Emotion Regulation Questionnaire and a debriefing questionnaire were completed by the subjects. The baseline vagal tone was registered during the baseline, stressor and recovery phases. The collected results highlighted a significant effect of the baseline vagal tone on vagal suppression. No effect of minimized vs. social interaction conditions on cardiac vagal tone during stressor and recovery phases was detected. Cardiac vagal tone and the results of the questionnaires appear to be not correlated. The study highlighted the main role of baseline vagal tone on visceral regulation. Some remarks on SES to be deepen in further research were raised. PMID:29234291

  11. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation

    PubMed Central

    Paula Neto, Heitor A.; Ausina, Priscila; Gomez, Lilian S.; Leandro, João G. B.; Zancan, Patricia; Sola-Penna, Mauro

    2017-01-01

    Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of “lean homeostasis” and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited. PMID:29163542

  12. Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury.

    PubMed

    Winerdal, Max; Winerdal, Malin E; Wang, Ying-Qing; Fredholm, Bertil B; Winqvist, Ola; Ådén, Ulrika

    2016-03-01

    Neonatal brain hypoxic ischemia (HI) often results in long-term motor and cognitive impairments. Post-ischemic inflammation greatly effects outcome and adenosine receptor signaling modulates both HI and immune cell function. Here, we investigated the influence of adenosine A1 receptor deficiency (A1R(-/-)) on key immune cell populations in a neonatal brain HI model. Ten-day-old mice were subjected to HI. Functional outcome was assessed by open locomotion and beam walking test and infarction size evaluated. Flow cytometry was performed on brain-infiltrating cells, and semi-automated analysis of flow cytometric data was applied. A1R(-/-) mice displayed larger infarctions (+33%, p < 0.05) and performed worse in beam walking tests (44% more mistakes, p < 0.05) than wild-type (WT) mice. Myeloid cell activation after injury was enhanced in A1R(-/-) versus WT brains. Activated B lymphocytes expressing IL-10 infiltrated the brain after HI in WT, but were less activated and did not increase in relative frequency in A1R(-/-). Also, A1R(-/-) B lymphocytes expressed less IL-10 than their WT counterparts, the A1R antagonist DPCPX decreased IL-10 expression whereas the A1R agonist CPA increased it. CD4(+) T lymphocytes including FoxP3(+) T regulatory cells, were unaffected by genotype, whereas CD8(+) T lymphocyte responses were smaller in A1R(-/-) mice. Using PCA to characterize the immune profile, we could discriminate the A1R(-/-) and WT genotypes as well as sham operated from HI-subjected animals. We conclude that A1R signaling modulates IL-10 expression by immune cells, influences the activation of these cells in vivo, and affects outcome after HI.

  13. Mast Cells Mediate the Immune Suppression Induced by Dermal Exposure to JP-8 Jet Fuel

    PubMed Central

    Limón-Flores, Alberto Y.; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E.

    2009-01-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell–mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel–induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell “knock-in mice”) restored JP-8–induced immune suppression. When, however, mast cells from prostaglandin E2 (PGE2)–deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell–derived PGE2 was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8–induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel–induced immune suppression. PMID:19726579

  14. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages.

    PubMed

    Li, Wen-Juan; Tang, Xiao-Fang; Shuai, Xiao-Xue; Jiang, Cheng-Jia; Liu, Xiang; Wang, Le-Feng; Yao, Yu-Fei; Nie, Shao-Ping; Xie, Ming-Yong

    2017-01-18

    The ability of mannose receptor (MR) to recognize the carbohydrate structures is well-established. Here, we reported that MR was crucial for the immune response to a Ganoderma atrum polysaccharide (PSG-1), as evidenced by elevation of MR in association with increase of phagocytosis and concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in normal macrophages. Elevation of MR triggered by PSG-1 also led to control lipopolysaccharide (LPS)-triggered inflammatory response via the increase of interleukin-10 (IL-10) and inhibition of phagocytosis and IL-1β. Anti-MR antibody partly attenuated PSG-1-mediated anti-inflammatory responses, while it could not affect TNF-α secretion, suggesting that another receptor was involved in PSG-1-triggered immunomodulatory effects. MR and toll-like receptor (TLR)4 coordinated the influences on the TLR4-mediated signaling cascade by the nuclear factor-κB (NF-κB) pathway in LPS-stimulated macrophages subjected to PSG-1. Collectively, immune response to PSG-1 required recognition by MR in macrophages. The NF-κB pathway served as a central role for the coordination of MR and TLR4 to elicit immune response to PSG-1.

  15. Innate Immune Regulation by Toll-Like Receptors in the Brain

    PubMed Central

    Mallard, Carina

    2012-01-01

    The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized. PMID:23097717

  16. Mothers’ Responses to Children’s Negative Emotions and Child Emotion Regulation: The Moderating Role of Vagal Suppression

    PubMed Central

    Perry, Nicole B.; Calkins, Susan D.; Nelson, Jackie A.; Leerkes, Esther M.; Marcovitch, Stuart

    2011-01-01

    The current study examined the moderating effect of children’s cardiac vagal suppression on the association between maternal socialization of negative emotions (supportive and non-supportive responses) and children’s emotion regulation behaviors. One hundred and ninety-seven 4-year-olds and their mothers participated. Mothers reported on their reactions to children’s negative emotions and children’s regulatory behaviors. Observed distraction, an adaptive self-regulatory strategy, and vagal suppression were assessed during a laboratory task designed to elicit frustration. Results indicated that children’s vagal suppression moderated the association between mothers’ non-supportive emotion socialization and children’s emotion regulation behaviors such that non-supportive reactions to negative emotions predicted lower observed distraction and lower reported emotion regulation behaviors when children displayed lower levels of vagal suppression. No interaction was found between supportive maternal emotion socialization and vagal suppression for children’s emotion regulation behaviors. Results suggest physiological regulation may serve as a buffer against non-supportive emotion socialization. PMID:22072217

  17. Evidence that antidromically stimulated vagal afferents activate inhibitory neurones innervating guinea-pig trachealis.

    PubMed Central

    Canning, B J; Undem, B J

    1994-01-01

    1. We recently described a capsaicin-sensitive vagal pathway mediating non-adrenergic, non-cholinergic (NANC) relaxations of an isolated, innervated rostral guinea-pig tracheal preparation. These afferent fibres are carried by the superior laryngeal nerves and relaxations elicited by their activation are insensitive to autonomic ganglion blockers such as hexamethonium. In the present study this vagal relaxant pathway was further characterized. 2. Relaxations of the trachealis elicited by electrical stimulation of capsaicin-sensitive vagal afferents were mimicked by bath application of capsaicin. Relaxations elicited by both methods were abolished when the tissue between the trachea and the adjacent oesophagus was disrupted. Indeed, separating the trachea from the oesophagus uncovered a contractile effect of capsaicin administration on the trachealis. 3. Capsaicin-induced, oesophagus-dependent relaxations of the trachealis were blocked by pretreatment with the fast sodium channel blocker tetrodotoxin (TTX). By contrast, capsaicin-induced contractions of the trachealis (obtained in the absence of the oesophagus) were unaffected by tetrodotoxin. 4. Substance P, neurokinin A (NKA) and neurokinin B (NKB) also elicited NANC relaxations of precontracted trachealis that were abolished by separating the trachea from the oesophagus or by TTX pretreatment. Like capsaicin, the tachykinins elicited only contractions of the trachealis following TTX pretreatment or separation of the trachea from the adjacent oesophagus. 5. Relaxations elicited by stimulation of the capsaicin-sensitive nerves were unaffected by a concentration of the tachykinin NK2 receptor-selective antagonist, SR 48968, that is selective for NK2 receptor blockade and were not mimicked by the NK2 receptor-selective agonist [beta-Ala8]-NKA(4-10). This suggests that NK2 receptors are not responsible for these relaxations. By contrast, the NK3 receptor-selective agonist, senktide analogue, and the NK1 receptor

  18. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth.

    PubMed

    Lozano-Durán, Rosa; Macho, Alberto P; Boutrot, Freddy; Segonzac, Cécile; Somssich, Imre E; Zipfel, Cyril

    2013-12-31

    The molecular mechanisms underlying the trade-off between plant innate immunity and steroid-mediated growth are controversial. Here, we report that activation of the transcription factor BZR1 is required and sufficient for suppression of immune signaling by brassinosteroids (BR). BZR1 induces the expression of several WRKY transcription factors that negatively control early immune responses. In addition, BZR1 associates with WRKY40 to mediate the antagonism between BR and immune signaling. We reveal that BZR1-mediated inhibition of immunity is particularly relevant when plant fast growth is required, such as during etiolation. Thus, BZR1 acts as an important regulator mediating the trade-off between growth and immunity upon integration of environmental cues. DOI: http://dx.doi.org/10.7554/eLife.00983.001.

  19. Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael J.; Webster, Jamie; Chung, Amanda; Guimarães, Pedro P. G.; Khan, Omar F.; Langer, Robert

    2017-03-01

    Physical forces affect tumour growth, progression and metastasis. Here, we develop polymeric mechanical amplifiers that exploit in vitro and in vivo physical forces to increase immune cytokine-mediated tumour cell apoptosis. Mechanical amplifiers, consisting of biodegradable polymeric particles tethered to the tumour cell surface via polyethylene glycol linkers, increase the apoptotic effect of an immune cytokine on tumour cells under fluid shear exposure by as much as 50% compared with treatment under static conditions. We show that targeted polymeric particles delivered to tumour cells in vivo amplify the apoptotic effect of a subsequent treatment of immune cytokine, reduce circulating tumour cells in blood and overall tumour cell burden by over 90% and reduce solid tumour growth in combination with the antioxidant resveratrol. The work introduces a potentially new application for a broad range of micro- and nanoparticles to maximize receptor-mediated signalling and function in the presence of physical forces.

  20. Local opiate receptors in the sinoatrial node moderate vagal bradycardia.

    PubMed

    Farias, M; Jackson, K; Stanfill, A; Caffrey, J L

    2001-02-20

    Met-enkephalin-arg-phe (MEAP) interrupts vagal bradycardia when infused into the systemic circulation. This study was designed to locate the opiate receptors functionally responsible for this inhibition. Previous observations suggested that the receptors were most likely located in either intracardiac parasympathetic ganglia or the pre-junctional nerve terminals innervating the sinoatrial node. In this study 10 dogs were instrumented with a microdialysis probe inserted into the sinoatrial node. The functional position of the probe was tested by briefly introducing norepinephrine into the probe producing an increase in heart rate of more than 30 beats/min. Vagal stimulations were conducted at 0.5, 1.2 and 4 Hz during vehicle infusion (saline ascorbate). Cardiovascular responses during vagal stimulation were recorded on-line. MEAP was infused directly into the sinoatrial node via the microdialysis probe. The evaluation of vagal bradycardia was repeated during the nodal application of MEAP, diprenorphine (opiate antagonist), and diprenorphine co-infused with MEAP. MEAP introduced into the sinoatrial node via the microdialysis probe reduced vagal bradycardia by more than half. Simultaneous local nodal blockade of these receptors with the opiate antagonist, diprenorphine, eliminated the effect of MEAP demonstrating the participation by opiate receptors. Systemic infusions of MEAP produced a reduction in vagal bradycardia nearly identical to that observed during nodal administration. When local nodal opiate receptors were blocked with diprenorphine, the systemic effect of MEAP was eliminated. These data lead us to suggest that the opiate receptors responsible for the inhibition of vagal bradycardia are located within the sinoatrial node with few, if any, participating extra-nodal or ganglionic receptors.

  1. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, Rossana C.N., E-mail: rossana.melo@ufjf.edu.br; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215; Weller, Peter F.

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombreromore » Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.« less

  2. Inflammatory cytokines in the brain: does the CNS shape immune responses?

    PubMed

    Owens, T; Renno, T; Taupin, V; Krakowski, M

    1994-12-01

    Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.

  3. Prevention of immune-mediated transfusion-related acute lung injury; from bloodbank to patient.

    PubMed

    Műller, Marcella C A; Porcelijn, Leendert; Vlaar, Alexander P J

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion related morbidity and mortality. Immune-mediated TRALI is caused by leucocyte and neutrophil antibodies in the transfused blood products that react with white blood cell antigens of the recipient, hereby inducing endothelial damage and lung injury. About two thirds of TRALI cases are thought to be immune-mediated. Both Human Leucocyte Antibodies (HLA Class I and II) and Human Neutrophil Antibodies (HNA) are involved in TRALI. Most antibodies result from allo-exposure of the blood donor, with multiparous donors having the highest incidence of antibodies. Detection of anti-leucocyte and anti-neutrophil antibodies is complex and many uncertainties still exist regarding the interpretation of the test results. In this review we discuss the evidence and effectiveness of measurements to prevent immune-mediated TRALI from a bloodbank and bedside perspective. From a bloodbank perspective various preventive measures have been implicated. In some countries bloodbanks have successfully implemented donor selection strategies, ranging from testing of allo-exposed donors for leucocyte antibodies to the exclusion of all females from donating high plasma volume products. Another strategy involves dilution of antibodies present by pooling of plasma donations of multiple donors. From a bedside view, the most important measure to prevent TRALI is to limit patients' exposure to allogenic bloodproducts. Furthermore recognition and awareness of the syndrome need to be heightened among clinicians.

  4. Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans

    NASA Technical Reports Server (NTRS)

    Taylor, J. A.; Myers, C. W.; Halliwill, J. R.; Seidel, H.; Eckberg, D. L.

    2001-01-01

    Clinicians and experimentalists routinely estimate vagal-cardiac nerve traffic from respiratory sinus arrhythmia. However, evidence suggests that sympathetic mechanisms may also modulate respiratory sinus arrhythmia. Our study examined modulation of respiratory sinus arrhythmia by sympathetic outflow. We measured R-R interval spectral power in 10 volunteers that breathed sequentially at 13 frequencies, from 15 to 3 breaths/min, before and after beta-adrenergic blockade. We fitted changes of respiratory frequency R-R interval spectral power with a damped oscillator model: frequency-dependent oscillations with a resonant frequency, generated by driving forces and modified by damping influences. beta-Adrenergic blockade enhanced respiratory sinus arrhythmia at all frequencies (at some, fourfold). The damped oscillator model fit experimental data well (39 of 40 ramps; r = 0.86 +/- 0.02). beta-Adrenergic blockade increased respiratory sinus arrhythmia by amplifying respiration-related driving forces (P < 0.05), without altering resonant frequency or damping influences. Both spectral power data and the damped oscillator model indicate that cardiac sympathetic outflow markedly reduces heart period oscillations at all frequencies. This challenges the notion that respiratory sinus arrhythmia is mediated simply by vagal-cardiac nerve activity. These results have important implications for clinical and experimental estimation of human vagal cardiac tone.

  5. Increased Vagal Tone and Sleep Apnea Syndrome.

    PubMed

    Ahmed, Tosaddak

    2016-01-01

    It has been observed that atrial overdrive pacing abolishes sleep apnea syndrome, but how it does so has not been explained. There is a possibility that it sends a retrograde inhibitory impulse to the vagal center in the brainstem, which in turn reduces the vagal tone, and thus prevents sleep apnea. Therefore, medical vagolytics such as atropine type of drugs should have the same effect. This is a case report of such an attempt.

  6. From the Bottom-Up: Chemotherapy and Gut-Brain Axis Dysregulation.

    PubMed

    Bajic, Juliana E; Johnston, Ian N; Howarth, Gordon S; Hutchinson, Mark R

    2018-01-01

    The central nervous system and gastrointestinal tract form the primary targets of chemotherapy-induced toxicities. Symptoms associated with damage to these regions have been clinically termed chemotherapy-induced cognitive impairment and mucositis. Whilst extensive literature outlines the complex etiology of each pathology, to date neither chemotherapy-induced side-effect has considered the potential impact of one on the pathogenesis of the other disorder. This is surprising considering the close bidirectional relationship shared between each organ; the gut-brain axis. There are complex multiple pathways linking the gut to the brain and vice versa in both normal physiological function and disease. For instance, psychological and social factors influence motility and digestive function, symptom perception, and behaviors associated with illness and pathological outcomes. On the other hand, visceral pain affects central nociception pathways, mood and behavior. Recent interest highlights the influence of functional gut disorders, such as inflammatory bowel diseases and irritable bowel syndrome in the development of central comorbidities. Gut-brain axis dysfunction and microbiota dysbiosis have served as key portals in understanding the potential mechanisms associated with these functional gut disorders and their effects on cognition. In this review we will present the role gut-brain axis dysregulation plays in the chemotherapy setting, highlighting peripheral-to-central immune signaling mechanisms and their contribution to neuroimmunological changes associated with chemotherapy exposure. Here, we hypothesize that dysregulation of the gut-brain axis plays a major role in the intestinal, psychological and neurological complications following chemotherapy. We pay particular attention to evidence surrounding microbiota dysbiosis, the role of intestinal permeability, damage to nerves of the enteric and peripheral nervous systems and vagal and humoral mediated changes.

  7. Effects and distribution of vagal capsaicin-sensitive substance P neurons with special reference to the trachea and lungs.

    PubMed

    Lundberg, J M; Brodin, E; Saria, A

    1983-11-01

    The origin of substance P (SP)-immunoreactive neurons in the lower respiratory tract, esophagus and heart of guinea-pigs was demonstrated by surgical denervation or capsaicin pretreatment with subsequent determination of the tissue levels of SP by radioimmunoassay. In other experiments the effect of vagal nerve stimulation on the SP levels in these tissues was studied. The effects of capsaicin-sensitive afferents in the respiratory tract mucosa and bronchial smooth muscle was also studied by analysis of vascular permeability to Evans blue and insufflation-pressure changes. Our present data indicate that all SP nerves in the trachea and lung are afferent and capsaicin-sensitive. The trachea and stem bronchi receive SP afferents mainly from the right vagus nerve with cell bodies located in both the nodose and jugular ganglia. The SP innervation of the lung seems to have a dual origin: 1. Afferents from both vagal nerves with a crossed type of innervation pattern. 2. A non-vagal source which consists of about 40% of the SP nerves in the lung. These nerves probably originate from thoracic spinal ganglia. The effects of ether and capsaicin on insufflation pressure and increase in vascular permeability were dependent on the integrity of capsaicin-sensitive afferents of both vagal and non-vagal origin. In the guinea pig, systemic capsaicin pretreatment to adult animals seemed to result in irreversible changes in the respiratory tract, while in the rat a successive recovery of the functional response of capsaicin-sensitive afferents occurred. Different regimes of systemic capsaicin pretreatment induced different effects on the cholinergic (atropine-sensitive) insufflation-pressure response. Capsaicin pretreatment, using multiple injections over two days, depressed the cholinergic insufflation-pressure increase, while the cholinergic vagal component was unaffected in animals which received a single dose of capsaicin or local pretreatment with capsaicin on the vagal nerves

  8. Immune remodeling: lessons from repertoire alterations during chronological aging and in immune-mediated disease.

    PubMed

    Vallejo, Abbe N

    2007-03-01

    Immunological studies of aging and of patients with chronic immune-mediated diseases document overlap of immune phenotypes. Here, the term "immune remodeling" refers to these phenotypes that are indicative of biological processes of deterioration and repair. This concept is explored through lessons from studies about the changes in the T-cell repertoire and the functional diversity of otherwise oligoclonal, senescent T cells. Immune remodeling suggests a gradual process that occurs throughout life. However, similar but more drastic remodeling occurs disproportionately among young patients with chronic disease. In this article, I propose that immune remodeling is a beneficial adaptation of aging to promote healthy survival beyond reproductive performance, but acute remodeling poses risk of premature exhaustion of the immune repertoire and, thus, is detrimental in young individuals.

  9. Role of vagal afferents in the ventilatory response to naloxone during loaded breathing in the rabbit.

    PubMed

    Delpierre, S; Pugnat, C; Duté, N; Jammes, Y

    1995-02-15

    It was previously shown that inspiratory resistive loading (IRL) increases the cerebrospinal fluid (CSF) level of beta endorphin in awake goats, and also that the slower ventilation induced by injection of this substance into the CSF of anesthetized dogs is suppressed after vagotomy. In the present study, performed on anesthetized rabbits, we evaluated the part played by vagal afferents in the ventilatory response to IRL after opioid receptor blockade by naloxone. During unloaded breathing, naloxone injection did not modify baseline ventilation. Conversely, naloxone partially reversed IRL-induced hypoventilation through an increase in respiratory rate. This effect was abolished after either vagotomy or cold blockade of large vagal fibers, but it persisted after procaine blockade of thin vagal fibers. These results suggest that pulmonary stretch receptors, which are connected to some large vagal afferent fibers, would play a major role in the ventilatory response to IRL under opioid receptor inhibition.

  10. The vagal ganglia transcriptome identifies candidate therapeutics for airway hyperreactivity.

    PubMed

    Reznikov, Leah R; Meyerholz, David K; Abou Alaiwa, Mahmoud H; Kuan, Shin-Ping; Liao, Yan-Shin J; Bormann, Nicholas L; Bair, Thomas B; Price, Margaret; Stoltz, David A; Welsh, Michael J

    2018-04-05

    Mainstay therapeutics are ineffective in some people with asthma, suggesting a need for additional agents. In the current study, we used vagal ganglia transcriptome profiling and connectivity mapping to identify compounds beneficial for alleviating airway hyperreactivity. As a comparison, we also utilized previously published transcriptome data from sensitized mouse lungs and human asthmatic endobronchial biopsies. All transcriptomes revealed agents beneficial for mitigating airway hyperreactivity; however, only the vagal ganglia transcriptome identified agents used clinically to treat asthma (flunisolide, isoetarine). We also tested one compound identified by vagal ganglia transcriptome profiling that had not previously been linked to asthma and found that it had bronchodilator effects in both mouse and pig airways. These data suggest that transcriptome profiling of the vagal ganglia might be a novel strategy to identify potential asthma therapeutics.

  11. Immunotherapy targeting immune check-point(s) in brain metastases.

    PubMed

    Di Giacomo, Anna Maria; Valente, Monica; Covre, Alessia; Danielli, Riccardo; Maio, Michele

    2017-08-01

    Immunotherapy with monoclonal antibodies (mAb) directed to different immune check-point(s) is showing a significant clinical impact in a growing number of human tumors of different histotype, both in terms of disease response and long-term survival patients. In this rapidly changing scenario, treatment of brain metastases remains an high unmeet medical need, and the efficacy of immunotherapy in these highly dismal clinical setting remains to be largely demonstrated. Nevertheless, up-coming observations are beginning to suggest a clinical potential of cancer immunotherapy also in brain metastases, regardless the underlying tumor histotype. These observations remain to be validated in larger clinical trials eventually designed also to address the efficacy of therapeutic mAb to immune check-point(s) within multimodality therapies for brain metastases. Noteworthy, the initial proofs of efficacy on immunotherapy in central nervous system metastases are already fostering clinical trials investigating its therapeutic potential also in primary brain tumors. We here review ongoing immunotherapeutic approaches to brain metastases and primary brain tumors, and the foreseeable strategies to overcome their main biologic hurdles and clinical challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Inhibitory neurotransmission regulates vagal efferent activity and gastric motility

    PubMed Central

    McMenamin, Caitlin A; Travagli, R Alberto

    2016-01-01

    The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory synapse and its role in regulating vagally determined gastric functions. PMID:27302177

  13. Antitumor immune responses mediated by dendritic cells

    PubMed Central

    Spel, Lotte; Boelens, Jaap-Jan; Nierkens, Stefan; Boes, Marianne

    2013-01-01

    Dendritic cells (DCs) are essential for the induction of adaptive immune responses against malignant cells by virtue of their capacity to effectively cross-present exogenous antigens to T lymphocytes. Dying cancer cells are indeed a rich source of antigens that may be harnessed for the development of DC-based vaccines. In particular, malignant cells succumbing to apoptosis, rather than necrosis, appear to release antigens in a manner that allows for the elicitation of adaptive immune responses. In this review, we describe the processes that mediate the cross-presentation of antigens released by apoptotic cancer cells to CD8+ T lymphocytes, resulting in the activation of protective tumor-specific immune responses. PMID:24482744

  14. The Role of Innate Lymphoid Cells in Immune-Mediated Liver Diseases

    PubMed Central

    Liu, Meifang; Zhang, Cai

    2017-01-01

    Innate lymphoid cells (ILCs) are a recently identified group of innate immune cells lacking antigen-specific receptors that can mediate immune responses and regulate tissue homeostasis and inflammation. ILCs comprise group 1 ILCs, group 2 ILCs, and group 3 ILCs. These ILCs usually localize at mucosal surfaces and combat pathogens by the rapid release of certain cytokines. However, the uncontrolled activation of ILCs can also lead to damaging inflammation, especially in the gut, lung, and skin. Although the physiological and pathogenic roles of ILCs in liver diseases have been attracting increasing attention recently, there has been no systematic review regarding the roles of ILCs in immune-mediated liver diseases. Here, we review the relationships between the ILC subsets and their functions in immune-mediated liver diseases, and discuss their therapeutic potential based on current knowledge about the functional roles of these cells in liver diseases. PMID:28659927

  15. Moderate Baseline Vagal Tone Predicts Greater Prosociality in Children

    ERIC Educational Resources Information Center

    Miller, Jonas G.; Kahle, Sarah; Hastings, Paul D.

    2017-01-01

    Vagal tone is widely believed to be an important physiological aspect of emotion regulation and associated positive behaviors. However, there is inconsistent evidence for relations between children's baseline vagal tone and their helpful or prosocial responses to others (Hastings & Miller, 2014). Recent work in adults suggests a quadratic…

  16. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain

    PubMed Central

    Lumniczky, Katalin; Szatmári, Tünde; Sáfrány, Géza

    2017-01-01

    Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed. PMID:28529513

  17. Preterm Birth Affects the Risk of Developing Immune-Mediated Diseases

    PubMed Central

    Goedicke-Fritz, Sybelle; Härtel, Christoph; Krasteva-Christ, Gabriela; Kopp, Matthias V.; Meyer, Sascha; Zemlin, Michael

    2017-01-01

    Prematurity affects approximately 10% of all children, resulting in drastically altered antigen exposure due to premature confrontation with microbes, nutritional antigens, and other environmental factors. During the last trimester of pregnancy, the fetal immune system adapts to tolerate maternal and self-antigens, while also preparing for postnatal immune defense by acquiring passive immunity from the mother. Since the perinatal period is regarded as the most important “window of opportunity” for imprinting metabolism and immunity, preterm birth may have long-term consequences for the development of immune-mediated diseases. Intriguingly, preterm neonates appear to develop bronchial asthma more frequently, but atopic dermatitis less frequently in comparison to term neonates. The longitudinal study of preterm neonates could offer important insights into the process of imprinting for immune-mediated diseases. On the one hand, preterm birth may interrupt influences of the intrauterine environment on the fetus that increase or decrease the risk of later immune disease (e.g., maternal antibodies and placenta-derived factors), whereas on the other hand, it may lead to the premature exposure to protective or harmful extrauterine factors such as microbiota and nutritional antigen. Solving this puzzle may help unravel new preventive and therapeutic approaches for immune diseases. PMID:29062316

  18. Immune mediated disorders in women with a fragile X expansion and FXTAS.

    PubMed

    Jalnapurkar, Isha; Rafika, Nuva; Tassone, Flora; Hagerman, Randi

    2015-01-01

    Premutation alleles in fragile X mental retardation 1 (FMR1) can cause the late-onset neurodegenerative disorder, fragile X-associated tremor ataxia syndrome (FXTAS) and/or the fragile X-associated primary ovarian insufficiency in approximately 20% of heterozygotes. Heterozygotes of the FMR1 premutation have a higher incidence of immune mediated disorders such as autoimmune thyroid disorder, especially when accompanied by FXTAS motor signs. We describe the time course of symptoms of immune mediated disorders and the subsequent development of FXTAS in four women with an FMR1 CGG expansion, including three with the premutation and one with a gray zone expansion. These patients developed an immune mediated disorder followed by neurological symptoms that become consistent with FXTAS. In all patients we observed a pattern involving an initial appearance of disease symptoms-often after a period of heightened stress (depression, anxiety, divorce, general surgery) followed by the onset of tremor and/or ataxia. Immune mediated diseases are associated with the manifestations of FXTAS temporally, although further studies are needed to clarify this association. If a cause and effect relationship can be established, treatment of pre-existing immune mediated disorders may benefit patients with pathogenic FMR1 mutations. © 2014 Wiley Periodicals, Inc.

  19. Alcohol and vagal tone as triggers for paroxysmal atrial fibrillation.

    PubMed

    Mandyam, Mala C; Vedantham, Vasanth; Scheinman, Melvin M; Tseng, Zian H; Badhwar, Nitish; Lee, Byron K; Lee, Randall J; Gerstenfeld, Edward P; Olgin, Jeffrey E; Marcus, Gregory M

    2012-08-01

    Alcohol and vagal activity may be important triggers for paroxysmal atrial fibrillation (PAF), but it remains unknown if these associations occur more often than would be expected by chance alone because of the lack of a comparator group in previous studies. We compared self-reported frequency of these triggers in patients with PAF to those with other supraventricular tachycardias (SVTs). Consecutive consenting patients presenting for electrophysiology procedures at a single university medical center underwent a structured interview regarding arrhythmia triggers. Two hundred twenty-three patients with a documented arrhythmia (133 with PAF and 90 with SVT) completed the survey. After multivariable adjustment, patients with PAF had a 4.42 greater odds (95% confidence interval [CI] 1.35 to 14.44) of reporting alcohol consumption (p = 0.014) and a 2.02 greater odds (95% CI 1.02 to 4.00) of reporting vagal activity (p = 0.044) as an arrhythmia trigger compared to patients with SVT. In patients with PAF, drinking primarily beer was associated with alcohol as a trigger (odds ratio [OR] 4.49, 95% CI 1.41 to 14.28, p = 0.011), whereas younger age (OR 0.68, 95% CI 0.49 to 0.95, p = 0.022) and a family history of AF (OR 5.73, 95% CI 1.21 to 27.23, p = 0.028) each were independently associated with having vagal activity provoke an episode. Patients with PAF and alcohol triggers were more likely to have vagal triggers (OR 10.32, 95% CI 1.05 to 101.42, p = 0.045). In conclusion, alcohol consumption and vagal activity elicit PAF significantly more often than SVT. Alcohol and vagal triggers often were found in the same patients with PAF, raising the possibility that alcohol may precipitate AF by vagal mechanisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The effect of vagal afferent on total vascular compliance in rats.

    PubMed

    Kinoshita, T

    1993-04-01

    This study was designed to investigate the effect of vagal afferent stimulation on total vascular compliance (TVC). Rats were anesthetized with sodium pentobarbital and artificially ventilated, TVC was determined together with stressed and unstressed blood volumes by measuring mean circulatory filling pressure (Pmcf) at three different levels of circulating blood volume. Measurements was repeated with the intact vagus, after vagotomy and during stimulation of vagal afferents. Vagotomy caused no change in TVC, Pmcf, and stressed and unstressed blood volumes. On the other hand, electrical stimulation of the vagal afferents for 30 sec increased TVC from 3.03 +/- 0.51 to 3.39 +/- 0.44 ml.mmHg(-1).kg(-1) (P < 0.05) and decreased Pmcf from 7.83 +/- 1.40 to 7.22 +/- 1.21 mmHg (P < 0.05). Neither stressed nor unstressed blood volume was changed by vagal stimulation. These results indicate that excitation of vagal afferent causes venodilation and increases TVC without changing stressed and unstressed blood volumes.

  1. Selfish brain and selfish immune system interplay: A theoretical framework for metabolic comorbidities of mood disorders.

    PubMed

    Yamagata, Ana Sayuri; Mansur, Rodrigo Barbachan; Rizzo, Lucas Bortolotto; Rosenstock, Tatiana; McIntyre, Roger S; Brietzke, Elisa

    2017-01-01

    According to the "selfish brain" theory, the brain regulates its own energy supply influencing the peripheral metabolism and food intake according to its needs. The immune system has been likewise "selfish" due to independent energy consumption; and it may compete with the brain (another high energy-consumer) for glucose. In mood disorders, stress in mood episodes or physiological stress activate homeostasis mechanisms from the brain and the immune system to solve the imbalance. The interaction between the selfish brain and the selfish immune system may explain various conditions of medical impairment in mood disorders, such as Metabolic Syndrome (MetS), obesity, type 2 diabetes mellitus (T2DM) and immune dysregulation. The objective of this study is to comprehensively review the literature regarding the competition between the brain and the immune system for energy substrate. Targeting the energetic regulation of the brain and the immune system and their cross-talk open alternative treatments and a different approach in the study of general medical comorbidities in mood disorders, although more investigation is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The influence of vagal control on sex-related differences in left ventricular mechanics and hemodynamics.

    PubMed

    Williams, Alexandra Mackenzie; Shave, Robert E; Coulson, James M; White, Harriet; Rosser-Stanford, Bryn; Eves, Neil Derek

    2018-06-01

    Left ventricular (LV) twist mechanics differ between males and females during acute physiological stress, which may be partly mediated by sex differences in autonomic control. While males appear to have greater adrenergic control of LV twist, the potential contribution of vagal modulation to sex differences in LV twist remains unknown. Therefore, this study examined the role of vagal control on sex differences in LV twist during graded lower body negative pressure (LBNP) and supine cycling. On two separate visits, LV mechanics were assessed using 2-dimensional speckle-tracking echocardiography in 18 males (22{plus minus}2yr) and 17 females (21{plus minus}4yr) during -40 and -60 mmHg LBNP and 25% and 50% of peak supine cycling workload, with and without glycopyrrolate (vagal blockade). LV twist was not different at baseline but was greater in females during -60 mmHg in both control (F:16.0{plus minus}3.4º, M:12.9{plus minus}2.3º, p=0.004) and glycopyrrolate trials (F:17.7{plus minus}5.9{degree sign}, M:13.9{plus minus}3.3{degree sign}, p<0.001) due to greater apical rotation during control (F:11.9{plus minus}3.6º, M:7.8{plus minus}1.5º, p<0.001) and glycopyrrolate (F:11.6{plus minus}4.9{degree sign}, M:7.1{plus minus}3.6{degree sign}, p=0.009). These sex differences in LV twist consistently coincided with a greater LV sphericity index (i.e. ellipsoid geometry) in females compared to males. In contrast, LV twist did not differ between the sexes during exercise, with or without glycopyrrolate. Females have augmented LV twist compared to males during large reductions to preload, even during vagal blockade. As such, differences in vagal control do not appear to contribute to sex differences in the LV twist responses to physiological stress, but may be related to differences in ventricular geometry.

  3. Vagal modulation of high mobility group box-1 protein mediates electroacupuncture-induced cardioprotection in ischemia-reperfusion injury.

    PubMed

    Zhang, Juan; Yong, Yue; Li, Xing; Hu, Yu; Wang, Jian; Wang, Yong-qiang; Song, Wei; Chen, Wen-ting; Xie, Jian; Chen, Xue-mei; Lv, Xin; Hou, Li-li; Wang, Ke; Zhou, Jia; Wang, Xiang-rui; Song, Jian-gang

    2015-10-26

    Excessive release of high mobility group box-1 (HMGB1) protein from ischemic cardiomyocytes activates inflammatory cascades and enhances myocardial injury after reperfusion. Here we report evidence that electroacupuncture of mice at Neiguan acupoints can inhibit the up-regulation of cardiac HMGB1 following myocardial ischemia and attenuate the associated inflammatory responses and myocardial injury during reperfusion. These benefits of electroacupuncture were partially reversed by administering recombinant HMGB1 to the mice, and further potentiated by administering anti-HMGB1 antibody. Electroacupuncture-induced inhibition of HMGB1 release was markedly reduced by unilateral vagotomy or administration of nicotinic receptor antagonist, but not by chemical sympathectomy. The cholinesterase inhibitor neostigmine mimicked the effects of electroacupuncture on HMGB1 release and myocardial ischemia reperfusion injury. Culture experiments with isolated neonatal cardiomyocytes showed that acetylcholine, but not noradrenaline, inhibited hypoxia-induced release of HMGB1 via a α7nAchR-dependent pathway. These results suggest that electroacupuncture acts via the vagal nerve and its nicotinic receptor-mediated signaling to inhibit HMGB1 release from ischemic cardiomyocytes. This helps attenuate pro-inflammatory responses and myocardial injury during reperfusion.

  4. Vagal modulation of high mobility group box-1 protein mediates electroacupuncture-induced cardioprotection in ischemia-reperfusion injury

    PubMed Central

    Zhang, Juan; Yong, Yue; Li, Xing; Hu, Yu; Wang, Jian; Wang, Yong-qiang; Song, Wei; Chen, Wen-ting; Xie, Jian; Chen, Xue-mei; Lv, Xin; Hou, Li-li; Wang, Ke; Zhou, Jia; Wang, Xiang-rui; Song, Jian-gang

    2015-01-01

    Excessive release of high mobility group box-1 (HMGB1) protein from ischemic cardiomyocytes activates inflammatory cascades and enhances myocardial injury after reperfusion. Here we report evidence that electroacupuncture of mice at Neiguan acupoints can inhibit the up-regulation of cardiac HMGB1 following myocardial ischemia and attenuate the associated inflammatory responses and myocardial injury during reperfusion. These benefits of electroacupuncture were partially reversed by administering recombinant HMGB1 to the mice, and further potentiated by administering anti-HMGB1 antibody. Electroacupuncture-induced inhibition of HMGB1 release was markedly reduced by unilateral vagotomy or administration of nicotinic receptor antagonist, but not by chemical sympathectomy. The cholinesterase inhibitor neostigmine mimicked the effects of electroacupuncture on HMGB1 release and myocardial ischemia reperfusion injury. Culture experiments with isolated neonatal cardiomyocytes showed that acetylcholine, but not noradrenaline, inhibited hypoxia-induced release of HMGB1 via a α7nAchR-dependent pathway. These results suggest that electroacupuncture acts via the vagal nerve and its nicotinic receptor-mediated signaling to inhibit HMGB1 release from ischemic cardiomyocytes. This helps attenuate pro-inflammatory responses and myocardial injury during reperfusion. PMID:26499847

  5. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy.

    PubMed

    Melo, Rossana C N; Weller, Peter F

    2016-10-01

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles - EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Early childhood poverty, immune-mediated disease processes, and adult productivity.

    PubMed

    Ziol-Guest, Kathleen M; Duncan, Greg J; Kalil, Ariel; Boyce, W Thomas

    2012-10-16

    This study seeks to understand whether poverty very early in life is associated with early-onset adult conditions related to immune-mediated chronic diseases. It also tests the role that these immune-mediated chronic diseases may play in accounting for the associations between early poverty and adult productivity. Data (n = 1,070) come from the US Panel Study of Income Dynamics and include economic conditions in utero and throughout childhood and adolescence coupled with adult (age 30-41 y) self-reports of health and economic productivity. Results show that low income, particularly in very early childhood (between the prenatal and second year of life), is associated with increases in early-adult hypertension, arthritis, and limitations on activities of daily living. Moreover, these relationships and particularly arthritis partially account for the associations between early childhood poverty and adult productivity as measured by adult work hours and earnings. The results suggest that the associations between early childhood poverty and these adult disease states may be immune-mediated.

  7. Loss of vagal tone aggravates systemic inflammation and cardiac impairment in endotoxemic rats.

    PubMed

    Schulte, Astrid; Lichtenstern, Christoph; Henrich, Michael; Weigand, Markus A; Uhle, Florian

    2014-05-15

    During the course of sepsis, often myocardial depression with hemodynamic impairment occurs. Acetylcholine, the main transmitter of the parasympathetic Nervus vagus, has been shown to be of importance for the transmission of signals within the immune system and also for a variety of other functions throughout the organism. Hypothesizing a potential correlation between this dysfunction and hemodynamic impairment, we wanted to assess the impact of vagal stimulation on myocardial inflammation and function in a rat model of lipopolysaccharide (LPS)-induced septic shock. As the myocardial tissue is (sparsely) innervated by the N. vagus, there might be an important anti-inflammatory effect in the heart, inhibiting proinflammatory gene expression in cardiomyocytes and improving cardiac function. We performed stimulation of the right cervical branch of the N. vagus in vagotomized, endotoxemic (1 mg/kg body weight LPS, intravenously) rats. Hemodynamic parameters were assessed over time using a left ventricular pressure-volume catheter. After the experiments, hearts and blood plasma were collected, and the expression of proinflammatory cytokines was measured using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. After vagotomy, the inflammatory response was aggravated, measurable by elevated cytokine levels in plasma and ventricular tissue. In concordance, cardiac impairment during septic shock was pronounced in these animals. To reverse both hemodynamic and immunologic effects of diminished vagal tone, even a brief stimulation of the N. vagus was enough during initial LPS infusion. Overall, the N. vagus might play a major role in maintaining hemodynamic stability and cardiac immune homeostasis during septic shock. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors.

    PubMed

    Sylvia, Kristyn E; Demas, Gregory E

    2018-03-01

    The expression of a wide range of social and affective behaviors, including aggression and investigation, as well as anxiety- and depressive-like behaviors, involves interactions among many different physiological systems, including the neuroendocrine and immune systems. Recent work suggests that the gut microbiome may also play a critical role in modulating behavior and likely functions as an important integrator across physiological systems. Microbes within the gut may communicate with the brain via both neural and humoral pathways, providing numerous avenues of research in the area of the gut-brain axis. We are now just beginning to understand the intricate relationships among the brain, microbiome, and immune system and how they work in concert to influence behavior. The effects of different forms of experience (e.g., changes in diet, immune challenge, and psychological stress) on the brain, gut microbiome, and the immune system have often been studied independently. Though because these systems do not work in isolation, it is essential to shift our focus to the connections among them as we move forward in our investigations of the gut-brain axis, the shaping of behavioral phenotypes, and the possible clinical implications of these interactions. This review summarizes the recent progress the field has made in understanding the important role the gut microbiome plays in the modulation of social and affective behaviors, as well as some of the intricate mechanisms by which the microbiome may be communicating with the brain and immune system. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    PubMed

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  10. Sleep and immune function: glial contributions and consequences of aging.

    PubMed

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  11. Sleep and immune function: glial contributions and consequences of aging

    PubMed Central

    Ingiosi, Ashley M.; Opp, Mark R.; Krueger, James M.

    2013-01-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5′-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. PMID:23452941

  12. Heightened Vagal Activity during High-Calorie Food Presentation in Obese compared with Non-obese Individuals - Results of a Pilot Study

    PubMed Central

    Udo, Tomoko; Weinberger, Andrea H.; Grilo, Carlos M.; Brownell, Kelly D.; DiLeone, Ralph J.; Lampert, Rachel; Matlin, Samantha L.; Yanagisawa, Katherine; McKee, Sherry A.

    2013-01-01

    Summary Eating behaviors are highly cue-dependent. Changes in mood states and exposure to palatable food both increase craving and consumption of food. Vagal activity supports adaptive modulation of physiological arousal and has an important role in cue-induced appetitive behaviors. Using high-frequency heart rate variability (HF HRV), this preliminary study compared vagal activity during positive and negative mood induction, and presentation of preferred high-calorie food items between obese (n = 12; BMI ≥ 30) and non-obese individuals (n = 14; 18.5 < BMI < 30). Participants completed two laboratory sessions (negative vs. positive mood conditions). Following 3-hours of food deprivation, all participants completed a mood induction, and then were exposed to their preferred high-calorie food items. HF HRV was assessed throughout. Obese and non-obese individuals were not significantly different in HF HRV during positive or negative mood induction. Obese individuals showed significantly greater levels of HF HRV during presentation of their preferred high-calorie food items than non-obese individuals, particularly in the positive mood condition. This is the first study to demonstrate increased vagal activity in response to food cues in obese individuals compared with non-obese individuals. Our findings warrant further investigation on the potential role of vagally-mediated cue reactivity in overeating and obesity. PMID:24847667

  13. AAVrh.10-mediated expression of an anti-cocaine antibody mediates persistent passive immunization that suppresses cocaine-induced behavior.

    PubMed

    Rosenberg, Jonathan B; Hicks, Martin J; De, Bishnu P; Pagovich, Odelya; Frenk, Esther; Janda, Kim D; Wee, Sunmee; Koob, George F; Hackett, Neil R; Kaminsky, Stephen M; Worgall, Stefan; Tignor, Nicole; Mezey, Jason G; Crystal, Ronald G

    2012-05-01

    Cocaine addiction is a major problem affecting all societal and economic classes for which there is no effective therapy. We hypothesized an effective anti-cocaine vaccine could be developed by using an adeno-associated virus (AAV) gene transfer vector as the delivery vehicle to persistently express an anti-cocaine monoclonal antibody in vivo, which would sequester cocaine in the blood, preventing access to cognate receptors in the brain. To accomplish this, we constructed AAVrh.10antiCoc.Mab, an AAVrh.10 gene transfer vector expressing the heavy and light chains of the high affinity anti-cocaine monoclonal antibody GNC92H2. Intravenous administration of AAVrh.10antiCoc.Mab to mice mediated high, persistent serum levels of high-affinity, cocaine-specific antibodies that sequestered intravenously administered cocaine in the blood. With repeated intravenous cocaine challenge, naive mice exhibited hyperactivity, while the AAVrh.10antiCoc.Mab-vaccinated mice were completely resistant to the cocaine. These observations demonstrate a novel strategy for cocaine addiction by requiring only a single administration of an AAV vector mediating persistent, systemic anti-cocaine passive immunity.

  14. Clinical data, clinicopathologic findings and outcome in dogs with amegakaryocytic thrombocytopenia and primary immune-mediated thrombocytopenia.

    PubMed

    Cooper, S A; Huang, A A; Raskin, R E; Weng, H-Y; Scott-Moncrieff, J C

    2016-03-01

    The aim of this study was to identify distinguishing characteristics between dogs diagnosed with amegakaryocytic thrombocytopenia and those diagnosed with presumed primary peripheral immune-mediated thrombocytopenia. Presenting clinical and clinicopathologic data and outcomes were compared between the two groups. Retrospective study performed on seven client-owned dogs diagnosed with amegakaryocytic thrombocytopenia and 34 client-owned dogs with primary peripheral immune-mediated thrombocytopenia. All dogs in the amegakaryocytic thrombocytopenia group were anaemic on presentation with a median haematocrit of 23% (range 9·4 to 36), while the primary peripheral immune-mediated thrombocytopoenia group had a median presenting haematocrit of 35% (range 10 to 53). Dogs with amegakaryocytic thrombocytopenia had a median of five (range 4 to 7) clinical signs of bleeding compared to a median of three (range 0 to 6) in the primary peripheral immune-mediated thrombocytopenia group with 86% (6 of 7) of amegakaryocytic thrombocytopenia dogs requiring a blood transfusion compared to 41% (14 of 34) of primary peripheral immune-mediated thrombocytopenia dogs. Six of the seven amegakaryocytic thrombocytopenia dogs did not survive to discharge, while only five of the 34 primary peripheral immune-mediated thrombocytopenia dogs did not survive to discharge. The clinical presentation of dogs with amegakaryocytic thrombocytopenia and primary peripheral immune-mediated thrombocytopenia is similar, but dogs with amegakaryocytic thrombocytopenia had a more severe clinical course compared to primary peripheral immune-mediated thrombocytopenia dogs. The prognosis for dogs with amegakaryocytic thrombocytopenia is poor. © 2016 British Small Animal Veterinary Association.

  15. Associations of immunometabolic risk factors with symptoms of depression and anxiety: The role of cardiac vagal activity.

    PubMed

    Hu, Mandy X; Penninx, Brenda W J H; de Geus, Eco J C; Lamers, Femke; Kuan, Dora C-H; Wright, Aidan G C; Marsland, Anna L; Muldoon, Matthew F; Manuck, Stephen B; Gianaros, Peter J

    2018-06-18

    This study examined 1) the cross-sectional relationships between symptoms of depression/anxiety and immunometabolic risk factors, and 2) whether these relationships might be explained in part by cardiac vagal activity. Data were drawn from the Adult Health and Behavior registries (n = 1785), comprised of community dwelling adults (52.8% women, aged 30-54). Depressive symptoms were measured with the Center for Epidemiological Studies Depression Scale (CES-D) and the Beck Depression Inventory-II (BDI-II), and anxious symptoms with the Trait Anxiety scale of the State-Trait Anxiety Inventory (STAI-T). Immunometabolic risk factors included fasting levels of triglycerides, high-density lipoproteins, glucose, and insulin, as well as blood pressure, waist circumference, body mass index, C-reactive protein, and interleukin-6. Measures of cardiac autonomic activity were high- and low-frequency indicators of heart rate variability (HRV), standard deviation of normal-to-normal R-R intervals, and the mean of absolute and successive differences in R-R intervals. Higher BDI-II scores, in contrast to CES-D and STAI-T scores, were associated with increased immunometabolic risk and decreased HRV, especially HRV likely reflecting cardiac vagal activity. Decreased HRV was also associated with increased immunometabolic risk. Structural equation models indicated that BDI-II scores may relate to immunometabolic risk via cardiac vagal activity (indirect effect: β = .012, p = .046) or to vagal activity via immunometabolic risk (indirect effect: β = -.015, p = .021). Depressive symptoms, as measured by the BDI-II, but not anxious symptoms, were related to elevated levels of immunometabolic risk factors and low cardiac vagal activity. The latter may exhibit bidirectional influences on one another in a meditational framework. Future longitudinal, intervention, an nonhuman animal work is needed to elucidate the precise and mechanistic pathways linking depressive symptoms

  16. Reflex anoxic seizures ('white breath-holding'): nonepileptic vagal attacks.

    PubMed Central

    Stephenson, J B

    1978-01-01

    From clinical history 58 children were diagnosed as having reflex anoxic seizures secondary to provoked cardioinhibition (also known as white breath-holding attacks). Before referral, these seizures were commonly misdiagnosed as epileptic either because the provocation was ignored, not recognised, or was a febrile illness, or because there was no crying, no obvious breath-holding, little cyanosis, and often no pallor to suggest syncope and cerebral ischaemia. The duration of cardiac asystole after ocular compression was measured in these children and in 60 additional children with other paroxysmal disorders. In 45 (78%) of the 58 with reflex anoxic seizures asystole was 2 seconds or over, and in 32 (55%) it was 4 seconds or greater, an abnormal response. Review of the literature supports the concept that these seizures result from vagal-mediated reflex cardiac arrest which can if necessary be prevented by atropine. The simple name 'vagal attack' is proposed. Ocular compression under EEG and ECG control supports the clinical diagnosis if asystole and/or an anoxic seizure is induced; the procedure described is safe and should be routine in seizure or syncope evaluation, when a meticulous history still leaves room for doubt. Images Figs. 1-8 p194-b p194-c p194-d p194-e p194-f p194-g p194-h PMID:348123

  17. Neuroimmune Axes of the Blood–Brain Barriers and Blood–Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions

    PubMed Central

    Erickson, Michelle A.

    2018-01-01

    Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood–brain barrier (BBB), blood–cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions. PMID:29496890

  18. Expected Paradigm Shift in Brain Metastases Therapy-Immune Checkpoint Inhibitors.

    PubMed

    Jindal, Vishal; Gupta, Sorab

    2018-01-30

    Brain metastasis (BM) is one of the dreadful complications of malignancies. The prognosis after BM is extremely poor and life expectancy is meager. Currently, our treatment modalities are limited to radiotherapy and surgical resection, which also has poor outcomes and leads to various neurological deficits and affects the quality of life of patients. New treatment modality, i.e., immune checkpoint inhibitors, has brought revolution in management of melanoma, renal cancer, and non-small cell lung cancer (NSCLC). Immune checkpoint inhibitors basically enhance the immune response of the body to fight against cancers. Immune response in the brain is highly regulated; therefore, it is challenging to use immune-modulator drugs in BM. The microenvironment of BM is rich in cytotoxic T lymphocytes and which is the target of immune checkpoint inhibitors. Few studies have shown some hope regarding use of immune checkpoint inhibitors in management of BM. It works through inhibiting immune check point gates, i.e., CTLA-4 (cytotoxic T-lymphocyte-associated protein) and PD-1/PD-L1 (programmed cell death protein-1/program death ligand-1). This article explains the basic mechanism of immune check point inhibitors, rationale behind their usage in BM, and some of the clinical studies which have shown the efficacy of immune check point inhibitors in BM.

  19. Sterile Inflammation of Brain, due to Activation of Innate Immunity, as a Culprit in Psychiatric Disorders.

    PubMed

    Ratajczak, Mariusz Z; Pedziwiatr, Daniel; Cymer, Monika; Kucia, Magda; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy

    2018-01-01

    Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as "sterile inflammation" when initiated directly in brain tissue may trigger the onset of psychoses. In this review, we will present the hypothesis that prolonged or chronic activation of the complement cascade (ComC) directly triggers inflammation in the brain and affects the proper function of this organ. Based on the current literature and our own work on mechanisms activating the ComC we hypothesize that inflammation in the brain is initiated by the mannan-binding lectin pathway of ComC activation. This activation is triggered by an increase in brain tissue of danger-associated molecular pattern (DAMP) mediators, including extracellular ATP and high-mobility group box 1 (HMGB1) protein, which are recognized by circulating pattern-recognition receptors, including mannan-binding lectin (MBL), that activate the ComC. On the other hand, this process is controlled by the anti-inflammatory action of heme oxygenase 1 (HO-1). In this review, we will try to connect changes in the release of DAMPs in the brain with inflammatory processes triggered by the innate immunity involving activation of the ComC as well as the inflammation-limiting effects of the anti-inflammatory HO-1 pathway. We will also discuss parallel observations that during ComC activation subsets of stem cells are mobilized into PB from bone marrow that are potentially involved in repair mechanisms.

  20. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation.

    PubMed

    Honti, Viktor; Csordás, Gábor; Kurucz, Éva; Márkus, Róbert; Andó, István

    2014-01-01

    In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Molecular dialogues between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair

    PubMed Central

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-01-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228

  2. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity

    NASA Astrophysics Data System (ADS)

    Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan

    2017-11-01

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.

  3. Immune mediators in the brain and peripheral tissues in autism spectrum disorder

    PubMed Central

    Estes, Myka L.; McAllister, A. Kimberley

    2017-01-01

    Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors — including autoimmunity, infection and fetal reactive antibodies — are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and animal models of this disorder. Recently, several molecular signalling pathways have been identified that link immune activation to ASD phenotypes, including pathways downstream of cytokines, hepatocyte growth factor receptor (MET), MHCI molecules, microglia and complement factors. These findings indicate that the immune system is a point of convergence for various ASD-related genetic and environmental risk factors. PMID:26189694

  4. A Proinflammatory Role of Type 2 Innate Lymphoid Cells in Murine Immune-Mediated Hepatitis.

    PubMed

    Neumann, Katrin; Karimi, Khalil; Meiners, Jana; Voetlause, Ruth; Steinmann, Silja; Dammermann, Werner; Lüth, Stefan; Asghari, Farahnaz; Wegscheid, Claudia; Horst, Andrea K; Tiegs, Gisa

    2017-01-01

    Type 2 innate lymphoid cells (ILC2) mediate inflammatory immune responses in the context of diseases triggered by the alarmin IL-33. In recent years, IL-33 has been implicated in the pathogenesis of immune-mediated liver diseases. However, the immunoregulatory function of ILC2s in the inflamed liver remains elusive. Using the murine model of Con A-induced immune-mediated hepatitis, we showed that selective expansion of ILC2s in the liver was associated with highly elevated hepatic IL-33 expression, severe liver inflammation, and infiltration of eosinophils. CD4 + T cell-mediated tissue damage and subsequent IL-33 release were responsible for the activation of hepatic ILC2s that produced the type 2 cytokines IL-5 and IL-13 during liver inflammation. Interestingly, ILC2 depletion correlated with less severe hepatitis and reduced accumulation of eosinophils in the liver, whereas adoptive transfer of hepatic ILC2s aggravated liver inflammation and tissue damage. We further showed that, despite expansion of hepatic ILC2s, 3-d IL-33 treatment before Con A challenge potently suppressed development of immune-mediated hepatitis. We found that IL-33 not only activated hepatic ILC2s but also expanded CD4 + Foxp3 + regulatory T cells (Treg) expressing the IL-33 receptor ST2 in the liver. This Treg subset also accumulated in the liver during resolution of immune-mediated hepatitis. In summary, hepatic ILC2s are poised to respond to the release of IL-33 upon liver tissue damage through expression of type 2 cytokines thereby participating in the pathogenesis of immune-mediated hepatitis. Inflammatory activity of ILC2s might be regulated by IL-33-elicited ST2 + Tregs that also arise in immune-mediated hepatitis. Copyright © 2016 by The American Association of Immunologists, Inc.

  5. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice.

    PubMed

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-04-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy.

  6. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function.

    PubMed

    Lenz, Kathryn M; Nelson, Lars H

    2018-01-01

    Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  7. Plasticity of gastrointestinal vagal afferent satiety signals.

    PubMed

    Page, A J; Kentish, S J

    2017-05-01

    The vagal link between the gastrointestinal tract and the central nervous system (CNS) has numerous vital functions for maintaining homeostasis. The regulation of energy balance is one which is attracting more and more attention due to the potential for exploiting peripheral hormonal targets as treatments for conditions such as obesity. While physiologically, this system is well tuned and demonstrated to be effective in the regulation of both local function and promoting/terminating food intake the neural connection represents a susceptible pathway for disruption in various disease states. Numerous studies have revealed that obesity in particularly is associated with an array of modifications in vagal afferent function from changes in expression of signaling molecules to altered activation mechanics. In general, these changes in vagal afferent function in obesity further promote food intake instead of the more desirable reduction in food intake. It is essential to gain a comprehensive understanding of the mechanisms responsible for these detrimental effects before we can establish more effective pharmacotherapies or lifestyle strategies for the treatment of obesity and the maintenance of weight loss. © 2016 John Wiley & Sons Ltd.

  8. Acne: a new model of immune-mediated chronic inflammatory skin disease.

    PubMed

    Antiga, E; Verdelli, A; Bonciani, D; Bonciolini, V; Caproni, M; Fabbri, P

    2015-04-01

    Acne is a chronic inflammatory disease of the sebaceous-pilosebaceous unit. Interestingly, inflammation can be detected by histopathological examination and immuohistochemical analysis even in the apparently non-inflammatory acneic lesions, such as comedones. In the last years, it has been clearly demonstrated that acne development is linked to the combination of predisposing genetic factors and environmental triggers, among which a prominent role is played by the follicular colonization by Propionibacterium acnes (P. acnes). P. acnes displays several activities able to promote the development of acne skin lesions, including the promotion of follicular hyperkeratinisation, the induction of sebogenesis, and the stimulation of an inflammatory response by the secretion of proinflammatory molecules and by the activation of innate immunity, that is followed by a P. acnes-specific adaptive immune response. In addition, P. acnes-independent inflammation mediated by androgens or by a neurogenic activation, followed by the secretion in the skin of pro-inflammatory neuropeptides, can occur in acne lesions. In conclusion, acne can be considered as a model of immune-mediated chronic inflammatory skin disease, characterized by an innate immune response that is not able to control P. acnes followed by a Th1-mediated adaptive immune response, that becomes self-maintaining independently from P. acnes itself.

  9. Prostanoids and their receptors that modulate dendritic cell-mediated immunity.

    PubMed

    Gualde, Norbert; Harizi, Hedi

    2004-08-01

    Dendritic cells (DC) are essential for the initiation of immune responses by capturing, processing and presenting antigens to T cells. In addition to their important role as professional APC, they are able to produce immunosuppressive and pro-inflammatory prostanoids from arachidonic acid (AA) by the action of cyclooxygenase (COX) enzymes. In an autocrine and paracrine fashion, the secreted lipid mediators subsequently modulate the maturation, cytokine production, Th-cell polarizing ability, chemokine receptor expression, migration, and apoptosis of these extremely versatile APC. The biological actions of prostanoids, including their effects on APC-mediated immunity and acute inflammatory responses, are exerted by G protein-coupled receptors on plasma membrane. Some COX metabolites act as anti-inflammatory lipid mediators by binding to nuclear receptors and modulating DC functions. Although the role of cytokines in DC function has been studied extensively, the effects of prostanoids on DC biology have only recently become the focus of investigation. This review summarizes the current knowledge about the role of prostanoids and their receptors in modulating DC function and the subsequent immune responses.

  10. The Scaffold Immune Microenvironment: Biomaterial-Mediated Immune Polarization in Traumatic and Nontraumatic Applications.

    PubMed

    Sadtler, Kaitlyn; Allen, Brian W; Estrellas, Kenneth; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H

    2017-10-01

    The immune system mediates tissue growth and homeostasis and is the first responder to injury or biomaterial implantation. Recently, it has been appreciated that immune cells play a critical role in wound healing and tissue repair and should thus be considered potentially beneficial, particularly in the context of scaffolds for regenerative medicine. In this study, we present a flow cytometric analysis of cellular recruitment to tissue-derived extracellular matrix scaffolds, where we quantitatively describe the infiltration and polarization of several immune subtypes, including macrophages, dendritic cells, neutrophils, monocytes, T cells, and B cells. We define a specific scaffold-associated macrophage (SAM) that expresses CD11b + F4/80 + CD11c +/- CD206 hi CD86 + MHCII + that are characteristic of an M2-like cell (CD206 hi ) with high antigen presentation capabilities (MHCII + ). Adaptive immune cells tightly regulate the phenotype of a mature SAM. These studies provide a foundation for detailed characterization of the scaffold immune microenvironment of a given biomaterial scaffold to determine the effect of scaffold changes on immune response and subsequent therapeutic outcome of that material.

  11. Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure.

    PubMed

    Ichige, Marcelo H A; Santos, Carla R; Jordão, Camila P; Ceroni, Alexandre; Negrão, Carlos E; Michelini, Lisete C

    2016-11-01

    Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine β-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine β-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative

  12. Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila.

    PubMed

    Liu, Bo; Zheng, Yonggang; Yin, Feng; Yu, Jianzhong; Silverman, Neal; Pan, Duojia

    2016-01-28

    The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Invasion of Peripheral Immune Cells into Brain Parenchyma after Cardiac Arrest and Resuscitation.

    PubMed

    Zhang, Can; Brandon, Nicole R; Koper, Kerryann; Tang, Pei; Xu, Yan; Dou, Huanyu

    2018-06-01

    Although a direct link has long been suspected between systemic immune responses and neuronal injuries after stroke, it is unclear which immune cells play an important role. A question remains as to whether the blood brain barrier (BBB) is transiently disrupted after circulatory arrest to allow peripheral immune cells to enter brain parenchyma. Here, we developed a clinically relevant cardiac arrest and resuscitation model in mice to investigate the BBB integrity using noninvasive magnetic resonance imaging. Changes in immune signals in the brain and periphery were assayed by immunohistochemistry and flow cytometry. Quantitative variance maps from T1-weighted difference images before and after blood-pool contrast clearance revealed BBB disruptions immediately after resuscitation and one day after reperfusion. Time profiles of hippocampal CA1 neuronal injuries correlated with the morphological changes of microglia activation. Cytotoxic T cells, CD11b + CD11c + dendritic cells, and CD11b + CD45 +hi monocytes and macrophages were significantly increased in the brain three days after cardiac arrest and resuscitation, suggesting direct infiltration of these cells following the BBB disruption. Importantly, these immune cell changes were coupled with a parallel increase in the same subset of immune cell populations in the bone marrow and blood. We conclude that neurovascular breakdown during the initial reperfusion phase contributes to the systemic immune cell invasion and subsequent neuropathogenesis affecting the long-term outcome after cardiac arrest and resuscitation.

  14. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study.

    PubMed

    Cribbs, David H; Berchtold, Nicole C; Perreau, Victoria; Coleman, Paul D; Rogers, Joseph; Tenner, Andrea J; Cotman, Carl W

    2012-07-23

    This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer's disease (AD). In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I and II. Unexpectedly, the extent of

  16. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles

    PubMed Central

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-01-01

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518

  17. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles.

    PubMed

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-10-28

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair.

    PubMed

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A; Leak, Rehana K; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-04-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke. Published by Elsevier Ltd.

  19. Immune heterogeneity in neuroinflammation: dendritic cells in the brain.

    PubMed

    Colton, Carol A

    2013-03-01

    Dendritic cells (DC) are critical to an integrated immune response and serve as the key link between the innate and adaptive arms of the immune system. Under steady state conditions, brain DC's act as sentinels, continually sampling their local environment. They share this function with macrophages derived from the same basic hemopoietic (bone marrow-derived) precursor and with parenchymal microglia that arise from a unique non-hemopoietic origin. While multiple cells may serve as antigen presenting cells (APCs), dendritic cells present both foreign and self-proteins to naïve T cells that, in turn, carry out effector functions that serve to protect or destroy. The resulting activation of the adaptive response is a critical step to resolution of injury or infection and is key to survival. In this review we will explore the critical roles that DCs play in the brain's response to neuroinflammatory disease with emphasis on how the brain's microenvironment impacts these actions.

  20. Taking a Toll on Self-Renewal: TLR-Mediated Innate Immune Signaling in Stem Cells.

    PubMed

    Alvarado, Alvaro G; Lathia, Justin D

    2016-07-01

    Innate immunity has evolved as the front-line cellular defense mechanism to acutely sense and decisively respond to microenvironmental alterations. The Toll-like receptor (TLR) family activates signaling pathways in response to stimuli and is well-characterized in both resident and infiltrating immune cells during neural inflammation, injury, and degeneration. Innate immune signaling has also been observed in neural cells during development and disease, including in the stem and progenitor cells that build the brain and are responsible for its homeostasis. Recently, the activation of developmental programs in malignant brain tumors has emerged as a driver for growth via cancer stem cells. In this review we discuss how innate immune signaling interfaces with stem cell maintenance in the normal and neoplastic brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus.

    PubMed

    Liu, Zhenyu; Hu, Youtian; Yu, Xiaoyun; Xi, Jiefeng; Fan, Xiaoming; Tse, Chung-Ming; Myers, Allen C; Pasricha, Pankaj J; Li, Xingde; Yu, Shaoyong

    2015-03-15

    Transient receptor potential A1 (TRPA1) is a newly defined cationic ion channel, which selectively expresses in primary sensory afferent nerve, and is essential in mediating inflammatory nociception. Our previous study demonstrated that TRPA1 plays an important role in tissue mast cell activation-induced increase in the excitability of esophageal vagal nodose C fibers. The present study aims to determine whether prolonged antigen exposure in vivo sensitizes TRPA1 in a guinea pig model of eosinophilic esophagitis (EoE). Antigen challenge-induced responses in esophageal mucosa were first assessed by histological stains and Ussing chamber studies. TRPA1 function in vagal sensory neurons was then studied by calcium imaging and by whole cell patch-clamp recordings in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal vagal nodose and jugular neurons. Extracellular single-unit recordings were performed in vagal nodose and jugular C-fiber neuron subtypes using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Antigen challenge significantly increased infiltrations of eosinophils and mast cells in the esophagus. TRPA1 agonist allyl isothiocyanate (AITC)-induced calcium influx in nodose and jugular neurons was significantly increased, and current densities in esophageal DiI-labeled nodose and jugular neurons were also significantly increased in antigen-challenged animals. Prolonged antigen challenge decreased esophageal epithelial barrier resistance, which allowed intraesophageal-infused AITC-activating nodose and jugular C fibers at their nerve endings. Collectively, these results demonstrated that prolonged antigen challenge sensitized TRPA1 in esophageal sensory neurons and afferent C fibers. This novel finding will help us to better understand the molecular mechanism underlying esophageal sensory and motor dysfunctions in EoE. Copyright © 2015 the American Physiological Society.

  2. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus

    PubMed Central

    Liu, Zhenyu; Hu, Youtian; Yu, Xiaoyun; Xi, Jiefeng; Fan, Xiaoming; Tse, Chung-Ming; Myers, Allen C.; Pasricha, Pankaj J.; Li, Xingde

    2015-01-01

    Transient receptor potential A1 (TRPA1) is a newly defined cationic ion channel, which selectively expresses in primary sensory afferent nerve, and is essential in mediating inflammatory nociception. Our previous study demonstrated that TRPA1 plays an important role in tissue mast cell activation-induced increase in the excitability of esophageal vagal nodose C fibers. The present study aims to determine whether prolonged antigen exposure in vivo sensitizes TRPA1 in a guinea pig model of eosinophilic esophagitis (EoE). Antigen challenge-induced responses in esophageal mucosa were first assessed by histological stains and Ussing chamber studies. TRPA1 function in vagal sensory neurons was then studied by calcium imaging and by whole cell patch-clamp recordings in 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI)-labeled esophageal vagal nodose and jugular neurons. Extracellular single-unit recordings were performed in vagal nodose and jugular C-fiber neuron subtypes using ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Antigen challenge significantly increased infiltrations of eosinophils and mast cells in the esophagus. TRPA1 agonist allyl isothiocyanate (AITC)-induced calcium influx in nodose and jugular neurons was significantly increased, and current densities in esophageal DiI-labeled nodose and jugular neurons were also significantly increased in antigen-challenged animals. Prolonged antigen challenge decreased esophageal epithelial barrier resistance, which allowed intraesophageal-infused AITC-activating nodose and jugular C fibers at their nerve endings. Collectively, these results demonstrated that prolonged antigen challenge sensitized TRPA1 in esophageal sensory neurons and afferent C fibers. This novel finding will help us to better understand the molecular mechanism underlying esophageal sensory and motor dysfunctions in EoE. PMID:25591867

  3. A Transactional Analysis of the Relation between Maternal Sensitivity and Child Vagal Regulation

    ERIC Educational Resources Information Center

    Perry, Nicole B.; Mackler, Jennifer S.; Calkins, Susan D.; Keane, Susan P.

    2014-01-01

    A transactional model examining the longitudinal association between vagal regulation (as indexed by vagal withdrawal) and maternal sensitivity from age 2.5 to age 5.5 was assessed. The sample included 356 children (171 male, 185 female) and their mothers who participated in a laboratory visit at age 2.5, 4.5, and 5.5. Cardiac vagal tone was…

  4. Sterile Inflammation of Brain, due to Activation of Innate Immunity, as a Culprit in Psychiatric Disorders

    PubMed Central

    Ratajczak, Mariusz Z.; Pedziwiatr, Daniel; Cymer, Monika; Kucia, Magda; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy

    2018-01-01

    Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as “sterile inflammation” when initiated directly in brain tissue may trigger the onset of psychoses. In this review, we will present the hypothesis that prolonged or chronic activation of the complement cascade (ComC) directly triggers inflammation in the brain and affects the proper function of this organ. Based on the current literature and our own work on mechanisms activating the ComC we hypothesize that inflammation in the brain is initiated by the mannan-binding lectin pathway of ComC activation. This activation is triggered by an increase in brain tissue of danger-associated molecular pattern (DAMP) mediators, including extracellular ATP and high-mobility group box 1 (HMGB1) protein, which are recognized by circulating pattern-recognition receptors, including mannan-binding lectin (MBL), that activate the ComC. On the other hand, this process is controlled by the anti-inflammatory action of heme oxygenase 1 (HO-1). In this review, we will try to connect changes in the release of DAMPs in the brain with inflammatory processes triggered by the innate immunity involving activation of the ComC as well as the inflammation-limiting effects of the anti-inflammatory HO-1 pathway. We will also discuss parallel observations that during ComC activation subsets of stem cells are mobilized into PB from bone marrow that are potentially involved in repair mechanisms. PMID:29541038

  5. Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury.

    PubMed

    de Rivero Vaccari, Juan Pablo; Lotocki, George; Alonso, Ofelia F; Bramlett, Helen M; Dietrich, W Dalton; Keane, Robert W

    2009-07-01

    Traumatic brain injury elicits acute inflammation that in turn exacerbates primary brain damage. A crucial part of innate immunity in the immune privileged central nervous system involves production of proinflammatory cytokines mediated by inflammasome signaling. Here, we show that the nucleotide-binding, leucine-rich repeat pyrin domain containing protein 1 (NLRP1) inflammasome consisting of NLRP1, caspase-1, caspase-11, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), the X-linked inhibitor of apoptosis protein, and pannexin 1 is expressed in neurons of the cerebral cortex. Moderate parasagittal fluid-percussion injury (FPI) induced processing of interleukin-1beta, activation of caspase-1, cleavage of X-linked inhibitor of apoptosis protein, and promoted assembly of the NLRP1 inflammasome complex. Anti-ASC neutralizing antibodies administered immediately after fluid-percussion injury to injured rats reduced caspase-1 activation, X-linked inhibitor of apoptosis protein cleavage, and processing of interleukin-1beta, resulting in a significant decrease in contusion volume. These studies show that the NLRP1 inflammasome constitutes an important component of the innate central nervous system inflammatory response after traumatic brain injury and may be a novel therapeutic target for reducing the damaging effects of posttraumatic brain inflammation.

  6. AAVrh.10-Mediated Expression of an Anti-Cocaine Antibody Mediates Persistent Passive Immunization That Suppresses Cocaine-Induced Behavior

    PubMed Central

    Rosenberg, Jonathan B.; Hicks, Martin J.; De, Bishnu P.; Pagovich, Odelya; Frenk, Esther; Janda, Kim D.; Wee, Sunmee; Koob, George F.; Hackett, Neil R.; Kaminsky, Stephen M.; Worgall, Stefan; Tignor, Nicole; Mezey, Jason G.

    2012-01-01

    Abstract Cocaine addiction is a major problem affecting all societal and economic classes for which there is no effective therapy. We hypothesized an effective anti-cocaine vaccine could be developed by using an adeno-associated virus (AAV) gene transfer vector as the delivery vehicle to persistently express an anti-cocaine monoclonal antibody in vivo, which would sequester cocaine in the blood, preventing access to cognate receptors in the brain. To accomplish this, we constructed AAVrh.10antiCoc.Mab, an AAVrh.10 gene transfer vector expressing the heavy and light chains of the high affinity anti-cocaine monoclonal antibody GNC92H2. Intravenous administration of AAVrh.10antiCoc.Mab to mice mediated high, persistent serum levels of high-affinity, cocaine-specific antibodies that sequestered intravenously administered cocaine in the blood. With repeated intravenous cocaine challenge, naive mice exhibited hyperactivity, while the AAVrh.10antiCoc.Mab-vaccinated mice were completely resistant to the cocaine. These observations demonstrate a novel strategy for cocaine addiction by requiring only a single administration of an AAV vector mediating persistent, systemic anti-cocaine passive immunity. PMID:22486244

  7. Disrupting vagal feedback affects birdsong motor control.

    PubMed

    Méndez, Jorge M; Dall'asén, Analía G; Goller, Franz

    2010-12-15

    Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback.

  8. Disrupting vagal feedback affects birdsong motor control

    PubMed Central

    Méndez, Jorge M.; Dall'Asén, Analía G.; Goller, Franz

    2010-01-01

    Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback. PMID:21113000

  9. Reuma.pt contribution to the knowledge of immune-mediated systemic rheumatic diseases.

    PubMed

    Santos, Maria José; Canhão, Helena; Mourão, Ana Filipa; Oliveira Ramos, Filipa; Ponte, Cristina; Duarte, Cátia; Barcelos, Anabela; Martins, Fernando; Melo Gomes, José António

    2017-01-01

    Patient registries are key instruments aimed at a better understanding of the natural history of diseases, at assessing the effectiveness of therapeutic interventions, as well as identifying rare events or outcomes that are not captured in clinical trials. However, the potential of registries goes far beyond these aspects. For example, registries promote the standardization of clinical practice, can also provide information on domains that are not routinely collected in clinical practice and can support decision-making. Being aware of the importance of registries, the Portuguese Society of Rheumatology developed the Rheumatic Diseases Portuguese Register- Reuma.pt - which proved to be an innovative instrument essential to a better understanding of systemic immune-mediated rheumatic diseases. To describe the contribution of Reuma.pt to the knowledge of systemic immune-mediated rheumatic diseases. Reuma.pt is widely implemented, with 77 centres actively contributing to the recruitment and follow-up of patients. Reuma.pt follows in a standardized way patients with the following systemic inflammatory rheumatic diseases: rheumatoid arthritis (n=6218), psoriatic arthritis (n=1498), spondyloarthritis (n=2529), juvenile idiopathic arthritis (n =1561), autoinflammatory syndromes (n=122), systemic lupus erythematosus (n =1718), systemic sclerosis (n=180) and vasculitis (n=221). This platform is intended for use as an electronic medical record, provides standardized assessment of patients and support to the clinical decision, thereby contributing to a better quality of care of rheumatic patients. The research based on Reuma.pt identified genetic determinants of susceptibility and response to therapy, characterized in detail systemic rheumatic diseases and their long-term impact, critically appraised the performance of instruments for monitoring the disease activity, established the effectiveness and safety of biologic therapies and identified predictors of response, and

  10. Induction of protective immunity against toxoplasmosis in mice by immunization with Toxoplasma gondii RNA.

    PubMed

    Dimier-Poisson, Isabelle; Aline, Fleur; Bout, Daniel; Mévélec, Marie-Noëlle

    2006-03-06

    Toxoplasma gondii enters the mucosal surfaces of the host, and so immunity at these sites is of major interest. Due to the compartmentalization of the immune response, systemic immunization does not induce high levels of immunity at mucosal surfaces. Intranasal immunization has been shown to be very effective in inducing both systemic and mucosal immune responses. Immunization with mRNA can induce both humoral and cell-mediated immune responses, both of which are important in conferring immunity to T. gondii. The efficacy of RNA vaccination by the nasal route with T. gondii RNA was evaluated. We assessed the percentage of cumulative survival after an oral challenge with a lethal dose of T. gondii cysts (40 cysts), and the number of brain cysts following a challenge with a sublethal dose of T. gondii 76 K cysts (15 cysts). Vaccinated mice were found to be significantly better protected than non-immunized mice after a challenge with a lethal dose of cysts; and a challenge with a sublethal dose also resulted in fewer brain cysts than in non-immunized mice. Sera and intestinal secretions of immunized mice recognized T. gondii antigens, suggesting that a specific humoral immune response may occur. Moreover, a specific lymphoproliferative response observed in cervical lymph nodes may confer protection. These preliminary findings suggest that RNA vaccination by a mucosal route could be feasible.

  11. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study

    PubMed Central

    2012-01-01

    Background This study undertakes a systematic and comprehensive analysis of brain gene expression profiles of immune/inflammation-related genes in aging and Alzheimer’s disease (AD). Methods In a well-powered microarray study of young (20 to 59 years), aged (60 to 99 years), and AD (74 to 95 years) cases, gene responses were assessed in the hippocampus, entorhinal cortex, superior frontal gyrus, and post-central gyrus. Results Several novel concepts emerge. First, immune/inflammation-related genes showed major changes in gene expression over the course of cognitively normal aging, with the extent of gene response far greater in aging than in AD. Of the 759 immune-related probesets interrogated on the microarray, approximately 40% were significantly altered in the SFG, PCG and HC with increasing age, with the majority upregulated (64 to 86%). In contrast, far fewer immune/inflammation genes were significantly changed in the transition to AD (approximately 6% of immune-related probesets), with gene responses primarily restricted to the SFG and HC. Second, relatively few significant changes in immune/inflammation genes were detected in the EC either in aging or AD, although many genes in the EC showed similar trends in responses as in the other brain regions. Third, immune/inflammation genes undergo gender-specific patterns of response in aging and AD, with the most pronounced differences emerging in aging. Finally, there was widespread upregulation of genes reflecting activation of microglia and perivascular macrophages in the aging brain, coupled with a downregulation of select factors (TOLLIP, fractalkine) that when present curtail microglial/macrophage activation. Notably, essentially all pathways of the innate immune system were upregulated in aging, including numerous complement components, genes involved in toll-like receptor signaling and inflammasome signaling, as well as genes coding for immunoglobulin (Fc) receptors and human leukocyte antigens I

  12. Brain mast cells link the immune system to anxiety-like behavior

    PubMed Central

    Nautiyal, Katherine M.; Ribeiro, Ana C.; Pfaff, Donald W.; Silver, Rae

    2008-01-01

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links. PMID:19004805

  13. Brain mast cells link the immune system to anxiety-like behavior.

    PubMed

    Nautiyal, Katherine M; Ribeiro, Ana C; Pfaff, Donald W; Silver, Rae

    2008-11-18

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient Kit(W-sh/W-sh) (sash(-/-)) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.

  14. Lower Cardiac Vagal Tone in Non-Obese Healthy Men with Unfavorable Anthropometric Characteristics

    PubMed Central

    Ramos, Plínio S.; Araújo, Claudio Gil S.

    2010-01-01

    OBJECTIVES: to determine if there are differences in cardiac vagal tone values in non-obese healthy, adult men with and without unfavorable anthropometric characteristics. INTRODUCTION: It is well established that obesity reduces cardiac vagal tone. However, it remains unknown if decreases in cardiac vagal tone can be observed early in non-obese healthy, adult men presenting unfavorable anthropometric characteristics. METHODS: Among 1688 individuals assessed between 2004 and 2008, we selected 118 non-obese (BMI <30 kg/m2), healthy men (no known disease conditions or regular use of relevant medications), aged between 20 and 77 years old (42 ± 12-years-old). Their evaluation included clinical examination, anthropometric assessment (body height and weight, sum of six skinfolds, waist circumference and somatotype), a 4-second exercise test to estimate cardiac vagal tone and a maximal cardiopulmonary exercise test to exclude individuals with myocardial ischemia. The same physician performed all procedures. RESULTS: A lower cardiac vagal tone was found for the individuals in the higher quintiles – unfavorable anthropometric characteristics - of BMI (p=0.005), sum of six skinfolds (p=0.037) and waist circumference (p<0.001). In addition, the more endomorphic individuals also presented a lower cardiac vagal tone (p=0.023), while an ectomorphic build was related to higher cardiac vagal tone values as estimated by the 4-second exercise test (r=0.23; p=0.017). CONCLUSIONS: Non-obese and healthy adult men with unfavorable anthropometric characteristics tend to present lower cardiac vagal tone levels. Early identification of this trend by simple protocols that are non-invasive and risk-free, using select anthropometric characteristics, may be clinically useful in a global strategy to prevent cardiovascular disease. PMID:20126345

  15. Nitric oxide mediates insect cellular immunity via phospholipase A2 activation

    USDA-ARS?s Scientific Manuscript database

    After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Se...

  16. Anorexia‐cachexia syndrome in hepatoma tumour‐bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC‐1/GDF15

    PubMed Central

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N.; Langhans, Wolfgang; Lutz, Thomas A.; Blomqvist, Anders

    2016-01-01

    Abstract Background The cancer‐anorexia‐cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour‐derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour‐derived macrophage inhibitory cytokine‐1 (MIC‐1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC‐1 in mice. Methods Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC‐1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. Results In tumour‐bearing sham‐operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer‐induced anorexia or body weight loss. Tumour‐bearing rats had substantially increased MIC‐1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. Conclusions These findings demonstrate the importance of the AP in the mediation of cancer‐dependent anorexia and body weight loss and support a pathological role of MIC‐1 as a tumour‐derived factor mediating CACS, possibly via an AP

  17. Protective and pathological immunity during CNS infections

    PubMed Central

    Klein, Robyn S.; Hunter, Christopher A.

    2017-01-01

    The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted the innate pathways that limit pathogen invasion of the CNS and that adaptive immunity mediates control of many neural infections. Because protective responses can result in bystander damage there are regulatory mechanisms that balance protective and pathological inflammation but which may also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. PMID:28636958

  18. Immune-mediated diseases: what can be found in the oral cavity?

    PubMed

    Bascones-Martínez, Antonio; García-García, Virginia; Meurman, Jukka H; Requena-Caballero, Luis

    2015-03-01

    Immune-mediated diseases frequently affect oral mucosa, which may often be the first site of clinical manifestation. In this review, we describe the most important oral lesions related to inflammatory disorders and present their management and novel therapies. The review is based on an open PubMed literature search from 1980 to 2012 with relevant keywords. Pemphigus vulgaris, oral lichen planus, cicatricial pemphigoid, erythema multiforme, Stevens-Johnson syndrome, systemic lupus erythematosus, Sjögren's syndrome, and linear IgA dermatosis are the immune-mediated diseases with oral manifestations discussed. Etiology is unknown in most of these diseases, but recently some of them have been found to share common genes. Modern treatment of these diseases is based on drugs that interfere along the pathogenic mechanisms instead of the still commonly used palliative measures. However, the immunomodulatory drugs may also cause oral side effects, complicating the clinical picture. Therefore, consulting dental or oral medicine specialists can be necessary in some cases with various immune-mediated diseases. © 2014 The International Society of Dermatology.

  19. BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella

    PubMed Central

    Andree, Maria; Seeger, Jens M; Schüll, Stephan; Coutelle, Oliver; Wagner-Stippich, Diana; Wiegmann, Katja; Wunderlich, Claudia M; Brinkmann, Kerstin; Broxtermann, Pia; Witt, Axel; Fritsch, Melanie; Martinelli, Paola; Bielig, Harald; Lamkemeyer, Tobias; Rugarli, Elena I; Kaufmann, Thomas; Sterner-Kock, Anja; Wunderlich, F Thomas; Villunger, Andreas; Martins, L Miguel; Krönke, Martin; Kufer, Thomas A; Utermöhlen, Olaf; Kashkar, Hamid

    2014-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti-apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase-mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP-mediated immune response by inducing the BID-dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain-dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization. PMID:25056906

  20. Immune-mediated extrapyramidal movement disorders, including Sydenham chorea.

    PubMed

    Dale, Russell C

    2013-01-01

    Immune-mediated extrapyramidal movement disorders typically occur in previously healthy children. Immune-mediated movement disorders may occur as a postinfectious, paraneoplastic, or idiopathic process. Sydenham chorea (SC) is the classical poststreptococcal movement and psychiatric disorder, and may be associated with other features of rheumatic fever. The outcome is typically good, although residual chorea, psychiatric disturbance, and relapses are possible. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS) is a syndrome of streptococcal-induced tics and obsessive-compulsive disorder. Although a number of investigators have reported an association between streptococcal infection and neuropsychiatric syndromes, the PANDAS hypothesis is controversial. Encephalitis lethargica is an encephalitic illness with parkinsonism, dyskinesias, and psychiatric disturbance as dominant features. The exact disease mechanism is not understood, although an autoimmune process is suspected. NMDA-R encephalitis is a new entity characterized by encephalitis with dramatic psychiatric disturbance, dyskinesias, cognitive alteration, and seizures. Patients have autoantibodies against the NMDA-R that appear to be pathogenic: immune therapies appear warranted to minimize disability. Movement disorders are also described associated with systemic lupus erythematosus and antiphospholipid syndrome. The differential diagnosis and investigation approach of acute-onset movement disorders are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    PubMed

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  2. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling.

    PubMed

    Ronveaux, Charlotte C; Tomé, Daniel; Raybould, Helen E

    2015-04-01

    Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments. © 2015 American Society for Nutrition.

  3. RIPK3 interacts with MAVS to regulate type I IFN-mediated immunity to Influenza A virus infection

    PubMed Central

    Coulombe, François; Meunier, Isabelle; Martin, James G.; Divangahi, Maziar

    2017-01-01

    The type I interferon pathway plays a critical role in both host defense and tolerance against viral infection and thus requires refined regulatory mechanisms. RIPK3-mediated necroptosis has been shown to be involved in anti-viral immunity. However, the exact role of RIPK3 in immunity to Influenza A Virus (IAV) is poorly understood. In line with others, we, herein, show that Ripk3-/- mice are highly susceptible to IAV infection, exhibiting elevated pulmonary viral load and heightened morbidity and mortality. Unexpectedly, this susceptibility was linked to an inability of RIKP3-deficient macrophages (Mφ) to produce type I IFN in the lungs of infected mice. In Mφ infected with IAV in vitro, we found that RIPK3 regulates type I IFN both transcriptionally, by interacting with MAVS and limiting RIPK1 interaction with MAVS, and post-transcriptionally, by activating protein kinase R (PKR)—a critical regulator of IFN-β mRNA stability. Collectively, our findings indicate a novel role for RIPK3 in regulating Mφ-mediated type I IFN anti-viral immunity, independent of its conventional role in necroptosis. PMID:28410401

  4. Vagal Afferent Innervation of the Lower Esophageal Sphincter

    PubMed Central

    Powley, Terry L.; Baronowsky, Elizabeth A.; Gilbert, Jared M.; Hudson, Cherie N.; Martin, Felecia N.; Mason, Jacqueline K.; McAdams, Jennifer L.; Phillips, Robert J.

    2013-01-01

    To supply a fuller morphological characterization of the vagal afferents innervating the lower esophageal sphincter (LES), specifically to label vagal terminals in the tissues forming the LES in the gastroesophageal junction, the present experiment employed injections of dextran biotin into the nodose ganglia of rats. Four types of vagal afferents innervated the LES. Clasp and sling muscle fibers were directly and prominently innervated by intramuscular arrays (IMAs). Individual IMA terminals subtended about 16° of arc of the esophageal circumference, and, collectively, the terminal fields were distributed within the muscle ring to establish a 360° annulus of mechanoreceptors in the sphincter wall. 3D morphometry of the terminals established that, compared to sling muscle IMAs, clasp muscle IMAs had more extensive arbors and larger receptive fields. In addition, at the cardia, local myenteric ganglia between smooth muscle sheets and striated muscle bundles were innervated by intraganglionic laminar endings (IGLEs), in a pattern similar to the innervation of the myenteric plexus throughout the stomach and esophagus. Finally, as previously described, the principle bundle of sling muscle fibers that links LES sphincter tissue to the antropyloric region of the lesser curvature was innervated by exceptionally long IMAs as well as by unique web ending specializations at the distal attachment of the bundle. Overall, the specialized varieties of densely distributed vagal afferents innervating the LES underscore the conclusion that these sensory projections are critically involved in generating LES reflexes and may be promising targets for managing esophageal dysfunctions. PMID:23583280

  5. Approaches Mediating Oxytocin Regulation of the Immune System.

    PubMed

    Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng

    2016-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.

  6. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration

    PubMed Central

    Banerjee, Anirban; Kim, Brandon J.; Carmona, Ellese M.; Cutting, Andrew S.; Gurney, Michael A.; Carlos, Chris; Feuer, Ralph; Prasadarao, Nemani V.; Doran, Kelly S.

    2011-01-01

    Group B Streptococcus (GBS) is the leading cause of meningitis in newborn infants. Bacterial cell surface appendages, known as pili, have been recently described in streptococcal pathogens, including GBS. The pilus tip adhesin, PilA, contributes to GBS adherence to blood-brain barrier (BBB) endothelium; however, the host receptor and the contribution of PilA in central nervous system (CNS) disease pathogenesis are unknown. Here we show that PilA binds collagen, which promotes GBS interaction with the α2β1 integrin resulting in activation of host chemokine expression and neutrophil recruitment during infection. Mice infected with the PilA-deficient mutant exhibit delayed mortality, a decrease in neutrophil infiltration and bacterial CNS dissemination. We find that PilA-mediated virulence is dependent on neutrophil influx as neutrophil depletion results in a decrease in BBB permeability and GBS–BBB penetration. Our results suggest that the bacterial pilus, specifically the PilA adhesin, has a dual role in immune activation and bacterial entry into the CNS. PMID:21897373

  7. Low to high frequency ratio of heart rate variability spectra fails to describe sympatho-vagal balance in cardiac patients.

    PubMed

    Milicević, Goran

    2005-06-01

    Heart rate variability (HRV) reflects an influence of autonomic nervous system on heart work. In healthy subjects, ratio between low and high frequency components (LF/HF ratio) of HRV spectra represents a measure of sympatho-vagal balance. The ratio was defined by the authorities as an useful clinical tool, but it seems that it fails to summarise sympatho-vagal balance in a clinical setting. Value of the method was re-evaluated in several categories of cardiac patients. HRV was analysed from 24-hour Holter ECGs in 132 healthy subjects, and 2159 cardiac patients dichotomised by gender, median of age, diagnosis of myocardial infarction or coronary artery surgery, left ventricular systolic function and divided by overall HRV into several categories. In healthy subjects, LF/HF ratio correlated with overall HRV negatively, as expected. The paradoxical finding was obtained in cardiac patients; the lower the overall HRV and the time-domain indices of vagal modulation activity were the lower the LF/HF ratio was. If used as a measure of sympatho-vagal balance, long-term recordings of LF/HF ratio contradict to clinical finding and time-domain HRV indices in cardiac patients. The ratio cannot therefore be used as a reliable marker of autonomic activity in a clinical setting.

  8. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    PubMed

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how

  9. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    PubMed

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  10. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  11. Gene-Environment Contributions to the Development of Infant Vagal Reactivity: The Interaction of Dopamine and Maternal Sensitivity

    ERIC Educational Resources Information Center

    Propper, Cathi; Moore, Ginger A.; Mills-Koonce, W. Roger; Halpern, Carolyn Tucker; Hill-Soderlund, Ashley L.; Calkins, Susan D.; Carbone, Mary Anna; Cox, Martha

    2008-01-01

    This study investigated dopamine receptor genes ("DRD2" and "DRD4") and maternal sensitivity as predictors of infant respiratory sinus arrhythmia (RSA) and RSA reactivity, purported indices of vagal tone and vagal regulation, in a challenge task at 3, 6, and 12 months in 173 infant-mother dyads. Hierarchical linear modeling (HLM) revealed that at…

  12. Mathematical and Computational Modeling for Tumor Virotherapy with Mediated Immunity.

    PubMed

    Timalsina, Asim; Tian, Jianjun Paul; Wang, Jin

    2017-08-01

    We propose a new mathematical modeling framework based on partial differential equations to study tumor virotherapy with mediated immunity. The model incorporates both innate and adaptive immune responses and represents the complex interaction among tumor cells, oncolytic viruses, and immune systems on a domain with a moving boundary. Using carefully designed computational methods, we conduct extensive numerical simulation to the model. The results allow us to examine tumor development under a wide range of settings and provide insight into several important aspects of the virotherapy, including the dependence of the efficacy on a few key parameters and the delay in the adaptive immunity. Our findings also suggest possible ways to improve the virotherapy for tumor treatment.

  13. B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma.

    PubMed

    Candolfi, Marianela; Curtin, James F; Yagiz, Kader; Assi, Hikmat; Wibowo, Mia K; Alzadeh, Gabrielle E; Foulad, David; Muhammad, A K M G; Salehi, Sofia; Keech, Naomi; Puntel, Mariana; Liu, Chunyan; Sanderson, Nicholas R; Kroeger, Kurt M; Dunn, Robert; Martins, Gislaine; Lowenstein, Pedro R; Castro, Maria G

    2011-10-01

    We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6(-/-) mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6(-/-) mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.

  14. Helminth–host immunological interactions: prevention and control of immune-mediated diseases

    PubMed Central

    Elliott, David E.; Weinstock, Joel V.

    2013-01-01

    Exposure to commensal and pathogenic organisms strongly influences our immune system. Exposure to helminths was frequent before humans constructed their current highly hygienic environment. Today, in highly industrialized countries, contact between humans and helminths is rare. Congruent with the decline in helminth infections is an increase in the prevalence of autoimmune and inflammatory disease. It is possible that exclusion of helminths from the environment has permitted the emergence of immune-mediated disease. We review the protective effects of helminths on expression of inflammatory bowel disease, multiple sclerosis, and animal models of these and other inflammatory diseases. We also review the immune pathways altered by helminths that may afford protection from these illnesses. Helminth exposure tends to inhibit IFN-γ and IL-17 production, promote IL-4, IL-10, and TGF-β release, induce CD4+ T cell Foxp3 expression, and generate regulatory macrophages, dendritic cells, and B cells. Helminths enable protective pathways that may vary by specific species and disease model. Helminths or their products likely have therapeutic potential to control or prevent immune-mediated illness. PMID:22239614

  15. Immune-mediated rippling muscle disease and myasthenia gravis.

    PubMed

    Bettini, Mariela; Gonorazky, Hernan; Chaves, Marcelo; Fulgenzi, Ernesto; Figueredo, Alejandra; Christiansen, Silvia; Cristiano, Edgardo; Bertini, Enrico S; Rugiero, Marcelo

    2016-10-15

    Cases of acquired rippling muscle disease in association with myasthenia gravis have been reported. We present three patients with iRMD (immune-mediated rippling muscle disease) and AChR-antibody positive myasthenia gravis. None of them had thymus pathology. They presented exercise-induced muscle rippling combined with generalized myasthenia gravis. One of them had muscle biopsy showing a myopathic pattern and a patchy immunostaining with caveolin antibodies. They were successfully treated steroids and azathioprine. The immune nature of this association is supported by the response to immunotherapies and the positivity of AChR-antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. An epidemiological study of immune-mediated skin diseases affecting the oral cavity.

    PubMed

    Carvalho, Cyntia Helena Pereira de; Santos, Bruna Rafaela Martins dos; Vieira, Camila de Castro; Lima, Emeline das Neves de Araújo; Santos, Pedro Paulo de Andrade; Freitas, Roseana de Almeida

    2011-01-01

    Immune-mediated skin diseases encompass a variety of pathologies that present in different forms in the body. The objective of this study was to establish the prevalence of the principal immune-mediated skin diseases affecting the oral cavity. A total of 10,292 histopathology reports stored in the archives of the Anatomical Pathology Laboratory, Department of Oral Pathology, Federal University of Rio Grande do Norte, covering the period from 1988 to 2009, were evaluated. For the cases diagnosed with some type of disease relevant to the study, clinical data such as the gender, age and ethnicity of the patient, the anatomical site of the disease and its symptomatology were collected. Of all the cases registered at the above-mentioned service, 82 (0.8%) corresponded to immune-mediated skin diseases with symptoms affecting the oral cavity. The diseases found in this study were: oral lichen planus, pemphigus vulgaris and benign mucous membrane pemphigoid. Oral lichen planus was the most common lesion, comprising 68.05% of the cases analyzed. Of these cases, 64.3% were women and the cheek mucosa was the anatomical site most commonly affected (46.8%). Immune-mediated skin diseases affecting the oral cavity continue to be rare, the prevalence found in this study being similar to that reported for the majority of regions worldwide. Nevertheless, early diagnosis is indispensable in the treatment of these diseases, bearing in mind that systemic involvement is possible in these patients.

  17. The Role of Histone Demethylase Jmjd3 in Immune-Mediated Aplastic Anemia

    DTIC Science & Technology

    2017-03-01

    anemia (AA) is a condition of bone marrow failure (BMF) characterized by blood pancytopenia and BM hypoplasia. In most cases, AA is an immune-mediated...is a condition of bone marrow failure (BMF) characterized by blood pancytopenia and BM hypoplasia. In most cases, AA is an immune-mediated disorder...GVHD) 2.11. Bone marrow transplantation 2.12. NSG mice 2.13. xGVHD 2.14. Hematopoietic stem cells (HSCs) 3. ACCOMPLISHMENTS: The PI is

  18. Humoral and Cellular Immunity Changed after Traumatic Brain Injury in Human Patients.

    PubMed

    Wang, Jia-Wei; Li, Jin-Ping; Song, Ying-Lun; Zhao, Qi-Huang

    2017-01-01

    Previous studies have suggested that there is a disproportionally higher risk of infection following traumatic brain injury (TBI). This predisposition to infection may be driven by a poorly understood, brain-specific response in the immune system after TBI. However, there is a lack of studies that have fully characterized TBI patients to understand the relationship between TBI and peripheral immune function. In the present study, markers for humoral immunity and cellular immunity were measured for up to 2 weeks in the peripheral blood of 37 patients with TBI in order to elucidate the time course and the type of the peripheral immune response following TBI. 12 relatively healthy individuals without TBI and other neurological diseases were enrolled into the control group. Our data indicated that TBI could induce significant changes in humoral immunity characterized by a decrease in IgG and IgM levels and an increase in the complements C3 and C4 levels in comparison with the control group. Moreover, compared with the control group, a significant reduction in peripheral blood CD3 + and CD3 + CD4 + lymphocyte counts occurred early (days 1-3) following the onset of trauma. These results provide evidence that TBI is associated with substantial changes in humoral immunity and cellular immunity, which may explain the high incidence of infection encountered in these patients. © 2017 by the Association of Clinical Scientists, Inc.

  19. Neutrophilic dermatitis and immune-mediated haematological disorders in a dog: suspected adverse reaction to carprofen.

    PubMed

    Mellor, P J; Roulois, A J A; Day, M J; Blacklaws, B A; Knivett, S J; Herrtage, M E

    2005-05-01

    This report describes the clinical and pathological findings of a suspected idiosyncratic adverse drug reaction in a young dog. The patient presented with sudden onset, severe skin lesions together with episodes of collapse. Investigations revealed a neutrophilic dermatitis with vasculitis, immune-mediated haemolytic anaemia and thrombocytopenia. Similar pathology has been described in human cases of Sweet's syndrome. The chronology of events suggested an adverse drug reaction to carprofen, although two antibiotics had been prescribed within the dog's recent history. Lymphocyte transformation tests were performed and tended to exclude both antibiotics as the cause of the reaction. To the authors' knowledge, lymphocyte transformation tests have not previously been described with regard to drug hypersensitivity assessment in the veterinary literature, and this is the first peer-reviewed case report of neutrophilic dermatitis and vasculitis with immune-mediated haemolytic anaemia and thrombocytopenia occurring as a suspected adverse drug reaction to carprofen in the dog.

  20. Voluntary control of breathing does not alter vagal modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Evans, J. M.; Bruce, E. N.; Eckberg, D. L.; Knapp, C. F.

    1995-01-01

    Variations in respiratory pattern influence the heart rate spectrum. It has been suggested, hence, that metronomic respiration should be used to correctly assess vagal modulation of heart rate by using spectral analysis. On the other hand, breathing to a metronome has been reported to increase heart rate spectral power in the high- or respiratory frequency region; this finding has led to the suggestion that metronomic respiration enhances vagal tone or alters vagal modulation of heart rate. To investigate whether metronomic breathing complicates the interpretation of heart rate spectra by altering vagal modulation, we recorded the electrocardiogram and respiration from eight volunteers during three breathing trials of 10 min each: 1) spontaneous breathing (mean rate of 14.4 breaths/min); 2) breathing to a metronome at the rate of 15, 18, and 21 breaths/min for 2, 6, and 2 min, respectively; and 3) breathing to a metronome at the rate of 18 breaths/min for 10 min. Data were also collected from eight volunteers who breathed spontaneously for 20 min and breathed metronomically at each subject's mean spontaneous breathing frequency for 20 min. Results from the three 10-min breathing trials showed that heart rate power in the respiratory frequency region was smaller during metronomic breathing than during spontaneous breathing. This decrease could be explained fully by the higher breathing frequencies used during trials 2 and 3 of metronomic breathing. When the subjects breathed metronomically at each subject's mean breathing frequency, the heart rate powers during metronomic breathing were similar to those during spontaneous breathing. Our results suggest that vagal modulation of heart rate is not altered and vagal tone is not enhanced during metronomic breathing.

  1. Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy

    PubMed Central

    Gill, Alexander J.; Kolson, Dennis L.

    2013-01-01

    The persistence of chronic immune activation and oxidative stress in human immunodeficiency virus (HIV)-infected, antiretroviral drug-treated individuals are major obstacles to fully preventing HIV disease progression. The immune modulator and antioxidant dimethyl fumarate (DMF) is effective in treating immune-mediated diseases and it also has potential applications to limiting HIV disease progression. Among the relevant effects of DMF and its active metabolite monomethyl fumarate (MMF) are induction of a Th1 → Th2 lymphocyte shift, inhibition of pro-inflammatory cytokine signaling, inhibition of NF-κB nuclear translocation, inhibition of dendritic cell maturation, suppression of lymphocyte and endothelial cell adhesion molecule expression, and induction of the Nrf2-dependent antioxidant response element (ARE) and effector genes. Associated with these effects are reduced lymphocyte and monocyte infiltration into psoriatic skin lesions in humans and immune-mediated demyelinating brain lesions in rodents, which confirms potent systemic and central nervous system (CNS) effects. In addition, DMF and MMF limit HIV infection in macrophages in vitro, albeit by unknown mechanisms. Finally, DMF and MMF also suppress neurotoxin production from HIV-infected macrophages, which drives CNS neurodegeneration. Thus, DMF might protect against systemic and CNS complications in HIV infection through its effective suppression of immune activation, oxidative stress, HIV replication, and macrophage-associated neuronal injury. PMID:23971529

  2. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    PubMed Central

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  3. Influence of microgravity on astronauts' sympathetic and vagal responses to Valsalva's manoeuvre

    NASA Technical Reports Server (NTRS)

    Cox, James F.; Tahvanainen, Kari U O.; Kuusela, Tom A.; Levine, Benjamin D.; Cooke, William H.; Mano, Tadaaki; Iwase, Satoshi; Saito, Mitsuru; Sugiyama, Yoshiki; Ertl, Andrew C.; hide

    2002-01-01

    When astronauts return to Earth and stand, their heart rates may speed inordinately, their blood pressures may fall, and some may experience frank syncope. We studied brief autonomic and haemodynamic transients provoked by graded Valsalva manoeuvres in astronauts on Earth and in space, and tested the hypothesis that exposure to microgravity impairs sympathetic as well as vagal baroreflex responses. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in four healthy male astronauts (aged 38-44 years) before, during and after the 16 day Neurolab space shuttle mission. Astronauts performed two 15 s Valsalva manoeuvres at each pressure, 15 and 30 mmHg, in random order. Although no astronaut experienced presyncope after the mission, microgravity provoked major changes. For example, the average systolic pressure reduction during 30 mmHg straining was 27 mmHg pre-flight and 49 mmHg in flight. Increases in muscle sympathetic nerve activity during straining were also much greater in space than on Earth. For example, mean normalized sympathetic activity increased 445% during 30 mmHg straining on earth and 792% in space. However, sympathetic baroreflex gain, taken as the integrated sympathetic response divided by the maximum diastolic pressure reduction during straining, was the same in space and on Earth. In contrast, vagal baroreflex gain, particularly during arterial pressure reductions, was diminished in space. This and earlier research suggest that exposure of healthy humans to microgravity augments arterial pressure and sympathetic responses to Valsalva straining and differentially reduces vagal, but not sympathetic baroreflex gain.

  4. The antiarrhythmic effect of vagal stimulation after acute coronary occlusion: Role of the heart rate.

    PubMed

    Manati, Waheed; Pineau, Julien; Doñate Puertas, Rosa; Morel, Elodie; Quadiri, Timour; Bui-Xuan, Bernard; Chevalier, Philippe

    2018-01-03

    Strong evidence suggests a causal link between autonomic disturbances and ventricular arrhythmias. However, the mechanisms underlying the antiarrhythmic effect of vagal stimulation are poorly understood. The vagal antiarrhythmic effect might be modulated by a decrease in heart rate. the proximal anterior interventricular artery was occluded in 16 pigs by clamping under general anaesthesia. Group 1: heart rates remained spontaneous (n = 6; 12 occlusions); Group 2: heart rates were fixed at 190 beats per minute (bpm) with atrial electrical stimulation (n = 10; 20 occlusions). Each pig received two occlusions, 30 min apart, one without and one with vagal stimulation (10 Hz, 2 ms, 5-20 mA). The antiarrhythmic effect of vagal activation was defined as the time to the appearance of ventricular fibrillation (VF) after occlusion. In Group 1, vagal stimulation triggered a significant decrease in basal heart rate (132 ± 4 vs. 110 ± 17 bpm, p < 0.05), and delayed the time to VF after coronary occlusion (1102 ± 85 vs. 925 ± 41 s, p < 0.05). In Group 2, vagal stimulation did not modify the time to VF (103 ± 39 vs. 91 ± 20 s). Analyses revealed that heart rate and the time to VF were positively linearly related. Maintaining a constant heart rate with atrial electrical stimulation in pigs prevented vagal stimulation from modifying the time to VF after acute coronary occlusion.

  5. Immune Gate” of Psychopathology—The Role of Gut Derived Immune Activation in Major Psychiatric Disorders

    PubMed Central

    Rudzki, Leszek; Szulc, Agata

    2018-01-01

    Interaction between the gastrointestinal tract (GI) and brain functions has recently become a topic of growing interest in psychiatric research. These multidirectional interactions take place in the so-called gut-brain axis or more precisely, the microbiota-gut-brain axis. The GI tract is the largest immune organ in the human body and is also the largest surface of contact with the external environment. Its functions and permeability are highly influenced by psychological stress, which are often a precipitating factor in the first episode, reoccurrence and/or deterioration of symptoms of psychiatric disorders. In recent literature there is growing evidence that increased intestinal permeability with subsequent immune activation has a major role in the pathophysiology of various psychiatric disorders. Numerous parameters measured in this context seem to be aftermaths of those mechanisms, yet at the same time they may be contributing factors for immune mediated psychopathology. For example, immune activation related to gut-derived bacterial lipopolysaccharides (LPS) or various food antigens and exorphins were reported in major depression, schizophrenia, bipolar disorder, alcoholism and autism. In this review the authors will summarize the evidence and roles of such parameters and their assessment in major psychiatric disorders. PMID:29896124

  6. Recent advances targeting innate immunity-mediated therapies against HIV-1 infection.

    PubMed

    Shankar, Esaki Muthu; Velu, Vijayakumar; Vignesh, Ramachandran; Vijayaraghavalu, Sivakumar; Rukumani, Devi Velayuthan; Sabet, Negar Shafiei

    2012-08-01

    Early defence mechanisms of innate immunity respond rapidly to infection against HIV-1 in the genital mucosa. Additionally, innate immunity optimises effective adaptive immune responses against persistent HIV infection. Recent research has highlighted the intrinsic roles of apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G, tripartite motif-containing protein 5, tetherin, sterile α-motif and histidine/aspartic acid domain-containing protein 1 in restricting HIV-1 replication. Likewise, certain endogenously secreted antimicrobial peptides, namely α/β/θ-defensins, lactoferrins, secretory leukocyte protease inhibitor, trappin-2/elafin and macrophage inflammatory protein-3α are reportedly protective. Whilst certain factors directly inhibit HIV, others can be permissive. Interferon-λ3 exerts an anti-HIV function by activating Janus kinase-signal transducer and activator of transcription-mediated innate responses. Morphine has been found to impair intracellular innate immunity, contributing to HIV establishment in macrophages. Interestingly, protegrin-1 could be used therapeutically to inhibit early HIV-1 establishment. Moreover, chloroquine inhibits plasmacytoid dendritic cell activation and improves effective T-cell responses. This minireview summarizes the recently identified targets for innate immunity-mediated therapies and outlines the challenges that lie ahead in improving treatment of HIV infection. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  7. Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity.

    PubMed

    Bhagat, Ruchi; Fortna, Samuel R; Browning, Kirsteen N

    2015-01-01

    Obesity is recognized as being multifactorial in origin, involving both genetic and environmental factors. The perinatal period is known to be critically important in the development of neural circuits responsible for energy homeostasis and the integration of autonomic reflexes. Diet-induced obesity alters the biophysical, pharmacological and morphological properties of vagal neurocircuits regulating upper gastrointestinal tract functions, including satiety. Less information is available, however, regarding the effects of a high fat diet (HFD) itself on the properties of vagal neurocircuits. The present study was designed to test the hypothesis that exposure to a HFD during the perinatal period alters the electrophysiological, pharmacological and morphological properties of vagal efferent motoneurones innervating the stomach. Our data indicate that perinatal HFD decreases the excitability of gastric-projecting dorsal motor nucleus neurones and dysregulates neurotransmitter release from synaptic inputs and that these alterations occur prior to the development of obesity. These findings represent the first direct evidence that exposure to a HFD modulates the processing of central vagal neurocircuits even in the absence of obesity. The perinatal period is critically important to the development of autonomic neural circuits responsible for energy homeostasis. Vagal neurocircuits are vital to the regulation of upper gastrointestinal functions, including satiety. Diet-induced obesity modulates the excitability and responsiveness of both peripheral vagal afferents and central vagal efferents but less information is available regarding the effects of diet per se on vagal neurocircuit functions. The aims of this study were to investigate whether perinatal exposure to a high fat diet (HFD) dysregulated dorsal motor nucleus of the vagus (DMV) neurones, prior to the development of obesity. Whole cell patch clamp recordings were made from gastric-projecting DMV neurones in thin

  8. JAKs and STATs in Immunoregulation and Immune-Mediated Disease

    PubMed Central

    O’Shea, John J.; Plenge, Robert

    2012-01-01

    Summary A landmark in cell biology, the discovery of the JAK-STAT pathway provided a simple mechanism for gene regulation that dramatically advanced our understanding of the action of hormones, interferons, colony stimulating factors, and interleukins. As we learn more about the complexities of immune responses, new insights into the functions of this pathway continue to be revealed, aided by technology that permits genomewide views. As we celebrate the 20th anniversary of the discovery of this paradigm in cell signaling, it is particularly edifying to see how this knowledge has rapidly been translated to human immune disease. Not only have genomewide association studies demonstrated that this pathway is highly relevant to human autoimmunity but targeting JAKs is now a reality in immune-mediated disease. PMID:22520847

  9. T-cell-mediated immune response to respiratory coronaviruses

    PubMed Central

    Channappanavar, Rudragouda; Zhao, Jincun; Perlman, Stanley

    2014-01-01

    Emerging respiratory coronaviruses such as the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV) pose potential biological threats to humans. SARS and MERS are manifested as severe atypical pneumonia associated with high morbidity and mortality in humans. The majority of studies carried out in SARS-CoV-infected humans and animals attribute a dysregulated/exuberant innate response as a leading contributor to SARS-CoV-mediated pathology. A decade after the 2002–2003 SARS epidemic, we do not have any approved preventive or therapeutic agents available in case of re-emergence of SARS-CoV or other related viruses. A strong neutralizing antibody response generated against the spike (S) glycoprotein of SARS-CoV is completely protective in the susceptible host. However, neutralizing antibody titers and the memory B cell response are short-lived in SARS-recovered patients and the antibody will target primary homologous strain. Interestingly, the acute phase of SARS in humans is associated with a severe reduction in the number of T cells in the blood. Surprisingly, only a limited number of studies have explored the role of the T cell-mediated adaptive immune response in respiratory coronavirus pathogenesis. In this review, we discuss the role of anti-virus CD4 and CD8 T cells during respiratory coronavirus infections with a special emphasis on emerging coronaviruses. PMID:24845462

  10. An XA21-Associated Kinase (OsSERK2) Regulates Immunity Mediated by the XA21 and XA3 Immune Receptors

    PubMed Central

    Chen, Xuewei; Zuo, Shimin; Schwessinger, Benjamin; Chern, Mawsheng; Canlas, Patrick E.; Ruan, Deling; Zhou, Xiaogang; Wang, Jing; Daudi, Arsalan; Petzold, Christopher J.; Heazlewood, Joshua L.; Ronald, Pamela C.

    2014-01-01

    The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast two-hybrid system in a kinase activity-dependent manner. OsSERK2 undergoes bidirectional transphosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. These results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function. Taken together, our findings suggest that the mechanism of OsSERK2-meditated regulation of rice XA21, XA3, and FLS2 differs from that of AtSERK3/BAK1-mediated regulation of Arabidopsis FLS2 and EFR. PMID:24482436

  11. Parental Socialization, Vagal Regulation, and Preschoolers' Anxious Difficulties: Direct Mothers and Moderated Fathers

    ERIC Educational Resources Information Center

    Hastings, Paul D.; Sullivan, Caroline; McShane, Kelly E.; Coplan, Robert J.; Utendale, William T.; Vyncke, Johanna D.

    2008-01-01

    Parental supportiveness and protective overcontrol and preschoolers' parasympathetic regulation were examined as predictors of temperamental inhibition, social wariness, and internalizing problems. Lower baseline vagal tone and weaker vagal suppression were expected to mark poorer dispositional self-regulatory capacity, leaving children more…

  12. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    PubMed

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    PubMed

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The PA and HA Gene-Mediated High Viral Load and Intense Innate Immune Response in the Brain Contribute to the High Pathogenicity of H5N1 Avian Influenza Virus in Mallard Ducks

    PubMed Central

    Hu, Jiao; Hu, Zenglei; Mo, Yiqun; Wu, Qiwen; Cui, Zhu; Duan, Zhiqiang; Huang, Junqing; Chen, Hongzhi; Chen, Yuxin; Gu, Min; Wang, Xiaoquan; Hu, Shunlin; Liu, Huimou; Liu, Wenbo; Liu, Xiaowen

    2013-01-01

    Most highly pathogenic avian influenza A viruses cause only mild clinical signs in ducks, serving as an important natural reservoir of influenza A viruses. However, we isolated two H5N1 viruses that are genetically similar but differ greatly in virulence in ducks. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly pathogenic, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is low pathogenic. To determine the genetic basis for the high virulence of CK10 in ducks, we generated a series of single-gene reassortants between CK10 and GS10 and tested their virulence in ducks. Expression of the CK10 PA or hemagglutinin (HA) gene in the GS10 context resulted in increased virulence and virus replication. Conversely, inclusion of the GS10 PA or HA gene in the CK10 background attenuated the virulence and virus replication. Moreover, the PA gene had a greater contribution. We further determined that residues 101G and 237E in the PA gene contribute to the high virulence of CK10. Mutations at these two positions produced changes in virulence, virus replication, and polymerase activity of CK10 or GS10. Position 237 plays a greater role in determining these phenotypes. Moreover, the K237E mutation in the GS10 PA gene increased PA nuclear accumulation. Mutant GS10 viruses carrying the CK10 HA gene or the PA101G or PA237E mutation induced an enhanced innate immune response. A sustained innate response was detected in the brain rather than in the lung and spleen. Our results suggest that the PA and HA gene-mediated high virus replication and the intense innate immune response in the brain contribute to the high virulence of H5N1 virus in ducks. PMID:23926340

  15. Vagal and sympathetic activity in burnouts during a mentally demanding workday.

    PubMed

    Zanstra, Ydwine J; Schellekens, Jan M H; Schaap, Cas; Kooistra, Libbe

    2006-01-01

    We study differences in task performance and related sympathetic-vagal reaction patterns between burnouts and controls during a mentally demanding workday. Thirty-nine adults with burnout and 40 healthy controls performed mental tasks during a simulated workday. At pretest, just before lunch (lunch test) and at the end of the day (posttest), a Stroop color word task was administered as a probe task. Efficiency (the relation between performance and effort during the probe task), performance (reaction time and errors), and effort (self-report) were measured, as well as cardiovascular indices of sympathetic (blood pressure) and vagal (respiratory sinus arrhythmia) activity. Performance and effort investment of both burnouts and controls did not differ during pretest. As the day progressed the performance of controls improved more than the performance of burnouts. Moreover, the control group showed a decrease of blood pressure in response to mental task demands, a decrease in respiratory sinus arrhythmia activity, and no change in experienced effort. In the burnout group, no change could be demonstrated in blood pressure, suggesting a sympathetic predominance in the sympathetic-vagal balance. Burnouts experienced an increase in effort and were more tired at the end of the workday. Burnouts and healthy controls differ in their pattern of sympathetic-vagal activity only after long-lasting work demands. Findings give limited support to Porges's view that in healthy subjects, the vagal system is more responsive to challenging task situations than in chronically stressed individuals. The distinction between two phases in the burnout on the basis of behavioral and physiological characteristics is discussed.

  16. Gut vagal afferents are necessary for the eating-suppressive effect of intraperitoneally administered ginsenoside Rb1 in rats.

    PubMed

    Shen, Ling; Wang, David Q-H; Lo, Chunmin C; Arnold, Myrtha; Tso, Patrick; Woods, Stephen C; Liu, Min

    2015-12-01

    Ginsenoside Rb1 (Rb1) reduces food intake in both lean and high-fat diet induced-obese rats; however, the sites and/or mediation of the eating-suppressive effect of Rb1 have not previously been identified. We hypothesized that intraperitoneally (ip) administered Rb1 exerts its anorectic action by enhancing sensitivity to satiation signals, such as cholecystokinin (CCK), and/or that it acts through vagal afferent nerves that relay the satiating signaling to the hindbrain. To test these hypotheses, we gave ip bolus doses of Rb1 (2.5-10.0mg/kg) and CCK-8 (0.125-4.0μg/kg) alone or in combination and assessed food intake in rats. Low doses of Rb1 (2.5mg/kg) or CCK-8 (0.125μg/kg) alone had no effect on food intake whereas higher doses did. When these subthreshold doses of Rb1 and CCK-8 were co-administered, the combination significantly reduced food intake relative to saline controls, and this effect was attenuated by lorglumide, a selective CCK1-receptor antagonist. Interestingly, lorglumide blocked food intake induced by an effective dose of CCK-8 alone, but not by Rb1 alone, suggesting that Rb1's anorectic effect is independent of the CCK1 receptor. To determine whether peripherally administered Rb1 suppresses feeding via abdominal vagal nerves, we evaluated the effect of ip Rb1 injection in subdiaphragmatic vagal deafferentation (SDA) and control rats. Rb1's effect on food intake was significantly attenuated in SDA rats, compared with that in SHAM controls. These data indicate that the vagal afferent system is the major pathway conveying peripherally administered Rb1's satiation signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Primary immune-mediated neutropenia in a cat

    PubMed Central

    Waugh, Carly E.; Scott, Katherine D.; Bryan, Laura K.

    2014-01-01

    An 18-month-old male castrated indoor Himalayan cat was presented for recurrent fever, lethargy, and uveitis. Persistent neutropenia was identified and tests for infectious disease and bone marrow cytology were performed. Primary immune-mediated neutropenia was diagnosed and successfully treated. At the time of writing this report, 24 mo after the initial diagnosis. the patient was clinically normal and not receiving therapy. PMID:25392551

  18. Anorexia-cachexia syndrome in hepatoma tumour-bearing rats requires the area postrema but not vagal afferents and is paralleled by increased MIC-1/GDF15.

    PubMed

    Borner, Tito; Arnold, Myrtha; Ruud, Johan; Breit, Samuel N; Langhans, Wolfgang; Lutz, Thomas A; Blomqvist, Anders; Riediger, Thomas

    2017-06-01

    The cancer-anorexia-cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour-derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour-derived macrophage inhibitory cytokine-1 (MIC-1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC-1 in mice. Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC-1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. In tumour-bearing sham-operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer-induced anorexia or body weight loss. Tumour-bearing rats had substantially increased MIC-1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. These findings demonstrate the importance of the AP in the mediation of cancer-dependent anorexia and body weight loss and support a pathological role of MIC-1 as a tumour-derived factor mediating CACS, possibly via an AP-dependent action. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle

  19. Repeated arterial occlusion, delta-opioid receptor (DOR) plasticity and vagal transmission within the sinoatrial node of the anesthetized dog.

    PubMed

    Deo, Shekhar H; Barlow, Matthew A; Gonzalez, Leticia; Yoshishige, Darice; Caffrey, James L

    2009-01-01

    Brief interruptions in coronary blood flow precondition the heart, engage delta-opioid receptor (DOR) mechanisms and reduce the damage that typically accompanies subsequent longer coronary occlusions. Repeated short occlusions of the sinoatrial (SA) node artery progressively raised nodal methionine-enkephalin-arginine-phenylalanine (MEAP) and improved vagal transmission during subsequent long occlusions in anesthetized dogs. The DOR type-1 (DOR-1) antagonist, BNTX reversed the vagotonic effect. Higher doses of enkephalin interrupted vagal transmission through a DOR-2 mechanism. The current study tested whether the preconditioning (PC) protocol, the later occlusion or a combination of both was required for the vagotonic effect. The study also tested whether evolving vagotonic effects included withdrawal of competing DOR-2 vagolytic influences. Vagal transmission progressively improved during successive SA nodal artery occlusions. The vagotonic effect was absent in sham animals and after DOR-1 blockade. After completing the PC protocol, exogenously applied vagolytic doses of MEAP reduced vagal transmission under both normal and occluded conditions. The magnitude of these DOR-2 vagolytic effects was small compared to controls and repeated MEAP challenges rapidly eroded vagolytic responses further. Prior DOR-1 blockade did not alter the PC mediated, progressive loss of DOR-2 vagolytic responses. In conclusion, DOR-1 vagotonic responses evolved from signals earlier in the PC protocol and erosion of competing DOR-2 vagolytic responses may have contributed to an unmasking of vagotonic responses. The data support the hypothesis that PC and DOR-2 stimulation promote DOR trafficking, and down regulation of the vagolytic DOR-2 phenotype in favor of the vagotonic DOR-1 phenotype. DOR-1 blockade may accelerate the process by sequestering newly emerging receptors.

  20. Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection.

    PubMed

    Harris, Nicola L; Loke, P'ng

    2017-12-19

    Type-2-cell-mediated immune responses play a critical role in mediating both host-resistance and disease-tolerance mechanisms during helminth infections. Recently, type 2 cell responses have emerged as major regulators of tissue repair and metabolic homeostasis even under steady-state conditions. In this review, we consider how studies of helminth infection have contributed toward our expanding cellular and molecular understanding of type-2-cell-mediated immunity, as well as new areas such as the microbiome. By studying how these successful parasites form chronic infections without overt pathology, we are gaining additional insights into allergic and inflammatory diseases, as well as normal physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Reduced cardiac vagal activity in obese children and adolescents.

    PubMed

    Dangardt, Frida; Volkmann, Reinhard; Chen, Yun; Osika, Walter; Mårild, Staffan; Friberg, Peter

    2011-03-01

      Obese children present with various cardiovascular risk factors affecting their future health. In adults, cardiac autonomic function is a major risk factor, predicting cardiovascular morbidity and mortality. We hypothesized that obese children and adolescents had a lower cardiac vagal activity than lean subjects. We measured cardiac spontaneous baroreflex sensitivity (BRS), reflecting the dynamic regulation of cardiac vagal function, in large groups of obese and lean young individuals.   Cardiac BRS, using the sequence approach, was assessed in 120 obese (59 girls), 43 overweight (23 girls) and 148 lean subjects (78 girls). Obese subjects showed a decreased BRS compared to both overweight and lean subjects [16±7 versus 21±9 (P<0·01) and 22±10 ms per mmHg (P<0·0001), respectively]. The differences remained after correcting for age, gender and pubertal status.   Children with obesity had low vagal activity at rest, and there was no gender difference. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  2. VERSATILE, HIGH-RESOLUTION ANTEROGRADE LABELING OF VAGAL EFFERENT PROJECTIONS WITH DEXTRAN AMINES

    PubMed Central

    Walter, Gary C.; Phillips, Robert J.; Baronowsky, Elizabeth A.; Powley, Terry L.

    2009-01-01

    None of the anterograde tracers used to label and investigate vagal preganglionic neurons projecting to the viscera has proved optimal for routine and extensive labeling of autonomic terminal fields. To identify an alternative tracer protocol, the present experiment evaluated whether dextran conjugates, which have produced superior results in the CNS, might yield widespread and effective labeling of long, fine-caliber vagal efferents in the peripheral nervous system. The dextran conjugates that were evaluated proved reliable and versatile for labeling the motor neuron pool in its entirety, for single- and multiple-labeling protocols, for both conventional and confocal fluorescence microscopy, and for permanent labeling protocols for brightfield microscopy of the projections to the gastrointestinal (GI) tract. Using a standard ABC kit followed by visualization with DAB as the chromagen, Golgi-like labeling of the vagal efferent terminal fields in the GI wall was achieved with the biotinylated dextrans. The definition of individual terminal varicosities was so sharp and detailed that it was routinely practical to examine the relationship of putative vagal efferent contacts (by the criteria of high magnification light microscopy) with the dendritic and somatic architecture of counterstained neurons in the myenteric plexus. Overall, dextran conjugates provide high-definition labeling of an extensive vagal motor pool in the GI tract, and offer considerable versatility when multiple-staining protocols are needed to elucidate the complexities of the innervation of the gut. PMID:19056424

  3. Evidence of functional cell-mediated immune responses to nontypeable Haemophilus influenzae in otitis-prone children

    PubMed Central

    Seppanen, Elke; Tan, Dino; Corscadden, Karli J.; Currie, Andrew J.; Richmond, Peter C.; Thornton, Ruth B.

    2018-01-01

    Otitis media (OM) remains a common paediatric disease, despite advances in vaccinology. Susceptibility to recurrent acute OM (rAOM) has been postulated to involve defective cell-mediated immune responses to common otopathogenic bacteria. We compared the composition of peripheral blood mononuclear cells (PBMC) from 20 children with a history of rAOM (otitis-prone) and 20 healthy non-otitis-prone controls, and assessed innate and cell-mediated immune responses to the major otopathogen nontypeable Haemophilus influenzae (NTHi). NTHi was a potent stimulator of inflammatory cytokine secretion from PBMC within 4 hours, with no difference in cytokine levels produced between PBMC from cases or controls. In the absence of antigen stimulation, otitis-prone children had more circulating Natural Killer (NK) cells (p<0.01), particularly NKdim (CD56lo) cells (p<0.01), but fewer CD4+ T cells (p<0.01) than healthy controls. NTHi challenge significantly increased the proportion of activated (CD107a+) NK cells in otitis-prone and non-otitis-prone children (p<0.01), suggesting that NK cells from otitis-prone children are functional and respond to NTHi. CD8+ T cells and NK cells from both cases and controls produced IFNγ in response to polyclonal stimulus (Staphylococcal enterotoxin B; SEB), with more IFNγ+ CD8+ T cells present in cases than controls (p<0.05) but similar proportions of IFNγ+ NK cells. Otitis-prone children had more circulating IFNγ-producing NK cells (p<0.05) and more IFNγ-producing CD4+ (p<0.01) or CD8+ T-cells (p<0.05) than healthy controls. In response to SEB, more CD107a-expressing CD8+ T cells were present in cases than controls (p<0.01). Despite differences in PBMC composition, PBMC from otitis-prone children mounted innate and T cell-mediated responses to NTHi challenge that were comparable to healthy children. These data provide evidence that otitis-prone children do not have impaired functional cell mediated immunity. PMID:29621281

  4. Cardiac vagal flexibility and accurate personality impressions: Examining a physiological correlate of the good judge.

    PubMed

    Human, Lauren J; Mendes, Wendy Berry

    2018-02-23

    Research has long sought to identify which individuals are best at accurately perceiving others' personalities or are good judges, yet consistent predictors of this ability have been difficult to find. In the current studies, we revisit this question by examining a novel physiological correlate of social sensitivity, cardiac vagal flexibility, which reflects dynamic modulation of cardiac vagal control. We examined whether greater cardiac vagal flexibility was associated with forming more accurate personality impressions, defined as viewing targets more in line with their distinctive self-reported profile of traits, in two studies, including a thin-slice video perceptions study (N = 109) and a dyadic interaction study (N = 175). Across studies, we found that individuals higher in vagal flexibility formed significantly more accurate first impressions of others' more observable personality traits (e.g., extraversion, creativity, warmth). These associations held while including a range of relevant covariates, including cardiac vagal tone, sympathetic activation, and gender. In sum, social sensitivity as indexed by cardiac vagal flexibility is linked to forming more accurate impressions of others' observable traits, shedding light on a characteristic that may help to identify the elusive good judge and providing insight into its neurobiological underpinnings. © 2018 Wiley Periodicals, Inc.

  5. Anomalous Brain Dominance and the Immune System: Do Left-Handers Have Specific Immunological Patterns?

    ERIC Educational Resources Information Center

    Lengen, Charis; Regard, Marianne; Joller, Helen; Landis, Theodor; Lalive, Patrice

    2009-01-01

    Geschwind and Behan (1982) and Geschwind and Galaburda (1985a, 1985b, 1985c) suggested a correlation between brain laterality and immune disorders. To test whether this hypothesis holds true not only for the frequency of immune diseases and circulating autoantibodies, but extends also to cellular immunity, we examined the association between…

  6. Passive antibody-mediated immunotherapy for the treatment of malignant gliomas.

    PubMed

    Mitra, Siddhartha; Li, Gordon; Harsh, Griffith R

    2010-01-01

    Despite advances in understanding the molecular mechanisms of brain cancer, the outcome of patients with malignant gliomas treated according to the current standard of care remains poor. Novel therapies are needed, and immunotherapy has emerged with great promise. The diffuse infiltration of malignant gliomas is a major challenge to effective treatment; immunotherapy has the advantage of accessing the entire brain with specificity for tumor cells. Therapeutic immune approaches include cytokine therapy, passive immunotherapy, and active immunotherapy. Cytokine therapy involves the administration of immunomodulatory cytokines to activate the immune system. Active immunotherapy is the generation or augmentation of an immune response, typically by vaccination against tumor antigens. Passive immunotherapy connotes either adoptive therapy, in which tumor-specific immune cells are expanded ex vivo and reintroduced into the patient, or passive antibody-mediated therapy. In this article, the authors discuss the preclinical and clinical studies that have used passive antibody-mediated immunotherapy, otherwise known as serotherapy, for the treatment of malignant gliomas.

  7. Statin-associated immune-mediated myopathy: biology and clinical implications.

    PubMed

    Christopher-Stine, Lisa; Basharat, Pari

    2017-04-01

    In the last 6 years, our understanding of statin-associated myopathy expanded to include not only a toxic myopathy with limited and reversible side-effects but also an autoimmune variety in which statins likely induce an autoimmune myopathy that is both associated with a specific autoantibody and responsive to immunosuppression and immune modulation. This review widens the reader's understanding of statin myopathy to include an autoimmune process. Statin-associated immune-mediated myopathy provides an example of an environmental trigger (statins) directly implicated in an autoimmune disease associated with a genetic predisposition as well as potential risk factors including concomitant diseases and specific statins. Given a median exposure to statins of 38 months, providers should be aware that anti-3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) myopathy may occur even after several years of statin exposure. It is important for the reader to understand the clinical presentation of statin-associated immune-mediated myopathy and the difference in its clinical presentation to that of statins as direct myotoxins. Prompt recognition of such an entity allows the clinician to immediately stop the offending agent if it has not already been discontinued as well as to recognize that statin rechallenge is not a likely option, and that prompt treatment with immunosuppression and/or immunomodulation is usually of enormous benefit to the patient in restoring muscle strength and physical function. VIDEO ABSTRACT.

  8. Therapeutic Targeting of IL-17 and IL-23 Cytokines in Immune-Mediated Diseases.

    PubMed

    Fragoulis, George E; Siebert, Stefan; McInnes, Iain B

    2016-01-01

    The discovery of the biological functions of the interleukin-23/-17 axis led to the identification of IL-23 and IL-17 as important participants in the pathogenesis of several immune-mediated diseases. Therapeutic agents targeting these cytokines and/or their receptors have now been developed as potential treatment strategies for common immune-mediated diseases. Anti-IL-17 and anti-IL-12/-23 regimens appear particularly effective in psoriasis, with promising results in spondyloarthropathies also emerging. Overall, these agents appear well tolerated, with adverse-event rates that are commensurate with those in other biologic treatment programs. The strategic utility of these new agents, however, remains uncertain, and further studies will be required to determine their place in the context of existing conventional and biologic immune-modifying agents.

  9. Safety, humoral and cell-mediated immune responses to herpes zoster vaccine in subjects with diabetes mellitus.

    PubMed

    Hata, Atsuko; Inoue, Fukue; Yamasaki, Midori; Fujikawa, Jun; Kawasaki, Yukiko; Hamamoto, Yoshiyuki; Honjo, Sachiko; Moriishi, Eiko; Mori, Yasuko; Koshiyama, Hiroyuki

    2013-09-01

    To evaluate varicella zoster virus-specific cell-mediated immunity and humoral immunogenicity against the herpes zoster vaccine, which is licensed as the Live Varicella Vaccine (Oka Strain) in Japan, in elderly people with or without diabetes mellitus. A pilot study was conducted between May 2010 and November 2010 at Kitano Hospital, a general hospital in the city of Osaka in Japan. A varicella skin test, interferon-gamma enzyme-linked immunospot assay and immunoadherence hemagglutination tests were performed 0, 3, and 6 months after vaccination. Vaccine safety was also assessed using questionnaires for 42 days and development of zoster during the one-year observational period. We enrolled 10 healthy volunteers and 10 patients with diabetes mellitus aged 60-70 years. The live herpes zoster vaccine boosted virus-specific, cell-mediated and humoral immunity between elderly people, with or without diabetes. Moreover, no systemic adverse reaction was found. None of the study participants developed herpes zoster. The live herpes zoster vaccine was used safely. It effectively enhanced specific immunity to varicella zoster virus in older people with or without diabetes mellitus. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  10. Maternal immune activation alters fetal brain development through interleukin-6.

    PubMed

    Smith, Stephen E P; Li, Jennifer; Garbett, Krassimira; Mirnics, Karoly; Patterson, Paul H

    2007-10-03

    Schizophrenia and autism are thought to result from the interaction between a susceptibility genotype and environmental risk factors. The offspring of women who experience infection while pregnant have an increased risk for these disorders. Maternal immune activation (MIA) in pregnant rodents produces offspring with abnormalities in behavior, histology, and gene expression that are reminiscent of schizophrenia and autism, making MIA a useful model of the disorders. However, the mechanism by which MIA causes long-term behavioral deficits in the offspring is unknown. Here we show that the cytokine interleukin-6 (IL-6) is critical for mediating the behavioral and transcriptional changes in the offspring. A single maternal injection of IL-6 on day 12.5 of mouse pregnancy causes prepulse inhibition (PPI) and latent inhibition (LI) deficits in the adult offspring. Moreover, coadministration of an anti-IL-6 antibody in the poly(I:C) model of MIA prevents the PPI, LI, and exploratory and social deficits caused by poly(I:C) and normalizes the associated changes in gene expression in the brains of adult offspring. Finally, MIA in IL-6 knock-out mice does not result in several of the behavioral changes seen in the offspring of wild-type mice after MIA. The identification of IL-6 as a key intermediary should aid in the molecular dissection of the pathways whereby MIA alters fetal brain development, which can shed new light on the pathophysiological mechanisms that predispose to schizophrenia and autism.

  11. Maternal education and child immunization: the mediating roles of maternal literacy and socioeconomic status.

    PubMed

    Balogun, Saliu Adejumobi; Yusuff, Hakeem Abiola; Yusuf, Kehinde Quasim; Al-Shenqiti, Abdulah Mohammed; Balogun, Mariam Temitope; Tettey, Prudence

    2017-01-01

    Previous studies in Nigeria have documented significant association between maternal education and child immunization. However, little is known about the pathway through which maternal education improves immunization uptake. This study aims to examine whether maternal literacy and socioeconomic status mediates the relationship between maternal education and complete immunization coverage in children. Nationally representative data from the first wave of the Nigeria General Household Survey-Panel were used, which includes 661 children aged one year and below. Regression analyses were used to model the association between maternal education and child's immunization uptake; we then examined whether maternal literacy and household economic status mediates this association. Of the 661 children, 40% had complete immunization. The prevalence ratio (PR) of complete immunization in children whose mothers were educated versus those whose mothers were not educated was 1.44 (95% CI: 1.16-1.77). Maternal literacy substantially reduced the estimated association between maternal education and complete immunization by 90%, whereas household economic status reduced the estimates by 27%. These findings suggest that complete immunization was higher in children whose mothers were educated, partly because maternal education leads to acquisition of literacy skills and better health-seeking behavior which then improves immunization uptake for their children. Socioeconomic status is an alternative pathway but with less substantial indirect effect.

  12. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death

    PubMed Central

    Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P

    2010-01-01

    Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858

  13. How do immune cells support and shape the brain in health, disease, and aging?

    PubMed

    Schwartz, Michal; Kipnis, Jonathan; Rivest, Serge; Prat, Alexandre

    2013-11-06

    For decades, several axioms have prevailed with respect to the relationships between the CNS and circulating immune cells. Specifically, immune cell entry was largely considered to be pathological or to mark the beginning of pathology within the brain. Moreover, local inflammation associated with neurodegenerative diseases such Alzheimer's disease or amyotrophic lateral sclerosis, were considered similar in their etiology to inflammatory diseases, such as remitting relapsing-multiple sclerosis. The ensuing confusion reflected a lack of awareness that the etiology of the disease as well as the origin of the immune cells determines the nature of the inflammatory response, and that inflammation resolution is an active cellular process. The last two decades have seen a revolution in these prevailing dogmas, with a significant contribution made by the authors. Microglia and infiltrating monocyte-derived macrophages are now known to be functionally distinct and of separate origin. Innate and adaptive immune cells are now known to have protective/healing properties in the CNS, as long as their activity is regulated, and their recruitment is well controlled; their role is appreciated in maintenance of brain plasticity in health, aging, and chronic neurodevelopmental and neurodegenerative diseases. Moreover, it is now understood that the barriers of the brain are not uniform in their interactions with the circulating immune cells. The implications of these new findings to the basic understanding of CNS repair processes, brain aging, and a wide spectrum of CNS disorders, including acute injuries, Rett syndrome, Alzheimer's disease, and multiple sclerosis, will be discussed.

  14. Pulmonary vein region ablation in experimental vagal atrial fibrillation: role of pulmonary veins versus autonomic ganglia.

    PubMed

    Lemola, Kristina; Chartier, Denis; Yeh, Yung-Hsin; Dubuc, Marc; Cartier, Raymond; Armour, Andrew; Ting, Michael; Sakabe, Masao; Shiroshita-Takeshita, Akiko; Comtois, Philippe; Nattel, Stanley

    2008-01-29

    Pulmonary vein (PV) -encircling radiofrequency ablation frequently is effective in vagal atrial fibrillation (AF), and there is evidence that PVs may be particularly prone to cholinergically induced arrhythmia mechanisms. However, PV ablation procedures also can affect intracardiac autonomic ganglia. The present study examined the relative role of PVs versus peri-PV autonomic ganglia in an experimental vagal AF model. Cholinergic AF was studied under carbachol infusion in coronary perfused canine left atrial PV preparations in vitro and with cervical vagal stimulation in vivo. Carbachol caused dose-dependent AF promotion in vitro, which was not affected by excision of all PVs. Sustained AF could be induced easily in all dogs during vagal nerve stimulation in vivo both before and after isolation of all PVs with encircling lesions created by a bipolar radiofrequency ablation clamp device. PV elimination had no effect on atrial effective refractory period or its responses to cholinergic stimulation. Autonomic ganglia were identified by bradycardic and/or tachycardic responses to high-frequency subthreshold local stimulation. Ablation of the autonomic ganglia overlying all PV ostia suppressed the effective refractory period-abbreviating and AF-promoting effects of cervical vagal stimulation, whereas ablation of only left- or right-sided PV ostial ganglia failed to suppress AF. Dominant-frequency analysis suggested that the success of ablation in suppressing vagal AF depended on the elimination of high-frequency driver regions. Intact PVs are not needed for maintenance of experimental cholinergic AF. Ablation of the autonomic ganglia at the base of the PVs suppresses vagal responses and may contribute to the effectiveness of PV-directed ablation procedures in vagal AF.

  15. Increased Transendothelial Transport of CCL3 Is Insufficient to Drive Immune Cell Transmigration through the Blood-Brain Barrier under Inflammatory Conditions In Vitro.

    PubMed

    De Laere, Maxime; Sousa, Carmelita; Meena, Megha; Buckinx, Roeland; Timmermans, Jean-Pierre; Berneman, Zwi; Cools, Nathalie

    2017-01-01

    Many neuroinflammatory diseases are characterized by massive immune cell infiltration into the central nervous system. Identifying the underlying mechanisms could aid in the development of therapeutic strategies specifically interfering with inflammatory cell trafficking. To achieve this, we implemented and validated a blood-brain barrier (BBB) model to study chemokine secretion, chemokine transport, and leukocyte trafficking in vitro. In a coculture model consisting of a human cerebral microvascular endothelial cell line and human astrocytes, proinflammatory stimulation downregulated the expression of tight junction proteins, while the expression of adhesion molecules and chemokines was upregulated. Moreover, chemokine transport across BBB cocultures was upregulated, as evidenced by a significantly increased concentration of the inflammatory chemokine CCL3 at the luminal side following proinflammatory stimulation. CCL3 transport occurred independently of the chemokine receptors CCR1 and CCR5, albeit that migrated cells displayed increased expression of CCR1 and CCR5. However, overall leukocyte transmigration was reduced in inflammatory conditions, although higher numbers of leukocytes adhered to activated endothelial cells. Altogether, our findings demonstrate that prominent barrier activation following proinflammatory stimulation is insufficient to drive immune cell recruitment, suggesting that additional traffic cues are crucial to mediate the increased immune cell infiltration seen in vivo during neuroinflammation.

  16. The contribution of coping related variables and cardiac vagal activity on the performance of a dart throwing task under pressure.

    PubMed

    Mosley, Emma; Laborde, Sylvain; Kavanagh, Emma

    2017-10-01

    The aims of this study were 1) to assess the predictive role of coping related variables (CRV) on cardiac vagal activity (derived from heart rate variability), and 2) to investigate the influence of CRV (including cardiac vagal activity) on a dart throwing task under low pressure (LP) and high pressure (HP) conditions. Participants (n=51) completed trait CRV questionnaires: Decision Specific Reinvestment Scale, Movement Specific Reinvestment Scale and Trait Emotional Intelligence Questionnaire. They competed in a dart throwing task under LP and HP conditions. Cardiac vagal activity measurements were taken at resting, task and during recovery for 5min. Self-reported ratings of stress were recorded at three time points via a visual analogue scale. Upon completion of the task, self-report measures of motivation, stress appraisal, attention, perceived pressure and dart throwing experience were completed. Results indicated that resting cardiac vagal activity had no predictors. Task cardiac vagal activity was predicted by resting cardiac vagal activity in both pressure conditions with the addition of a trait CRV in HP. Post task cardiac vagal activity was predicted by resting cardiac vagal activity in both conditions with the addition of a trait CRV in HP. Cardiac vagal reactivity (difference from resting to task) was predicted by a trait CRV in HP conditions. Cardiac vagal recovery (difference from task to post task) was predicted by a state CRV only in LP. Dart throwing task performance was predicted by a combination of both CRV and cardiac vagal activity. The current research suggests that coping related variables and cardiac vagal activity influence dart throwing task performance differently dependent on pressure condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Anti-thymocyte serum as part of an immunosuppressive regimen in treating haematological immune-mediated diseases in dogs.

    PubMed

    Cuq, B; Blois, S L; Mathews, K A

    2017-06-01

    To report the outcomes associated with the use of rabbit anti-dog thymocyte serum in dogs with haematological immune-mediated diseases. Medical records from 2000 to 2016 of patients diagnosed with immune-mediated haemolytic anaemia, immune-mediated thrombocytopenia, pancytopenia and myelofibrosis were reviewed. All dogs had a severe or refractory disease and received rabbit anti-dog thymocyte serum. Lymphocyte counts were used to monitor the immediate anti-thymocyte effect of therapy; long-term patient outcome was recorded. A total of 10 dogs were included. All dogs except one had a notable decrease in their lymphocyte count after rabbit anti-dog thymocyte serum; four of nine had a decrease to less than 10% of the initial lymphocyte count and one dog reached 10·8%. All dogs were discharged from the hospital following their treatment. The dog with no alteration of lymphocyte count following therapy with rabbit anti-dog thymocyte serum had refractory immune mediated haemolytic anemia and was euthanised within two weeks. All other cases achieved clinical remission with immunosuppressive therapy eventually being tapered (3 of 10) or discontinued (6 of 10). Rabbit anti-dog thymocyte serum therapy might be of interest as an adjunctive therapy in refractory immune-mediated diseases and suppressed lymphocyte counts in most dogs. © 2017 British Small Animal Veterinary Association.

  18. Protective and Pathological Immunity during Central Nervous System Infections.

    PubMed

    Klein, Robyn S; Hunter, Christopher A

    2017-06-20

    The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege. Copyright © 2017. Published by Elsevier Inc.

  19. Alternatives to conventional vaccines--mediators of innate immunity.

    PubMed

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  20. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain.

    PubMed

    Santoro, Antonietta; Spinelli, Chiara Carmela; Martucciello, Stefania; Nori, Stefania Lucia; Capunzo, Mario; Puca, Annibale Alessandro; Ciaglia, Elena

    2018-03-01

    Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases. ©2018 Society for Leukocyte Biology.

  1. Presumed primary immune-mediated neutropenia in 35 dogs: a retrospective study.

    PubMed

    Devine, L; Armstrong, P J; Whittemore, J C; Sharkey, L; Bailiff, N; Huang, A; Rishniw, M

    2017-06-01

    To describe, in a cohort of dogs with presumed primary immune-mediated neutropenia, the presenting clinical characteristics, haematology results, bone marrow characteristics, therapies used (drugs and doses), clinical response to treatment, relapse and outcome at six months and one year. Multi-institutional recruited retrospective descriptive case series with voluntary submissions. Presumed immune-mediated neutropenia was diagnosed based on a neutrophil concentration <1·5×10 9 cells/L on a minimum of two complete blood counts, exclusion of other causes of neutropenia based on a diagnostic bone marrow aspirate or biopsy, and exclusion of secondary immune-mediated neutropenia. Dogs meeting these diagnostic criteria between 2006 and 2013, and that had a haematocrit of ≥29% and minimum of two complete blood clounts performed after initiation of therapy, were included. Information on 35 dogs was included. Neutropenia was less than 0·5×10 9 cells/L in most cases (21 dogs), 0·5 to ·99×10 9 cells/L in 11, and 1.0 to 1·49×10 9 cells/L in three. Eight dogs had thrombocytopenia, which was severe (<49·9×10 9 cells/L) in three. [Correction added on 23 May 2017, after first online publication: the cell numbers were incorrect due to errors in the conversion of cell measurements to international units. The numbers have been corrected throughout the article and Table 2.] Twenty-three dogs had myeloid hyperplasia, 10 dogs had myeloid hypoplasia and two dogs had normal myelopoiesis. Neutropenia resolved in 32 of 33 dogs within two weeks of starting corticosteroid therapy and in all dogs within one month. Relapse of neutropenia occurred in 12 cases within one year. Initial response of presumed primary immune-mediated neutropenia cases to corticosteroid therapy can be excellent. Long-term monitoring for relapse is warranted because 34% of cases relapsed during or after taper of immunosuppressive medications. © 2017 British Small Animal Veterinary Association.

  2. Cardiac vagal tone is correlated with selective attention to neutral distractors under load.

    PubMed

    Park, Gewnhi; Vasey, Michael W; Van Bavel, Jay J; Thayer, Julian F

    2013-04-01

    We examined whether cardiac vagal tone (indexed by heart rate variability, HRV) was associated with the functioning of selective attention under load. Participants were instructed to detect a target letter among letter strings superimposed on either fearful or neutral distractor faces. Under low load, when letter strings consisted of six target letters, there was no difference between people with high and low HRV on task performance. Under high load, when letter strings consisted of one target letter and five nontarget letters, people with high HRV were faster in trials with neutral distractors, but not with fearful distractors. However, people with low HRV were slower in trials with both fearful and neutral distractors. The current research suggests cardiac vagal tone is associated with successful control of selective attention critical for goal-directed behavior, and its impact is greater when fewer cognitive resources are available. Copyright © 2013 Society for Psychophysiological Research.

  3. Characteristics of Infection Immunity Regulated by Toxoplasma gondii to Maintain Chronic Infection in the Brain

    PubMed Central

    Hwang, Young Sang; Shin, Ji-Hun; Yang, Jung-Pyo; Jung, Bong-Kwang; Lee, Sang Hyung; Shin, Eun-Hee

    2018-01-01

    To examine the immune environment of chronic Toxoplasma gondii infection in the brain, the characteristics of infection-immunity (premunition) in infection with T. gondii strain ME49 were investigated for 12 weeks postinfection (PI). The results showed that neuronal cell death, microglia infiltration and activation, inflammatory and anti-inflammatory cytokine expression, Stat1 phosphorylation, and microglia activation and inflammatory gene transcripts related to M1 polarization in the brain were increased during the acute infection (AI) stage (within 6 weeks PI), suggesting that innate and cellular inflammatory response activation and neurodegeneration contributed to excessive inflammatory responses. However, these immune responses decreased during the chronic infection (CI) stage (over 6 weeks PI) with reductions in phosphorylated STAT1 (pSTAT1) and eosinophilic neurons. Notably, increases were observed in transcripts of T-cell exhaustion markers (TIM3, LAG3, KLRG1, etc.), suppressor of cytokines signaling 1 protein (SOCS1), inhibitory checkpoint molecules (PD-1 and PD-L1), and Arg1 from the AI stage (3 weeks PI), implying active immune intervention under the immune environment of M1 polarization of microglia and increases in inflammatory cytokine levels. However, when BV-2 microglia were stimulated with T. gondii lysate antigens (strain RH or ME49) in vitro, nitrite production increased and urea production decreased. Furthermore, when BV-2 cells were infected by T. gondii tachyzoites (strain RH or ME49) in vitro, nitric oxide synthase and COX-2 levels decreased, whereas Arg1 levels significantly increased. Moreover, Arg1 expression was higher in ME49 infection than in RH infection, whereas nitrite production was lower in ME49 infection than in RH infection. Accordingly, these results strongly suggest that immune triggering of T. gondii antigens induces M1 polarization and activation of microglia as well as increase NO production, whereas T. gondii

  4. Activation of cell-mediated immunity by Morinda citrifolia fruit extract and its constituents.

    PubMed

    Murata, Kazuya; Abe, Yumi; Futamura-Masudaa, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2014-04-01

    Morinda citrifolia, commonly known as noni, is a traditional natural medicine in French Polynesia and Hawaii. Functional foods derived from M. citrifolia fruit have been marketed to help prevent diseases and promote good health. The objective of this study was to assess the effects of M. citrifolia fruit on cell-mediated immunity. In the picryl chloride-induced contact dermatitis test, M. citrifolia fruit extract (Noni-ext) inhibited the suppression of cell-mediated immunity by immunosuppressive substances isolated from freeze-dried ascites of Ehrlich carcinoma-bearing mice (EC-sup). In addition, Noni-ext inhibited reduction of IL-2 production in EC-sup-treated mice and activated natural killer cells in normal mice. These results suggest that Noni-ext has multiple effects on the recovery of cell-mediated immunity. Furthermore, we investigated the active principles of Noni-ext and identified an iridoid glycoside, deacetylasperulosidic acid. Oral administration of deacetylasperulosidic acid inhibited the reduction of ear swelling, and also cancelled the suppression of IL-2 production along with the activation of natural killer cells in the same manner as that of Noni-ext.

  5. Traumatic brain injury-induced alterations in peripheral immunity.

    PubMed

    Schwulst, Steven J; Trahanas, Diane M; Saber, Rana; Perlman, Harris

    2013-11-01

    The complex alterations that occur in peripheral immunity after traumatic brain injury (TBI) have been poorly characterized to date. The purpose of this study was to determine the temporal changes in the peripheral immune response after TBI in a murine model of closed head injury. C57Bl/6 mice underwent closed head injury via a weight drop technique (n = 5) versus sham injury (n = 3) per time point. Blood, spleen, and thymus were collected, and immune phenotype, cytokine expression, and antibody production were determined via flow cytometry and multiplex immunoassays at 1, 3, 7, 14, 30, and 60 days after injury. TBI results in acute and chronic changes in both the innate and adaptive immune response. TBI resulted in a striking loss of thymocytes as early as 3 days after injury (2.1 × 10 TBI vs. 5.6 × 10 sham, p = 0.001). Similarly, blood monocyte counts were markedly diminished as early as 24 hours after TBI (372 per deciliter TBI vs. 1359 per deciliter sham, p = 0.002) and remained suppressed throughout the first month after injury. At 60 days after injury, monocytes were polarized toward an anti-inflammatory (M2) phenotype. TBI also resulted in diminished interleukin 12 expression from Day 14 after injury throughout the remainder of the observation period. TBI results in temporal changes in both the peripheral and the central immune systems culminating in an overall immune suppressed phenotype and anti-inflammatory milieu.

  6. Brain mediators of predictive cue effects on perceived pain

    PubMed Central

    Atlas, Lauren Y.; Bolger, Niall; Lindquist, Martin A.; Wager, Tor D.

    2010-01-01

    Information about upcoming pain strongly influences pain experience in experimental and clinical settings, but little is known about the brain mechanisms that link expectation and experience. To identify the pathways by which informational cues influence perception, analyses must jointly consider both the effects of cues on brain responses and the relationship between brain responses and changes in reported experience. Our task and analysis strategy were designed to test these relationships. Auditory cues elicited expectations for low or high painful thermal stimulation, and we assessed how cues influenced human subjects’ pain reports and BOLD fMRI responses to matched levels of noxious heat. We used multi-level mediation analysis to identify brain regions that 1) are modulated by predictive cues, 2) predict trial-to-trial variations in pain reports, and 3) formally mediate the relationship between cues and reported pain. Cues influenced heat-evoked responses in most canonical pain-processing regions, including both medial and lateral pain pathways. Effects on several regions correlated with pre-task expectations, suggesting that expectancy plays a prominent role. A subset of pain-processing regions, including anterior cingulate cortex, anterior insula, and thalamus, formally mediated cue effects on pain. Effects on these regions were in turn mediated by cue-evoked anticipatory activity in the medial orbitofrontal cortex (OFC) and ventral striatum, areas not previously directly implicated in nociception. These results suggest that activity in pain-processing regions reflects a combination of nociceptive input and top-down information related to expectations, and that anticipatory processes in OFC and striatum may play a key role in modulating pain processing. PMID:20881115

  7. Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells.

    PubMed

    Mei, Yunhua; Wang, Ying; Xu, Lingyun

    2007-05-15

    Cell vaccination via immunization with attenuated pathogenic cells is an effective preventive method that has been successfully applied in several animal models of inflammatory or autoimmune diseases. Concanavalin A (Con A)-induced hepatitis (CIH) is a commonly used experimental model to study immune-mediated liver injury. Multiple cell types including T lymphocytes, macrophages and neutrophils have been found to be involved in the pathogenesis of CIH. In this study, we used attenuated spleen lymphocytes or peripheral blood lymphocytes as vaccines to investigate whether they could induce protective immune responses to prevent mice from developing CIH. We found that mice receiving such vaccination before CIH induction developed much milder diseases, exhibited a lower level of alanine aminotransferase (ALT) released into their plasma and had less inflammatory lesions in their livers. Such CIH-suppression is dose- and frequency-dependent. The suppressive effect was associated with inhibition of several major inflammatory mediators, pro-inflammatory cytokines and chemokines.

  8. Vagal activation by sham feeding improves gastric motility in functional dyspepsia.

    PubMed

    Lunding, J A; Nordström, L M; Haukelid, A-O; Gilja, O H; Berstad, A; Hausken, T

    2008-06-01

    Antral hypomotility and impaired gastric accommodation in patients with functional dyspepsia have been ascribed to vagal dysfunction. We investigated whether vagal stimulation by sham feeding would improve meal-induced gastric motor function in these patients. Fourteen healthy volunteers and 14 functional dyspepsia patients underwent a drink test twice, once with and once without simultaneous sham feeding. After ingesting 500 mL clear meat soup (20 kcal, 37 degrees C) in 4 min, sham feeding was performed for 10 min by chewing a sugar-containing chewing gum while spitting out saliva. Using two- and three-dimensional ultrasound, antral motility index (contraction amplitude x frequency) and intragastric volumes were estimated. Without sham feeding, functional dyspepsia patients had lower motility index than healthy volunteers (area under curve 8.0 +/- 1.2 vs 4.4 +/- 1.0 min(-1), P = 0.04). In functional dyspepsia patients, but not in healthy volunteers, motility index increased and intragastric volume tended to increase by sham feeding (P = 0.04 and P = 0.06 respectively). The change in motility index was negatively correlated to the change in pain score (r = -0.59, P = 0.007). In functional dyspepsia patients, vagal stimulation by sham feeding improves antral motility in response to a soup meal. The result supports the view that impaired vagal stimulation is implicated in the pathogenesis of gastric motility disturbances in functional dyspepsia.

  9. The modulatory effects of noradrenaline on vagal control of heart rate in the dogfish, Squalus acanthias.

    PubMed

    Agnisola, Claudio; Randall, David J; Taylor, Edwin W

    2003-01-01

    The possible interactions between inhibitory vagal control of the heart and circulating levels of catecholamines in dogfish (Squalus acanthias) were studied using an in situ preparation of the heart, which retained intact its innervation from centrally cut vagus nerves. The response to peripheral vagal stimulation typically consisted of an initial cardiac arrest, followed by an escape beat, leading to renewed beating at a mean heart rate lower than the prestimulation rate (partial recovery). Cessation of vagal stimulation led to a transient increase in heart rate, above the prestimulation rate. This whole response was completely abolished by 10(-4) M atropine (a muscarinic cholinergic antagonist). The degree of vagal inhibition was evaluated in terms of both the initial, maximal cardiac interval and the mean heart rate during partial recovery, both expressed as a percentage of the prestimulation heart rate. The mean prestimulation heart rate of this preparation (36+/-4 beats min(-1)) was not affected by noradrenaline but was significantly reduced by 10(-4) M nadolol (a beta-adrenergic receptor antagonist), suggesting the existence of a resting adrenergic tone arising from endogenous catecholamines. The degree of vagal inhibition of heart rate varied with the rate of stimulation and was increased by the presence of 10(-8) M noradrenaline (the normal in vivo level in routinely active fish), while 10(-7) M noradrenaline (the in vivo level measured in disturbed or deeply hypoxic fish) reduced the cardiac response to vagal stimulation. In the presence of 10(-7) M noradrenaline, 10(-4) M nadolol further reduced the vagal response, while 10(-4) M nadolol + 10(-4) M phentolamine had no effect, indicating a complex interaction between adrenoreceptors, possibly involving presynaptic modulation of vagal inhibition.

  10. Vagal Sensory Innervation of the Gastric Sling Muscle and Antral Wall: Implications for GERD?

    PubMed Central

    Powley, Terry L.; Gilbert, Jared M.; Baronowsky, Elizabeth A.; Billingsley, Cherie N.; Martin, Felecia N.; Phillips, Robert J.

    2012-01-01

    Background The gastric sling muscle has not been investigated for possible sensory innervation, in spite of the key roles the structure plays in lower esophageal sphincter (LES) function and gastric physiology. Thus, the present experiment used tracing techniques to label vagal afferents and survey their projections in the lesser curvature. Methods Sprague Dawley rats received injections of dextran biotin into the nodose ganglia. Fourteen days post-injection, animals were euthanized and their stomachs were processed to visualize the vagal afferent innervation. In different cases, neurons, muscle cells, or interstitial cells of Cajal were counterstained. Key Results The sling muscle is innervated throughout its length by vagal afferent intramuscular arrays (IMAs) associated with interstitial cells of Cajal. In addition, the distal antral attachment site of the sling muscle is innervated by a novel vagal afferent terminal specialization, an antral web ending. The muscle wall of the distal antrum is also innervated by conventional IMAs and intraganglionic laminar endings (IGLEs), the two types of mechanoreceptors found throughout stomach smooth muscle. Conclusions & Inferences The innervation of sling muscle by IMAs, putative stretch receptors, suggests that sling sensory feedback may generate vago-vagal or other reflexes with vagal afferent limbs. The restricted distribution of afferent web endings near the antral attachments of sling fibers suggests the possibility of specialized mechanoreceptor functions linking antral and pyloric activity to the operation of the LES. Dysfunctional sling afferents could generate LES motor disturbances, or normative compensatory sensory feedback from the muscle could compromise therapies targeting only effectors. PMID:22925069

  11. Brain mediators of the effects of noxious heat on pain

    PubMed Central

    Atlas, Lauren Y.; Lindquist, Martin A.; Bolger, Niall; Wager, Tor D.

    2014-01-01

    Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. While useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this paper, we used multi-level mediation analysis to identify brain mediators of pain—regions whose trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across four levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including: a) somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and b) two networks co-localized with ‘default mode’ regions in which stimulus intensity-related decreases mediated increased pain. We also identified ‘thermosensory’ regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain. PMID:24845572

  12. Maternal education and child immunization: the mediating roles of maternal literacy and socioeconomic status

    PubMed Central

    Balogun, Saliu Adejumobi; Yusuff, Hakeem Abiola; Yusuf, Kehinde Quasim; Al-Shenqiti, Abdulah Mohammed; Balogun, Mariam Temitope; Tettey, Prudence

    2017-01-01

    Introduction Previous studies in Nigeria have documented significant association between maternal education and child immunization. However, little is known about the pathway through which maternal education improves immunization uptake. This study aims to examine whether maternal literacy and socioeconomic status mediates the relationship between maternal education and complete immunization coverage in children. Methods Nationally representative data from the first wave of the Nigeria General Household Survey-Panel were used, which includes 661 children aged one year and below. Regression analyses were used to model the association between maternal education and child's immunization uptake; we then examined whether maternal literacy and household economic status mediates this association. Results Of the 661 children, 40% had complete immunization. The prevalence ratio (PR) of complete immunization in children whose mothers were educated versus those whose mothers were not educated was 1.44 (95% CI: 1.16-1.77). Maternal literacy substantially reduced the estimated association between maternal education and complete immunization by 90%, whereas household economic status reduced the estimates by 27%. Conclusion These findings suggest that complete immunization was higher in children whose mothers were educated, partly because maternal education leads to acquisition of literacy skills and better health-seeking behavior which then improves immunization uptake for their children. Socioeconomic status is an alternative pathway but with less substantial indirect effect. PMID:28690731

  13. Induction of innate immune genes in brain create the neurobiology of addiction.

    PubMed

    Crews, F T; Zou, Jian; Qin, Liya

    2011-06-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Induction of Innate Immune Genes in Brain Create the Neurobiology of Addiction

    PubMed Central

    Crews, FT; Zou, Jian; Qin, Liya

    2013-01-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. PMID:21402143

  15. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases.

    PubMed

    Krishnamoorthy, Nandini; Abdulnour, Raja-Elie E; Walker, Katherine H; Engstrom, Braden D; Levy, Bruce D

    2018-07-01

    Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.

  16. Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants*

    PubMed Central

    Jacobson, Lee S.; Lima, Heriberto; Goldberg, Michael F.; Gocheva, Vasilena; Tsiperson, Vladislav; Sutterwala, Fayyaz S.; Joyce, Johanna A.; Gapp, Bianca V.; Blomen, Vincent A.; Chandran, Kartik; Brummelkamp, Thijn R.; Diaz-Griffero, Felipe; Brojatsch, Jürgen

    2013-01-01

    Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response. PMID:23297415

  17. Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2010-01-01

    Immune defense is important for organisms' survival and fitness. Small mammals in temperate zone often face seasonal food shortages. Generally fasting can suppress immune function in laboratory rodents and little information is available for wild rodents. The present study tested the hypothesis that Mongolian gerbils (Meriones unguiculatus) could inhibit T cell-mediated immunity to adapt to acute fasting. Forty-two females were divided into the fed and fasted groups, in which the latter was deprived of food for 3days. After 66h fasting, half of the gerbils in each group were injected with phosphate buffered saline or phytohaemagglutinin (PHA) solution. T cell-mediated immunity assessed by PHA response was suppressed in the fasted gerbils compared with the fed gerbils. The fasted gerbils had lower body fat mass, wet and dry thymus mass, dry spleen mass, white blood cells, serum leptin and blood glucose concentrations, but higher corticosterone concentrations than those of the controls. Moreover, PHA response was positively correlated with body fat mass and serum leptin levels in the immunochallenged groups. Taken together, acute fasting leads to immunosuppression, which might be caused by low body fat mass and low serum leptin concentrations in female Mongolian gerbils.

  18. Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses.

    PubMed

    Liu, Wei; Li, Jing; Zheng, Weinan; Shang, Yingli; Zhao, Zhendong; Wang, Shanshan; Bi, Yuhai; Zhang, Shuang; Xu, Chongfeng; Duan, Ziyuan; Zhang, Lianfeng; Wang, Yue L; Jiang, Zhengfan; Liu, Wenjun; Sun, Lei

    2017-06-08

    RIG-I is a key cytosolic pattern recognition receptor that interacts with MAVS to induce type I interferons (IFNs) against RNA virus infection. In this study, we found that cyclophilin A (CypA), a peptidyl-prolyl cis/trans isomerase, functioned as a critical positive regulator of RIG-I-mediated antiviral immune responses. Deficiency of CypA impaired RIG-I-mediated type I IFN production and promoted viral replication in human cells and mice. Upon Sendai virus infection, CypA increased the interaction between RIG-I and its E3 ubiquitin ligase TRIM25, leading to enhanced TRIM25-mediated K63-linked ubiquitination of RIG-I that facilitated recruitment of RIG-I to MAVS. In addition, CypA and TRIM25 competitively interacted with MAVS, thereby inhibiting TRIM25-induced K48-linked ubiquitination of MAVS. Taken together, our findings reveal an essential role of CypA in boosting RIG-I-mediated antiviral immune responses by controlling the ubiquitination of RIG-I and MAVS.

  19. Immunity to fish rhabdoviruses

    USGS Publications Warehouse

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  20. Immunity to fish rhabdoviruses.

    PubMed

    Purcell, Maureen K; Laing, Kerry J; Winton, James R

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  1. Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity

    PubMed Central

    Bhagat, Ruchi; Fortna, Samuel R; Browning, Kirsteen N

    2015-01-01

    The perinatal period is critically important to the development of autonomic neural circuits responsible for energy homeostasis. Vagal neurocircuits are vital to the regulation of upper gastrointestinal functions, including satiety. Diet-induced obesity modulates the excitability and responsiveness of both peripheral vagal afferents and central vagal efferents but less information is available regarding the effects of diet per se on vagal neurocircuit functions. The aims of this study were to investigate whether perinatal exposure to a high fat diet (HFD) dysregulated dorsal motor nucleus of the vagus (DMV) neurones, prior to the development of obesity. Whole cell patch clamp recordings were made from gastric-projecting DMV neurones in thin brainstem slices from rats that were exposed to either a control diet or HFD from pregnancy day 13. Our data demonstrate that following perinatal HFD: (i) DMV neurones had decreased excitability and input resistance with a reduced ability to fire action potentials; (ii) the proportion of DMV neurones excited by cholecystokinin (CCK) was unaltered but the proportion of neurones in which CCK increased excitatory glutamatergic synaptic inputs was reduced; (iii) the tonic activation of presynaptic group II metabotropic glutamate receptors on inhibitory nerve terminals was attenuated, allowing modulation of GABAergic synaptic transmission; and (iv) the size and dendritic arborization of gastric-projecting DMV neurones was increased. These results suggest that perinatal HFD exposure compromises the excitability and responsiveness of gastric-projecting DMV neurones, even in the absence of obesity, suggesting that attenuation of vago-vagal reflex signalling may precede the development of obesity. PMID:25556801

  2. The Heart´s rhythm 'n' blues: Sex differences in circadian variation patterns of vagal activity vary by depressive symptoms in predominantly healthy employees.

    PubMed

    Jarczok, Marc N; Aguilar-Raab, Corina; Koenig, Julian; Kaess, Michael; Borniger, Jeremy C; Nelson, Randy J; Hall, Martica; Ditzen, Beate; Thayer, Julian F; Fischer, Joachim E

    2018-03-15

    Successful regulation of emotional states is positively associated to mental health, while difficulties in regulating emotions are negatively associated to overall mental health and in particular associated with anxiety or depression symptoms. A key structure associated to socio-emotional regulatory processes is the central autonomic network. Activity in this structure is associated to vagal activity can be indexed noninvasively and simply by measures of peripheral cardiac autonomic modulations such as heart rate variability. Vagal activity exhibits a circadian variation pattern, with a maximum during nighttime. Depression is known to affect chronobiology. Also, depressive symptoms are known to be associated with decreased resting state vagal activity, but studies investigating the association between circadian variation pattern of vagal activity and depressive symptoms are scarce. We aim to examine these patterns in association to symptom severity of depression using chronobiologic methods. Data from the Manheim Industrial Cohort Studies (MICS) were used. A total of 3,030 predominantly healthy working adults underwent, among others, ambulatory 24-h hear rate-recordings, detailed health examination and online questionnaires and were available for this analysis. The root mean sum of successive differences (RMSSD) was used as an indicator of vagally mediated heart rate variability. Three individual-level cosine function parameters (MESOR, amplitude, acrophase) were estimated to quantify circadian variation pattern. Multivariate linear regression models including important covariates such as age, sex, and lifestyle factors as well as an interaction effect of sex with depressive symptoms were used to estimate the association of circadian variation pattern of vagal activity with depressive symptoms simultaneously. The analysis sample consisted of 20.2% females and an average age 41 with standard deviation of 11 years. Nonparametric bivariate analysis revealed

  3. Parenting Stressors and Young Adolescents’ Depressive Symptoms: Does High Vagal Suppression Offer Protection?

    PubMed Central

    Fletcher, Anne C.; Buehler, Cheryl; Buchanan, Christy M.; Weymouth, Bridget B.

    2017-01-01

    Grounded in a dual-risk, biosocial perspective of developmental psychopathology, this study examined the role of higher vagal suppression in providing young adolescents protection from four parenting stressors. It was expected that lower vagal suppression would increase youth vulnerability to the deleterious effects of these parenting stressors. Depressive symptoms were examined as a central marker of socioemotional difficulties during early adolescence. The four parenting stressors examined were interparental hostility, maternal use of harsh discipline, maternal inconsistent discipline, and maternal psychological control. Participants were 68 young adolescents (Grade 6) and their mothers. Greater vagal suppression provided protection (i.e., lower depressive symptoms) from interparental hostility, harsh discipline, and maternal psychological control for boys but not for girls. PMID:27979628

  4. Immune Response to Dengue and Zika.

    PubMed

    Ngono, Annie Elong; Shresta, Sujan

    2018-04-26

    Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.

  5. Brain Immune Interactions as the Basis of Gulf War Illness: Gulf War Illness Consortium (GWIC)

    DTIC Science & Technology

    2016-10-01

    between the immune system and the brain. The GWIC includes both clinical ( human ) and preclinical (animal and cell) studies and researchers in the 10...47 pesticides , DFP, sarin 16. Price Code (Leave Bl k) 17. Security Classification of Report Unclassified 18. Security Classification of this...stronger and longer proinflammatory signaling effects between the immune system and the brain. The GWIC includes both clinical ( human ) and

  6. Brain mediators of the effects of noxious heat on pain.

    PubMed

    Atlas, Lauren Y; Lindquist, Martin A; Bolger, Niall; Wager, Tor D

    2014-08-01

    Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. Although useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this study, we used multi-level mediation analysis to identify brain mediators of pain--regions in which trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across 4 levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including the following: somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and 2 networks co-localized with "default mode" regions in which stimulus intensity-related decreases mediated increased pain. We also identified "thermosensory" regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  7. Differential immune microenvironments and response to immune checkpoint blockade amongst molecular subtypes of murine medulloblastoma

    PubMed Central

    Pham, Christina D.; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M.; Yearley, Jennifer H.; Sayour, Elias J.; Pei, Yanxin; Moore, Colin; McLendon, Roger E.; Huang, Jianping; Sampson, John H.; Wechsler-Reya, Robert; Mitchell, Duane A.

    2016-01-01

    PURPOSE Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma (MB), the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and Group 3 MB for preclinical evaluation in immunocompetent C57BL/6 mice. METHODS AND RESULTS Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid derived suppressor cells and tumor-associated macrophages in murine SHH model tumors compared with Group 3 tumors. However, murine Group 3 tumors had higher percentages of CD8+ PD-1+ T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial Group 3 tumors compared to SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1+ peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3+ T cells within the tumor microenvironment. CONCLUSIONS This is the first immunologic characterization of preclinical models of molecular subtypes of MB and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. PMID:26405194

  8. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma.

    PubMed

    Pham, Christina D; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M; Yearley, Jennifer H; Sayour, Elias J; Pei, Yanxin; Moore, Colin; McLendon, Roger E; Huang, Jianping; Sampson, John H; Wechsler-Reya, Robert; Mitchell, Duane A

    2016-02-01

    Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma, the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and group 3 medulloblastoma for preclinical evaluation in immunocompetent C57BL/6 mice. Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in murine SHH model tumors compared with group 3 tumors. However, murine group 3 tumors had higher percentages of CD8(+) PD-1(+) T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial group 3 tumors compared with SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1(+) peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3(+) T cells within the tumor microenvironment. This is the first immunologic characterization of preclinical models of molecular subtypes of medulloblastoma and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. ©2015 American Association for Cancer Research.

  9. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    PubMed

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  10. Matrix Metalloproteinase-Mediated Blood-Brain Barrier Dysfunction in Epilepsy.

    PubMed

    Rempe, Ralf G; Hartz, Anika M S; Soldner, Emma L B; Sokola, Brent S; Alluri, Satya R; Abner, Erin L; Kryscio, Richard J; Pekcec, Anton; Schlichtiger, Juli; Bauer, Björn

    2018-05-02

    The blood-brain barrier is dysfunctional in epilepsy, thereby contributing to seizure genesis and resistance to antiseizure drugs. Previously, several groups reported that seizures increase brain glutamate levels, which leads to barrier dysfunction. One critical component of barrier dysfunction is brain capillary leakage. Based on our preliminary data, we hypothesized that glutamate released during seizures mediates an increase in matrix-metalloproteinase (MMP) expression and activity levels, thereby contributing to barrier leakage. To test this hypothesis, we exposed isolated brain capillaries from male Sprague Dawley rats to glutamate ex vivo and used an in vivo / ex vivo approach of isolated brain capillaries from female Wistar rats that experienced status epilepticus as an acute seizure model. We found that exposing isolated rat brain capillaries to glutamate increased MMP-2 and MMP-9 protein and activity levels, and decreased tight junction protein levels, which resulted in barrier leakage. We confirmed these findings in vivo in rats after status epilepticus and in brain capillaries from male mice lacking cytosolic phospholipase A 2 Together, our data support the hypothesis that glutamate released during seizures signals an increase in MMP-2 and MMP-9 protein expression and activity levels, resulting in blood-brain barrier leakage. SIGNIFICANCE STATEMENT The mechanism leading to seizure-mediated blood-brain barrier dysfunction in epilepsy is poorly understood. In the present study, we focused on defining this mechanism in the brain capillary endothelium. We demonstrate that seizures trigger a pathway that involves glutamate signaling through cytosolic phospholipase A 2 , which increases MMP levels and decreases tight junction protein expression levels, resulting in barrier leakage. These findings may provide potential therapeutic avenues within the blood-brain barrier to limit barrier dysfunction in epilepsy and decrease seizure burden. Copyright © 2018 the

  11. Neuropeptide Y is a prejunctional inhibitor of vagal but not sympathetic inotropic responses in guinea-pig isolated left atria

    PubMed Central

    Serone, Adrian P; Angus, James A

    1999-01-01

    The effects of NPY and related peptides were examined on basal contractile force and nerve-mediated inotropic responses to electrical field stimulation of the guinea-pig isolated left atrium.Electrical field stimulus (EFS)-inotropic response curves were constructed by applying 1-64 trains of four field pulses (200 Hz, 0.1 ms duration, 100 V) across isolated left atria (paced at 4 Hz, 2 ms, 1–4 V) within the atrial refractory period. Curves were constructed in presence of vehicle, propranolol (1 μM) or atropine (1 μM) to determine appropriate stimulus conditions.The effects of PYY (1–10,000 nM), NPY (0.01–10 μM), N-Ac-[Leu28,31]NPY(24–36) (N-A[L]NPY(24–36); 0.01–10 μM) and clonidine (0.1–1000 nM) were examined on the positive and negative inotropic responses to EFS (eight trains, four pulses per refractory period).NPY-related peptides had no effect on basal force of contraction nor on the inotropic concentration-response curves to bethanechol or isoprenaline. All three peptides inhibited vagally-mediated negative inotropic responses; rank order of potency PYY>NPY⩾N-A[L]NPY(24–36) was consistent with an action at prejunctional Y2-receptors. Clonidine concentration-dependently inhibited sympathetic inotropic responses. However, PYY, NPY and N-A[L]NPY(24–36) failed to mediate any significant inhibition of the positive inotropic response to EFS.These data demonstrate that NPY is an effective inhibitor of vagal but not sympathetically-mediated inotropic responses in the guinea-pig isolated left atria. This may suggest that endogenously co-released NPY is important in mediating cross talk between efferent components of the autonomic nervous system modulating cardiac contractility, acting overall to sustain positive inotropic responses. PMID:10385237

  12. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis

    PubMed Central

    McAllen, Robin M; Salo, Lauren M; Paton, Julian F R; Pickering, Anthony E

    2011-01-01

    Abstract Cardiac vagal tone is an important indicator of cardiovascular health, and its loss is an independent risk factor for arrhythmias and mortality. Several studies suggest that this loss of vagal tone can occur at the cardiac ganglion but the factors affecting ganglionic transmissionin vivoare poorly understood. We have employed a novel approach allowing intracellular recordings from functionally connected cardiac vagal ganglion cells in the working heart–brainstem preparation. The atria were stabilisedin situpreserving their central neural connections, and ganglion cells (n = 32) were impaled with sharp microelectrodes. Cardiac ganglion cells with vagal synaptic inputs (spontaneous, n = 10; or electrically evoked from the vagus, n = 3) were identified as principal neurones and showed tonic firing responses to current injected to their somata. Cells lacking vagal inputs (n = 19, presumed interneurones) were quiescent but showed phasic firing responses to depolarising current. In principal cells the ongoing action potentials and EPSPs exhibited respiratory modulation, with peak frequency in post-inspiration. Action potentials arose from unitary EPSPs and autocorrelation of those events showed that each ganglion cell received inputs from a single active preganglionic source. Peripheral chemoreceptor, arterial baroreceptor and diving response activation all evoked high frequency synaptic barrages in these cells, always from the same single preganglionic source. EPSP amplitudes showed frequency dependent depression, leading to more spike failures at shorter inter-event intervals. These findings indicate that rather than integrating convergent inputs, cardiac vagal postganglionic neurones gate preganglionic inputs, so regulating the proportion of central parasympathetic tone that is transmitted on to the heart. PMID:22005679

  13. Lipopolysaccharide hyporesponsiveness: protective or damaging response to the brain?

    PubMed

    Pardon, Marie Christine

    2015-01-01

    Lipopolysaccharide (LPS) endotoxins are widely used as experimental models of systemic bacterial infection and trigger robust inflammation by potently activating toll-like receptors 4 (TLR4) expressed on innate immune cells. Their ability to trigger robust neuroinflammation despite poor brain penetration can prove useful for the understanding of how inflammation induced by viral infections contributes to the pathogenesis of neurodegenerative diseases. A single LPS challenge often result in a blunted inflammatory response to subsequent stimulation by LPS and other TLR ligands, but the extent to which endotoxin tolerance occur in the brain requires further clarification. LPS is also thought to render the brain transiently resistant to subsequent brain injuries by attenuating the concomitant pro-inflammatory response. While LPS hyporesponsiveness and preconditioning are classically seen as protective mechanisms limiting the toxic effects of sustained inflammation, recent research casts doubt as to whether they have beneficial or detrimental roles on the brain and in neurodegenerative disease. These observations suggest that spatio-temporal aspects of the immune responses to LPS and the disease status are determinant factors. Endotoxin tolerance may lead to a late pro-inflammatory response with potential harmful consequences. And while reduced TLR4 signaling reduces the risk of neurodegenerative diseases, up-regulation of anti-inflammatory cytokines associated with LPS hyporesponsiveness can have deleterious consequences to the brain by inhibiting the protective phenotype of microglia, aggravating the progression of some neurodegenerative conditions such as Alzheimer's disease. Beneficial effects of LPS preconditioning, however appear to require a stimulation of anti-inflammatory mediators rather than an attenuation of the pro-inflammatory response.

  14. Parenting stressors and young adolescents' depressive symptoms: Does high vagal suppression offer protection?

    PubMed

    Fletcher, Anne C; Buehler, Cheryl; Buchanan, Christy M; Weymouth, Bridget B

    2017-03-01

    Grounded in a dual-risk, biosocial perspective of developmental psychopathology, this study examined the role of higher vagal suppression in providing young adolescents protection from four parenting stressors. It was expected that lower vagal suppression would increase youth vulnerability to the deleterious effects of these parenting stressors. Depressive symptoms were examined as a central marker of socioemotional difficulties during early adolescence. The four parenting stressors examined were interparental hostility, maternal use of harsh discipline, maternal inconsistent discipline, and maternal psychological control. Participants were 68 young adolescents (Grade 6) and their mothers. Greater vagal suppression provided protection (i.e., lower depressive symptoms) from interparental hostility, harsh discipline, and maternal psychological control for boys but not for girls. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Immune Interventions to Eliminate the HIV Reservoir.

    PubMed

    Hsu, Denise C; Ananworanich, Jintanat

    2017-10-26

    Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.

  16. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation

    PubMed Central

    Biddinger, Jessica E.; Baquet, Zachary C.; Jones, Kevin R.; McAdams, Jennifer

    2013-01-01

    A large proportion of vagal afferents are dependent on neurotrophin-3 (NT-3) for survival. NT-3 is expressed in developing gastrointestinal (GI) smooth muscle, a tissue densely innervated by vagal mechanoreceptors, and thus could regulate their survival. We genetically ablated NT-3 from developing GI smooth muscle and examined the pattern of loss of NT-3 expression in the GI tract and whether this loss altered vagal afferent signaling or feeding behavior. Meal-induced c-Fos activation was reduced in the solitary tract nucleus and area postrema in mice with a smooth muscle-specific NT-3 knockout (SM-NT-3KO) compared with controls, suggesting a decrease in vagal afferent signaling. Daily food intake and body weight of SM-NT-3KO mice and controls were similar. Meal pattern analysis revealed that mutants, however, had increases in average and total daily meal duration compared with controls. Mutants maintained normal meal size by decreasing eating rate compared with controls. Although microstructural analysis did not reveal a decrease in the rate of decay of eating in SM-NT-3KO mice, they ate continuously during the 30-min meal, whereas controls terminated feeding after 22 min. This led to a 74% increase in first daily meal size of SM-NT-3KO mice compared with controls. The increases in meal duration and first meal size of SM-NT-3KO mice are consistent with reduced satiation signaling by vagal afferents. This is the first demonstration of a role for GI NT-3 in short-term controls of feeding, most likely involving effects on development of vagal GI afferents that regulate satiation. PMID:24068045

  17. Human sinus arrhythmia as an index of vagal cardiac outflow

    NASA Technical Reports Server (NTRS)

    Eckberg, D. L.

    1983-01-01

    The human central vagal mechanisms were investigated by measuring the intervals between heartbeats during controlled breathing (at breathing intervals of 2.5-10 s and nominal tidal volumes of 1000 and 1500 ml) in six young men and women. It was found that as the breathing interval increased, the longest heart periods became longer, the shortest heart periods became shorter, and the peak-valley P-P intervals increased asymptotically. Peak-valley intervals also increased in proportion to tidal volume, although this influence was small. The phase angles between heart period changes and respiration were found to vary as linear functions of breathing interval. Heart period shortening began in inspiration at short breathing intervals and in expiration at long breathing intervals, while heart period lengthening began in early expiration at all breathing intervals studied. It is concluded that a close relationship exists between variations of respiratory depth and interval and the quantity, periodicity, and timing of vagal cardiac outflow in conscious humans. The results indicate that at usual breathing rates, phasic respiration-related changes of vagal motoneuron activity begin in expiration, progress slowly, and are incompletely expressed at fast breathing ratges.

  18. Staphylococcal toxic shock syndrome: superantigen-mediated enhancement of endotoxin shock and adaptive immune suppression.

    PubMed

    Kulhankova, Katarina; King, Jessica; Salgado-Pabón, Wilmara

    2014-08-01

    Infectious diseases caused by Staphylococcus aureus present a significant clinical and public health problem. S. aureus causes some of the most severe hospital-associated and community-acquired illnesses. Specifically, it is the leading cause of infective endocarditis and osteomyelitis, and the second leading cause of sepsis in the USA. While pathogenesis of S. aureus infections is at the center of current research, many questions remain about the mechanisms underlying staphylococcal toxic shock syndrome (TSS) and associated adaptive immune suppression. Both conditions are mediated by staphylococcal superantigens (SAgs)-secreted staphylococcal toxins that are major S. aureus virulence factors. Toxic shock syndrome toxin-1 (TSST-1) is the SAg responsible for almost all menstrual TSS cases in the USA. TSST-1, staphylococcal enterotoxin B and C are also responsible for most cases of non-menstrual TSS. While SAgs mediate all of the hallmark features of TSS, such as fever, rash, hypotension, and multi-organ dysfunction, they are also capable of enhancing the toxic effects of endogenous endotoxin. This interaction appears to be critical in mediating the severity of TSS and related mortality. In addition, interaction between SAgs and the host immune system has been recognized to result in a unique form of adaptive immune suppression, contributing to poor outcomes of S. aureus infections. Utilizing rabbit models of S. aureus infective endocarditis, pneumonia and sepsis, and molecular genetics techniques, we aim to elucidate the mechanisms of SAg and endotoxin synergism in the pathogenesis of TSS, and examine the cellular and molecular mechanisms underlying SAg-mediated immune dysfunction.

  19. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2015-09-01

    Award Number: W81XWH-11-1-0384 TITLE: Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for...Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy 5b. GRANT NUMBER CA100463 5c...Listeria monocytogenes (Lm) on human dendritic cells (DCs) to optimize Lm-based DC cancer vaccines. The project aims are: 1) Compare the activation and

  20. Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses

    PubMed Central

    Liu, Wei; Li, Jing; Zheng, Weinan; Shang, Yingli; Zhao, Zhendong; Wang, Shanshan; Bi, Yuhai; Zhang, Shuang; Xu, Chongfeng; Duan, Ziyuan; Zhang, Lianfeng; Wang, Yue L; Jiang, Zhengfan; Liu, Wenjun; Sun, Lei

    2017-01-01

    RIG-I is a key cytosolic pattern recognition receptor that interacts with MAVS to induce type I interferons (IFNs) against RNA virus infection. In this study, we found that cyclophilin A (CypA), a peptidyl-prolyl cis/trans isomerase, functioned as a critical positive regulator of RIG-I-mediated antiviral immune responses. Deficiency of CypA impaired RIG-I-mediated type I IFN production and promoted viral replication in human cells and mice. Upon Sendai virus infection, CypA increased the interaction between RIG-I and its E3 ubiquitin ligase TRIM25, leading to enhanced TRIM25-mediated K63-linked ubiquitination of RIG-I that facilitated recruitment of RIG-I to MAVS. In addition, CypA and TRIM25 competitively interacted with MAVS, thereby inhibiting TRIM25-induced K48-linked ubiquitination of MAVS. Taken together, our findings reveal an essential role of CypA in boosting RIG-I-mediated antiviral immune responses by controlling the ubiquitination of RIG-I and MAVS. DOI: http://dx.doi.org/10.7554/eLife.24425.001 PMID:28594325

  1. Impact of escitalopram on vagally mediated cardiovascular function in healthy participants: implications for understanding differential age-related, treatment emergent effects.

    PubMed

    Kemp, Andrew H; Outhred, Tim; Saunders, Sasha; Brunoni, Andre R; Nathan, Pradeep J; Malhi, Gin S

    2014-06-01

    Black box warnings for young adults under the age of 25 years indicate that antidepressants may increase risk of suicide. While underlying mechanisms for age-related treatment effects remain unclear, vagally mediated cardiovascular function may play a key role. Decreased heart rate (HR) and an increase in its variability (HRV) improve one's capacity to adapt to environmental stress and attenuate risk for suicide. Using a double blind, randomized, placebo-controlled, crossover, experimental study, we examine whether a single dose of escitalopram (20 mg) attenuates cardiovascular responses to stress under experimental conditions and determine whether age moderates these effects. Forty-four healthy females received a single dose of escitalopram (20 mg) and placebo treatment separated by a 1-week interval (>5 half-lives). HR and high frequency HRV (HF HRV normalized units; 0.15-0.40 Hz) were measured during resting state and stress. While escitalopram attenuated the increase in HR and increased HF HRV, these moderate to large effects were only significant in participants over 25 years of age. No beneficial cardiovascular effects of escitalopram were observed in those under the age of 25. Maturational differences in the development of the prefrontal cortex--a critical region in the central network of autonomic control--may underpin these differential findings. This study provides a theoretical framework on which future research on treatment-emergent suicidality in clinical populations could be based.

  2. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models

    PubMed Central

    Watson, Alan M.; Klimstra, William B.

    2017-01-01

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253

  3. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice1[C][W][OA

    PubMed Central

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-01-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy. PMID:22353574

  4. Resting cardiac vagal tone predicts intraindividual reaction time variability during an attention task in a sample of young and healthy adults.

    PubMed

    Williams, DeWayne P; Thayer, Julian F; Koenig, Julian

    2016-12-01

    Intraindividual reaction time variability (IIV), defined as the variability in trial-to-trial response times, is thought to serve as an index of central nervous system function. As such, greater IIV reflects both poorer executive brain function and cognitive control, in addition to lapses in attention. Resting-state vagally mediated heart rate variability (vmHRV), a psychophysiological index of self-regulatory abilities, has been linked with executive brain function and cognitive control such that those with greater resting-state vmHRV often perform better on cognitive tasks. However, research has yet to investigate the direct relationship between resting vmHRV and task IIV. The present study sought to examine this relationship in a sample of 104 young and healthy participants who first completed a 5-min resting-baseline period during which resting-state vmHRV was assessed. Participants then completed an attentional (target detection) task, where reaction time, accuracy, and trial-to-trial IIV were obtained. Results showed resting vmHRV to be significantly related to IIV, such that lower resting vmHRV predicted higher IIV on the task, even when controlling for several covariates (including mean reaction time and accuracy). Overall, our results provide further evidence for the link between resting vmHRV and cognitive control, and extend these notions to the domain of lapses in attention, as indexed by IIV. Implications and recommendations for future research on resting vmHRV and cognition are discussed. © 2016 Society for Psychophysiological Research.

  5. Vagal Activity During Physiological Sexual Arousal in Women With and Without Sexual Dysfunction.

    PubMed

    Stanton, Amelia M; Pulverman, Carey S; Meston, Cindy M

    2017-01-02

    Recently, heart rate variability (HRV) level has been found to be a risk factor for female sexual dysfunction. Low HRV was a significant predictor of female sexual arousal dysfunction and overall sexual dysfunction. Building upon this finding, the present study examined whether differences in vagal activity between sexually functional and sexually dysfunctional women may be driving the association between low HRV and female sexual dysfunction. Specifically, respiratory sinus arrhythmia (RSA) was assessed before, during, and after physiological sexual arousal in 84 women, aged 18 to 47, to examine potential differences in vagal activity between sexually functional and sexually dysfunctional women. Significant differences in vagal activity between these two groups were observed (p =.02). These findings provide additional specificity to the recently established relationship between HRV and female sexual function while also proposing a mechanism to target during treatments for sexual dysfunction.

  6. [Immunosuppressive therapy in dogs and cats. Properties of drugs and their use in various immune-mediated diseases].

    PubMed

    Rieder, Johanna; Mischke, Reinhard

    2018-04-01

    Veterinarians are regularly faced with the diagnosis and therapy of immune-mediated diseases. More frequently occurring immune-mediated diseases are immune-mediated hemolytic anemia, immunemediated thrombocytopenia and polyarthritis. Glucocorticoids are commonly used as first-line treatment because of their availability, efficacy and rapid action. Nevertheless, some patients do not respond to glucocorticoid therapy alone. Others require a rapid dose reduction because of severe side effects from glucocorticoid treatment. These patients benefit from adjuvant therapies. Ciclosporin preparations are licensed for use in veterinary medicine. The use of azathioprine, mycophenolate mofetil and human immunoglobulin therapy has also been documented. This article describes the mode of action of certain immunosuppressive agents and their use in selected diseases from recent literature. Schattauer GmbH.

  7. [Cell-mediated immunity in mice infected with Acanthamoeba culbertsoni].

    PubMed

    Kim, M J; Shin, C O; Im, K I

    1990-09-01

    Observations were made on the differences of cell-mediated responses in mice of three infection groups differently scheduled in their severity with pathogenic Acanthamoeba culbertsoni. Infections were done by dropping 5 microliters saline suspension containing 3 x 10(3), 1 x 10(4), or 1 x 10(5) trophozoites, respectively. Amoebae were cultured axenically in CGV medium and inoculated into the right nasal cavity of C3H/HeJ mice aging around 6-8 weeks, under the anesthesia by intraperitoneal injection of secobarbital. Delayed type hypersensitivity (DTH) responses in footpad and blastogenic responses of mouse spleen cells using (3H)-thymidine and the serum antibody titer were measured up to day 14 after infection, and natural killer cell activities were measured up to day 5 after infection. The results obtained in this study were as follows: 1. The mice infected with 3 x 10(3) trophozoites showed mortality rate of 17%, and 34% in the mice infected with 1 x 10(4) trophozoites and 65% with 1 x 10(5) trophozoites. 2. In regard to DTH responses in all experimental groups, the level increased on day 7 and declined on day 14 after infection, but their differences could not be noted between infected and control groups. 3. The blastogenic responses of splenocytes treated with amoeba lysates and lipopolysaccharides (LPS) showed no difference from the control group. The blastogenic responses of splenocytes treated with concanavalin A were declined significantly in the experimental group as compared with the control group, but the blastogenic responses of splenocytes treated with polyinosinic acid were not different from the control group. There was also no difference among three infected groups. 4. The cytotoxic activity of the natural killer cells was activated on day 1 after infection and declined to the level of control group on day 2 in all experimental groups. On day 5 after infection, the natural killer cell cytotoxicity was significantly suppressed as compared with the

  8. Ghrelin

    PubMed Central

    Wu, James T.; Kral, John G.

    2004-01-01

    Objective: Ghrelin is a novel gastric hormone recognized in 1999 as a mediator of growth hormone release. Since growth hormone is anabolic, an important function of ghrelin may be to coordinate energy needs with the growth process. Newly discovered biologic roles of ghrelin imply that it may have other important physiological functions as well. This is a review of recent clinically relevant, yet less well-known, physiologic actions of ghrelin. Summary Background Data: Ghrelin has profound orexigenic, adipogenic, and somatotrophic properties, increasing food intake and body weight. Secreted predominantly from the stomach, ghrelin is the natural ligand for the growth hormone secretagogue receptor in the pituitary gland, thus fulfilling criteria of a brain-gut peptide. The brain-gut axis is the effector of anabolism by regulating growth, feeding, and metabolism via vagal afferents mediating ghrelin signaling. However, the wide tissue distribution of ghrelin suggests that it may have other functions as well. Methods: Systematic literature review of all PubMed citations between 1999 and August 2003 focusing on clinically relevant biochemical and physiological characteristics of ghrelin. Results: Ghrelin is an important component of an integrated regulatory system of growth and metabolism acting via the vagus nerve, and is implicated in a variety of altered energy states such as obesity, eating disorders, neoplasia, and cachexia. It also enhances immune responses and potentially down-regulates anti-inflammatory molecules. Ghrelin's role as a brain-gut peptide emphasizes the significance of afferent vagal fibers as a major pathway to the brain, serving the purpose of maintaining physiologic homeostasis. Conclusions: The discovery of ghrelin has increased our understanding of feeding regulation, nutritional homeostasis, and metabolic processes. Further characterization of ghrelin's functions will likely generate new pharmacological approaches to diagnose and treat

  9. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    PubMed Central

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  10. Sensory neurons that detect stretch and nutrients in the digestive system

    PubMed Central

    Williams, Erika K.; Chang, Rui B.; Strochlic, David E.; Umans, Benjamin D.; Lowell, Bradford B.; Liberles, Stephen D.

    2016-01-01

    SUMMARY Neural inputs from internal organs are essential for normal autonomic function. The vagus nerve is a key body-brain connection that monitors the digestive, cardiovascular, and respiratory systems. Within the gastrointestinal tract, vagal sensory neurons detect gut hormones and organ distension. Here, we investigate the molecular diversity of vagal sensory neurons and their roles in sensing gastrointestinal inputs. Genetic approaches allowed targeted investigation of gut-to-brain afferents involved in homeostatic responses to ingested nutrients (GPR65 neurons) and mechanical distension of the stomach and intestine (GLP1R neurons). Optogenetics, in vivo ganglion imaging, and genetically guided anatomical mapping provide direct links between neuron identity, peripheral anatomy, central anatomy, conduction velocity, response properties in vitro and in vivo, and physiological function. These studies clarify the roles of vagal afferents in mediating particular gut hormone responses. Moreover, genetic control over gut-to-brain neurons provides a molecular framework for understanding neural control of gastrointestinal physiology. PMID:27238020

  11. Neuroanatomical basis of Sandifer's syndrome: a new vagal reflex?

    PubMed

    Cerimagic, Denis; Ivkic, Goran; Bilic, Ervina

    2008-01-01

    Sandifer's syndrome is a gastrointestinal disorder with neurological features. It is characterized by reflex torticollis following deglutition in patients with gastroesophageal reflux and/or hiatal hernia. The authors believe that neurological manifestations of the syndrome are the consequence of vagal reflex with the reflex center in nucleus tractus solitarii (NTS). Three models for the neuroanatomical basis of the hypothetic reflex arc are presented. In the first one the hypothetic reflex arc is based on the classic hypothesis of two components nervus accessorius (n.XI) - radix cranialis (RC) and radix spinalis (RS) The nervous impulses are transmitted by nervus vagus (n.X) general visceral afferent (GVA) fibers to NTS situated in medulla oblongata, then by interneuronal connections on nucleus ambiguus (NA) and nucleus dorsalis nervi vagi (NDX). Special visceral efferent fibers (SVE) impulses from NA are in part transferred to n.XI ramus externus (RE) (carrying the majority of general somatic efferent (GSE) fibers) via hypothetic anastomoses in the region of foramen jugulare. This leads to contraction of trapezius and sternocleidomastoideus muscles, and the occurrence of intermittent torticollis. In the second suggested neuroanatomical model the hypothetic reflex arc is organized in the absence of n.XI RC, the efferent part of the reflex arc continues as NA, which is motor nucleus of nervus glossopharyngeus (n.IX) and n.X in this case while distal roots of n.XI that appear at the level of the olivary nucleus lower edge represent n.X roots. In the third presented model the hypothetic reflex arc includes no jugular transfer and could be realized via interneuronal connections directly from NTS to the spinal motoneurons within nucleus radicis spinalis nervi accessorii (NRS n.XI) or from NA to NRS n.XI. The afferent segment of the postulated reflex arc in all three models is mediated via n.X. We conclude that Sandifer's syndrome is a clinical manifestation of another

  12. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice

    PubMed Central

    Smith, Carli J.; Emge, Jacob R.; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M.; Sousa, Andrew J.; Reardon, Colin; Sherman, Philip M.; Barrett, Kim E.

    2014-01-01

    The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1−/− mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. PMID:25190473

  13. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice.

    PubMed

    Smith, Carli J; Emge, Jacob R; Berzins, Katrina; Lung, Lydia; Khamishon, Rebecca; Shah, Paarth; Rodrigues, David M; Sousa, Andrew J; Reardon, Colin; Sherman, Philip M; Barrett, Kim E; Gareau, Mélanie G

    2014-10-15

    The gut-brain-microbiota axis is increasingly recognized as an important regulator of intestinal physiology. Exposure to psychological stress causes activation of the hypothalamic-pituitary-adrenal (HPA) axis and causes altered intestinal barrier function, intestinal dysbiosis, and behavioral changes. The primary aim of this study was to determine whether the effects of psychological stress on intestinal physiology and behavior, including anxiety and memory, are mediated by the adaptive immune system. Furthermore, we wanted to determine whether treatment with probiotics would normalize these effects. Here we demonstrate that B and T cell-deficient Rag1(-/-) mice displayed altered baseline behaviors, including memory and anxiety, accompanied by an overactive HPA axis, increased intestinal secretory state, dysbiosis, and decreased hippocampal c-Fos expression. Both local (intestinal physiology and microbiota) and central (behavioral and hippocampal c-Fos) changes were normalized by pretreatment with probiotics, indicating an overall benefit on health conferred by changes in the microbiota, independent of lymphocytes. Taken together, these findings indicate a role for adaptive immune cells in maintaining normal intestinal and brain health in mice and show that probiotics can overcome this immune-mediated deficit in the gut-brain-microbiota axis. Copyright © 2014 the American Physiological Society.

  14. Oral candidosis in relation to oral immunity.

    PubMed

    Feller, L; Khammissa, R A G; Chandran, R; Altini, M; Lemmer, J

    2014-09-01

    Symptomatic oral infection with Candida albicans is characterized by invasion of the oral epithelium by virulent hyphae that cause tissue damage releasing the inflammatory mediators that initiate and sustain local inflammation. Candida albicans triggers pattern-recognition receptors of keratinocytes, macrophages, monocytes and dendritic cells, stimulating the production of IL-1β, IL-6 and IL-23. These cytokines induce the differentiation of Th17 cells and the generation of IL-17- and/or IL-22-mediated antifungal protective immuno-inflammatory responses in infected mucosa. Some immune cells including NKT cells, γδ T cells and lymphoid cells that are innate to the oral mucosa have the capacity to produce large quantities of IL-17 in response to C. albicans, sufficient to mediate effective protective immunity against C. albicans. On the other hand, molecular structures of commensal C. albicans blastoconidia, although detected by pattern-recognition receptors, are avirulent, do not invade the oral epithelium, do not elicit inflammatory responses in a healthy host, but induce regulatory immune responses that maintain tissue tolerance to the commensal fungi. The type, specificity and sensitivity of the protective immune response towards C. albicans is determined by the outcome of the integrated interactions between the intracellular signalling pathways of specific combinations of activated pattern-recognition receptors (TLR2, TLR4, Dectin-1 and Dectin-2). IL-17-mediated protective immune response is essential for oral mucosal immunity to C. albicans infection. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Depression is associated with increased vagal withdrawal during unpleasant emotional imagery after cardiac surgery.

    PubMed

    Patron, Elisabetta; Messerotti Benvenuti, Simone; Favretto, Giuseppe; Gasparotto, Renata; Palomba, Daniela

    2015-05-01

    The aim of this study was to examine the influence of depression on heart rate and heart rate variability (HRV) during emotional imagery in patients after cardiac surgery. Based on the scores of the Center for Epidemiological Studies of Depression (CES-D) scale, 28 patients after cardiac surgery were assigned either to the group with depression (CES-D scores ≥ 16; N = 14) or the one without depression (CES-D scores<16; N = 14). Each patient completed a rest period and an emotional imagery including pleasant, neutral and unpleasant scripts. Inter-beat intervals (IBIs) and HRV were measured during the entire protocol. Compared to nondepressed patients, those with depression had greater reductions in high frequency expressed in normalized units (HF n.u.) during the imaging of the unpleasant script (p = .003, Cohen's d = 1.34). Moreover, HF n.u. were lower during the imaging of the unpleasant script than the pleasant one in depressed patients only (p = .020, Cohen's d = 0.55). CES-D scores were also inversely correlated with residualized changes in IBIs (r = -.38, p = .045) and HF n.u. (r = -.49, p = .008) from rest to the imaging of the unpleasant script. The relationship between depression and increased vagal withdrawal during unpleasant emotional imagery extends to patients after cardiac surgery. The present study suggests that increased vagal withdrawal to negative emotions in patients after cardiac surgery may mediate the conferral of cardiac risk by depression. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Immune-Pineal Axis: Nuclear Factor κB (NF-κB) Mediates the Shift in the Melatonin Source from Pinealocytes to Immune Competent Cells

    PubMed Central

    Markus, Regina P; Cecon, Erika; Pires-Lapa, Marco Antonio

    2013-01-01

    Pineal gland melatonin is the darkness hormone, while extra-pineal melatonin produced by the gonads, gut, retina, and immune competent cells acts as a paracrine or autocrine mediator. The well-known immunomodulatory effect of melatonin is observed either as an endocrine, a paracrine or an autocrine response. In mammals, nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) blocks noradrenaline-induced melatonin synthesis in pinealocytes, which induces melatonin synthesis in macrophages. In addition, melatonin reduces NF-κB activation in pinealocytes and immune competent cells. Therefore, pathogen- or danger-associated molecular patterns transiently switch the synthesis of melatonin from pinealocytes to immune competent cells, and as the response progresses melatonin inhibition of NF-κB activity leads these cells to a more quiescent state. The opposite effect of NF-κB in pinealocytes and immune competent cells is due to different NF-κB dimers recruited in each phase of the defense response. This coordinated shift of the source of melatonin driven by NF-κB is called the immune-pineal axis. Finally, we discuss how this concept might be relevant to a better understanding of pathological conditions with impaired melatonin rhythms and hope it opens new horizons for the research of side effects of melatonin-based therapies. PMID:23708099

  17. Role of CD4+ T cells in a protective immune response against Cryptococcus neoformans in the central nervous system.

    PubMed

    Uicker, William C; McCracken, James P; Buchanan, Kent L

    2006-02-01

    Cryptococcosis is a life-threatening disease caused by the encapsulated yeast, Cryptococcus neoformans. Although infection with C. neoformans is initiated in the lungs, morbidity and mortality is mostly associated with infections of the central nervous system (CNS). Individuals with deficiencies in cell-mediated immunity, such as patients with AIDS, are more susceptible to disseminated cryptococcosis, highlighting the importance of cell-mediated immunity and CD4+ T cells in host resistance against C. neoformans. Using a mouse model of cryptococcal meningoencephalitis, we have shown that immunization of mice with a cryptococcal antigen induced a protective immune response that crossed the blood-brain barrier and initiated an immune response directly in the CNS if C. neoformans was present. The regional protective response was characteristic of a Type-1 (Th1) response in the types of cells present at the site of infection and in the cytokines and chemokines expressed. Here, we extend those findings and report that CD4+ T cells are required for survival of immune mice infected directly in the brain with C. neoformans and sensitized CD4 + T cells can transfer partial protection to naive mice infected intracerebrally with C. neoformans. Furthermore, CD4 + T cells were also important for optimal infiltration of inflammatory cells at the site of infection and in the expression of cytokines and chemokines associated with protection in the brain. Lastly, CD4+ T cells were required for optimal regional production and secretion of IFNgamma and in the significantly increased expression of iNOS in C. neoformans-infected brains of immune mice.

  18. An approach to contouring the dorsal vagal complex for radiotherapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Steen, Lillie; Amdur, Robert J., E-mail: amdurr@shands.ufl.edu

    Multiple studies suggest that radiation dose to the area of the brainstem called the “dorsal vagal complex (DVC)” influences the frequency of nausea and vomiting during radiotherapy. The purpose of this didactic article is to describe the step-by-step process that we use to contour the general area of the DVC on axial computed tomography (CT) images as would be done for radiotherapy planning. The contouring procedure that we describe for contouring the area of the DVC is useful to medical dosimetrists and radiation oncologists.

  19. [Immune dysfunction and cognitive deficit in stress and physiological aging. Part II: New approaches to cognitive disorder prevention and treatment ].

    PubMed

    Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A

    2014-01-01

    Long-term stress as well as physiological aging result in similar immunological and hormonal disturbances including hypothalamic-pituitary-adrenal) axis depletion, aberrant immune response (regulatory T-cells, Tregs, and T(h17)-lymphocyte accumulation) and decreased dehydroepian-drosterone synthesis both in the brain and in the adrenal glands. Since the main mechanisms of inflammation control, "prompt" (stress hormones) and "delayed" (Tregs), are broken, serum cytokine levels increase and become sufficient for blood-brain-barrier disruption. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Structural and functional alterations of blood-brain-barrier as well as stress- (or age-) induced neuroinflammation promote influx of bone marrow derived dendritic cells and lymphocyte effectors into the brain parenchyma. Thereafter, mass intrusion ofpro-inflammatory mediators and immune cells having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets: 1) reduction of excessive Treg accumulation; 2) supporting hypothalamic-pituitary-adrenal axis and inflammatory reaction attenuation; 3) recovery of dehydroepiandrosterone level; 4) improvement of blood-brain-barrier function.

  20. Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis.

    PubMed

    Jurynczyk, Maciej; Geraldes, Ruth; Probert, Fay; Woodhall, Mark R; Waters, Patrick; Tackley, George; DeLuca, Gabriele; Chandratre, Saleel; Leite, Maria I; Vincent, Angela; Palace, Jacqueline

    2017-03-01

    sclerosis), fluffy lesions and three lesions or less (MOG antibody). In the validation cohort patients with antibody-mediated conditions were differentiated from multiple sclerosis with high accuracy. Both antibody-mediated conditions can be clearly separated from multiple sclerosis on conventional brain imaging, both in adults and children. The overlap between MOG antibody oligodendrocytopathy and AQP4 antibody astrocytopathy suggests that the primary immune target is not the main substrate for brain lesion characteristics. This is also supported by the clear distinction between multiple sclerosis and MOG antibody disease both considered primary demyelinating conditions. We identify discriminatory features, which may be useful in classifying atypical multiple sclerosis, seronegative neuromyelitis optica spectrum disorders and relapsing acute disseminated encephalomyelitis, and characterizing cohorts for antibody discovery. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. 'Stealth' nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics.

    PubMed

    Jenkins, Stuart I; Weinberg, Daniel; Al-Shakli, Arwa F; Fernandes, Alinda R; Yiu, Humphrey H P; Telling, Neil D; Roach, Paul; Chari, Divya M

    2016-02-28

    Surface engineering to control cell behavior is of high interest across the chemical engineering, drug delivery and biomaterial communities. Defined chemical strategies are necessary to tailor nanoscale protein interactions/adsorption, enabling control of cell behaviors for development of novel therapeutic strategies. Nanoparticle-based therapies benefit from such strategies but particle targeting to sites of neurological injury remains challenging due to circulatory immune clearance. As a strategy to overcome this barrier, the use of stealth coatings can reduce immune clearance and prolong circulatory times, thereby enhancing therapeutic capacity. Polyethylene glycol (PEG) is the most widely-used stealth coating and facilitates particle accumulation in the brain. However, once within the brain, the mode of handling of PEGylated particles by the resident immune cells of the brain itself (the 'microglia') is unknown. This is a critical question as it is well established that microglia avidly sequester nanoparticles, limiting their bioavailability and posing a major translational barrier. If PEGylation can be proved to promote evasion of microglia, then this information will be of high value in developing tailored nanoparticle-based therapies for neurological applications. Here, we have conducted the first comparative study of uptake of PEGylated particles by all the major (immune and non-immune) brain cell types. We prove for the first time that PEGylated nanoparticles evade major brain cell populations - a phenomenon which will enhance extracellular bioavailability. We demonstrate changes in protein coronas around these particles within biological media, and discuss how surface chemistry presentation may affect this process and subsequent cellular interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Innate immune activation in neurodegenerative disease.

    PubMed

    Heneka, Michael T; Kummer, Markus P; Latz, Eicke

    2014-07-01

    The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.

  3. Vagal sensory innervation of the gastric sling muscle and antral wall: implications for gastro-esophageal reflux disease?

    PubMed

    Powley, T L; Gilbert, J M; Baronowsky, E A; Billingsley, C N; Martin, F N; Phillips, R J

    2012-10-01

    The gastric sling muscle has not been investigated for possible sensory innervation, in spite of the key roles the structure plays in lower esophageal sphincter (LES) function and gastric physiology. Thus, the present experiment used tracing techniques to label vagal afferents and survey their projections in the lesser curvature. Sprague-Dawley rats received injections of dextran biotin into the nodose ganglia. Fourteen days postinjection, animals were euthanized and their stomachs were processed to visualize the vagal afferent innervation. In different cases, neurons, muscle cells, or interstitial cells of Cajal (ICC) were counterstained. The sling muscle is innervated throughout its length by vagal afferent intramuscular arrays (IMAs) associated with ICC. In addition, the distal antral attachment site of the sling muscle is innervated by a novel vagal afferent terminal specialization, an antral web ending. The muscle wall of the distal antrum is also innervated by conventional IMAs and intraganglionic laminar endings, the two types of mechanoreceptors found throughout stomach smooth muscle. The innervation of sling muscle by IMAs, putative stretch receptors, suggests that sling sensory feedback may generate vago-vagal or other reflexes with vagal afferent limbs. The restricted distribution of afferent web endings near the antral attachments of sling fibers suggests the possibility of specialized mechanoreceptor functions linking antral and pyloric activity to the operation of the LES. Dysfunctional sling afferents could generate LES motor disturbances, or normative compensatory sensory feedback from the muscle could compromise therapies targeting only effectors. © 2012 Blackwell Publishing Ltd.

  4. Integrated analysis of HPV-mediated immune alterations in cervical cancer.

    PubMed

    Chen, Long; Luan, Shaohong; Xia, Baoguo; Liu, Yansheng; Gao, Yuan; Yu, Hongyan; Mu, Qingling; Zhang, Ping; Zhang, Weina; Zhang, Shengmiao; Wei, Guopeng; Yang, Min; Li, Ke

    2018-05-01

    Human papillomavirus (HPV) infection is the primary cause of cervical cancer. HPV-mediated immune alterations are known to play crucial roles in determining viral persistence and host cell transformation. We sought to thoroughly understand HPV-directed immune alterations in cervical cancer by exploring publically available datasets. 130 HPV positive and 7 HPV negative cervical cancer cases from The Cancer Genome Atlas were compared for differences in gene expression levels and functional enrichment. Analyses for copy number variation (CNV) and genetic mutation were conducted for differentially expressed immune genes. Kaplan-Meier analysis was performed to assess survival and relapse differences across cases with or without alterations of the identified immune signature genes. Genes up-regulated in HPV positive cervical cancer were enriched for various gene ontology terms of immune processes (P=1.05E-14~1.00E-05). Integrated analysis of the differentially expressed immune genes identified 9 genes that displayed either CNV, genetic mutation and/or gene expression changes in at least 10% of the cases of HPV positive cervical cancer. Genomic amplification may cause elevated levels of these genes in some HPV positive cases. Finally, patients with alterations in at least one of the nine signature genes overall had earlier relapse compared to those without any alterations. The altered expression of either TFRC or MMP13 may indicate poor survival for a subset of cervical cancer patients (P=1.07E-07). We identified a novel immune gene signature for HPV positive cervical cancer that is potentially associated with early relapse of cervical cancer. Copyright © 2018. Published by Elsevier Inc.

  5. Rational modulation of the innate immune system for neuroprotection in ischemic stroke

    PubMed Central

    Amantea, Diana; Micieli, Giuseppe; Tassorelli, Cristina; Cuartero, María I.; Ballesteros, Iván; Certo, Michelangelo; Moro, María A.; Lizasoain, Ignacio; Bagetta, Giacinto

    2015-01-01

    The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood–brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction. PMID:25972779

  6. Hospital admissions for vitamin D related conditions and subsequent immune-mediated disease: record-linkage studies

    PubMed Central

    2013-01-01

    Background Previous studies have suggested that there may be an association between vitamin D deficiency and the risk of developing immune-mediated diseases. Methods We analyzed a database of linked statistical records of hospital admissions and death registrations for the whole of England (from 1999 to 2011). Rate ratios for immune-mediated disease were determined, comparing vitamin D deficient cohorts (individuals admitted for vitamin D deficiency or markers of vitamin D deficiency) with comparison cohorts. Results After hospital admission for either vitamin D deficiency, osteomalacia or rickets, there were significantly elevated rates of Addison’s disease, ankylosing spondylitis, autoimmune hemolytic anemia, chronic active hepatitis, celiac disease, Crohn’s disease, diabetes mellitus, pemphigoid, pernicious anemia, primary biliary cirrhosis, rheumatoid arthritis, Sjogren’s syndrome, systemic lupus erythematosus, thyrotoxicosis, and significantly reduced risks for asthma and myxoedema. Conclusions This study shows that patients with vitamin D deficiency may have an increased risk of developing some immune-mediated diseases, although we cannot rule out reverse causality or confounding. Further study of these associations is warranted and these data may aid further public health studies. PMID:23885887

  7. Membrane attack complex of complement is not essential for immune mediated demyelination in experimental autoimmune neuritis.

    PubMed

    Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Killingsworth, Murray; Nomura, Masaru; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2010-12-15

    Antibody deposition and complement activation, especially membrane attack complex (MAC) formation are considered central for immune mediated demyelination. To examine the role of MAC in immune mediated demyelination, we studied experimental allergic neuritis (EAN) in Lewis rats deficient in complement component 6 (C6) that cannot form MAC. A C6 deficient Lewis (Lewis/C6-) strain of rats was bred by backcrossing the defective C6 gene, from PVG/C6- rats, onto the Lewis background. Lewis/C6- rats had the same C6 gene deletion as PVG/C6- rats and their sera did not support immune mediated haemolysis unless C6 was added. Active EAN was induced in Lewis and Lewis/C6- rats by immunization with bovine peripheral nerve myelin in complete Freund's adjuvant (CFA), and Lewis/C6- rats had delayed clinical EAN compared to the Lewis rats. Peripheral nerve demyelination in Lewis/C6- was also delayed but was similar in extent at the peak of disease. Compared to Lewis, Lewis/C6- nerves had no MAC deposition, reduced macrophage infiltrate and IL-17A, but similar T cell infiltrate and Th1 cytokine mRNA expression. ICAM-1 and P-selectin mRNA expression and immunostaining on vascular endothelium were delayed in Lewis C6- compared to Lewis rats' nerves. This study found that MAC was not required for immune mediated demyelination; but that MAC enhanced early symptoms and early demyelination in EAN, either by direct lysis or by sub-lytic induction of vascular endothelial expression of ICAM-1 and P-selectin. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Primate lentiviruses use at least three alternative strategies to suppress NF-κB-mediated immune activation

    PubMed Central

    Gawanbacht, Ali; Van Driessche, Benoît; Van Lint, Carine; Peeters, Martine; Kirchhoff, Frank

    2017-01-01

    Primate lentiviruses have evolved sophisticated strategies to suppress the immune response of their host species. For example, HIV-2 and most simian immunodeficiency viruses (SIVs) use their accessory protein Nef to prevent T cell activation and antiviral gene expression by downmodulating the T cell receptor CD3. This Nef function was lost in HIV-1 and other vpu-encoding viruses suggesting that the acquisition of Vpu-mediated NF-κB inhibition reduced the selection pressure for inhibition of T cell activation by Nef. To obtain further insights into the modulation of NF-κB activity by primate lentiviral accessory factors, we analyzed 32 Vpr proteins from a large panel of divergent primate lentiviruses. We found that those of SIVcol and SIVolc infecting Colobinae monkeys showed the highest efficacy in suppressing NF-κB activation. Vpr-mediated inhibition of NF-κB resulted in decreased IFNβ promoter activity and suppressed type I IFN induction in virally infected primary cells. Interestingly, SIVcol and SIVolc differ from all other primate lentiviruses investigated by the lack of both, a vpu gene and efficient Nef-mediated downmodulation of CD3. Thus, primate lentiviruses have evolved at least three alternative strategies to inhibit NF-κB-dependent immune activation. Functional analyses showed that the inhibitory activity of SIVolc and SIVcol Vprs is independent of DCAF1 and the induction of cell cycle arrest. While both Vprs target the IKK complex or a factor further downstream in the NF-κB signaling cascade, only SIVolc Vpr stabilizes IκBα and inhibits p65 phosphorylation. Notably, only de-novo synthesized but not virion-associated Vpr suppressed the activation of NF-κB, thus enabling NF-κB-dependent initiation of viral gene transcription during early stages of the replication cycle, while minimizing antiviral gene expression at later stages. Our findings highlight the key role of NF-κB in antiviral immunity and demonstrate that primate lentiviruses

  9. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  10. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors

    PubMed Central

    Slattery, James A; Page, Amanda J; Dorian, Camilla L; Brierley, Stuart M; Blackshaw, L Ashley

    2006-01-01

    Glutamate acts at central synapses via ionotropic (iGluR – NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity, and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed. PMID:16945965

  11. Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors.

    PubMed

    Slattery, James A; Page, Amanda J; Dorian, Camilla L; Brierley, Stuart M; Blackshaw, L Ashley

    2006-11-15

    Glutamate acts at central synapses via ionotropic (iGluR--NMDA, AMPA and kainate) and metabotropic glutamate receptors (mGluRs). Group I mGluRs are excitatory whilst group II and III are inhibitory. Inhibitory mGluRs also modulate peripherally the mechanosensitivity of gastro-oesophageal vagal afferents. Here we determined the potential of excitatory GluRs to play an opposing role in modulating vagal afferent mechanosensitivity, and investigated expression of receptor subunit mRNA within the nodose ganglion. The responses of mouse gastro-oesophageal vagal afferents to graded mechanical stimuli were investigated before and during application of selective GluR ligands to their peripheral endings. Two types of vagal afferents were tested: tension receptors, which respond to circumferential tension, and mucosal receptors, which respond only to mucosal stroking. The selective iGluR agonists NMDA and AMPA concentration-dependently potentiated afferent responses. Their corresponding antagonists AP-5 and NBQX alone attenuated mechanosensory responses as did the non-selective antagonist kynurenate. The kainate selective agonist SYM-2081 had minor effects on mechanosensitivity, and the antagonist UBP 302 was ineffective. The mGluR5 antagonist MTEP concentration-dependently inhibited mechanosensitivity. Efficacy of agonists and antagonists differed on mucosal and tension receptors. We conclude that excitatory modulation of afferent mechanosensitivity occurs mainly via NMDA, AMPA and mGlu5 receptors, and the role of each differs according to afferent subtypes. PCR data indicated that all NMDA, kainate and AMPA receptor subunits plus mGluR5 are expressed, and are therefore candidates for the neuromodulation we observed.

  12. Cellular immune responses to HIV

    NASA Astrophysics Data System (ADS)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  13. Aldosterone increases cardiac vagal tone via G protein-coupled oestrogen receptor activation

    PubMed Central

    Brailoiu, G Cristina; Benamar, Khalid; Arterburn, Jeffrey B; Gao, Erhe; Rabinowitz, Joseph E; Koch, Walter J; Brailoiu, Eugen

    2013-01-01

    In addition to acting on mineralocorticoid receptors, aldosterone has been recently shown to activate the G protein-coupled oestrogen receptor (GPER) in vascular cells. In light of the newly identified role for GPER in vagal cardiac control, we examined whether or not aldosterone activates GPER in rat nucleus ambiguus. Aldosterone produced a dose-dependent increase in cytosolic Ca2+ concentration in retrogradely labelled cardiac vagal neurons of nucleus ambiguus; the response was abolished by pretreatment with the GPER antagonist G-36, but was not affected by the mineralocorticoid receptor antagonists, spironolactone and eplerenone. In Ca2+-free saline, the response to aldosterone was insensitive to blockade of the Ca2+ release from lysosomes, while it was reduced by blocking the Ca2+ release via ryanodine receptors and abolished by blocking the IP3 receptors. Aldosterone induced Ca2+ influx via P/Q-type Ca2+ channels, but not via L-type and N-type Ca2+ channels. Aldosterone induced depolarization of cardiac vagal neurons of nucleus ambiguus that was sensitive to antagonism of GPER but not of mineralocorticoid receptor. in vivo studies, using telemetric measurement of heart rate, indicate that microinjection of aldosterone into the nucleus ambiguus produced a dose-dependent bradycardia in conscious, freely moving rats. Aldosterone-induced bradycardia was blocked by the GPER antagonist, but not by the mineralocorticoid receptor antagonists. In summary, we report for the first time that aldosterone decreases heart rate by activating GPER in cardiac vagal neurons of nucleus ambiguus. PMID:23878371

  14. Chronic intermittent hypoxia-hypercapnia blunts heart rate responses and alters neurotransmission to cardiac vagal neurons.

    PubMed

    Dyavanapalli, Jhansi; Jameson, Heather; Dergacheva, Olga; Jain, Vivek; Alhusayyen, Mona; Mendelowitz, David

    2014-07-01

    Patients with obstructive sleep apnoea experience chronic intermittent hypoxia-hypercapnia (CIHH) during sleep that elicit sympathetic overactivity and diminished parasympathetic activity to the heart, leading to hypertension and depressed baroreflex sensitivity. The parasympathetic control of heart rate arises from pre-motor cardiac vagal neurons (CVNs) located in nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). The mechanisms underlying diminished vagal control of heart rate were investigated by studying the changes in blood pressure, heart rate, and neurotransmission to CVNs evoked by acute hypoxia-hypercapnia (H-H) and CIHH. In vivo telemetry recordings of blood pressure and heart rate were obtained in adult rats during 4 weeks of CIHH exposure. Retrogradely labelled CVNs were identified in an in vitro brainstem slice preparation obtained from adult rats exposed either to air or CIHH for 4 weeks. Postsynaptic inhibitory or excitatory currents were recorded using whole cell voltage clamp techniques. Rats exposed to CIHH had increases in blood pressure, leading to hypertension, and blunted heart rate responses to acute H-H. CIHH induced an increase in GABAergic and glycinergic neurotransmission to CVNs in NA and DMNX, respectively; and a reduction in glutamatergic neurotransmission to CVNs in both nuclei. CIHH blunted the bradycardia evoked by acute H-H and abolished the acute H-H evoked inhibition of GABAergic transmission while enhancing glycinergic neurotransmission to CVNs in NA. These changes with CIHH inhibit CVNs and vagal outflow to the heart, both in acute and chronic exposures to H-H, resulting in diminished levels of cardioprotective parasympathetic activity to the heart as seen in OSA patients. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  15. The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells.

    PubMed

    Wang, Huizhi; Brown, Jonathan; Gao, Shegan; Liang, Shuang; Jotwani, Ravi; Zhou, Huaxin; Suttles, Jill; Scott, David A; Lamont, Richard J

    2013-08-01

    The role of JAK-3 in TLR-mediated innate immune responses is poorly understood, although the suppressive function of JAK3 inhibition in adaptive immune response has been well studied. In this study, we found that JAK3 inhibition enhanced TLR-mediated immune responses by differentially regulating pro- and anti- inflammatory cytokine production in innate immune cells. Specifically, JAK3 inhibition by pharmacological inhibitors or specific small interfering RNA or JAK3 gene knockout resulted in an increase in TLR-mediated production of proinflammatory cytokines while concurrently decreasing the production of IL-10. Inhibition of JAK3 suppressed phosphorylation of PI3K downstream effectors including Akt, mammalian target of rapamycin complex 1, glycogen synthase kinase 3β (GSK3β), and CREB. Constitutive activation of Akt or inhibition of GSK3β abrogated the capability of JAK3 inhibition to enhance proinflammatory cytokines and suppress IL-10 production. In contrast, inhibition of PI3K enhanced this regulatory ability of JAK3 in LPS-stimulated monocytes. At the transcriptional level, JAK3 knockout lead to the increased phosphorylation of STATs that could be attenuated by neutralization of de novo inflammatory cytokines. JAK3 inhibition exhibited a GSK3 activity-dependent ability to enhance phosphorylation levels and DNA binding of NF-κB p65. Moreover, JAK3 inhibition correlated with an increased CD4(+) T cell response. Additionally, higher neutrophil infiltration, IL-17 expression, and intestinal epithelium erosion were observed in JAK3 knockout mice. These findings demonstrate the negative regulatory function of JAK3 and elucidate the signaling pathway by which JAK3 differentially regulates TLR-mediated inflammatory cytokine production in innate immune cells.

  16. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    PubMed Central

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus. PMID:27006520

  17. NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration.

    PubMed

    Kounatidis, Ilias; Chtarbanova, Stanislava; Cao, Yang; Hayne, Margaret; Jayanth, Dhruv; Ganetzky, Barry; Ligoxygakis, Petros

    2017-04-25

    During aging, innate immunity progresses to a chronically active state. However, what distinguishes those that "age well" from those developing age-related neurological conditions is unclear. We used Drosophila to explore the cost of immunity in the aging brain. We show that mutations in intracellular negative regulators of the IMD/NF-κB pathway predisposed flies to toxic levels of antimicrobial peptides, resulting in early locomotor defects, extensive neurodegeneration, and reduced lifespan. These phenotypes were rescued when immunity was suppressed in glia. In healthy flies, suppressing immunity in glial cells resulted in increased adipokinetic hormonal signaling with high nutrient levels in later life and an extension of active lifespan. Thus, when levels of IMD/NF-κB deviate from normal, two mechanisms are at play: lower levels derepress an immune-endocrine axis, which mobilizes nutrients, leading to lifespan extension, whereas higher levels increase antimicrobial peptides, causing neurodegeneration. Immunity in the fly brain is therefore a key lifespan determinant. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Helminth Infections Decrease Host Susceptibility to Immune-Mediated Diseases

    PubMed Central

    Weinstock, Joel V; Elliott, David E.

    2014-01-01

    Helminthic infection has become rare in highly industrialized nations. Concurrent with the decline in helminthic infection is an increase in prevalence of inflammatory disease. Removal of helminths from our environment and their powerful effects on host immunity may have contributed to this increase. Several different helminth species can abrogate disease in murine models of inflammatory bowel disease, type 1 diabetes, multiple sclerosis and other conditions. Helminths evoke immune regulatory pathways often involving dendritic cells, Tregs and macrophages that help control disease. Cytokines such as IL4, IL10 and TGFβ have a role. Notable is helminthic modulatory effect on innate immunity, which impedes development of aberrant adaptive immunity. Investigators are identifying key helminth-derived immune modulatory molecules that may have therapeutic utility in the control of inflammatory disease. PMID:25240019

  19. Brain Responses to High-Protein Diets12

    PubMed Central

    Journel, Marion; Chaumontet, Catherine; Darcel, Nicolas; Fromentin, Gilles; Tomé, Daniel

    2012-01-01

    Proteins are suspected to have a greater satiating effect than the other 2 macronutrients. After protein consumption, peptide hormones released from the gastrointestinal tract (mainly anorexigenic gut peptides such as cholecystokinin, glucagon peptide 1, and peptide YY) communicate information about the energy status to the brain. These hormones and vagal afferents control food intake by acting on brain regions involved in energy homeostasis such as the brainstem and the hypothalamus. In fact, a high-protein diet leads to greater activation than a normal-protein diet in the nucleus tractus solitarius and in the arcuate nucleus. More specifically, neural mechanisms triggered particularly by leucine consumption involve 2 cellular energy sensors: the mammalian target of rapamycin and AMP-activated protein kinase. In addition, reward and motivation aspects of eating behavior, controlled mainly by neurons present in limbic regions, play an important role in the reduced hedonic response of a high-protein diet. This review examines how metabolic signals emanating from the gastrointestinal tract after protein ingestion target the brain to control feeding, energy expenditure, and hormones. Understanding the functional roles of brain areas involved in the satiating effect of proteins and their interactions will demonstrate how homeostasis and reward are integrated with the signals from peripheral organs after protein consumption. PMID:22585905

  20. Development and maintenance of the brain's immune toolkit: Microglia and non-parenchymal brain macrophages.

    PubMed

    Lopez-Atalaya, Jose P; Askew, Katharine E; Sierra, Amanda; Gomez-Nicola, Diego

    2018-06-01

    Microglia and non-parenchymal macrophages located in the perivascular space, the meninges and the choroid plexus are independent immune populations that play vital roles in brain development, homeostasis, and tissue healing. Resident macrophages account for a significant proportion of cells in the brain and their density remains stable throughout the lifespan thanks to constant turnover. Microglia develop from yolk sac progenitors, later evolving through intermediate progenitors in a fine-tuned process in which intrinsic factors and external stimuli combine to progressively sculpt their cell type-specific transcriptional profiles. Recent evidence demonstrates that non-parenchymal macrophages are also generated during early embryonic development. In recent years, the development of powerful fate mapping approaches combined with novel genomic and transcriptomic methodologies have greatly expanded our understanding of how brain macrophages develop and acquire specialized functions, and how cell population dynamics are regulated. Here, we review the transcription factors, epigenetic remodeling, and signaling pathways orchestrating the embryonic development of microglia and non-parenchymal macrophages. Next, we describe the dynamics of the macrophage populations of the brain and discuss the role of progenitor cells, to gain a better understanding of their functions in the healthy and diseased brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 561-579, 2018. © 2017 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc.

  1. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer.

    PubMed

    Baker, Kristi; Rath, Timo; Flak, Magdalena B; Arthur, Janelle C; Chen, Zhangguo; Glickman, Jonathan N; Zlobec, Inti; Karamitopoulou, Eva; Stachler, Matthew D; Odze, Robert D; Lencer, Wayne I; Jobin, Christian; Blumberg, Richard S

    2013-12-12

    Cancers arising in mucosal tissues account for a disproportionately large fraction of malignancies. Immunoglobulin G (IgG) and the neonatal Fc receptor for IgG (FcRn) have an important function in the mucosal immune system that we have now shown extends to the induction of CD8(+) T cell-mediated antitumor immunity. We demonstrate that FcRn within dendritic cells (DCs) was critical for homeostatic activation of mucosal CD8(+) T cells that drove protection against the development of colorectal cancers and lung metastases. FcRn-mediated tumor protection was driven by DCs activation of endogenous tumor-reactive CD8(+) T cells via the cross-presentation of IgG complexed antigens (IgG IC), as well as the induction of cytotoxicity-promoting cytokine secretion, particularly interleukin-12, both of which were independently triggered by the FcRn-IgG IC interaction in murine and human DCs. FcRn thus has a primary role within mucosal tissues in activating local immune responses that are critical for priming efficient anti-tumor immunosurveillance. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Fusion antibody for Alzheimer's disease with bidirectional transport across the blood-brain barrier and abeta fibril disaggregation.

    PubMed

    Boado, Ruben J; Zhang, Yufeng; Zhang, Yun; Xia, Chun-Fang; Pardridge, William M

    2007-01-01

    Delivery of monoclonal antibody therapeutics across the blood-brain barrier is an obstacle to the diagnosis or therapy of CNS disease with antibody drugs. The immune therapy of Alzheimer's disease attempts to disaggregate the amyloid plaque of Alzheimer's disease with an anti-Abeta monoclonal antibody. The present work is based on a three-step model of immune therapy of Alzheimer's disease: (1) influx of the anti-Abeta monoclonal antibody across the blood-brain barrier in the blood to brain direction, (2) binding and disaggregation of Abeta fibrils in brain, and (3) efflux of the anti-Abeta monoclonal antibody across the blood-brain barrier in the brain to blood direction. This is accomplished with the genetic engineering of a trifunctional fusion antibody that binds (1) the human insulin receptor, which mediates the influx from blood to brain across the blood-brain barrier, (2) the Abeta fibril to disaggregate amyloid plaque, and (3) the Fc receptor, which mediates the efflux from brain to blood across the blood-brain barrier. This fusion protein is a new antibody-based therapeutic for Alzheimer's disease that is specifically engineered to cross the human blood-brain barrier in both directions.

  3. The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity.

    PubMed

    Sarr, Michael G; Billington, Charles J; Brancatisano, Roy; Brancatisano, Anthony; Toouli, James; Kow, Lilian; Nguyen, Ninh T; Blackstone, Robin; Maher, James W; Shikora, Scott; Reeds, Dominic N; Eagon, J Christopher; Wolfe, Bruce M; O'Rourke, Robert W; Fujioka, Ken; Takata, Mark; Swain, James M; Morton, John M; Ikramuddin, Sayeed; Schweitzer, Michael; Chand, Bipan; Rosenthal, Raul

    2012-11-01

    Intermittent, reversible intraabdominal vagal blockade (VBLOC® Therapy) demonstrated clinically important weight loss in feasibility trials. EMPOWER, a randomized, double-blind, prospective, controlled trial was conducted in USA and Australia. Five hundred three subjects were enrolled at 15 centers. After informed consent, 294 subjects were implanted with the vagal blocking system and randomized to the treated (n = 192) or control (n = 102) group. Main outcome measures were percent excess weight loss (percent EWL) at 12 months and serious adverse events. Subjects controlled duration of therapy using an external power source; therapy involved a programmed algorithm of electrical energy delivered to the subdiaphragmatic vagal nerves to inhibit afferent/efferent vagal transmission. Devices in both groups performed regular, low-energy safety checks. Data are mean ± SEM. Study subjects consisted of 90 % females, body mass index of 41 ± 1 kg/m(2), and age of 46 ± 1 years. Device-related complications occurred in 3 % of subjects. There was no mortality. 12-month percent EWL was 17 ± 2 % for the treated and 16 ± 2 % for the control group. Weight loss was related linearly to hours of device use; treated and controls with ≥ 12 h/day use achieved 30 ± 4 and 22 ± 8 % EWL, respectively. VBLOC® therapy to treat morbid obesity was safe, but weight loss was not greater in treated compared to controls; clinically important weight loss, however, was related to hours of device use. Post-study analysis suggested that the system electrical safety checks (low charge delivered via the system for electrical impedance, safety, and diagnostic checks) may have contributed to weight loss in the control group.

  4. Roles of Peroxinectin in PGE2-mediated cellular immunity in Spodoptera exigua

    USDA-ARS?s Scientific Manuscript database

    Prostaglandins (PGs) mediate insect immune responses to infections and invasions. Although the presence of PGs has been confirmed in several insect species, their biosynthesis in insects remains a conundrum because orthologs of the mammalian cyclooxygenases (COXs) have not been found in the known in...

  5. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    PubMed

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  6. Low Vagal Tone Magnifies the Association Between Psychosocial Stress Exposure and Internalizing Psychopathology in Adolescents

    PubMed Central

    McLaughlin, Katie A.; Rith-Najarian, Leslie; Dirks, Melanie A.; Sheridan, Margaret A.

    2014-01-01

    Vagal tone is a measure of cardiovascular function that facilitates adaptive responses to environmental challenge. Low vagal tone is associated with poor emotional and attentional regulation in children and has been conceptualized as a marker of sensitivity to stress. We investigated whether the associations of a wide range of psychosocial stressors with internalizing and externalizing psychopathology were magnified in adolescents with low vagal tone. Resting heart period data were collected from a diverse community sample of adolescents (ages 13–17; N =168). Adolescents completed measures assessing internalizing and externalizing psychopathology and exposure to stressors occurring in family, peer, and community contexts. Respiratory sinus arrhythmia (RSA) was calculated from the interbeat interval time series. We estimated interactions between RSA and stress exposure in predicting internalizing and externalizing symptoms and evaluated whether interactions differed by gender. Exposure to psychosocial stressors was associated strongly with psychopathology. RSA was unrelated to internalizing or externalizing problems. Significant interactions were observed between RSA and child abuse, community violence, peer victimization, and traumatic events in predicting internalizing but not externalizing symptoms. Stressors were positively associated with internalizing symptoms in adolescents with low RSA but not in those with high RSA. Similar patterns were observed for anxiety and depression. These interactions were more consistently observed for male than female individuals. Low vagal tone is associated with internalizing psychopathology in adolescents exposed to high levels of stressors. Measurement of vagal tone in clinical settings might provide useful information about sensitivity to stress in child and adolescent clients. PMID:24156380

  7. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells

    PubMed Central

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  8. A model-based approach for the evaluation of vagal and sympathetic activities in a newborn lamb.

    PubMed

    Le Rolle, Virginie; Ojeda, David; Beuchée, Alain; Praud, Jean-Paul; Pladys, Patrick; Hernández, Alfredo I

    2013-01-01

    This paper proposes a baroreflex model and a recursive identification method to estimate the time-varying vagal and sympathetic contributions to heart rate variability during autonomic maneuvers. The baroreflex model includes baroreceptors, cardiovascular control center, parasympathetic and sympathetic pathways. The gains of the global afferent sympathetic and vagal pathways are identified recursively. The method has been validated on data from newborn lambs, which have been acquired during the application of an autonomic maneuver, without medication and under beta-blockers. Results show a close match between experimental and simulated signals under both conditions. The vagal and sympathetic contributions have been simulated and, as expected, it is possible to observe different baroreflex responses under beta-blockers compared to baseline conditions.

  9. Anti-IL-23 and Anti-IL-17 Biologic Agents for the Treatment of Immune-Mediated Inflammatory Conditions.

    PubMed

    Frieder, Jillian; Kivelevitch, Dario; Haugh, Isabel; Watson, Ian; Menter, Alan

    2018-01-01

    Advancements in the immunopathogenesis of psoriasis have identified interleukin (IL)-23 and IL-17 as fundamental contributors in the immune pathways of the disease. Leveraging these promising therapeutic targets has led to the emergence of a number of anti-IL-23 and -17 biologic agents with the potential to treat multiple conditions with common underlying pathology. The unprecedented clinical efficacy of these agents in the treatment of psoriasis has paved way for their evaluation in diseases such as psoriatic arthritis, Crohn's disease, rheumatoid arthritis, in addition to other immune-mediated conditions. Here we review the IL-23/IL-17 immune pathways and discuss the key clinical and safety data of the anti-IL-23 and anti-IL-17 biologic agents in psoriasis and other immune-mediated diseases. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  10. Vagal nerve stimulator: Evolving trends

    PubMed Central

    Ogbonnaya, Sunny; Kaliaperumal, Chandrasekaran

    2013-01-01

    Over three decades ago, it was found that intermittent electrical stimulation from the vagus nerve produces inhibition of neural processes, which can alter brain activity and terminate seizures. This paved way for the concept of vagal nerve stimulator (VNS). We describe the evolution of the VNS and its use in different fields of medicine. We also review the literature focusing on the mechanism of action of VNS producing desired effects in different conditions. PUBMED and EMBASE search was performed for ‘VNS’ and its use in refractory seizure management, depression, obesity, memory, and neurogenesis. VNS has been in vogue over for the past three decades and has proven to reduce the intensity and frequency of seizure by 50% in the management of refractory seizures. Apart from this, VNS has been shown to promote neurogenesis in the dentate gyrus of rat hippocampus after 48 hours of stimulation of the vagus nerve. Improvement has also been observed in non-psychotic major depression from a randomized trial conducted 7 years ago. The same concept has been utilized to alter behavior and cognition in rodents, and good improvement has been observed. Recent studies have proven that VNS is effective in obesity management in patients with depression. Several hypotheses have been postulated for the mechanism of action of VNS contributing to its success. VNS has gained significant popularity with promising results in epilepsy surgery and treatment-resistant depression. The spectrum of its use has also extended to other fields of medicine including obesity, memory, and neurogenesis, and there is still a viable scope for its utility in the future. PMID:23633829

  11. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling

    PubMed Central

    Zhou, Bangjun; Zeng, Lirong

    2018-01-01

    In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI) and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2) with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum) homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.

  12. Anterograde Tracing Method using DiI to Label Vagal Innervation of the Embryonic and Early Postnatal Mouse Gastrointestinal Tract

    PubMed Central

    Murphy, Michelle C.; Fox, Edward A.

    2007-01-01

    The mouse is an extremely valuable model for studying vagal development in relation to strain differences, genetic variation, gene manipulations, or pharmacological manipulations. Therefore, a method using 1, 1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) was developed for labeling vagal innervation of the gastrointestinal (GI) tract in embryonic and postnatal mice. DiI labeling was adapted and optimized for this purpose by varying several facets of the method. For example, insertion and crushing of DiI crystals into the nerve led to faster DiI diffusion along vagal axons and diffusion over longer distances as compared with piercing the nerve with a micropipette tip coated with dried DiI oil. Moreover, inclusion of EDTA in the fixative reduced leakage of DiI out of nerve fibers that occurred with long incubations. Also, mounting labeled tissue in PBS was superior to glycerol with n-propyl gallate, which resulted in reduced clarity of DiI labeling that may have been due to DiI leaking out of fibers. Optical sectioning of flattened wholemounts permitted examination of individual tissue layers of the GI tract wall. This procedure aided identification of nerve ending types because in most instances each type innervates a different tissue layer. Between embryonic day 12.5 and postnatal day 8, growth of axons into the GI tract, formation and patterning of fiber bundles in the myenteric plexus and early formation of putative afferent and efferent nerve terminals were observed. Thus, the DiI tracing method developed here has opened up a window for investigation during an important phase of vagal development. PMID:17418900

  13. Autocrine Complement Inhibits IL10-Dependent T-Cell Mediated Antitumor Immunity to Promote Tumor Progression

    PubMed Central

    Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J.; Patz, Edward F.; Li, Shi-You; He, You-Wen

    2016-01-01

    In contrast to its inhibitory effects on many cells, IL-10 activates CD8+ tumor infiltrating lymphocytes (TILs) and enhances their antitumor activity. However, CD8+ TILs do not routinely express IL-10 as autocrine complement C3 inhibits IL-10 production through complement receptors C3aR and C5aR. CD8+ TILs from C3-deficient mice, however, express IL-10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T cell- and IL-10-dependent manner; human TILs expanded with IL-2 plus IL-10 increase the killing of primary tumors in vitro compared to IL-2 treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the PD-1/PD-L1 immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8+ TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL-10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. PMID:27297552

  14. Mice chronically infected with chimeric HIV resist peripheral and brain superinfection: a model of protective immunity to HIV.

    PubMed

    Kelschenbach, Jennifer L; Saini, Manisha; Hadas, Eran; Gu, Chao-Jiang; Chao, Wei; Bentsman, Galina; Hong, Jessie P; Hanke, Tomas; Sharer, Leroy R; Potash, Mary Jane; Volsky, David J

    2012-06-01

    Infection by some viruses induces immunity to reinfection, providing a means to identify protective epitopes. To investigate resistance to reinfection in an animal model of HIV disease and its control, we employed infection of mice with chimeric HIV, EcoHIV. When immunocompetent mice were infected by intraperitoneal (IP) injection of EcoHIV, they resisted subsequent secondary infection by IP injection, consistent with a systemic antiviral immune response. To investigate the potential role of these responses in restricting neurotropic HIV infection, we established a protocol for efficient EcoHIV expression in the brain following intracranial (IC) inoculation of virus. When mice were inoculated by IP injection and secondarily by IC injection, they also controlled EcoHIV replication in the brain. To investigate their role in EcoHIV antiviral responses, CD8+ T lymphocytes were isolated from spleens of EcoHIV infected and uninfected mice and adoptively transferred to isogenic recipients. Recipients of EcoHIV primed CD8+ cells resisted subsequent EcoHIV infection compared to recipients of cells from uninfected donors. CD8+ spleen cells from EcoHIV-infected mice also mounted modest but significant interferon-γ responses to two HIV Gag peptide pools. These findings suggest EcoHIV-infected mice may serve as a useful system to investigate the induction of anti-HIV protective immunity for eventual translation to human beings.

  15. Serum and cerebrospinal fluid immune mediators in children with autistic disorder: a longitudinal study.

    PubMed

    Pardo, Carlos A; Farmer, Cristan A; Thurm, Audrey; Shebl, Fatma M; Ilieva, Jorjetta; Kalra, Simran; Swedo, Susan

    2017-01-01

    The causes of autism likely involve genetic and environmental factors that influence neurobiological changes and the neurological and behavioral features of the disorder. Immune factors and inflammation are hypothesized pathogenic influences, but have not been examined longitudinally. In a cohort of 104 participants with autism, we performed an assessment of immune mediators such as cytokines, chemokines, or growth factors in serum and cerebrospinal fluid ( n  = 67) to determine potential influences of such mediators in autism. As compared with 54 typically developing controls, we found no evidence of differences in the blood profile of immune mediators supportive of active systemic inflammation mechanisms in participants with autism. Some modulators of immune function (e.g., EGF and soluble CD40 ligand) were increased in the autism group; however, no evidence of group differences in traditional markers of active inflammation (e.g., IL-6, TNFα, IL-1β) were observed in the serum. Further, within-subject stability (measured by estimated intraclass correlations) of most analytes was low, indicating that a single measurement is not a reliable prospective indicator of concentration for most analytes. Additionally, in participants with autism, there was little correspondence between the blood and CSF profiles of cytokines, chemokines, and growth factors, suggesting that peripheral markers may not optimally reflect the immune status of the central nervous system. Although the relatively high fraction of intrathecal production of selected chemokines involved in monocyte/microglia function may suggest a possible relationship with the homeostatic role of microglia, control data are needed for further interpretation of its relevance in autism. These longitudinal observations fail to provide support for the hypothesized role of disturbances in the expression of circulating cytokines and chemokines as an indicator of systemic inflammation in autism. Clinical

  16. Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex.

    PubMed

    Grabauskas, Gintautas; Zhou, Shi-Yi; Das, Sudipto; Lu, Yuanxu; Owyang, Chung; Moises, Hylan C

    2004-12-15

    Prolactin-releasing peptide (PrRP) is a recently discovered neuropeptide implicated in the central control of feeding behaviour and autonomic homeostasis. PrRP-containing neurones and PrRP receptor mRNA are found in abundance in the caudal portion of the nucleus tractus solitarius (NTS), an area which together with the dorsal motor nucleus of the vagus (DMV) comprises an integrated structure, the dorsal vagal complex (DVC) that processes visceral afferent signals from and provides parasympathetic motor innervation to the gastrointestinal tract. In this study, microinjection experiments were conducted in vivo in combination with whole-cell recording from neurones in rat medullary slices to test the hypothesis that PrRP plays a role in the central control of gastric motor function, acting within the DVC to modulate the activity of preganglionic vagal motor neurones that supply the stomach. Microinjection of PrRP (0.2 pmol (20 nl)(-1)) into the DMV at the level of the area postrema (+0.2 to +0.6 mm from the calamus scriptorius, CS) markedly stimulated gastric contractions and increased intragastric pressure (IGP). Conversely, administration of peptide into the DMV at sites caudal to the obex (0.0 to -0.3 mm from the CS) decreased IGP and reduced phasic contractions. These effects occurred without change in mean arterial pressure and were abolished by ipsilateral vagotomy, indicating mediation via a vagal-dependent mechanism(s). The pattern of gastric motor responses evoked by PrRP mimicked that produced by administration of L-glutamate at the same sites, and both the effects of L-glutamate and PrRP were abolished following local administration of NMDA and non-NMDA-type glutamate receptor antagonists. On the other hand, microinjection of PrRP into the medial or comissural nucleus of the solitary tract (mNTS and comNTS, respectively) resulted in less robust changes in IGP in a smaller percentage of animals, accompanied by marked alterations in arterial pressure

  17. Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex

    PubMed Central

    Grabauskas, Gintautas; Zhou, Shi-Yi; Das, Sudipto; Lu, Yuanxu; Owyang, Chung; Moises, Hylan C

    2004-01-01

    Prolactin-releasing peptide (PrRP) is a recently discovered neuropeptide implicated in the central control of feeding behaviour and autonomic homeostasis. PrRP-containing neurones and PrRP receptor mRNA are found in abundance in the caudal portion of the nucleus tractus solitarius (NTS), an area which together with the dorsal motor nucleus of the vagus (DMV) comprises an integrated structure, the dorsal vagal complex (DVC) that processes visceral afferent signals from and provides parasympathetic motor innervation to the gastrointestinal tract. In this study, microinjection experiments were conducted in vivo in combination with whole-cell recording from neurones in rat medullary slices to test the hypothesis that PrRP plays a role in the central control of gastric motor function, acting within the DVC to modulate the activity of preganglionic vagal motor neurones that supply the stomach. Microinjection of PrRP (0.2 pmol (20 nl)−1) into the DMV at the level of the area postrema (+0.2 to +0.6 mm from the calamus scriptorius, CS) markedly stimulated gastric contractions and increased intragastric pressure (IGP). Conversely, administration of peptide into the DMV at sites caudal to the obex (0.0 to −0.3 mm from the CS) decreased IGP and reduced phasic contractions. These effects occurred without change in mean arterial pressure and were abolished by ipsilateral vagotomy, indicating mediation via a vagal-dependent mechanism(s). The pattern of gastric motor responses evoked by PrRP mimicked that produced by administration of l-glutamate at the same sites, and both the effects of l-glutamate and PrRP were abolished following local administration of NMDA and non-NMDA-type glutamate receptor antagonists. On the other hand, microinjection of PrRP into the medial or comissural nucleus of the solitary tract (mNTS and comNTS, respectively) resulted in less robust changes in IGP in a smaller percentage of animals, accompanied by marked alterations in arterial pressure

  18. Immune-Mediated Heart Disease.

    PubMed

    Generali, Elena; Folci, Marco; Selmi, Carlo; Riboldi, Piersandro

    2017-01-01

    The heart involvement in systemic autoimmune diseases represents a growing burden for patients and health systems. Cardiac function can be impaired as a consequence of systemic conditions and manifests with threatening clinical pictures or chronic myocardial damage. Direct injuries are mediated by the presence of inflammatory infiltrate which, even though unusual, is one of the most danger manifestations requiring prompt recognition and treatment. On the other hand, a not well-managed inflammatory status leads to accelerated atherosclerosis that precipitates ischemic disease. All cardiac structures may be damaged with different grades of intensity; moreover, lesions can appear simultaneously or more frequently at a short distance from each other leading to the onset of varied clinical pictures. The pathogenesis of heart damages in systemic autoimmune conditions is not yet completely understood for the great part of situations, even if several mechanisms have been investigated. The principal biochemical circuits refer to the damaging role of autoantibodies on cardiac tissues and the precipitation of immune complexes on endocardium. These events are finally responsible of inflammatory infiltration which leads to subsequent worsening of the previous damage. For these reasons, it appears of paramount importance a regular and deepened cardiovascular assessment to prevent a progressive evolution toward heart failure in patient affected by autoimmune diseases.

  19. Euflammation attenuates peripheral inflammation-induced neuroinflammation and mitigates immune-to-brain signaling.

    PubMed

    Liu, Xiaoyu; Nemeth, Daniel P; Tarr, Andrew J; Belevych, Natalya; Syed, Zunera W; Wang, Yufen; Ismail, Ahmad S; Reed, Nathaniel S; Sheridan, John F; Yajnik, Akul R; Disabato, Damon J; Zhu, Ling; Quan, Ning

    2016-05-01

    Peripheral inflammation can trigger a number of neuroinflammatory events in the CNS, such as activation of microglia and increases of proinflammatory cytokines. We have previously identified an interesting phenomenon, termed "euflammation", which can be induced by repeated subthreshold infectious challenges. Euflammation causes innate immune alterations without overt neuroimmune activation. In the current study, we examined the protective effect of euflammation against peripheral inflammation-induced neuroinflammation and the underlying mechanisms. When Escherichia coli or lipopolysaccharide (LPS) was injected inside or outside the euflammation induction locus (EIL), sickness behavior, global microglial activation, proinflammatory cytokine production in the brain, expression of endothelial cyclooxygenase II and induction of c-fos expression in the paraventricular nucleus of the hypothalamus were all attenuated in the euflammatory mice compared with those in the control unprimed mice. Euflammation also modulated innate immunity outside the EIL by upregulating receptors for pathogen-associated molecular patterns in spleen cells. In addition, euflammation attenuated CNS activation in response to an intra-airpouch (outside the EIL) injection of LPS without suppressing the cytokine expression in the airpouch. Collectively, our study demonstrates that signaling of peripheral inflammation to the CNS is modulated dynamically by peripheral inflammatory kinetics. Specifically, euflammation can offer effective protection against both bacterial infection and endotoxin induced neuroinflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Brain Microbial Populations in HIV/AIDS: α-Proteobacteria Predominate Independent of Host Immune Status

    PubMed Central

    Branton, William G.; Ellestad, Kristofor K.; Maingat, Ferdinand; Wheatley, B. Matt; Rud, Erling; Warren, René L.; Holt, Robert A.; Surette, Michael G.; Power, Christopher

    2013-01-01

    The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1−/− mouse brains. Intracerebral implantation of human brain homogenates into RAG1−/− mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain

  1. Cell-mediated immunity in an ageing population.

    PubMed Central

    Girard, J P; Paychère, M; Cuevas, M; Fernandes, B

    1977-01-01

    Eight hundred and eighty patients hospitalized in a geriatric hospital were routinely tested with 2, 10, 30 and 100 i.u. tuberculin. Among these, fifty-four patients were selected on the basis of negative skin tests and absence of evident diseases interfering with the function of the immune apparatus. A battery of tests analysing cell-mediated immunity was applied to those fifty-four patients. It appears that elderly patients having a negative test to 100 i.u. tuberculin show very infrequent sensitization to three other thymus-dependent antigens. The capacity of this selected population to become sensitized to DNCB is poor (20%). Furthermore they exhibit a low per cent of peripheral blood T cells (36%) and a poor capacity to respond in vitro to mitogens such as PHA. Testing the in vitro response to a battery of antigens demonstrates a good correlation with the results of the skin tests. Finally the leucocytes of 25% of this selected population failed to produce LIF in vitro in the presence of PHA. These results suggest not only an absolute decrease in the population of circulating T lymphocytes in those elderly humans; but very likely, at least in some cases, a functional impairment of T cells. PMID:321161

  2. Loss of the Cyclin-Dependent Kinase Inhibitor 1 in the Context of Brachyury-Mediated Phenotypic Plasticity Drives Tumor Resistance to Immune Attack.

    PubMed

    Hamilton, Duane H; McCampbell, Kristen K; Palena, Claudia

    2018-01-01

    The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8 + T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8 + T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial-mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of

  3. Loss of the Cyclin-Dependent Kinase Inhibitor 1 in the Context of Brachyury-Mediated Phenotypic Plasticity Drives Tumor Resistance to Immune Attack

    PubMed Central

    Hamilton, Duane H.; McCampbell, Kristen K.; Palena, Claudia

    2018-01-01

    The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8+ T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8+ T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial–mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of

  4. The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases.

    PubMed

    Yin, Jinghua; Zhang, Jian; Lu, Qianjin

    2017-07-01

    Basic leucine zipper transcription factor E4BP4 (also known as NFIL3) has been implicated in the molecular and cellular mechanisms of functions and activities in mammals. The interactions between E4BP4 and major regulators of cellular processes have triggered significant interest in the roles of E4BP4 in the pathogenesis of certain chronic diseases. Indeed, novel discoveries have been emerging to illustrate the involvement of E4BP4 in multiple disorders. It is recognized that E4BP4 is extensively involved in some immune-mediated diseases, but the mechanisms of E4BP4 involvement in these complex diseases remain poorly defined. Here we review the regulatory mechanisms of E4BP4 engaging in not only the biological function but also the development of immune-mediated diseases, paving the way for future therapies. Copyright © 2017. Published by Elsevier Inc.

  5. Immune-Mediated Mechanisms of Action of Probiotics and Synbiotics in Treating Pediatric Intestinal Diseases

    PubMed Central

    Gil-Campos, Mercedes

    2018-01-01

    The pediatric population is continually at risk of developing infectious and inflammatory diseases. The treatment for infections, particularly gastrointestinal conditions, focuses on oral or intravenous rehydration, nutritional support and, in certain case, antibiotics. Over the past decade, the probiotics and synbiotics administration for the prevention and treatment of different acute and chronic infectious diseases has dramatically increased. Probiotic microorganisms are primarily used as treatments because they can stimulate changes in the intestinal microbial ecosystem and improve the immunological status of the host. The beneficial impact of probiotics is mediated by different mechanisms. These mechanisms include the probiotics’ capacity to increase the intestinal barrier function, to prevent bacterial transferation and to modulate inflammation through immune receptor cascade signaling, as well as their ability to regulate the expression of selected host intestinal genes. Nevertheless, with respect to pediatric intestinal diseases, information pertaining to these key mechanisms of action is scarce, particularly for immune-mediated mechanisms of action. In the present work, we review the biochemical and molecular mechanisms of action of probiotics and synbiotics that affect the immune system. PMID:29303974

  6. Host Immune Response to Influenza A Virus Infection.

    PubMed

    Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long

    2018-01-01

    Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  7. Ocular Immune Privilege and Ocular Melanoma: Parallel Universes or Immunological Plagiarism?

    PubMed Central

    Niederkorn, Jerry Y.

    2012-01-01

    Evidence of immune privilege in the eye was recorded almost 140 years ago, yet interest in immune privilege languished for almost a century. However, the past 35 years have witnessed a plethora of research and a rekindled interest in the mechanisms responsible for immune privilege in the anterior chamber of the eye. This research has demonstrated that multiple anatomical, structural, physiological, and immunoregulatory processes contribute to immune privilege and remind us of the enormous complexity of this phenomenon. It is widely accepted that immune privilege is an adaptation for reducing the risk of immune-mediated inflammation in organs such as the eye and brain whose tissues have a limited capacity to regenerate. Recent findings suggest that immune privilege also occurs in sites where stem cells reside and raise the possibility that immune privilege is also designed to prevent the unwitting elimination of stem cells by immune-mediated inflammation at these sites. Uveal melanoma arises within the eye and as such, benefits from ocular immune privilege. A significant body of research reveals an intriguing parallel between the mechanisms that contribute to immune privilege in the eye and those strategies used by uveal melanoma cells to evade immune elimination once they have disseminated from the eye and establish metastatic foci in the liver. Uveal melanoma metastases seem to have “plagiarized” the blueprints used for ocular immune privilege to create “ad hoc immune privileged sites” in the liver. PMID:22707951

  8. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function

    PubMed Central

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913

  9. An effector Peptide family required for Drosophila toll-mediated immunity.

    PubMed

    Clemmons, Alexa W; Lindsay, Scott A; Wasserman, Steven A

    2015-04-01

    In Drosophila melanogaster, recognition of an invading pathogen activates the Toll or Imd signaling pathway, triggering robust upregulation of innate immune effectors. Although the mechanisms of pathogen recognition and signaling are now well understood, the functions of the immune-induced transcriptome and proteome remain much less well characterized. Through bioinformatic analysis of effector gene sequences, we have defined a family of twelve genes - the Bomanins (Boms) - that are specifically induced by Toll and that encode small, secreted peptides of unknown biochemical activity. Using targeted genome engineering, we have deleted ten of the twelve Bom genes. Remarkably, inactivating these ten genes decreases survival upon microbial infection to the same extent, and with the same specificity, as does eliminating Toll pathway function. Toll signaling, however, appears unaffected. Assaying bacterial load post-infection in wild-type and mutant flies, we provide evidence that the Boms are required for resistance to, rather than tolerance of, infection. In addition, by generating and assaying a deletion of a smaller subset of the Bom genes, we find that there is overlap in Bom activity toward particular pathogens. Together, these studies deepen our understanding of Toll-mediated immunity and provide a new in vivo model for exploration of the innate immune effector repertoire.

  10. MEAL PARAMETERS AND VAGAL GASTROINTESTINAL AFFERENTS IN MICE THAT EXPERIENCED EARLY POSTNATAL OVERNUTRITION

    PubMed Central

    Biddinger, Jessica E.; Fox, Edward A.

    2010-01-01

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component - the vagus nerve - has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal-size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 hour/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. PMID:20403369

  11. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.

    PubMed

    Biddinger, Jessica E; Fox, Edward A

    2010-08-04

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component--the vagus nerve--has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 h/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. Copyright 2010 Elsevier Inc. All rights reserved.

  12. The role of water intake on cardiac vagal reactivation after upper-body resistance exercise.

    PubMed

    Teixeira, A L; Ramos, P S; Marins, J B; Ricardo, D R

    2015-03-01

    The aim of this study was to assess the hypothesis that water intake will accelerate cardiac vagal reactivation after a single session of upper-body resistance exercise. 13 healthy men (26.5±5.9 years) with previous experience in resistance training were enrolled. In visits 1 and 2, participants performed the one-repetition maximum (1RM) test and retest with the bench press exercise. The sessions 3 and 4 were performed randomly, while participants consumed 500 ml (experimental visit) or 50 ml (control visit) of water immediately after 3 sets of maximum repetitions at 80% of 1RM. Cardiac vagal activity was represented by cardiac vagal index (CVI) measured before, immediately after and 30 min post-exercise. Additionally, heart rate and blood pressure were measured. The results show that CVI was higher 30 min post-exercise when 500 ml of water was ingested compared to 50 ml (1.39±0.07 vs. 1.23±0.07; p=0.02) (mean±SEM). Heart rate and blood pressure values were similar in both trials. We conclude that water intake accelerates post-resistance exercise cardiac vagal reactivation. These findings suggest that hydration after resistance exercise might be beneficial for cardiovascular safety in healthy subjects. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Lameness associated with tarsal haemarthrosis as the sole clinical sign of idiopathic immune-mediated thrombocytopenia in a dog.

    PubMed

    Walton, M B; Mardell, E; Spoor, M; Innes, J

    2014-01-01

    A four-year-old, male Cocker Spaniel was presented for investigation of pelvic limb stiffness. There was palpable effusion of both tarsi, and analysis of synovial fluid from these joints indicated previous haemorrhage. After further investigation a diagnosis of idiopathic immune-mediated thrombocytopenia was made. The dog responded to treatment with prednisolone and azathioprine. To the authors' knowledge, this is the first reported case of confirmed haemarthrosis as the sole presenting clinical sign for canine idiopathic immune-mediated thrombocytopenia.

  14. Less Empathic and More Reactive: The Different Impact of Childhood Maltreatment on Facial Mimicry and Vagal Regulation

    PubMed Central

    Ardizzi, Martina; Umiltà, Maria Alessandra; Evangelista, Valentina; Di Liscia, Alessandra; Ravera, Roberto; Gallese, Vittorio

    2016-01-01

    Facial mimicry and vagal regulation represent two crucial physiological responses to others’ facial expressions of emotions. Facial mimicry, defined as the automatic, rapid and congruent electromyographic activation to others’ facial expressions, is implicated in empathy, emotional reciprocity and emotions recognition. Vagal regulation, quantified by the computation of Respiratory Sinus Arrhythmia (RSA), exemplifies the autonomic adaptation to contingent social cues. Although it has been demonstrated that childhood maltreatment induces alterations in the processing of the facial expression of emotions, both at an explicit and implicit level, the effects of maltreatment on children’s facial mimicry and vagal regulation in response to facial expressions of emotions remain unknown. The purpose of the present study was to fill this gap, involving 24 street-children (maltreated group) and 20 age-matched controls (control group). We recorded their spontaneous facial electromyographic activations of corrugator and zygomaticus muscles and RSA responses during the visualization of the facial expressions of anger, fear, joy and sadness. Results demonstrated a different impact of childhood maltreatment on facial mimicry and vagal regulation. Maltreated children did not show the typical positive-negative modulation of corrugator mimicry. Furthermore, when only negative facial expressions were considered, maltreated children demonstrated lower corrugator mimicry than controls. With respect to vagal regulation, whereas maltreated children manifested the expected and functional inverse correlation between RSA value at rest and RSA response to angry facial expressions, controls did not. These results describe an early and divergent functional adaptation to hostile environment of the two investigated physiological mechanisms. On the one side, maltreatment leads to the suppression of the spontaneous facial mimicry normally concurring to empathic understanding of others

  15. The role of the immune system in central nervous system plasticity after acute injury.

    PubMed

    Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Effect of endogenous tachykinins on neuro-effector transmission of vagal nerve in guinea-pig tracheal tissue.

    PubMed

    Aizawa, H; Miyazaki, N; Inoue, H; Ikeda, T; Shigematsu, N

    1990-01-01

    To elucidate the effect of endogenous tachykinins on neuro-effector transmission of vagal nerves, we performed in vitro experiments using guinea-pig tracheal smooth muscle. The subthreshold dose (the highest dose which did not induce any smooth muscle contraction) of capsaicin (10(-8) to 10(-7) M) increased the amplitudes of contractions evoked by electrical field stimulation (EFS) significantly, but not those by acetylcholine (ACh). The inhibitor of neutral endopeptidase, phosphoramidon (10(-7) to 10(-6) M), increased the contractions evoked by EFS significantly. The inhibitor of cholinesterase, physostigmine (10(-6) to 10(-5) M), induced smooth muscle contractions, but such contractions were inhibited by atropine, suggesting the spontaneous release of ACh from the vagal nerve terminals. The subthreshold dose of substance P or capsaicin increased the contractions evoked by physostigmine. These results indicated that endogenous tachykinins increase the spontaneous ACh release as well as the ACh release in response to vagal stimulation from the nerve terminals. Furthermore, it is suggested that the excitatory effects of the tachykinins on the vagal neuro-effector transmission may be modulated by neutral endopeptidase in the guinea pig.

  17. [Immune dysfunction and cognitive deficit in stress and physiological aging (Part I): Pathogenesis and risk factors].

    PubMed

    Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A

    2014-01-01

    The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets. The brain, immune and endocrine systems being the principal adaptive systems in the body permanently share information both in the form of neural impulses and soluble mediators. The CNS differs from other organs due to several peculiarities that affect local immune surveillance. The brain cells secluded from the blood flow by a specialized blood-brain-barrier (BBB) can endogenously express pro- and anti-inflammatory cytokines without the intervention of the immune system. In normal brain the cytokine signaling rather contributes to exclusive brain function (e.g. long-term potentiation, synaptic plasticity, adult neurogenesis) than serves as immune communicator. The stress of different origin increases the serum cytokine levels and disrupts BBB. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Mass intrusion of biologically active peptides having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. In addition owing to BBB disruption dendritic cells and T cells also penetrate into the brain where they take up a perivascular position. The changes observed in stressed subject may accumulate during repeated episodes of stress forming a picture typical of the aging brain. Moreover long-term stress as well as physiological aging result in hormonal and immunological disturbances including hypothalamic-pituitary-adrenal axis depletion, regulatory T-cell accumulation and dehydroepiandrosterone decrease.

  18. The effects of chronic consumption of heroin on basal and vagal electrical-stimulated gastric acid and pepsin secretion in rat.

    PubMed

    Rafsanjani, Fatemeh N; Maghouli, Fatemeh; Vahedian, Jalal; Esmaeili, Farzaneh

    2004-10-01

    vagal center, inhibition of pentagastrin induced acid secretion, inhibitory effects via central mechanisms, probably mediated by the opiate receptors. Further studies are needed to recognize the actual mechanism.

  19. Does Infection-Induced Immune Activation Contribute to Dementia?

    PubMed Central

    Barichello, Tatiana; Generoso, Jaqueline S; Goularte, Jessica A; Collodel, Allan; Pitcher, Meagan R; Simões, Lutiana R; Quevedo, João; Dal-Pizzol, Felipe

    2015-01-01

    The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells. Examples of PRR include toll-like receptors (TLR), receptors for advanced glycation endproducts (RAGE), nucleotide binding oligomerisation domain (NOD)-like receptors (NLR), c-type lectin receptors (CLR), RIG-I-like receptors (RLR), and intra-cytosolic DNA sensors. The reciprocal action between PAMP and PRR triggers the release of inflammatory mediators that regulate the elimination of invasive pathogens. Damage-associated molecular patterns (DAMP) are endogenous constituents released from damaged cells that also have the ability to activate the innate immune response. An increase of RAGE expression levels on neurons, astrocytes, microglia, and endothelial cells could be responsible for the accumulation of αβ-amyloid in dementia and related to the chronic inflammatory state that is found in neurodegenerative disorders. PMID:26425389

  20. Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus

    NASA Astrophysics Data System (ADS)

    Mougeot, Francois

    2008-02-01

    Sexual ornaments might reliably indicate the ability to cope with parasites and diseases, and a better ability to mount a primary inflammatory response to a novel challenge. Carotenoid-based ornaments are amongst the commonest sexual signals of birds and often influence mate choice. Because carotenoids are immuno-stimulants, signallers may trade-off allocating these to ornamental colouration or using them for immune responses, so carotenoid-based ornaments might be particularly useful as honest indicators of immuno-compentence. Tetraonid birds, such as the red grouse Lagopus lagopus scoticus, exhibit supra-orbital yellow red combs, a conspicuous ornament which functions in intra- and inter-sexual selection. The colour of combs is due to epidermal pigmentation by carotenoids, while their size is testosterone-dependent. In this study, I investigated whether comb characteristics, and in particular, comb colour, indicated immuno-competence in free-living male red grouse. I assessed T-cell-mediated immunity using a standardised challenge with phytohaemagglutinin. Red grouse combs reflect in the red and in the ultraviolet spectrum of light, which is not visible to humans but that grouse most likely see, so I measured comb colour across the whole bird visible spectrum (300 700 nm) using a reflectance spectrometer. I found that males with bigger and redder combs, but with less ultraviolet reflectance, had greater T-cell-mediated immune response. Comb colour predicted T-cell-mediated immune response better than comb size, indicating that the carotenoid-based colouration of this ornament might reliably signal this aspect of male quality.

  1. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota.

    PubMed

    Bauer, Paige V; Hamr, Sophie C; Duca, Frank A

    2016-02-01

    Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.

  2. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity.

    PubMed

    Albert, Isabell; Böhm, Hannah; Albert, Markus; Feiler, Christina E; Imkampe, Julia; Wallmeroth, Niklas; Brancato, Caterina; Raaymakers, Tom M; Oome, Stan; Zhang, Heqiao; Krol, Elzbieta; Grefen, Christopher; Gust, Andrea A; Chai, Jijie; Hedrich, Rainer; Van den Ackerveken, Guido; Nürnberger, Thorsten

    2015-10-05

    Plants and animals employ innate immune systems to cope with microbial infection. Pattern-triggered immunity relies on the recognition of microbe-derived patterns by pattern recognition receptors (PRRs). Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) constitute plant immunogenic patterns that are unique, as these proteins are produced by multiple prokaryotic (bacterial) and eukaryotic (fungal, oomycete) species. Here we show that the leucine-rich repeat receptor protein (LRR-RP) RLP23 binds in vivo to a conserved 20-amino-acid fragment found in most NLPs (nlp20), thereby mediating immune activation in Arabidopsis thaliana. RLP23 forms a constitutive, ligand-independent complex with the LRR receptor kinase (LRR-RK) SOBIR1 (Suppressor of Brassinosteroid insensitive 1 (BRI1)-associated kinase (BAK1)-interacting receptor kinase 1), and recruits a second LRR-RK, BAK1, into a tripartite complex upon ligand binding. Stable, ectopic expression of RLP23 in potato (Solanum tuberosum) confers nlp20 pattern recognition and enhanced immunity to destructive oomycete and fungal plant pathogens, such as Phytophthora infestans and Sclerotinia sclerotiorum. PRRs that recognize widespread microbial patterns might be particularly suited for engineering immunity in crop plants.

  3. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies

    PubMed Central

    van Kesteren, C F M G; Gremmels, H; de Witte, L D; Hol, E M; Van Gool, A R; Falkai, P G; Kahn, R S; Sommer, I E C

    2017-01-01

    Although the precise pathogenesis of schizophrenia is unknown, genetic, biomarker and imaging studies suggest involvement of the immune system. In this study, we performed a systematic review and meta-analysis of studies investigating factors related to the immune system in postmortem brains of schizophrenia patients and healthy controls. Forty-one studies were included, reporting on 783 patients and 762 controls. We divided these studies into those investigating histological alterations of cellular composition and those assessing molecular parameters; meta-analyses were performed on both categories. Our pooled estimate on cellular level showed a significant increase in the density of microglia (P=0.0028) in the brains of schizophrenia patients compared with controls, albeit with substantial heterogeneity between studies. Meta-regression on brain regions demonstrated this increase was most consistently observed in the temporal cortex. Densities of macroglia (astrocytes and oligodendrocytes) did not differ significantly between schizophrenia patients and healthy controls. The results of postmortem histology are paralleled on the molecular level, where we observed an overall increase in expression of proinflammatory genes on transcript and protein level (P=0.0052) in patients, while anti-inflammatory gene expression levels were not different between schizophrenia and controls. The results of this meta-analysis strengthen the hypothesis that components of the immune system are involved in the pathogenesis of schizophrenia. PMID:28350400

  4. A Dialogue between the Immune System and Brain, Spoken in the Language of Serotonin

    PubMed Central

    2012-01-01

    Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity

  5. Peripheral Tumor Necrosis Factor-Alpha (TNF-α) Modulates Amyloid Pathology by Regulating Blood-Derived Immune Cells and Glial Response in the Brain of AD/TNF Transgenic Mice.

    PubMed

    Paouri, Evi; Tzara, Ourania; Kartalou, Georgia-Ioanna; Zenelak, Sofia; Georgopoulos, Spiros

    2017-05-17

    Increasing evidence has suggested that systemic inflammation along with local brain inflammation can play a significant role in Alzheimer's disease (AD) pathogenesis. Identifying key molecules that regulate the crosstalk between the immune and the CNS can provide potential therapeutic targets. TNF-α is a proinflammatory cytokine implicated in the pathogenesis of systemic inflammatory and neurodegenerative diseases, such as rheumatoid arthritis (RA) and AD. Recent studies have reported that anti-TNF-α therapy or RA itself can modulate AD pathology, although the underlying mechanism is unclear. To investigate the role of peripheral TNF-α as a mediator of RA in the pathogenesis of AD, we generated double-transgenic 5XFAD/Tg197 AD/TNF mice that develop amyloid deposits and inflammatory arthritis induced by human TNF-α (huTNF-α) expression. We found that 5XFAD/Tg197 mice display decreased amyloid deposition, compromised neuronal integrity, and robust brain inflammation characterized by extensive gliosis and elevated blood-derived immune cell populations, including phagocytic macrophages and microglia. To evaluate the contribution of peripheral huTNF-α in the observed brain phenotype, we treated 5XFAD/Tg197 mice systemically with infliximab, an anti-huTNF-α antibody that does not penetrate the blood-brain barrier and prevents arthritis. Peripheral inhibition of huTNF-α increases amyloid deposition, rescues neuronal impairment, and suppresses gliosis and recruitment of blood-derived immune cells, without affecting brain huTNF-α levels. Our data report, for the first time, a distinctive role for peripheral TNF-α in the modulation of the amyloid phenotype in mice by regulating blood-derived and local brain inflammatory cell populations involved in β-amyloid clearance. SIGNIFICANCE STATEMENT Mounting evidence supports the active involvement of systemic inflammation, in addition to local brain inflammation, in Alzheimer's disease (AD) progression. TNF-α is a

  6. Peripheral functional organisation of vagally evoked gastric motor responses in the ferret.

    PubMed Central

    Andrews, P L; Lawes, I N; Bower, A J

    1980-01-01

    The aims of the present study were to determine the relative amplitudes of intragastric motor responses evoked by different vagal branches and to establish whether the effects of acute or chronic vagotomy could be predicted from these data. Intragastric pressure responses to electrical stimulation of the vagus were measured in urethane-anaesthetised ferrets and acute or chronic vagotomies were performed. The results show that the left and right cervical vagi were equipotential and fully overlaped each other. Their contributions to the dorsal trunk were equipotential and fully overlapping and so were their contributions to the ventral trunk. The dorsal trunk was more effective than the ventral trunk and there was total functional overlap between these two trunks. Vagal evoked gastric motor responses of the ferret are apparently organised in a different way from vagally induced acid secretion or hormone release in the cat. Acute removal of a trunk led to a reduction in evoked responses that was not linear function of the effect of stimulation of that trunk. In contrast, chronic removal caused a relative increase in evoked responses that ws inversely related to the decrease caused by acute removal. The implications of total functional overlap and neuromuscular reorganisation after chronic vagotomy are discussed. PMID:7439800

  7. Vagal innervation of the hepatic portal vein and liver is not necessary for Roux-en-Y gastric bypass surgery-induced hypophagia, weight loss, and hypermetabolism.

    PubMed

    Shin, Andrew C; Zheng, Huiyuan; Berthoud, Hans-Rudolf

    2012-02-01

    To determine the role of the common hepatic branch of the abdominal vagus on the beneficial effects of Roux-en-Y gastric bypass (RYGB) on weight loss, food intake, food choice, and energy expenditure in a rat model. Although changes in gut hormone patterns are the leading candidates in RYGB's effects on appetite, weight loss, and reversal of diabetes, a potential role for afferent signaling through the vagal hepatic branch potentially sensing glucose levels in the hepatic portal vein has recently been suggested in a mouse model of RYGB. Male Sprague-Dawley rats underwent either RYGB alone (RYGB; n = 7), RYGB + common hepatic branch vagotomy (RYGB + HV; n = 6), or sham procedure (sham; n = 9). Body weight, body composition, meal patterns, food choice, energy expenditure, and fecal energy loss were monitored up to 3 months after intervention. Both RYGB and RYGB + HV significantly reduced body weight, adiposity, meal size, and fat preference, and increased satiety, energy expenditure, and respiratory exchange rate compared with sham procedure, and there were no significant differences in these effects between RYGB and RYGB + HV rats. Integrity of vagal nerve supply to the liver, hepatic portal vein, and the proximal duodenum provided by the common hepatic branch is not necessary for RYGB to reduce food intake and body weight or increase energy expenditure. Specifically, it is unlikely that a hepatic portal vein glucose sensor signaling RYGB-induced increased intestinal gluconeogenesis to the brain depends on vagal afferent fibers.

  8. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.

    PubMed

    Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon

    2018-03-01

    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10 9 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.

  9. Age-specific associations between cardiac vagal activity and functional somatic symptoms: a population-based study.

    PubMed

    Tak, Lineke M; Janssens, Karin A M; Dietrich, Andrea; Slaets, Joris P J; Rosmalen, Judith G M

    2010-01-01

    Functional somatic symptoms (FSS) are symptoms not explained by underlying organic pathology. It has frequently been suggested that dysfunction of the autonomic nervous system (ANS) contributes to the development of FSS. We hypothesized that decreased cardiac vagal activity is cross-sectionally and prospectively associated with the number of FSS in the general population. This study was performed in a population-based cohort of 774 adults (45.1% male, mean age +/- SD 53.5 +/- 10.7 years). Participants completed the somatization section of the Composite International Diagnostic Interview surveying the presence of 43 FSS. ANS function was assessed by spectral analysis of heart rate variability in the high-frequency band (HRV-HF), reflecting cardiac vagal activity. Follow-up measurements of HRV-HF and FSS were performed approximately 2 years later. Linear regression analyses, with adjustments for gender, age, body mass index, anxiety, depression, smoking, alcohol use, and frequency of exercise, revealed an interaction of cardiac vagal activity with age: HRV-HF was negatively associated with FSS in adults 52 years (beta = 0.13, t = 2.51, p = 0.012). Longitudinal analysis demonstrated a similar pattern. Decreased cardiac vagal activity is associated with a higher number of FSS in adults aged vagal activity and FSS in adults aged >52 years needs further exploration. The role of age should be acknowledged in future studies on ANS function in the etiology of FSS. (c) 2010 S. Karger AG, Basel.

  10. The Human Papillomavirus E6 Oncoprotein Targets USP15 and TRIM25 To Suppress RIG-I-Mediated Innate Immune Signaling.

    PubMed

    Chiang, Cindy; Pauli, Eva-Katharina; Biryukov, Jennifer; Feister, Katharina F; Meng, Melissa; White, Elizabeth A; Münger, Karl; Howley, Peter M; Meyers, Craig; Gack, Michaela U

    2018-03-15

    Retinoic acid-inducible gene I (RIG-I) is a key pattern recognition receptor that senses viral RNA and interacts with the mitochondrial adaptor MAVS, triggering a signaling cascade that results in the production of type I interferons (IFNs). This signaling axis is initiated by K63-linked ubiquitination of RIG-I mediated by the E3 ubiquitin ligase TRIM25, which promotes the interaction of RIG-I with MAVS. USP15 was recently identified as an upstream regulator of TRIM25, stabilizing the enzyme through removal of degradative K48-linked polyubiquitin, ultimately promoting RIG-I-dependent cytokine responses. Here, we show that the E6 oncoprotein of human papillomavirus type 16 (HPV16) as well as of other HPV types form a complex with TRIM25 and USP15 in human cells. In the presence of E6, the K48-linked ubiquitination of TRIM25 was markedly increased, and in line with this, TRIM25 degradation was enhanced. Our results further showed that E6 inhibited the TRIM25-mediated K63-linked ubiquitination of RIG-I and its CARD-dependent interaction with MAVS. HPV16 E6, but not E7, suppressed the RIG-I-mediated induction of IFN-β, chemokines, and IFN-stimulated genes (ISGs). Finally, CRISPR-Cas9 gene targeting in human keratinocytes showed that the TRIM25-RIG-I-MAVS triad is important for eliciting an antiviral immune response to HPV16 infection. Our study thus identifies a novel immune escape mechanism that is conserved among different HPV strains and further indicates that the RIG-I signaling pathway plays an important role in the innate immune response to HPV infection. IMPORTANCE Persistent infection and tumorigenesis by HPVs are known to require viral manipulation of a variety of cellular processes, including those involved in innate immune responses. Here, we show that the HPV E6 oncoprotein antagonizes the activation of the cytoplasmic innate immune sensor RIG-I by targeting its upstream regulatory enzymes TRIM25 and USP15. We further show that the RIG-I signaling cascade

  11. Resection of cervical vagal schwannoma via a post-auricular approach.

    PubMed

    Roh, Jong-Lyel

    2006-03-01

    Cervical vagal schwannomas are extremely rare and gross total resection is the standard treatment modality. However, because the conventional cervical approach leaves an incision scar in a visible area, other approaches need to be developed for young women who want the postoperative scar to be invisible. A 28-year-old female underwent complete resection of a 4x4 cm tumor in her right upper neck via a post-auricular approach using an inverted V-shaped incision along the post-auricular sulcus and hairline. The tumor was a schwannoma originating from the right cervical vagus nerve. Postoperatively, right vocal cord paralysis developed despite careful dissection but completely recovered within 6 months after surgery. The patient was satisfied with an invisible external scar which was hidden by her auricle and hair. A cervical vagal schwannoma can be successfully removed by making an incision in a potentially invisible area.

  12. Assessment of humoral and cell-mediated immune response to measles-mumps-rubella vaccine viruses among patients with asthma.

    PubMed

    Yoo, Kwang Ha; Agarwal, Kanishtha; Butterfield, Michael; Jacobson, Robert M; Poland, Gregory A; Juhn, Young J

    2010-01-01

    Little is known about the influence of asthma status on humoral and cell-mediated immune responses to measles-mumps-rubella (MMR) vaccine viruses. We compared the virus-specific IgG levels and lymphoproliferative response of peripheral blood mononuclear cells to MMR vaccine viruses between asthmatic and nonasthmatic patients. The study subjects included 342 healthy children aged 12-18 years who had received two doses of the MMR vaccine. We ascertained asthma status by applying predetermined criteria. Of the 342 subjects, 230 were available for this study of whom 25 were definite asthmatic patients (10.9%) and the rest of subjects were nonasthmatic patients. The mean of the log-transformed lymphoproliferative responses between definite asthma and nonasthma who had a family history of asthma were for measles, 0.92 ± 0.31 versus 1.54 ± 0.17 (p = 0.125); for mumps, 0.98 ± 0.64 versus 2.20 ± 0.21 (p = 0.035); and for rubella, 0.12 ± 0.37 versus 0.97 ± 0.16 (p = 0.008), respectively, adjusting for the duration between the first MMR vaccination and determination of the immune responses. There were no such differences among children without a family history of asthma. MMR virus-specific IgG levels were not different between study subjects with or without asthma. The study findings suggest asthmatic patients may have a suboptimal cell-mediated immune response to MMR vaccine viruses and a family history of asthma modifies this effect.

  13. Evaluation of humoral and cell-mediated inducible immunity to Haemophilus ducreyi in an animal model of chancroid.

    PubMed Central

    Desjardins, M; Filion, L G; Robertson, S; Kobylinski, L; Cameron, D W

    1996-01-01

    To study the mechanisms of inducible immunity to Haemophilus ducreyi infection in the temperature-dependent rabbit model of chancroid, we conducted passive immunization experiments and characterized the inflammatory infiltrate of chancroidal lesions. Polyclonal immunoglobulin G was purified from immune sera raised against H. ducreyi 35000 whole-cell lysate or a pilus preparation and from naive control rabbits. Rabbits were passively immunized with 24 or 48 mg of purified polyclonal immunoglobulin G intravenously, followed 24 h after infusion by homologous titered infectious challenge. Despite titratable antibody, no significant difference in infection or disease was observed. We then evaluated the immunohistology of lesions produced by homologous-strain challenge in sham-immunized rabbits and those protectively vaccinated by pilus preparation immunization. Immunohistochemical stains for CD5 and CD4 T-lymphocyte markers were performed on lesion sections 4, 10, 15, and 21 days from infection. Lesions of pilus preparation vaccinees compared with those of controls had earlier infiltration with significantly more T lymphocytes (CD5+) and with a greater proportion of CD4+ T lymphocytes at day 4 (33% +/- 55% versus 9.7% +/- 2%; P = 0.002), corroborating earlier sterilization (5.0 +/- 2 versus 13.7 +/- 0.71 days; P < 0.001) and lesion resolution. Intraepithelial challenge of pilus-vaccinated rabbits with 100 micrograms of the pilus preparation alone produced indurated lesions within 48 h with lymphoid and plasmacytoid infiltration, edema, and extravasation of erythrocytes. We conclude that passive immunization may not confer a vaccine effect in this model and that active vaccination with a pilus preparation induces a delayed-type hypersensitivity skin test response and confers protection through cell-mediated immunity seen as an amplified lymphocytic infiltrate and accelerated maturation of the T-lymphocyte response. PMID:8613391

  14. Functional Motifs Responsible for Human Metapneumovirus M2-2-mediated Innate Immune Evasion

    PubMed Central

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J.; Wood, Thomas G.; Bao, Xiaoyong

    2016-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. PMID:27743962

  15. Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration

    PubMed Central

    Sankowski, Roman; Mader, Simone; Valdés-Ferrer, Sergio Iván

    2015-01-01

    The nervous and immune systems have evolved in parallel from the early bilaterians, in which innate immunity and a central nervous system (CNS) coexisted for the first time, to jawed vertebrates and the appearance of adaptive immunity. The CNS feeds from, and integrates efferent signals in response to, somatic and autonomic sensory information. The CNS receives input also from the periphery about inflammation and infection. Cytokines, chemokines, and damage-associated soluble mediators of systemic inflammation can also gain access to the CNS via blood flow. In response to systemic inflammation, those soluble mediators can access directly through the circumventricular organs, as well as open the blood–brain barrier. The resulting translocation of inflammatory mediators can interfere with neuronal and glial well-being, leading to a break of balance in brain homeostasis. This in turn results in cognitive and behavioral manifestations commonly present during acute infections – including anorexia, malaise, depression, and decreased physical activity – collectively known as the sickness behavior (SB). While SB manifestations are transient and self-limited, under states of persistent systemic inflammatory response the cognitive and behavioral changes can become permanent. For example, cognitive decline is almost universal in sepsis survivors, and a common finding in patients with systemic lupus erythematosus. Here, we review recent genetic evidence suggesting an association between neurodegenerative disorders and persistent immune activation; clinical and experimental evidence indicating previously unidentified immune-mediated pathways of neurodegeneration; and novel immunomodulatory targets and their potential relevance for neurodegenerative disorders. PMID:25698933

  16. The perioperative period and promotion of cancer metastasis: New outlooks on mediating mechanisms and immune involvement

    PubMed Central

    Neeman, Elad; Ben-Eliyahu, Shamgar

    2012-01-01

    Surgery for the removal of a primary tumor presents an opportunity to eradicate cancer or arrest its progression, but is also believed to promote the outbreak of pre-existing micrometastases and the initiation of new metastases. These deleterious effects of surgery are mediated through various mechanisms, including psychological and physiological neuroendocrine and paracrine stress responses elicited by surgery. In this review we (i) describe the many risk factors that arise during the perioperative period, acting synergistically to make this short timeframe critical for determining long-term cancer recurrence, (ii) present newly identified potent immunocyte populations that can destroy autologous tumor cells that were traditionally considered immune-resistant, thus invigorating the notion of immune-surveillance against cancer metastasis, (iii) describe in vivo evidence in cancer patients that support a role for anti-cancer immunity, (iv) indicate neuroendocrine and paracrine mediating mechanisms of stress- and surgery-induced promotion of cancer progression, focusing on the prominent role of catecholamines and prostaglandins through their impact on anti-cancer immunity, and through direct effects on the malignant tissue and its surrounding, (v) discuss the impact of different anesthetic approaches and other intra-operative procedures on immunity and cancer progression, and (vi) suggest prophylactic measures against the immunosuppressive and cancer promoting effects of surgery. PMID:22504092

  17. Cellular mechanisms of estradiol-mediated sexual differentiation of the brain.

    PubMed

    Wright, Christopher L; Schwarz, Jaclyn S; Dean, Shannon L; McCarthy, Margaret M

    2010-09-01

    Gonadal steroids organize the developing brain during a perinatal sensitive period and have enduring consequences for adult behavior. In male rodents testicular androgens are aromatized in neurons to estrogens and initiate multiple distinct cellular processes that ultimately determine the masculine phenotype. Within specific brain regions, overall cell number and dendritic morphology are the principal targets for hormonal organization. Recent advances have been made in elucidating the cellular mechanisms by which the neurological underpinnings of sexually dimorphic physiology and behavior are determined. These include estradiol-mediated prostaglandin synthesis, presynaptic release of glutamate, postsynaptic changes in glutamate receptors and changes in cell adhesion molecules. Sex differences in cell death are mediated by hormonal modulation of survival and death factors such as TNFalpha and Bcl-2/BAX. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. PD-1 immune checkpoint blockade promotes brain leukocyte infiltration and diminishes cyst burden in a mouse model of Toxoplasma infection.

    PubMed

    Xiao, Jianchun; Li, Ye; Yolken, Robert H; Viscidi, Raphael P

    2018-06-15

    Tissue cysts, the hallmark of chronic Toxoplasma gondii infection, are predominantly located in the brain making clearance of the parasite difficult. Currently available anti-T. gondii drugs are ineffective on cysts and fail to prevent reactivation of latent toxoplasmosis. We examined whether abrogation of inhibitory signaling pathways that maintain T cells in an exhausted state can be exploited for treating T. gondii tissue cysts. By using a mouse model of chronic toxoplasmosis, we showed immune checkpoint blockade directed against the programmed death-1 (PD-1) pathway results in a significant reduction in brain cyst number (77% lower). We showed leukocyte infiltration (CD3+ T cells, CD8+ T cells, and CD11b + cells) in the leptomeninges, choroid plexus, and subependymal tissue, which are known routes of entry of immune cells into the brain, and in proximal brain parenchyma. Our study provides proof of concept for blockade of immune checkpoint inhibitors as a therapy for chronic toxoplasmosis and potentially for other brain pathogens. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Effect of vagotomy and vagal cooling on bronchoconstrictor response to substance P in sheep.

    PubMed

    Corcoran, B M; Haigh, A L

    1995-10-01

    The bronchoconstrictor effect of intravenous substance P can be antagonised by atropine pre-treatment in several species, and we have previously reported this finding in anaesthetised sheep. In the present study, we have assessed the effect of cooling the right vagus after sectioning the left vagus (n = 6), and bilateral vagotomy (n = 7) on the bronchoconstrictor response to a single intravenous dose of substance P (SP) (0.3-1.0 mumol/kg) in anaesthetized female sheep aged 6 to 12 months. Respiratory parameters including tidal volume, flow and transpulmonary pressure pressure were measured, from which pulmonary resistance (RL; cmH2O.1(-1).s) and dynamic compliance (CDyn; ml.cmH2O(-1) were calculated. Systemic arterial pressures were also measured. Vagal cooling significantly attenuated the bronchoconstrictor response to SP at 7 degrees C (RL P < 0.01; Cdyn P < 0.001). A further reduction in the response to SP occurred at 3 degrees C, but this was not statistically significantly different from the response at 7 degrees C. Vagotomy abolished the response to SP. SP caused mild, but statistically insignificant, hypotension (119.7 vs. 107.7 mmHg). These results suggest SP causes bronchoconstriction in the anaesthetised sheep by vagal reflex mechanisms, involving stimulation of myelinated nerve fibre endings.

  20. Sex differences in the associations between vagal reactivity and oppositional defiant disorder symptoms.

    PubMed

    Vidal-Ribas, Pablo; Pickles, Andrew; Tibu, Florin; Sharp, Helen; Hill, Jonathan

    2017-09-01

    Vagal reactivity to stress in children has been associated with future psychiatric outcomes. However, results have been mixed possibly because these effects are in opposite direction in boys and girls. These sex differences are relevant in the context of development of psychopathology, whereby the rates of psychiatric disorders differ by sex. In this study, we aimed to examine the association between vagal reactivity, assessed as a reduction in respiratory sinus arrhythmia (RSA) in response to a challenge, and the development of future oppositional defiant disorder (ODD) symptoms in boys and girls. In addition, we examine the specific associations with ODD symptom dimensions, named irritability and headstrong. We hypothesized that increased vagal reactivity was associated with increased ODD symptoms in girls and a reduction in ODD symptoms in boys. Participants were members of the Wirral Child Health and Development Study, a prospective epidemiological longitudinal study of 1,233 first-time mothers recruited at 20 weeks' gestation. RSA during four nonstressful and one stressful (still-face) procedures was assessed when children were aged 29 weeks in a sample stratified by adversity (n = 270). Maternal reports of ODD symptoms were collected when children were 2.5 years old (n = 253), 3.5 years old (n = 826), and 5 years old (n = 770). Structural equation modeling (SEM) was employed to test our hypotheses. There was a significant sex difference in the prediction of ODD symptoms due to the opposite directionality in which increasing vagal reactivity was associated with an increase in ODD symptoms in girls and a reduction of ODD symptoms in boys. This Sex by Vagal reactivity interaction was common for both ODD dimensions, with no sex by dimension-specific associations. Physiological reactivity to a stressful situation predicts differently ODD symptoms in boys and girls very early in life, with no difference across irritability and headstrong components

  1. Drug-Induced Alterations of Endocannabinoid-Mediated Plasticity in Brain Reward Regions.

    PubMed

    Zlebnik, Natalie E; Cheer, Joseph F

    2016-10-05

    The endocannabinoid (eCB) system has emerged as one of the most important mediators of physiological and pathological reward-related synaptic plasticity. eCBs are retrograde messengers that provide feedback inhibition, resulting in the suppression of neurotransmitter release at both excitatory and inhibitory synapses, and they serve a critical role in the spatiotemporal regulation of both short- and long-term synaptic plasticity that supports adaptive learning of reward-motivated behaviors. However, mechanisms of eCB-mediated synaptic plasticity in reward areas of the brain are impaired following exposure to drugs of abuse. Because of this, it is theorized that maladaptive eCB signaling may contribute to the development and maintenance of addiction-related behavior. Here we review various forms of eCB-mediated synaptic plasticity present in regions of the brain involved in reward and reinforcement and explore the potential physiological relevance of maladaptive eCB signaling to addiction vulnerability. Copyright © 2016 the authors 0270-6474/16/3610230-09$15.00/0.

  2. Trichostatin A Sensitizes Hepatocellular Carcinoma Cells to Enhanced NK Cell-mediated Killing by Regulating Immune-related Genes.

    PubMed

    Shin, Sangsu; Kim, Miok; Lee, Seon-Jin; Park, Kang-Seo; Lee, Chang Hoon

    2017-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The ability of HCC to avoid immune detection is considered one of the main factors making it difficult to cure. Abnormal histone deacetylation is thought to be one of the mechanisms for HCC immune escape, making histone deacetylases (HDACs) attractive targets for HCC treatment. Here, we investigated the effect of trichostatin A (TSA), a highly potent HDAC inhibitor, on HCC (HepG2) gene expression and function. A genome wide-transcriptional microarray was used to identify genes regulated by TSA in HepG2 cells. Gene Ontology was used to identify pathways regulated by TSA, and these changes were confirmed by qPCR. The effect of TSA on natural killer (NK) cell-mediated killing of HCC cell lines were analyzed by both flow cytometry and LDH cytotoxicity assay. A study was also conducted in a Balb/c nude mice xenograft model to assess the anti-tumor activity of TSA. TSA regulated the transcription of numerous innate immunity & tumor antigen recognition-associated genes, such as ULBP1 and RAET1G, in HCC cells. In vivo, TSA reduced tumor cell growth in an NK cell-dependent manner. In vitro, TSA treatment of HepG2 cells rendered them more susceptible to NK cell-mediated killing while increasing the expression of NKGD2 ligands, including ULBP1/2/3 and MICA/B. TSA also induced direct killing of HCC cells by stimulating apoptosis. TSA likely increases killing of HCC cells indirectly by increasing NK cell-directed killing and directly by increasing apoptosis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Trichostatin A Sensitizes Hepatocellular Carcinoma Cells to Enhanced NK Cell-mediated Killing by Regulating Immune-related Genes

    PubMed Central

    SHIN, SANGSU; KIM, MIOK; LEE, SEON-JIN; PARK, KANG-SEO

    2017-01-01

    Background/Aim: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The ability of HCC to avoid immune detection is considered one of the main factors making it difficult to cure. Abnormal histone deacetylation is thought to be one of the mechanisms for HCC immune escape, making histone deacetylases (HDACs) attractive targets for HCC treatment. Here, we investigated the effect of trichostatin A (TSA), a highly potent HDAC inhibitor, on HCC (HepG2) gene expression and function. Materials and Methods: A genome wide-transcriptional microarray was used to identify genes regulated by TSA in HepG2 cells. Gene Ontology was used to identify pathways regulated by TSA, and these changes were confirmed by qPCR. The effect of TSA on natural killer (NK) cell-mediated killing of HCC cell lines were analyzed by both flow cytometry and LDH cytotoxicity assay. A study was also conducted in a Balb/c nude mice xenograft model to assess the anti-tumor activity of TSA. Results: TSA regulated the transcription of numerous innate immunity & tumor antigen recognition-associated genes, such as ULBP1 and RAET1G, in HCC cells. In vivo, TSA reduced tumor cell growth in an NK cell-dependent manner. In vitro, TSA treatment of HepG2 cells rendered them more susceptible to NK cell-mediated killing while increasing the expression of NKGD2 ligands, including ULBP1/2/3 and MICA/B. TSA also induced direct killing of HCC cells by stimulating apoptosis. Conclusion: TSA likely increases killing of HCC cells indirectly by increasing NK cell-directed killing and directly by increasing apoptosis. PMID:28871002

  4. Immunity: plants as effective mediators.

    PubMed

    Sultan, M Tauseef; Butt, Masood Sadiq; Qayyum, Mir M Nasir; Suleria, Hafiz Ansar Rasul

    2014-01-01

    In the domain of nutrition, exploring the diet-health linkages is major area of research. The outcomes of such interventions led to widespread acceptance of functional and nutraceutical foods; however, augmenting immunity is a major concern of dietary regimens. Indeed, the immune system is incredible arrangement of specific organs and cells that enabled humans to carry out defense against undesired responses. Its proper functionality is essential to maintain the body homeostasis. Array of plants and their components hold immunomodulating properties. Their possible inclusion in diets could explore new therapeutic avenues to enhanced immunity against diseases. The review intended to highlight the importance of garlic (Allium sativum), green tea (Camellia sinensis), ginger (Zingiber officinale), purple coneflower (Echinacea), black cumin (Nigella sativa), licorice (Glycyrrhiza glabra), Astragalus and St. John's wort (Hypericum perforatum) as natural immune boosters. These plants are bestowed with functional ingredients that may provide protection against various menaces. Modes of their actions include boosting and functioning of immune system, activation and suppression of immune specialized cells, interfering in several pathways that eventually led to improvement in immune responses and defense system. In addition, some of these plants carry free radical scavenging and anti-inflammatory activities that are helpful against cancer insurgence. Nevertheless, interaction between drugs and herbs/botanicals should be well investigated before recommended for their safe use, and such information must be disseminated to the allied stakeholders.

  5. The central nucleus of the amygdala modulates gut-related neurons in the dorsal vagal complex in rats

    PubMed Central

    Zhang, Xueguo; Cui, Jinjuan; Tan, Zhenjun; Jiang, Chunhui; Fogel, Ronald

    2003-01-01

    Using retrograde tract-tracing and electrophysiological methods, we characterized the anatomical and functional relationship between the central nucleus of the amygdala and the dorsal vagal complex. Retrograde tract-tracing techniques revealed that the central nucleus of the amygdala projects to the dorsal vagal complex with a topographic distribution. Following injection of retrograde tracer into the vagal complex, retrogradely labelled neurons in the central nucleus of the amygdala were clustered in the central portion at the rostral level and in the medial part at the middle level of the nucleus. Few labelled neurons were seen at the caudal level. Electrical stimulation of the central nucleus of the amygdala altered the basal firing rates of 65 % of gut-related neurons in the nucleus of the solitary tract and in the dorsal motor nucleus of the vagus. Eighty-one percent of the neurons in the nucleus of the solitary tract and 47 % of the neurons in the dorsal motor nucleus were inhibited. Electrical stimulation of the central nucleus of the amygdala also modulated the response of neurons in the dorsal vagal complex to gastrointestinal stimuli. The predominant effect on the neurons of the nucleus of the solitary tract was inhibition. These results suggest that the central nucleus of the amygdala influences gut-related neurons in the dorsal vagal complex and provides a neuronal circuitry that explains the regulation of gastrointestinal activity by the amygdala. PMID:14555729

  6. T-cell- and macrophage-mediated axon damage in the absence of a CNS-specific immune response: involvement of metalloproteinases.

    PubMed

    Newman, T A; Woolley, S T; Hughes, P M; Sibson, N R; Anthony, D C; Perry, V H

    2001-11-01

    Recent evidence has highlighted the fact that axon injury is an important component of multiple sclerosis pathology. The issue of whether a CNS antigen-specific immune response is required to produce axon injury remains unresolved. We investigated the extent and time course of axon injury in a rodent model of a delayed-type hypersensitivity (DTH) reaction directed against the mycobacterium bacille Calmette-Guérin (BCG). Using MRI, we determined whether the ongoing axon injury is restricted to the period during which the blood-brain barrier is compromised. DTH lesions were initiated in adult rats by intracerebral injection of heat-killed BCG followed by a peripheral challenge with BCG. Our findings demonstrate that a DTH reaction to a non-CNS antigen within a CNS white matter tract leads to axon injury. Ongoing axon injury persisted throughout the 3-month period studied and was not restricted to the period of blood-brain barrier breakdown, as detected by MRI enhancing lesions. We have previously demonstrated that matrix metalloproteinases (MMPs) are upregulated in multiple sclerosis plaques and DTH lesions. In this study we demonstrated that microinjection of activated MMPs into the cortical white matter results in axon injury. Our results show that axon injury, possibly mediated by MMPs, is immunologically non-specific and may continue behind an intact blood-brain barrier.

  7. Hypothesis: Leukocyte Endogenous Mediator/Endogenous Pyrogen/Lymphocyte-Activating Factor Modulates the Development of Nonspecific and Specific Immunity and Affects Nutritional Status

    DTIC Science & Technology

    1982-04-01

    Hypothesis: leukocyte endogenous mediator/ endogenous pyrogen /lymphocyte-activating factor modulates the development of nonspecific and specific... endogenous pyrogen /lympho- NI cyte-activating factor (LEM/EP/LAF) integrates the host’s nonspecific and specific immune responses to infection by...mediator/ endogenous pyrogen /lymphocyte-activating factor, nonspecific and specific immunity, infection, metabolism, nutrition. Introduction LAF which lead

  8. Effect of vagal stimulation on gastric mucosal barrier in albino rats.

    PubMed

    Somasundaram, K; Ganguly, A K

    1987-01-01

    To study the influence of vagus nerves on gastric mucosal barrier in albino rats, gastric adherent mucus and mucosal epithelial neutral glycoproteins were quantitatively assessed after vagal stimulation at the cardio-esophageal region by a specially designed circular electrode. Gastric adherent mucus and epithelial mucus were studied from oxyntic and pyloric gland areas by Alcian blue binding and periodic acid Schiff's (PAS) staining method respectively. The results when compared with sham operated control animals showed increase in the visible mucus concurrent with decrease in PAS positive materials. The stimulation at the cardio-esophageal region of vagotomized animals did not produce these effects. This study indicates that in an acute condition, increased vagal influence is important in increasing mucus secretion and strengthening the first line of defence of the mucosal barrier.

  9. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrP(C)), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution.

    PubMed

    Calderón-Garcidueñas, Lilian; Cross, Janet V; Franco-Lira, Maricela; Aragón-Flores, Mariana; Kavanaugh, Michael; Torres-Jardón, Ricardo; Chao, Chih-Kai; Thompson, Charles; Chang, Jing; Zhu, Hongtu; D'Angiulli, Amedeo

    2013-01-01

    Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson's diseases. A complex modulation of serum cytokines and chemokines influences children's brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology) and Cellular prion protein (PrP(C)) in normal cerebro-spinal-fluid (CSF) of urban children with high vs. low air pollution exposures. PrP(C) and macrophage inhibitory factor (MIF) were also measured in serum. Samples from 139 children ages 11.91 ± 4.2 years were measured. Highly exposed children exhibited significant increases in CSF MIF (p = 0.002), IL6 (p = 0.006), IL1ra (p = 0.014), IL-2 (p = 0.04), and PrP(C) (p = 0.039) vs. controls. MIF serum concentrations were higher in exposed children (p = 0.009). Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrP(C) compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain / immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public

  10. CD8+ T Cells Primed in the Periphery Provide Time-Bound Immune-Surveillance to the Central Nervous System

    PubMed Central

    Young, Kevin G.; MacLean, Susanne; Dudani, Renu; Krishnan, Lakshmi; Sad, Subash

    2016-01-01

    After vaccination, memory CD8+ T cells migrate to different organs to mediate immune surveillance. In most nonlymphoid organs, following an infection, CD8+ T cells differentiate to become long-lived effector-memory cells, thereby providing long-term protection against a secondary infection. In this study, we demonstrated that Ag-specific CD8+ T cells that migrate to the mouse brain following a systemic Listeria infection do not display markers reminiscent of long-term memory cells. In contrast to spleen and other nonlymphoid organs, none of the CD8+ T cells in the brain reverted to a memory phenotype, and all of the cells were gradually eliminated. These nonmemory phenotype CD8+ T cells were found primarily within the choroid plexus, as well as in the cerebrospinal fluid-filled spaces. Entry of these CD8+ T cells into the brain was governed primarily by CD49d/VCAM-1, with the majority of entry occurring in the first week postinfection. When CD8+ T cells were injected directly into the brain parenchyma, cells that remained in the brain retained a highly activated (CD69hi) phenotype and were gradually lost, whereas those that migrated out to the spleen were CD69low and persisted long-term. These results revealed a mechanism of time-bound immune surveillance to the brain by CD8+ T cells that do not reside in the parenchyma. PMID:21715683

  11. Plasma Kallikrein-Kinin system mediates immune-mediated renal injury in trichloroethylene-sensitized mice.

    PubMed

    Wang, Hui; Zhang, Jia-Xiang; Ye, Liang-Ping; Li, Shu-Long; Wang, Feng; Zha, Wan-Sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-Xing

    2016-07-01

    Trichloroethylene (TCE) is a major environmental pollutant. An immunological response is a newly-recognized mechanism for TCE-induced kidney damage. However, the role of the plasma kallikrein-kinin system (KKS) in immune-mediated kidney injury has never been examined. This study aimed to explore the role of the key components of the KKS, i.e. plasma kallikrein (PK), bradykinin (BK) and its receptors B1R and B2R, in TCE-induced kidney injury. A mouse model of skin sensitization was used to explore the mechanism of injury with or without a PK inhibitor PKSI. Kidney function was evaluated by measuring blood urea nitrogen (BUN) and creatinine (Cr) in conjunction with histopathologic characterization. Plasma BK was determined by ELISA; Renal C5b-9 membrane attack complex was evaluated by immunohistochemistry. Expression of BK and PK in the kidney was detected by immunofluorescence. mRNA and protein levels of B1R and B2R were assessed by real-time qPCR and Western blot. As expected, numerous inflammatory cell infiltration and tubular epithelial cell vacuolar degeneration were observed in TCE-sensitized mice. Moreover, serum BUN and Cr and plasma BK were increased. In addition, deposition of BK, PK and C5b-9 were observed and B1R and B2R mRNA and proteins levels were up-regulated. Pre-treatment with PKSI, a highly selective inhibitor of PK, alleviated TCE-induced renal damage. In addition, PKSI attenuated TCE-induced up-regulation of BK, PK and its receptors and C5b-9. These results provided the first evidence that activation of the KKS contributed to immune-mediated renal injury induced by TCE and also helped to identify the KKS as a potential therapeutic target for mitigating chemical sensitization-induced renal damage.

  12. Architecture of Vagal Motor Units Controlling Striated Muscle of Esophagus: Peripheral Elements Patterning Peristalsis?

    PubMed Central

    Powley, Terry L.; Mittal, Ravinder K.; Baronowsky, Elizabeth A.; Hudson, Cherie N.; Martin, Felecia N.; McAdams, Jennifer L.; Mason, Jacqueline K.; Phillips, Robert J.

    2013-01-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n = 78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are “hardwired,” in the peripheral architecture of esophageal motor units. PMID:24044976

  13. Architecture of vagal motor units controlling striated muscle of esophagus: peripheral elements patterning peristalsis?

    PubMed

    Powley, Terry L; Mittal, Ravinder K; Baronowsky, Elizabeth A; Hudson, Cherie N; Martin, Felecia N; McAdams, Jennifer L; Mason, Jacqueline K; Phillips, Robert J

    2013-12-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n=78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are "hardwired," in the peripheral architecture of esophageal motor units. © 2013.

  14. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis.

    PubMed

    Kempuraj, Duraisamy; Selvakumar, Govindhasamy P; Thangavel, Ramasamy; Ahmed, Mohammad E; Zaheer, Smita; Raikwar, Sudhanshu P; Iyer, Shankar S; Bhagavan, Sachin M; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar

    2017-01-01

    Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This

  15. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis

    PubMed Central

    Kempuraj, Duraisamy; Selvakumar, Govindhasamy P.; Thangavel, Ramasamy; Ahmed, Mohammad E.; Zaheer, Smita; Raikwar, Sudhanshu P.; Iyer, Shankar S.; Bhagavan, Sachin M.; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar

    2017-01-01

    Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This

  16. Cell-mediated immunity to homologous spermatozoa following vasectomy in the human male.

    PubMed Central

    Nagarkatti, P S; Rao, S S

    1976-01-01

    Cell-mediated immunity (CMI) to homologous spermatozoal antigens was studied in sixty-two males following vasectomy of a duration of 1-10 years. A group of twenty-two normal, fertile non-vasectomized males was also included in the study. The inhibition in the leucocyte migration test (LMT), in the presence of spermatozoal antigen, was taken as an index of CMI. Twenty of the sixty-two vasectomized males (32.2 percent) showed a positive LMT reaction. When the results were analysed with reference to the duration of vasectomy, it was noted that four cases each (22.2 percent), showed a positive LMT reaction in the groups 0-2 years, and 3.5 years. On the other hand twelve cases gave a positive reaction in the group 6-10 years (46.1 percent). It appears that the incidence of CMI to spermatozoa increases with the duration in vasectomy. PMID:991454

  17. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  18. Exercise training augments the dynamic heart rate response to vagal but not sympathetic stimulation in rats.

    PubMed

    Mizuno, Masaki; Kawada, Toru; Kamiya, Atsunori; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Smith, Scott A; Sugimachi, Masaru

    2011-04-01

    We examined the transfer function of autonomic heart rate (HR) control in anesthetized sedentary and exercise-trained (16 wk, treadmill for 1 h, 5 times/wk at 15 m/min and 15-degree grade) rats for comparison to HR variability assessed in the conscious resting state. The transfer function from sympathetic stimulation to HR response was similar between groups (gain, 4.2 ± 1.5 vs. 4.5 ± 1.5 beats·min(-1)·Hz(-1); natural frequency, 0.07 ± 0.01 vs. 0.08 ± 0.01 Hz; damping coefficient, 1.96 ± 0.55 vs. 1.69 ± 0.15; and lag time, 0.7 ± 0.1 vs. 0.6 ± 0.1 s; sedentary vs. exercise trained, respectively, means ± SD). The transfer gain from vagal stimulation to HR response was 6.1 ± 3.0 in the sedentary and 9.7 ± 5.1 beats·min(-1)·Hz(-1) in the exercise-trained group (P = 0.06). The corner frequency (0.11 ± 0.05 vs. 0.17 ± 0.09 Hz) and lag time (0.1 ± 0.1 vs. 0.2 ± 0.1 s) did not differ between groups. When the sympathetic transfer gain was averaged for very-low-frequency and low-frequency bands, no significant group effect was observed. In contrast, when the vagal transfer gain was averaged for very-low-frequency, low-frequency, and high-frequency bands, exercise training produced a significant group effect (P < 0.05 by two-way, repeated-measures ANOVA). These findings suggest that, in the frequency domain, exercise training augments the dynamic HR response to vagal stimulation but not sympathetic stimulation, regardless of the frequency bands.

  19. Immunity and Inflammation in Epilepsy

    PubMed Central

    Vezzani, Annamaria; Lang, Bethan; Aronica, Eleonora

    2016-01-01

    This review reports the available evidence on the activation of the innate and adaptive branches of the immune system and the related inflammatory processes in epileptic disorders and the putative pathogenic role of inflammatory processes developing in the brain, as indicated by evidence from experimental and clinical research. Indeed, there is increasing knowledge supporting a role of specific inflammatory mediators and immune cells in the generation and recurrence of epileptic seizures, as well as in the associated neuropathology and comorbidities. Major challenges in this field remain: a better understanding of the key inflammatory pathogenic pathways activated in chronic epilepsy and during epileptogenesis, and how to counteract them efficiently without altering the homeostatic tissue repair function of inflammation. The relevance of this information for developing novel therapies will be highlighted. PMID:26684336

  20. Recurrent Vulvovaginal Candidiasis: Could It Be Related to Cell-Mediated Immunity Defect in Response to Candida Antigen?

    PubMed Central

    Talaei, Zahra; Sheikhbahaei, Saba; Ostadi, Vajihe; Ganjalikhani Hakemi, Mazdak; Meidani, Mohsen; Naghshineh, Elham; Yaran, Majid; Naeini, Alireza Emami; Sherkat, Roya

    2017-01-01

    Background Recurrent vulvovaginal candidiasis (RVVC) is a common cause of morbidity affecting millions of women worldwide. Patients with RVVC are thought to have an underlying immunologic defect. This study has been established to evaluate cell-mediated immunity defect in response to candida antigen in RVVC cases. Materials and Methods Our cross-sectional study was performed in 3 groups of RVVC patients (cases), healthy individuals (control I) and known cases of chronic mucocutaneous candidiasis (CMC) (control II). Patients who met the inclusion criteria of RVVC were selected consecutively and were allocated in the case group. Peripheral blood mononuclear cells were isolated and labeled with CFSE and proliferation rate was measured in exposure to candida antigen via flow cytometry. Results T lymphocyte proliferation in response to candida was significantly lower in RVVC cases (n=24) and CMC patients (n=7) compared to healthy individuals (n=20, P<0.001), but no statistically significant difference was seen between cases and control II group (P>0.05). Family history of primary immunodeficiency diseases (PID) differed significantly among groups (P=0.01), RVVC patients has family history of PID more than control I (29.2 vs. 0%, P=0.008) but not statistically different from CMC patients (29.2 vs. 42.9%, P>0.05). Prevalence of atopy was greater in RVVC cases compared to healthy individuals (41.3 vs. 15%, P=0.054). Lymphoproliferative activity and vaginal symptoms were significantly different among RVVC cases with and without allergy (P=0.01, P=0.02). Conclusion Our findings revealed that T cells do not actively proliferate in response to Candida antigen in some RVVC cases. So it is concluded that patients with cell-mediated immunity defect are more susceptible to recurrent fungal infections of vulva and vagina. Nonetheless, some other cases of RVVC showed normal function of T cells. Further evaluations showed that these patients suffer from atopy. It is hypothesized that

  1. The innate and adaptive immune response to avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  2. Cytokine Immunopathogenesis of Enterovirus 71 Brain Stem Encephalitis

    PubMed Central

    Wang, Shih-Min; Lei, Huan-Yao; Liu, Ching-Chuan

    2012-01-01

    Enterovirus 71 (EV71) is one of the most important causes of herpangina and hand, foot, and mouth disease. It can also cause severe complications of the central nervous system (CNS). Brain stem encephalitis with pulmonary edema is the severe complication that can lead to death. EV71 replicates in leukocytes, endothelial cells, and dendritic cells resulting in the production of immune and inflammatory mediators that shape innate and acquired immune responses and the complications of disease. Cytokines, as a part of innate immunity, favor the development of antiviral and Th1 immune responses. Cytokines and chemokines play an important role in the pathogenesis EV71 brain stem encephalitis. Both the CNS and the systemic inflammatory responses to infection play important, but distinctly different, roles in the pathogenesis of EV71 pulmonary edema. Administration of intravenous immunoglobulin and milrinone, a phosphodiesterase inhibitor, has been shown to modulate inflammation, to reduce sympathetic overactivity, and to improve survival in patients with EV71 autonomic nervous system dysregulation and pulmonary edema. PMID:22956971

  3. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

    PubMed Central

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-01-01

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001 PMID:24957336

  4. Pyridostigmine protects against cardiomyopathy associated with adipose tissue browning and improvement of vagal activity in high-fat diet rats.

    PubMed

    Lu, Yi; Wu, Qing; Liu, Long-Zhu; Yu, Xiao-Jiang; Liu, Jin-Jun; Li, Man-Xiang; Zang, Wei-Jin

    2018-04-01

    Obesity, a major contributor to the development of cardiovascular diseases, is associated with an autonomic imbalance characterized by sympathetic hyperactivity and diminished vagal activity. Vagal activation plays important roles in weight loss and improvement of cardiac function. Pyridostigmine is a reversible acetylcholinesterase inhibitor, but whether it ameliorates cardiac lipid accumulation and cardiac remodeling in rats fed a high-fat diet has not been determined. This study investigated the effects of pyridostigmine on high-fat diet-induced cardiac dysfunction and explored the potential mechanisms. Rats were fed a normal or high-fat diet and treated with pyridostigmine. Vagal discharge was evaluated using the BL-420S system, and cardiac function by echocardiograms. Lipid deposition and cardiac remodeling were determined histologically. Lipid utility was assessed by qPCR. A high-fat diet led to a significant reduction in vagal discharge and lipid utility and a marked increase in lipid accumulation, cardiac remodeling, and cardiac dysfunction. Pyridostigmine improved vagal activity and lipid metabolism disorder and cardiac remodeling, accompanied by an improvement of cardiac function in high-fat diet-fed rats. An increase in the browning of white adipose tissue in pyridostigmine-treated rats was also observed and linked to the expression of UCP-1 and CIDEA. Additionally, pyridostigmine facilitated activation of brown adipose tissue via activation of the SIRT-1/AMPK/PGC-1α pathway. In conclusion, a high-fat diet resulted in cardiac lipid accumulation, cardiac remodeling, and a significant decrease in vagal discharge. Pyridostigmine ameliorated cardiomyopathy, an effect related to reduced cardiac lipid accumulation, and facilitated the browning of white adipose tissue while activating brown adipose tissue. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion.

    PubMed

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J; Wood, Thomas G; Bao, Xiaoyong

    2016-12-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain

    PubMed Central

    McCarthy, Margaret M.; Nugent, Bridget M.; Lenz, Kathryn M.

    2017-01-01

    The study of sex differences in the brain is a topic of neuroscientific study that has broad reaching implications for culture, society and biomedical science. Recent research in rodent models has led to dramatic shifts in our views of the mechanisms underlying the sexual differentiation of the brain. These include the surprising discoveries of a role for immune cells and inflammatory mediators in brain masculinization and a role for epigenetic suppression in brain feminization. How and to what degree these findings will translate to human brain development will be questions of central importance in future research in this field. PMID:28638119

  7. Whey acidic proteins (WAPs): novel modulators of innate immunity to HIV infection.

    PubMed

    Reading, James L; Meyers, Adrienne F A; Vyakarnam, Annapurna

    2012-03-01

    To discuss how whey acidic proteins (WAPs), a new class of immunomodulatory soluble mediators, impact innate immunity to HIV infection. Innate immunity to HIV infection is increasingly being recognized as critical in determining initial virus transmission and dissemination and may, therefore, be exploited in vaccine and microbicide intervention strategies to combat HIV infection. Several important innate immune mediators have recently been shown to regulate HIV infection in vitro and are, thus, implicated in in vivo immunity to the virus. These include soluble mediators, such as type I interferon, the defensins and more recently WAPs. Recent evidence is discussed, which show that WAPs are pleiotropic soluble mediators that may impact the course of HIV infection in two ways: as regulators of HIV replication and as regulators of innate and adaptive immunity. A better understanding of host factors that regulate HIV transmission is essential in the development of novel therapeutic strategies. This review focuses on recent findings that highlight the HIV regulatory and anti-inflammatory function of WAPs and assesses their potential to be exploited as novel therapeutics.

  8. Local brain heavy ion irradiation induced Immunosuppression

    NASA Astrophysics Data System (ADS)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  9. Orchestrating brain-cell renewal: the role of immune cells in adult neurogenesis in health and disease.

    PubMed

    Ziv, Yaniv; Schwartz, Michal

    2008-11-01

    Immune cells and immune molecules have recently been shown to support neurogenesis from neural stem and progenitor cells in the adult brain. This non-classical immune activity takes place constantly under normal physiological conditions and is extended under acute pathological conditions to include the attraction of progenitor cells and induction of neurogenesis in regions of the adult central nervous system (CNS) in which formation of new neurons does not normally occur. We suggest that the immune system should be viewed as a novel player in the adult neural stem cell niche and a coordinator of cell renewal processes after injury. We discuss these notions in light of the well-known facts that both immune-cell activity and cell renewal are inherently limited in the adult CNS and that immune and stem cells provide the body's mechanisms of repair.

  10. Immune mediated conditions in autism spectrum disorders.

    PubMed

    Zerbo, Ousseny; Leong, Albin; Barcellos, Lisa; Bernal, Pilar; Fireman, Bruce; Croen, Lisa A

    2015-05-01

    We conducted a case-control study among members of Kaiser Permanente Northern California (KPNC) born between 1980 and 2003 to determine the prevalence of immune-mediated conditions in individuals with autism, investigate whether these conditions occur more often than expected, and explore the timing of onset relative to autism diagnosis. Cases were children and young adults with at least two autism diagnoses recorded in outpatient records (n=5565). Controls were children without autism randomly sampled at a ratio of 5 to 1, matched to cases on birth year, sex, and length of KPNC membership (n=27,825). The main outcomes - asthma, allergies, and autoimmune diseases - were identified from KPNC inpatient and outpatient databases. Chi-square tests were used to evaluate case-control differences. Allergies and autoimmune diseases were diagnosed significantly more often among children with autism than among controls (allergy: 20.6% vs. 17.7%, Crude odds ratio (OR)=1.22, 95% confidence interval (CI) 1.13-1.31; autoimmune disease: 1% vs. 0.76%, OR=1.36, 95% CI 1.01-1.83), and asthma was diagnosed significantly less often (13.7% vs. 15.9%; OR=0.83, 95% CI 0.76-0.90). Psoriasis occurred more than twice as often in cases than in controls (0.34% vs. 0.15%; OR=2.35, 95% CI 1.36-4.08). Our results support previous observations that children with autism have elevated prevalence of specific immune-related comorbidities. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Plasticity of vagal brainstem circuits in the control of gastric function

    PubMed Central

    Browning, Kirsteen N.; Travagli, R. Alberto

    2010-01-01

    Background Sensory information from the viscera, including the gastrointestinal (GI) tract, is transmitted through the afferent vagus via a glutamatergic synapse to neurons of the nucleus tractus solitarius (NTS), which integrate this sensory information to regulate autonomic functions and homeostasis. The integrated response is conveyed to, amongst other nuclei, the preganglionic neurons of the dorsal motor nucleus of the vagus (DMV) using mainly GABA, glutamate and catecholamines as neurotransmitters. Despite being modulated by almost all the neurotransmitters tested so far, the glutamatergic synapse between NTS and DMV does not appear to be tonically active in the control of gastric motility and tone. Conversely, tonic inhibitory GABAergic neurotransmission from the NTS to the DMV appears critical in setting gastric tone and motility, yet, under basal conditions, this synapse appears resistant to modulation. Purpose Here, we review the available evidence suggesting that vagal efferent output to the GI tract is regulated, perhaps even controlled, in an “on-demand” and efficient manner in response to ever-changing homeostatic conditions. The focus of this review is on the plasticity induced by variations in the levels of second messengers in the brainstem neurons that form vago-vagal reflex circuits. Emphasis is placed upon the modulation of GABAergic transmission to DMV neurons and the modulation of afferent input from the GI tract by neurohormones/neurotransmitters and macronutrients. Derangement of this “on-demand” organization of brainstem vagal circuits may be one of the factors underlying the pathophysiological changes observed in functional dyspepsia or hyperglycemic gastroparesis. PMID:20804520

  12. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins

    PubMed Central

    Yano, Junko; Noverr, Mairi C.; Fidel, Paul L.

    2011-01-01

    Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4+ T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 Alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators. PMID:22182685

  13. The Evolving View of IL-17-Mediated Immunity in Defense Against Mucocutaneous Candidiasis in Humans.

    PubMed

    Soltész, Beáta; Tóth, Beáta; Sarkadi, Adrien Katalin; Erdős, Melinda; Maródi, László

    2015-01-01

    The discovery of interleukin (IL)-17-mediated immunity has provided a robust framework upon which our current understanding of the mechanism involved in host defense against mucocutaneous candidiasis (CMC) has been built. Studies have shed light on how pattern recognition receptors expressed by innate immune cells recognize various components of Candida cell wall. Inborn errors of immunity affecting IL-17+ T cell differentiation have recently been defined, such as deficiencies of signal transducer and activator of transcription (STAT)3, STAT1, IL-12Rβ1 and IL-12p40, and caspase recruitment domain 9. Impaired receptor-ligand coupling was identified in patients with IL-17F and IL-17 receptor A (IL17RA) deficiency and autoimmune polyendocrine syndrome (APS) type 1. Mutation in the nuclear factor kappa B activator (ACT) 1 was described as a cause of impaired IL-17R-mediated signaling. CMC may be part of a complex clinical phenotype like in patients with deficiencies of STAT3, IL-12Rβ1/IL-12p40 and APS-1 or may be the only or dominant phenotypic manifestation of disease which is referred to as CMC disease. CMCD may result from deficiencies of STAT1, IL-17F, IL-17RA and ACT1. In this review we discuss how recent research on IL-17-mediated immunity shed light on host defense against mucocutaneous infection by Candida and how the discovery of various germ-line mutations and the characterization of associated clinical phenotypes have provided insights into the role of CD4+IL-17+ lymphocytes in the regulation of anticandidal defense of body surfaces.

  14. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2012-07-01

    Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, M D , Ph D...CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria -Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy 5b...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project is to study the immunomodulatory effect of Listeria on

  15. Vagus Nerve as Modulator of the Brain–Gut Axis in Psychiatric and Inflammatory Disorders

    PubMed Central

    Breit, Sigrid; Kupferberg, Aleksandra; Rogler, Gerhard; Hasler, Gregor

    2018-01-01

    The vagus nerve represents the main component of the parasympathetic nervous system, which oversees a vast array of crucial bodily functions, including control of mood, immune response, digestion, and heart rate. It establishes one of the connections between the brain and the gastrointestinal tract and sends information about the state of the inner organs to the brain via afferent fibers. In this review article, we discuss various functions of the vagus nerve which make it an attractive target in treating psychiatric and gastrointestinal disorders. There is preliminary evidence that vagus nerve stimulation is a promising add-on treatment for treatment-refractory depression, posttraumatic stress disorder, and inflammatory bowel disease. Treatments that target the vagus nerve increase the vagal tone and inhibit cytokine production. Both are important mechanism of resiliency. The stimulation of vagal afferent fibers in the gut influences monoaminergic brain systems in the brain stem that play crucial roles in major psychiatric conditions, such as mood and anxiety disorders. In line, there is preliminary evidence for gut bacteria to have beneficial effect on mood and anxiety, partly by affecting the activity of the vagus nerve. Since, the vagal tone is correlated with capacity to regulate stress responses and can be influenced by breathing, its increase through meditation and yoga likely contribute to resilience and the mitigation of mood and anxiety symptoms. PMID:29593576

  16. Concordance of CCR5 genotypes that influence cell-mediated immunity and HIV-1 disease progression rates.

    PubMed

    Catano, Gabriel; Chykarenko, Zoya A; Mangano, Andrea; Anaya, J-M; He, Weijing; Smith, Alison; Bologna, Rosa; Sen, Luisa; Clark, Robert A; Lloyd, Andrew; Shostakovich-Koretskaya, Ludmila; Ahuja, Sunil K

    2011-01-15

    We used cutaneous delayed-type hypersensitivity responses, a powerful in vivo measure of cell-mediated immunity, to evaluate the relationships among cell-mediated immunity, AIDS, and polymorphisms in CCR5, the HIV-1 coreceptor. There was high concordance between CCR5 polymorphisms and haplotype pairs that influenced delayed-type hypersensitivity responses in healthy persons and HIV disease progression. In the cohorts examined, CCR5 genotypes containing -2459G/G (HHA/HHA, HHA/HHC, HHC/HHC) or -2459A/A (HHE/HHE) associated with salutary or detrimental delayed-type hypersensitivity and AIDS phenotypes, respectively. Accordingly, the CCR5-Δ32 allele, when paired with non-Δ32-bearing haplotypes that correlate with low (HHA, HHC) versus high (HHE) CCR5 transcriptional activity, associates with disease retardation or acceleration, respectively. Thus, the associations of CCR5-Δ32 heterozygosity partly reflect the effect of the non-▵32 haplotype in a background of CCR5 haploinsufficiency. The correlations of increased delayed-type hypersensitivity with -2459G/G-containing CCR5 genotypes, reduced CCR5 expression, decreased viral replication, and disease retardation suggest that CCR5 may influence HIV infection and AIDS, at least in part, through effects on cell-mediated immunity.

  17. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism

    PubMed Central

    Gao, Jing; Xu, Kang; Liu, Hongnan; Liu, Gang; Bai, Miaomiao; Peng, Can; Li, Tiejun; Yin, Yulong

    2018-01-01

    The gut microbiota influences the health of the host, especially with regard to gut immune homeostasis and the intestinal immune response. In addition to serving as a nutrient enhancer, L-tryptophan (Trp) plays crucial roles in the balance between intestinal immune tolerance and gut microbiota maintenance. Recent discoveries have underscored that changes in the microbiota modulate the host immune system by modulating Trp metabolism. Moreover, Trp, endogenous Trp metabolites (kynurenines, serotonin, and melatonin), and bacterial Trp metabolites (indole, indolic acid, skatole, and tryptamine) have profound effects on gut microbial composition, microbial metabolism, the host's immune system, the host-microbiome interface, and host immune system–intestinal microbiota interactions. The aryl hydrocarbon receptor (AhR) mediates the regulation of intestinal immunity by Trp metabolites (as ligands of AhR), which is beneficial for immune homeostasis. Among Trp metabolites, AhR ligands consist of endogenous metabolites, including kynurenine, kynurenic acid, xanthurenic acid, and cinnabarinic acid, and bacterial metabolites, including indole, indole propionic acid, indole acetic acid, skatole, and tryptamine. Additional factors, such as aging, stress, probiotics, and diseases (spondyloarthritis, irritable bowel syndrome, inflammatory bowel disease, colorectal cancer), which are associated with variability in Trp metabolism, can influence Trp–microbiome–immune system interactions in the gut and also play roles in regulating gut immunity. This review clarifies how the gut microbiota regulates Trp metabolism and identifies the underlying molecular mechanisms of these interactions. Increased mechanistic insight into how the microbiota modulates the intestinal immune system through Trp metabolism may allow for the identification of innovative microbiota-based diagnostics, as well as appropriate nutritional supplementation of Trp to prevent or alleviate intestinal inflammation

  18. Sex-, stress-, and sympathetic post-ganglionic neuron-dependent changes in the expression of pro- and anti-inflammatory mediators in rat dural immune cells

    PubMed Central

    McIlvried, Lisa A; Borghesi, Lisa A; Gold, Michael S

    2015-01-01

    Background Migraine attacks are associated with sterile inflammation of the dura. Immune cells are a primary source of inflammatory mediators, and we therefore sought to further explore the link between dural immune cells and migraine. Objective Based on the observations that migraine is more common in women than in men, stress is the most common trigger for a migraine attack, and sympathetic post-ganglionic innervation of the dura enables local control of dural immune cells, we hypothesized that stress shifts the balance of inflammatory mediator expression in dural immune cells toward those that trigger a migraine attack, where these changes are larger in females and dependent, at least in part, on sympathetic post-ganglionic innervation of the dura. Our objective was to test this hypothesis. Methods Dura were obtained from naïve or stressed, intact or surgically sympathectomized, adult male and female rats. Dura were assessed immediately or 24 hrs after termination of four continuous days of unpredictable, mild stressors. Following enzymatic digestion of each dura, myeloid and lymphoid derived dural immune cells were isolated by fluorescence activated cell sorting for semi-quantitative polymerase chain reaction analysis. Results In myeloid derived dural immune cells there was an increase in pro-inflammatory mediator mRNA following stress, particularly in females, which remained elevated with a 24 hr delay after stress. There was a stress-induced decrease in anti-inflammatory mediator mRNA immediately after stress in females, but not males. The stress-induced changes were attenuated in sympathectomized females. In lymphoid derived dural immune cells, there was a persistent increase in pro-inflammatory mediator mRNA following stress, particularly in females. A stress-induced increase in anti-inflammatory mediator mRNA was also observed in both males and females, and was further attenuated in sympathectomized females. Conclusions Consistent with our hypothesis

  19. The Chromatin Remodeler SPLAYED Negatively Regulates SNC1-Mediated Immunity.

    PubMed

    Johnson, Kaeli C M; Xia, Shitou; Feng, Xiaoqi; Li, Xin

    2015-08-01

    SNC1 (SUPPRESSOR OF NPR1, CONSTITUTIVE 1) is one of a suite of intracellular Arabidopsis NOD-like receptor (NLR) proteins which, upon activation, result in the induction of defense responses. However, the molecular mechanisms underlying NLR activation and the subsequent provocation of immune responses are only partially characterized. To identify negative regulators of NLR-mediated immunity, a forward genetic screen was undertaken to search for enhancers of the dwarf, autoimmune gain-of-function snc1 mutant. To avoid lethality resulting from severe dwarfism, the screen was conducted using mos4 (modifier of snc1, 4) snc1 plants, which display wild-type-like morphology and resistance. M2 progeny were screened for mutant, snc1-enhancing (muse) mutants displaying a reversion to snc1-like phenotypes. The muse9 mos4 snc1 triple mutant was found to exhibit dwarf morphology, elevated expression of the pPR2-GUS defense marker reporter gene and enhanced resistance to the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Via map-based cloning and Illumina sequencing, it was determined that the muse9 mutation is in the gene encoding the SWI/SNF chromatin remodeler SYD (SPLAYED), and was thus renamed syd-10. The syd-10 single mutant has no observable alteration from wild-type-like resistance, although the syd-4 T-DNA insertion allele displays enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. Transcription of SNC1 is increased in both syd-4 and syd-10. These data suggest that SYD plays a subtle, specific role in the regulation of SNC1 expression and SNC1-mediated immunity. SYD may work with other proteins at the chromatin level to repress SNC1 transcription; such regulation is important for fine-tuning the expression of NLR-encoding genes to prevent unpropitious autoimmunity. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please

  20. Improved pertussis vaccines based on adjuvants that induce cell-mediated immunity.

    PubMed

    Allen, Aideen C; Mills, Kingston H G

    2014-10-01

    Bordetella pertussis is a Gram-negative bacterium that causes the severe and sometimes lethal respiratory disease whooping cough in infants and children. There has been a recent resurgence in the number of cases of pertussis in several countries with high vaccine coverage. This has been linked with waning or ineffective immunity induced by current acellular pertussis vaccines. These acellular pertussis vaccines are formulated with alum as the adjuvant, which promotes strong antibody responses but is less effective at inducing Th1-type responses crucial for effective bacterial clearance. Studies in animal models have demonstrated that replacing alum with alternative adjuvants, such as toll-like receptor agonists, can promote more robust cell-mediated immunity and confer a high level of protection against infection following respiratory challenge.

  1. Prenatal Immune Challenge Is an Environmental Risk Factor for Brain and Behavior Change Relevant to Schizophrenia: Evidence from MRI in a Mouse Model

    PubMed Central

    Wei, Ran; Hui, Edward S.; Feldon, Joram; Meyer, Urs; Chung, Sookja; Chua, Siew E.; Sham, Pak C.; Wu, Ed X.; McAlonan, Grainne M.

    2009-01-01

    Objectives Maternal infection during pregnancy increases risk of severe neuropsychiatric disorders, including schizophrenia and autism, in the offspring. The most consistent brain structural abnormality in patients with schizophrenia is enlarged lateral ventricles. However, it is unknown whether the aetiology of ventriculomegaly in schizophrenia involves prenatal infectious processes. The present experiments tested the hypothesis that there is a causal relationship between prenatal immune challenge and emergence of ventricular abnormalities relevant to schizophrenia in adulthood. Method We used an established mouse model of maternal immune activation (MIA) by the viral mimic PolyI:C administered in early (day 9) or late (day 17) gestation. Automated voxel-based morphometry mapped cerebrospinal fluid across the whole brain of adult offspring and the results were validated by manual region-of-interest tracing of the lateral ventricles. Parallel behavioral testing determined the existence of schizophrenia-related sensorimotor gating abnormalities. Results PolyI:C-induced immune activation, in early but not late gestation, caused marked enlargement of lateral ventricles in adulthood, without affecting total white and grey matter volumes. This early exposure disrupted sensorimotor gating, in the form of prepulse inhibition. Identical immune challenge in late gestation resulted in significant expansion of 4th ventricle volume but did not disrupt sensorimotor gating. Conclusions Our results provide the first experimental evidence that prenatal immune activation is an environmental risk factor for adult ventricular enlargement relevant to schizophrenia. The data indicate immune-associated environmental insults targeting early foetal development may have more extensive neurodevelopmental impact than identical insults in late prenatal life. PMID:19629183

  2. Adherence to systemic therapies for immune-mediated inflammatory diseases in Lebanon: a physicians' survey from three medical specialties.

    PubMed

    Ammoury, Alfred; Okais, Jad; Hobeika, Mireille; Sayegh, Raymond B; Shayto, Rani H; Sharara, Ala I

    2017-01-01

    Immune-mediated inflammatory diseases (IMIDs) are chronic conditions that may cause tissue damage and disability, reduced quality of life and increased mortality. Various treatments have been developed for IMIDs, including immune modulators and targeted biologic agents. However, adherence remains suboptimal. An adherence survey was used to evaluate physicians' beliefs about adherence to medication in IMID and to evaluate if and how they manage adherence. The survey was distributed to 100 randomly selected physicians from three different specialties. Results were analyzed by four academic experts commissioned to develop an action plan to address practical and perceptual barriers to adherence, integrating it into treatment goals to maximize outcomes in IMID, thereby elevating local standards of care. Eighty-two physicians participated in this study and completed the questionnaire. Most defined adherence as compliance with prescribed treatment. Although the majority of surveyed physicians (74%) did not systematically measure adherence in their practice, 54% identified adherence as a treatment goal of equal or greater importance to therapeutic endpoints. Lack of time and specialized nursing support was reported as an important barrier to measuring adherence. The expert panel identified four key areas for action: 360° education (patient-nurse-physician), patient-physician communication, patient perception and concerns, and market access/cost. An action plan was developed centered on education and awareness, enhanced benefit-risk communication, development of adherence assessment tools and promotion of patient support programs. Nonadherence to medication is a commonly underestimated problem with important consequences. A customized target-based strategy to address the root causes of non-adherence is essential in the management of chronic immune-mediated diseases.

  3. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model.

    PubMed

    Yeung, Hing-Yuen; Lo, Pui-Chi; Ng, Dennis K P; Fong, Wing-Ping

    2017-02-01

    In recent decades, accumulating evidence from both animal and clinical studies has suggested that a sufficiently activated immune system may strongly augment various types of cancer treatment, including photodynamic therapy (PDT). Through the generation of reactive oxygen species, PDT eradicates tumors by triggering localized tumor damage and inducing anti-tumor immunity. As the major component of anti-tumor immunity, the involvement of a cell-mediated immune response in PDT has been well investigated in the past decade, whereas the role of humoral immunity has remained relatively unexplored. In the present investigation, using the photosensitizer BAM-SiPc and the CT26 tumor-bearing BALB/c mouse model, it was demonstrated that both cell-mediated and humoral adaptive immune components could be involved in PDT. With a vascular PDT (VPDT) regimen, BAM-SiPc could eradicate the tumors of ∼70% of tumor-bearing mice and trigger an anti-tumor immune response that could last for more than 1 year. An elevation of Th2 cytokines was detected ex vivo after VPDT, indicating the potential involvement of a humoral response. An analysis of serum from the VPDT-cured mice also revealed elevated levels of tumor-specific antibodies. Moreover, this serum could effectively hinder tumor growth and protect the mice against further re-challenge in a T-cell-dependent manner. Taken together, these results show that the humoral components induced after BAM-SiPc-VPDT could assist the development of anti-tumor immunity.

  4. High-Resolution Manometry Evaluation of Pressures at the Pharyngo-upper Esophageal Area in Patients with Oropharyngeal Dysphagia Due to Vagal Paralysis.

    PubMed

    Pinna, Bruno Rezende; Herbella, Fernando A M; de Biase, Noemi; Vaiano, Thays C G; Patti, Marco G

    2017-10-01

    The motility of the pharynx, upper esophageal sphincter (UES), and proximal esophagus in patients with oropharyngeal dysphagia is still not entirely understood. High-resolution manometry (HRM) was recently added to the armamentarium for the study of this area. This study aims to describe HRM findings in patients with vagal paralysis. Sixteen patients (mean age 54 years, 69% females) with oropharyngeal dysphagia due to unilateral vagal paralysis were prospectively studied. All patients underwent HRM. Motility of the UES and at the topography of the velopharynx and epiglottis were recorded. (1) UES relaxation is compromised in a minority of patients, (2) epiglottis pressure does not follow a specific pattern, (3) vellum is hypotonic in half of the patients, (4) dysphagia is related to a low pharyngeal pressure, not to a flow obstruction at the level of the UES, and (5) aspiration is related to low pressures at the level of the UES and epiglottis and higher pressures at the level of the vellum. Pharyngeal motility is significantly impaired in patients with oropharyngeal dysphagia and unilateral vagal paralysis. In half of the cases, UES resting pressure is preserved due to unilateral innervation and relaxation is normal in most patients. Dysphagia therapy in these patients must be directed toward improvement in the oropharyngeal motility not at the UES.

  5. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence

    NASA Astrophysics Data System (ADS)

    Xue, Jingwei; Zhao, Zekai; Zhang, Lei; Xue, Lingjing; Shen, Shiyang; Wen, Yajing; Wei, Zhuoyuan; Wang, Lu; Kong, Lingyi; Sun, Hongbin; Ping, Qineng; Mo, Ran; Zhang, Can

    2017-07-01

    Cell-mediated drug-delivery systems have received considerable attention for their enhanced therapeutic specificity and efficacy in cancer treatment. Neutrophils (NEs), the most abundant type of immune cells, are known to penetrate inflamed brain tumours. Here we show that NEs carrying liposomes that contain paclitaxel (PTX) can penetrate the brain and suppress the recurrence of glioma in mice whose tumour has been resected surgically. Inflammatory factors released after tumour resection guide the movement of the NEs into the inflamed brain. The highly concentrated inflammatory signals in the brain trigger the release of liposomal PTX from the NEs, which allows delivery of PTX into the remaining invading tumour cells. We show that this NE-mediated delivery of drugs efficiently slows the recurrent growth of tumours, with significantly improved survival rates, but does not completely inhibit the regrowth of tumours.

  6. Intranasal Immune Challenge Induces Sex-Dependent Depressive-Like Behavior and Cytokine Expression in the Brain

    PubMed Central

    Tonelli, Leonardo H; Holmes, Andrew; Postolache, Teodor T

    2007-01-01

    The association between activation of the immune system and mood disorders has been reported by several studies. However, the mechanisms by which the immune system affects mood are only partially understood. In the present study, we detected depressive-like behavior in a rat animal model which involves the induction of inflammation in the nasal cavities by intranasal (i.n.) instillation of bacterial lipopolysaccharides (LPS). Female rats showed depressive-like behavior as evidenced by the forced swim test after repeated i.n. administration of LPS. These responses were not paralleled by alterations in motor activity as measured by the open field test. In the same animals, corticosterone responses after the swimming sessions were the highest of all the groups evaluated. Real-time RT PCR was used to analyze the transcriptional regulation of the cytokines interleukin-1β, tumor necrosis factor-α, and interleukin-6 in several brain regions. Increased tumor necrosis factor-α was detected in the hippocampus and brainstem of female rats challenged with i.n. LPS. These results suggest that peripheral inflammation in the upper respiratory tract is an immune challenge capable of inducing depressive-like behavior, promoting exaggerated glucocorticoid responses to stress, and increasing cytokine transcription in the brain. These results further our understanding of the role that the immune system may play in the pathophysiology of depression. PMID:17593929

  7. Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells: Implications for Cancer Vaccine Therapy

    DTIC Science & Technology

    2014-07-01

    and J.W. Young, Human dendritic cells : potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol, 2005. 175(3): p...by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine Therapy PRINCIPAL INVESTIGATOR: David J. Chung, MD, PhD...5a. CONTRACT NUMBER Evaluation of Immune Responses Mediated by Listeria-Stimulated Human Dendritic Cells : Implications for Cancer Vaccine

  8. NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes

    PubMed Central

    2012-01-01

    Background Lipoteichoic acid (LTA) is a component of gram-positive bacterial cell walls and may be elevated in the cerebrospinal fluid of patients suffering from meningitis. Among matrix metalloproteinases (MMPs), MMP-9 has been observed in patients with brain inflammatory diseases and may contribute to the pathology of brain diseases. Moreover, several studies have suggested that increased oxidative stress is implicated in the pathogenesis of brain inflammation and injury. However, the molecular mechanisms underlying LTA-induced redox signal and MMP-9 expression in brain astrocytes remain unclear. Objective Herein we explored whether LTA-induced MMP-9 expression was mediated through redox signals in rat brain astrocytes (RBA-1 cells). Methods Upregulation of MMP-9 by LTA was evaluated by zymographic and RT-PCR analyses. Next, the MMP-9 regulatory pathways were investigated by pretreatment with pharmacological inhibitors or transfection with small interfering RNAs (siRNAs), Western blotting, and chromatin immunoprecipitation (ChIP)-PCR and promoter activity reporter assays. Moreover, we determined the cell functional changes by migration assay. Results These results showed that LTA induced MMP-9 expression via a PKC(α)-dependent pathway. We further demonstrated that PKCα stimulated p47phox/NADPH oxidase 2 (Nox2)-dependent reactive oxygen species (ROS) generation and then activated the ATF2/AP-1 signals. The activated-ATF2 bound to the AP-1-binding site of MMP-9 promoter, and thereby turned on MMP-9 gene transcription. Additionally, the co-activator p300 also contributed to these responses. Functionally, LTA-induced MMP-9 expression enhanced astrocytic migration. Conclusion These results demonstrated that in RBA-1 cells, activation of ATF2/AP-1 by the PKC(α)-mediated Nox(2)/ROS signals is essential for upregulation of MMP-9 and cell migration enhanced by LTA. PMID:22643046

  9. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis

    PubMed Central

    Qian, Yongqiang; Tan, Dun-Xian; Reiter, Russel J.; Shi, Haitao

    2015-01-01

    Melatonin is an important secondary messenger in plant innate immunity against the bacterial pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 in the salicylic acid (SA)- and nitric oxide (NO)-dependent pathway. However, the metabolic homeostasis in melatonin-mediated innate immunity is unknown. In this study, comparative metabolomic analysis found that the endogenous levels of both soluble sugars (fructose, glucose, melibose, sucrose, maltose, galatose, tagatofuranose and turanose) and glycerol were commonly increased after both melatonin treatment and Pst DC3000 infection in Arabidopsis. Further studies showed that exogenous pre-treatment with fructose, glucose, sucrose, or glycerol increased innate immunity against Pst DC3000 infection in wild type (Col-0) Arabidopsis plants, but largely alleviated their effects on the innate immunity in SA-deficient NahG plants and NO-deficient mutants. This indicated that SA and NO are also essential for sugars and glycerol-mediated disease resistance. Moreover, exogenous fructose, glucose, sucrose and glycerol pre-treatments remarkably increased endogenous NO level, but had no significant effect on the endogenous melatonin level. Taken together, this study highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in SA and NO-dependent pathway in Arabidopsis. PMID:26508076

  10. Focused ultrasound-mediated drug delivery through the blood-brain barrier

    PubMed Central

    Burgess, Alison; Shah, Kairavi; Hough, Olivia; Hynynen, Kullervo

    2015-01-01

    Despite recent advances in blood-brain barrier (BBB) research, it remains a significant hurdle for the pharmaceutical treatment of brain diseases. Focused ultrasound (FUS) is one method to transiently increase permeability of the BBB to promote drug delivery to specific brain regions. An introduction to the BBB and a brief overview of the methods which can be used to circumvent the BBB to promote drug delivery is provided. In particular, we discuss the advantages and limitations of FUS technology and the efficacy of FUS-mediated drug delivery in models of disease. MRI for targeting and evaluating FUS treatments, combined with administration of microbubbles, allows for transient, reproducible BBB opening. The integration of a real-time acoustic feedback controller has improved treatment safety. Successful clinical translation of FUS has the potential to transform the treatment of brain disease worldwide without requiring the development of new pharmaceutical agents. PMID:25936845

  11. SIRT1 Activates MAO-A in the Brain to Mediate Anxiety and Exploratory Drive

    PubMed Central

    Libert, Sergiy; Pointer, Kelli; Bell, Eric L.; Das, Abhirup; Cohen, Dena E.; Asara, John M.; Kapur, Karen; Bergmann, Sven; Preisig, Martin; Otowa, Takeshi; Kendler, Kenneth S.; Chen, Xiangning; Hettema, John M.; van den Oord, Edwin J.; Rubio, Justin P.; Guarente, Leonard

    2012-01-01

    SUMMARY SIRT1 is a NAD+-dependent deacetylase that governs a number of genetic programs to cope with changes in the nutritional status of cells and organisms. Behavioral responses to food abundance are important for the survival of higher animals. Here we used mice with increased or decreased brain SIRT1 to show that this sirtuin regulates anxiety and exploratory drive by activating transcription of the gene encoding the monoamine oxidase A (MAO-A) to reduce serotonin levels in the brain. Indeed, treating animals with MAO-A inhibitors or selective serotonin reuptake inhibitors (SSRIs) normalized anxiety differences between wild-type and mutant animals. SIRT1 deacetylates the brain-specific helix-loop-helix transcription factor NHLH2 on lysine 49 to increase its activation of the MAO-A promoter. Both common and rare variations in the SIRT1 gene were shown to be associated with risk of anxiety in human population samples. Together these data indicate that SIRT1 mediates levels of anxiety, and this regulation may be adaptive in a changing environment of food availability. PMID:22169038

  12. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer

    PubMed Central

    Damiani, Elisabetta; Ullrich, Stephen E.

    2016-01-01

    Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome. PMID:27073146

  13. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection

    PubMed Central

    Duan, Susu; Thomas, Paul G.

    2016-01-01

    Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022

  14. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development

    PubMed Central

    Garay, Paula A.; Hsiao, Elaine Y.; Patterson, Paul H.; McAllister, A. Kimberley

    2012-01-01

    Maternal infection is a risk factor for autism spectrum disorder (ASD) and schizophrenia (SZ). Indeed, modeling this risk factor in mice through maternal immune activation (MIA) causes ASD- and SZ-like neuropathologies and behaviors in the offspring. Although MIA upregulates pro-inflammatory cytokines in the fetal brain, whether MIA leads to long-lasting changes in brain cytokines during postnatal development remains unknown. Here, we tested this possibility by measuring protein levels of 23 cytokines in the blood and three brain regions from offspring of poly(I:C)- and saline-injected mice at five postnatal ages using multiplex arrays. Most cytokines examined are present in sera and brains throughout development. MIA induces changes in the levels of many cytokines in the brains and sera of offspring in a region- and age-specific manner. These MIA-induced changes follow a few, unexpected and distinct patterns. In frontal and cingulate cortices, several, mostly pro-inflammatory, cytokines are elevated at birth, followed by decreases during periods of synaptogenesis and plasticity, and increases again in the adult. Cytokines are also altered in postnatal hippocampus, but in a pattern distinct from the other regions. The MIA-induced changes in brain cytokines do not correlate with changes in serum cytokines from the same animals. Finally, these MIA-induced cytokine changes are not accompanied by breaches in the blood-brain barrier, immune cell infiltration or increases in microglial density. Together, these data indicate that MIA leads to long-lasting, region-specific changes in brain cytokines in offspring—similar to those reported for ASD and SZ—that may alter CNS development and behavior. PMID:22841693

  15. Gain in Brain Immunity in the Oldest-Old Differentiates Cognitively Normal from Demented Individuals

    PubMed Central

    Katsel, Pavel; Tan, Weilun; Haroutunian, Vahram

    2009-01-01

    Background Recent findings suggest that Alzheimer's disease (AD) neuropathological features (neuritic plaques and NFTs) are not strongly associated with dementia in extreme old (over 90 years of age) and compel a search for neurobiological indices of dementia in this rapidly growing segment of the elderly population. We sought to characterize transcriptional and protein profiles of dementia in the oldest-old. Methods and Findings Gene and protein expression changes relative to non-demented age-matched controls were assessed by two microarray platforms, qPCR and Western blot in different regions of the brains of oldest-old and younger old persons who died at mild or severe stages of dementia. Our results indicate that: i) consistent with recent neuropathological findings, gene expression changes associated with cognitive impairment in oldest-old persons are distinct from those in cognitively impaired youngest-old persons; ii) transcripts affected in young-old subjects with dementia participate in biological pathways related to synaptic function and neurotransmission while transcripts affected in oldest-old subjects with dementia are associated with immune/inflammatory function; iii) upregulation of immune response genes in cognitively intact oldest-old subjects and their subsequent downregulation in dementia suggests a potential protective role of the brain immune-associated system against dementia in the oldest-old; iv) consistent with gene expression profiles, protein expression of several selected genes associated with the inflammatory/immune system in inferior temporal cortex is significantly increased in cognitively intact oldest-old persons relative to cognitively intact young-old persons, but impaired in cognitively compromised oldest-old persons relative to cognitively intact oldest-old controls. Conclusions These results suggest that disruption of the robust immune homeostasis that is characteristic of oldest-old individuals who avoided dementia may be

  16. MANF silencing, immunity induction or autophagy trigger an unusual cell type in metamorphosing Drosophila brain.

    PubMed

    Stratoulias, Vassilis; Heino, Tapio I

    2015-05-01

    Glia are abundant cells in the brain of animals ranging from flies to humans. They perform conserved functions not only in neural development and wiring, but also in brain homeostasis. Here we show that by manipulating gene expression in glia, a previously unidentified cell type appears in the Drosophila brain during metamorphosis. More specifically, this cell type appears in three contexts: (1) after the induction of either immunity, or (2) autophagy, or (3) by silencing of neurotrophic factor DmMANF in glial cells. We call these cells MANF immunoreactive Cells (MiCs). MiCs are migratory based on their shape, appearance in brain areas where no cell bodies exist and the nuclear localization of dSTAT. They are labeled with a unique set of molecular markers including the conserved neurotrophic factor DmMANF and the transcription factor Zfh1. They possess the nuclearly localized protein Relish, which is the hallmark of immune response activation. They also express the conserved engulfment receptor Draper, therefore indicating that they are potentially phagocytic. Surprisingly, they do not express any of the common glial and neuronal markers. In addition, ultrastructural studies show that MiCs are extremely rich in lysosomes. Our findings reveal critical molecular and functional components of an unusual cell type in the Drosophila brain. We suggest that MiCs resemble macrophages/hemocytes and vertebrate microglia based on their appearance in the brain upon genetically challenged conditions and the expression of molecular markers. Interestingly, macrophages/hemocytes or microglia-like cells have not been reported in the fly nervous system before.

  17. Universal immunity to influenza must outwit immune evasion

    PubMed Central

    Quiñones-Parra, Sergio; Loh, Liyen; Brown, Lorena E.; Kedzierska, Katherine; Valkenburg, Sophie A.

    2014-01-01

    Although an influenza vaccine has been available for 70 years, influenza virus still causes seasonal epidemics and worldwide pandemics. Currently available vaccines elicit strain-specific antibody (Ab) responses to the surface haemagglutinin (HA) and neuraminidase (NA) proteins, but these can be ineffective against serologically-distinct viral variants and novel subtypes. Thus, there is a great need for cross-protective or “universal” influenza vaccines to overcome the necessity for annual immunization against seasonal influenza and to provide immunity to reduce the severity of infection with pandemic or outbreak viruses. It is well established that natural influenza infection can provide cross-reactive immunity that can reduce the impact of infection with distinct influenza type A strains and subtypes, including H1N1, H3N2, H2N2, H5N1, and H7N9. The key to generating universal influenza immunity through vaccination is to target functionally-conserved regions of the virus, which include epitopes on the internal proteins for cross-reactive T cell immunity or on the HA stem for broadly reactive Ab responses. In the wake of the 2009 H1N1 pandemic, broadly neutralizing antibodies (bnAbs) have been characterized and isolated from convalescent and vaccinated individuals, inspiring development of new vaccination techniques to elicit such responses. Induction of influenza-specific T cell responses through vaccination has also been recently examined in clinical trials. Strong evidence is available from human and animal models of influenza to show that established influenza-specific T cell memory can reduce viral shedding and symptom severity. However, the published evidence also shows that CD8+ T cells can efficiently select immune escape mutants early after influenza virus infection. Here, we discuss universal immunity to influenza viruses mediated by both cross-reactive T cells and Abs, the mechanisms of immune evasion in influenza, and propose how to counteract

  18. Connecting impairment, disability, and handicap in immune mediated polyneuropathies

    PubMed Central

    Merkies, I; Schmitz, P; van der Meche, F G A; Samijn, J; van Doorn, P A

    2003-01-01

    Background: In the World Health Organisation (WHO) International Classification of Impairments, Disabilities, and Handicaps (ICIDH), it is suggested that various levels of outcome are associated with one another. However, the ICIDH has been criticised on the grounds that it only represents a general, non-specific relation between its entities. Objective: To examine the significance of the ICIDH in immune mediated polyneuropathies. Methods: Four impairment measures (fatigue severity scale, MRC sum score, "INCAT" sensory sum score, grip strength with the Vigorimeter), five disability scales (nine hole peg test, 10 metres walking test, an overall disability sum score (ODSS), Hughes functional grading scale, Rankin scale), and a handicap scale (Rotterdam nine items handicap scale (RIHS9)) were assessed in 113 clinically stable patients (83 with Guillain–Barré syndrome, 22 with chronic inflammatory demyelinating polyneuropathy, eight with a gammopathy related polyneuropathy). Regression analyses with backward and forward stepwise strategies were undertaken to determine the correlation between the various levels of outcome (impairment on disability, impairment on handicap, disability leading to handicap, and impairment plus disability on handicap). Results: Impairment measures explained a substantial part of disability (R2 = 0.64) and about half of the variance in handicap (R2 = 0.52). Disability measures showed a stronger association with handicap (R2 = 0.76). Combining impairment and disability scales accounted for 77% of the variance in handicap (RIHS9) scores. Conclusions: In contrast to some suggestions, support for the ICIDH model is found in the current study because significant associations were shown between its various levels in patients with immune mediated polyneuropathies. Further studies are required to examine other possible contributors to deficits in daily life and social functioning in these conditions. PMID:12486276

  19. FOOD-INTAKE DYSREGULATION IN TYPE 2 DIABETIC GOTO-KAKIZAKI RATS: HYPOTHESIZED ROLE OF DYSFUNCTIONAL BRAINSTEM THYROTROPIN-RELEASING HORMONE AND IMPAIRED VAGAL OUTPUT

    PubMed Central

    Zhao, K.; Ao, Y.; Harper, R.M.; Go, V. L.W.; Yang, H.

    2013-01-01

    Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56–81% in GK rats. Fasting (48 h) and refeeding (2 h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. PMID:23701881

  20. Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output.

    PubMed

    Zhao, K; Ao, Y; Harper, R M; Go, V L W; Yang, H

    2013-09-05

    Thyrotropin-releasing hormone (TRH), a neuropeptide contained in neural terminals innervating brainstem vagal motor neurons, enhances vagal outflow to modify multisystemic visceral functions and food intake. Type 2 diabetes (T2D) and obesity are accompanied by impaired vagal functioning. We examined the possibility that impaired brainstem TRH action may contribute to the vagal dysregulation of food intake in Goto-Kakizaki (GK) rats, a T2D model with hyperglycemia and impaired central vagal activation by TRH. Food intake induced by intracisternal injection of TRH analog was reduced significantly by 50% in GK rats, compared to Wistar rats. Similarly, natural food intake in the dark phase or food intake after an overnight fast was reduced by 56-81% in GK rats. Fasting (48h) and refeeding (2h)-associated changes in serum ghrelin, insulin, peptide YY, pancreatic polypeptide and leptin, and the concomitant changes in orexigenic or anorexigenic peptide expression in the brainstem and hypothalamus, all apparent in Wistar rats, were absent or markedly reduced in GK rats, with hormone release stimulated by vagal activation, such as ghrelin and pancreatic polypeptide, decreased substantially. Fasting-induced Fos expression accompanying endogenous brainstem TRH action decreased by 66% and 91%, respectively, in the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) in GK rats, compared to Wistar rats. Refeeding abolished fasting-induced Fos-expression in the NTS, while that in the DMV remained in Wistar but not GK rats. These findings indicate that dysfunctional brainstem TRH-elicited vagal impairment contributes to the disturbed food intake in T2D GK rats, and may provide a pathophysiological mechanism which prevents further weight gain in T2D and obesity. Published by Elsevier Ltd.