Science.gov

Sample records for vaginal epithelial cells

  1. Norepinephrine potentiates proinflammatory responses of human vaginal epithelial cells.

    PubMed

    Brosnahan, Amanda J; Vulchanova, Lucy; Witta, Samantha R; Dai, Yuying; Jones, Bryan J; Brown, David R

    2013-06-15

    The vaginal epithelium provides a barrier to pathogens and recruits immune defenses through the secretion of cytokines and chemokines. Several studies have shown that mucosal sites are innervated by norepinephrine-containing nerve fibers. Here we report that norepinephrine potentiates the proinflammatory response of human vaginal epithelial cells to products produced by Staphylococcus aureus, a pathogen that causes menstrual toxic shock syndrome. The cells exhibit immunoreactivity for catecholamine synthesis enzymes and the norepinephrine transporter. Moreover, the cells secrete norepinephrine and dopamine at low concentrations. These results indicate that norepinephrine may serve as an autocrine modulator of proinflammatory responses in the vaginal epithelium.

  2. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.

    PubMed

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2015-02-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild‑type (WT) mice. Administration of β‑estradiol to infant Sema4D‑deficient (Sema4D‑/‑) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β‑estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin‑B1, was examined as well as the level of apoptosis in the vaginal epithelia of five‑week‑old WT and Sema4D‑/‑ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin‑B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase‑3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five‑week‑old Sema4D‑/‑ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D‑/‑ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis‑inducing activity of Sema4D. The

  3. Adherence of Tritrichomonas foetus to bovine vaginal epithelial cells.

    PubMed Central

    Corbeil, L B; Hodgson, J L; Jones, D W; Corbeil, R R; Widders, P R; Stephens, L R

    1989-01-01

    Adherence of Tritrichomonas foetus to bovine vaginal epithelial cells (VECs) in vitro was investigated with fresh washed bovine VECs and log-phase cultures of T. foetus. Observation under phase-contrast microscopy showed that T. foetus usually adhered first by the posterior flagellum and later by the body. Significantly more keratinized squamous epithelial cells were detected with attached parasites than nonkeratinized round epithelial cells. The optimal pH range for attachment was 6.0 to 7.5, with peak attachment at pH 6.5 for squamous VECs. Surface-reactive bovine antiserum to T. foetus prevented adherence to bovine squamous VECs. Inhibition of adherence occurred at nonagglutinating, nonimmobilizing serum dilutions. Antiserum fractions enriched for immunoglobulin G1 inhibited adherence, but fractions enriched for immunoglobulin G2 did not. The inhibitory antiserum was specific for several medium- to high-molecular-weight membrane antigens as detected in Western blots (immunoblots). The ability of surface-reactive antibodies to prevent adherence and to agglutinate and immobilize T. foetus indicates that they may be protective. Images PMID:2471692

  4. The value of the Lugol's iodine staining technique for the identification of vaginal epithelial cells.

    PubMed

    Hausmann, R; Pregler, C; Schellmann, B

    1994-01-01

    This paper reports on the specificity of the Lugol's iodine staining technique for the detection of vaginal epithelial cells on penile swabs. Air-dried swabs taken from the glans of the penis of 153 hospital patients and from 50 healthy volunteers, whose last sexual intercourse had taken place at least 5 days previously, were stained with Lugol's solution. Glycogenated cells were found in more than 50% of the cases studied, even in healthy volunteers without urethritis. In almost all of these cases the smear contained at least a few polygonal nucleated epithelial cells showing an unequivocal positive Lugol reaction. These cells cannot be distinguished from superficial or intermediate vaginal cells, by cytomorphology or staining. Urinary tract infections had no influence on the glycogen content of male squamous epithelial cells. On the basis of these results the Lugol's method can no longer be assumed to prove the presence of vaginal cells in penile swabs.

  5. Growth of Normal Mouse Vaginal Epithelial Cells in and on Collagen Gels

    NASA Astrophysics Data System (ADS)

    Iguchi, Taisen; Uchima, Francis-Dean A.; Ostrander, Patricia L.; Bern, Howard A.

    1983-06-01

    Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrg1 mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers increased 4- to 8-fold in collagen gel and about 4-fold on collagen gel after 9-10 days in culture. The effect of 17β -estradiol (0.00018-180 nM in gel or 0.018-180 nM on gel) and diethylstilbestrol (DES; 0.0186-186 nM in gel) on the growth of vaginal epithelial cells was examined. The addition of estrogen did not enhance the growth of vaginal epithelial cells during this time period either in the complete medium or in a suboptimal medium. Cultures on floating collagen gels in the serum-free medium are composed of 1-3 cell layers with superficial cornification. Estrogen does not appear to be a direct mitogen for vaginal epithelial cells, at least in this system.

  6. Lactobacillus acidophilus contributes to a healthy environment for vaginal epithelial cells.

    PubMed

    Pi, Woojin; Ryu, Jae-Sook; Roh, Jaesook

    2011-09-01

    Lactobacillus species in the female genital tract are thought to act as a barrier to infection. Several studies have demonstrated that lactobacilli can adhere to vaginal epithelial cells. However, little is known about how the adherence of lactobacilli to vaginal epithelial cells affects the acidity, cell viability, or proliferation of the lactobacilli themselves or those of vaginal epithelial cells. Lactobacillus acidophilus was co-cultured with immortalized human vaginal epithelial cells (MS74 cell line), and the growth of L. acidophilus and the acidity of the culture medium were measured. MS74 cell density and viability were also assessed by counting cell numbers and observing the cell attachment state. L. acidophilus showed exponential growth for the first 6 hr until 9 hr, and the pH was maintained close to 4.0-5.0 at 24 hr after culture, consistent with previous studies. The growth curve of L. acidophilus or the pH values were relatively unaffected by co-culture with MS74 cells, confirming that L. acidophilus maintains a low pH in the presence of MS74 cells. This co-culture model could therefore potentially be used to mimic vaginal conditions for future in vitro studies. On the other hand, MS74 cells co-cultured with L. acidophilus more firmly attached to the culture plate, and a higher number of cells were present compared to cells cultured in the absence of L. acidophilus. These results indicate that L. acidophilus increases MS74 cell proliferation and viability, suggesting that lactobacilli may contribute to the healthy environment for vaginal epithelial cells.

  7. Papanicolaou staining of exfoliated vaginal epithelial cells facilitates the prediction of ovulation in the giant panda.

    PubMed

    Durrant, B; Czekala, N; Olson, M; Anderson, A; Amodeo, D; Campos-Morales, R; Gual-Sill, F; Ramos-Garza, J

    2002-04-15

    The giant panda is seasonally monoestrus, experiencing a single estrous with spontaneous ovulation in the spring. Therefore, accurate monitoring of the estrous cycle to pinpoint the time of ovulation is critical for the success of timed mating or artificial insemination. Analysis of exfoliated vaginal epithelial cells is a simple technique that rapidly yields information about the estrous status of a panda. Vaginal swabs were obtained during five estrous cycles of two nulliparous females. Cells were stained with the trichrome Papanicolaou and classified as basophils, intermediates or superficials. The color of stained cells, basophilic, acidophilic or keratinized, was recorded as a characteristic independent of the three standard cell types. The day urinary conjugates of estrogen fell from peak levels was considered the day of ovulation. A chromic shift occurred 8-9 days before ovulation when the majority of exfoliated vaginal cells changed from basophilic (blue) to acidophilic (pink) without accompanying nuclear or cytoplasmic changes. A second chromic shift was consistently observed 2 days prior to ovulation when keratinized (orange) cells replaced acidophils as the majority of vaginal cells. Monochrome staining of vaginal cells is sufficient to quantify superficial cells, which is a useful adjunct to behavioral and endocrinological data in determining estrous in the giant panda. However, the timing and duration of superficial cell elevations are substantially different between and within individual females, which limits the accuracy of timing ovulation for artificial insemination. The predictive value of vaginal cytology was greatly enhanced with the trichrome stain and evaluation of cell color.

  8. Ultrastructural evidence for the presence of crystalline structures in pig vaginal epithelial cells.

    PubMed

    Gupta, P D; Sierralta, W D

    1994-01-01

    Terminally differentiated intermediate layers of vaginal epithelial cells from the late follicular phase of the pig show crystalline structures. Analysis of two dimensional images by transmission electron microscopy revealed that these structures are composed of rhomboid subunits. The longer side measures 26 nm whereas the smaller side measures 24 nm. The angles between the sides are 100 degrees and 80 degrees. These structures are not associated with any cellular structures and are not evident in other phases of the oestrous cycle. Structurally, they do not match with Reinke's crystals and are probably regulated by hormones.

  9. Adenosine, but not guanosine, protects vaginal epithelial cells from Trichomonas vaginalis cytotoxicity.

    PubMed

    Menezes, Camila Braz; Frasson, Amanda Piccoli; Meirelles, Lucia Collares; Tasca, Tiana

    2017-02-01

    Trichomonas vaginalis causes the most common non-viral sexually transmitted disease worldwide. The cytoadherence and cytotoxicity upon the vaginal epithelial cells are crucial for the infection. Extracellular nucleotides are released during cell damage and, along with their nucleosides, can activate purinoceptors. The opposing effects of nucleotides versus nucleosides are regulated by ectonucleotidases. Herein we evaluated the hemolysis and cytolysis induced by T. vaginalis, as well as the extracellular nucleotide hydrolysis along with the effects mediated by nucleotides and nucleosides on cytotoxicity. In addition, the gene expression of purinoceptors in host cells was determined. The hemolysis and cytolysis exerted by all T. vaginalis isolates presented positive Pearson correlation. All T. vaginalis isolates were able to hydrolyze nucleotides, showing higher NTPDase than ecto-5'-nucleotidase activity. The most cytotoxic isolate, TV-LACM6, hydrolyzes ATP, GTP with more efficiency than AMP and GMP. The vaginal epithelial cell line (HMVII) expressed the genes for all subtypes of P1, P2X and P2Y receptors. Finally, when nucleotides and nucleosides were tested, the cytotoxic effect elicited by TV-LACM6 was increased with nucleotides. In contrast, the cytotoxicity was reversed by adenosine in presence of EHNA, but not by guanosine, contributing to the understanding of the purinergic signaling role on T. vaginalis cytotoxicity.

  10. Lactobacillus crispatus Modulates Vaginal Epithelial Cell Innate Response to Candida albicans

    PubMed Central

    Niu, Xiao-Xi; Li, Ting; Zhang, Xu; Wang, Su-Xia; Liu, Zhao-Hui

    2017-01-01

    Background: Vulvovaginal candidiasis is caused by Candida albicans. The vaginal epithelium, as the first site of the initial stage of infection by pathogens, plays an important role in resisting genital tract infections. Moreover, lactobacilli are predominant members of the vaginal microbiota that help to maintain a normal vaginal microenvironment. Therefore, Lactobacillus crispatus was explored for its capacity to intervene in the immune response of vaginal epithelial cells VK2/E6E7 to C. albicans. Methods: We examined the interleukin-2 (IL-2), 4, 6, 8, and 17 produced by VK2/E6E7 cells infected with C. albicans and treated with L. crispatus in vitro. The capacity of L. crispatus to adhere to VK2/E6E7 and inhibit C. albicans growth was also tested by scanning electron microscopy (SEM) and adhesion experiments. Results: Compared with group VK2/E6E7 with C. albicans, when treated with L. crispatus, the adhesion of C. albicans to VK2/E6E7 cells decreased significantly by 52.87 ± 1.22%, 47.03 ± 1.35%, and 42.20 ± 1.55% under competition, exclusion, and displacement conditions, respectively. SEM revealed that the invasion of C. albicans into VK2/E6E7 cells was caused by induced endocytosis and active penetration. L. crispatus could effectively protect the cells from the virulence of hyphae and spores of C. albicans and enhance the local immune function of the VK2/E6E7 cells. The concentrations of IL-2, 6, and 17 were upregulated significantly (P < 0.01) and that of IL-8 were downregulated significantly (P < 0.01) in infected VK2/E6E7 cells treated with L. crispatus. The concentration of IL-4 was similar to that of the group VK2/E6E7 with C. albicans (24.10 ± 0.97 vs. 23.12 ± 0.76 pg/ml, P = 0.221). Conclusions: L. crispatus can attenuate the virulence of C. albicans, modulate the secretion of cytokines and chemokines, and enhance the immune response of VK2/E6E7 cells in vitro. The vaginal mucosa has a potential function in the local immune responses against

  11. The Absence of N-Acetyl-D-glucosamine Causes Attenuation of Virulence of Candida albicans upon Interaction with Vaginal Epithelial Cells In Vitro.

    PubMed

    Manczinger, Máté; Bocsik, Alexandra; Kocsis, Gabriella F; Vörös, Andrea; Hegedűs, Zoltán; Ördögh, Lilla; Kondorosi, Éva; Marton, Annamária; Vízler, Csaba; Tubak, Vilmos; Deli, Mária; Kemény, Lajos; Nagy, István; Lakatos, Lóránt

    2015-01-01

    To better understand the molecular events underlying vulvovaginal candidiasis, we established an in vitro system. Immortalized vaginal epithelial cells were infected with live, yeast form C. albicans and C. albicans cultured in the same medium without vaginal epithelial cells were used as control. In both cases a yeast to hyphae transition was robustly induced. Whole transcriptome sequencing was used to identify specific gene expression changes in C. albicans. Numerous genes leading to a yeast to hyphae transition and hyphae specific genes were upregulated in the control hyphae and the hyphae in response to vaginal epithelial cells. Strikingly, the GlcNAc pathway was exclusively triggered by vaginal epithelial cells. Functional analysis in our in vitro system revealed that the GlcNAc biosynthesis is involved in the adherence to, and the ability to kill, vaginal epithelial cells in vitro, thus indicating the key role for this pathway in the virulence of C. albicans upon vulvovaginal candidiasis.

  12. Tritrichomonas foetus Induces Apoptotic Cell Death in Bovine Vaginal Epithelial Cells

    PubMed Central

    Singh, B. N.; Lucas, J. J.; Hayes, G. R.; Kumar, Ish; Beach, D. H.; Frajblat, Marcel; Gilbert, R. O.; Sommer, U.; Costello, C. E.

    2004-01-01

    Tritrichomonas foetus is a serious veterinary pathogen, causing bovine trichomoniasis, a sexually transmitted disease leading to infertility and abortion. T. foetus infects the mucosal surfaces of the reproductive tract. Infection with T. foetus leads to apoptotic cell death of bovine vaginal epithelial cells (BVECs) in culture. An affinity-purified cysteine protease (CP) fraction yielding on sodium dodecyl sulfate-polyacrylamide gel electrophoresis a single band with an apparent molecular mass of 30 kDa (CP30) also induces BVEC apoptosis. Treatment of CP30 with the protease inhibitors TLCK (Nα-p-tosyl-l-lysine chloromethyl ketone) and E-64 [l-trans-epoxysuccinyl-leucylamide-(4-guanido)-butane] greatly reduces induction of BVEC apoptosis. Matrix-assisted laser desorption ionization-time-of-flight MALDI-TOF mass spectrometry analysis of CP30 reveals a single peak with a molecular mass of 23.7 kDa. Mass spectral peptide sequence analysis of proteolytically digested CP30 reveals homologies to a previously reported cDNA clone, CP8 (D. J. Mallinson, J. Livingstone, K. M. Appleton, S. J. Lees, G. H. Coombs, and M. J. North, Microbiology 141:3077-3085, 1995). Induction of apoptosis is highly species specific, since the related human parasite Trichomonas vaginalis and associated purified CPs did not induce BVEC death. Fluorescence microscopy along with the Cell Death Detection ELISAPLUS assay and flow cytometry analyses were used to detect apoptotic nuclear condensation, DNA fragmentation, and changes in plasma membrane asymmetry in host cells undergoing apoptosis in response to T. foetus infection or incubation with CP30. Additionally, the activation of caspase-3 and inhibition of cell death by caspase inhibitors indicates that caspases are involved in BVEC apoptosis. These results imply that apoptosis is involved in the pathogenesis of T. foetus infection in vivo, which may have important implications for therapeutic interference with host cell death that could alter

  13. Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells.

    PubMed

    Zhu, Yaqi; Yang, Yan; Guo, Juanjuan; Dai, Ying; Ye, Lina; Qiu, Jianbin; Zeng, Zhihong; Wu, Xiaoting; Xing, Yanmei; Long, Xiang; Wu, Xufeng; Ye, Lin; Wang, Shubin; Li, Hui

    2017-01-27

    Herpes simplex virus type 2 (HSV-2) infects human genital mucosa and establishes life-long latent infection. It is unmet need to establish a human cell-based microphysiological system for virus biology and anti-viral drug discovery. One of barriers is lacking of culture system of normal epithelial cells in vitro over decades. In this study, we established human normal vaginal epithelial cell (HNVEC) culture using co-culture system. HNVEC cells were then propagated rapidly and stably in a defined culture condition. HNVEC cells exhibited a normal diploid karyotype and formed the well-defined and polarized spheres in matrigel three-dimension (3D) culture, while malignant cells (HeLa) formed disorganized and nonpolar solid spheres. HNVEC cells had a normal cellular response to DNA damage and had no transforming property using soft agar assays. HNVEC expressed epithelial marker cytokeratin 14 (CK14) and p63, but not cytokeratin 18 (CK18). Next, we reconstructed HNVEC-derived 3D vaginal epithelium using air-liquid interface (ALI) culture. This 3D vaginal epithelium has the basal and apical layers with expression of epithelial markers as its originated human vaginal tissue. Finally, we established an HSV-2 infection model based on the reconstructed 3D vaginal epithelium. After inoculation of HSV-2 (G strain) at apical layer of the reconstructed 3D vaginal epithelium, we observed obvious pathological effects gradually spreading from the apical layer to basal layer with expression of a viral protein. Thus, we established an ex vivo 2D and 3D HSV-2 infection model that can be used for HSV-2 virology and anti-viral drug discovery.

  14. Effect of the purinergic receptor P2X7 on Chlamydia infection in cervical epithelial cells and vaginally infected mice.

    PubMed

    Darville, Toni; Welter-Stahl, Lynn; Cruz, Cristiane; Sater, Ali Abdul; Andrews, Charles W; Ojcius, David M

    2007-09-15

    Ligation of the purinergic receptor, P2X7R, with its agonist ATP has been previously shown to inhibit intracellular infection by chlamydiae and mycobacteria in macrophages. The effect of P2X7R on chlamydial infection had never been investigated in the preferred target cells of chlamydiae, cervical epithelial cells, nor in vaginally infected mice. In this study, we show that treatment of epithelial cells with P2X7R agonists inhibits partially Chlamydia infection in epithelial cells. Chelation of ATP with magnesium or pretreatment with a P2X7R antagonist blocks the inhibitory effects of ATP. Similarly to previous results obtained with macrophages, ATP-mediated inhibition of infection in epithelial cells requires activation of host-cell phospholipase D. Vaginal infection was also more efficient in P2X7R-deficient mice, which also displayed a higher level of acute inflammation in the endocervix, oviduct, and mesosalpingeal tissues than in infected wild-type mice. However, secretion of IL-1beta, which requires P2X7R ligation during infection by other pathogens, was decreased mildly and only at short times of infection. Taken together, these results suggest that P2X7R affects Chlamydia infection by directly inhibiting infection in epithelial cells, rather than through the ability of P2X7R to modulate IL-1beta secretion.

  15. Enterococcus faecalis inhibits superantigen toxic shock syndrome toxin-1-induced interleukin-8 from human vaginal epithelial cells through tetramic acids.

    PubMed

    Brosnahan, Amanda J; Merriman, Joseph A; Salgado-Pabón, Wilmara; Ford, Bradley; Schlievert, Patrick M

    2013-01-01

    The vaginal mucosa can be colonized by many bacteria including commensal organisms and potential pathogens, such as Staphylococcus aureus. Some strains of S. aureus produce the superantigen toxic shock syndrome toxin-1, which can penetrate the vaginal epithelium to cause toxic shock syndrome. We have observed that a female was mono-colonized with Enterococcus faecalis vaginally as tested in aerobic culture, even upon repeated culture for six months, suggesting this organism was negatively influencing colonization by other bacteria. In recent studies, we demonstrated an "outside-in" mechanism of cytokine signaling and consequent inflammation that facilitates the ability of potential pathogens to initiate infection from mucosal surfaces. Thus, we hypothesized that this strain of E. faecalis may make anti-inflammatory factors which block disease progression of more pathogenic organisms. E. faecalis MN1 inhibited interleukin-8 production from human vaginal epithelial cells in response to the vaginal pathogens Candida albicans, Gardnerella vaginalis, and Neisseria gonorrhoeae, as well as to toxic shock syndrome toxin-1. We further demonstrated that this organism secretes two tetramic acid compounds which appear responsible for inhibition of interleukin-8 production, as well as inhibition of T cell proliferation due to toxic shock syndrome toxin-1. Microbicides that include anti-inflammatory molecules, such as these tetramic acid compounds naturally produced by E. faecalis MN1, may be useful in prevention of diseases that develop from vaginal infections.

  16. Enterococcus faecalis Inhibits Superantigen Toxic Shock Syndrome Toxin-1-Induced Interleukin-8 from Human Vaginal Epithelial Cells through Tetramic Acids

    PubMed Central

    Brosnahan, Amanda J.; Merriman, Joseph A.; Salgado-Pabón, Wilmara; Ford, Bradley; Schlievert, Patrick M.

    2013-01-01

    The vaginal mucosa can be colonized by many bacteria including commensal organisms and potential pathogens, such as Staphylococcus aureus. Some strains of S. aureus produce the superantigen toxic shock syndrome toxin-1, which can penetrate the vaginal epithelium to cause toxic shock syndrome. We have observed that a female was mono-colonized with Enterococcus faecalis vaginally as tested in aerobic culture, even upon repeated culture for six months, suggesting this organism was negatively influencing colonization by other bacteria. In recent studies, we demonstrated an “outside-in” mechanism of cytokine signaling and consequent inflammation that facilitates the ability of potential pathogens to initiate infection from mucosal surfaces. Thus, we hypothesized that this strain of E. faecalis may make anti-inflammatory factors which block disease progression of more pathogenic organisms. E. faecalis MN1 inhibited interleukin-8 production from human vaginal epithelial cells in response to the vaginal pathogens Candida albicans, Gardnerella vaginalis, and Neisseria gonorrhoeae, as well as to toxic shock syndrome toxin-1. We further demonstrated that this organism secretes two tetramic acid compounds which appear responsible for inhibition of interleukin-8 production, as well as inhibition of T cell proliferation due to toxic shock syndrome toxin-1. Microbicides that include anti-inflammatory molecules, such as these tetramic acid compounds naturally produced by E. faecalis MN1, may be useful in prevention of diseases that develop from vaginal infections. PMID:23613823

  17. Soy Formula and Epigenetic Modifications: Analysis of Vaginal Epithelial Cells from Infant Girls in the IFED Study

    PubMed Central

    Harlid, Sophia; Adgent, Margaret; Jefferson, Wendy N.; Panduri, Vijayalakshmi; Umbach, David M.; Xu, Zongli; Stallings, Virginia A.; Williams, Carmen J.; Rogan, Walter J.; Taylor, Jack A.

    2016-01-01

    Background: Early-life exposure to estrogenic compounds affects the development of the reproductive system in rodent models and humans. Soy products, which contain phytoestrogens such as genistein, are one source of exposure in infants fed soy formula, and they result in high serum concentrations. Objectives: Our goal was to determine whether soy exposure is associated with differential DNA methylation in vaginal cells from soy-fed infant girls. Methods: Using the Illumina HumanMethylation450 BeadChip, we evaluated epigenome-wide DNA methylation in vaginal cells from four soy formula–fed and six cow formula–fed girls from the Infant Feeding and Early Development (IFED) study. Using pyrosequencing we followed up the two most differentially methylated sites in 214 vaginal cell samples serially collected between birth and 9 months of age from 50 girls (28 soy formula–fed and 22 cow formula–fed). With a mouse model, we examined the effect of neonatal exposure to genistein on gene specific mRNA levels in vaginal tissue. Results: The epigenome-wide scan suggested differences in methylation between soy formula–fed and cow formula–fed infants at three CpGs in the gene proline rich 5 like (PRR5L) (p < 104). Pyrosequencing of the two feeding groups found that methylation levels progressively diverged with age, with pointwise differences becoming statistically significant after 126 days. Genistein-exposed mice showed a 50% decrease in vaginal Prr5l mRNA levels compared to controls. Conclusions: Girls fed soy formula have altered DNA methylation in vaginal cell DNA which may be associated with decreased expression of an estrogen-responsive gene. Citation: Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA. 2017. Soy formula and epigenetic modifications: analysis of vaginal epithelial cells from infant girls in the IFED study. Environ Health Perspect 125:447–452; http://dx.doi.org/10.1289/EHP428 PMID

  18. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65

    PubMed Central

    Kucknoor, Ashwini S.; Mundodi, Vasanthakrishna; Alderete, John F.

    2007-01-01

    Summary We showed recently that contact of human vaginal epithelial cells (VECs) by Trichomonas vaginalis and incubation with trichomonad proteins in conditioned medium induced expression of VEC genes. We performed 2-D SDS-PAGE followed by MALDI-TOF to identify the major secreted proteins. Based on protein abundance and separation of spots in 2-D gels, 32 major secreted proteins were examined, which gave 19 proteins with accession numbers. These proteins included known secreted cysteine proteinases. In addition, other secreted proteins were enzymes of carbohydrate metabolism, adhesin protein AP65, heat shock proteins, thioredoxin reductase and coronins. We confirmed that the secreted trichomonad proteins induced expression of VEC genes, including interleukin 8 (IL-8), COX-2 and fibronectin. Purified AP65 added to VECs had a pronounced effect only on IL-8 gene expression, which was inhibited in the presence of 12G4 monoclonal antibody to AP65. Moreover, AP65 expressed episomally within epithelial cells was found to enhance the expression of IL-8 and COX-2. This may be the first report of analysis of the secreted proteins of T. vaginalis and of the host epithelial cell response to these proteins and to the prominent adhesin AP65. PMID:17590165

  19. Wnt family genes and their modulation in the ovary-independent and persistent vaginal epithelial cell proliferation and keratinization induced by neonatal diethylstilbestrol exposure in mice.

    PubMed

    Nakamura, Takeshi; Miyagawa, Shinichi; Katsu, Yoshinao; Watanabe, Hajime; Mizutani, Takeshi; Sato, Tomomi; Morohashi, Ken-Ichirou; Takeuchi, Takashi; Iguchi, Taisen; Ohta, Yasuhiko

    2012-06-14

    Proliferation and differentiation of cells in female reproductive organs, the oviduct, uterus and vagina, are regulated by endogenous estrogen. In utero exposure to a synthetic estrogen, diethylstilbestrol (DES), induces vaginal clear-cell adenocarcinoma in humans. In mice, perinatal exposure to DES results in abnormalities such as polyovular follicles, uterine circular muscle disorganization and persistent vaginal epithelial cell proliferation. We reported the persistent gene expression change such as interleukin-1 (IL-1) related genes, insulin-like growth factor-I (IGF-I) and its downstream signaling in the mouse vagina exposed neonatally to DES. In this study, we found persistent up-regulation of Wnt4 and persistent down-regulation of Wnt11 in the vagina of mice exposed neonatally to DES and estrogen receptor α specific ligand. Also Wnt4 expression in vagina is correlated to the stratification of epithelial cells with the superficial keratinization of vagina, but not epithelial cell stratification only.

  20. Expression of hemoglobin-α and β subunits in human vaginal epithelial cells and their functional significance

    PubMed Central

    Saha, Debarchana; Koli, Swanand; Patgaonkar, Mandar; Reddy, Kudumula Venkata Rami

    2017-01-01

    Hemoglobin (Hb) is a major protein involved in transport of oxygen (O2). It consists of Hb-α and Hb-β subunits, which are normally expressed by cells of erythroid lineage. However, till recently, it was not known whether non-erythroid cells like vaginal cells synthesize Hb and whether it has any functional significance. Therefore, we designed the following objectives: (1) to establish in-vitro culture system of human primary vaginal epithelial cells (hPVECs), (2) to determine whether Hb-α and Hb-β proteins are truly synthesized by hPVECs, (3) to evaluate the effect of LPS (lipopolysaccharide) on the expression of Hb-α and Hb-β proteins (4) to decipher the significance of the Hb-α and Hb-β expression in hPVECs and (5) to determine the molecular mechanism regulating the expression of Hb-α in hPVECs. To accomplish these studies, we applied a battery of assays such as RT-PCR, qRT-PCR, Flow cytometry, western blot, and immunofluorescence, Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). The results revealed the expression of Hb-α and Hb-β at both mRNA and protein level in hPVECs. The expression was significantly upregulated following LPS treatment (10μg/ml for 6 hrs) and these results are comparable with the expression induced by LPS in human vaginal epithelial cell line (VK2/E6E7). These cells constitutively produced low levels of pro-inflammatory (IL-6) and anti-inflammatory (IL-10) cytokines. Also, the response of phosphorylated (p65)-NF-κB to LPS was upregulated with increased expression of IL-6, Toll-like receptor-4 (TLR4) and human beta defensin-1 (hBD-1) in hPVECs and VK2/E6E7 cells. However, Bay 11–7082 treatment (5μM for 24 hrs) could neutralize the effect of LPS-induced p65-NF-κB activity and represses the production`of Hb-α and Hb-β. The results of EMSA revealed the presence of putative binding sites of NF-κB in the human Hb-α promoter region (nt-115 to -106). ChIP analysis confirmed the binding of NF

  1. Specific vaginal lactobacilli suppress the inflammation induced by lipopolysaccharide stimulation through downregulation of toll-like receptor 4 expression in human embryonic intestinal epithelial cells

    PubMed Central

    TOBITA, Keisuke; WATANABE, Itsuki; SAITO, Masanori

    2016-01-01

    Vaginal lactobacilli (VLB) spread from the mother to the infant during vaginal delivery. However, the effects of VLB on infant intestinal function remain unclear. We investigated the probiotic function and immune effects of VLB on the human embryonic intestinal epithelial cell line INT-407. VLB survived artificial gastric juice and adhered to INT-407 cells. Exposure of INT-407 cells to VLB attenuated both the lipopolysaccharide (LPS)-induced stimulation of interleukin-8 and tumor necrosis factor alpha production and the LPS-stimulated upregulation of TLR4 expression. These results suggest that specific VLB suppresses the inflammation induced by LPS stimulation through downregulation of TLR4 expression in human embryonic intestinal epithelial cells. PMID:28243550

  2. Diffusion of Immunoglobulin G in Shed Vaginal Epithelial Cells and in Cell-Free Regions of Human Cervicovaginal Mucus

    PubMed Central

    Wang, Ying-Ying; Schroeder, Holly A.; Nunn, Kenetta L.; Woods, Karen; Anderson, Deborah J.; Cone, Richard A.

    2016-01-01

    Human cervicovaginal mucus (CVM) is a viscoelastic gel containing a complex mixture of mucins, shed epithelial cells, microbes and macromolecules, such as antibodies, that together serve as the first line of defense against invading pathogens. Here, to investigate the affinity between IgG and different mucus constituents, we used Fluorescence Recovery After Photobleaching (FRAP) to measure the diffusion of IgG in fresh, minimally modified CVM. We found that CVM exhibits substantial spatial variations that necessitate careful selection of the regions in which to perform FRAP. In portions of CVM devoid of cells, FRAP measurements using different IgG antibodies and labeling methods consistently demonstrate that both exogenous and endogenous IgG undergo rapid diffusion, almost as fast as in saline, in good agreement with the rapid diffusion of IgG in mid-cycle endocervical mucus that is largely devoid of cells. This rapid diffusion indicates the interactions between secreted mucins and IgG must be very weak and transient. IgG also accumulated in cellular debris and shed epithelial cells that had become permeable to IgG, which may allow shed epithelial cells to serve as reservoirs of secreted IgG. Interestingly, in contrast to cell-free regions of CVM, the diffusion of cell-associated IgG was markedly slowed, suggesting greater affinity between IgG and cellular constituents. Our findings contribute to an improved understanding of the role of IgG in mucosal protection against infectious diseases, and may also provide a framework for using FRAP to study molecular interactions in mucus and other complex biological environments. PMID:27362256

  3. Characterization of Human Vaginal Mucosa Cells for Autologous In Vitro Cultured Vaginal Tissue Transplantation in Patients with MRKH Syndrome

    PubMed Central

    Nodale, Cristina; D'Amici, Sirio; Maffucci, Diana; Ceccarelli, Simona; Monti, Marco; Benedetti Panici, Pierluigi; Romano, Ferdinando; Angeloni, Antonio; Marchese, Cinzia

    2014-01-01

    Mayer-Rokitansky-Küster-Hauser (MRKH) is a rare syndrome characterized by congenital aplasia of the uterus and vagina. The most common procedure used for surgical reconstruction of the neovagina is the McIndoe vaginoplasty, which consists in creation of a vaginal canal covered with a full-thickness skin graft. Here we characterized the autologous in vitro cultured vaginal tissue proposed as alternative material in our developed modified McIndoe vaginoplasty in order to underlie its importance in autologous total vaginal replacement. To this aim human vaginal mucosa cells (HVMs) were isolated from vaginal mucosa of patients affected by MRKH syndrome and characterized with respect to growth kinetics, morphology, PAS staining, and expression of specific epithelial markers by immunofluorescence, Western blot, and qRT-PCR analyses. The presence of specific epithelial markers along with the morphology and the presence of mucified cells demonstrated the epithelial nature of HMVs, important for an efficient epithelialization of the neovagina walls and for creating a functional vaginal cavity. Moreover, these cells presented characteristics of effective proliferation as demonstrated by growth kinetics assay. Therefore, the autologous in vitro cultured vaginal tissue might represent a highly promising and valid material for McIndoe vaginoplasty. PMID:25162002

  4. Polyethylene glycol-functionalized poly (Lactic Acid-co-Glycolic Acid) and graphene oxide nanoparticles induce pro-inflammatory and apoptotic responses in Candida albicans-infected vaginal epithelial cells.

    PubMed

    Wagner, R Doug; Johnson, Shemedia J; Danielsen, Zhixia Yan; Lim, Jin-Hee; Mudalige, Thilak; Linder, Sean

    2017-01-01

    Mucous-penetrating nanoparticles consisting of poly lactic acid-co-glycolic acid (PLGA)-polyethylene glycol (PEG) could improve targeting of microbicidal drugs for sexually transmitted diseases by intravaginal inoculation. Nanoparticles can induce inflammatory responses, which may exacerbate the inflammation that occurs in the vaginal tracts of women with yeast infections. This study evaluated the effects of these drug-delivery nanoparticles on VK2(E6/E7) vaginal epithelial cell proinflammatory responses to Candida albicans yeast infections. Vaginal epithelial cell monolayers were infected with C. albicans and exposed to 100 μg/ml 49.5 nm PLGA-PEG nanospheres or 20 μg/ml 1.1 x 500 nm PEG-functionalized graphene oxide (GO-PEG) sheets. The cells were assessed for changes in mRNA and protein expression of inflammation-related genes by RT-qPCR and physiological markers of cell stress using high content analysis and flow cytometry. C. albicans exposure suppressed apoptotic gene expression, but induced oxidative stress in the cells. The nanomaterials induced cytotoxicity and programmed cell death responses alone and with C. albicans. PLGA-PEG nanoparticles induced mRNA expression of apoptosis-related genes and induced poly (ADP-ribose) polymerase (PARP) cleavage, increased BAX/BCL2 ratios, and chromatin condensation indicative of apoptosis. They also induced autophagy, endoplasmic reticulum stress, and DNA damage. They caused the cells to excrete inflammatory recruitment molecules chemokine (C-X-C motif) ligand 1 (CXCL1), interleukin-1α (IL1A), interleukin-1β (IL1B), calprotectin (S100A8), and tumor necrosis factor α (TNF). GO-PEG nanoparticles induced expression of necrosis-related genes and cytotoxicity. They reduced autophagy and endoplasmic reticulum stress, and apoptotic gene expression responses. The results show that stealth nanoparticle drug-delivery vehicles may cause intracellular damage to vaginal epithelial cells by several mechanisms and that their use

  5. Polyethylene glycol-functionalized poly (Lactic Acid-co-Glycolic Acid) and graphene oxide nanoparticles induce pro-inflammatory and apoptotic responses in Candida albicans-infected vaginal epithelial cells

    PubMed Central

    Johnson, Shemedia J.; Danielsen, Zhixia Yan; Lim, Jin-Hee; Mudalige, Thilak; Linder, Sean

    2017-01-01

    Mucous-penetrating nanoparticles consisting of poly lactic acid-co-glycolic acid (PLGA)-polyethylene glycol (PEG) could improve targeting of microbicidal drugs for sexually transmitted diseases by intravaginal inoculation. Nanoparticles can induce inflammatory responses, which may exacerbate the inflammation that occurs in the vaginal tracts of women with yeast infections. This study evaluated the effects of these drug-delivery nanoparticles on VK2(E6/E7) vaginal epithelial cell proinflammatory responses to Candida albicans yeast infections. Vaginal epithelial cell monolayers were infected with C. albicans and exposed to 100 μg/ml 49.5 nm PLGA-PEG nanospheres or 20 μg/ml 1.1 x 500 nm PEG-functionalized graphene oxide (GO-PEG) sheets. The cells were assessed for changes in mRNA and protein expression of inflammation-related genes by RT-qPCR and physiological markers of cell stress using high content analysis and flow cytometry. C. albicans exposure suppressed apoptotic gene expression, but induced oxidative stress in the cells. The nanomaterials induced cytotoxicity and programmed cell death responses alone and with C. albicans. PLGA-PEG nanoparticles induced mRNA expression of apoptosis-related genes and induced poly (ADP-ribose) polymerase (PARP) cleavage, increased BAX/BCL2 ratios, and chromatin condensation indicative of apoptosis. They also induced autophagy, endoplasmic reticulum stress, and DNA damage. They caused the cells to excrete inflammatory recruitment molecules chemokine (C-X-C motif) ligand 1 (CXCL1), interleukin-1α (IL1A), interleukin-1β (IL1B), calprotectin (S100A8), and tumor necrosis factor α (TNF). GO-PEG nanoparticles induced expression of necrosis-related genes and cytotoxicity. They reduced autophagy and endoplasmic reticulum stress, and apoptotic gene expression responses. The results show that stealth nanoparticle drug-delivery vehicles may cause intracellular damage to vaginal epithelial cells by several mechanisms and that their use

  6. Anti-Retroviral Lectins Have Modest Effects on Adherence of Trichomonas vaginalis to Epithelial Cells In Vitro and on Recovery of Tritrichomonas foetus in a Mouse Vaginal Model.

    PubMed

    Chatterjee, Aparajita; Ratner, Daniel M; Ryan, Christopher M; Johnson, Patricia J; O'Keefe, Barry R; Secor, W Evan; Anderson, Deborah J; Robbins, Phillips W; Samuelson, John

    2015-01-01

    Trichomonas vaginalis causes vaginitis and increases the risk of HIV transmission by heterosexual sex, while Tritrichomonas foetus causes premature abortion in cattle. Our goals were to determine the effects, if any, of anti-retroviral lectins, which are designed to prevent heterosexual transmission of HIV, on adherence of Trichomonas to ectocervical cells and on Tritrichomonas infections in a mouse model. We show that Trichomonas Asn-linked glycans (N-glycans), like those of HIV, bind the mannose-binding lectin (MBL) that is part of the innate immune system. N-glycans of Trichomonas and Tritrichomonas bind anti-retroviral lectins (cyanovirin-N and griffithsin) and the 2G12 monoclonal antibody, each of which binds HIV N-glycans. Binding of cyanovirin-N appears to be independent of susceptibility to metronidazole, the major drug used to treat Trichomonas. Anti-retroviral lectins, MBL, and galectin-1 cause Trichomonas to self-aggregate and precipitate. The anti-retroviral lectins also increase adherence of ricin-resistant mutants, which are less adherent than parent cells, to ectocervical cell monolayers and to organotypic EpiVaginal tissue cells. Topical application of either anti-retroviral lectins or yeast N-glycans decreases by 40 to 70% the recovery of Tritrichomonas from the mouse vagina. These results, which are explained by a few simple models, suggest that the anti-retroviral lectins have a modest potential for preventing or treating human infections with Trichomonas.

  7. Anti-Retroviral Lectins Have Modest Effects on Adherence of Trichomonas vaginalis to Epithelial Cells In Vitro and on Recovery of Tritrichomonas foetus in a Mouse Vaginal Model

    PubMed Central

    Chatterjee, Aparajita; Ratner, Daniel M.; Ryan, Christopher M.; Johnson, Patricia J.; O’Keefe, Barry R.; Secor, W. Evan; Anderson, Deborah J.; Robbins, Phillips W.; Samuelson, John

    2015-01-01

    Trichomonas vaginalis causes vaginitis and increases the risk of HIV transmission by heterosexual sex, while Tritrichomonas foetus causes premature abortion in cattle. Our goals were to determine the effects, if any, of anti-retroviral lectins, which are designed to prevent heterosexual transmission of HIV, on adherence of Trichomonas to ectocervical cells and on Tritrichomonas infections in a mouse model. We show that Trichomonas Asn-linked glycans (N-glycans), like those of HIV, bind the mannose-binding lectin (MBL) that is part of the innate immune system. N-glycans of Trichomonas and Tritrichomonas bind anti-retroviral lectins (cyanovirin-N and griffithsin) and the 2G12 monoclonal antibody, each of which binds HIV N-glycans. Binding of cyanovirin-N appears to be independent of susceptibility to metronidazole, the major drug used to treat Trichomonas. Anti-retroviral lectins, MBL, and galectin-1 cause Trichomonas to self-aggregate and precipitate. The anti-retroviral lectins also increase adherence of ricin-resistant mutants, which are less adherent than parent cells, to ectocervical cell monolayers and to organotypic EpiVaginal tissue cells. Topical application of either anti-retroviral lectins or yeast N-glycans decreases by 40 to 70% the recovery of Tritrichomonas from the mouse vagina. These results, which are explained by a few simple models, suggest that the anti-retroviral lectins have a modest potential for preventing or treating human infections with Trichomonas. PMID:26252012

  8. Vaginal Cancer Overview

    MedlinePlus

    ... called the epithelium, which contains cells called squamous epithelial cells. The vaginal wall, underneath the epithelium, is made up of connective tissue, involuntary muscle tissue, lymph vessels, and nerves. About ...

  9. Automated segmentation algorithm for detection of changes in vaginal epithelial morphology using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Vincent, Kathleen L.; Vargas, Gracie; Motamedi, Massoud

    2012-11-01

    We have explored the use of optical coherence tomography (OCT) as a noninvasive tool for assessing the toxicity of topical microbicides, products used to prevent HIV, by monitoring the integrity of the vaginal epithelium. A novel feature-based segmentation algorithm using a nearest-neighbor classifier was developed to monitor changes in the morphology of vaginal epithelium. The two-step automated algorithm yielded OCT images with a clearly defined epithelial layer, enabling differentiation of normal and damaged tissue. The algorithm was robust in that it was able to discriminate the epithelial layer from underlying stroma as well as residual microbicide product on the surface. This segmentation technique for OCT images has the potential to be readily adaptable to the clinical setting for noninvasively defining the boundaries of the epithelium, enabling quantifiable assessment of microbicide-induced damage in vaginal tissue.

  10. Patterns of Expression of Vaginal T-Cell Activation Markers during Estrogen-Maintained Vaginal Candidiasis.

    PubMed

    Al-Sadeq, Ameera; Hamad, Mawieh; Abu-Elteen, Khaled

    2008-12-15

    : The immunosuppressive activity of estrogen was further investigated by assessing the pattern of expression of CD25, CD28, CD69, and CD152 on vaginal T cells during estrogen-maintained vaginal candidiasis. A precipitous and significant decrease in vaginal fungal burden toward the end of week 3 postinfection was concurrent with a significant increase in vaginal lymphocyte numbers. During this period, the percentage of CD3+, CD3+CD4+, CD152+, and CD28+ vaginal T cells gradually and significantly increased. The percentage of CD3+ and CD3+CD4+ cells increased from 43% and 15% at day 0 to 77% and 40% at day 28 postinfection. Compared with 29% CD152+ vaginal T cells in naive mice, > 70% of vaginal T cells were CD152+ at day 28 postinfection. In conclusion, estrogen-maintained vaginal candidiasis results in postinfection time-dependent changes in the pattern of expression of CD152, CD28, and other T-cell markers, suggesting that T cells are subject to mixed suppression and activation signals.

  11. Patterns of Expression of Vaginal T-Cell Activation Markers during Estrogen-Maintained Vaginal Candidiasis

    PubMed Central

    2008-01-01

    The immunosuppressive activity of estrogen was further investigated by assessing the pattern of expression of CD25, CD28, CD69, and CD152 on vaginal T cells during estrogen-maintained vaginal candidiasis. A precipitous and significant decrease in vaginal fungal burden toward the end of week 3 postinfection was concurrent with a significant increase in vaginal lymphocyte numbers. During this period, the percentage of CD3+, CD3+CD4+, CD152+, and CD28+ vaginal T cells gradually and significantly increased. The percentage of CD3+ and CD3+CD4+ cells increased from 43% and 15% at day 0 to 77% and 40% at day 28 postinfection. Compared with 29% CD152+ vaginal T cells in naive mice, > 70% of vaginal T cells were CD152+ at day 28 postinfection. In conclusion, estrogen-maintained vaginal candidiasis results in postinfection time-dependent changes in the pattern of expression of CD152, CD28, and other T-cell markers, suggesting that T cells are subject to mixed suppression and activation signals. PMID:20525139

  12. NKp46+ Innate Lymphoid Cells Dampen Vaginal CD8 T Cell Responses following Local Immunization with a Cholera Toxin-Based Vaccine

    PubMed Central

    Luci, Carmelo; Bekri, Selma; Bihl, Franck; Pini, Jonathan; Bourdely, Pierre; Nouhen, Kelly; Malgogne, Angélique; Walzer, Thierry; Braud, Véronique M.; Anjuère, Fabienne

    2015-01-01

    Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC). Innate lymphoid cells (ILC) are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses. PMID:26630176

  13. Vaginitis

    MedlinePlus

    ... burning during urination. You could also have gray-green discharge, which may smell bad. How is the cause of vaginitis diagnosed? To find out the cause of your symptoms, your health care provider may Ask you about your health history ...

  14. Integrins and epithelial cell polarity.

    PubMed

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity.

  15. Relationship of estimated SHIV acquisition time points during the menstrual cycle and thinning of vaginal epithelial layers in pigtail macaques

    PubMed Central

    Kersh, Ellen N.; Ritter, Jana; Butler, Katherine; Ostergaard, Sharon Dietz; Hanson, Debra; Ellis, Shanon; Zaki, Sherif; McNicholl, Janet M.

    2015-01-01

    Background HIV acquisition in the female genital tract remains incompletely understood. Quantitative data on biological HIV risk factors, the influence of reproductive hormones, and infection risk are lacking. We evaluated vaginal epithelial thickness during the menstrual cycle in pigtail macaques (Macaca nemestrina). This model previously revealed increased susceptibility to vaginal infection during and following progesterone-dominated periods in the menstrual cycle. Methods Nucleated and non-nucleated (superficial) epithelial layers were quantitated throughout the menstrual cycle of 16 macaques. We examined the relationship with previously estimated vaginal SHIVSF162P3 acquisition time points in the cycle of 43 different animals repeatedly exposed to low virus doses. Results In the luteal phase (days 17 to cycle end), the mean vaginal epithelium thinned to 66% of mean follicular thickness (days 1-16; p=0.007, Mann-Whitney test). Analyzing four-day segments, the epithelium was thickest on days 9-12, and thinned to 31% thereof on days 29-32, with reductions of nucleated and non-nucleated layers to 36 and 15% of their previous thickness, respectively. The proportion of animals with estimated SHIV acquisition in each cycle segment correlated with non-nucleated layer thinning (Pearson’s r = 0.7, p<0.05, linear regression analysis), but not nucleated layer thinning (Pearson’s r = 0.6, p=0.15). Conclusions These data provide a detailed picture of dynamic cycle-related changes in the vaginal epithelium of pigtail macaques. Substantial thinning occurred in the superficial, non-nucleated layer, which maintains the vaginal microbiome. The findings support vaginal tissue architecture as susceptibility factor for infection and contribute to our understanding of innate resistance to SHIV infection. PMID:26562699

  16. Integrins and epithelial cell polarity

    PubMed Central

    Lee, Jessica L.; Streuli, Charles H.

    2014-01-01

    ABSTRACT Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell–matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical–basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. For further reading, please see related articles: ‘ERM proteins at a glance’ by Andrea McClatchey (J. Cell Sci. 127, 3199–3204). ‘Establishment of epithelial polarity – GEF who's minding the GAP?’ by Siu Ngok et al. (J. Cell Sci. 127, 3205–3215). PMID:24994933

  17. Diethylstilbestrol induces vaginal adenosis by disrupting SMAD/RUNX1-mediated cell fate decision in the Müllerian duct epithelium.

    PubMed

    Laronda, Monica M; Unno, Kenji; Ishi, Kazutomo; Serna, Vanida A; Butler, Lindsey M; Mills, Alea A; Orvis, Grant D; Behringer, Richard R; Deng, Chuxia; Sinha, Satrajit; Kurita, Takeshi

    2013-09-01

    Women exposed to diethylstilbestrol (DES) in utero frequently develop vaginal adenosis, from which clear cell adenocarcinoma can arise. Despite decades of extensive investigation, the molecular pathogenesis of DES-associated vaginal adenosis remains elusive. Here we report that DES induces vaginal adenosis by inhibiting the BMP4/Activin A-regulated vaginal cell fate decision through a downregulation of RUNX1. BMP4 and Activin A produced by vaginal mesenchyme synergistically activated the expression of ΔNp63, thus deciding vaginal epithelial cell fate in the Müllerian duct epithelial cells (MDECs) via direct binding of SMADs on the highly conserved 5' sequence of ΔNp63. Therefore, mice in which Smad4 was deleted in MDECs failed to express ΔNp63 in vaginal epithelium and developed adenosis. This SMAD-dependent ΔNp63 activation required RUNX1, a binding partner of SMADs. Conditional deletion of Runx1 in the MDECs induced adenosis in the cranial portion of vagina, which mimicked the effect of developmental DES-exposure. Furthermore, neonatal DES exposure downregulated RUNX1 in the fornix of the vagina, where DES-associated adenosis is frequently found. This observation strongly suggests that the downregulation of RUNX1 is the cause of vaginal adenosis. However, once cell fate was determined, the BMP/Activin-SMAD/RUNX1 signaling pathway became dispensable for the maintenance of ΔNp63 expression in vaginal epithelium. Instead, the activity of the ΔNp63 locus in vaginal epithelium was maintained by a ΔNp63-dependent mechanism. This is the first demonstration of a molecular mechanism through which developmental chemical exposure causes precancerous lesions by altering cell fate.

  18. A physical method for separating spermatozoa from epithelial cells in sexual assault evidence.

    PubMed

    Chen, J; Kobilinsky, L; Wolosin, D; Shaler, R; Baum, H

    1998-01-01

    The analysis of genetic markers for the purpose of individualization of semen specimens is extremely important in cases of sexual abuse and assault. The serological analysis of sexual assault evidence can sometimes be complicated because stains are often composed of a mixture of spermatozoa, vaginal epithelial cells and white and red blood cells. A filtration method has been developed to cleanly separate spermatozoa from epithelial cells based upon differences in size and shape. Nylon mesh filters of the appropriate pore size can be used to separate the smaller oval shaped spermatozoal cells from the larger and flatter epithelial cells. The former pass freely through the membrane while the latter are retained on the filter. In this study, cell separation was demonstrated by (a) microscopic observation of stained cells, (b) amplified fragment length polymorphism analysis of DNA obtained from separated cells. The results of these analyses indicate that: (1) Approximately 70% of spermatozoa in the mixed cell sample will penetrate the 10 microns pore size filter, (2) Only about 1-2% of intact epithelial cells will do so, and (3) A small number of nuclei from spontaneously lysed epithelial cells will cross the filter. Experimental results using mixtures of spermatozoa and vaginal epithelial cells prepared in different ratios support the conclusion that the filtration process is an efficient and reliable method to separate spermatozoa from epithelial cells in casework specimens for subsequent DNA analysis.

  19. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  20. Bladder and vaginal transitional cell carcinoma: A case report.

    PubMed

    Aoun, Fouad; Kourie, Hampig Raphael; El Rassy, Elie; van Velthoven, Roland

    2016-09-01

    The involvement of the female genital tract in transitional cell carcinoma (TCC) has not been fully elucidated in women, although involvement is usually associated with a poor prognosis. The vagina, in particular, is considered to be the most commonly affected gynecological organ, with an incidence of 4% of total TCC cases. The pathogenesis of vaginal TCC is challenging to determine, although it is essential for the adequate management of the tumor and to determine the appropriate treatment. The present study reports a case of bladder TCC and metachronous vaginal TCC. The patient had a history of high risk non muscle invasive bladder cancer treated by BCG and presented with a recurrent carcinoma in situ. A novel cycle of BCG was initiated but the patient had a persistent disease and a palpable mass on bimanual examination. Radical anterior pelvectomy and bilateral pelvic and inguinal lymph node dissection was performed revealing the presence of TCC of the bladder neck and the invasion into the anterior vaginal wall. The differences between local vaginal invasion and the metastatic spread from a primary bladder TCC, the occurrence of a second primary vaginal tumor and the direct implantation of TCC via urine that contains transitional cancer cells were reviewed and analyzed. Finally, a management plan was determined.

  1. Exosomes in human semen restrict HIV-1 transmission by vaginal cells and block intravaginal replication of LP-BM5 murine AIDS virus complex

    PubMed Central

    Madison, Marisa N.; Jones, Philip H.; Okeoma, Chioma M.

    2015-01-01

    Exosomes are membranous extracellular nanovesicles secreted by diverse cell types. Exosomes from healthy human semen have been shown to inhibit HIV-1 replication and to impair progeny virus infectivity. In this study, we examined the ability of healthy human semen exosomes to restrict HIV-1 and LP-BM5 murine AIDS virus transmission in three different model systems. We show that vaginal cells internalize exosomes with concomitant transfer of functional mRNA. Semen exosomes blocked the spread of HIV-1 from vaginal epithelial cells to target cells in our cell-to-cell infection model and suppressed transmission of HIV-1 across the vaginal epithelial barrier in our trans-well model. Our in vivo model shows that human semen exosomes restrict intravaginal transmission and propagation of murine AIDS virus. Our study highlights an antiretroviral role for semen exosomes that may be harnessed for the development of novel therapeutic strategies to combat HIV-1 transmission. PMID:25880110

  2. A rabbit vaginal cell-derived antimicrobial peptide, RVFHbαP, blocks lipopolysaccharide-mediated inflammation in human vaginal cells in vitro.

    PubMed

    Patgaonkar, Mandar S; Sathe, Ameya; Selvaakumar, C; Reddy, K V R

    2011-10-01

    Antimicrobial peptides (AMPs) constitute a phylogenetically ancient form of innate immunity that provides host defense at various mucosal surfaces, including the vagina. Recently, we have identified one such AMP, rabbit vaginal fluid hemoglobin alpha peptide (RVFHbαP), from the vaginal lavage of rabbits (Oryctolagus cuniculus). The recent demonstration of a protective role of this peptide in erythrocytes and vaginal cells led us to investigate (i) the lipopolysaccharide (LPS) interactive domain in RVFHbαP and (ii) whether RVFHbαP of rabbit origin modulates the cellular immune responses of another species (humans) in vitro. HeLa-S3, a human vaginal epithelial cell line (hVEC), was exposed to LPS alone (10 μg/ml for 6 h), or LPS-induced cells were treated with RVFHbαP (70.45 μM for 1 h) and cultured for 24 h, and the results obtained were compared with the medium control. We show here that RVFHbαP exerts an anti-inflammatory activity in hVECs, as suggested by the prevention of LPS-induced production of extracellular (supernatant) and intracellular (lysate) levels of cytokines (interleukin 6 [IL-6] and IL-1α) and chemokines (IL-8 and monocyte chemoattractant protein 1 [MCP-1]). The demonstration of Toll-like receptor 4 (TLR4) and NF-κB expression in hVECs and the observations of RVFHbαP suppression of human β-defensin-1 (hBD1) mRNA expression further support the hypothesis of a genomic activity of RVFHbαP. Confocal microscopy and flow cytometry results demonstrate that RVFHbαP inhibits LPS-induced phagocytosis of Escherichia coli by macrophages. The chemotaxis studies performed using the Boyden chamber Transwell method showed the increased migration of U937 cells when supernatants of LPS-induced hVECs were used, and this effect was inhibited by RVFHbαP. In conclusion, our study proposes a novel explanation for the protective role of RVFHbαP in inflammation-associated infections, which not only may provide the new cellular targets for the screening of

  3. Hedgehog signaling plays roles in epithelial cell proliferation in neonatal mouse uterus and vagina.

    PubMed

    Nakajima, Tadaaki; Iguchi, Taisen; Sato, Tomomi

    2012-04-01

    Both the uterus and vagina develop from the Müllerian duct but are quite distinct in morphology and function. To investigate factors controlling epithelial differentiation and cell proliferation in neonatal uterus and vagina, we focused on Hedgehog (HH) signaling. In neonatal mice, Sonic hh (Shh) was localized in the vaginal epithelium and Indian hh (Ihh) was slightly expressed in the uterus and vagina, whereas all Glioma-associated oncogene homolog (Gli) genes were mainly expressed in the stroma. The expression of target genes of HH signaling was high in the neonatal vagina and in the uterus, it increased with growth. Thus, in neonatal mice, Shh in the vaginal epithelium and Ihh in the uterus and vagina activated HH signaling in the stroma. Tissue recombinants showed that vaginal Shh expression was inhibited by the vaginal stroma and uterine Ihh expression was stimulated by the uterine stroma. Addition of a HH signaling inhibitor decreased epithelial cell proliferation in organ-cultured uterus and vagina and increased stromal cell proliferation in organ-cultured uterus. However, it did not affect epithelial differentiation or the expression of growth factors in organ-cultured uterus and vagina. Thus, activated HH signaling stimulates epithelial cell proliferation in neonatal uterus and vagina but inhibits stromal cell proliferation in neonatal uterus.

  4. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion.

    PubMed

    Veazey, Ronald S; Klasse, Per Johan; Schader, Susan M; Hu, Qinxue; Ketas, Thomas J; Lu, Min; Marx, Preston A; Dufour, Jason; Colonno, Richard J; Shattock, Robin J; Springer, Martin S; Moore, John P

    2005-11-03

    Human immunodeficiency virus type 1 (HIV-1) continues to spread, principally by heterosexual sex, but no vaccine is available. Hence, alternative prevention methods are needed to supplement educational and behavioural-modification programmes. One such approach is a vaginal microbicide: the application of inhibitory compounds before intercourse. Here, we have evaluated the microbicide concept using the rhesus macaque 'high dose' vaginal transmission model with a CCR5-receptor-using simian-human immunodeficiency virus (SHIV-162P3) and three compounds that inhibit different stages of the virus-cell attachment and entry process. These compounds are BMS-378806, a small molecule that binds the viral gp120 glycoprotein and prevents its attachment to the CD4 and CCR5 receptors, CMPD167, a small molecule that binds to CCR5 to inhibit gp120 association, and C52L, a bacterially expressed peptide inhibitor of gp41-mediated fusion. In vitro, all three compounds inhibit infection of T cells and cervical tissue explants, and C52L acts synergistically with CMPD167 or BMS-378806 to inhibit infection of cell lines. In vivo, significant protection was achieved using each compound alone and in combinations. CMPD167 and BMS-378806 were protective even when applied 6 h before challenge.

  5. Progress Towards Drosophila Epithelial Cell Culture

    PubMed Central

    Simcox, Amanda

    2015-01-01

    Drosophila epithelial research is at the forefront of the field; however, there are no well-characterized epithelial cell lines that could provide a complementary in vitro model for studies conducted in vivo. Here, a protocol is described that produces epithelial cell lines. The method uses genetic manipulation of oncogenes or tumor suppressors to induce embryonic primary culture cells to rapidly progress to permanent cell lines. It is, however, a general method and the type of cells that comprise a given line is not controlled experimentally. Indeed, only a small fraction of the lines produced are epithelial in character. For this reason, additional work needs to be done to develop a more robust epithelial cell-specific protocol. It is expected that Drosophila epithelial cell lines will have great utility for in vitro analysis of epithelial biology, particularly high-throughput analyses such as RNAi screens. PMID:23097097

  6. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells.

    PubMed

    Yasukawa, Atsushi; Hosoki, Koa; Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N; Suga, Shigeru; Kobayashi, Tetsu; Fujisawa, Takao; Taguchi, Osamu; Gabazza, Esteban C

    2013-01-01

    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF)-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.

  7. Distribution of simian immunodeficiency virus target cells in vaginal tissues of normal rhesus macaques: implications for virus transmission.

    PubMed

    Poonia, Bhawna; Wang, Xiaolei; Veazey, Ronald S

    2006-12-01

    Most new cases of HIV-1 infection occur as the result of vaginal transmission. Identifying the phenotype and distribution of potential viral target cells in the vagina is important for understanding events in viral transmission and for developing effective prevention strategies. For example, compounds that prevent CD4 or CCR5 binding have been demonstrated recently to prevent vaginal transmission in rhesus macaques, but the expression and distribution of CCR5 has not been examined in the macaque vagina. The objective of this study was to examine the distribution and phenotype of cells and molecules in the vagina of rhesus macaques that may be involved in HIV transmission, including CCR5, CD3, CD4, CD8, CD1a, CD28, CD95, CD123 and HLA-DR. Normal juvenile and adult female rhesus macaques were examined by multicolor immunohistochemistry and flow cytometry. Although both CD4 and CCR5 were observed in the lamina propria, essentially no CD4 or CCR5 expression was detected within the squamous or keratinized layers of the vaginal epithelium. CCR5 expression was higher in the vaginal lamina propria of mature macaques compared to 1-3-year-old juveniles. The vast majority of CD4(+)CCR5(+) lymphocytes in the vagina had a central memory (CD95(+)CD28(+)) phenotype. Numerous CCR5-expressing dendritic cells (CD123(+)) or macrophages (CD68(+)) were observed in the lamina propria, but no CCR5, CD4 or DC-SIGN expression was detectable in the epithelium. Thus, the multiple layers of squamous epithelium normally covering the vaginal mucosa may provide an effective barrier against vaginal HIV-1 transmission. Microbicides that block CD4 or CCR5 expression may act within the deeper layers of the vaginal epithelium rather than on the epithelial surface.

  8. Patterning Bacterial Communities on Epithelial Cells

    PubMed Central

    Dwidar, Mohammed; Leung, Brendan M.; Yaguchi, Toshiyuki; Takayama, Shuichi; Mitchell, Robert J.

    2013-01-01

    Micropatterning of bacteria using aqueous two phase system (ATPS) enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv) gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions. PMID:23785519

  9. Adherence of group B streptococci to adult and neonatal epithelial cells mediated by lipoteichoic acid.

    PubMed Central

    Teti, G; Tomasello, F; Chiofalo, M S; Orefici, G; Mastroeni, P

    1987-01-01

    We have investigated the role of lipoteichoic acid in mediating the adherence of different serotypes of group B streptococci to human adult and neonatal epithelial cells. Pretreatment of neonatal buccal and vaginal epithelial cells with lipoteichoic acid, but not with deacylated lipoteichoic acid, induced a marked inhibition in the adherence of all strains tested. Pretreatment of bacteria with substances known to bind lipoteichoic acid, such as monoclonal and polyclonal antipolyglycerophosphate antibodies and albumin, also resulted in adherence inhibition. Group B streptococci adhered in 6- to 10-fold-higher numbers to buccal epithelial cells from neonates older than 3 days than to those from neonates less than 1 day old. This increase in receptiveness for group B streptococci was paralleled by an increased ability of epithelial cells from older neonates to bind group B streptococcal lipoteichoic acid. These data suggest a role for the lipid portion of lipoteichoic acid in the adherence of different serotypes of group B streptococci to vaginal and neonatal epithelial cells. PMID:3316030

  10. Differentiation of cultured epithelial cells: response to toxic agents.

    PubMed Central

    Rice, R H; LaMontagne, A D; Petito, C T; Rong, X H

    1989-01-01

    Cell culture systems are instrumental in elucidating regulation of normal function and mechanisms of its perturbation by toxic substances. To this end, three applications of epithelial cells cultured with 3T3 feeder layer support are described. First, treatment of the premalignant human epidermal keratinocyte line SCC-12F2 with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate suppressed cell growth and differentiation. This agent produced a biphasic growth response greatly inhibiting cell growth at 1 to 10 nM, but much less above 100 nM. Expression of the differentiated functions involucrin and transglutaminase was found to be inhibited markedly at concentrations above 10 nM. Second, 3-methylcholanthrene toxicity was surveyed in a variety of rat epithelial cell types. The two most sensitive to growth inhibition were epidermal and mammary epithelial cells, while those from bladder, prostate, thyroid, and endometrium were insensitive to growth inhibition. Great differences were evident even among those cells derived from stratified squamous epithelia (epidermal, esophageal, vaginal, forestomach) despite their expression of aryl hydrocarbon hydroxylase activities to similar degrees. Finally, expression of estrogen receptors in rat endometrial cells was shown to be stimulated by the cAMP-elevating agent forskolin. Maximal stimulation of 3- to 6-fold occurred in 6 hr, compatible with a requirement for protein synthesis. Although expressing keratinocyte character (transglutaminase activity and envelope forming ability), the cells thus retain some hormonal character that may be modulated by cAMP-dependent kinase activity. Pursuit of such results will aid in understanding differences in response among cell types and species, in elucidating mechanisms of action of known toxic substances and, ultimately, in predicting toxicity of less well understood agents. Images FIGURE 1. FIGURE 4. PMID:2466642

  11. Bone marrow-derived lung epithelial cells.

    PubMed

    Krause, Diane S

    2008-08-15

    Bone marrow-derived cells can take on the phenotype of epithelial cells and express epithelial-specific genes in multiple organs. Here, we focus on recent data on the appearance of marrow-derived epithelial cells in the adult lung. These findings have garnered significant skepticism because in most cases marrow-derived epithelial cells are very rare, the marrow cell of origin is not known, the techniques for detection have needed improvement, and there seem to be multiple mechanisms by which this occurs. Recent studies have focused on these concerns. Once these important concerns are addressed, further studies on the function(s) of these cells will need to be performed to determine whether this engraftment has any clinical significance-either beneficial or detrimental.

  12. Vaginal dryness

    MedlinePlus

    ... Vaginitis due to reduced estrogen; Atrophic vaginitis; Menopause vaginal dryness ... sexual intercourse more comfortable. It also helps decrease vaginal dryness. If estrogen levels drop off, the vaginal ...

  13. Induction of avian β-defensins by CpG oligodeoxynucleotides and proinflammatory cytokines in hen vaginal cells in vitro.

    PubMed

    Sonoda, Yuka; Abdel Mageed, Ahmad M; Isobe, Naoki; Yoshimura, Yukinori

    2013-06-01

    Immune function in the vagina of hen oviduct is essential to prevent infection by microorganisms colonizing in the cloaca. The aim of this study was to determine whether CpG oligodeoxynucleotides (CpG-ODN) stimulate the expression of avian β-defensins (AvBDs) in hen vaginal cells. Specific questions were whether CpG-ODN affects the expression of AvBDs and proinflammatory cytokines and whether the cytokines affect AvBDs expression in vaginal cells. The dispersed vaginal cells of White Leghorn laying hens were cultured and stimulated by different doses of lipopolysaccharide (LPS), CpG-ODN, interleukin 1β (IL1B), or IL6. The cultured cell population contained epithelial cells, fibroblast-like cells, and CD45-positive leukocytes. The immunoreactive AvBD3, -10, and -12 were localized in the mucosal epithelium in the section of the vagina. The expression of AvBDs, IL1B, and IL6 was analyzed by quantitative RT-PCR. RT-PCR analysis showed the expression of AvBD1, -3, -4, -5, -10, and -12 in the cultured vaginal cells without stimulation. Toll-like receptors (TLRs) 4 and 21, which recognize LPS and CpG-ODN respectively and IL1 and IL6 receptors (IL1R1 and IL6R) were also expressed in them. The expression of IL1B, IL6, and AvBD10 and -12 was upregulated by LPS, whereas only IL1B and IL6 were upregulated by CpG-ODN. IL1B stimulation upregulated AvBD1 and -3 expression, whereas IL6 stimulation did not cause changes in AvBDs expression. These results suggest that CpG-ODN derived from microbes upregulates the expression of IL1B and IL6 by interaction with TLR21 and then IL1B induces AvBD1 and -3 to prevent infection in the vagina.

  14. Effects of Female Sex Hormones on Susceptibility to HSV-2 in Vaginal Cells Grown in Air-Liquid Interface

    PubMed Central

    Lee, Yung; Dizzell, Sara E.; Leung, Vivian; Nazli, Aisha; Zahoor, Muhammad A.; Fichorova, Raina N.; Kaushic, Charu

    2016-01-01

    The lower female reproductive tract (FRT) is comprised of the cervix and vagina, surfaces that are continuously exposed to a variety of commensal and pathogenic organisms. Sexually transmitted viruses, such as herpes simplex virus type 2 (HSV-2), have to traverse the mucosal epithelial lining of the FRT to establish infection. The majority of current culture systems that model the host-pathogen interactions in the mucosal epithelium have limitations in simulating physiological conditions as they employ a liquid-liquid interface (LLI), in which both apical and basolateral surfaces are submerged in growth medium. We designed the current study to simulate in vivo conditions by growing an immortalized vaginal epithelial cell line (Vk2/E6E7) in culture with an air-liquid interface (ALI) and examined the effects of female sex hormones on their growth, differentiation, and susceptibility to HSV-2 under these conditions, in comparison to LLI cultures. ALI conditions induced Vk2/E6E7 cells to grow into multi-layered cultures compared to the monolayers present in LLI conditions. Vk2 cells in ALI showed higher production of cytokeratin in the presence of estradiol (E2), compared to cells grown in progesterone (P4). Cells grown under ALI conditions were exposed to HSV-2-green fluorescent protein (GFP) and the highest infection and replication was observed in the presence of P4. Altogether, this study suggests that ALI cultures more closely simulate the in vivo conditions of the FRT compared to the conventional LLI cultures. Furthermore, under these conditions P4 was found to confer higher susceptibility to HSV-2 infection in vaginal cells. The vaginal ALI culture system offers a better alternative to study host-pathogen interactions. PMID:27589787

  15. Effects of Female Sex Hormones on Susceptibility to HSV-2 in Vaginal Cells Grown in Air-Liquid Interface.

    PubMed

    Lee, Yung; Dizzell, Sara E; Leung, Vivian; Nazli, Aisha; Zahoor, Muhammad A; Fichorova, Raina N; Kaushic, Charu

    2016-08-30

    The lower female reproductive tract (FRT) is comprised of the cervix and vagina, surfaces that are continuously exposed to a variety of commensal and pathogenic organisms. Sexually transmitted viruses, such as herpes simplex virus type 2 (HSV-2), have to traverse the mucosal epithelial lining of the FRT to establish infection. The majority of current culture systems that model the host-pathogen interactions in the mucosal epithelium have limitations in simulating physiological conditions as they employ a liquid-liquid interface (LLI), in which both apical and basolateral surfaces are submerged in growth medium. We designed the current study to simulate in vivo conditions by growing an immortalized vaginal epithelial cell line (Vk2/E6E7) in culture with an air-liquid interface (ALI) and examined the effects of female sex hormones on their growth, differentiation, and susceptibility to HSV-2 under these conditions, in comparison to LLI cultures. ALI conditions induced Vk2/E6E7 cells to grow into multi-layered cultures compared to the monolayers present in LLI conditions. Vk2 cells in ALI showed higher production of cytokeratin in the presence of estradiol (E2), compared to cells grown in progesterone (P4). Cells grown under ALI conditions were exposed to HSV-2-green fluorescent protein (GFP) and the highest infection and replication was observed in the presence of P4. Altogether, this study suggests that ALI cultures more closely simulate the in vivo conditions of the FRT compared to the conventional LLI cultures. Furthermore, under these conditions P4 was found to confer higher susceptibility to HSV-2 infection in vaginal cells. The vaginal ALI culture system offers a better alternative to study host-pathogen interactions.

  16. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.

    PubMed

    Firmino, Joao; Rocancourt, Didier; Saadaoui, Mehdi; Moreau, Chloe; Gros, Jerome

    2016-02-08

    During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes.

  17. Vaginal Cancer

    MedlinePlus

    Vaginal cancer is a rare type of cancer. It is more common in women 60 and older. You are also more likely to get it if you have had a human ... test can find abnormal cells that may be cancer. Vaginal cancer can often be cured in its ...

  18. Odontogenic epithelial stem cells: hidden sources.

    PubMed

    Padma Priya, Sivan; Higuchi, Akon; Abu Fanas, Salem; Pooi Ling, Mok; Kumari Neela, Vasantha; Sunil, P M; Saraswathi, T R; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh

    2015-12-01

    The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed.

  19. Control of lens epithelial cell survival

    PubMed Central

    1993-01-01

    We have studied the survival requirements of developing lens epithelial cells to test the hypothesis that most cells are programmed to kill themselves unless they are continuously signaled by other cells not to do so. The lens cells survived for weeks in both explant cultures and high-density dissociated cell cultures in the absence of other cells or added serum or protein, suggesting that they do not require signals from other cell types to survive. When cultured at low density, however, they died by apoptosis, suggesting that they depend on other lens epithelial cells for their survival. Lens epithelial cells cultured at high density in agarose gels also survived for weeks, even though they were not in direct contact with one another, suggesting that they can promote one another's survival in the absence of cell- cell contact. Conditioned medium from high density cultures promoted the survival of cells cultured at low density, suggesting that lens epithelial cells support one another's survival by secreting survival factors. We show for the first time that normal cell death occurs within the anterior epithelium in the mature lens, but this death is strictly confined to the region of the anterior suture. PMID:8491781

  20. Growth requirements of human mammary epithelial cells in culture.

    PubMed

    Taylor-Papadimitriou, J; Shearer, M; Stoker, M G

    1977-12-15

    Colony-forming epithelial cells can be separated from the non-dividing "foam cells" in human milk by differential adhesion to glass and freezing. The growth of such partially purified mammary epithelial cells is stimulated by co-culture with non-dividing feeder cells. Foam cells, mitomycin-treated mouse fibroblast lines and human mammary fibroblasts and calf lens epithelial cells are all effective in promoting mammary epithelial cell growth. Contact between epithelial cells and feeders is not required for the growth-promoting effect. The mitogenic effect of epidermal growth factor on mammary epithelial cells also requires feeder cell activity.

  1. Determining Proportion of Exfoliative Vaginal Cell during Various Stages of Estrus Cycle Using Vaginal Cytology Techniques in Aceh Cattle

    PubMed Central

    Siregar, Tongku N.; Melia, Juli; Rohaya; Thasmi, Cut Nila; Masyitha, Dian; Wahyuni, Sri; Rosa, Juliana; Nurhafni; Panjaitan, Budianto; Herrialfian

    2016-01-01

    The aim of this study was to investigate the period of estrus cycle in aceh cattle, Indonesia, based on vaginal cytology techniques. Four healthy females of aceh cattle with average weight of 250–300 kg, age of 5–7 years, and body condition score of 3-4 were used. All cattle were subjected to ultrasonography analysis for the occurrence of corpus luteum before being synchronized using intramuscular injections of PGF2 alpha 25 mg. A vaginal swab was collected from aceh cattle, stained with Giemsa 10%, and observed microscopically. Period of estrus cycle was predicted from day 1 to day 24 after estrus synchronization was confirmed using ultrasonography analysis at the same day. The result showed that parabasal, intermediary, and superficial epithelium were found in the vaginal swabs collected from proestrus, metestrus, and diestrus aceh cattle. Proportions of these cells in the particular period of estrus cycle were 36.22, 32.62, and 31.16 (proestrus); 21.33, 32.58, and 46.09 (estrus); 40.75, 37.58, and 21.67 (metestrus); and 41.07, 37.38, and 21.67 (diestrus), respectively. In conclusion, dominant proportion of superficial cell that occurred in estrus period might be used as the base for determining optimal time for insemination. PMID:26977335

  2. Evidence for epithelial-mesenchymal transitions in adult liver cells.

    PubMed

    Sicklick, Jason K; Choi, Steve S; Bustamante, Marcia; McCall, Shannon J; Pérez, Elizabeth Hernández; Huang, Jiawen; Li, Yin-Xiong; Rojkind, Marcos; Diehl, Anna Mae

    2006-10-01

    Both myofibroblastic hepatic stellate cells (HSC) and hepatic epithelial progenitors accumulate in damaged livers. In some injured organs, the ability to distinguish between fibroblastic and epithelial cells is sometimes difficult because cells undergo epithelial-mesenchymal transitions (EMT). During EMT, cells coexpress epithelial and mesenchymal cell markers. To determine whether EMT occurs in adult liver cells, we analyzed the expression profile of primary HSC, two HSC lines, and hepatic epithelial progenitors. As expected, all HSC expressed HSC markers. Surprisingly, these markers were also expressed by epithelial progenitors. In addition, one HSC line expressed typical epithelial progenitor mRNAs, and these epithelial markers were inducible in the second HSC line. In normal and damaged livers, small ductular-type cells stained positive for an HSC marker. In conclusion, HSC and hepatic epithelial progenitors both coexpress epithelial and mesenchymal markers, providing evidence that EMT occurs in adult liver cells.

  3. Epithelial stem cells and intestinal cancer.

    PubMed

    Tan, Shawna; Barker, Nick

    2015-06-01

    The mammalian intestine is comprised of an epithelial layer that serves multiple functions in order to maintain digestive activity as well as intestinal homeostasis. This epithelial layer contains highly proliferative stem cells which facilitate its characteristic rapid regeneration. How these stem cells contribute to tissue repair and normal homeostasis are actively studied, and while we have a greater understanding of the molecular mechanisms and cellular locations that underlie stem cell regulation in this tissue, much still remains undiscovered. This review describes epithelial stem cells in both intestinal and non-intestinal tissues, as well as the strategies that have been used to further characterize the cells. Through a discussion of the current understanding of intestinal self-renewal and tissue regeneration in response to injury, we focus on how dysregulation of critical signaling pathways results in potentially oncogenic aberrations, and highlight issues that should be addressed in order for effective intestinal cancer therapies to be devised.

  4. Epithelial cell extrusion: Pathways and pathologies.

    PubMed

    Gudipaty, Swapna Aravind; Rosenblatt, Jody

    2016-05-19

    To remove dying or unwanted cells from an epithelium while preserving the barrier function of the layer, epithelia use a unique process called cell extrusion. To extrude, the cell fated to die emits the lipid Sphingosine 1 Phosphate (S1P), which binds the G-protein-coupled receptor Sphingosine 1 Phosphate receptor 2 (S1P2) in the neighboring cells that activates Rho-mediated contraction of an actomyosin ring circumferentially and basally. This contraction acts to squeeze the cell out apically while drawing together neighboring cells and preventing any gaps to the epithelial barrier. Epithelia can extrude out cells targeted to die by apoptotic stimuli to repair the barrier in the face of death or extrude live cells to promote cell death when epithelial cells become too crowded. Indeed, because epithelial cells naturally turn over by cell death and division at some of the highest rates in the body, epithelia depend on crowding-induced live cell extrusion to preserve constant cell numbers. If extrusion is defective, epithelial cells rapidly lose contact inhibition and form masses. Additionally, because epithelia act as the first line of defense in innate immunity, preservation of this barrier is critical for preventing pathogens from invading the body. Given its role in controlling constant cell numbers and maintaining barrier function, a number of different pathologies can result when extrusion is disrupted. Here, we review mechanisms and signaling pathways that control epithelial extrusion and discuss how defects in these mechanisms can lead to multiple diseases. We also discuss tactics pathogens have devised to hijack the extrusion process to infect and colonize epithelia.

  5. Epithelial cell-extracellular matrix interactions and stem cells in airway epithelial regeneration.

    PubMed

    Coraux, Christelle; Roux, Jacqueline; Jolly, Thomas; Birembaut, Philippe

    2008-08-15

    In healthy subjects, the respiratory epithelium forms a continuous lining to the airways and to the environment, and plays a unique role as a barrier against external deleterious agents to protect the airways from the insults. In respiratory diseases such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), chronic bronchitis, or asthma, the airway epithelium is frequently remodeled and injured, leading to the impairment of its defense functions. The rapid restoration of the epithelial barrier is crucial for these patients. The complete regeneration of the airway epithelium is a complex phenomenon, including not only the epithelial wound repair but also the epithelial differentiation to reconstitute a fully well differentiated and functional epithelium. The regeneration implies two partners: the epithelial stem/progenitor cells and factors able to regulate this process. Among these factors, epithelial cells-extracellular matrix (ECM) interactions play a crucial role. The secretion of a provisional ECM, the cell-ECM relationships through epithelial receptors, and the remodeling of the ECM by proteases (mainly matrix metalloproteinases) contribute not only to airway epithelial repair by modulating epithelial cell migration and proliferation, but also to the differentiation of repairing cells leading to the complete restoration of the wounded epithelium. A better characterization of resident stem cells and of effectors of the regeneration process is an essential prerequisite to propose new regenerative therapeutics to patients suffering from infectious/inflammatory respiratory diseases.

  6. Vaginal cancer

    MedlinePlus

    Vaginal cancer; Cancer - vagina; Tumor - vaginal ... Most vaginal cancers occur when another cancer, such as cervical or endometrial cancer , spreads. This is called secondary vaginal cancer. Cancer ...

  7. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  8. Vaginal Atrophy

    MedlinePlus

    Vaginal atrophy Overview By Mayo Clinic Staff Vaginal atrophy (atrophic vaginitis) is thinning, drying and inflammation of the vaginal walls due to your body having less estrogen. Vaginal atrophy occurs most ...

  9. CCN1 induces a reversible epithelial-mesenchymal transition in gastric epithelial cells.

    PubMed

    Chai, Jianyuan; Norng, Manith; Modak, Cristina; Reavis, Kevin M; Mouazzen, Wasim; Pham, Jennifer

    2010-08-01

    CCN1 is a matricellular protein that activates many genes related to wound healing and tissue remodeling in fibroblasts, but its effect on epithelial cells remains unclear. This study examined the role of CCN1 in epithelial wound healing using rat gastric epithelial cells and rat stomach ulcer as in vitro and in vivo models, respectively. We found that CCN1 expression is highly upregulated in the epithelial cells adjacent to a wound and remains high until the wound is healed. Upregulation of CCN1 activates a transient epithelial-mesenchymal transition in the epithelial cells at the migrating front and drives wound closure. Once the wound is healed, these epithelial cells and their progeny can resume their original epithelial phenotype. We also found that CCN1-induced E-cadherin loss is not due to transcriptional regulation but rather protein degradation due to the collapse of adherens junctions, which is contributed by beta-catenin translocation. CCN1-activated integrin-linked kinase mediates this process. Finally, our in vivo study showed that locally neutralizing CCN1 drastically impairs wound closure, whereas local injection of recombinant CCN1 protein induces expression of vimentin and smooth muscle alpha-actin in normal gastric mucosal epithelial cells and accelerates re-epithelialization during ulcer healing. In conclusion, our study indicates that CCN1 can induce reversible epithelial-mesenchymal transition, and this feature may have great value for clinical wound healing.

  10. Adherence of skin bacteria to human epithelial cells.

    PubMed Central

    Romero-Steiner, S; Witek, T; Balish, E

    1990-01-01

    Aerobic and anaerobic bacteria isolated from human axillae were tested for their capacity to adhere to buccal epithelial cells, immortalized human epithelial (HEp-2) cells, and undifferentiated and differentiated human epithelial cells. In general, both aerobic and anaerobic diphtheroids adhered better to differentiated human epithelial cells than to HEp-2 and undifferentiated human epithelial cells (P less than 0.05). Mannose, galactose, fucose, N-acetyl-D-glucosamine, and fibronectin were also assayed for their capacity to inhibit the adherence of diphtheroids to human epithelial cells. A great deal of variability was observed in the capacity of the latter compounds to inhibit the attachment of aerobic diphtheroids to undifferentiated and differentiated epithelial cells. Overall, mannose appeared to be best at inhibiting the adherence of the aerobic diphtheroids to undifferentiated human epithelial cells. Galactose, fucose, N-acetyl-D-glucosamine, and fibronectin showed a greater capacity to inhibit attachment of aerobic diphtheroids to differentiated than to undifferentiated human epithelial cells. The inhibition of adherence to differentiated human epithelial cells varied with the microorganism and the compound tested; however, the highest and most consistent inhibition of adherence (76.1 to 88.6%) was observed with a 5% solution of N-acetyl-D-glucosamine. The in vitro adherence and adherence inhibition assays presented here demonstrate that a number of adhesins and receptors are involved in the adherence of skin bacteria to human epithelial cells and receptors on human epithelial cells are apparently altered during differentiation. PMID:2298877

  11. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  12. Novel three-dimensional autologous tissue-engineered vaginal tissues using the self-assembly technique.

    PubMed

    Orabi, Hazem; Saba, Ingrid; Rousseau, Alexandre; Bolduc, Stéphane

    2017-02-01

    Many diseases necessitate the substitution of vaginal tissues. Current replacement therapies are associated with many complications. In this study, we aimed to create bioengineered neovaginas with the self-assembly technique using autologous vaginal epithelial (VE) and vaginal stromal (VS) cells without the use of exogenous materials and to document the survival and incorporation of these grafts into the tissues of nude female mice. Epithelial and stromal cells were isolated from vaginal biopsies. Stromal cells were driven to form collagen sheets, 3 of which were superimposed to form vaginal stromas. VE cells were seeded on top of these stromas and allowed to mature in an air-liquid interface. The vaginal equivalents were implanted subcutaneously in female nude mice, which were sacrificed after 1 and 2 weeks after surgery. The in vitro and animal-retrieved equivalents were assessed using histologic, functional, and mechanical evaluations. Vaginal equivalents could be handled easily. VE cells formed a well-differentiated epithelial layer with a continuous basement membrane. The equivalent matrix was composed of collagen I and III and elastin. The epithelium, basement membrane, and stroma were comparable to those of native vaginal tissues. The implanted equivalents formed mature vaginal epithelium and matrix that were integrated into the mice tissues. Using the self-assembly technique, in vitro vaginal tissues were created with many functional and biological similarities to native vagina without any foreign material. They formed functional vaginal tissues after in vivo animal implantation. It is appropriate for vaginal substitution and disease modeling for infectious studies, vaginal applicants, and drug testing.

  13. Isolation by Size of Epithelial Tumor Cells

    PubMed Central

    Vona, Giovanna; Sabile, Abdelmajid; Louha, Malek; Sitruk, Veronique; Romana, Serge; Schütze, Karin; Capron, Frédérique; Franco, Dominique; Pazzagli, Mario; Vekemans, Michel; Lacour, Bernard; Bréchot, Christian; Paterlini-Bréchot, Patrizia

    2000-01-01

    We have developed a new assay, ISET (isolation by size of epithelial tumor cells), which allows the counting and the immunomorphological and molecular characterization of circulating tumor cells in patients with carcinoma, using peripheral blood sample volumes as small as 1 ml. Using this assay, epithelial tumor cells can be isolated individually by filtration because of their larger size when compared to peripheral blood leukocytes. ISET parameters were defined using peripheral blood spiked with tumor cell lines (HepG2, Hep3B, MCF-7, HeLa, and LNCaP). ISET can detect a single, micropipetted tumor cell, added to 1 ml of blood. We also demonstrate that fluorescence in situ hybridization can be used to perform chromosomal analyses on tumor cells collected using ISET. Polymerase chain reaction-based genetic analyses can be applied to ISET-isolated cells, and, as an example, we demonstrate homozygous p53 deletion in single Hep3B cells after filtration and laser microdissection. Finally, we provide evidence for the in vivo feasibility of ISET in patients with hepatocellular carcinoma undergoing tumor resection. ISET, but not reverse transcriptase-polymerase chain reaction, allowed analysis of cell morphology, counting of tumor cells, and demonstration of tumor microemboli spread into peripheral blood during surgery. Overall, ISET constitutes a novel approach that should open new perpectives in molecular medicine. PMID:10623654

  14. Force mapping in epithelial cell migration

    PubMed Central

    du Roure, Olivia; Saez, Alexandre; Buguin, Axel; Austin, Robert H.; Chavrier, Philippe; Siberzan, Pascal; Ladoux, Benoit

    2005-01-01

    We measure dynamic traction forces exerted by epithelial cells on a substrate. The force sensor is a high-density array of elastomeric microfabricated pillars that support the cells. Traction forces induced by cell migration are deduced from the measurement of the bending of these pillars and are correlated with actin localization by fluorescence microscopy. We use a multiple-particle tracking method to estimate the mechanical activity of cells in real time with a high-spatial resolution (down to 2 μm) imposed by the periodicity of the post array. For these experiments, we use differentiated Madin-Darby canine kidney (MDCK) epithelial cells. Our data provide definite information on mechanical forces exerted by a cellular assembly. The maximum intensity of the forces is localized on the edge of the epithelia. Hepatocyte growth factor promotes cell motility and induces strong scattering activity of MDCK cells. Thus, we compare forces generated by MDCK cells in subconfluent epithelia versus isolated cells after hepatocyte growth factor treatment. Maximal-traction stresses at the edge of a monolayer correspond to higher values than those measured for a single cell and may be due to a collective behavior. PMID:15695588

  15. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    PubMed Central

    Simon, R H; DeHart, P D; Todd, R F

    1986-01-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing. Images PMID:3771800

  16. Cell density determines epithelial migration in culture.

    PubMed Central

    Rosen, P; Misfeldt, D S

    1980-01-01

    The dog kidney epithelial cell line (MDCK) has been shown to exhibit a density-correlated inhibition of growth at approxmately 6.6 X 10(5) cells per cm2. When a confluent monolayer at its maximal density was wounded by removal of a wide swath of cells, migration of the cell sheet into the denuded area occurred. Precise measurements of the rate of migration for 5 day showed that the cells accelerated at a uniform rate of 0.24 micrometer . hr-2 and, by extrapolation, possessed an apparent initial velocity of 2.8 micrometer . hr-1 at the time of wounding. The apparent initial velocity was considered to be the result of a brief (< 10 hr) and rapid acceleration dependent on cell density. To verify this, wounds were made at different densities below the maximum. In these experiments, the cells did not migrate until a "threshold" density of 2.0 X 10(5) cells per cm2 was reached regardless of the density at the time of wounding. At the threshold density, the cell sheet began to accelerate at the previously measured rate (0.24 micrometer . hr-2). Any increase in density by cell division was balanced by cell migration, so that the same threshold density was maintained by the migrating cells. Each migrating cell sustained the movement of the cell sheet at a constant rate of acceleration. It is proposed that an acceleration is, in general, characteristic of the vectorial movement of an epithelial cell sheet. Images PMID:6933523

  17. In vitro adhesiveness and biotype of Gardnerella vaginalis strains in relation to the occurrence of clue cells in vaginal discharges.

    PubMed Central

    Scott, T G; Smyth, C J; Keane, C T

    1987-01-01

    Haemagglutination and tissue culture adherence tests using a McCoy cell line were used to examine the adherence characteristics of 105 strains of Gardnerella vaginalis. Each strain represented one isolate per patient. For each patient, a direct smear of vaginal discharge was examined for clue cells. The relation between in vitro adherence and the presence of clue cells was examined. There seemed to be no appreciable relation between the presence of clue cells in smears and the haemagglutinating activity of strains. In contrast, adherence as judged by the McCoy tissue culture system showed a significant relation to the presence of clue cells (p less than 0.001). Though both adhesive characteristics were not inhibited by mannose, the mechanism of haemagglutination of human red cells appeared to differ from that of adherence of tissue culture cells. The findings imply that the clue cell phenomenon is due to attachment of adherent strains of G vaginalis to epithelial cells. Adherent strains of G vaginalis may play a part in the pathogenesis of bacterial vaginosis. Images PMID:3493202

  18. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2010-10-01

    breast is highly expressed by luminal epithelial cells and is less expressed by basal cells19,20. In contrast, CD49f (a6 integrin) has an inverse pattern...mouse stretched on its back. The hose and nose cone from the anesthetic vaporizer are securely attached to one side of the plate, and a heated pad is...the mouse by a nose cone. Check that the mouse has reached surgical anesthesia by loss of pedal withdrawal reflex . ! cautIon Institutional review

  19. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    PubMed Central

    Gharib, Sina A.; Pippin, Jeffrey W.; Ohse, Takamoto; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire. PMID:25127402

  20. Control of local immunity by airway epithelial cells.

    PubMed

    Weitnauer, M; Mijošek, V; Dalpke, A H

    2016-03-01

    The lung is ventilated by thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbial compounds, most of them harmless contaminants. Airway epithelial cells are known to have innate sensor functions, thus being able to detect microbial danger. To avoid chronic inflammation, the pulmonary system has developed specific means to control local immune responses. Even though airway epithelial cells can act as proinflammatory promoters, we propose that under homeostatic conditions airway epithelial cells are important modulators of immune responses in the lung. In this review, we discuss epithelial cell regulatory functions that control reactivity of professional immune cells within the microenvironment of the airways and how these mechanisms are altered in pulmonary diseases. Regulation by epithelial cells can be divided into two mechanisms: (1) mediators regulate epithelial cells' innate sensitivity in cis and (2) factors are produced that limit reactivity of immune cells in trans.

  1. Probiotic Properties of Lactobacillus crispatus 2,029: Homeostatic Interaction with Cervicovaginal Epithelial Cells and Antagonistic Activity to Genitourinary Pathogens.

    PubMed

    Abramov, Vyacheslav; Khlebnikov, Valentin; Kosarev, Igor; Bairamova, Guldana; Vasilenko, Raisa; Suzina, Natalia; Machulin, Andrey; Sakulin, Vadim; Kulikova, Natalia; Vasilenko, Nadezhda; Karlyshev, Andrey; Uversky, Vladimir; Chikindas, Michael L; Melnikov, Vyacheslav

    2014-12-01

    Lactobacillus crispatus 2029 isolated upon investigation of vaginal lactobacilli of healthy women of reproductive age was selected as a probiotic candidate. The aim of the present study was elucidation of the role of L. crispatus 2029 in resistance of the female reproductive tract to genitourinary pathogens using cervicovaginal epithelial model. Lactobacillus crispatus 2029 has surface layers (S-layers), which completely surround cells as the outermost component of their envelope. S-layers are responsible for the adhesion of lactobacilli on the surface of cervicovaginal epithelial cells. Study of interactions between L. crispatus 2029 and a type IV collagen, a major molecular component of epithelial cell extracellular matrix, showed that 125I-labeled type IV collagen binds to lactobacilli with high affinity (Kd = (8.0 ± 0.7) × 10(-10) M). Lactobacillus crispatus 2029 consistently colonized epithelial cells. There were no toxicity, epithelial damage and apoptosis after 24 h of colonization. Electronic microscope images demonstrated intimate association between L. crispatus 2029 and epithelial cells. Upon binding to epithelial cells, lactobacilli were recognized by toll-like 2/6 receptors. Lactobacillus crispatus induced NF-κB activation in epithelial cells and did not induce expression of innate immunity mediators IL-8, IL-1β, IL-1α and TNF-α. Lactobacillus crispatus 2029 inhibited IL-8 production in epithelial cells induced by MALP-2 and increased production of anti-inflammatory cytokine IL-6, maintaining the homeostasis of female reproductive tract. Lactobacillus crispatus 2029 produced H2O2 and provided wide spectrum of antagonistic activity increasing colonization resistance to urinary tract infections by bacterial vaginosis and vulvovaginal candidiasis associated agents.

  2. Phenotypic plasticity in normal breast derived epithelial cells

    PubMed Central

    2014-01-01

    Background Normal, healthy human breast tissue from a variety of volunteer donors has become available for research thanks to the establishment of the Susan G. Komen for the Cure® Tissue Bank at the IU Simon Cancer Center (KTB). Multiple epithelial (K-HME) and stromal cells (K-HMS) were established from the donated tissue. Explant culture was utilized to isolate the cells from pieces of breast tissue. Selective media and trypsinization were employed to select either epithelial cells or stromal cells. The primary, non-transformed epithelial cells, the focus of this study, were characterized by immunohistochemistry, flow cytometry, and in vitro cell culture. Results All of the primary, non-transformed epithelial cells tested have the ability to differentiate in vitro into a variety of cell types when plated in or on biologic matrices. Cells identified include stratified squamous epithelial, osteoclasts, chondrocytes, adipocytes, neural progenitors/neurons, immature muscle and melanocytes. The cells also express markers of embryonic stem cells. Conclusions The cell culture conditions employed select an epithelial cell that is pluri/multipotent. The plasticity of the epithelial cells developed mimics that seen in metaplastic carcinoma of the breast (MCB), a subtype of triple negative breast cancer; and may provide clues to the origin of this particularly aggressive type of breast cancer. The KTB is a unique biorepository, and the normal breast epithelial cells isolated from donated tissue have significant potential as new research tools. PMID:24915897

  3. Scrib is required for epithelial cell identity and prevents epithelial to mesenchymal transition in the mouse.

    PubMed

    Yamben, Idella F; Rachel, Rivka A; Shatadal, Shalini; Copeland, Neal G; Jenkins, Nancy A; Warming, Soren; Griep, Anne E

    2013-12-01

    The integrity and function of epithelial tissues depend on the establishment and maintenance of defining characteristics of epithelial cells, cell-cell adhesion and cell polarity. Disruption of these characteristics can lead to the loss of epithelial identity through a process called epithelial to mesenchymal transition (EMT), which can contribute to pathological conditions such as tissue fibrosis and invasive cancer. In invertebrates, the epithelial polarity gene scrib plays a critical role in establishing and maintaining cell adhesion and polarity. In this study we asked if the mouse homolog, Scrib, is required for establishment and/or maintenance of epithelial identity in vivo. To do so, we conditionally deleted Scrib in the head ectoderm tissue that gives rise to both the ocular lens and the corneal epithelium. Deletion of Scrib in the lens resulted in a change in epithelial cell shape from cuboidal to flattened and elongated. Early in the process, the cell adhesion protein, E-cadherin, and apical polarity protein, ZO-1, were downregulated and the myofibroblast protein, αSMA, was upregulated, suggesting EMT was occurring in the Scrib deficient lenses. Correlating temporally with the upregulation of αSMA, Smad3 and Smad4, TGFβ signaling intermediates, accumulated in the nucleus and Snail, a TGFβ target and transcriptional repressor of the gene encoding E-cadherin, was upregulated. Pax6, a lens epithelial transcription factor required to maintain lens epithelial cell identity also was downregulated. Loss of Scrib in the corneal epithelium also led to molecular changes consistent with EMT, suggesting that the effect of Scrib deficiency was not unique to the lens. Together, these data indicate that mammalian Scrib is required to maintain epithelial identity and that loss of Scrib can culminate in EMT, mediated, at least in part, through TGFβ signaling.

  4. Interaction with epithelial cells modifies airway macrophage response to ozone.

    PubMed

    Bauer, Rebecca N; Müller, Loretta; Brighton, Luisa E; Duncan, Kelly E; Jaspers, Ilona

    2015-03-01

    The initial innate immune response to ozone (O3) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived signals affect Mac response to O3. Macs from the bronchoalveolar lavage (BAL) of healthy volunteers were cocultured with the human bronchial epithelial (16HBE) or alveolar (A549) epithelial cell lines. Cocultures, Mac monocultures, and epithelial cell monocultures were exposed to O3 or air, and Mac immunophenotype, phagocytosis, and cytotoxicity were assessed. Quantities of hyaluronic acid (HA) and IL-8 were compared across cultures and in BAL fluid from healthy volunteers exposed to O3 or air for in vivo confirmation. We show that Macs in coculture had increased markers of alternative activation, enhanced cytotoxicity, and reduced phagocytosis compared with Macs in monoculture that differed based on coculture with A549 or 16HBE. Production of HA by epithelial cell monocultures was not affected by O3, but quantities of HA in the in vitro coculture and BAL fluid from volunteers exposed in vivo were increased with O3 exposure, indicating that O3 exposure impairs Mac regulation of HA. Together, we show epithelial cell-Mac coculture models that have many similarities to the in vivo responses to O3, and demonstrate that epithelial cell-derived signals are important determinants of Mac immunophenotype and response to O3.

  5. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2009-10-01

    Appendix……………………………………………………………………………… 11 Eirew,P., Stingl,J., Raouf,A., Turashvili,G., Aparicio ,S., Emerman,J.T., and Eaves,C.J. A method for... Aparicio , Joanne Emerman and Connie Eaves. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability...Abstracts Peter Eirew, John Stingl, Afshin Raouf, Gulisa Turshvili, Sam Aparicio , Joanne Emerman and Connie Eaves, “Identification of Human Mammary

  6. NK cell responses to simian immunodeficiency virus vaginal exposure in naive and vaccinated rhesus macaques.

    PubMed

    Shang, Liang; Smith, Anthony J; Duan, Lijie; Perkey, Katherine E; Qu, Lucy; Wietgrefe, Stephen; Zupancic, Mary; Southern, Peter J; Masek-Hammerman, Katherine; Reeves, R Keith; Johnson, R Paul; Haase, Ashley T

    2014-07-01

    NK cell responses to HIV/SIV infection have been well studied in acute and chronic infected patients/monkeys, but little is known about NK cells during viral transmission, particularly in mucosal tissues. In this article, we report a systematic study of NK cell responses to high-dose vaginal exposure to SIVmac251 in the rhesus macaque female reproductive tract (FRT). Small numbers of NK cells were recruited into the FRT mucosa following vaginal inoculation. The influx of mucosal NK cells preceded local virus replication and peaked at 1 wk and, thus, was in an appropriate time frame to control an expanding population of infected cells at the portal of entry. However, NK cells were greatly outnumbered by recruited target cells that fuel local virus expansion and were spatially dissociated from SIV RNA+ cells at the major site of expansion of infected founder populations in the transition zone and adjoining endocervix. The number of NK cells in the FRT mucosa decreased rapidly in the second week, while the number of SIV RNA+ cells in the FRT reached its peak. Mucosal NK cells produced IFN-γ and MIP-1α/CCL3 but lacked several markers of activation and cytotoxicity, and this was correlated with inoculum-induced upregulation of the inhibitory ligand HLA-E and downregulation of the activating receptor CD122/IL-2Rβ. Examination of SIVΔnef-vaccinated monkeys suggested that recruitment of NK cells to the genital mucosa was not involved in vaccine-induced protection from vaginal challenge. In summary, our results suggest that NK cells play, at most, a limited role in defenses in the FRT against vaginal challenge.

  7. Quercetin Blocks Airway Epithelial Cell Chemokine Expression

    PubMed Central

    Nanua, Suparna; Zick, Suzanna M.; Andrade, Juan E.; Sajjan, Umadevi S.; Burgess, John R.; Lukacs, Nicholas W.; Hershenson, Marc B.

    2006-01-01

    Quercetin (3,3′,4′,5,7-pentahydroxyflavone), a dietary flavonoid, is an inhibitor of phosphatidylinositol (PI) 3-kinase and potent antioxidant. We hypothesized that quercetin blocks airway epithelial cell chemokine expression via PI 3-kinase–dependent mechanisms. Pretreatment with quercetin and the PI 3–kinase inhibitor LY294002 each reduced TNF-α–induced IL-8 and monocyte chemoattractant protein (MCP)-1 (also called CCL2) expression in cultured human airway epithelial cells. Quercetin also inhibited TNF-α–induced PI 3-kinase activity, Akt phosphorylation, intracellular H2O2 production, NF-κB transactivation, IL-8 promoter activity, and steady-state mRNA levels, consistent with the notion that quercetin inhibits chemokine expression by attenuating NF-κB transactivation via a PI 3-kinase/Akt-dependent pathway. Quercetin also reduced TNF-α–induced chemokine secretion in the presence of the transcriptional inhibitor actinomycin D, while inducing phosphorylation of eukaryotic translation initiation factor (eIF)-2α, suggesting that quercetin attenuates chemokine expression by post-transcriptional as well as transcriptional mechanisms. Finally, we tested the effects of quercetin in cockroach antigen–sensitized and –challenged mice. These mice show MCP-1–dependent airways hyperresponsiveness and inflammation. Quercetin significantly reduced lung MCP-1 and methacholine responsiveness. We conclude that quercetin blocks airway cell chemokine expression via transcriptional and post-transcriptional pathways. PMID:16794257

  8. Urokinase plasminogen activator released by alveolar epithelial cells modulates alveolar epithelial repair in vitro.

    PubMed

    Van Leer, Coretta; Stutz, Monika; Haeberli, André; Geiser, Thomas

    2005-12-01

    Intra-alveolar fibrin is formed following lung injury and inflammation and may contribute to the development of pulmonary fibrosis. Fibrin turnover is altered in patients with pulmonary fibrosis, resulting in intra-alveolar fibrin accumulation, mainly due to decreased fibrinolysis. Alveolar type II epithelial cells (AEC) repair the injured alveolar epithelium by migrating over the provisional fibrin matrix. We hypothesized that repairing alveolar epithelial cells modulate the underlying fibrin matrix by release of fibrinolytic activity, and that the degree of fibrinolysis modulates alveolar epithelial repair on fibrin. To test this hypothesis we studied alveolar epithelial wound repair in vitro using a modified epithelial wound repair model with human A549 alveolar epithelial cells cultured on a fibrin matrix. In presence of the inflammatory cytokine interleukin-1beta, wounds increase by 800% in 24 hours mainly due to detachment of the cells, whereas in serum-free medium wound areas decreases by 22.4 +/- 5.2% (p < 0.01). Increased levels of D-dimer, FDP and uPA in the cell supernatant of IL-1beta-stimulated A549 epithelial cells indicate activation of fibrinolysis by activation of the plasmin system. In presence of low concentrations of fibrinolysis inhibitors, including specific blocking anti-uPA antibodies, alveolar epithelial repair in vitro was improved, whereas in presence of high concentrations of fibrinolysis inhibitors, a decrease was observed mainly due to decreased spreading and migration of cells. These findings suggest the existence of a fibrinolytic optimum at which alveolar epithelial repair in vitro is most efficient. In conclusion, uPA released by AEC alters alveolar epithelial repair in vitro by modulating the underlying fibrin matrix.

  9. Glucocorticoid receptor in human respiratory epithelial cells.

    PubMed

    Pujolsa, Laura; Mullol, Joaquim; Picado, Cèsar

    2009-01-01

    Inhaled and intranasal glucocorticoids (GCs) are the most common and effective drugs for controlling symptoms and airway inflammation in respiratory diseases such as allergic rhinitis, chronic rhinosinusitis with/without nasal polyps, and asthma, and the respiratory epithelium is a primary target of GC anti-inflammatory actions. GC effects are mediated through the GC receptor (GR). In humans, one single GR gene gives rise to two main GR products, namely GRalpha and GRbeta, which are subject to translational and posttranslational modifications. GRalpha is expressed in virtually all human cells and tissues, including respiratory epithelial cells, and - at least in vitro - is downregulated by GC. GRalpha mediates the anti-inflammatory actions of GC by activating transcription of anti-inflammatory genes through binding of GRalpha to glucocorticoid response elements (GRE) located in the promoter region of target genes, repressing transcription of proinflammatory genes through direct interaction between GRalpha and proinflammatory transcription factors, such as AP-1 and NF-kappaB (transrepression), and also by destabilizing the mRNA of proinflammatory mediators. GRbeta acts as a dominant negative inhibitor of GRalpha-mediated transactivation and transrepression in certain in vitro studies with transfected cells. The GRbeta message is expressed at low levels in numerous tissues and its protein is mainly expressed in inflammatory cells, although it has also been detected in airway epithelial cells. Increased GRbeta expression has been reported in bronchial asthma and nasal polyposis, and after incubation of cells with certain proinflammatory stimuli. However, the role of GRbeta in modulating GC sensitivity in vivo has been highly debated and is as yet unclear.

  10. Henipavirus pathogenesis in human respiratory epithelial cells.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz; Rockx, Barry

    2013-03-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.

  11. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    SciTech Connect

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  12. Epithelial Cell Innate Response to Candida albicans

    PubMed Central

    Naglik, J.R.; Moyes, D.

    2011-01-01

    With the advent of treatments and diseases such as AIDS resulting in increasing numbers of patients with suppressed immune systems, fungal diseases are an escalating problem. Candida albicans is the most common of these fungal pathogens, causing infections in many of these patients. It is therefore important to understand how immunity to this fungus is regulated and how it might be manipulated. Although work has been done to identify the receptors, fungal moieties, and responses involved in anti-Candida immunity, most studies have investigated interactions with myeloid or lymphoid cells. Given that the first site of contact of C. albicans with its host is the mucosal epithelial surface, recent studies have begun to focus on interactions of C. albicans with this site. The results are startling yet in retrospect obvious, indicating that epithelial cells play an important role in these interactions, initiating responses and even providing a level of protection. These findings have obvious implications, not just for fungal pathogens, but also for identifying how host organisms can distinguish between commensal and pathogenic microbes. This review highlights some of these recent findings and discusses their importance in the wider context of infection and immunity. PMID:21441481

  13. Nuclear microscopy of rat colon epithelial cells

    NASA Astrophysics Data System (ADS)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  14. Culture and differentiation of mouse tracheal epithelial cells.

    PubMed

    You, Yingjian; Brody, Steven L

    2013-01-01

    Airway epithelial cell biology has been greatly advanced by studies of genetically defined and modified mice; however it is often difficult to isolate, manipulate, and assay epithelial cell-specific responses in vivo. In vitro proliferation and differentiation of mouse airway epithelial cells are made possible by a high-fidelity system for primary culture of mouse tracheal epithelial cells described in this chapter. Using this method, epithelial cells purified from mouse tracheas proliferate in growth factor-enriched medium. Subsequent culture in defined medium and the use of the air-liquid interface condition result in the development of well-differentiated epithelia composed of ciliated and non-ciliated cells with characteristics of native airways. Methods are also provided for manipulation of differentiation and analysis of differentiation and gene expression. These approaches allow the assessment of global responses and those of specific cell subpopulations within the airway epithelium.

  15. Epithelial Cell Secretions from the Human Female Reproductive Tract Inhibit Sexually Transmitted Pathogens and Candida albicans but not Lactobacillus

    PubMed Central

    Wira, CR; Ghosh, M; Smith, JM; Shen, L; Connor, RI; Sundstrom, P; Frechette, Gregory M.; Hill, EM; Fahey, JV

    2011-01-01

    Female reproductive tract (FRT) epithelial cells protect against potential pathogens and sexually transmitted infections. The purpose of this study was to determine if epithelial cells from the upper FRT secrete antimicrobials that inhibit reproductive tract pathogens which threaten women's health. Apical secretions from primary cultures of Fallopian tube, uterine, cervical and ectocervical epithelial cells were incubated with Neisseria gonorrhoeae, Candida albicans (yeast and hyphal forms), HIV-1, and Lactobacillus crispatus, prior to being tested for their ability to grow and/or infect target cells. Epithelial cell secretions from the upper FRT inhibit N. gonorrhoeae and both forms of Candida, as well as reduce HIV-1 (R5) infection of target cells. In contrast, none had an inhibitory effect on L. crispatus. Cytokines and chemokines analysis in uterine secretions revealed several molecules that could account for pathogen inhibition. These findings provide definitive evidence for the critical role of epithelial cells in protecting the FRT from infections, without comprising the beneficial presence of L. crispatus, which is part of the normal vaginal microflora of humans. PMID:21048705

  16. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  17. Release of HIV-1 sequestered in the vesicles of oral and genital mucosal epithelial cells by epithelial-lymphocyte interaction

    PubMed Central

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina

    2017-01-01

    Oropharyngeal mucosal epithelia of fetuses/neonates/infants and the genital epithelia of adults play a critical role in HIV-1 mother-to-child transmission and sexual transmission of virus, respectively. To study the mechanisms of HIV-1 transmission through mucosal epithelium, we established polarized tonsil, cervical and foreskin epithelial cells. Analysis of HIV-1 transmission through epithelial cells showed that approximately 0.05% of initially inoculated virions transmigrated via epithelium. More than 90% of internalized virions were sequestered in the endosomes of epithelial cells, including multivesicular bodies (MVBs) and vacuoles. Intraepithelial HIV-1 remained infectious for 9 days without viral release. Release of sequestered intraepithelial HIV-1 was induced by the calcium ionophore ionomycin and by cytochalasin D, which increase intracellular calcium and disrupt the cortical actin of epithelial cells, respectively. Cocultivation of epithelial cells containing HIV-1 with activated peripheral blood mononuclear cells and CD4+ T lymphocytes led to the disruption of epithelial cortical actin and spread of virus from epithelial cells to lymphocytes. Treatment of epithelial cells with proinflammatory cytokines tumor necrosis factor-alpha and interferon gamma also induced reorganization of cortical actin and release of virus. Inhibition of MVB formation by small interfering RNA (siRNA)-mediated silencing of its critical protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) expression reduced viral sequestration in epithelial cells and its transmission from epithelial cells to lymphocytes by ~60–70%. Furthermore, inhibition of vacuole formation of epithelial cells by siRNA-inactivated rabankyrin-5 expression also significantly reduced HIV-1 sequestration in epithelial cells and spread of virus from epithelial cells to lymphocytes. Interaction of the intercellular adhesion molecule-1 of epithelial cells with the function-associated antigen-1

  18. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  19. Klebsiella pneumoniae Is Able to Trigger Epithelial-Mesenchymal Transition Process in Cultured Airway Epithelial Cells

    PubMed Central

    Leone, Laura; Mazzetta, Francesca; Martinelli, Daniela; Valente, Sabatino; Alimandi, Maurizio; Raffa, Salvatore; Santino, Iolanda

    2016-01-01

    The ability of some bacterial pathogens to activate Epithelial-Mesenchymal Transition normally is a consequence of the persistence of a local chronic inflammatory response or depends on a direct interaction of the pathogens with the host epithelial cells. In this study we monitored the abilities of the K. pneumoniae to activate the expression of genes related to EMT-like processes and the occurrence of phenotypic changes in airway epithelial cells during the early steps of cell infection. We describe changes in the production of intracellular reactive oxygen species and increased HIF-1α mRNA expression in cells exposed to K. pneumoniae infection. We also describe the upregulation of a set of transcription factors implicated in the EMT processes, such as Twist, Snail and ZEB, indicating that the morphological changes of epithelial cells already appreciable after few hours from the K. pneumoniae infection are tightly regulated by the activation of transcriptional pathways, driving epithelial cells to EMT. These effects appear to be effectively counteracted by resveratrol, an antioxidant that is able to exert a sustained scavenging of the intracellular ROS. This is the first report indicating that strains of K. pneumoniae may promote EMT-like programs through direct interaction with epithelial cells without the involvement of inflammatory cells. PMID:26812644

  20. Airway epithelial IL-15 transforms monocytes into dendritic cells.

    PubMed

    Regamey, Nicolas; Obregon, Carolina; Ferrari-Lacraz, Sylvie; van Leer, Coretta; Chanson, Marc; Nicod, Laurent P; Geiser, Thomas

    2007-07-01

    IL-15 has recently been shown to induce the differentiation of functional dendritic cells (DCs) from human peripheral blood monocytes. Since DCs lay in close proximity to epithelial cells in the airway mucosa, we investigated whether airway epithelial cells release IL-15 in response to inflammatory stimuli and thereby induce differentiation and maturation of DCs. Alveolar (A549) and bronchial (BEAS-2B) epithelial cells produced IL-15 spontaneously and in a time- and dose-dependent manner after stimulation with IL-1beta, IFN-gamma, or TNF-alpha. Airway epithelial cell supernatants induced an increase of IL-15Ralpha gene expression in ex vivo monocytes, and stimulated DCs enhanced their IL-15Ralpha gene expression up to 300-fold. Airway epithelial cell-conditioned media induced the differentiation of ex vivo monocytes into partially mature DCs (HLA-DR+, DC-SIGN+, CD14+, CD80-, CD83+, CD86+, CCR3+, CCR6(+), CCR7-). Based on their phenotypic (CD123+, BDCA2+, BDCA4+, BDCA1(-), CD1a-) and functional properties (limited maturation upon stimulation with LPS and limited capacity to induce T cell proliferation), these DCs resembled plasmacytoid DCs. The effects of airway epithelial cell supernatants were largely blocked by a neutralizing monoclonal antibody to IL-15. Thus, our results demonstrate that airway epithelial cell-conditioned media have the capacity to differentiate monocytes into functional DCs, a process substantially mediated by epithelial-derived IL-15.

  1. Mechanical stretch triggers rapid epithelial cell division through Piezo1.

    PubMed

    Gudipaty, S A; Lindblom, J; Loftus, P D; Redd, M J; Edes, K; Davey, C F; Krishnegowda, V; Rosenblatt, J

    2017-03-02

    Despite acting as a barrier for the organs they encase, epithelial cells turn over at some of the fastest rates in the body. However, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How does the number of dying cells match those dividing to maintain constant numbers? When epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die. However, it is unclear how epithelial cell division is controlled to balance cell death at the steady state. Here we show that mammalian epithelial cell division occurs in regions of low cell density where cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the Piezo1 channel. To stimulate cell division, stretch triggers cells that are paused in early G2 phase to activate calcium-dependent phosphorylation of ERK1/2, thereby activating the cyclin B transcription that is necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at the steady state, the type of mechanical force controls the outcome: stretch induces cell division, whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated, as it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions in which cells divide, Piezo1 localizes to the plasma membrane and cytoplasm, whereas in dense regions in which cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion and apoptosis in crowded regions and cell division in sparse regions.

  2. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION

    PubMed Central

    Loewenstein, Werner R.; Kanno, Yoshinobu

    1964-01-01

    Membrane permeability of an epithelial cell junction (Drosophila salivary gland) was examined with intracellular microelectrodes and with fluorescent tracers. In contrast to the non-junctional cell membrane surface, which has a low permeability to ions (10-4 mho/cm2), the junctional membrane surface is highly permeable. In fact, it introduces no substantial restriction to ion flow beyond that in the cytoplasm; the resistance through a chain of cells (150 Ω cm) is only slightly greater than in extruded cytoplasm (100 Ω cm). The diffusion resistance along the intercellular space to the exterior, on the other hand, is very high. Here, there exists an ion barrier of, at least, 104Ω cm2. As a result, small ions and fluorescein move rather freely from one cell to the next, but do not leak appreciably through the intercellular space to the exterior. The organ here, rather than the single cell, appears to be the unit of ion environment. The possible underlying structural aspects are discussed. PMID:14206423

  3. Sonic Hedgehog regulates thymic epithelial cell differentiation

    PubMed Central

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L.; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-01-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  4. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    PubMed

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus.

  5. Multi-functionality and plasticity characterize epithelial cells in Hydra

    PubMed Central

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  6. Cervical mucins carry alpha(1,2)fucosylated glycans that partly protect from experimental vaginal candidiasis.

    PubMed

    Domino, Steven E; Hurd, Elizabeth A; Thomsson, Kristina A; Karnak, David M; Holmén Larsson, Jessica M; Thomsson, Elisabeth; Bäckström, Malin; Hansson, Gunnar C

    2009-12-01

    Cervical mucins are glycosylated proteins that form a protective cervical mucus. To understand the role of mucin glycans in Candida albicans infection, oligosaccharides from mouse cervical mucins were analyzed by liquid chromatography-mass spectrometry. Cervical mucins carry multiple alpha(1-2)fucosylated glycans, but alpha(1,2)fucosyltransferase Fut2-null mice are devoid of these epitopes. Epithelial cells in vaginal lavages from Fut2-null mice lacked Ulex europaeus agglutinin-1 (UEA-I) staining for alpha(1-2)fucosylated glycans. Hysterectomy to remove cervical mucus eliminated UEA-I and acid mucin staining in vaginal epithelial cells from wild type mice indicating the cervix as the source of UEA-I positive epithelial cells. To assess binding of alpha(1-2) fucosylated glycans on C. albicans infection, an in vitro adhesion assay was performed with vaginal epithelial cells from wild type and Fut2-null mice. Vaginal epithelial cells from Fut2-null mice were found to bind increased numbers of C. albicans compared to vaginal epithelial cells obtained from wild type mice. Hysterectomy lessened the difference between Fut2-null and wild type mice in binding of C. ablicans in vitro and susceptibility to experimental C. albicans vaginitis in vivo. We generated a recombinant fucosylated MUC1 glycanpolymer to test whether the relative protection of wild type mice compared to Fut2-null mice could be mimicked with exogenous mucin. While a small portion of the recombinant MUC1 epitopes displayed alpha(1-2)fucosylated glycans, the predominant epitopes were sialylated due to endogenous sialyltransferases in the cultured cells. Intravaginal instillation of recombinant MUC1 glycanpolymer partially reduced experimental yeast vaginitis suggesting that a large glycanpolymer, with different glycan epitopes, may affect fungal burden.

  7. Vaginal cysts

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001509.htm Vaginal cysts To use the sharing features on this ... with air, fluid, pus, or other material. A vaginal cyst occurs on or under the vaginal lining. ...

  8. Vaginal Fistula

    MedlinePlus

    Diseases and Conditions Vaginal fistula By Mayo Clinic Staff A vaginal fistula is an abnormal opening that connects your vagina to another organ, ... stool or urine to pass through your vagina. Vaginal fistulas can develop as a result of an ...

  9. Vaginal Diseases

    MedlinePlus

    Vaginal problems are some of the most common reasons women go to the doctor. They may have ... that affect the vagina include sexually transmitted diseases, vaginal cancer, and vulvar cancer. Treatment of vaginal problems ...

  10. Technical note: Isolation and characterization of porcine mammary epithelial cells.

    PubMed

    Dahanayaka, S; Rezaei, R; Porter, W W; Johnson, G A; Burghardt, R C; Bazer, F W; Hou, Y Q; Wu, Z L; Wu, G

    2015-11-01

    Within the mammary gland, functional synthesis of milk is performed by its epithelial (alveolar) cells. The availability of a stable mammary epithelial cell line is essential for biochemical studies to elucidate cellular and molecular mechanisms responsible for nutritional regulation of lactation. Therefore, porcine mammary epithelial cells (PMEC) were isolated from mammary glands of a 9-mo-old nonpregnant and nonlactating gilt and cultured to establish a nonimmortalized cell line. These cells were characterized by expression of cytokeratin-18 (an intermediate filament specific for epithelial cells), β-casein (a specific marker for mammary epithelial cells), and α-lactalbumin. In culture, the PMEC doubled in number every 24 h and maintained a cobblestone morphology, typical for cultured epithelial cells, for at least 15 passages. Addition of 0.2 to 2 μg/mL prolactin to culture medium for 3 d induced the production of β-casein and α-lactalbumin by PMEC in a dose-dependent manner. Thus, we have successfully developed a useful PMEC line for future studies of cellular and molecular regulation of milk synthesis by mammary epithelial cells of the sow.

  11. A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells

    PubMed Central

    Shu, Zhiquan; Hughes, Sean M.; Fang, Cifeng; Huang, Jinghua; Fu, Baiwen; Zhao, Gang; Fialkow, Michael; Lentz, Gretchen; Hladik, Florian; Gao, Dayong

    2016-01-01

    Cryopreservation of specimens taken from the genital tract of women is important for studying mucosal immunity during HIV prevention trials. However, it is unclear whether the current, empirically developed cryopreservation procedures for peripheral blood cells are also ideal for genital specimens. The optimal cryopreservation protocol depends on the cryobiological features of the cells. Thus, we obtained tissue specimens from vaginal repair surgeries, isolated and flow cytometry-purified immune cells, and determined fundamental cryobiological characteristics of vaginal CD3+ T cells and CD14+ macrophages using a microfluidic device. The osmotically inactive volumes of the two cell types (Vb) were determined relative to the initial cell volume (V0) by exposing the cells to hypotonic and hypertonic saline solutions, evaluating the equilibrium volume, and applying the Boyle van't Hoff relationship. The cell membrane permeability to water (Lp) and to four different cryoprotective agent (CPA) solutions (Ps) at room temperature were also measured. Results indicated Vb values of 0.516 V0 and 0.457 V0 for mucosal T cells and macrophages, respectively. Lp values at room temperature were 0.196 and 0.295 μm/min/atm for T cells and macrophages, respectively. Both cell types had high Ps values for the three CPAs, dimethyl sulfoxide (DMSO), propylene glycol (PG) and ethylene glycol (EG) (minimum of 0.418 × 10−3 cm/min), but transport of the fourth CPA, glycerol, occurred 50–150 times more slowly. Thus, DMSO, PG, and EG are better options than glycerol in avoiding severe cell volume excursion and osmotic injury during CPA addition and removal for cryopreservation of human vaginal immune cells. PMID:26976225

  12. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells.

    PubMed

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-07-15

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.

  13. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells

    PubMed Central

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-01-01

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite. PMID:25221599

  14. Cell Chirality Induces Collective Cell Migration in Epithelial Sheets

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Shibata, Tatsuo

    2015-10-01

    During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show that when the interface tension is strengthened in a direction that is tilted from the body axis, cell rearrangements occur in such a way that unidirectional movement is induced. We use a vertex model to demonstrate that such anisotropic tension can generate the unidirectional motion of cell sheets. Our results suggest that cell chirality facilitates collective cell migration during tissue morphogenesis.

  15. Epithelial cells as alternative human biomatrices for comet assay

    PubMed Central

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353

  16. Epithelial cells as alternative human biomatrices for comet assay.

    PubMed

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  17. Clinical implications of epithelial cell plasticity in cancer progression.

    PubMed

    Aparicio, Luis A; Blanco, Moisés; Castosa, Raquel; Concha, Ángel; Valladares, Manuel; Calvo, Lourdes; Figueroa, Angélica

    2015-09-28

    In the last few years, the role of epithelial cell plasticity in cancer biology research has gained increasing attention. This concept refers to the ability of the epithelial cells to dynamically switch between different phenotypic cellular states. This programme is particularly relevant during the epithelial-to-mesenchymal transition (EMT) in cancer progression. During colonization, epithelial cells first activate the EMT programme to disseminate from a primary tumour to reach a distant tissue site. During this process, cells are transported into the circulation and are able to escape the immune system of the host. Then, a reverse process called mesenchymal-to-epithelial transition (MET) occurs on cells that settle in the distant organs. Although epithelial cell plasticity has an important impact on tumour biology, the clinical relevance of this concept remains to be recapitulated. In this review, we will update the current state of epithelial cell plasticity in cancer progression and its clinical implications for the design of therapeutic strategies, the acquisition of multidrug resistance, and future perspectives for the management of cancer patients.

  18. Gastrin stimulates MMP-1 expression in gastric epithelial cells: putative role in gastric epithelial cell migration.

    PubMed

    Kumar, J Dinesh; Steele, Islay; Moore, Andrew R; Murugesan, Senthil V; Rakonczay, Zoltan; Venglovecz, Viktoria; Pritchard, D Mark; Dimaline, Rodney; Tiszlavicz, Laszlo; Varro, Andrea; Dockray, Graham J

    2015-07-15

    The pyloric antral hormone gastrin plays a role in remodeling of the gastric epithelium, but the specific targets of gastrin that mediate these effects are poorly understood. Glandular epithelial cells of the gastric corpus express matrix metalloproteinase (MMP)-1, which is a potential determinant of tissue remodeling; some of these cells express the CCK-2 receptor at which gastrin acts. We have now examined the hypothesis that gastrin stimulates expression of MMP-1 in the stomach. We determined MMP-1 transcript abundance in gastric mucosal biopsies from Helicobacter pylori negative human subjects with normal gastric mucosal histology, who had a range of serum gastrin concentrations due in part to treatment with proton pump inhibitors (PPI). The effects of gastrin were studied on gastric epithelial AGS-GR cells using Western blot and migration assays. In human subjects with increased serum gastrin due to PPI usage, MMP-1 transcript abundance was increased 2-fold; there was also increased MMP-7 transcript abundance but not MMP-3. In Western blots, gastrin increased proMMP-1 abundance, as well that of a minor band corresponding to active MMP-1, in the media of AGS-GR cells, and the response was mediated by protein kinase C and p42/44 MAP kinase. There was also increased MMP-1 enzyme activity. Gastrin-stimulated AGS-GR cell migration in both scratch wound and Boyden chamber assays was inhibited by MMP-1 immunoneutralization. We conclude that MMP-1 expression is a target of gastrin implicated in mucosal remodeling.

  19. Genetics and epithelial cell dysfunction in cystic fibrosis

    SciTech Connect

    Riordan, J.R.; Buchwald, M.

    1987-01-01

    This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.

  20. Growth of corneal epithelial cells over in situ therapeutic contact lens after simple limbal epithelial transplantation (SLET).

    PubMed

    Bhalekar, Swapnil; Sangwan, Virender S; Basu, Sayan

    2013-06-27

    An 11-year-old boy underwent simple limbal epithelial transplantation (SLET) from the healthy right eye to his left eye for total limbal stem cell deficiency. One month later, corneal surface epithelialised and whitish plaques overlying the transplants were seen inferiorly. Those plaques were adherent to the surface of the contact lens and underlying corneal surface had smooth elevations. Similar findings were noted in a 23-year man following cyanoacrylate glue application for corneal perforation. On histological and immunohistochemical analysis, cells lining the contact lenses were identified as corneal epithelial cells. These cases illustrate epithelial cell growth on the contact lens and epithelial hyperplasia on corresponding surface of the cornea. Exorbitant proliferation of the epithelial cells may be owing to young age; therefore, early contact lens removal after SLET in young age, can possibly avoid epithelial hyperplasia. This also reiterates the possibility of using contact lens as a scaffold to grow epithelial cells.

  1. Polarized fibronectin secretion induced by adenosine regulates bacterial–epithelial interaction in human intestinal epithelial cells

    PubMed Central

    2004-01-01

    Fibronectin (FN) is a multifunctional protein that plays important roles in many biological processes including cell adhesion and migration, wound healing and inflammation. Cellular FNs are produced by a wide variety of cell types including epithelial cells, which secrete them and often organize them into extensive extracellular matrices at their basal surface. However, regulation of FN synthesis and the polarity of FN secretion by intestinal epithelial cells have not been investigated. In the present study we investigated the role of adenosine, whose levels are up-regulated during inflammation, in modulating FN synthesis, the polarity of FN secretion and the downstream effects of the secreted FN. Polarized monolayers of T84 cells were used as an intestinal epithelial model. Adenosine added to either the apical or basolateral aspect of the cells led to a time- and dose-dependent accumulation of FN in the culture supernatants, polarized to the apical compartment and reached maximal levels 24 h after apical or basolateral addition of adenosine. Confocal microscopy confirmed that FN localized to the apical domain of model intestinal epithelial cells stimulated with apical or basolateral adenosine. The induction of FN was significantly down-regulated in response to the adenosine receptor antagonist alloxazine and was inhibited by cycloheximide. Moreover, adenosine increased FN promoter activity (3.5-fold compared with unstimulated controls) indicating that FN induction is, in part, transcriptionally regulated. Interestingly, we demonstrated that adenosine, as well as apical FN, significantly enhanced the adherence and invasion of Salmonella typhimurium into cultured epithelial cells. In summary, we have shown for the first time that FN, a classic extracellular matrix protein, is secreted into the apical compartment of epithelial cells in response to adenosine. FN may be a critical host factor that modulates adherence and invasion of bacteria, thus playing a key role

  2. Comparative Study on the Estimation of Estrous Cycle in Mice by Visual and Vaginal Lavage Method

    PubMed Central

    Ekambaram, Gnanagurudasan; Joseph, Leena Dennis

    2017-01-01

    Introduction Evaluation of estrous cycle in laboratory animals can be a useful measure of the integrity of hypothalamic-pituitary-ovarian reproductive axis. Assessment of vaginal cytology is crucial to assess the milieu and compare the endocrine status of animals among the experimental groups. Aim The present study was attempted to compare the estimation of estrous cycle by visual method and non invasive vaginal lavage method. Materials and Methods Sixty healthy female swiss albino mice were used for the present study. The appearance of the vagina with respect to the opening of vagina, vaginal swellings were observed. Non-invasive method was used in vaginal lavage method in which nucleated epithelial cells, cornified squamous epithelial cells and leucocytes present in vaginal smears were used to identify the estrous stages. Results The estimation of estrous cycle by visual method coincides with the vaginal lavage method. In Vaginal lavage method, the accurate proportion of cells and the transition phases can be evaluated. Conclusion The non-invasive method reduces the risk of pseudo -pregnancy and mechanical trauma. Though, visual method is quick and reliable, for accurate estimation of the stage of the estrous, non-invasive vaginal lavage method is ideal. PMID:28273958

  3. Alignment of cell division axes in directed epithelial cell migration

    NASA Astrophysics Data System (ADS)

    Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

    2014-11-01

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

  4. Microfluidic approaches for epithelial cell layer culture and characterisation

    PubMed Central

    Thuenauer, Roland; Rodriguez-Boulan, Enrique; Römer, Winfried

    2014-01-01

    In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips, including methods to perform electrical impedance spectroscopy, methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry, techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress, and methods to carry out high-resolution imaging of vesicular trafficking with light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers. PMID:24668405

  5. SWCNTs induced autophagic cell death in human bronchial epithelial cells.

    PubMed

    Park, Eun-Jung; Zahari, Nur Elida M; Lee, Eun-Woo; Song, Jaewhan; Lee, Jae-Hyeok; Cho, Myung-Haing; Kim, Jae-Ho

    2014-04-01

    Carbon nanotubes are being actively introduced in electronics, computer science, aerospace, and other industries. Thus, the urgent need for toxicological studies on CNTs is mounting. In this study, we investigated the alterations in cellular response with morphological changes induced by single-walled carbon nanotubes (SWCNTs) in BEAS-2B cells, a human bronchial epithelial cell line. At 24h after exposure, SWCNTs rapidly decreased ATP production and cell viability as well a slight increase in the number of cells in the subG1 and G1 phases. In addition, SWCNTs increased the expression of superoxide dismutase (SOD)-1, but not SOD-2, and the number of cells generating ROS. The concentration of Cu and Zn ions also increased in a dose-dependent manner in cells exposed to SWCNTs. SWCNTs significantly enhanced the release of nitric oxide, interleukin (IL)-6, and IL-8 and up-regulated the expression of chemokine- and cytokine-related genes. Furthermore, the levels of autophagy-related genes, especially the DRAM1 gene, and the autophagosome formation-related proteins, were clearly up-regulated together with an increase of autophagosome-like vacuoles. Based on these results, we suggest that SWCNTs induce autophagic cell death through mitochondrial dysfunction and cytosolic damage in human bronchial epithelial cells.

  6. Diversity of Epithelial Stem Cell Types in Adult Lung

    PubMed Central

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C.; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  7. Stochastic Terminal Dynamics in Epithelial Cell Intercalation

    NASA Astrophysics Data System (ADS)

    Eule, Stephan; Metzger, Jakob; Reichl, Lars; Kong, Deqing; Zhang, Yujun; Grosshans, Joerg; Wolf, Fred

    2015-03-01

    We found that the constriction of epithelial cell contacts during intercalation in germ band extension in Drosophila embryos follows intriguingly simple quantitative laws. The mean contact length < L > follows < L > (t) ~(T - t) α , where T is the finite collapse time; the time dependent variance of contact length is proportional to the square of the mean; finally the time dependent probability density of the contact lengths remains close to Gaussian during the entire process. These observations suggest that the dynamics of contact collapse can be captured by a stochastic differential equation analytically tractable in small noise approximation. Here, we present such a model, providing an effective description of the non-equilibrium statistical mechanics of contact collapse. All model parameters are fixed by measurements of time dependent mean and variance of contact lengths. The model predicts the contact length covariance function that we obtain in closed form. The contact length covariance function closely matches experimental observations suggesting that the model well captures the dynamics of contact collapse.

  8. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    SciTech Connect

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  9. Vaginal disorders.

    PubMed

    Soderberg, S F

    1986-05-01

    Chronic vaginitis is the most common vaginal disorder. Dogs with vaginitis show no signs of systemic illness but often lick at the vulva and have purulent or hemorrhagic vaginal discharges. Vaginitis is most commonly secondary to a noninfectious inciting factor such as congenital vaginal anomalies, clitoral hypertrophy, foreign bodies, trauma to the vaginal mucosa, or vaginal tumors. Inspection of the caudal vagina and vestibule both visually and digitally will often reveal the source of vaginal irritation. Vaginal cytology is used to establish the stage of the estrous cycle as well as distinguish uterine from vaginal sources of discharge. Vaginal cultures are used to establish the predominant offending organism associated with vaginal discharges and may be used as a guide for selection of a therapeutic agent. Vaginitis is best managed by removing the inciting cause and treating the area locally with antiseptic douches. Congenital malformations at the vestibulovaginal or vestibulovulvar junction may prevent normal intromission. Affected bitches may be reluctant to breed naturally because of pain. Such defects are detected best by digital examination. Congenital vaginal defects may be corrected by digital or surgical means. Prolapse of tissue through the lips of the vulva may be caused by clitoral hypertrophy, vaginal hyperplasia, or vaginal tumors. Enlargement of clitoral tissue is the result of endogenous or exogenous sources of androgens. Treatment of this condition includes removal of the androgen source and/or surgical removal of clitoral tissue. Vaginal hyperplasia is detected during proestrus or estrus of young bitches. Hyperplastic tissue will regress during diestrus. Tissue that is excessively traumatized and/or prolapse of the entire vaginal circumference may be removed surgically. Ovariohysterectomy may be used to prevent recurrence. Vaginal tumors are detected most often in older intact bitches. Such tumors are generally of smooth muscle or fibrous

  10. Characteristics and EGFP expression of porcine mammary gland epithelial cells.

    PubMed

    Zheng, Yue-Mao; He, Xiao-Ying

    2010-12-01

    The aims of this study were to establish a porcine mammary gland epithelial (PMGE) cell line, and to determine if these PMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of PMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating pig. The passage sixteen PMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in PMGE cells was tested by immunofluorescence. Βeta-Casein gene mRNA was tested for PMGE cells by RT-PCR. The results showed that PMGE cells could form dome-like structure which looked like nipple, and the cells contained different cell types. The expression of Cell keratins demonstrated the property of epithelial cells, and the PMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the PMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected porcine mammary gland epithelial (ET-PMGE) cell line.

  11. Airway epithelial cell wound repair mediated by alpha-dystroglycan.

    PubMed

    White, S R; Wojcik, K R; Gruenert, D; Sun, S; Dorscheid, D R

    2001-02-01

    Dystroglycans (DGs) bind laminin matrix proteins in skeletal and cardiac muscle and are expressed in other nonmuscle tissues. However, their expression in airway epithelial cells has not been demonstrated. We examined expression of DGs in the human airway epithelial cell line 1HAEo(-), and in human primary airway epithelial cells. Expression of the common gene for alpha- and beta-DG was demonstrated by reverse transcriptase/ polymerase chain reaction in 1HAEo(-) cells. Protein expression of beta-DG was demonstrated by both Western blot and flow cytometry in cultured cells. Localization of alpha-DG, using both a monoclonal antibody and the alpha-DG binding lectin wheat-germ agglutinin (WGA), was to the cell membrane and nucleus. We then examined the function of DGs in modulating wound repair over laminin matrix. Blocking alpha-DG binding to laminin in 1HAEo(-) monolayers using either glycosyaminoglycans or WGA attenuated cell migration and spreading after mechanical injury. alpha-DG was not expressed in epithelial cells at the wound edge immediately after wound creation, but localized to the cell membrane in these cells within 12 h of injury. These data demonstrate the presence of DGs in airway epithelium. alpha-DG is dynamically expressed and serves as a lectin to bind laminin during airway epithelial cell repair.

  12. Ion pump sorting in polarized renal epithelial cells.

    PubMed

    Caplan, M J

    2001-08-01

    The plasma membranes of renal epithelial cells are divided into distinct apical and basolateral domains, which contain different inventories of ion transport proteins. Without this polarity vectorial ion and fluid transport would not be possible. Little is known of the signals and mechanisms that renal epithelial cells use to establish and maintain polarized distributions of their ion transport proteins. Analysis of ion pump sorting reveals that multiple complex signals participate in determining and regulating these proteins' subcellular localizations.

  13. New topical treatment of vulvodynia based on the pathogenetic role of cross talk between nociceptors, immunocompetent cells, and epithelial cells

    PubMed Central

    Keppel Hesselink, J M; Kopsky, D J; Sajben, N

    2016-01-01

    Topical treatments of localized neuropathic pain syndromes in general are mostly neglected, mainly due to the fact that most pain physicians expect that a topical formulation needs to result in a transdermal delivery of the active compounds. On the basis of the practical experience, this study brings forth a new, somewhat neglected element of the vulvodynia pathogenesis: the cross talk between the nerve endings of nociceptors, the adjacent immunocompetent cells, and vaginal epithelial cells. Insight into this cross talk during a pathogenic condition supports the treatment of vulvodynia with topical (compounded) creams. Vulvodynia was successfully treated with an analgesic cream consisting of baclofen 5% together with the autacoid palmitoylethanolamide 1%, an endogenous anti-inflammatory compound. In this review, data is presented to substantiate the rationale behind developing and prescribing topical products for localized pain states such as vulvodynia. Most chronic inflammatory disorders are based on a network pathogenesis, and monotherapeutic inroads into the treatment of such disorders are obsolete. PMID:27757050

  14. Secretion of alpha 1-antitrypsin by alveolar epithelial cells.

    PubMed

    Venembre, P; Boutten, A; Seta, N; Dehoux, M S; Crestani, B; Aubier, M; Durand, G

    1994-06-13

    We have investigated the ability of alveolar epithelial cells (human A549 cell line and rat type-II pneumocytes) to produce alpha 1-antitrypsin (AAT). Northern blot analysis demonstrated the presence of an AAT-specific mRNA transcript in A549 cells. Unstimulated A549 cells secreted immunoreactive AAT at a rate of 0.51 +/- 0.04 ng/10(6) cells/h, with a modified glycosylation compared to serum AAT. AAT formed a complex with neutrophil elastase. Rat type-II pneumocytes secreted immunoreactive AAT. Our results suggest that alveolar epithelial cells could participate in antiprotease defense within the lung through local AAT production.

  15. Metformin inhibits the proliferation of benign prostatic epithelial cells

    PubMed Central

    Ge, Rongbin; Li, Jijun; Johnson, Cameron W.; Rassoulian, Cyrus; Olumi, Aria F.

    2017-01-01

    Objective Benign prostatic hyperplasia (BPH) is the most common proliferative abnormality of the prostate affecting elderly men throughout the world. Epidemiologic studies have shown that diabetes significantly increases the risk of developing BPH, although whether anti-diabetic medications preventing the development of BPH remains to be defined. We have previously found that stromally expressed insulin-like growth factor 1 (IGF-1) promotes benign prostatic epithelial cell proliferation through paracrine mechanisms. Here, we seek to understand if metformin, a first line medication for the treatment of type 2 diabetes, inhibits the proliferation of benign prostatic epithelial cells through reducing the expression of IGF-1 receptor (IGF-1R) and regulating cell cycle. Methods BPE cell lines BPH-1 and P69, murine fibroblasts3T3 and primary human prostatic fibroblasts were cultured and tested in this study. Cell proliferation and the cell cycle were analyzed by MTS assay and flow cytometry, respectively. The expression of IGF-1R was determined by western-blot and immunocytochemistry. The level of IGF-1 secretion in culture medium was measured by ELISA. Results Metformin (0.5-10mM, 6-48h) significantly inhibited the proliferation of BPH-1 and P69 cells in a dose-dependent and time-dependent manner. Treatment with metformin for 24 hours lowered the G2/M cell population by 43.24% in P69 cells and 24.22% in BPH-1 cells. On the other hand, IGF-1 (100ng/mL, 24h) stimulated the cell proliferation (increased by 28.81% in P69 cells and 20.95% in BPH-1 cells) and significantly enhanced the expression of IGF-1R in benign prostatic epithelial cells. Metformin (5mM) abrogated the proliferation of benign prostatic epithelial cells induced by IGF-1. In 3T3 cells, the secretion of IGF-1 was significantly inhibited by metformin from 574.31pg/ml to 197.61pg/ml. The conditioned media of 3T3 cells and human prostatic fibroblasts promoted the proliferation of epithelial cells and the

  16. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    SciTech Connect

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  17. Inhibition of corneal epithelial cell migration by cadmium and mercury

    SciTech Connect

    Ubels, J.L.; Osgood, T.B. Medical Coll. of Wisconsin, Milwaukee )

    1991-02-01

    In a previous comparative study of corneal healing in fish, the authors observed that corneal epithelial healing occurs very rapidly in vivo in the marine teleost Myoxocephalus octodecimspinosus (longhorn sculpin) with a 6-mm diameter wound on the mammalian cornea. This rapid healing which permits prompt restoration of the epithelial barrier is apparently an adaptation to the large ionic and osmotic gradients between the environment and the intraocular fluids of the fish. These observations suggested that epithelial healing in the sculpin cornea might be useful model in aquatic biomedical toxicology if an in vitro method for measurement of healing rates could be developed. In this report the authors demonstrate that sculpin eyes maintained in short-term organ culture have a rapid corneal epithelial healing response and that this model can be used to demonstrate the toxic effects of heavy metals on epithelial cell migration.

  18. Left-right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Maekawa, Emi; Isomura, Ayako; Shibata, Tatsuo; Kuranaga, Erina

    2015-12-01

    Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial tissue rotates clockwise around the genitalia. We found that this cell movement occurs autonomously and requires myosin II. The moving cells exhibit repeated left-right-biased junction remodelling, while maintaining adhesion with their neighbours, in association with a polarized myosin II distribution. Reducing myosinID, known to cause counter-clockwise epithelial-tissue movement, reverses the myosin II distribution. Numerical simulations revealed that a left-right asymmetry in cell intercalation is sufficient to induce unidirectional cellular movement. The cellular movement direction is also associated with planar cell-shape chirality. These findings support a model in which left-right asymmetric cell intercalation within an epithelial sheet drives collective cellular movement in the same direction.

  19. Characteristics and EGFP expression of goat mammary gland epithelial cells.

    PubMed

    Zheng, Y-M; He, X-Y; Zhang, Y

    2010-12-01

    The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing.

  20. Differentiation of Club Cells to Alveolar Epithelial Cells In Vitro

    PubMed Central

    Zheng, Dahai; Soh, Boon-Seng; Yin, Lu; Hu, Guangan; Chen, Qingfeng; Choi, Hyungwon; Han, Jongyoon; Chow, Vincent T. K.; Chen, Jianzhu

    2017-01-01

    Club cells are known to function as regional progenitor cells to repair the bronchiolar epithelium in response to lung damage. By lineage tracing in mice, we have shown recently that club cells also give rise to alveolar type 2 cells (AT2s) and alveolar type 1 cells (AT1s) during the repair of the damaged alveolar epithelium. Here, we show that when highly purified, anatomically and phenotypically confirmed club cells are seeded in 3-dimensional culture either in bulk or individually, they proliferate and differentiate into both AT2- and AT1-like cells and form alveolar-like structures. This differentiation was further confirmed by transcriptomic analysis of freshly isolated club cells and their cultured progeny. Freshly isolated club cells express Sca-1 and integrin α6, markers commonly used to characterize lung stem/progenitor cells. Together, current study for the first time isolated highly purified club cells for in vitro study and demonstrated club cells’ capacity to differentiate into alveolar epithelial cells at the single-cell level. PMID:28128362

  1. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    PubMed

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  2. Gastrin stimulates MMP-1 expression in gastric epithelial cells: putative role in gastric epithelial cell migration

    PubMed Central

    Kumar, J. Dinesh; Steele, Islay; Moore, Andrew R.; Murugesan, Senthil V.; Rakonczay, Zoltan; Venglovecz, Viktoria; Pritchard, D. Mark; Dimaline, Rodney; Tiszlavicz, Laszlo; Varro, Andrea

    2015-01-01

    The pyloric antral hormone gastrin plays a role in remodeling of the gastric epithelium, but the specific targets of gastrin that mediate these effects are poorly understood. Glandular epithelial cells of the gastric corpus express matrix metalloproteinase (MMP)-1, which is a potential determinant of tissue remodeling; some of these cells express the CCK-2 receptor at which gastrin acts. We have now examined the hypothesis that gastrin stimulates expression of MMP-1 in the stomach. We determined MMP-1 transcript abundance in gastric mucosal biopsies from Helicobacter pylori negative human subjects with normal gastric mucosal histology, who had a range of serum gastrin concentrations due in part to treatment with proton pump inhibitors (PPI). The effects of gastrin were studied on gastric epithelial AGS-GR cells using Western blot and migration assays. In human subjects with increased serum gastrin due to PPI usage, MMP-1 transcript abundance was increased 2-fold; there was also increased MMP-7 transcript abundance but not MMP-3. In Western blots, gastrin increased proMMP-1 abundance, as well that of a minor band corresponding to active MMP-1, in the media of AGS-GR cells, and the response was mediated by protein kinase C and p42/44 MAP kinase. There was also increased MMP-1 enzyme activity. Gastrin-stimulated AGS-GR cell migration in both scratch wound and Boyden chamber assays was inhibited by MMP-1 immunoneutralization. We conclude that MMP-1 expression is a target of gastrin implicated in mucosal remodeling. PMID:25977510

  3. Probiotics promote endocytic allergen degradation in gut epithelial cells

    SciTech Connect

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  4. Epithelial cell guidance by self-generated EGF gradients†

    PubMed Central

    Scherber, Cally; Aranyosi, Alexander J.; Kulemann, Birte; Thayer, Sarah P.; Toner, Mehmet; Iliopoulos, Othon

    2012-01-01

    Cancer epithelial cells often migrate away from the primary tumor to invade into the surrounding tissues. Their migration is commonly assumed to be directed by pre-existent spatial gradients of chemokines and growth factors in the target tissues. Unexpectedly however, we found that the guided migration of epithelial cells is possible in vitro in the absence of pre-existent chemical gradients. We observed that both normal and cancer epithelial cells can migrate persistently and reach the exit along the shortest path from microscopic mazes filled with uniform concentrations of media. Using microscale engineering techniques and biophysical models, we uncovered a self-guidance strategy during which epithelial cells generate their own guiding cues under conditions of biochemical confinement. The self-guidance strategy depends on the balance between three interdependent processes: epidermal growth factor (EGF) uptake by the cells (U), the restricted transport of EGF through the structured microenvironment (T), and cell chemotaxis toward the resultant EGF gradients (C). The UTC self-guidance strategy can be perturbed by inhibition of signalling through EGF-receptors and appears to be independent from chemokine signalling. Better understanding of the UTC self-guidance strategy could eventually help devise new ways for modulating epithelial cell migration and delaying cancer cell invasion or accelerating wound healing. PMID:22314635

  5. Lingual Epithelial Stem Cells and Organoid Culture of Them

    PubMed Central

    Hisha, Hiroko; Tanaka, Toshihiro; Ueno, Hiroo

    2016-01-01

    As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine. PMID:26828484

  6. Starved epithelial cells uptake extracellular matrix for survival

    PubMed Central

    Muranen, Taru; Iwanicki, Marcin P.; Curry, Natasha L.; Hwang, Julie; DuBois, Cory D.; Coloff, Jonathan L.; Hitchcock, Daniel S.; Clish, Clary B.; Brugge, Joan S.; Kalaany, Nada Y.

    2017-01-01

    Extracellular matrix adhesion is required for normal epithelial cell survival, nutrient uptake and metabolism. This requirement can be overcome by oncogene activation. Interestingly, inhibition of PI3K/mTOR leads to apoptosis of matrix-detached, but not matrix-attached cancer cells, suggesting that matrix-attached cells use alternate mechanisms to maintain nutrient supplies. Here we demonstrate that under conditions of dietary restriction or growth factor starvation, where PI3K/mTOR signalling is decreased, matrix-attached human mammary epithelial cells upregulate and internalize β4-integrin along with its matrix substrate, laminin. Endocytosed laminin localizes to lysosomes, results in increased intracellular levels of essential amino acids and enhanced mTORC1 signalling, preventing cell death. Moreover, we show that starved human fibroblasts secrete matrix proteins that maintain the growth of starved mammary epithelial cells contingent upon epithelial cell β4-integrin expression. Our study identifies a crosstalk between stromal fibroblasts and epithelial cells under starvation that could be exploited therapeutically to target tumours resistant to PI3K/mTOR inhibition. PMID:28071763

  7. Development of human epithelial cell systems for radiation risk assessment

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Craise, L. M.

    1994-10-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-LET radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic transformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  8. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  9. Effects of ethanol on an intestinal epithelial cell line

    SciTech Connect

    Nano, J.L.; Cefai, D.; Rampal, P. )

    1990-02-01

    The effect of exposure of an intestinal epithelial cell line to various concentrations of ethanol (217 mM (1%) to 652 mM (3%)) during 24, 48, and 72 hr was investigated in vitro using a rat intestinal epithelial cell line (IRD 98). Incubation of these cells in the presence of ethanol significantly decreased cell growth. This inhibition was accompanied by a strong increase in cellular protein. Stimulation of specific disaccharidases, gamma-glutamyl transferase, and aminopeptidase activities by ethanol was dose- and time-dependent. Ethanol induces a change in the relative proportions of the different lipid classes synthesized; triglycerides, fatty acids, and cholesterol esters were preferentially synthethysed. Our findings show that cell lines are good models for investigation of the effects of ethanol, and that alcohol considerably modifies the functions of intestinal epithelial cells.

  10. Fabrication of transplantable corneal epithelial and oral mucosal epithelial cell sheets using a novel temperature-responsive closed culture device.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Kikuchi, Tetsutaro; Kitano, Yuriko; Watanabe, Hiroya; Mizutani, Manabu; Nozaki, Takayuki; Senda, Naoko; Saitoh, Kazuo; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-05-01

    Temperature-responsive culture surfaces make it possible to harvest transplantable carrier-free cell sheets. Here, we applied temperature-responsive polymer for polycarbonate surfaces with previously developed closed culture devices for an automated culture system in order to fabricate transplantable stratified epithelial cell sheets. Histological and immunohistochemical analyses and colony-forming assays revealed that corneal epithelial and oral mucosal epithelial cell sheets could be harvested with the temperature-responsive closed culture devices. The results were similar to those obtained using temperature-responsive culture inserts. These results indicate that the novel temperature-responsive closed culture device is useful for fabricating transplantable stratified epithelial cell sheets.

  11. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling

    PubMed Central

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. DOI: http://dx.doi.org/10.7554/eLife.15034.001 PMID:27431614

  12. What Is Vaginal Cancer?

    MedlinePlus

    ... more information on DES and clear cell carcinoma.) Melanoma Melanomas develop from pigment-producing cells that give skin ... of every 100 cases of vaginal cancer are melanomas. Melanoma tends to affect the lower or outer ...

  13. Cholera toxin stimulation of human mammary epithelial cells in culture

    SciTech Connect

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  14. Vulnerability of Normal Human Mammary Epithelial Cells to Oncogenic Transformation

    DTIC Science & Technology

    2012-04-01

    diverse transformed HMEC lines with defined genetic alterations may aid the identification of potential therapeutic treatments , including...human model systems to test potential therapeutics, could facilitate individualized treatment and possibly prevention. The main variables thought to...epithelial cells. Middle, corresponding cell culture models used in this study. Red, treatment or genetic manipulation used. Cell models are described in

  15. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

    PubMed Central

    Waters, Christopher M.; Roan, Esra; Navajas, Daniel

    2015-01-01

    Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969

  16. Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered T cells directed against E6

    PubMed Central

    Draper, Lindsey M.; Kwong, Mei Li; Gros, Alena; Stevanović, Sanja; Tran, Eric; Kerkar, Sid; Raffeld, Mark; Rosenberg, Steven A.; Hinrichs, Christian S.

    2015-01-01

    Purpose The E6 and E7 oncoproteins of HPV-associated epithelial cancers are in principle ideal immunotherapeutic targets, but evidence that T cells specific for these antigens can recognize and kill HPV+ tumor cells is limited. We sought to determine if TCR gene engineered T cells directed against an HPV oncoprotein can successfully target HPV+ tumor cells. Experimental design T cell responses against the HPV-16 oncoproteins were investigated in a patient with an ongoing 22-month disease-free interval after her second resection of distant metastatic anal cancer. T cells genetically engineered to express an oncoprotein-specific TCR from this patient’s tumor-infiltrating T cells were tested for specific reactivity against HPV+ epithelial tumor cells. Results We identified, from an excised metastatic anal cancer tumor, T cells that recognized an HLA-A*02:01-restricted epitope of HPV-16 E6. The frequency of the dominant T cell clonotype from these cells was approximately 400-fold greater in the patient’s tumor than in her peripheral blood. T cells genetically engineered to express the TCR from this clonotype displayed high avidity for an HLA-A*02:01-restricted epitope of HPV-16, and they showed specific recognition and killing of HPV-16+ cervical, and head and neck cancer cell lines. Conclusion These findings demonstrate that HPV-16+ tumors can be targeted by E6-specific TCR gene engineered T cells, and they provide the foundation for a novel cellular therapy directed against HPV-16+ malignancies including cervical, oropharyngeal, anal, vulvar, vaginal, and penile cancers. PMID:26429982

  17. Ozone exposed epithelial cells modify cocultured natural killer cells

    PubMed Central

    Müller, Loretta; Brighton, Luisa E.

    2013-01-01

    Ozone (O3) causes significant adverse health effects worldwide. Nasal epithelial cells (NECs) are among the first sites within the respiratory system to be exposed to inhaled air pollutants. They recruit, activate, and interact with immune cells via soluble mediators and direct cell-cell contacts. Based on our recent observation demonstrating the presence of natural killer (NK) cells in nasal lavages, the goal of this study was to establish a coculture model of NECs and NK cells and examine how exposure to O3 modifies this interaction. Flow cytometry analysis was used to assess immunophenotypes of NK cells cocultured with either air- or O3-exposed NECs. Our data show that coculturing NK cells with O3-exposed NECs decreased intracellular interferon-γ (IFN-γ), enhanced, albeit not statistically significant, IL-4, and increased CD16 expression on NK cells compared with air controls. Additionally, the cytotoxicity potential of NK cells was reduced after coculturing with O3-exposed NECs. To determine whether soluble mediators released by O3-exposed NECs caused this shift, apical and basolateral supernatants of air- and O3-exposed NECs were used to stimulate NK cells. While the conditioned media of O3-exposed NECs alone did not reduce intracellular IFN-γ, O3 enhanced the expression of NK cell ligands ULBP3 and MICA/B on NECs. Blocking ULBP3 and MICA/B reversed the effects of O3-exposed NECs on IFN-γ production in NK cells. Taken together, these data showed that interactions between NECs and NK cells in the context of O3 exposure changes NK cell activity via direct cell-cell interactions and is dependent on ULBP3/MICA/B expressed on NECs. PMID:23241529

  18. Cells of Origin of Epithelial Ovarian Cancers

    DTIC Science & Technology

    2015-09-01

    lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only after the cancer has metastasized into the...Epithelial ovarian cancer (EOC) is the most lethal malignancy of the female reproductive system, largely due to the fact that most EOCs are diagnosed only

  19. Epithelial cell division in the Xenopus laevis embryo during gastrulation.

    PubMed

    Hatte, Guillaume; Tramier, Marc; Prigent, Claude; Tassan, Jean-Pierre

    2014-01-01

    How vertebrate epithelial cells divide in vivo and how the cellular environment influences cell division is currently poorly understood. A sine qua non condition to study cell division in situ is the ease of observation of cell division. This is fulfilled in the Xenopus embryo at the gastrula stage where polarized epithelial cells divide with a high frequency at the surface of the organism. Recently, using this model system, we have shown that epithelial cells divide by asymmetric furrowing and that the mode of cell division is regulated during development. Here, we further characterize epithelial cell division in situ. To this end, we used confocal microscopy to study epithelial cell division in the ectoderm of the Xenopus laevis gastrula. Cell division was followed either by indirect immunofluorescence in fixed embryos or by live imaging of embryos transiently expressing diverse fluorescent proteins. Here, we show that during cytokinesis, the plasma membranes of the two daughter cells are usually separated by a gap. For most divisions, daughter cells make contacts basally at a distance from the furrow tip which creates an inverted teardrop-like shaped volume tightly associated with the furrow. At the end of cytokinesis, the inverted teardrop is resorbed; thus it is a transient structure. Several proteins involved in cytokinesis are localized at the tip of the inverted teardrop suggesting that the formation of the gap could be an active process. We also show that intercalation of neighboring cells between daughter cells occasionally occurs during cytokinesis. Our results reveal an additional level of complexity in the relationship between dividing cells and also with their neighboring cells during cytokinesis in the Xenopus embryo epithelium.

  20. Epithelial-mesenchymal transitions of bile duct epithelial cells in primary hepatolithiasis.

    PubMed

    Zhao, Lijin; Yang, Rigao; Cheng, Long; Wang, Maijian; Jiang, Yan; Wang, Shuguang

    2010-07-01

    The purpose of this study was to explore the role of epithelial-mesenchymal transition in the pathogenesis of hepatolithiasis. Thirty-one patients with primary hepatolithiasis were enrolled in this study. Expressions of E-cadherin, alpha-catenin, alpha-SMA, vimentin, S100A4, TGF-beta1 and P-smad2/3 in hepatolithiasis bile duct epithelial cells were examined by immunohistochemistry staining. The results showed that the expressions of the epithelial markers E-cadherin and alpha-catenin were frequently lost in hepatolithiasis (32.3% and 25.9% of cases, respectively), while the mesenchymal markers vimentin, alpha-SMA and S100A4 were found to be present in hepatolithiasis (35.5%, 29.0%, and 32.3% of cases, respectively). The increased mesenchymal marker expression was correlated with decreased epithelial marker expression. The expressions of TGF-beta1 and P-smad2/3 in hepatolithiasis were correlated with the expression of S100A4. These data indicate that TGF-beta1-mediated epithelial-mesenchymal transition might be involved in the formation of hepatolithiasis.

  1. Clindamycin Vaginal

    MedlinePlus

    Clindesse® Vaginal Cream ... suppository to place in the vagina and a cream to apply to the inside of the vagina. ... in a row. Most brands of the vaginal cream are used once a day, preferably at bedtime, ...

  2. Vaginal Odor

    MedlinePlus

    ... usually don't cause vaginal odors. Neither do yeast infections. Generally, if you have vaginal odor without ... Avoid douching. All healthy vaginas contain bacteria and yeast. The normal acidity of your vagina keeps bacteria ...

  3. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    SciTech Connect

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  4. Secretion of IL-13 by airway epithelial cells enhances epithelial repair via HB-EGF.

    PubMed

    Allahverdian, Sima; Harada, Norihiro; Singhera, Gurpreet K; Knight, Darryl A; Dorscheid, Delbert R

    2008-02-01

    Inappropriate repair after injury to the epithelium generates persistent activation, which may contribute to airway remodeling. In the present study we hypothesized that IL-13 is a normal mediator of airway epithelial repair. Mechanical injury of confluent airway epithelial cell (AEC) monolayers induced expression and release of IL-13 in a time-dependent manner coordinate with repair. Neutralizing of IL-13 secreted from injured epithelial cells by shIL-13Ralpha2.FC significantly reduced epithelial repair. Moreover, exogenous IL-13 enhanced epithelial repair and induced epidermal growth factor receptor (EGFR) phosphorylation. We examined secretion of two EGFR ligands, epidermal growth factor (EGF) and heparin-binding EGF (HB-EGF), after mechanical injury. Our data showed a sequential release of the EGF and HB-EGF by AEC after injury. Interestingly, we found that IL-13 induces HB-EGF, but not EGF, synthesis and release from AEC. IL-13-induced EGFR phosphorylation and the IL-13-reparative effect on AEC are mediated via HB-EGF. Finally, we demonstrated that inhibition of EGFR tyrosine kinase activity by tyrphostin AG1478 increases IL-13 release after injury, suggesting negative feedback between EGFR and IL-13 during repair. Our data, for the first time, showed that IL-13 plays an important role in epithelial repair, and that its effect is mediated through the autocrine release of HB-EGF and activation of EGFR. Dysregulation of EGFR phosphorylation may contribute to a persistent repair phenotype and chronically increased IL-13 release, and in turn result in airway remodeling.

  5. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    PubMed

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-03-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices.

  6. Fibrin glue inhibits migration of ocular surface epithelial cells.

    PubMed

    Yeung, A M; Faraj, L A; McIntosh, O D; Dhillon, V K; Dua, H S

    2016-10-01

    PurposeFibrin glue has been used successfully in numerous ophthalmic surgical procedures. Recently, fibrin glue has been used in limbal stem cell transplantation to reduce both operative time and to negate the need for sutures. The aim of this study was to determine the effects of fibrin glue on epithelial cell migration in vitro.MethodsCorneoscleral rims were split to retain the epithelial layer, Bowman's layer, and anterior stroma. Rims were cut into eight equal-sized pieces and were placed directly on culture plates or affixed with fibrin glue. Rims were maintained in culture for 25 days and epithelial cell growth was monitored. Cells were photographed to measure area or growth and immunofluorescence staining of explants for fibrin was performed.ResultsExplants that were glued demonstrated significantly delayed epithelial cell growth and migration as compared with explants without glue. By day 16, all fibrin glue had dissolved and coincided with onset of cell growth from glued explants. Cell growth commenced between days 3 and 4 for control explants without glue and around days 14-16 for explants with fibrin glue.ConclusionsFibrin glue delays epithelial cell migration by acting as a physical barrier and can potentially interfere with explant-derived limbal epithelial cell migration on to the corneal surface. We propose that glue should be used to attach the conjunctival frill of the limbal explant but care should be taken to ensure that the glue does not wrap around the explant if used to secure the explant as well. Strategic use of glue, to attach the recessed conjunctiva, can be advantageous in delaying conjunctival cell migration and reducing the need for sequential sector conjunctival epitheliectomy.

  7. Vaginal Infections

    PubMed Central

    Nicolle, Lindsay E.

    1989-01-01

    Vaginal infections are among the most common complaints for which women see their physicians. The patient complains primarily of vaginal discharge or pruritus. Optimal management of these infections requires a careful history, physical examination, and laboratory assessment to determine the pathogen. Specific therapy is available for the three important causes of vaginal infection: yeast vulvovaginitis, trichomoniasis, and bacterial vaginosis. Concomitant sexually transmitted diseases should be excluded in women with complaints suggestive of vaginal infection. PMID:21248968

  8. Salivary epithelial cells: an unassuming target site for gene therapeutics

    PubMed Central

    Perez, Paola; Rowzee, Anne M.; Zheng, Changyu; Adriaansen, Janik; Baum, Bruce J.

    2010-01-01

    Salivary glands are classical exocrine glands whose external secretions result in the production of saliva. However, in addition to the secretion of exocrine proteins, salivary epithelial cells are also capable of secreting proteins internally, into the bloodstream. This brief review examines the potential for using salivary epithelial cells as a target site for in situ gene transfer, with an ultimate goal of producing therapeutic proteins for treating both systemic and upper gastrointestinal tract disorders. The review discusses the protein secretory pathways reported to be present in salivary epithelial cells, the viral gene transfer vectors shown useful for transducing these cells, model transgenic secretory proteins examined, and some clinical conditions that might benefit from such salivary gland gene transfer. PMID:20219693

  9. Montelukast suppresses epithelial to mesenchymal transition of bronchial epithelial cells induced by eosinophils.

    PubMed

    Hosoki, Koa; Kainuma, Keigo; Toda, Masaaki; Harada, Etsuko; Chelakkot-Govindalayathila, Ayshwarya-Lakshmi; Roeen, Ziaurahman; Nagao, Mizuho; D'Alessandro-Gabazza, Corina N; Fujisawa, Takao; Gabazza, Esteban C

    2014-07-04

    Epithelial to mesenchymal transition (EMT) is a mechanism by which eosinophils can induce airway remodeling. Montelukast, an antagonist of the cysteinyl leukotriene receptor, can suppress airway remodeling in asthma. The purpose of this study was to evaluate whether montelukast can ameliorate airway remodeling by blocking EMT induced by eosinophils. EMT induced was assessed using a co-culture system of human bronchial epithelial cells and human eosinophils or the eosinophilic leukemia cell lines, Eol-1. Montelukast inhibited co-culture associated morphological changes of BEAS-2b cells, decreased the expression of vimentin and collagen I, and increased the expression of E-cadherin. Montelukast mitigated the rise of TGF-β1 production and Smad3 phosphorylation. Co-culture of human eosinophils with BEAS-2B cells significantly enhanced the production of CysLTs compared with BEAS-2B cells or eosinophils alone. The increase of CysLTs was abolished by montelukast pre-treatment. Montelukast had similar effects when co-culture system of Eol-1 and BEAS-2B was used. This study showed that montelukast suppresses eosinophils-induced EMT of airway epithelial cells. This finding may explain the mechanism of montelukast-mediated amelioration of airway remodeling in bronchial asthma.

  10. Epithelial cell apoptosis facilitates Entamoeba histolytica infection in the gut.

    PubMed

    Becker, Stephen M; Cho, Kyou-Nam; Guo, Xiaoti; Fendig, Kirsten; Oosman, Mohammed N; Whitehead, Robert; Cohn, Steven M; Houpt, Eric R

    2010-03-01

    Entamoeba histolytica is the protozoan parasite that causes amebic colitis. The parasite triggers apoptosis on contact with host cells; however, the biological significance of this event during intestinal infection is unclear. We examined the role of apoptosis in a mouse model of intestinal amebiasis. Histopathology revealed that abundant epithelial cell apoptosis occurred in the vicinity of amoeba in histological specimens. Epithelial cell apoptosis occurred rapidly on co-culture with amoeba in vitro as measured by annexin positivity, DNA degradation, and mitochondrial dysfunction. Administration of the pan caspase inhibitor ZVAD decreased the rate and severity of amebic infection in CBA mice by all measures (cecal culture positivity, parasite enzyme-linked immunosorbent assay, and histological scores). Similarly, caspase 3 knockout mice on the resistant C57BL/6 background exhibited even lower cecal parasite antigen burden and culture positive rates than wild type mice. The permissive effect of apoptosis on infection could be tracked to the epithelium, in that transgenic mice that overexpressed Bcl-2 in epithelial cells were more resistant to infection as measured by cecal parasite enzyme-linked immunosorbent assay and histological scores. We concluded that epithelial cell apoptosis in the intestine facilitates amebic infection in this mouse model. The parasite's strategy for inducing apoptosis may point to key virulence factors, and therapeutic maneuvers to diminish epithelial apoptosis may be useful in amebic colitis.

  11. Immunolocalization of epithelial and mesenchymal matrix constituents in association with inner enamel epithelial cells.

    PubMed

    Bosshardt, D D; Nanci, A

    1998-02-01

    After crown formation, the enamel organ reorganizes into Hertwig's epithelial root sheath (HERS). Although it is generally accepted that HERS plays an inductive role during root formation, it also has been suggested that it may contribute enamel-related proteins to cementum matrix. By analogy to the enamel-free area (EFA) in rat molars, in which epithelial cells express not only enamel proteins but also "typical" mesenchymal matrix constituents, it has been proposed that HERS cells may also have the potential to produce cementum proteins. To test this hypothesis, we examined the nature of the first matrix layer deposited along the cervical portion of root dentin and the characteristics of the associated cells. Rat molars were processed for postembedding colloidal gold immunolabeling with antibodies to amelogenin (AMEL), ameloblastin (AMBN), bone sialoprotein (BSP), and osteopontin (OPN). To minimize the possibility of false-negative results, several antibodies to AMEL were used. The labelings were compared with those obtained at the EFA. Initial cementum matrix was consistently observed at a time when epithelial cells from HERS covered most of the forming root surface. Cells with mesenchymal characteristics were rarely seen in proximity to the matrix. Both the EFA matrix and initial cementum exhibited collagen fibrils and were intensely immunoreactive for BSP and OPN. AMEL and AMBN were immunodetected at the EFA but not over the initial cementum proper. These two proteins were, however, present at the cervical-most portion of the root where enamel matrix extends for a short distance between dentin and cementum. These data suggest that epithelial cells along the root surface are likely responsible for the deposition of the initial cementum matrix and therefore, like the cells at the EFA, may be capable of producing mesenchymal proteins.

  12. AN IN VITRO MODEL FOR MURINE URETERIC EPITHELIAL CELLS

    EPA Science Inventory

    This report presents a model developed to study growth and differentiation of primary cultures of ureteric epithelial cells from embryonic C57BL/6N mouse urinary tracts. Single cells were resuspended in medium and plated onto transwells coated with collagen IV and laminin. Basa...

  13. Cooperative Interactions During Human Mammary Epithelial Cell Immortalization

    DTIC Science & Technology

    2005-07-01

    Immortal Transformation of Cultured Human Mammary Epithelial Cells. Cellular Oncology, 26:248-251, 2004. Rodier , F., Kim, S-H., Nijjar, T., Yaswen, P...Promoter, Mol. Cell Biol.: 25:3923-3933, 2005. Goldstein, J, Rodier , F, Garbe, J, Stampfer, M, Campisi, J, Caspase-independent cytochrome c release is a

  14. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers

    PubMed Central

    St Johnston, Daniel

    2016-01-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  15. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  16. Tenofovir Inhibits Wound Healing of Epithelial Cells and Fibroblasts from the Upper and Lower Human Female Reproductive Tract

    PubMed Central

    Rodriguez-Garcia, Marta; Patel, Mickey V.; Shen, Zheng; Bodwell, Jack; Rossoll, Richard M.; Wira, Charles R.

    2017-01-01

    Disruption of the epithelium in the female reproductive tract (FRT) is hypothesized to increase HIV infection risk by interfering with barrier protection and facilitating HIV-target cell recruitment. Here we determined whether Tenofovir (TFV), used vaginally in HIV prevention trials, and Tenofovir alafenamide (TAF), an improved prodrug of TFV, interfere with wound healing in the human FRT. TFV treatment of primary epithelial cells and fibroblasts from the endometrium (EM), endocervix (CX) and ectocervix (ECX) significantly delayed wound closure. Reestablishment of tight junctions was compromised in EM and CX epithelial cells even after wound closure occurred. In contrast, TAF had no inhibitory effect on wound closure or tight junction formation following injury. TAF accumulated inside genital epithelial cells as TFV-DP, the active drug form. At elevated levels of TAF treatment to match TFV intracellular TFV-DP concentrations, both equally impaired barrier function, while wound closure was more sensitive to TFV. Furthermore, TFV but not TAF increased elafin and MIP3a secretion following injury, molecules known to be chemotactic for HIV-target cells. Our results highlight the need of evaluating antiretroviral effects on genital wound healing in future clinical trials. A possible link between delayed wound healing and increased risk of HIV acquisition deserves further investigation. PMID:28368028

  17. Identification of Phosphorylation Sites on Extracellular Corneal Epithelial Cell Maspin

    PubMed Central

    Narayan, Malathi; Mirza, Shama P.; Twining, Sally S.

    2011-01-01

    Maspin, a 42-kDa non classical serine protease inhibitor (serpin) is expressed by epithelial cells of various tissues including the cornea. The protein localizes to the nucleus and cytosol, and is present in the extracellular space. While extracellular maspin regulates corneal stromal fibroblast adhesion and inhibits angiogenesis during wound healing in the cornea, the molecular mechanism of its extracellular functions is unclear. We hypothesized that identifying post-translational modifications of maspin, such as phosphorylation, may help decipher its mode of action. The focus of this study was on the identification of phosphorylation sites on extracellular maspin, since the extracellular form of the molecule is implicated in several functions. Multi-stage fragmentation mass spectrometry was used to identify sites of phosphorylation on extracellular corneal epithelial cell maspin. A total of eight serine and threonine phosphorylation sites (Thr50, Ser97, Thr118, Thr157, Ser240, Ser298, Thr310, Ser316) were identified on the extracellular forms of the molecule. Phosphorylation of tyrosine residues on extracellular maspin was not detected on extracellular maspin from corneal epithelial cell, in contrast to breast epithelial cells. This study provides the basis for further investigation into the functional role of phosphorylation of corneal epithelial maspin. PMID:21365746

  18. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  19. Porphyromonas gingivalis genes isolated by screening for epithelial cell attachment.

    PubMed Central

    Duncan, M J; Emory, S A; Almira, E C

    1996-01-01

    Porphyromonas gingivalis is associated with chronic and severe periodontitis in adults. P. gingivalis and the other periodontal pathogens colonize and interact with gingival epithelial cells, but the genes and molecular mechanisms involved are unknown. To dissect the first steps in these interactions, a P. gingivalis expression library was screened for clones which bound human oral epithelial cells. Insert DNA from the recombinant clones did not contain homology to the P. gingivalis fimA gene, encoding fimbrillin, the subunit protein of fimbriae, but showed various degrees of homology to certain cysteine protease-hemagglutinin genes. The DNA sequence of one insert revealed three putative open reading frames which appeared to be in an operon. The relationship between P. gingivalis attachment to epithelial cells and the activities identified by the screen is discussed. PMID:8751909

  20. Coronavirus entry and release in polarized epithelial cells: a review.

    PubMed

    Cong, Yingying; Ren, Xiaofeng

    2014-09-01

    Most coronaviruses cause respiratory or intestinal infections in their animal or human host. Hence, their interaction with polarized epithelial cells plays a critical role in the onset and outcome of infection. In this paper, we review the knowledge regarding the entry and release of coronaviruses, with particular emphasis on the severe acute respiratory syndrome and Middle East respiratory syndrome coronaviruses. As these viruses approach the epithelial surfaces from the apical side, it is not surprising that coronavirus cell receptors are exposed primarily on the apical domain of polarized epithelial cells. With respect to release, all possibilities appear to occur. Thus, most coronaviruses exit through the apical surface, several through the basolateral one, although the Middle East respiratory syndrome coronavirus appears to use both sides. These observations help us understand the local or systematic spread of the infection within its host as well as the spread of the virus within the host population.

  1. [Isolation, purification and identification of epithelial cells derived from fetal islet-like cell clusters].

    PubMed

    Qiao, Hai; Zhao, Ting; Wang, Yun; Yang, Chun-Rong; Xiao, Mei; Dou, Zhong-Ying

    2007-03-01

    The aim of this article is to provide methods for the isolation and identification of pancreatic stem cells and cell source for research and therapy of diabetes. ICCs were isolated by collagenase IV digesting and then cultured; epithelial cells were purified from monolayer cultured ICCs. The growth curve of the epithelial cells was measured by MTT. The expression of molecular markers in the cells was identified by immunohistochemical staining. The surface markers in the epithelial cells were analyzed by FACS. Epithelial cells were purified from isolated human fetal ICCs and passaged 40 times, and 10(6) - 10(8) cells were cryopreservated per passage. The growth curve demonstrated that the epithelial cells proliferated rapidly. The epithelial cells expressed PDX-1, PCNA, CK-7, CK-19, Nestin, Glut2, and Vimentin, but Insulin was undetected. The cells expressed CD29, CD44, and CD166, but did not express CD11a, CD14, CD34, CD45, CD90, CD105, and CD117. Taken together, these results indicate that self-renewable epithelial cells can be isolated and purified from human fetal pancreas. These also show that the epithelial cells originate from ducts and have the characteristics of pancreatic stem cells.

  2. Oxidized alginate hydrogels as niche environments for corneal epithelial cells.

    PubMed

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-10-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2-0.8 µm) than unmodified gels (pore diameter: 0.05-0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.

  3. Intestinal epithelial cells and their role in innate mucosal immunity.

    PubMed

    Maldonado-Contreras, A L; McCormick, Beth A

    2011-01-01

    The mucosal surfaces of the respiratory, gastrointestinal and urogenital tracts are covered by a layer of epithelial cells that are responsible for sensing and promoting a host immune response in order to establish the limits not only for commensal microorganisms but also for foreign organisms or particles. This is a remarkable task as the human body represents a composite of about 10 trillion human-self cells plus non-self cells from autochthonous or indigenous microbes that outnumber human cells 10:1. Hence, the homeostasis of epithelial cells that line mucosal surfaces relies on a fine-tuned immune system that patrols the boundaries between human and microbial cells. In the case of the intestine, the epithelial layer is composed of at least six epithelial cell lineages that act as a physiological barrier in addition to aiding digestion and the absorption of nutrients, water and electrolytes. In this review, we highlight the immense role of the intestinal epithelium in coordinating the mucosal innate immune response.

  4. Oxidized alginate hydrogels as niche environments for corneal epithelial cells

    PubMed Central

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-01-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2–0.8 µm) than unmodified gels (pore diameter: 0.05–0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy. © 2013 The Authors. Journal of Biomedical Materials Research Part A Published byWiley Periodicals, Inc. Part A: 102A: 3393–3400, 2014. PMID:24142706

  5. EBV BMRF-2 facilitates cell-to-cell spread of virus within polarized oral epithelial cells

    PubMed Central

    Xiao, Jianqiao; Palefsky, Joel M.; Herrera, Rossana; Berline, Jennifer; Tugizov, Sharof M.

    2009-01-01

    We previously reported that the Epstein-Barr virus (EBV) BMRF-2 protein plays an important role in EBV infection of polarized oral epithelial cells by interacting with β1 and αv family integrins. Here we show that infection of polarized oral epithelial cells with B27-BMRF-2low recombinant virus, expressing a low level of BMRF-2, resulted in significantly smaller plaques compared with infection by parental B95-8 virus. BMRF-2 localized in the trans-Golgi network (TGN) and basolateral sorting vesicles and was transported to the basolateral membranes of polarized epithelial cells. Mutation of the tyrosine- and dileucine-containing basolateral sorting signal, YLLV, in the cytoplasmic domain of BMRF-2 led to the failure of its accumulation in the TGN and its basolateral transport. These data show that BMRF-2 may play an important role in promoting the spread of EBV progeny virions through lateral membranes of oral epithelial cells. PMID:19394065

  6. [Morphological analysis of the effect of corticosteroids on the development and course of vaginal candidiasis].

    PubMed

    Bykov, V L

    1989-02-01

    Specific features of the development and course of vaginal candidiasis were examined in corticosteroid-treated mice. Corticosteoids enhance epithelial adhesion of fungal cells and contribute to rapid invasion of the causative agent. Tissue inflammatory response in slow and weak. Pseudomycelium penetrates deep into Malpighi's layer, and, at some sites, damages the epithelial basal layer and invades the mucosal plate. In some animals, vascular invasion led to hematogenic dissemination. The described tissue and cellular mechanisms must be the basis of the stimulating effect of corticosteroids on vaginal candidiasis in the humans.

  7. TRPV channels as thermosensory receptors in epithelial cells.

    PubMed

    Lee, Hyosang; Caterina, Michael J

    2005-10-01

    Temperature-sensitive transient receptor potential vanilloid (TRPV) ion channels are critical contributors to normal pain and temperature sensation and therefore represent attractive targets for pain therapy. When these channels were first discovered, most attention was focused on their potential contributions to direct thermal activation of peripheral sensory neurons. However, recent anatomical, physiological, and behavioral studies have provided evidence that TRPV channels expressed in skin epithelial cells may also contribute to thermosensation in vitro and in vivo. Here, we review these studies and speculate on possible communication mechanisms from cutaneous epithelial cells to sensory neurons.

  8. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland.

  9. Epithelial neoplasia in Drosophila entails switch to primitive cell states.

    PubMed

    Khan, Sumbul J; Bajpai, Anjali; Alam, Mohammad Atif; Gupta, Ram P; Harsh, Sneh; Pandey, Ravi K; Goel-Bhattacharya, Surbhi; Nigam, Aditi; Mishra, Arati; Sinha, Pradip

    2013-06-11

    Only select cell types in an organ display neoplasia when targeted oncogenically. How developmental lineage hierarchies of these cells prefigure their neoplastic propensities is not yet well-understood. Here we show that neoplastic Drosophila epithelial cells reverse their developmental commitments and switch to primitive cell states. In a context of alleviated tissue surveillance, for example, loss of Lethal giant larvae (Lgl) tumor suppressor in the wing primordium induced epithelial neoplasia in its Homothorax (Hth)-expressing proximal domain. Transcriptional profile of proximally transformed mosaic wing epithelium and functional tests revealed tumor cooperation by multiple signaling pathways. In contrast, lgl(-) clones in the Vestigial (Vg)-expressing distal wing epithelium were eliminated by cell death. Distal lgl(-) clones, however, could transform when both tissue surveillance and cell death were compromised genetically and, alternatively, when the transcription cofactor of Hippo signaling pathway, Yorkie (Yki), was activated, or when Ras/EGFR signaling was up-regulated. Furthermore, transforming distal lgl(-) clones displayed loss of Vg, suggesting reversal of their terminal cell fate commitment. In contrast, reinforcing a distal (wing) cell fate commitment in lgl(-) clones by gaining Vg arrested their neoplasia and induced cell death. We also show that neoplasia in both distal and proximal lgl(-) clones could progress in the absence of Hth, revealing Hth-independent wing epithelial neoplasia. Likewise, neoplasia in the eye primordium resulted in loss of Elav, a retinal cell marker; these, however, switched to an Hth-dependent primitive cell state. These results suggest a general characteristic of "cells-of-origin" in epithelial cancers, namely their propensity for switch to primitive cell states.

  10. High expression of TGF-β1 in the vaginal incisional margin predicts poor prognosis in patients with stage Ib-IIa cervical squamous cell carcinoma.

    PubMed

    Fan, Dong-Mei; Wang, Xin-Jun; He, Tao; Wang, Yan; Zhou, Dan; Kong, Guo-Qiang; Jiang, Tao; Zhang, Mei-Mei

    2012-04-01

    This study evaluated the relationship between altered cytoplasmic expression of TGF-β1 in tissues of the vaginal incisional margin and vaginal cancer recurrence in patients with stage Ib-IIa cervical squamous cell carcinoma (CSCC). This paper also discusses the prognostic value of TGF-β1 expression at these locations. We found that TGF-β1 expression in the vaginal margin had a close association with vaginal recurrence of stage Ib-IIa CSCC and was an independent prognostic marker of this disease.

  11. Extracellular cleavage of E-cadherin promotes epithelial cell extrusion.

    PubMed

    Grieve, Adam G; Rabouille, Catherine

    2014-08-01

    Epithelial cell extrusion and subsequent apoptosis is a key mechanism to prevent the accumulation of excess cells. By contrast, when driven by oncogene expression, apical cell extrusion is followed by proliferation and represents an initial step of tumorigenesis. E-cadherin (E-cad), the main component of adherens junctions, has been shown to be essential for epithelial cell extrusion, but its mechanistic contribution remains unclear. Here, we provide clear evidence that cell extrusion can be driven by the cleavage of E-cad, both in a wild-type and an oncogenic environment. We first show that CDC42 activation in a single epithelial cell results in its efficient matrix metalloproteinase (MMP)-sensitive extrusion through MEK signalling activation and this is supported by E-cad cleavage. Second, using an engineered cleavable form of E-cad, we demonstrate that, by itself, truncation of extracellular E-cad at the plasma membrane promotes apical extrusion. We propose that extracellular cleavage of E-cad generates a rapid change in cell-cell adhesion that is sufficient to drive apical cell extrusion. Whereas in normal epithelia, extrusion is followed by apoptosis, when combined with active oncogenic signalling, it is coupled to cell proliferation.

  12. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  13. [Methotrexate as inducer of proinflammatory cytokines by epithelial cells].

    PubMed

    Morón-Medina, Alejandra; Viera, Ninoska; de Morales, Thaís Rojas; Alcocer, Sirley; Bohorquez, Dinorath

    2014-03-01

    Methotrexate (MTX), a drug commonly used in childhood cancer, has also been indicated as a cytotoxic agent of the oral mucosa, which can trigger the inflammatory process and increase the vascularity of epithelial tissues during the early stages of oral mucositis. The aim of this study was to determine the production of proinflammatory cytokines IL-1beta, IL-6 y TNF-alpha in epithelial cell cultures treated with MTX. Epithelial cells of human larynx, obtained from the cell line Hep-2, were cultured with different doses of MTX during different incubation times. The drug cytotoxicity was analyzed by means of the colorimetric test, which is based on the metabolic reduction of the bromide of 3-(4, 5-dimetiltiazol-2-ilo)-2,5-difeniltetrazol (MTT); and the proinflammatory cytokines production by the test enzyme-linked immunosorbent assay (ELISA). Cultures of HEp-2 cells showed increased production of proinflammatory cytokines at 72 hours with 0.32 microM of MTX. These results suggest that depending on the dose and exposure time, MTX alters the physiology of human epithelial cells, which may play an important role during the phases of initiation and development of oral mucositis.

  14. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells

    PubMed Central

    Zaher, Tahereh E.; Miller, Edmund J.; Morrow, Dympna M. P.; Javdan, Mohammad; Mantell, Lin L.

    2007-01-01

    Mechanical ventilation with hyperoxia is necessary to treat critically ill patients. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), which can cause acute inflammatory lung injury. One of the major effects of hyperoxia is the injury and death of pulmonary epithelium, which is accompanied by increased levels of pulmonary proinflammatory cytokines and excessive leukocyte infiltration. A thorough understanding of the signaling pathways leading to pulmonary epithelial cell injury/death may provide some insights into the pathogenesis of hyperoxia-induced acute inflammatory lung injury. This review focuses on epithelial responses to hyperoxia and some of the major factors regulating pathways to epithelial cell injury/death, and proinflammatory responses upon exposure to hyperoxia. We discuss in detail some of the most interesting players, such as, NF-κB, that can modulate both proinflammatory responses and cell injury/death of lung epithelial cells. A better appreciation for the functions of these factors will no doubt help us to delineate the pathways to hyperoxic cell death and proinflammatory responses. PMID:17349918

  15. TMIGD1 is a novel adhesion molecule that protects epithelial cells from oxidative cell injury.

    PubMed

    Arafa, Emad; Bondzie, Philip A; Rezazadeh, Kobra; Meyer, Rosana D; Hartsough, Edward; Henderson, Joel M; Schwartz, John H; Chitalia, Vipul; Rahimi, Nader

    2015-10-01

    Oxidative damage to renal tubular epithelial cells is a fundamental pathogenic mechanism implicated in both acute kidney injury and chronic kidney diseases. Because epithelial cell survival influences the outcome of acute kidney injury and chronic kidney diseases, identifying its molecular regulators could provide new insight into pathobiology and possible new therapeutic strategies for these diseases. We have identified transmembrane and immunoglobulin domain-containing 1 (TMIGD1) as a novel adhesion molecule, which is highly conserved in humans and other species. TMIGD1 is expressed in renal tubular epithelial cells and promotes cell survival. The extracellular domain of TMIGD1 contains two putative immunoglobulin domains and mediates self-dimerization. Our data suggest that TMIGD1 regulates transepithelial electric resistance and permeability of renal epithelial cells. TMIGD1 controls cell migration, cell morphology, and protects renal epithelial cells from oxidative- and nutrient-deprivation-induced cell injury. Hydrogen peroxide-induced oxidative cell injury downregulates TMIGD1 expression and targets it for ubiquitination. Moreover, TMIGD1 expression is significantly affected in both acute kidney injury and in deoxy-corticosterone acetate and sodium chloride (deoxy-corticosterone acetate salt)-induced chronic hypertensive kidney disease mouse models. Taken together, we have identified TMIGD1 as a novel cell adhesion molecule expressed in kidney epithelial cells that protects kidney epithelial cells from oxidative cell injury to promote cell survival.

  16. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

    PubMed

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito; Kihara, Akio

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.

  17. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells

    PubMed Central

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis. PMID:27936102

  18. Rhinovirus Disrupts the Barrier Function of Polarized Airway Epithelial Cells

    PubMed Central

    Sajjan, Umadevi; Wang, Qiong; Zhao, Ying; Gruenert, Dieter C.; Hershenson, Marc B.

    2008-01-01

    Rationale: Secondary bacterial infection following rhinovirus (RV) infection has been recognized in chronic obstructive pulmonary disease. Objectives: We sought to understand mechanisms by which RV infection facilitates secondary bacterial infection. Methods: Primary human airway epithelial cells grown at air–liquid interface and human bronchial epithelial (16HBE14o-) cells grown as polarized monolayers were infected apically with RV. Transmigration of bacteria (nontypeable Haemophilus influenzae and others) was assessed by colony counting and transmission electron microscopy. Transepithelial resistance (RT) was measured by using a voltmeter. The distribution of zona occludins (ZO)-1 was determined by immunohistochemistry and immunoblotting. Measurements and Main Results: Epithelial cells infected with RV showed 2-log more bound bacteria than sham-infected cultures, and bacteria were recovered from the basolateral media of RV- but not sham-infected cells. Infection of polarized airway epithelial cell cultures with RV for 24 hours caused a significant decrease in RT without causing cell death or apoptosis. Ultraviolet-treated RV did not decrease RT, suggesting a requirement for viral replication. Reduced RT was associated with increased paracellular permeability, as determined by flux of fluorescein isothiocyanate (FITC)-inulin. Neutralizing antibodies to tumor necrosis factor (TNF)-α, IFN-γ and IL-1β reversed corresponding cytokine-induced reductions in RT but not that induced by RV, indicating that the RV effect is independent of these proinflammatory cytokines. Confocal microscopy and immunoblotting revealed the loss of ZO-1 from tight junction complexes in RV-infected cells. Intranasal inoculation of mice with RV1B also caused the loss of ZO-1 from the bronchial epithelium tight junctions in vivo. Conclusions: RV facilitates binding, translocation, and persistence of bacteria by disrupting airway epithelial barrier function. PMID:18787220

  19. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    PubMed

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry.

  20. Rapamycin Prolongs the Survival of Corneal Epithelial Cells in Culture

    PubMed Central

    Gidfar, Sanaz; Milani, Farnoud Y.; Milani, Behrad Y.; Shen, Xiang; Eslani, Medi; Putra, Ilham; Huvard, Michael J.; Sagha, Hossein; Djalilian, Ali R.

    2017-01-01

    Rapamycin has previously been shown to have anti-aging effects in cells and organisms. These studies were undertaken to investigate the effects of rapamycin on primary human corneal epithelial cells in vitro. Cell growth and viability were evaluated by bright field microscopy. Cell proliferation and cycle were evaluated by flow cytometry. The expression of differentiation markers was evaluated by quantitative PCR and Western blot. Senescence was evaluated by senescence-associated β-Galactosidase staining and by Western blot analysis of p16. Apoptosis was evaluated by a TUNEL assay. The results demonstrated that primary HCEC treated with rapamycin had lower proliferation but considerably longer survival in vitro. Rapamycin-treated cells maintained a higher capacity to proliferate after removal of rapamycin and expressed more keratin 14, N-Cadherin, DeltaNp63 and ABCG2, and less keratin 12, consistent with their less differentiated state. Rapamycin treated cells demonstrated less senescence by X-β-Gal SA staining and by lower expression of p16. Apoptosis was also lower in the rapamycin treated cells. These results indicate that rapamycin treatment of HCEC prevents the loss of corneal epithelial stem/progenitor cells to replicative senescence and apoptosis. Rapamycin may be a useful additive for ex vivo expansion of corneal epithelial cells. PMID:28054657

  1. Cell associated urokinase activity and colonic epithelial cells in health and disease.

    PubMed Central

    Gibson, P R; van de Pol, E; Doe, W F

    1991-01-01

    It is not known if urokinase-type plasminogen activator (uPA) is associated with normal colonic epithelial cells. The aims of this study were to determine if normal colonic epithelial cells have uPA activity and whether this is concentrated at the cell membrane. In addition, the contribution of colonic epithelial cell associated uPA activity to disease related pertubations of mucosal uPA activity were examined. A highly enriched population of colonic epithelial cells was isolated from resected colon or biopsy specimens by an enzymatic technique. uPA activity was measured in cell homogenates by a specific and sensitive colorimetric method and expressed relative to cellular DNA. In two experiments subcellular fractionation of colonic epithelial cells was performed by nitrogen cavitation followed by ultracentrifugation over a linear sucrose gradient. The fractions collected were analysed for uPA and organelle-specific enzyme activities. Normal colonic epithelial cells have cell associated uPA activity (mean (SEM) 5.6 (1.1) IU/mg, n = 18). This colocalised with fractions enriched for leucine-beta-naphthylamidase and 5'-nucleotidase, markers of plasma membrane. uPA activities in epithelial cells from cancerous colons (9.8 (3.1) n = 7) or from mucosa affected by inflammatory bowel disease (3.8 (0.7) n = 15) were not significantly different from normal (paired t test), while that in epithelial cells from greatly inflamed mucosa was similar to that from autologous normal or mildly inflamed areas (4.4 (1.2) v 5.9 (3.6), n = 9). Thus normal colonic epithelial cells have cell associated uPA activity which is concentrated on the plasma membranes, suggesting the presence of uPA receptors. Increased mucosal levels of uPA previously reported in patients with inflammatory bowel disease are not due to increased colonic epithelial cell associated uPA. PMID:1650741

  2. Modulation of Candida albicans attachment to human epithelial cells by bacteria and carbohydrates.

    PubMed Central

    Centeno, A; Davis, C P; Cohen, M S; Warren, M M

    1983-01-01

    The effects of carbohydrates (mannose and dextrose). Escherichia coli 07KL. and Klebsiella pneumoniae on Candida albicans attachment to epithelial cells was studied. Dextrose had no effect on yeast attachment to epithelial cells. Conversely, mannose significantly decreased both yeast and piliated bacterial attachment (E. coli 07KL, heavily piliated K. pneumoniae) whereas having no effect on nonpiliated K. pneumoniae attachment to epithelial cells. The number of yeasts attaching to epithelial cells was enhanced by preincubation of epithelial cells with piliated strains of bacteria, whereas preincubation with nonpiliated strains of bacteria had no effect on yeast attachment. Scanning electron microscopy showed that piliated bacteria and yeasts were juxtaposed on the epithelial cell surface. These data suggest that certain piliated strains of bacteria can enhance C. albicans attachment to epithelial cells and that type 1 pili of bacteria can be a factor in the enhanced attachment of C. albicans to epithelial cells. Images PMID:6132878

  3. NITROTYROSINE ATTENUATES RSV-INDUCED INFLAMMATION IN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Nitrotyrosine attenuates RSV-induced inflammation in airway epithelial cells. Joleen Soukup, Zuowei Li, Susanne Becker and Yuh-Chin Huang. NHEERL, ORD, USEPA, RTP, North Carolina, CEMALB, University of North Carolina, Chapel Hill, North Carolina

    Nitrotyrosine (NO2Tyr) is a...

  4. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets.

  5. Requirements for invasion of epithelial cells by Actinobacillus actinomycetemcomitans.

    PubMed Central

    Sreenivasan, P K; Meyer, D H; Fives-Taylor, P M

    1993-01-01

    Actinobacillus actinomycetemcomitans, an oral bacterium implicated in human periodontal disease, was recently demonstrated to invade cultured epithelial cells (D. H. Meyer, P. K. Sreenivasan, and P. M. Fives-Taylor, Infect. Immun. 59:2719-2726, 1991). This report characterizes the requirements for invasion of KB cells by A. actinomycetemcomitans. The roles of bacterial and host factors were investigated by using selective agents that influence specific bacterial or host cell functions. Inhibition of bacterial protein synthesis decreased invasion, suggesting the absence of a preformed pool of proteins involved in A. actinomycetemcomitans invasion. Inhibition of bacterial and eukaryotic energy synthesis also decreased invasion, confirming that A. actinomycetemcomitans invasion is an active process. Bacterial adherence to KB cells was indicated by scanning electron microscopy of infected KB cells. Further, the addition of A. actinomycetemcomitans-specific serum to the bacterial inoculum reduced invasion substantially, suggesting a role for bacterial attachment in invasion. Many of the adherent bacteria invaded the epithelial cells under optimal conditions. Inhibitors of receptor-mediated endocytosis inhibited invasion by A. actinomycetemcomitans. Like that of many facultatively intracellular bacteria, A. actinomycetemcomitans invasion was not affected by eukaryotic endosomal acidification. These are the first published observations describing the requirements for epithelial cell invasion by a periodontopathogen. They demonstrate that A. actinomycetemcomitans utilizes a mechanism similar to those used by many but not all invasive bacteria to gain entry into eukaryotic cells. Images PMID:8454326

  6. Transport Mechanism of Nicotine in Primary Cultured Alveolar Epithelial Cells.

    PubMed

    Takano, Mikihisa; Nagahiro, Machi; Yumoto, Ryoko

    2016-02-01

    Nicotine is absorbed from the lungs into the systemic circulation during cigarette smoking. However, there is little information concerning the transport mechanism of nicotine in alveolar epithelial cells. In this study, we characterized the uptake of nicotine in rat primary cultured type II (TII) and transdifferentiated type I-like (TIL) epithelial cells. In both TIL and TII cells, [(3)H]nicotine uptake was time and temperature-dependent, and showed saturation kinetics. [(3)H]Nicotine uptake in these cells was not affected by Na(+), but was sensitive to extracellular and intracellular pH, suggesting the involvement of a nicotine/proton antiport system. The uptake of [(3)H]nicotine in these cells was potently inhibited by organic cations such as clonidine, diphenhydramine, and pyrilamine, but was not affected by substrates and/or inhibitors of known organic cation transporters such as carnitine, 1-methyl-4-phenylpyridinium, and tetraethylammonium. In addition, the uptake of [(3)H]nicotine in TIL cells was stimulated by preloading the cells with unlabeled nicotine, pyrilamine, and diphenhydramine, but not with tetraethylammonium. These results suggest that a novel proton-coupled antiporter is involved in the uptake of nicotine in alveolar epithelial cells and its absorption from the lungs into the systemic circulation.

  7. Differentiation of cultured epithelial cells: Response to toxic agents

    SciTech Connect

    Rice, R.H.; LaMontagne, A.D.; Petito, C.T.; Rong, Xianhui )

    1989-03-01

    Cell culture systems are instrumental in elucidating regulation of normal function and mechanisms of its perturbation by toxic substances. To this end, three applications of epithelial cells cultured with 3T3 feeder layer support are described. First, treatment of the premalignant human epidermal keratinocyte line SCC-12F2 with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate suppressed cell growth and differentiation. This agent produced a biphasic growth response greatly inhibiting cell growth at 1 to 10 nM, but much less above 100 nM. Expression of the differentiated functions involucrin and transglutaminase was found to be inhibited markedly at concentrations above 10 nM. Second, 3-methylcholanthrene toxicity was surveyed in a variety of rat epithelial cell types. The two most sensitive to growth inhibition were epidermal and mammary epithelial cells, while those from bladder, prostate, thyroid, and endometrium were insensitive to growth inhibition. Finally, expression of estrogen receptors in rat endometrial cells was shown to be stimulated by the cAmP-elevating agent forskolin. Maximal stimulation of 3- to 6-fold occurred in 6 hr, compatible with a requirement for protein synthesis. Pursuit of such results will aid in understanding differences in response among cell types and species, in elucidating mechanisms of action of known toxic substances and, ultimately, in predicting toxicity of less well understood agents.

  8. Keratin cytoskeletons in epithelial cells of internal organs

    PubMed Central

    Sun, Tung-Tien; Shih, Chiaho; Green, Howard

    1979-01-01

    An antiserum against human epidermal keratins was used to detect keratins in frozen sections of various rabbit and human tissues by indirect immunofluorescence. Strong staining was observed in all stratified squamous epithelia (epidermis, cornea, conjunctiva, tongue, esophagus, vagina, and anus), in epidermal appendages (hair follicle, sebaceous gland, ductal and myoepithelial cells of sweat glands), as well as in Hassall's corpuscles of the thymus, indicating that all contain abundant keratins. No staining by the antiserum was observed in fibroblasts, muscle of any type, cartilage, blood vessel, nerve tissue, iris or lens epithelium, or the glomerular or tubular cells of the kidney. In contrast, the antiserum stained the cells of most epithelia of the intestinal tract, urinary tract (urethra, bladder, ureter, collecting ducts of kidney), female genital tract (cervix, cervical glands, uterus, and oviduct), and respiratory tract (trachea and bronchi). Epithelial cells of the fine ductal system in the pancreas and submaxillary gland also stained well. When primary cultures of epithelial cells derived from bladder, intestine, kidney, and trachea were grown on glass coverslips and stained with anti-keratin, fiber networks similar to those of cultured keratinocytes were observed. These results show that keratins constitute a cytoskeleton in epithelial cells of diverse morphology and embryological origin. The stability of keratin filaments probably confers the structural strength necessary for cells covering a free surface. Keratin staining can be used to obtain information about the origin of cell lines. Images PMID:111242

  9. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    NASA Astrophysics Data System (ADS)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  10. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    PubMed

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  11. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    SciTech Connect

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang Zhang, Yi

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  12. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration.

    PubMed

    Lindemans, Caroline A; Calafiore, Marco; Mertelsmann, Anna M; O'Connor, Margaret H; Dudakov, Jarrod A; Jenq, Robert R; Velardi, Enrico; Young, Lauren F; Smith, Odette M; Lawrence, Gillian; Ivanov, Juliet A; Fu, Ya-Yuan; Takashima, Shuichiro; Hua, Guoqiang; Martin, Maria L; O'Rourke, Kevin P; Lo, Yuan-Hung; Mokry, Michal; Romera-Hernandez, Monica; Cupedo, Tom; Dow, Lukas E; Nieuwenhuis, Edward E; Shroyer, Noah F; Liu, Chen; Kolesnick, Richard; van den Brink, Marcel R M; Hanash, Alan M

    2015-12-24

    Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.

  13. The Role of Vaginal Brachytherapy in the Treatment of Surgical Stage I Papillary Serous or Clear Cell Endometrial Cancer

    SciTech Connect

    Barney, Brandon M.; Petersen, Ivy A.; Mariani, Andrea; Dowdy, Sean C.; Bakkum-Gamez, Jamie N.; Haddock, Michael G.

    2013-01-01

    Objectives: The optimal adjuvant therapy for International Federation of Gynecology and Obstetrics (FIGO) stage I papillary serous (UPSC) or clear cell (CC) endometrial cancer is unknown. We report on the largest single-institution experience using adjuvant high-dose-rate vaginal brachytherapy (VBT) for surgically staged women with FIGO stage I UPSC or CC endometrial cancer. Methods and Materials: From 1998-2011, 103 women with FIGO 2009 stage I UPSC (n=74), CC (n=21), or mixed UPSC/CC (n=8) endometrial cancer underwent total abdominal hysterectomy with bilateral salpingo-oophorectomy followed by adjuvant high-dose-rate VBT. Nearly all patients (n=98, 95%) also underwent extended lymph node dissection of pelvic and paraortic lymph nodes. All VBT was performed with a vaginal cylinder, treating to a dose of 2100 cGy in 3 fractions. Thirty-five patients (34%) also received adjuvant chemotherapy. Results: At a median follow-up time of 36 months (range, 1-146 months), 2 patients had experienced vaginal recurrence, and the 5-year Kaplan Meier estimate of vaginal recurrence was 3%. The rates of isolated pelvic recurrence, locoregional recurrence (vaginal + pelvic), and extrapelvic recurrence (including intraabdominal) were similarly low, with 5-year Kaplan-Meier estimates of 4%, 7%, and 10%, respectively. The estimated 5-year overall survival was 84%. On univariate analysis, delivery of chemotherapy did not affect recurrence or survival. Conclusions: VBT is effective at preventing vaginal relapse in women with surgical stage I UPSC or CC endometrial cancer. In this cohort of patients who underwent comprehensive surgical staging, the risk of isolated pelvic or extrapelvic relapse was low, implying that more extensive adjuvant radiation therapy is likely unnecessary.

  14. Directed differentiation of airway epithelial cells of human bone marrow mesenchymal stem cells.

    PubMed

    Li, Jian-Dong

    2016-11-01

    The ability to generate lung and airway epithelial cells from human bone marrow mesenchymal stem cells (hBMSCs) would have applications in regenerative medicine, modeling of lung disease, drug screening, and studies of human lung development. In this research, hBMSCs were cultured in specialized airway epithelial cell growth media for differentiation of airway epithelial cells, including keratinocyte growth factor transferrin, bovine pituitary extract, epinephrine, triiodothyronine and retinoic acid. The surfactant protein C, a specific marker of type II pneumocytes, and its corresponding protein were demonstrated by immunofluorescence and western blotting after differentiation of airway epithelial cells, respectively. These cells were then transferred into an induced acute lung injury model. The results showed that the hBMSCs could induce differentiation in airway epithelial cells under the special conditions of the medium, the result for surfactant protein C was positive in differentiated airway epithelial cells using immunofluorescence and western blotting, and these cells were successfully colonized in the injured lung airway. In conclusion, our research shows that a population of airway epithelial cells can be specifically generated from hBMSCs and that induced cells may be allowed to participate in tissue repair.

  15. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  16. Concise review: limbal epithelial stem cell therapy: controversies and challenges.

    PubMed

    O'Callaghan, Anna R; Daniels, Julie T

    2011-12-01

    Limbal epithelial stem cells (LESCs) are a population of stem cells responsible for maintenance and repair of the corneal surface. Injury and disease can result in a deficiency of these stem cells, the vision affecting condition called limbal stem cell deficiency (LSCD) in which the cornea becomes opaque, vascularized, and inflamed. Cultured LESC therapy was first described in 1997;29:19231932-19231932.and LESCs cultured from either patients or donors have been used to successfully treat LSCD. In this review, some of the challenges and controversies associated with cultured LESC therapy will be discussed including alternative stem cell sources.

  17. Targeting Epithelial Cell Migration to Accelerate Wound Healing

    DTIC Science & Technology

    2012-02-01

    consisting of the proteins Rsu1, Integrin Linked Kinase (ILK), PINCH, and Parvin. The correct association of these proteins in a functional complex...impacting integrin function and actin polymerization. 15. SUBJECT TERMS Wound healing, cell migration, protein kinase C, protein kinase A 16. SECURITY...epithelial cell migration in wound healing. In addition, the correct association of these proteins in a functional complex depends on their phosphorylation

  18. Ultraviolet Irradiation-Induced Volume Alteration of Corneal Epithelial Cells

    PubMed Central

    Wang, Ling; Lu, Luo

    2016-01-01

    Purpose The purpose of the study is to understand how extracellular stresses, such as ultraviolet (UV) irradiation, affect corneal epithelial cells. Cell volume changes, damage to corneal epithelial integrity, and cellular responses were assessed after exposure to UVC stresses. Methods Primary human and rabbit corneal epithelial cells were exposed to UVC light in culture conditions. Ultraviolet C irradiation–induced changes in cell size and volume were measured by real-time microscopy and self-quenching of the fluorescent dye calcein, respectively. The effects of UVC irradiation on Src and focal adhesion kinase (FAK) phosphorylation and FAK-dependent integrin signaling were detected by ELISA, immunoblotting, and immunostaining. Results Ultraviolet C irradiation induced both size and volume shifts in human and rabbit corneal epithelial cells. Ultraviolet C irradiation-induced decrease of cell volume elicited activation of Src and FAK, characterized by increased phosphorylations of SrcY416, FAKY397, and FAKY925. In addition, immunostaining studies showed UVC irradiation–induced increases in phosphorylation of FAK and formation of integrin β5 clustering. Application of Kv channel blockers, including 4-aminopyridine (4-AP), α-DTX, and depressing substance-1 (BDS-1), effectively suppressed UVC irradiation–induced cell volume changes, and subsequently inhibited UVC irradiation–induced phosphorylation of Src/FAK, and formation of integrin β5 clustering, suggesting UVC irradiation–induced volume changes and Src/FAK activation. Hyperosmotic pressure–induced volume decreases were measured in comparison with effects of UVC irradiation on volume and Src/FAK activation. However, Kv channel blocker, 4-AP, had no effect on hyperosmotic pressure–induced responses. Conclusions The present study demonstrates that UVC irradiation–induced decreases in cell volume lead to Src/FAK activation due to a rapid loss of K ions through membrane Kv channels. PMID:27978555

  19. Limbal Stromal Tissue Specific Stem Cells and Their Differentiation Potential to Corneal Epithelial Cells.

    PubMed

    Katikireddy, Kishore Reddy; Jurkunas, Ula V

    2016-01-01

    From the derivation of the first human embryonic stem (hES) cell line to the development of induced pluripotent stem (iPS) cells; it has become evident that tissue specific stem cells are able to differentiate into a specific somatic cell types. The understanding of key processes such as the signaling pathways and the role of the microenvironment in epidermal/epithelial development has provided important clues for the derivation of specific epithelial cell types.Various differentiation protocols/methods were used to attain specific epithelial cell types. Here, we describe in detail the procedure to follow for isolation of tissue specific stem cells, mimicking their microenvironment to attain stem cell characteristics, and their potential differentiation to corneal epithelial cells.

  20. Review: Corneal epithelial stem cells, their niche and wound healing

    PubMed Central

    2013-01-01

    Stem cells emerged as a concept during the second half of 19th century, first as a theoretical entity, but then became one of the most promising research fields in cell biology. This work describes the most important characteristics of adult stem cells, including the experimental criteria used to identify them, and discusses current knowledge that led to the proposal that stem cells existed in different parts of the eye, such as the retina, lens, conjunctiva, corneal stroma, Descemet’s membrane, and the subject of this review: the corneal epithelium. Evidence includes results that support the presence of corneal epithelial stem cells at the limbus, as well as the major obstacles to isolating them as pure cell populations. Part of this review describes the variation in the basement membrane composition between the limbus and the central cornea, to show the importance of the corneal stem cell niche, its structure, and the participation of extracellular matrix (ECM) components in regulating corneal stem cell compartment. Results obtained by various laboratories suggest that the extracellular matrix plays a central role in regulating stem cell commitment, corneal differentiation, and participation in corneal wound healing, in addition to other environmental signals such as cytokines and growth factors. The niche could define cell division patterns in corneal stem cell populations, establishing whether stem cells divide asymmetrically or symmetrically. Characterization and understanding of the factors that regulate corneal epithelial stem cells should open up new paths for developing new therapies and strategies for accelerating and improving corneal wound healing. PMID:23901244

  1. Established thymic epithelial progenitor/stem cell-like cell lines differentiate into mature thymic epithelial cells and support T cell development.

    PubMed

    Chen, Pengfei; Zhang, Jun; Zhan, Yu; Su, Juanjuan; Du, Yarui; Xu, Guoliang; Shi, Yufang; Siebenlist, Ulrich; Zhang, Xiaoren

    2013-01-01

    Common thymic epithelial progenitor/stem cells (TEPCs) differentiate into cortical and medullary thymic epithelial cells (TECs), which are required for the development and selection of thymocytes. Mature TEC lines have been widely established. However, the establishment of TEPC lines is rarely reported. Here we describe the establishment of thymic epithelial stomal cell lines, named TSCs, from fetal thymus. TSCs express some of the markers present on tissue progenitor/stem cells such as Sca-1. Gene expression profiling verifies the thymic identity of TSCs. RANK stimulation of these cells induces expression of autoimmune regulator (Aire) and Aire-dependent tissue-restricted antigens (TRAs) in TSCs in vitro. TSCs could be differentiated into medullary thymic epithelial cell-like cells with exogenously expressed NF-κB subunits RelB and p52. Importantly, upon transplantation under the kidney capsules of nude mice, TSCs are able to differentiate into mature TEC-like cells that can support some limited development of T cells in vivo. These findings suggest that the TSC lines we established bear some characteristics of TEPC cells and are able to differentiate into functional TEC-like cells in vitro and in vivo. The cloned TEPC-like cell lines may provide useful tools to study the differentiation of mature TEC cells from precursors.

  2. In vitro methods to culture primary human breast epithelial cells.

    PubMed

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  3. Microtubule organization is determined by the shape of epithelial cells

    PubMed Central

    Gomez, Juan Manuel; Chumakova, Lyubov; Bulgakova, Natalia A.; Brown, Nicholas H.

    2016-01-01

    Interphase microtubule organization is critical for cell function and tissue architecture. In general, physical mechanisms are sufficient to drive microtubule organization in single cells, whereas cells within tissues are thought to utilize signalling mechanisms. By improving the imaging and quantitation of microtubule alignment within developing Drosophila embryos, here we demonstrate that microtubule alignment underneath the apical surface of epithelial cells follows cell shape. During development, epidermal cell elongation and microtubule alignment occur simultaneously, but by perturbing cell shape, we discover that microtubule organization responds to cell shape, rather than the converse. A simple set of microtubule behaviour rules is sufficient for a computer model to mimic the observed responses to changes in cell surface geometry. Moreover, we show that microtubules colliding with cell boundaries zip-up or depolymerize in an angle-dependent manner, as predicted by the model. Finally, we show microtubule alignment responds to cell shape in diverse epithelia. PMID:27779189

  4. Normal and tumour cervical cells respond differently to vaginal lactobacilli, independent of pH and lactate.

    PubMed

    Motevaseli, Elahe; Shirzad, Mahdieh; Akrami, Seyed Mohammad; Mousavi, Azam-Sadat; Mirsalehian, Akbar; Modarressi, Mohammad Hossein

    2013-07-01

    Cervical cancer is a human papilloma virus (HPV)-related cancer, but most HPV infections are transient or intermittent and resolve spontaneously. Thus, other factors, such as cervical microflora, which are dominated by lactobacilli, must be involved in invasive cervical carcinoma development after HPV infection. Previous studies have demonstrated that lactobacilli have antitumour effects, and it is possible that vaginal lactobacilli prevent cervical cancer. Here we examined the proliferative and apoptotic responses of normal and tumour cervical cells to common vaginal lactobacilli components by investigating human normal fibroblast-like cervical (normal cervical) and HeLa (cervical tumour) cell responses to Lactobacillus gasseri and Lactobacillus crispatus. The effects of different lactobacilli components, such as culture supernatants, cytoplasmic extracts, cell-wall extracts and live cells, were determined by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, trypan blue staining, lactate dehydrogenase assay and colorimetric caspase-3 activity assay. Changes in caspase-3 and human chorionic gonadotropin β (hCGβ) expression were analysed by quantitative RT-PCR. Tumour cell growth inhibition by culture supernatants was higher than that by pH- and lactate-adjusted controls. However, the effects of the supernatants on normal cells were similar to those of lactate-adjusted controls. Apoptosis was inhibited by supernatants, which was consistent with higher hCGβ expression since hCG inhibits apoptosis. Our study demonstrated that common vaginal lactobacilli exert cytotoxic effects on cervical tumour cells, but not on normal cells, and that this cytotoxicity is independent of pH and lactate. Our results encourage further studies on the interaction between lactobacilli and cervical cells, and administration of common vaginal lactobacilli as probiotics.

  5. Type II alveolar epithelial cell in vitro culture in aerobiosis.

    PubMed

    Aerts, C; Voisin, C; Wallaert, B

    1988-08-01

    A method of Type II alveolar epithelial cell culture in aerobiosis has been developed. Isolation of Type II cells was performed by digesting guinea-pig lung tissue with crude trypsin and elastase and using discontinuous Percoll density gradients. The Type II cells, as identified by light and electron microscopy, were cultured in aerobiosis for up to six days, in direct contact with the atmosphere in conditions mimicking those present in the lower respiratory tract. Significant activities of cellular superoxide dismutase (SOD), manganese dependent superoxide dismutase (Mn-SOD), catalase and glutathione peroxidase (GSH-Px) were found at the time of isolation. In contrast, cell glutathione content varied widely from one experiment to another. Changes of antioxidant enzymes were evaluated during cell culture in aerobiosis. SOD, Mn-SOD and catalase were significantly decreased after three days but were not significantly different between a three day and six day culture. Antioxidant changes did not influence the cell culture. In marked contrast, decrease in cell glutathione was associated with rapid cell death, whereas good cell survival was obtained at high levels of cell glutathione. Cell culture in aerobiosis will permit a precise evaluation of the effects of gases, particularly oxidant gases, on a primary culture of Type II alveolar epithelial cells.

  6. Molecular mechanisms of membrane polarity in renal epithelial cells.

    PubMed

    Campo, C; Mason, A; Maouyo, D; Olsen, O; Yoo, D; Welling, P A

    2005-01-01

    Exciting discoveries in the last decade have cast light onto the fundamental mechanisms that underlie polarized trafficking in epithelial cells. It is now clear that epithelial cell membrane asymmetry is achieved by a combination of intracellular sorting operations, vectorial delivery mechanisms and plasmalemma-specific fusion and retention processes. Several well-defined signals that specify polarized segregation, sorting, or retention processes have, now, been described in a number of proteins. The intracellular machineries that decode and act on these signals are beginning to be described. In addition, the nature of the molecules that associate with intracellular trafficking vesicles to coordinate polarized delivery, tethering, docking, and fusion are also becoming understood. Combined with direct visualization of polarized sorting processes with new technologies in live-cell fluorescent microscopy, new and surprising insights into these once-elusive trafficking processes are emerging. Here we provide a review of these recent advances within an historically relevant context.

  7. Expression of inducible nitric oxide in human lung epithelial cells.

    PubMed

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  8. Effects of weaning on intestinal crypt epithelial cells in piglets

    PubMed Central

    Yang, Huansheng; Xiong, Xia; Wang, Xiaocheng; Li, Tiejun; Yin, Yulong

    2016-01-01

    Intestinal epithelial cells in the crypt proliferate in piglets in response to weaning. However, the underlying mechanism has been unclear. We examined 40 piglets from eight litters (five piglets per litter) that were weaned at the age of 14 d, and one piglet from each litter was randomly selected for closer investigation. Based on the distended intestinal sac method, we isolated crypt epithelial cells from the mid-jejunum on Days 0, 1, 3, 5, and 7 post-weaning. Protein expression was analyzed using either isobaric tags for relative and absolute quantification or western blotting. Proteins related to the cell cycle, organization of the cellular macromolecular complex subunit, localization of cellular macromolecules, Golgi vesicle transport, fatty acid metabolism, oxidative phosphorylation, and translational initiation were mainly down-regulated, while those involved in glycolysis, cell cycle arrest, protein catabolism, and cellular amino acid metabolism were up-regulated. The amount of proteins active in the mTOR signaling pathway was generally decreased over time. These results indicate that weaning influences energy metabolism, cellular macromolecule organization and localization, and protein metabolism, thereby affecting the proliferation of intestinal epithelial cells in weaned piglets. Moreover, those cellular processes are possibly controlled by that signaling pathway. PMID:27830738

  9. Transcriptional Regulation of Tlr11 Gene Expression in Epithelial Cells*

    PubMed Central

    Cai, Zhenyu; Shi, Zhongcheng; Sanchez, Amir; Zhang, Tingting; Liu, Mingyao; Yang, Jianghua; Wang, Fen; Zhang, Dekai

    2009-01-01

    As sensors of invading microorganisms, Toll-like receptors (TLRs) are expressed not only on macrophages and dendritic cells (DCs) but also on epithelial cells. In the TLR family, Tlr11 appears to have the unique feature in that it is expressed primarily on epithelial cells, although it is also expressed on DCs and macrophages. Here, we demonstrate that transcription of the Tlr11 gene is regulated through two cis-acting elements, one Ets-binding site and one interferon regulatory factor (IRF)-binding site. The Ets element interacts with the epithelium-specific transcription factors, ESE-1 and ESE-3, and the IRF motif interacts with IRF-8. Thus, Tlr11 expression on epithelial cells is regulated by the transcription factors that are presumably distinct from transcription factors that regulate the expression of TLRs in innate immune cells such as macrophages and DCs. Our results imply that the distinctive transcription regulatory machinery for TLRs on epithelium may represent a promising new avenue for the development of epithelia-specific therapeutic interventions. PMID:19801549

  10. Spraying Respiratory Epithelial Cells to Coat Tissue-Engineered Constructs

    PubMed Central

    Thiebes, Anja Lena; Albers, Stefanie; Klopsch, Christian; Jockenhoevel, Stefan; Cornelissen, Christian G.

    2015-01-01

    Abstract Applying cells in a spray can overcome current hurdles in coating tissue engineered constructs with a thin layer of endo- or epithelial cells. We report here a structured study on the influences of spray application with a medical spray device on vascular smooth muscle cells (vSMCs) and respiratory epithelial cells (RECs) with and without fibrin gel. Next to viability and cytotoxicity assays, the in vitro differentiation capacity after spray processing was analyzed. For vSMC, no influence of air pressures till 0.8 bar could be shown, whereas the viability decreased for higher pressures. The viability of RECs was reduced to 88.5% with 0.4 bar air pressure. Lactate dehydrogenase-levels in the culture medium increased the first day after spraying but normalized afterward. In the short term, no differences by means of morphology and expression-specific markers for vSMCs and RECs were seen between the control and study group. In addition, in a long-term study for 28 days with the air–liquid interface, RECs differentiated and built up an organized epithelial layer with ciliary development that was comparable to the control for cells sprayed without fibrin gel. When spraying within fibrin gel, ciliary development was lower at 28 days. Thus, spraying of vSMCs and RECs was proved to be a suitable method for tissue engineering. Especially for RECs, this application is of special significance when coating luminal structures or other unfavorable topographies. PMID:26309803

  11. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    PubMed

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  12. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  13. Generation of Spheres from Dental Epithelial Stem Cells

    PubMed Central

    Natsiou, Despoina; Granchi, Zoraide; Mitsiadis, Thimios A.; Jimenez-Rojo, Lucia

    2017-01-01

    The in vitro three-dimensional sphere model has already been established as an important tool in fundamental sciences. This model facilitates the study of a variety of biological processes including stem cell/niche functions and tissue responses to injury and drugs. Here we describe the complete protocol for the in vitro formation of spheres originated from the epithelium of rodent incisors. In addition, we show that in these spheres cell proliferation is maintained, as well as the expression of several key molecules characterizing stem cells such as Sox2 and p63. These epithelial dentospheres could be used as an in vitro model system for stem cell research purposes. PMID:28154538

  14. Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells.

    PubMed

    Nagahara, Teruya; Shiraha, Hidenori; Sawahara, Hiroaki; Uchida, Daisuke; Takeuchi, Yasuto; Iwamuro, Masaya; Kataoka, Junro; Horiguchi, Shigeru; Kuwaki, Takeshi; Onishi, Hideki; Nakamura, Shinichiro; Takaki, Akinobu; Nouso, Kazuhiro; Yamamoto, Kazuhide

    2015-09-01

    Microenvironment plays an important role in epithelial-mesenchymal transition (EMT) and stemness of cells in hepatocellular carcinoma (HCC). Epithelial cell adhesion molecule (EpCAM) is known as a tumor stemness marker of HCC. To investigate the relationship between microenvironment and stemness, we performed an in vitro co-culture assay. Four HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) were co-cultured with the TWNT-1 immortalized hepatic stellate cells (HSCs), which create a microenvironment with HCC. Cell proliferation ability was analyzed by flow cytometry (FCM) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while migration ability was assessed by a wound healing assay. Expression of EpCAM was analyzed by immunoblotting and FCM. HCC cell lines were co-cultured with TWNT-1 treated with small interfering RNA (siRNA) for TGF-β and HB-EGF; we then analyzed proliferation, migration ability and protein expression using the methods described above. Proliferation ability was unchanged in HCC cell lines co-cultured with TWNT-1. Migration ability was increased in HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) directly (216.2±67.0, 61.0±22.0, 124.0±66.2 and 51.5±40.3%) and indirectly (102.5±22.0, 84.6±30.9, 86.1±25.7 and 73.9±29.7%) co-cultured with TWNT-1 compared with the HCC uni-culture. Immunoblot analysis revealed increased EpCAM expression in the HCC cell lines co-cultured with TWNT-1. Flow cytometry revealed that the population of E-cadherin-/N-cadherin+ and EpCAM-positive cells increased and accordingly, EMT and stemness in the HCC cell line were activated. These results were similar in the directly and indirectly co-cultured samples, indicating that humoral factors were at play. Conversely, HCC cell lines co-cultured with siRNA‑treated TWNT-1 showed decreased migration ability, a decreased population of EpCAM-positive and E-cadherin-/N-cadherin+ cells. Taken together, humoral factors secreted from TWNT-1

  15. Terconazole Vaginal Cream, Vaginal Suppositories

    MedlinePlus

    Terconazole comes as a cream and suppository to insert into the vagina. It is usually used daily at bedtime for either 3 or 7 days. ... prescribed by your doctor.To use the vaginal cream or vaginal suppositories, read the instructions provided with ...

  16. Progenitor Cells in Proximal Airway Epithelial Development and Regeneration

    PubMed Central

    Lynch, Thomas J.; Engelhardt, John F.

    2015-01-01

    Multiple distinct epithelial domains are found throughout the airway that are distinguishable by location, structure, function, and cell-type composition. Several progenitor cell populations in the proximal airway have been identified to reside in confined microenvironmental niches including the submucosal glands (SMGs), which are embedded in the tracheal connective tissue between the surface epithelium and cartilage, and basal cells that reside within the surface airway epithelium (SAE). Current research suggests that regulatory pathways that coordinate development of the proximal airway and establishment of progenitor cell niches may overlap with pathways that control progenitor cell responses during airway regeneration following injury. SMGs have been shown to harbor epithelial progenitor cells, and this niche is dysregulated in diseases such as cystic fibrosis. However, mechanisms that regulate progenitor cell proliferation and maintenance within this glandular niche are not completely understood. Here we discuss glandular progenitor cells during development and regeneration of the proximal airway and compare properties of glandular progenitors to those of basal cell progenitors in the SAE. Further investigation into glandular progenitor cell control will provide a direction for interrogating therapeutic interventions to correct aberrant conditions affecting the SMGs in diseases such as cystic fibrosis, chronic bronchitis, and asthma. PMID:24818588

  17. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

    PubMed Central

    Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595

  18. Building Epithelial Tissues from Skin Stem Cells

    PubMed Central

    Fuchs, E.; Nowak, J.A.

    2009-01-01

    The skin epidermis and its appendages provide a protective barrier that guards against loss of fluids, physical trauma, and invasion by harmful microbes. To perform these functions while confronting the harsh environs of the outside world, our body surface undergoes constant rejuvenation through homeostasis. In addition, it must be primed to repair wounds in response to injury. The adult skin maintains epidermal homeostasis, hair regeneration, and wound repair through the use of its stem cells. What are the properties of skin stem cells, when do they become established during embryogenesis, and how are they able to build tissues with such remarkably distinct architectures? How do stem cells maintain tissue homeostasis and repair wounds and how do they regulate the delicate balance between proliferation and differentiation? What is the relationship between skin cancer and mutations that perturbs the regulation of stem cells? In the past 5 years, the field of skin stem cells has bloomed as we and others have been able to purify and dissect the molecular properties of these tiny reservoirs of goliath potential. We report here progress on these fronts, with emphasis on our laboratory’s contributions to the fascinating world of skin stem cells. PMID:19022769

  19. Epigenetics in Intestinal Epithelial Cell Renewal

    PubMed Central

    Roostaee, Alireza; Benoit, Yannick D.; Boudjadi, Salah

    2016-01-01

    A controlled balance between cell proliferation and differentiation is essential to maintain normal intestinal tissue renewal and physiology. Such regulation is powered by several intracellular pathways that are translated into the establishment of specific transcription programs, which influence intestinal cell fate along the crypt‐villus axis. One important check‐point in this process occurs in the transit amplifying zone of the intestinal crypts where different signaling pathways and transcription factors cooperate to manage cellular proliferation and differentiation, before secretory or absorptive cell lineage terminal differentiation. However, the importance of epigenetic modifications such as histone methylation and acetylation in the regulation of these processes is still incompletely understood. There have been recent advances in identifying the impact of histone modifications and chromatin remodelers on the proliferation and differentiation of normal intestinal crypt cells. In this review we discuss recent discoveries on the role of the cellular epigenome in intestinal cell fate, development, and tissue renewal. J. Cell. Physiol. 231: 2361–2367, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27061836

  20. Elevated tropomyosin expression is associated with epithelial-mesenchymal transition of lens epithelial cells.

    PubMed

    Kubo, Eri; Hasanova, Nailia; Fatma, Nigar; Sasaki, Hiroshi; Singh, Dhirendra P

    2013-01-01

    Injury to lens epithelial cells (LECs) leads to epithelial-mesenchymal transition (EMT) with resultant fibrosis. The tropomyosin (Tpm) family of cytoskeleton proteins is involved in regulating and stabilizing actin microfilaments. Aberrant expression of Tpms leads to abnormal morphological changes with disintegration of epithelial integrity. The EMT of LECs has been proposed as a major cause of posterior capsule opacification (PCO) after cataract surgery. Using in vivo rodent PCO and human cataractous LECs, we demonstrated that the aberrant expression of rat Tpm and human Tpm1α/2β suggested their association in remodelling of the actin cytoskeleton during EMT of LECs. Expression analysis from abnormally growing LECs after lens extraction revealed elevated expression of α-smooth muscle actin (α-SMA), a marker for EMT. Importantly, these cells displayed increased expression of Tpm1α/2β following EMT/PCO formation. Expression of Tpm1α/2β was up-regulated in LECs isolated from cataractous lenses of Shumiya Cataract Rats (SCRs), compared with non-cataractous lenses. Also, LECs from human patients with nuclear cataract and anterior subcapsular fibrosis (ASF) displayed significantly increased expression of Tpm2β mRNA, suggesting that similar signalling invokes the expression of these molecules in LECs of cataractous SCR and human lenses. EMT was observed in LECs overexpressed with Tpm1α/2β, as evidenced by increased expression of α-SMA. These conditions were correlated with remodelling of actin filaments, possibly leading to EMT/PCO and ASF. The present findings may help clarify the condition of the actin cytoskeleton during morphogenetic EMT, and may contribute to development of Tpm-based inhibitors for postponing PCO and cataractogenesis.

  1. Azithromycin kills invasive Aggregatibacter actinomycetemcomitans in gingival epithelial cells.

    PubMed

    Lai, Pin-Chuang; Walters, John D

    2013-03-01

    Aggregatibacter actinomycetemcomitans invades periodontal pocket epithelium and is therefore difficult to eliminate by periodontal scaling and root planing. It is susceptible to azithromycin, which is taken up by many types of mammalian cells. This led us to hypothesize that azithromycin accumulation by gingival epithelium could enhance the killing of intraepithelial A. actinomycetemcomitans. [(3)H]azithromycin transport by Smulow-Glickman gingival epithelial cells and SCC-25 oral epithelial cells was characterized. To test our hypothesis, we infected cultured Smulow-Glickman cell monolayers with A. actinomycetemcomitans (Y4 or SUNY 465 strain) for 2 h, treated them with gentamicin to eliminate extracellular bacteria, and then incubated them with azithromycin for 1 to 4 h. Viable intracellular bacteria were released, plated, and enumerated. Azithromycin transport by both cell lines exhibited Michaelis-Menten kinetics and was competitively inhibited by l-carnitine and several other organic cations. Cell incubation in medium containing 5 μg/ml azithromycin yielded steady-state intracellular concentrations of 144 μg/ml in SCC-25 cells and 118 μg/ml in Smulow-Glickman cells. Azithromycin induced dose- and time-dependent intraepithelial killing of both A. actinomycetemcomitans strains. Treatment of infected Smulow-Glickman cells with 0.125 μg/ml azithromycin killed approximately 29% of the intraepithelial CFU of both strains within 4 h, while treatment with 8 μg/ml azithromycin killed ≥82% of the CFU of both strains (P < 0.05). Addition of carnitine inhibited the killing of intracellular bacteria by azithromycin (P < 0.05). Thus, human gingival epithelial cells actively accumulate azithromycin through a transport system that facilitates the killing of intraepithelial A. actinomycetemcomitans and is shared with organic cations.

  2. Serratia marcescens is injurious to intestinal epithelial cells

    PubMed Central

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens. PMID:25426769

  3. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  4. Left–right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis

    PubMed Central

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Maekawa, Emi; Isomura, Ayako; Shibata, Tatsuo; Kuranaga, Erina

    2015-01-01

    Morphogenetic epithelial movement occurs during embryogenesis and drives complex tissue formation. However, how epithelial cells coordinate their unidirectional movement while maintaining epithelial integrity is unclear. Here we propose a novel mechanism for collective epithelial cell movement based on Drosophila genitalia rotation, in which epithelial tissue rotates clockwise around the genitalia. We found that this cell movement occurs autonomously and requires myosin II. The moving cells exhibit repeated left–right-biased junction remodelling, while maintaining adhesion with their neighbours, in association with a polarized myosin II distribution. Reducing myosinID, known to cause counter-clockwise epithelial-tissue movement, reverses the myosin II distribution. Numerical simulations revealed that a left–right asymmetry in cell intercalation is sufficient to induce unidirectional cellular movement. The cellular movement direction is also associated with planar cell-shape chirality. These findings support a model in which left–right asymmetric cell intercalation within an epithelial sheet drives collective cellular movement in the same direction. PMID:26656655

  5. Live-cell Imaging and Quantitative Analysis of Embryonic Epithelial Cells in Xenopus laevis

    PubMed Central

    Joshi, Sagar D.; Davidson, Lance A.

    2010-01-01

    Embryonic epithelial cells serve as an ideal model to study morphogenesis where multi-cellular tissues undergo changes in their geometry, such as changes in cell surface area and cell height, and where cells undergo mitosis and migrate. Furthermore, epithelial cells can also regulate morphogenetic movements in adjacent tissues1. A traditional method to study epithelial cells and tissues involve chemical fixation and histological methods to determine cell morphology or localization of particular proteins of interest. These approaches continue to be useful and provide "snapshots" of cell shapes and tissue architecture, however, much remains to be understood about how cells acquire specific shapes, how various proteins move or localize to specific positions, and what paths cells follow toward their final differentiated fate. High resolution live imaging complements traditional methods and also allows more direct investigation into the dynamic cellular processes involved in the formation, maintenance, and morphogenesis of multicellular epithelial sheets. Here we demonstrate experimental methods from the isolation of animal cap tissues from Xenopus laevis embryos to confocal imaging of epithelial cells and simple measurement approaches that together can augment molecular and cellular studies of epithelial morphogenesis. PMID:20498627

  6. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration

    PubMed Central

    Toba, Hiroaki; Wang, Yingchun; Bai, Xiaohui; Zamel, Ricardo; Cho, Hae-Ra; Liu, Hongmei; Lira, Alonso; Keshavjee, Shaf; Liu, Mingyao

    2015-01-01

    Proliferation of bronchioalveolar stem cells (BASCs) is essential for epithelial repair. XB130 is a novel adaptor protein involved in the regulation of epithelial cell survival, proliferation and migration through the PI3K/Akt pathway. To determine the role of XB130 in airway epithelial injury repair and regeneration, a naphthalene-induced airway epithelial injury model was used with XB130 knockout (KO) mice and their wild type (WT) littermates. In XB130 KO mice, at days 7 and 14, small airway epithelium repair was significantly delayed with fewer number of Club cells (previously called Clara cells). CCSP (Club cell secreted protein) mRNA expression was also significantly lower in KO mice at day 7. At day 5, there were significantly fewer proliferative epithelial cells in the KO group, and the number of BASCs significantly increased in WT mice but not in KO mice. At day 7, phosphorylation of Akt, GSK-3β, and the p85α subunit of PI3K was observed in airway epithelial cells in WT mice, but to a much lesser extent in KO mice. Microarray data also suggest that PI3K/Akt-related signals were regulated differently in KO and WT mice. An inhibitory mechanism for cell proliferation and cell cycle progression was suggested in KO mice. XB130 is involved in bronchioalveolar stem cell and Club cell proliferation, likely through the PI3K/Akt/GSK-3β pathway. PMID:26360608

  7. Oral Epithelial Cell Responses to Multispecies Microbial Biofilms

    PubMed Central

    Peyyala, R.; Kirakodu, S.S.; Novak, K.F.; Ebersole, J.L

    2013-01-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. Only the Sg/Actinomyces naeslundii (An)/Fn multispecies biofilms elicited IL-6 levels above those of control. IL-8 was a primary response to the Sg/An/Fn biofilms, albeit the level was not enhanced compared with a predicted composite level from the monospecies challenges. These results represent some of the first data documenting alterations in profiles of oral epithelial cell responses to multispecies biofilms. PMID:23300185

  8. Clinical features of bacterial vaginosis in a murine model of vaginal infection with Gardnerella vaginalis.

    PubMed

    Gilbert, Nicole M; Lewis, Warren G; Lewis, Amanda L

    2013-01-01

    Bacterial vaginosis (BV) is a dysbiosis of the vaginal flora characterized by a shift from a Lactobacillus-dominant environment to a polymicrobial mixture including Actinobacteria and gram-negative bacilli. BV is a common vaginal condition in women and is associated with increased risk of sexually transmitted infection and adverse pregnancy outcomes such as preterm birth. Gardnerella vaginalis is one of the most frequently isolated bacterial species in BV. However, there has been much debate in the literature concerning the contribution of G. vaginalis to the etiology of BV, since it is also present in a significant proportion of healthy women. Here we present a new murine vaginal infection model with a clinical isolate of G. vaginalis. Our data demonstrate that this model displays key features used clinically to diagnose BV, including the presence of sialidase activity and exfoliated epithelial cells with adherent bacteria (reminiscent of clue cells). G. vaginalis was capable of ascending uterine infection, which correlated with the degree of vaginal infection and level of vaginal sialidase activity. The host response to G. vaginalis infection was characterized by robust vaginal epithelial cell exfoliation in the absence of histological inflammation. Our analyses of clinical specimens from women with BV revealed a measureable epithelial exfoliation response compared to women with normal flora, a phenotype that, to our knowledge, is measured here for the first time. The results of this study demonstrate that G. vaginalis is sufficient to cause BV phenotypes and suggest that this organism may contribute to BV etiology and associated complications. This is the first time vaginal infection by a BV associated bacterium in an animal has been shown to parallel the human disease with regard to clinical diagnostic features. Future studies with this model should facilitate investigation of important questions regarding BV etiology, pathogenesis and associated complications.

  9. Maintenance of Epithelial Stem Cells by Cbl Proteins

    DTIC Science & Technology

    2013-09-01

    our research findings during the entire grant period (Sept. 2010 – Aug. 2013). 1. Analysis of Cbl functions in progenitor-type mammary epithelial...catenin pathway, but further investigation is required to establish this. 2. Analysis of Cbl functions in vivo using gene mutant mouse models We...Nandwani N, Gu H, Band V, Band H. Rapidly fatal myeloproliferative disorders in mice with deletion of Casitas B-cell lymphoma (Cbl) and Cbl-b in

  10. Interaction between submicron COD crystals and renal epithelial cells

    PubMed Central

    Peng, Hua; Ouyang, Jian-Ming; Yao, Xiu-Qiong; Yang, Ru-E

    2012-01-01

    Objectives This study aims to investigate the adhesion characteristics between submicron calcium oxalate dihydrate (COD) with a size of 150 ± 50 nm and African green monkey kidney epithelial cells (Vero cells) before and after damage, and to discuss the mechanism of kidney stone formation. Methods Vero cells were oxidatively injured by hydrogen peroxide to establish a model of injured cells. Scanning electron microscopy was used to observe Vero–COD adhesion. Inductively coupled plasma emission spectrometry was used to quantitatively measure the amount of adhered COD microcrystals. Nanoparticle size analyzer and laser scanning confocal microscopy were performed to measure the change in the zeta potential on the Vero cell surface and the change in osteopontin expression during the adhesion process, respectively. The level of cell injury was evaluated by measuring the changes in malonaldehyde content, and cell viability during the adhesion process. Results The adhesion capacity of Vero cells in the injury group to COD microcrystals was obviously stronger than that of Vero cells in the control group. After adhesion to COD, cell viability dropped, both malonaldehyde content and cell surface zeta potential increased, and the fluorescence intensity of osteopontin decreased because the osteopontin molecules were successfully covered by COD. Submicron COD further damaged the cells during the adhesion process, especially for Vero cells in the control group, leading to an elevated amount of attached microcrystals. Conclusion Submicron COD can further damage injured Vero cells during the adhesion process. The amount of attached microcrystals is proportional to the degree of cell damage. The increased amount of microcrystals that adhered to the injured epithelial cells plays an important role in the formation of early-stage kidney stones. PMID:22973095

  11. Erythropoietin Induces an Epithelial to Mesenchymal Transition-like Process in Mammary Epithelial Cells MCF10A.

    PubMed

    Ordoñez-Moreno, Alejandra; Rodriguez-Monterrosas, Cecilia; Cortes-Reynosa, Pedro; Perez-Carreon, Julio Isael; Perez Salazar, Eduardo

    2017-03-01

    Anemia is associated with chemotherapy treatment in cancer patients. Erythropoietin (EPO) has been used to treat anemia of cancer patients, because it stimulates erythropoiesis. However, treatment of breast cancer patients with EPO has been associated with poor prognosis and decrease of survival. Epithelial to mesenchymal transition (EMT) is a process by which epithelial cells are transdifferentiated to a mesenchymal state. It has been implicated in tumor progression, because epithelial cells acquire the capacity to execute the multiple steps of invasion/metastasis process. However, the role of EPO on EMT process in human mammary epithelial cells has not been studied. In the present study, we demonstrate that EPO promotes a decrease of E-cadherin expression, an increase of N-cadherin, vimentin and Snail2 expression, activation of FAK and Src kinases and an increase of MMP-2 and MMP-9 secretions. Moreover, EPO induces an increase of NFκB DNA binding activity, an increase of binding of p50 and p65 NFκB subunits to Snail1 promoter, migration and invasion in mammary non-tumorigenic epithelial cells MCF10A. In summary, these findings demonstrate, for the first time, that EPO induces an EMT-like process in mammary non-tumorigenic epithelial cells. This article is protected by copyright. All rights reserved.

  12. Epithelial stem cells are formed by small-particles released from particle-producing cells

    PubMed Central

    Kong, Wuyi; Zhu, Xiao Ping; Han, Xiu Juan; Nuo, Mu; Wang, Hong

    2017-01-01

    Recent spatiotemporal report demonstrated that epidermal stem cells have equal potential to divide or differentiate, with no asymmetric cell division observed. Therefore, how epithelial stem cells maintain lifelong stem-cell support still needs to be elucidated. In mouse blood and bone marrow, we found a group of large cells stained strongly for eosin and containing coiled-tubing-like structures. Many were tightly attached to each other to form large cellular clumps. After sectioning, these large cell-clumps were composed of not cells but numerous small particles, however with few small “naked” nuclei. The small particles were about 2 to 3 μm in diameter and stained dense red for eosin, so they may be rich in proteins. Besides the clumps composed of small particles, we identified clumps formed by fusion of the small particles and clumps of newly formed nucleated cells. These observations suggest that these small particles further fused and underwent cellularization. E-cadherin was expressed in particle-fusion areas, some “naked” nuclei and the newly formed nucleated cells, which suggests that these particles can form epithelial cells via fusion and nuclear remodeling. In addition, we observed similar-particle fusion before epithelial cellularization in mouse kidney ducts after kidney ischemia, which suggests that these particles can be released in the blood and carried to the target tissues for epithelial-cell regeneration. Oct4 and E-cadherin expressed in the cytoplasmic areas in cells that were rich in protein and mainly located in the center of the cellular clumps, suggesting that these newly formed cells have become tissue-specific epithelial stem cells. Our data provide evidence that these large particle-producing cells are the origin of epithelial stem cells. The epithelial stem cells are newly formed by particle fusion. PMID:28253358

  13. A dynamic podosome-like structure of epithelial cells.

    PubMed

    Spinardi, Laura; Rietdorf, Jens; Nitsch, Lucio; Bono, Maria; Tacchetti, Carlo; Way, Michael; Marchisio, Pier Carlo

    2004-05-01

    Focal contacts and hemidesmosomes are cell-matrix adhesion structures of cultured epithelial cells. While focal contacts link the extracellular matrix to microfilaments, hemidesmosomes make connections with intermediate filaments. We have analyzed hemidesmosome assembly in 804G carcinoma cells. Our data show that hemidesmosomes are organized around a core of actin filaments that appears early during cell adhesion. These actin structures look similar to podosomes described in cells of mesenchymal origin. These podosome-like structures are distinct from focal contacts and specifically contain Arp3 (Arp2/3 complex), cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin, and zyxin. We also show that the maintenance of the actin core and hemidesmosomes is dependent on actin polymerization, src-family kinases, and Grb2, but not on microtubules. Video microscopy analysis reveals that assembly of hemidesmosomes is preceded by recruitment of beta4 integrin subunit to the actin core before its positioning at hemidesmosomes. When 804G cells are induced to migrate, actin cores as well as hemidesmosomes disappear and beta4 integrin subunit becomes co-localized with dynamic actin at leading edges. We show that podosome-like structures are not unique to cells of mesenchymal origin, but also appear in epithelial cells, where they seem to be related to basement membrane adhesion.

  14. Airway Epithelial Cell Cilia and Obstructive Lung Disease

    PubMed Central

    Yaghi, Asma; Dolovich, Myrna B.

    2016-01-01

    Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations. PMID:27845721

  15. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2007-10-01

    robust and reproducible methodology to detect, quantify and isolate stem cells in normal human mammary tissue, using a xenotransplantation system...covers the first year of the grant, during which substantial progress has been made in the development and validation of the xenotransplantation assay...Subrenal xenotransplantation surgery. The hair on the back of anesthetized mice was shaved, and the skin swabbed with 70% alcohol. An anterior to

  16. Vaginal parasitosis.

    PubMed

    Garud, M A; Saraiya, U; Paraskar, M; Khokhawalla, J

    1980-01-01

    In two cases the ova of parasitic worms, Ascaris lumbricoides and Enterobius vermicularis, were observed in Papanicolaou-stained vaginal smears. The characteristics of each type of ovum are described.

  17. Estrogen Vaginal

    MedlinePlus

    ... estradiol vaginal ring is also used to treat hot flushes ('hot flashes'; sudden strong feelings of heat and sweating) ... mild soap and warm water. Do not use hot water or boil the applicator. Ask your pharmacist ...

  18. Treating vaginitis.

    PubMed

    Cullins, V A; Dominguez, L; Guberski, T; Secor, R M; Wysocki, S J

    1999-10-01

    Vaginitis resulting from bacterial, fungal, or protozoal infections can be associated with altered vaginal discharge, odor, pruritus, vulvovaginal irritation, dysuria, or dyspareunia, depending on the type of infection. Bacterial vaginosis, which is primarily characterized by a malodorous discharge, is common in women with multiple sex partners and is caused by the overgrowth of several facultative and anaerobic bacterial species. Vulvovaginal candidiasis is characterized by pruritus and a cottage cheese-like discharge. Vaginal trichomoniasis, a sexually transmitted disease caused by an anaerobic protozoan parasite, is associated with a copious yellow or green, sometimes frothy, discharge. Differential diagnosis of these infections requires a thorough history, vulvovaginal examination, and simple laboratory tests, including microscopy of the vaginal discharge. The information obtained from this workup should enable an accurate diagnosis. Topical or oral metronidazole is the treatment of choice for bacterial vaginosis; terconazole, or other antifungals, for vulvovaginal candidiasis; and oral metronidazole for trichomoniasis.

  19. Vaginal Discharge

    MedlinePlus

    ... also be on the lookout for symptoms of yeast infections, bacterial vaginosis and trichomoniasis, 3 infections that ... cause changes in your vaginal discharge.Signs of yeast infectionsWhite, cottage cheese-like dischargeSwelling and pain around ...

  20. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2008-10-01

    9 Appendix……………………………………………………………………………… 10 Eirew,P., Stingl,J., Raouf,A., Turashvili,G., Aparicio ,S., Emerman,J.T., and Eaves,C.J. A...Peter Eirew, John Stingl, Afshin Raouf, Gulisa Turashvili, Samuel Aparicio , Joanne Emerman and Connie Eaves. A method for quantifying normal human...Eirew, Afshin Raouf, John Stingl, Gulisa Turashvili, Allen Delaney, Joanne Emerman, Marco Marra and Samuel Aparicio . “Stem Cells in the Mammary Gland

  1. Synthesis of sulfated oligosaccharides by cystic fibrosis trachea epithelial cells.

    PubMed

    Mendicino, J; Sangadala, S

    1999-11-01

    The mucin glycoproteins in tracheal mucus of patients with cystic fibrosis is more highly sulfated than the corresponding secretions from healthy individuals [16]. In order to further characterize these differences in sulfation and possibly also glycosylation patterns, we compared the structures of sulfated mucin oligosaccharides synthesized by continuously cultured human tracheal cells transformed by simian virus 40. The synthesis of highly sulfated oligosaccharide chains in mucins secreted by normal human epithelial and submucosal cell lines were compared with mucins formed by cystic fibrosis tracheal epithelial and submucosal cell lines. The epithelial cell lines from cystic fibrosis trachea showed a higher rate of sulfate uptake and a significantly higher rate of synthesis and sulfation of high molecular weight chains. Mucins synthesized by each cell line in the presence of 35SO4 were isolated and oligosaccharide chains were released by beta-elimination and separated by ion exchange chromatography and gel filtration. The sulfated high molecular weight chains synthesized by the cystic fibrosis cell lines were characterized by methylation analysis and sequential glycosidase digestion before and after desulfation. Carbohydrate analysis yielded Fuc, Gal and GlcNAc in a ratio of 1:2:2.2 and only one galactosaminitol residue for about every 150-200 sugar residues present. The average molecular size of oligosaccharide chains in these fractions was between 30,000-40,000 daltons. These studies show that increased sulfation of oligosaccharides in mucins synthesized by cells from cystic fibrosis trachea is accompanied by a significant increase in the extension of a basic branched structure present in many of the lower molecular weight oligosaccharides.

  2. The application of alkaline lysis and pressure cycling technology in the differential extraction of DNA from sperm and epithelial cells recovered from cotton swabs.

    PubMed

    Nori, Deepthi V; McCord, Bruce R

    2015-09-01

    This study reports the development of a two-step protocol using pressure cycling technology (PCT) and alkaline lysis for differential extraction of DNA from mixtures of sperm and vaginal epithelial cells recovered from cotton swabs. In controlled experiments, in which equal quantities of sperm and female epithelial cells were added to cotton swabs, 5 min of pressure pulsing in the presence of 0.4 M NaOH resulted in 104 ± 6% recovery of female epithelial DNA present on the swab. Following the pressure treatment, exposing the swabs to a second 5-min alkaline treatment at 95 °C without pressure resulted in the selective recovery of 69 ± 6% of the sperm DNA. The recovery of the vaginal epithelia and sperm DNA was optimized by examining the effect of sodium hydroxide concentration, incubation temperature, and time. Following the alkaline lysis steps, the samples were neutralized with 2 M Tris (pH 7.5) and purified with phenol-chloroform-isoamyl alcohol to permit downstream analysis. The total processing time to remove both fractions from the swab was less than 20 min. Short tandem repeat (STR) analysis of these fractions obtained from PCT treatment and alkaline lysis generated clean profiles of female epithelial DNA and male sperm DNA for 1:1 mixtures of female and male cells and predominant male profiles for mixtures up to 5:1 female to male cells. By reducing the time and increasing the recovery of DNA from cotton swabs, this new method presents a novel and potentially useful procedure for forensic differential extractions.

  3. Vaginal Microbiota.

    PubMed

    Mendling, Werner

    2016-01-01

    The knowledge about the normal and abnormal vaginal microbiome has changed over the last years. Culturing techniques are not suitable any more for determination of a normal or abnormal vaginal microbiota. Non culture-based modern technologies revealed a complex and dynamic system mainly dominated by lactobacilli.The normal and the abnormal vaginal microbiota are complex ecosystems of more than 200 bacterial species influenced by genes, ethnic background and environmental and behavioral factors. Several species of lactobacilli per individuum dominate the healthy vagina. They support a defense system together with antibacterial substances, cytokines, defensins and others against dysbiosis, infections and care for an normal pregnancy without preterm birth.The numbers of Lactobacillus (L.) iners increase in the case of dysbiosis.Bacterial vaginosis (BV) - associated bacteria (BVAB), Atopobium vaginae and Clostridiales and one or two of four Gardnerella vaginalis - strains develop in different mixtures and numbers polymicrobial biofilms on the vaginal epithelium, which are not dissolved by antibiotic therapies according to guidelines and, thus, provoke recurrences.Aerobic vaginitis seems to be an immunological disorder of the vagina with influence on the microbiota, which is here dominated by aerobic bacteria (Streptococcus agalactiae, Escherichia coli). Their role in AV is unknown.Vaginal or oral application of lactobacilli is obviously able to improve therapeutic results of BV and dysbiosis.

  4. Protein-Coated Nanoparticles Are Internalized by the Epithelial Cells of the Female Reproductive Tract and Induce Systemic and Mucosal Immune Responses

    PubMed Central

    Howe, Savannah E.; Konjufca, Vjollca H.

    2014-01-01

    The female reproductive tract (FRT) includes the oviducts (fallopian tubes), uterus, cervix and vagina. A layer of columnar epithelium separates the endocervix and uterus from the outside environment, while the vagina is lined with stratified squamous epithelium. The mucosa of the FRT is exposed to antigens originating from microflora, and occasionally from infectious microorganisms. Whether epithelial cells (ECs) of the FRT take up (sample) the lumen antigens is not known. To address this question, we examined the uptake of 20–40 nm nanoparticles (NPs) applied vaginally to mice which were not treated with hormones, epithelial disruptors, or adjuvants. We found that 20 and 40 nm NPs are quickly internalized by ECs of the upper FRT and within one hour could be observed in the lymphatic ducts that drain the FRT, as well as in the ileac lymph nodes (ILNs) and the mesenteric lymph nodes (MLNs). Chicken ovalbumin (Ova) conjugated to 20 nm NPs (NP-Ova) when administered vaginally reaches the internal milieu in an immunologically relevant form; thus vaginal immunization of mice with NP-Ova induces systemic IgG to Ova antigen. Most importantly, vaginal immunization primes the intestinal mucosa for secretion of sIgA. Sub-cutaneous (s.c) boosting immunization with Ova in complete Freund's adjuvant (CFA) further elevates the systemic (IgG1 and IgG2c) as well as mucosal (IgG1 and sIgA) antibody titers. These findings suggest that the modes of antigen uptake at mucosal surfaces and pathways of antigen transport are more complex than previously appreciated. PMID:25490456

  5. Slugging their way to immortality: driving mammary epithelial cells into a stem cell-like state.

    PubMed

    Soady, Kelly; Smalley, Matthew J

    2012-09-10

    Delineating the molecular factors that define and maintain the mammary stem cell state is vital for understanding normal development and tumourigenesis. A recent study by Guo and colleagues identifies two master transcriptional regulators of mammary stem cells, Slug and Sox9, ectopic expression of which confers stem cell attributes on differentiated mammary epithelial cells. Slug and Sox9 expression was also shown to determine in vivo metastatic potential of human breast cancer cell lines. Understanding these factors in the context of normal lineage differentiation is an important step toward elucidating the mammary epithelial cell hierarchy and the origins of cancer stem cells.

  6. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells

    PubMed Central

    Cieślar-Pobuda, Artur; Rafat, Mehrdad; Knoflach, Viktoria; Skonieczna, Magdalena; Hudecki, Andrzej; Małecki, Andrzej; Urasińska, Elżbieta; Ghavami, Seaid; Łos, Marek J.

    2016-01-01

    The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches. PMID:27275539

  7. Hysterectomy - vaginal - discharge

    MedlinePlus

    Vaginal hysterectomy - discharge; Laparoscopically assisted vaginal hysterectomy - discharge; LAVH - discharge ... you were in the hospital, you had a vaginal hysterectomy. Your surgeon made a cut in your ...

  8. Influences of nanomaterials on the barrier function of epithelial cells.

    PubMed

    Ali, Shariq; Rytting, Erik

    2014-01-01

    Recent advances in nanotechnology have led to exciting opportunities in medicine, energy, manufacturing, and other fields. Nevertheless, it is important to adequately assess the potential impacts of nanomaterial exposure. This chapter focuses on the interactions of nanomaterials with epithelial barriers in the lungs, intestine, kidneys, skin, and placenta. Methods for determining transepithelial electrical resistance and paracellular permeability are described. Effects on cell viability and barrier integrity depend on the chemical nature of the nanomaterial, nanoparticle size, surface coatings, and concentration. Disruption of tight junctions can affect permeability and interfere with normal regulatory processes of the epithelial barrier. Future research is needed to better understand the possibilities and the limits of novel approaches in nanotechnology.

  9. Efficient cultivation conditions for human limbal epithelial cells.

    PubMed

    Kim, Mee Kum; Lee, Jae Lim; Oh, Joo Youn; Shin, Mi Sun; Shin, Kyeong Seon; Wee, Won Ryang; Lee, Jin Hak; Park, Ki Sook; Son, Young Sook

    2008-10-01

    To compare the stem niche in different culture conditions of limbal epithelial cells, the suspended human limbal epithelial cells (HLECs) were seeded on the 3T3-pretreated plates and the other suspended cells were plated on amniotic membranes (AMs) which were either cryo-preserved or freeze-dried. All were cultured for 10 to 12 days. Reverse transcription-polymerase chain reaction (RT-PCR) for ATP-binding cassette, subfamily G, member 2 (ABCG2), p63, cytokeratin 12, and connexin 43 were performed in cultivated HLECs and their expression levels were compared. The mRNA expression of all markers examined showed no statistically significant differences between the cells on cryo-preserved and on freeze-dried AM. The expression of p63 and cytokeratin 12 in cultivated cells on AMs were significantly lower than those in 3T3-cocultured cells on RT-PCR and immunofluorescent staining. Cultivated HLECs on AMs showed reduced proliferation and differentiation while maintaining stem-property regardless of the preservative method of AM.

  10. ATP7B detoxifies silver in ciliated airway epithelial cells

    SciTech Connect

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-03-15

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B{sup -/-} mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag{sup +}/Cu{sup +} transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  11. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  12. Inflammation and the Intestinal Barrier: Leukocyte–Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair

    PubMed Central

    Luissint, Anny-Claude; Parkos, Charles A.; Nusrat, Asma

    2017-01-01

    The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte–epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation. PMID:27436072

  13. Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection

    EPA Science Inventory

    Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza...

  14. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  15. Temporal association of serum progesterone concentrations and vaginal cytology in walruses (Odobenus rosmarus).

    PubMed

    Kinoshita, K; Kiwata, M; Kuwano, R; Sato, N; Tanaka, T; Nagata, M; Taira, H; Kusunoki, H

    2012-03-15

    Concentrations of serum estradiol-17β and progesterone were monitored in six female walruses using an enzyme immunoassay. Progesterone concentrations increased from March to May in females aged 6 y or older, and subsequently declined (October). No significant elevation of estradiol-17β concentration was detected before an elevation of progesterone concentration. Vaginal smears from four females were examined with Papanicolaou staining. In all females, most epithelial cells were basophilic intermediate-superficial cells; no color change from basophilic to eosinophilic of the cells was detected. Meanwhile, the percentage of anucleate cells in vaginal smears reached its highest value before the elevation of progesterone concentration, followed by an increase in the percentage of leukocytes. We inferred that the change in populations of anucleate cells and leukocytes in vaginal smears reflected ovarian status and CL formation in female walruses.

  16. Stereological Quantification of Cell-Cycle Kinetics and Mobilization of Epithelial Stem Cells during Wound Healing.

    PubMed

    Martínez-Martínez, Eduardo; Uribe-Querol, Eileen; Galván-Hernández, Claudio I; Gutiérrez-Ospina, Gabriel

    2016-01-01

    We describe a stereology method to obtain reliable estimates of the total number of proliferative and migratory epithelial cells after wounding. Using pulse and chase experiments with halogenated thymidine analogs such as iododeoxyuridine (IdU) and chlorodeoxyuridine (CldU), it is possible to track epithelial populations with heterogeneous proliferative characteristics through skin compartments. The stereological and tissue processing methods described here apply widely to address important questions of skin stem-cell biology.

  17. Protocadherin-1 Localization and Cell-Adhesion Function in Airway Epithelial Cells in Asthma

    PubMed Central

    Faura Tellez, Grissel; Willemse, Brigitte W. M.; Brouwer, Uilke; Nijboer-Brinksma, Susan; Vandepoele, Karl; Noordhoek, Jacobien A.; Heijink, Irene; de Vries, Maaike; Smithers, Natalie P.; Postma, Dirkje S.; Timens, Wim; Wiffen, Laura; van Roy, Frans; Holloway, John W.; Lackie, Peter M.; Nawijn, Martijn C.; Koppelman, Gerard H.

    2016-01-01

    Background The asthma gene PCDH1 encodes Protocadherin-1, a putative adhesion molecule of unknown function expressed in the airway epithelium. Here, we characterize the localization, differential expression, homotypic adhesion specificity and function of PCDH1 in airway epithelial cells in asthma. Methods We performed confocal fluorescence microscopy to determine subcellular localization of PCDH1 in 16HBE cells and primary bronchial epithelial cells (PBECs) grown at air-liquid interface. Next, to compare PCDH1 expression and localization in asthma and controls we performed qRT-PCR and fluorescence microscopy in PBECs and immunohistochemistry on airway wall biopsies. We examined homotypic adhesion specificity of HEK293T clones overexpressing fluorescently tagged-PCDH1 isoforms. Finally, to evaluate the role for PCDH1 in epithelial barrier formation and repair, we performed siRNA knockdown-studies and measured epithelial resistance. Results PCDH1 localized to the cell membrane at cell-cell contact sites, baso-lateral to adherens junctions, with increasing expression during epithelial differentiation. No differences in gene expression or localization of PCDH1 isoforms expressing the extracellular domain were observed in either PBECs or airway wall biopsies between asthma patients and controls. Overexpression of PCDH1 mediated homotypic interaction, whereas downregulation of PCDH1 reduced epithelial barrier formation, and impaired repair after wounding. Conclusions In conclusion, PCDH1 is localized to the cell membrane of bronchial epithelial cells baso-lateral to the adherens junction. Expression of PCDH1 is not reduced nor delocalized in asthma even though PCDH1 contributes to homotypic adhesion, epithelial barrier formation and repair. PMID:27701444

  18. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    SciTech Connect

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  19. Effects of amniotic epithelial cell transplantation in endothelial injury

    PubMed Central

    Vácz, Gabriella; Cselenyák, Attila; Cserép, Zsuzsanna; Benkő, Rita; Kovács, Endre; Pankotai, Eszter; Lindenmair, Andrea; Wolbank, Susanne; Schwarz, Charlotte M.; Horváthy, Dénes B.; Kiss, Levente; Hornyák, István; Lacza, Zsombor

    2016-01-01

    Purpose Human amniotic epithelial cells (hAECs) are promising tools for endothelial repair in vascular regenerative medicine. We hypothesized that these epithelial cells are capable of repairing the damaged endothelial layer following balloon injury of the carotid artery in adult male rats. Results Two days after injury, the transplanted hAECs were observed at the luminal side of the arterial wall. Then, 4 weeks after the injury, significant intimal thickening was observed in both untreated and cell implanted vessels. Constriction was decreased in both implanted and control animals. Immunohistochemical analysis showed a few surviving cells in the intact arterial wall, but no cells were observed at the site of injury. Interestingly, acetylcholine-induced dilation was preserved in the intact side and the sham-transplanted injured arteries, but it was a trend toward decreased vasodilation in the hAECs’ transplanted vessels. Conclusion We conclude that hAECs were able to incorporate into the arterial wall without immunosuppression, but failed to improve vascular function, highlighting that morphological implantation does not necessarily result in functional benefits and underscoring the need to understand other mechanisms of endothelial regeneration. PMID:28180006

  20. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.

    PubMed

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-02

    Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection.

  1. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors.

    PubMed Central

    Isaacson, R E; Fusco, P C; Brinton, C C; Moon, H W

    1978-01-01

    Escherichia coli strains with pili (K99 or 987P) known to facilitate intestinal colonization adhered in vitro to porcine intestinal epithelial cells. These strains adhered equally to both ileal and jejunal epithelial cells. A laboratory E. coli strain that has type 1 pili also adhered to porcine intestinal epithelial cells. When nonpiliated cells derived from 987P+, K99+, or type 1 pilus+ strains were used for in vitro adhesion assays, they failed to adhere. The attachment of piliated bacteria to epithelial cells was a saturable process that plateaued at 30 to 40 bacterial cells attached per epithelial cell. Competitive inhibition of bacterial cell attachment to epithelial cells with purified pili showed that only purified 987P competed against the 987P+ strain and only purified type 1 pili competed against the type 1 pilus+ strain. Competition between a K99+ strain and K99 was not consistently achieved. K99+, 987P+, and type 1 pilus+ bacteria could be prevented from adhering to epithelial cells by Fab fragments specific for K99, 987P, or type 1 pili, respectively. Fab fragments specific for non-K99 bacterial surface antigens did not inhibit adhesion of the K99+ strain. It is concluded that adhesion of E. coli to porcine intestinal epithelial cells in vitro is mediated by pili and that the epithelial cells used apparently had different receptors for different pili. PMID:357285

  2. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors.

    PubMed

    Isaacson, R E; Fusco, P C; Brinton, C C; Moon, H W

    1978-08-01

    Escherichia coli strains with pili (K99 or 987P) known to facilitate intestinal colonization adhered in vitro to porcine intestinal epithelial cells. These strains adhered equally to both ileal and jejunal epithelial cells. A laboratory E. coli strain that has type 1 pili also adhered to porcine intestinal epithelial cells. When nonpiliated cells derived from 987P+, K99+, or type 1 pilus+ strains were used for in vitro adhesion assays, they failed to adhere. The attachment of piliated bacteria to epithelial cells was a saturable process that plateaued at 30 to 40 bacterial cells attached per epithelial cell. Competitive inhibition of bacterial cell attachment to epithelial cells with purified pili showed that only purified 987P competed against the 987P+ strain and only purified type 1 pili competed against the type 1 pilus+ strain. Competition between a K99+ strain and K99 was not consistently achieved. K99+, 987P+, and type 1 pilus+ bacteria could be prevented from adhering to epithelial cells by Fab fragments specific for K99, 987P, or type 1 pili, respectively. Fab fragments specific for non-K99 bacterial surface antigens did not inhibit adhesion of the K99+ strain. It is concluded that adhesion of E. coli to porcine intestinal epithelial cells in vitro is mediated by pili and that the epithelial cells used apparently had different receptors for different pili.

  3. Bimodal Analysis of Mammary Epithelial Cell Migration in Two Dimensions

    PubMed Central

    Potdar, Alka A.; Lu, Jenny; Jeon, Junhwan; Weaver, Alissa M.; Cummings, Peter T.

    2013-01-01

    Cell migration paths of mammary epithelial cells (expressing different versions of the promigratory tyrosine kinase receptor Her2/Neu) were analyzed within a bimodal framework that is a generalization of the run-and-tumble description applicable to bacterial migration. The mammalian cell trajectories were segregated into two types of alternating modes, namely, the “directional-mode” (mode I, the more persistent mode, analogous to the bacterial run phase) and the “re-orientation-mode” (mode II, the less persistent mode, analogous to the bacterial tumble phase). Higher resolution (more pixel information, relative to cell size) and smaller sampling intervals (time between images) were found to give a better estimate of the deduced single cell dynamics (such as directional-mode time and turn angle distribution) of the various cell types from the bimodal analysis. The bimodal analysis tool permits the deduction of short-time dynamics of cell motion such as the turn angle distributions and turn frequencies during the course of cell migration compared to standard methods of cell migration analysis. We find that the two-hour mammalian cell tracking data do not fall into the diffusive regime implying that the often-used random motility expressions for mammalian cell motion (based on assuming diffusive motion) are invalid over the time steps (fraction of minute) typically used in modeling mammalian cell migration. PMID:18982450

  4. Xenobiotic induction of quinone oxidoreductase activity in lens epithelial cells.

    PubMed

    Tumminia, S J; Rao, P V; Zigler, J S; Russell, P

    1993-12-08

    Xenobiotic regulatory elements have been identified for enzymes which ameliorate oxidative damage in cells. Zeta (zeta)-crystallin, a taxon-specific enzyme/crystallin shown to be a novel NADPH-dependent quinone reductase, is found in a number of tissues and cell types. This study shows that zeta-crystallin is present in mouse lens epithelium, as well as in the alpha TN4 mouse lens epithelial cell line. To determine whether zeta-crystallin is an inducible quinone reductase, cell cultures were exposed to the xenobiotics, 1,2-naphthoquinone and beta-naphthoflavone. Assays of cellular homogenates showed that quinone reductase activity was stimulated greater than 70% and 90%, respectively, over the control cells. This observed activity was sensitive to dicumarol, a potent inhibitor of quinone reductase activity. 1,2-Naphthoquinone- and beta-naphthoflavone-exposed cells were found to exhibit 1.47- and 1.68-fold increases, respectively, in zeta-crystallin protein concentration. A comparable increase in zeta-crystallin mRNA was indicative of an induction in zeta-crystallin expression in response to naphthalene challenge. Lens epithelial cells were also checked for DT-diaphorase, a well-known cellular protective enzyme which can catalyze the two-electron reduction of quinones. Slot blot analyses indicated that alpha TN4 cells exposed to 1,2-naphthoquinone and beta-naphthoflavone exhibited 2.71- and 6.81-fold increases in DT-diaphorase concentration when compared to the control cells. The data suggest that while DT-diaphorase is most likely responsible for the majority of the observed increase in quinone reductase activity, the zeta-crystallin gene also undergoes activation which is apparently mediated by a xenobiotic-responsive element.

  5. Cholinergic regulation of epithelial sodium channels in rat alveolar type 2 epithelial cells.

    PubMed

    Takemura, Yoshizumi; Helms, My N; Eaton, Amity F; Self, Julie; Ramosevac, Semra; Jain, Lucky; Bao, Hui-Fang; Eaton, Douglas C

    2013-03-15

    We and others have shown that epithelial Na(+) channels (ENaC) in alveolar type 2 (AT2) cells are activated by β2 agonists, steroid hormones, elevated oxygen tension, and by dopamine. Although acetylcholine receptors (AChRs) have been previously described in the lung, there are few reports of whether cholinergic agonists alter sodium transport in the alveolar epithelium. Therefore, we investigated how cholinergic receptors regulate ENaC activity in primary cultures of rat AT2 cells using cell-attached patch-clamp recordings to assess ENaC activity. We found that the muscarinic agonists, carbachol (CCh) and oxotremorine, activated ENaC in a dose-dependent manner but that nicotine did not. CCh-induced activation of ENaC was blocked by atropine. Western blotting and immunohistochemistry suggested that muscarinic M2 and M3 receptors (mAChRs) but not nicotinic receptors were present in AT2 cells. Endogenous RhoA and GTP-RhoA increased in response to CCh and the increase was reduced by pretreatment with atropine. We showed that Y-27632, an inhibitor of Rho-associated protein kinase (ROCK), abolished endogenous ENaC activity and inhibited the activation of ENaC by CCh. We also showed that ROCK signaling was necessary for ENaC stability in 2F3 cells, a model for AT2 cells. Our results showed that muscarinic agonists activated ENaC in rat AT2 cells through M2 and/or M3 mAChRs probably via a RhoA/ROCK signaling pathway.

  6. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    PubMed

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  7. Force dependence of phagosome trafficking in retinal pigment epithelial cells

    NASA Astrophysics Data System (ADS)

    Daniel, Rebekah; Koll, Andrew T.; Altman, David

    2014-09-01

    Retinal pigment epithelial (RPE) cells play an integral role in the renewal of photoreceptor disk membranes. As rod and cone cells shed their outer segments, they are phagocytosed and degraded by the RPE, and a failure in this process can result in retinal degeneration. We have studied the role of myosin VI in nonspecific phagocytosis in a human RPE primary cell line (ARPE-19), testing the hypothesis that this motor generates the forces required to traffic phagosomes in these cells. Experiments were conducted in the presence of forces through the use of in vivo optical trapping. Our results support a role for myosin VI in phagosome trafficking and demonstrate that applied forces modulate rates of phagosome trafficking.

  8. Quantification of regenerative potential in primary human mammary epithelial cells

    PubMed Central

    Linnemann, Jelena R.; Miura, Haruko; Meixner, Lisa K.; Irmler, Martin; Kloos, Uwe J.; Hirschi, Benjamin; Bartsch, Harald S.; Sass, Steffen; Beckers, Johannes; Theis, Fabian J.; Gabka, Christian; Sotlar, Karl; Scheel, Christina H.

    2015-01-01

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49fhi/EpCAM− population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. PMID:26071498

  9. Quantification of regenerative potential in primary human mammary epithelial cells.

    PubMed

    Linnemann, Jelena R; Miura, Haruko; Meixner, Lisa K; Irmler, Martin; Kloos, Uwe J; Hirschi, Benjamin; Bartsch, Harald S; Sass, Steffen; Beckers, Johannes; Theis, Fabian J; Gabka, Christian; Sotlar, Karl; Scheel, Christina H

    2015-09-15

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49f(hi)/EpCAM(-) population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis.

  10. Limbal stem cells: Central concepts of corneal epithelial homeostasis.

    PubMed

    Yoon, Jinny J; Ismail, Salim; Sherwin, Trevor

    2014-09-26

    A strong cohort of evidence exists that supports the localisation of corneal stem cells at the limbus. The distinguishing characteristics of limbal cells as stem cells include slow cycling properties, high proliferative potential when required, clonogenicity, absence of differentiation marker expression coupled with positive expression of progenitor markers, multipotency, centripetal migration, requirement for a distinct niche environment and the ability of transplanted limbal cells to regenerate the entire corneal epithelium. The existence of limbal stem cells supports the prevailing theory of corneal homeostasis, known as the XYZ hypothesis where X represents proliferation and stratification of limbal basal cells, Y centripetal migration of basal cells and Z desquamation of superficial cells. To maintain the mass of cornea, the sum of X and Y must equal Z and very elegant cell tracking experiments provide strong evidence in support of this theory. However, several recent studies have suggested the existence of oligopotent stem cells capable of corneal maintenance outside of the limbus. This review presents a summary of data which led to the current concepts of corneal epithelial homeostasis and discusses areas of controversy surrounding the existence of a secondary stem cell reservoir on the corneal surface.

  11. Density dependent polarized secretion of a prostatic epithelial cell line.

    PubMed

    Djakiew, D; Pflug, B; Delsite, R; Lynch, J H; Onoda, M

    1992-01-01

    The polarized secretions (apical/basal) of newly synthesized total protein and proteases from prostatic epithelial sheets of PA-III cells grown in dual compartment chambers were investigated at various cell densities and culture conditions. PA-III cells grown in a serum free defined medium (SFDM) form morphologically polarized monolayers of epithelial cells. These cells secreted their 35S-methionine labeled total protein in a predominantly apical direction (apical/basal ratio, 4-8 fold), with a lesser proportion of protein secreted apically at lower cell densities of the PA-III cell monolayer. PA-III cells grown in 5% fetal calf serum (FCS) are morphologically squamous, comparable to the anaplastic phenotype, and exhibited an inversion of polarized total protein secretion (apical/basal ratio, 0.4-0.9 fold), with an increased proportion of total protein secreted in a basal direction at lower cell densities. Since the culture of PA-III cells in FCS may approximate the anaplastic phenotype we investigated the polarized secretion of proteases from these cells at various cell densities, and compared them with the secretory pattern of protease secretion from polarized PA-III cells cultured in SFDM. At lower cell densities of the PA-III cells grown in FCS the polarity of protease secretion was inverted such that metalloproteinases, tissue type plasminogen activator, and a 72 kD gelatinase were secreted in a predominantly basal direction, as well as urokinase and a gelatinase of 26 kD that were secreted more or less equally into the apical and basal compartments of the chambers. On the other hand, for cultures of PA-III cells grown in SFDM the aforementioned proteases exhibited predominantly an apically directed polarity of secretion. These results suggest that the anaplastic phenotype characterized by a loss of polarized structure may also be characterized by a functional loss or inversion of polarized secretion. The consequences of such a loss or inversion of polarized

  12. Gradient isolation of glial cells: evidence that flat epithelial cells are astroglial cell precursors.

    PubMed

    Meller, K

    1987-07-01

    Discontinuous gradients of metrizamide were used to separate the cell components of monolayers of primary cultures of embryonic rat brains. These primary cell cultures were of two types: long-term cultures (more than a year) of embryonic rat brain, which contained several glial cell types, and monolayers of cell cultures (several weeks old), which contained a complex population of cells, including neuronal elements. The gradient separation produces fractions of pure flat epithelial cells that are able to survive and proliferate. After a few days, all flat epithelial cells become confluent and show a positive reaction to glial fibrillary acidic protein (GFAP); this indicates that these cells astroglial precursor cells. Following their maintenance in vitro for several months, all cultures give rise to a pure population of astrocytes identified not only by their characteristic morphology, but also by their content of GFAP. It is proposed that the differentiation controls are dependent on cell interactions that are influenced by the composition of the cell population and/or the molecular growth and differentiation factors released by these cells into the medium.

  13. A Common Stem Cell for Murine Cortical and Medullary Thymic Epithelial Cells?

    PubMed Central

    Van Soest, Peter; Platenburg, Peter Paul; Van Ewijk, Willem

    1995-01-01

    We have addressed the question whether the epithelial stroma in the thymus is derived from a common stem cell or whether cortical and medullary epithelial cells are derived from different embryonic stem cells emerging, for example, from endoderm and ectoderm. By the use of rapidly expanding cultures of thymic epithelial cells (TEC) from 14 to 16 day-old murine fetuses and by specific antibodies against cortical and medullary epithelium, respectively, we were able to demonstrate a small subpopulation of double-labeled TEC in the cultures. These cells were not present in TEC cultures initiated from thymuses of neonatal mice. Double-labeled TEC were also found in tissue sections from fetal thymuses. These findings may indicate that TEC populations of the cortex and the medulla are derived from a common stem cell, with potential for differentiation toward both cortical and medullary TEC. PMID:9700364

  14. Barrier Epithelial Cells and the Control of Type 2 Immunity.

    PubMed

    Hammad, Hamida; Lambrecht, Bart N

    2015-07-21

    Type-2-cell-mediated immunity, rich in eosinophils, basophils, mast cells, CD4(+) T helper 2 (Th2) cells, and type 2 innate lymphoid cells (ILC2s), protects the host from helminth infection but also drives chronic allergic diseases like asthma and atopic dermatitis. Barrier epithelial cells (ECs) represent the very first line of defense and express pattern recognition receptors to recognize type-2-cell-mediated immune insults like proteolytic allergens or helminths. These ECs mount a prototypical response made up of chemokines, innate cytokines such as interleukin-1 (IL-1), IL-25, IL-33, and thymic stromal lymphopoietin (TSLP), as well as the alarmins uric acid, ATP, HMGB1, and S100 proteins. These signals program dendritic cells (DCs) to mount Th2-cell-mediated immunity and in so doing boost ILC2, basophil, and mast cell function. Here we review the general mechanisms of how different stimuli trigger type-2-cell-mediated immunity at mucosal barriers and how this leads to protection or disease.

  15. Proteomic Analysis of Nasal Epithelial Cells from Cystic Fibrosis Patients

    PubMed Central

    Papon, Jean-François; Chhuon, Cerina; Zadigue, Patricia; Prulière-Escabasse, Virginie; Amselem, Serge; Escudier, Estelle; Coste, André; Edelman, Aleksander

    2014-01-01

    The pathophysiology of cystic fibrosis (CF) lung disease remains incompletely understood. New explanations for the pathogenesis of CF lung disease may be discovered by studying the patterns of protein expression in cultured human nasal epithelial cells (HNEC). To that aim, we compared the level of protein expressions in primary cultures of HNEC from nasal polyps secondary to CF (CFNP, n = 4), primary nasal polyps (NP, n = 8) and control mucosa (CTRL, n = 4) using isobaric tag for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography (LC)-MS-MS. The analysis of the data revealed 42 deregulated protein expressions in CFNP compared to NP and CTRL, suggesting that these alterations are related to CF. Overall, AmiGo analysis highlighted six major pathways important for cell functions that seem to be impaired: metabolism, G protein process, inflammation and oxidative stress response, protein folding, proteolysis and structural proteins. Among them, glucose and fatty acid metabolic pathways could be impaired in CF with nine deregulated proteins. Our proteomic study provides a reproducible set of differentially expressed proteins in airway epithelial cells from CF patients and reveals many novel deregulated proteins that could lead to further studies aiming to clarify the involvement of such proteins in CF pathophysiology. PMID:25268127

  16. Comparative proteomics reveals human pluripotent stem cell-derived limbal epithelial stem cells are similar to native ocular surface epithelial cells

    PubMed Central

    Mikhailova, Alexandra; Jylhä, Antti; Rieck, Jochen; Nättinen, Janika; Ilmarinen, Tanja; Veréb, Zoltán; Aapola, Ulla; Beuerman, Roger; Petrovski, Goran; Uusitalo, Hannu; Skottman, Heli

    2015-01-01

    Limbal epithelial stem cells (LESCs) are tissue-specific stem cells responsible for renewing the corneal epithelium. Acute trauma or chronic disease affecting LESCs may disrupt corneal epithelial renewal, causing vision threatening and painful ocular surface disorders, collectively referred to as LESC deficiency (LESCD). These disorders cannot be treated with traditional corneal transplantation and therefore alternative cell sources for successful cell-based therapy are needed. LESCs derived from human pluripotent stem cells (hPSCs) are a prospective source for ocular surface reconstruction, yet critical evaluation of these cells is crucial before considering clinical applications. In order to quantitatively evaluate hPSC-derived LESCs, we compared protein expression in native human corneal cells to that in hPSC-derived LESCs using isobaric tag for relative and absolute quantitation (iTRAQ) technology. We identified 860 unique proteins present in all samples, including proteins involved in cell cycling, proliferation, differentiation and apoptosis, various LESC niche components, and limbal and corneal epithelial markers. Protein expression profiles were nearly identical in LESCs derived from two different hPSC lines, indicating that the differentiation protocol is reproducible, yielding homogeneous cell populations. Their protein expression profile suggests that hPSC-derived LESCs are similar to the human ocular surface epithelial cells, and possess LESC-like characteristics. PMID:26423138

  17. Roles of limbal microvascular net and limbal stroma in regulating maintenance of limbal epithelial stem cells.

    PubMed

    Huang, Minghai; Wang, Bowen; Wan, Pengxia; Liang, Xuanwei; Wang, Xiaoran; Liu, Ying; Zhou, Qiang; Wang, Zhichong

    2015-02-01

    Knowledge of the microenvironment (niche) of stem cells is helpful for stem-cell-based regenerative medicine. In the eye, limbal epithelial stem cells (corneal epithelial stem cells) provide the self-renewal capacity of the corneal epithelium and are essential for maintaining corneal transparency and vision. Limbal epithelial stem cell deficiency results in significant visual deterioration. Successful treatment of this type of blinding disease requires studies of the limbal epithelial stem cells and their microenvironment. We investigate the function of the limbal microvascular net and the limbal stroma in the maintenace of the limbal epithelial stem cell niche in vivo and examine the regulation of limbal epithelial stem cell survival, proliferation and differentiation in vivo. We assess the temporal and spatial changes in the expression patterns of the following markers during a six-month follow-up of various rabbit limbal autograft transplantation models: vascular endothelial cell marker CD31, corneal epithelium differentiation marker K3, limbal epithelial stem-cell-associated markers P63 and ABCG2 and proliferating cell nuclear marker Ki67. Our results suggest that limbal epithelial stem cells cannot maintain their stemness or proliferation without the support of the limbal microvascular net microenvironment. Thus, both the limbal microvascular net and the limbal stroma play important roles as components of the limbal epithelial stem cell niche maintaining limbal epithelial stem cell survival and proliferation and the avoidance of differentiation. The limbal stroma constitutes the structural basis of the limbal epithelial stem cell niche and the limbal microvascular net is a requirement for this niche. These new insights should aid the eventual construction of tissue-engineered cornea for corneal blind patients in the future.

  18. Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells.

    PubMed

    Kassmer, Susannah H; Bruscia, Emanuela M; Zhang, Ping-Xia; Krause, Diane S

    2012-03-01

    Previous studies have demonstrated that bone marrow (BM)-derived cells differentiate into nonhematopoietic cells of multiple tissues. To date, it remains unknown which population(s) of BM cells are primarily responsible for this engraftment. To test the hypothesis that nonhematopoietic stem cells in the BM are the primary source of marrow-derived lung epithelial cells, either wild-type hematopoietic or nonhematopoietic BM cells were transplanted into irradiated surfactant-protein-C (SPC)-null mice. Donor-derived, SPC-positive type 2 pneumocytes were predominantly detected in the lungs of mice receiving purified nonhematopoietic cells and were absent from mice receiving purified hematopoietic stem and progenitor cells. We conclude that cells contained in the nonhematopoietic fraction of the BM are the primary source of marrow-derived lung epithelial cells. These nonhematopoietic cells may represent a primitive stem cell population residing in adult BM.

  19. Glycerol Monolaurate Does Not Alter Rhesus Macaque (Macaca mulatta) Vaginal Lactobacilli and Is Safe for Chronic Use▿

    PubMed Central

    Schlievert, Patrick M.; Strandberg, Kristi L.; Brosnahan, Amanda J.; Peterson, Marnie L.; Pambuccian, Stefan E.; Nephew, Karla R.; Brunner, Kevin G.; Schultz-Darken, Nancy J.; Haase, Ashley T.

    2008-01-01

    Glycerol monolaurate (GML) is a fatty acid monoester that inhibits growth and exotoxin production of vaginal pathogens and cytokine production by vaginal epithelial cells. Because of these activities, and because of the importance of cytokine-mediated immune activation in human immunodeficiency virus type 1 (HIV-1) transmission to women, our laboratories are performing studies on the potential efficacy of GML as a topical microbicide to interfere with HIV-1 transmission in the simian immunodeficiency virus-rhesus macaque model. While GML is generally recognized as safe by the FDA for topical use, its safety for chronic use and effects on normal vaginal microflora in this animal model have not been evaluated. GML was therefore tested both in vitro for its effects on vaginal flora lactobacilli and in vivo as a 5% gel administered vaginally to monkeys. In vitro studies demonstrated that lactobacilli are not killed by GML; GML blocks the loss of their viability in stationary phase and does not interfere with lactic acid production. GML (5% gel) does not quantitatively alter monkey aerobic vaginal microflora compared to vehicle control gel. Lactobacilli and coagulase-negative staphylococci are the dominant vaginal aerobic microflora, with beta-hemolytic streptococci, Staphylococcus aureus, and yeasts sporadically present; gram-negative rods are not part of their vaginal flora. Colposcopy and biopsy studies indicate that GML does not alter normal mucosal integrity and does not induce inflammation; instead, GML reduces epithelial cell production of interleukin 8. The studies suggest that GML is safe for chronic use in monkeys when applied vaginally; it does not alter either mucosal microflora or integrity. PMID:18838587

  20. Glycerol monolaurate does not alter rhesus macaque (Macaca mulatta) vaginal lactobacilli and is safe for chronic use.

    PubMed

    Schlievert, Patrick M; Strandberg, Kristi L; Brosnahan, Amanda J; Peterson, Marnie L; Pambuccian, Stefan E; Nephew, Karla R; Brunner, Kevin G; Schultz-Darken, Nancy J; Haase, Ashley T

    2008-12-01

    Glycerol monolaurate (GML) is a fatty acid monoester that inhibits growth and exotoxin production of vaginal pathogens and cytokine production by vaginal epithelial cells. Because of these activities, and because of the importance of cytokine-mediated immune activation in human immunodeficiency virus type 1 (HIV-1) transmission to women, our laboratories are performing studies on the potential efficacy of GML as a topical microbicide to interfere with HIV-1 transmission in the simian immunodeficiency virus-rhesus macaque model. While GML is generally recognized as safe by the FDA for topical use, its safety for chronic use and effects on normal vaginal microflora in this animal model have not been evaluated. GML was therefore tested both in vitro for its effects on vaginal flora lactobacilli and in vivo as a 5% gel administered vaginally to monkeys. In vitro studies demonstrated that lactobacilli are not killed by GML; GML blocks the loss of their viability in stationary phase and does not interfere with lactic acid production. GML (5% gel) does not quantitatively alter monkey aerobic vaginal microflora compared to vehicle control gel. Lactobacilli and coagulase-negative staphylococci are the dominant vaginal aerobic microflora, with beta-hemolytic streptococci, Staphylococcus aureus, and yeasts sporadically present; gram-negative rods are not part of their vaginal flora. Colposcopy and biopsy studies indicate that GML does not alter normal mucosal integrity and does not induce inflammation; instead, GML reduces epithelial cell production of interleukin 8. The studies suggest that GML is safe for chronic use in monkeys when applied vaginally; it does not alter either mucosal microflora or integrity.

  1. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    PubMed

    Sun, Chi-Chin; Chiu, Hsiao-Ting; Lin, Yi-Fang; Lee, Kuo-Ying; Pang, Jong-Hwei Su

    2015-01-01

    Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  2. Small molecule and RNAi induced phenotype transition of expanded and primary colonic epithelial cells

    PubMed Central

    Sharbati, Jutta; Hanisch, Carlos; Pieper, Robert; Einspanier, Ralf; Sharbati, Soroush

    2015-01-01

    Recent progress in mammalian intestinal epithelial cell culture led to novel concepts of tissue modeling. Especially the development of phenotypically stable cell lines from individual animals enables an investigation of distinct intestinal loci and disease states. We here report primary and prolonged culture of normal porcine epithelial cells from colon for cell line development. In addition, a novel primary three-dimensional intestinal culture system is presented, which generated organoids composed of a highly polarized epithelial layer lining a core of subepithelial tissue. Cellular characterization of monolayer cell lines revealed epithelial identity and pointed to a proliferative crypt cell phenotype. We evaluated both RNAi and chemical approaches to induce epithelial differentiation in generated cell lines by targeting promoters of epithelial to mesenchymal transition (EMT). By in silico prediction and ectopic expression, miR-147b was proven to be a potent trigger of intestinal epithelial cell differentiation. Our results outline an approach to generate phenotypically stable cell lines expanded from primary colonic epithelial cultures and demonstrate the relevance of miR-147b and chemical inhibitors for promoting epithelial differentiation features. PMID:26223582

  3. Potential role of corneal epithelial cell-derived exosomes in corneal wound healing and neovascularization

    PubMed Central

    Han, Kyu-Yeon; Tran, Jennifer A.; Chang, Jin-Hong; Azar, Dimitri T.; Zieske, James D.

    2017-01-01

    Specific factors from the corneal epithelium underlying the stimulation of stromal fibrosis and myofibroblast formation in corneal wound healing have not been fully elucidated. Given that exosomes are known to transfer bioactive molecules among cells and play crucial roles in wound healing, angiogenesis, and cancer, we hypothesized that corneal epithelial cell-derived exosomes may gain access to the underlying stromal fibroblasts upon disruption of the epithelial basement membrane and that they induce signaling events essential for corneal wound healing. In the present study, exosome-like vesicles were observed between corneal epithelial cells and the stroma during wound healing after corneal epithelial debridement. These vesicles were also found in the stroma following anterior stromal keratectomy, in which surgical removal of the epithelium, basement membrane, and anterior stroma was performed. Exosomes secreted by mouse corneal epithelial cells were found to fuse to keratocytes in vitro and to induce myofibroblast transformation. In addition, epithelial cell-derived exosomes induced endothelial cell proliferation and ex vivo aortic ring sprouting. Our results indicate that epithelial cell-derived exosomes mediate communication between corneal epithelial cells and corneal keratocytes as well as vascular endothelial cells. These findings demonstrate that epithelial-derived exosomes may be involved in corneal wound healing and neovascularization, and thus, may serve as targets for potential therapeutic interventions. PMID:28165027

  4. Enterotoxigenic Escherichia coli infection induces intestinal epithelial cell autophagy.

    PubMed

    Tang, Yulong; Li, Fengna; Tan, Bie; Liu, Gang; Kong, Xiangfeng; Hardwidge, Philip R; Yin, Yulong

    2014-06-25

    The morbidity and mortality in piglets caused by enterotoxigenic Escherichia coli (ETEC) results in large economic losses to the swine industry, but the precise pathogenesis of ETEC-associated diseases remains unknown. Intestinal epithelial cell autophagy serves as a host defense against pathogens. We found that ETEC induced autophagy, as measured by both the increased punctae distribution of GFP-LC3 and the enhanced conversion of LC3-I to LC3-II. Inhibiting autophagy resulted in decreased survival of IPEC-1 cells infected with ETEC. ETEC triggered autophagy in IPEC-1 cells through a pathway involving the mammalian target of rapamycin (mTOR), the extracellular signal-regulated kinases 1/2 (ERK1/2), and the AMP-activated protein kinase (AMPK).

  5. PKCδ/midkine pathway drives hypoxia-induced proliferation and differentiation of human lung epithelial cells.

    PubMed

    Zhang, Hanying; Okamoto, Miyako; Panzhinskiy, Evgeniy; Zawada, W Michael; Das, Mita

    2014-04-01

    Epithelial cells are key players in the pathobiology of numerous hypoxia-induced lung diseases. The mechanisms mediating such hypoxic responses of epithelial cells are not well characterized. Earlier studies reported that hypoxia stimulates protein kinase C (PKC)δ activation in renal cancer cells and an increase in expression of a heparin-binding growth factor, midkine (MK), in lung alveolar epithelial cells. We reasoned that hypoxia might regulate MK levels via a PKCδ-dependent pathway and hypothesized that PKCδ-driven MK expression is required for hypoxia-induced lung epithelial cell proliferation and differentiation. Replication of human lung epithelial cells (A549) was significantly increased by chronic hypoxia (1% O2) and was dependent on expression of PKCδ. Hypoxia-induced proliferation of epithelial cells was accompanied by translocation of PKCδ from Golgi into the nuclei. Marked attenuation in MK protein levels by rottlerin, a pharmacological antagonist of PKC, and by small interfering RNA-targeting PKCδ, revealed that PKCδ is required for MK expression in both normoxic and hypoxic lung epithelial cells. Sequestering MK secreted into the culture media with a neutralizing antibody reduced hypoxia-induced proliferation demonstrating that an increase in MK release from cells is linked with epithelial cell division under hypoxia. In addition, recombinant MK accelerated transition of hypoxic epithelial cells to cells of mesenchymal phenotype characterized by elongated morphology and increased expression of mesenchymal markers, α-smooth muscle actin, and vimentin. We conclude that PKCδ/MK axis mediates hypoxic proliferation and differentiation of lung epithelial cells. Manipulation of PKCδ and MK activity in epithelial cells might be beneficial for the treatment of hypoxia-mediated lung diseases.

  6. PKCδ/midkine pathway drives hypoxia-induced proliferation and differentiation of human lung epithelial cells

    PubMed Central

    Zhang, Hanying; Okamoto, Miyako; Panzhinskiy, Evgeniy; Zawada, W. Michael

    2014-01-01

    Epithelial cells are key players in the pathobiology of numerous hypoxia-induced lung diseases. The mechanisms mediating such hypoxic responses of epithelial cells are not well characterized. Earlier studies reported that hypoxia stimulates protein kinase C (PKC)δ activation in renal cancer cells and an increase in expression of a heparin-binding growth factor, midkine (MK), in lung alveolar epithelial cells. We reasoned that hypoxia might regulate MK levels via a PKCδ-dependent pathway and hypothesized that PKCδ-driven MK expression is required for hypoxia-induced lung epithelial cell proliferation and differentiation. Replication of human lung epithelial cells (A549) was significantly increased by chronic hypoxia (1% O2) and was dependent on expression of PKCδ. Hypoxia-induced proliferation of epithelial cells was accompanied by translocation of PKCδ from Golgi into the nuclei. Marked attenuation in MK protein levels by rottlerin, a pharmacological antagonist of PKC, and by small interfering RNA-targeting PKCδ, revealed that PKCδ is required for MK expression in both normoxic and hypoxic lung epithelial cells. Sequestering MK secreted into the culture media with a neutralizing antibody reduced hypoxia-induced proliferation demonstrating that an increase in MK release from cells is linked with epithelial cell division under hypoxia. In addition, recombinant MK accelerated transition of hypoxic epithelial cells to cells of mesenchymal phenotype characterized by elongated morphology and increased expression of mesenchymal markers, α-smooth muscle actin, and vimentin. We conclude that PKCδ/MK axis mediates hypoxic proliferation and differentiation of lung epithelial cells. Manipulation of PKCδ and MK activity in epithelial cells might be beneficial for the treatment of hypoxia-mediated lung diseases. PMID:24500281

  7. Isolation of Highly Pure Primary Mouse Alveolar Epithelial Type II Cells by Flow Cytometric Cell Sorting

    PubMed Central

    Lowell, Clifford A.

    2017-01-01

    In this protocol, we describe the method for isolating highly pure primary alveolar epithelial type II (ATII) cells from lungs of naïve mice. The method combines negative selection for a variety of lineage markers along with positive selection for EpCAM, a pan-epithelial cell marker. This method yields 2-3 × 106 ATII cells per mouse lung. The cell preps are highly pure and viable and can be used for genomic or proteomic analyses or cultured ex vivo to understand their roles in various biological processes. PMID:28180137

  8. Heterogeneity of thymic epithelial cells in promoting T-lymphocyte differentiation in vivo.

    PubMed Central

    Gutierrez, J C; Palacios, R

    1991-01-01

    To study in vivo the contribution of different thymic epithelial cells to T-lymphocyte differentiation, we have established several nontransformed thymic epithelial cell lines and developed an in vivo assay, not involving exposure to drugs or radiation, that permitted us to study the capacity of these epithelial lines to support T-cell differentiation. We found that cell lines EA2 and ET, which express markers of cortical epithelial cells, produce interleukin 7 mRNA and after being injected into the spleens of young athymic nude mice support in vivo generation of CD4+CD8- T-cell receptor alpha beta+ T lymphocytes (ET line) or both CD4+CD8- and CD4-CD8+ T-cell receptor alpha beta+ T cells (EA2 line). Both cell lines also supported generation of T-cell receptor gamma delta+ T cells but appear not to support development of double-positive (CD4+CD8+) cells. One cell line, EB3, which expresses markers of medullary epithelial cells, produces interleukin 1 alpha RNA transcripts but does not support T-lymphocyte differentiation. The results provide direct evidence for functional heterogeneity of thymic epithelial cells in vivo and show the involvement of different cortical epithelial cells in the differentiation of T-cell progenitors into distinct thymocyte subsets. Images PMID:1988959

  9. Cell-autonomous requirements for Dlg-1 for lens epithelial cell structure and fiber cell morphogenesis.

    PubMed

    Rivera, Charlene; Yamben, Idella F; Shatadal, Shalini; Waldof, Malinda; Robinson, Michael L; Griep, Anne E

    2009-09-01

    Cell polarity and adhesion are thought to be key determinants in organismal development. In Drosophila, discs large (dlg) has emerged as an important regulator of epithelial cell proliferation, adhesion, and polarity. Herein, we investigated the role of the mouse homolog of dlg (Dlg-1) in the development of the mouse ocular lens. Tissue-specific ablation of Dlg-1 throughout the lens early in lens development led to an expansion and disorganization of the epithelium that correlated with changes in the distribution of adhesion and polarity factors. In the fiber cells, differentiation defects were observed. These included alterations in cell structure and the disposition of cell adhesion/cytoskeletal factors, delay in denucleation, and reduced levels of alpha-catenin, pERK1/2, and MIP26. These fiber cell defects were recapitulated when Dlg-1 was disrupted only in fiber cells. These results suggest that Dlg-1 acts in a cell autonomous manner to regulate epithelial cell structure and fiber cell differentiation.

  10. Opioid receptors on guinea-pig intestinal crypt epithelial cells.

    PubMed Central

    Lang, M E; Davison, J S; Bates, S L; Meddings, J B

    1996-01-01

    1. Opioid peptides promote net intestinal absorption via two mechanisms: stimulation of Na+ and Cl- absorption and inhibition of Cl- secretion. Although these transport changes are predominantly mediated by submucosal neurones, it is currently unclear whether opioid peptides can regulate enterocyte function directly. We therefore tested the hypothesis that enterocytes have specific opioid receptors. 2. Villus and crypt jejunal epithelial cells were isolated by the distended sac method from anaesthetized guinea-pigs. Flow cytometry was used to resolve enterocytes from other cell types and to determine whether binding of a fluorescently labelled opioid antagonist, naltrexone-FITC, could be prevented by unlabelled mu- and delta-opioid receptor agonists. A population of crypt enterocytes (approximately 21%) exhibited high-affinity naltrexone-FITC binding to both mu- and delta-type binding sites that was stereoselective and sodium dependent. Villus enterocytes did not exhibit any of these characteristics. 3. Basal cAMP production was elevated in both villus and crypt cells treated with IBMX (3-isobutyl-1-methylxanthine). Villus cells did not respond to 100 nM vasoactive intestinal peptide (VIP), nor were they affected by opioid peptides. In contrast, 100 nM VIP significantly increased cAMP production in crypt epithelial cells, which was significantly reduced by both morphiceptin and D-Ser2-Leu-Enk-Thr. This opioid-mediated effect was stereoselective and blocked by the opioid receptor antagonist naltrexone. 4. These experiments suggest that enterocytes isolated from the crypt epithelium of guineapigs have both mu- and delta-types of opioid receptors. It is possible that these cells participate in opioid-mediated regulation of intestinal secretion. Images Figure 12 PMID:8951719

  11. Vaginal gel formulation based on theaflavin derivatives as a microbicide to prevent HIV sexual transmission.

    PubMed

    Yang, Jie; Li, Lin; Jin, Hong; Tan, Suiyi; Qiu, Jiayin; Yang, Lei; Ding, Yanqing; Jiang, Zhi-Hong; Jiang, Shibo; Liu, Shuwen

    2012-11-01

    We previously demonstrated that a commercially available natural product preparation with high content (>90%) of theaflavin derivatives (TFmix) exhibited potent anti-HIV activities. Here we developed a TFmix gel formulation as a topical microbicide candidate. The effect of TFmix on the amyloid fibril formation of semen-derived enhancer of virus infection (SEVI) peptide was detected by transmission electron microscopy. The toxicity of the TFmix gel was evaluated using human vaginal and cervical epithelial cell lines and rabbit vaginal irritation models, respectively. Levels of proinflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) and immunoregulatory cytokines (IL-10 and GM-CSF) in cervicovaginal lavages (CVLs) were measured by ELISA kits. Proliferating cell nuclear antigen (PCNA) immunostaining was performed to evaluate inflammation in the vaginal tissues. TFmix gel could degrade SEVI-specific amyloid fibrils and showed low cytotoxicity to epithelial cells of the female reproductive tract. No apparent cervicovaginal toxicity was observed at any time point evaluated following the intravaginal administration of TFmix gel to rabbits, whereas application of N-9 gel resulted in damage to the vaginal epithelium. Neither proinflammatory nor immunoregulatory cytokine production was triggered by TFmix gel. Only low expression of PCNA was observed in vaginal tissues of TFmix gel-treated rabbits. The concentration of TFmix in plasma was very low (below the lower limit of quantitation) 1 h after a single vaginal administration of TFmix gel. However, TFmix was still detected in the cervicovaginal lavages (CVLs) 6 h after treatment, indicating that it could be retained in the vaginal cavity for a long period of time. With its potent anti-HIV-1 activity, marked stability at acidic condition, low mucosal toxicity, and lack of systemic absorption, TFmix gel can be considered as an inexpensive and safe microbicide candidate for the prevention of HIV sexual transmission.

  12. Adhesion and invasion of Streptococcus pneumoniae to primary and secondary respiratory epithelial cells

    PubMed Central

    Novick, Sara; Shagan, Marilous; Blau, Karin; Lifshitz, Sarit; Givon-Lavi, Noga; Grossman, Nili; Bodner, Lipa; Dagan, Ron; Nebenzahl, Yaffa Mizrachi

    2016-01-01

    The interaction between Streptococcus pneumoniae (S. pneumoniae) and the mucosal epithelial cells of its host is a prerequisite for pneumococcal disease development, yet the specificity of this interaction between different respiratory cells is not fully understood. In the present study, three areas were examined: i) The capability of the encapsulated S. pneumoniae serotype 3 strain (WU2) to adhere to and invade primary nasal-derived epithelial cells in comparison to primary oral-derived epithelial cells, A549 adenocarcinoma cells and BEAS-2B viral transformed bronchial cells; ii) the capability of the unencapsulated 3.8DW strain (a WU2 derivative) to adhere to and invade the same cells over time; and iii) the ability of various genetically-unrelated encapsulated and unencapsulated S. pneumoniae strains to adhere to and invade A549 lung epithelial cells. The results of the present study demonstrated that the encapsulated WU2 strain adhesion to and invasion of primary nasal epithelial cells was greatest, followed by BEAS-2B, A549 and primary oral epithelial cells. By contrast, the unencapsulated 3.8-DW strain invaded oral epithelial cells significantly more efficiently when compared to the nasal epithelial cells. In addition, unencapsulated S. pneumoniae strains adhered to and invaded the A459 cells significantly more efficiently than the encapsulated strains; this is consistent with previously published data. In conclusion, the findings presented in the current study indicated that the adhesion and invasion of the WU2 strain to primary nasal epithelial cells was more efficient compared with the other cultured respiratory epithelial cells tested, which corresponds to the natural course of S. pneumoniae infection and disease development. The target cell preference of unencapsulated strains was different from that of the encapsulated strains, which may be due to the exposure of cell wall proteins. PMID:27922699

  13. Three-Dimensional Cultures of Mouse Mammary Epithelial Cells

    PubMed Central

    Mroue, Rana; Bissell, Mina J.

    2013-01-01

    The mammary gland is an ideal “model organism” for studying tissue specificity and gene expression in mammals: it is one of the few organs that develop after birth and it undergoes multiple cycles of growth, differentiation and regression during the animal’s lifetime in preparation for the important function of lactation. The basic “functional differentiation” unit in the gland is the mammary acinus made up of a layer of polarized epithelial cells specialized for milk production surrounded by myoepithelial contractile cells, and the two-layered structure is surrounded by basement membrane. Much knowledge about the regulation of mammary gland development has been acquired from studying the physiology of the gland and of lactation in rodents. Culture studies, however, were hampered by the inability to maintain functional differentiation on conventional tissue culture plastic. We now know that the microenvironment, including the extracellular matrix and tissue architecture, plays a crucial role in directing functional differentiation of organs. Thus, in order for culture systems to be effective experimental models, they need to recapitulate the basic unit of differentiated function in the tissue or organ and to maintain its three-dimensional (3D) structure. Mouse mammary culture models evolved from basic monolayers of cells to an array of complex 3D systems that observe the importance of the microenvironment in dictating proper tissue function and structure. In this chapter, we focus on how 3D mouse mammary epithelial cultures have enabled investigators to gain a better understanding of the organization, development and function of the acinus, and to identify key molecular, structural, and mechanical cues important for maintaining mammary function and architecture. The accompanying chapter of Vidi et al. describes 3D models developed for human cells. Here, we describe how mouse primary epithelial cells and cell lines—essentially those we use in our

  14. Single Dose Pharmacokinetics of Oral Tenofovir in Plasma, Peripheral Blood Mononuclear Cells, Colonic Tissue, and Vaginal Tissue

    PubMed Central

    Louissaint, Nicolette A.; Cao, Ying-Jun; Skipper, Paul L.; Liberman, Rosa G.; Tannenbaum, Steven R.; Nimmagadda, Sridhar; Anderson, Jean R.; Everts, Stephanie; Bakshi, Rahul; Fuchs, Edward J.

    2013-01-01

    Abstract HIV seroconversion outcomes in preexposure prophylaxis (PrEP) trials of oral tenofovir (TFV)-containing regimens are highly sensitive to drug concentration, yet less-than-daily dosing regimens are under study. Description of TFV and its active moiety, TFV diphosphate (TFV-DP), in blood, vaginal tissue, and colon tissue may guide the design and interpretation of PrEP clinical trials. Six healthy women were administered a single oral dose of 300 mg tenofovir disoproxil fumarate (TDF) and 4.3 mg (12.31 MBq, 333 μCi) 14C-TDF slurry. Blood was collected every 4 h for the first 24 h, then at 4, 8, 11, and 15 days postdosing. Colonic and vaginal samples (tissue, total and CD4+ cells, luminal fluid and cells) were collected 1, 8 and 15 days postdose. Samples were analyzed for TFV and TFV-DP. Plasma TFV demonstrated triphasic decay with terminal elimination half-life median [interquartile range (IQR)] 69 h (58–77). Peripheral blood mononuclear cell (PBMC) TFV-DP demonstrated biphasic peaks (median 12 h and 96 h) followed by a terminal 48 h (38–76) half-life; Cmax was 20 fmol/million cells (2–63). One day postdose, the TFV-DP paired colon:vaginal tissue concentration ratio was 1 or greater in all subjects' tissue homogenates, median 124 (range 1–281), but was not sustained. The ratio was lower and more variable in cells extracted from tissue. Among all sample types, TFV and TFV-DP half-life ranged from 23 to 139 h. PBMC TFV-DP rose slowly in the hours after dosing indicating that success with exposure-driven dosing regimens may be sensitive to timing of the dose prior to exposure. Colonic tissue homogenate TFV-DP concentrations were greater than in vaginal homogenate at 24 h, but not in cells extracted from tissue. These and the other pharmacokinetic findings will guide the interpretation and design of future PrEP trials. PMID:23600365

  15. NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD1...

  16. Connexin expression in nonneoplastic human prostate epithelial cells.

    PubMed

    Saladino, Francesca; Carruba, Giuseppe; Quader, Salmaan T A; Amoroso, Maria; Di Cristina, Antoniette; Webber, Mukta M; Castagnetta, Luigi A M

    2002-06-01

    Expression of gap-junction proteins connexins (Cx), specifically Cx43, Cx32, and Cx26, in both nontumorigenic (RWPE-1) and tumorigenic (RWPE-2) human prostate epithelial cells as well as in two cell clones (WPEI-7 and WPEI-10) originating from the RWPE-1 cell line was investigated. The aim was to determine whether individual connexins are differentially expressed in cultured cells. Western blot analysis revealed striking differences in the expression of individual connexins in the cell lines studied. In particular, Cx43 is largely expressed in RWPE-1 and WPEI-10 cells, whereas Cx32 is expressed predominantly in RWPE-2 and WPEI-7 cells. In addition, both forskolin and estrone increase Cx43 expression levels in WPEI-10 cells, with no apparent effect on WPEI-7 cells. Conversely, forskolin and especially estrone induce a marked increase of Cx32 in WPEI-7 cells, whereas Cx32 expression is limitedly affected by both agents in WPEI-10 cells. Overall, expression levels of Cx43 and Cx32 appear to be inversely related, with RWPE-1 and WPEI-10 cells having a significantly higher Cx43 to Cx32 ratio than that observed in RWPE-2 and WPEI-7 cells. We recently reported that junctional communication could be rescued in RWPE-1 cells by either forskolin or estrone and that restoration of GJIC is associated with an increase of Cx43 or a decrease of Cx32, or both, eventually leading to a marked rise of the Cx43 to Cx32 ratio. Studies are currently ongoing in our laboratories to assess the potential effect of agents increasing the Cx43 to Cx32 ratio on GJIC activity in these systems.

  17. Genistein affects proliferation and migration of bovine oviductal epithelial cells.

    PubMed

    García, Daniela C; Valdecantos, Pablo A; Miceli, Dora C; Roldán-Olarte, Mariela

    2017-03-08

    Genistein is one of the most abundant isoflavones in soybean. This molecule induces cell cycle arrest and apoptosis in different normal and cancer cells. Genistein has been of considerable interest due to its adverse effects on bovine reproduction, altering estrous cycle, implantation and fetal development and producing subfertility or infertility. The objective of this work was to study the effects of genistein on the expression of selected genes involved in the regulation of cell cycle and apoptosis. Primary cultures of bovine oviductal epithelial cells (BOEC) were treated with different genistein concentrations (0.2, 2 and 10μM) to analyze CYCLIN B1, BCL-2 and BAX gene expression by Real-time RT-PCR. Results showed that genistein down-regulated CYCLIN B1 expression, affecting cell cycle progression, and caused a decrease in the BCL-2/BAX ratio starting at 2μM of genistein. In addition, in order to determine if genistein affects BOEC migration, in vitro wound healing assays were performed. A significant reduction in cell migration after 12h of culture was observed at both 0.2 and 10μM genistein concentrations. Also, in the presence of genistein the percentage of mitotic cells decreased, although apoptotic cells percentages were not affected. These findings indicate that genistein has an inhibitory effect on BOEC proliferation and migration, suggesting that it could influence the normal physiology of the oviductal epithelium.

  18. The PCP pathway regulates Baz planar distribution in epithelial cells

    PubMed Central

    Aigouy, Benoit; Le Bivic, André

    2016-01-01

    The localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood while their distribution in the plane of the epithelium is poorly characterised. Here we provide a systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well as the baso-lateral complexes, are bilateral, i.e. present on both sides of cell interfaces. In contrast, we report that other key adherens junction proteins, Bazooka and the myosin regulatory light chain (Spaghetti squash) are unilateral, i.e. present on one side of cell interfaces. Furthermore, we demonstrate that planar cell polarity (PCP) and not the apical determinants Crumbs and Par-6 control Bazooka unilaterality in cone cells. Altogether, our work unravels an unexpected organisation and combination of apico-basal, cytoskeletal and planar polarity proteins that is different on either side of cell-cell interfaces and unique for the different contacts of the same cell. PMID:27624969

  19. FOXO responses to Porphyromonas gingivalis in epithelial cells

    PubMed Central

    Wang, Qian; Sztukowska, Maryta; Ojo, Akintunde; Scott, David A.; Wang, Huizhi; Lamont, Richard J.

    2015-01-01

    Summary Porphyromonas gingivalis is a prominent periodontal, and emerging systemic, pathogen that redirects host cell signalling pathways and modulates innate immune responses. In this study, we show that P. gingivalis infection induces the dephosphorylation and activation of forkhead box-O (FOXO)1, 3 and 4 in gingival epithelial cells. In addition, immunofluorescence showed that FOXO1 accumulated in the nucleus of P. gingivalis-infected cells. Quantitative reverse transcription PCR demonstrated that transcription of genes involved in protection against oxidative stress (Cat, Sod2, Prdx3), inflammatory responses (IL1β) and anti-apoptosis (Bcl-6) was induced by P. gingivalis, while small-interfering RNA (siRNA)-mediated knockdown of FOXO1 suppressed the transcriptional activation of these genes. P. gingivalis-induced secretion of interleukin (IL)-1β and inhibition of apoptosis were also impeded by FOXO1 knockdown. Neutralization of reactive oxygen species (ROS) by N-acetyl-l-cysteine blocked the activation of FOXO1 by P. gingivalis and concomitantly suppressed the activation of oxidative stress responses, anti-apoptosis programmes and IL-β production. Inhibition of c-Jun-N-terminal kinase (JNK) either pharmacologically or by siRNA, reduced FOXO1 activation and downstream FOXO1-dependent gene regulation in response to P. gingivalis. The results indicate that P. gingivalis-induced ROS activate FOXO transcription factors through JNK signalling, and that FOXO1 controls oxidative stress responses, inflammatory cytokine production and cell survival. These data position FOXO as an important signalling node in the epithelial cell–P. gingivalis interaction, with particular relevance to cell fate and dysbiotic host responses. PMID:25958948

  20. Epithelial mechanobiology, skin wound healing, and the stem cell niche.

    PubMed

    Evans, Nicholas D; Oreffo, Richard O C; Healy, Eugene; Thurner, Philipp J; Man, Yu Hin

    2013-12-01

    Skin wound healing is a vital process that is important for re-establishing the epithelial barrier following disease or injury. Aberrant or delayed skin wound healing increases the risk of infection, causes patient morbidity, and may lead to the formation of scar tissue. One of the most important events in wound healing is coverage of the wound with a new epithelial layer. This occurs when keratinocytes at the wound periphery divide and migrate to re-populate the wound bed. Many approaches are under investigation to promote and expedite this process, including the topical application of growth factors and the addition of autologous and allogeneic tissue or cell grafts. The mechanical environment of the wound site is also of fundamental importance for the rate and quality of wound healing. It is known that mechanical stress can influence wound healing by affecting the behaviour of cells within the dermis, but it remains unclear how mechanical forces affect the healing epidermis. Tensile forces are known to affect the behaviour of cells within epithelia, however, and the material properties of extracellular matrices, such as substrate stiffness, have been shown to affect the morphology, proliferation, differentiation and migration of many different cell types. In this review we will introduce the structure of the skin and the process of wound healing. We will then discuss the evidence for the effect of tissue mechanics in re-epithelialisation and, in particular, on stem cell behaviour in the wound microenvironment and in intact skin. We will discuss how the elasticity, mechanical heterogeneity and topography of the wound extracellular matrix impact the rate and quality of wound healing, and how we may exploit this knowledge to expedite wound healing and mitigate scarring.

  1. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells.

    PubMed

    Bhattacharya, Sujoy; Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco-2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco-2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF-α/CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner.

  2. Cytokeratin 18 is necessary for initiation of TGF-β1-induced epithelial-mesenchymal transition in breast epithelial cells.

    PubMed

    Jung, Hyejung; Kim, Bomin; Moon, Byung In; Oh, Eok-Soo

    2016-12-01

    During epithelial-mesenchymal transition (EMT), epithelial cells lose key phenotypic markers (e.g., E-cadherin and cytokeratin 18) and acquire mesenchymal markers (e.g., N-cadherin and vimentin). Although the loss of cytokeratin 18 is a hallmark of EMT, the regulatory role of cytokeratin 18 in EMT is not yet fully understood. Here, we report that cytokeratin 18 is involved in the regulation of transforming growth factor-beta1 (TGF-β1)-induced EMT in breast epithelial cells. When MCF10A cells were treated with TGF-β1 for 24 h, considerable morphological changes, indicative of the early stages of EMT (e.g., loss of cell-cell contact), were observed and cytokeratin 18 was downregulated. However, E-cadherin levels were not altered until a later time point. This suggests that cytokeratin 18 may play an active role during the earlier stages of EMT. Consistent with this notion, siRNA-mediated knockdown of cytokeratin 18 delayed TGF-β1-mediated EMT, and the associated downregulation of E-cadherin reduced the phosphorylation/nuclear localization of smad 2/3 and decreased the expression levels of snail and slug (which inhibit E-cadherin expression in epithelial cells as an early response to TGF-β1). Taken together, these results suggest that cytokeratin 18 critically contributes to initiating TGF-β1-induced EMT via the smad 2/3-mediated regulation of snail and slug expression in breast epithelial cells.

  3. Elucidation of a Novel Cell Death Mechanism in Prostate Epithelial Cells

    DTIC Science & Technology

    2002-12-01

    surface. Galectin-1 binds to saccharide ligands on susceptible LNCaP cells to trigger cell death . Susceptibility to galectin-1 appears to depend on the...induced LNCaP cell death . Resistance to galectin-1 induced death correlates with markedly decreased expression of a specific glycosyltransferase, the...galectin-1 induced death, indicating that a common glycosylation pathway may control cell death in epithelial and lymphoid cells. Identification of a

  4. Elucidation of a Novel Cell Death Mechanism in Prostate Epithelial Cells

    DTIC Science & Technology

    2003-12-01

    surface. Galectin-1 binds to saccharide ligands on suscepibel LNCaP cells to trigger cell death . Susceptibility to galectin-1 appears to depend on the...induced LNcaP cell death . Resistance to galectin-1 induced death correlates with markedly decreased expression of a specific glycosyltransferase, the...galectin-1 induced death, indicating that a common glycosylation pathway may control cell death in epithelial and lymphoid cells. Identification of a

  5. Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery.

    PubMed

    Heijink, I H; Brandenburg, S M; Postma, D S; van Oosterhout, A J M

    2012-02-01

    Cigarette smoking, the major cause of chronic obstructive pulmonary disease (COPD), induces aberrant airway epithelial structure and function. The underlying mechanisms are unresolved so far. We studied effects of cigarette smoke extract (CSE) on epithelial barrier function and wound regeneration in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBECs) from COPD patients, nonsmokers and healthy smokers. We demonstrate that CSE rapidly and transiently impairs 16HBE barrier function, largely due to disruption of cell-cell contacts. CSE induced a similar, but stronger and more sustained, defect in PBECs. Application of the specific epidermal growth factor receptor (EGFR) inhibitor AG1478 showed that EGFR activation contributes to the CSE-induced defects in both 16HBE cells and PBECs. Furthermore, our data indicate that the endogenous protease calpain mediates these defects through tight junction protein degradation. CSE also delayed the reconstitution of 16HBE intercellular contacts during wound healing and attenuated PBEC barrier function upon wound regeneration. These findings were comparable between PBECs from smokers, healthy smokers and COPD patients. In conclusion, we demonstrate for the first time that CSE reduces epithelial integrity, probably by EGFR and calpain-dependent disruption of intercellular contacts. This may increase susceptibility to environmental insults, e.g. inhaled pathogens. Thus, EGFR may be a promising target for therapeutic strategies to improve mucosal barrier function in cigarette smoking-related disease.

  6. Lactobacillus crispatus L1: high cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens

    PubMed Central

    2014-01-01

    Background Vaginal lactic acid bacteria defend the host against pathogens through a combination of competitive exclusion, competition for nutrients, production of antimicrobial substances and through the activation of the immune system. A new human isolate named Lactobacillus crispatus L1 was characterized in this work, and a preliminary evaluation of its probiotic potential is described together with a process to obtain a high productivity of viable biomass. Results In a simulated digestion process 1.8⋅1010 cells∙ml−1 survived the gastric environment with 80% viability, without being affected by small intestine juices. Experiments on six different C sources were performed to analyze growth and organic acids production and, glucose, provided the best performances. A microfiltration strategy was exploited to improve the cellular yield in 2 L-fermentation processes, reaching 27 g · l−1 of dry biomass. Moreover, L. crispatus L1 demonstrated a greater stability to high concentrations of lactic acid, compared to other lactobacilli. The specific L. crispatus L1 exopolysaccharide was purified from the fermentation broth and characterized by NMR showing structural features and similarity to exopolysaccharides produced by pathogenic strains. Live L. crispatus L1 cells strongly reduced adhesion of a yeast pathogenic strain, Candida albicans in particular, in adherence assays. Interestingly a higher expression of the human defensin HBD-2 was also observed in vaginal cells treated with the purified exopolysaccharide, indicating a possible correlation with C. albicans growth inhibition. Conclusions The paper describes the evaluation of L. crispatus L1 as potential vaginal probiotic and the fermentation processes to obtain high concentrations of viable cells. PMID:24884965

  7. The yin and yang of intestinal epithelial cells in controlling dendritic cell function

    PubMed Central

    Iliev, Iliyan D.; Matteoli, Gianluca; Rescigno, Maria

    2007-01-01

    Recent work suggests that dendritic cells (DCs) in mucosal tissues are “educated” by intestinal epithelial cells (IECs) to suppress inflammation and promote immunological tolerance. After attack by pathogenic microorganisms, however, “non-educated” DCs are recruited from nearby areas, such as the dome of Peyer's patches (PPs) and the blood, to initiate inflammation and the ensuing immune response to the invader. Differential epithelial cell (EC) responses to commensals and pathogens may control these two tolorogenic and immunogenic functions of DCs. PMID:17893197

  8. Contact inhibition of phagocytosis in epithelial sheets: alterations of cell surface properties induced by cell-cell contacts.

    PubMed

    Vasiliev, J M; Gelfand, I M; Domnina, L V; Zacharova, O S; Ljubimov, A V

    1975-02-01

    Contact inhibition of phagocytosis was found to be characteristic for epithelial sheets formed in cultures by several cell types: normal and transformed mouse kidney cells, and differentiated mouse hepatoma cells. In these sheets most central cells surrounded by other cells had very low phagocytic activity. In contrast, marginal cells having a free edge were able to perform an active phagocytosis. Contact inhibition of phagocytosis was absent in dense cultures of mouse embryo fibroblasts and in cultures of anaplastic mouse hepatoma 22a. The upper surface of epithelial sheets was nonadhesive for prelabeled epithelial cells and fibroblasts. In contrast, the upper surface of dense cultures of mouse fibroblasts was adhesive for these cells. These and other data strengthen the suggestion that contact inhibition of phagocytosis is a result of different adhesiveness of the upper cell surface and of the surfaces near the free edge. Agents inhibiting cell surface movements at the free edges of marginal epithelial cells (cytochalasin, azide, sorbitol, low temperature) prevented adhesion of particles to these edges. Possibly, the surface of actively moving cytoplasmic processes is the only cell part that has adhesive properties necessary for the formation of attachments with other cellular and noncellular surfaces. In epithelial sheets, in contrast to fibroblast cultures, Colcemid did not activate movements of immobile contacting cell edges. These results indicate that mechanisms of contact immobilization of cell surface may be different in epithelium and fibroblasts. Firm contacts formed between epithelial cells are sufficient for stable immobilization of the surface; additional stabilization of the surface by microtubules is not essential. Fibroblasts do not form firm contacts and the Colcemid-sensitive stabilization process is essential for maintenance of the immobile state of their surfaces. Differences in the stability of cell surface immobilization produced by cell-cell

  9. Topical KGF treatment as a therapeutic strategy for vaginal atrophy in a model of ovariectomized mice

    PubMed Central

    Ceccarelli, Simona; D'Amici, Sirio; Vescarelli, Enrica; Coluccio, Paolo; Matricardi, Pietro; di Gioia, Cira; Benedetti Panici, Pierluigi; Romano, Ferdinando; Frati, Luigi; Angeloni, Antonio; Marchese, Cinzia

    2014-01-01

    One of the most frequent complaints for post-menopausal women is vaginal atrophy, because of reduction in circulating oestrogens. Treatments based on local oestrogen administration have been questioned as topic oestrogens can reach the bloodstream, thus leading to consider their safety as controversial, especially for patients with a history of breast or endometrial cancers. Recently, growth factors have been shown to interact with the oestrogen pathway, but the mechanisms still need to be fully clarified. In this study, we investigated the effect of keratinocyte growth factor (KGF), a known mitogen for epithelial cells, on human vaginal mucosa cells, and its potential crosstalk with oestrogen pathways. We also tested the in vivo efficacy of KGF local administration on vaginal atrophy in a murine model. We demonstrated that KGF is able to induce proliferation of vaginal mucosa, and we gained insight on its mechanism of action by highlighting its contribution to switch ERα signalling towards non-genomic pathway. Moreover, we demonstrated that KGF restores vaginal trophism in vivo similarly to intravaginal oestrogenic preparations, without systemic effects. Therefore, we suggest a possible alternative therapy for vaginal atrophy devoid of the risks related to oestrogen-based treatments, and a patent (no. RM2012A000404) has been applied for this study. PMID:25088572

  10. Cytotoxicity of folpet fungicide on human bronchial epithelial cells.

    PubMed

    Canal-Raffin, Mireille; l'Azou, Béatrice; Jorly, Joana; Hurtier, Annabelle; Cambar, Jean; Brochard, Patrick

    2008-07-30

    Folpet, a widely used dicarboximide fungicide, has been detected in the ambient air of several vine-growing regions of France. It is present in particle form in the environment; however, no study exploring its potential health impact on airways and the respiratory system has been published. Here, the biological effect of these particles was investigated in vitro on human bronchial epithelial cells (16HBE14o-). To be close to the real-life conditions of exposure, Folpan 80WG, a commercial form of folpet, was tested. Folpan 80WG particles showed dose- and time-dependent cytotoxic effects on 16HBE14o- cells. This effect was compared to that produced by technical-grade folpet and both were found to induce a toxicity with similar IC(50) values after 24h of exposure. After 4h and at least until 48h of exposure, the IC(50) values of Folpan 80WG particles were between 2.4 and 2.8 microg/cm(2). Investigation of the cytotoxicity found that Folpan 80WG particles at 1.85 microg/cm(2) induced an increase in ROS production from the first hour of exposure. Evidence that oxidative processes occur in folpet-exposed cells was confirmed by the presence of membrane lipid peroxidation. Furthermore, early apoptosis and late apoptosis/necrosis were both present after the first hour of exposure. These findings indicate that exposure to Folpan 80WG particles result in a rapid cytotoxic effect on human bronchial epithelial cells in vitro that could be in part explained by oxidative stress, characterised by membrane lipid peroxidation and ROS production.

  11. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway.

    PubMed

    Gao, Rundi; Chen, Ruilin; Cao, Yu; Wang, Yuan; Song, Kang; Zhang, Ya; Yang, Junchao

    2017-03-01

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN in a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis.

  12. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    EPA Science Inventory

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  13. ICAM-1 is necessary for epithelial recruitment of gammadelta T cells and efficient corneal wound healing.

    PubMed

    Byeseda, Sarah E; Burns, Alan R; Dieffenbaugher, Sean; Rumbaut, Rolando E; Smith, C Wayne; Li, Zhijie

    2009-08-01

    Wound healing and inflammation are both significantly reduced in mice that lack gammadelta T cells. Here, the role of epithelial intercellular adhesion molecule-1 (ICAM-1) in gammadelta T cell migration in corneal wound healing was assessed. Wild-type mice had an approximate fivefold increase in epithelial gammadelta T cells at 24 hours after epithelial abrasion. ICAM-1(-/-) mice had 50.9% (P < 0.01) fewer gammadelta T cells resident in unwounded corneal epithelium, which failed to increase in response to epithelial abrasion. Anti-ICAM-1 blocking antibody in wild-type mice reduced epithelial gammadelta T cells to a number comparable to that of ICAM-1(-/-) mice, and mice deficient in lymphocyte function-associated antigen-1 (CD11a/CD18), a principal leukocyte receptor for ICAM-1, exhibited a 48% reduction (P < 0.01) in peak epithelial gammadelta T cells. Re-epithelialization and epithelial cell division were both significantly reduced ( approximately 50% at 18 hours, P < 0.01) after abrasion in ICAM-1(-/-) mice versus wild-type, and at 96 hours, recovery of epithelial thickness was only 66% (P < 0.01) of wild-type. ICAM-1 expression by corneal epithelium in response to epithelial abrasion appears to be critical for accumulation of gammadelta T cells in the epithelium, and deficiency of ICAM-1 significantly delays wound healing. Since gammadelta T cells are necessary for efficient epithelial wound healing, ICAM-1 may contribute to wound healing by facilitating gammadelta T cell migration into the corneal epithelium.

  14. Long-term homeostasis and wound healing in an in vitro epithelial stem cell niche model

    PubMed Central

    Miyashita, Hideyuki; Niwano, Hiroko; Yoshida, Satoru; Hatou, Shin; Inagaki, Emi; Tsubota, Kazuo; Shimmura, Shigeto

    2017-01-01

    Cultures of epithelial cells are limited by the proliferative capacity of primary cells and cell senescence. Herein we show that primary human epithelial cell sheets cultured without dermal equivalents maintained homeostasis in vitro for at least 1 year. Transparency of these sheets enabled live observation of pigmented melanocytes and Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) labeled epithelial cells during wound healing. Cell turn over and KRT15 expression pattern stabilized within 3 months, when KRT15 bright clusters often associated with niche-like melanocytes became apparent. EdU labels were retained in a subset of epithelial cells and melanocytes after 6 months chasing, suggesting their slow cell cycling property. FUCCI-labeling demonstrated robust cell migration and proliferation following wounding. Transparency and long-term (1 year) homeostasis of this model will be a powerful tool for the study of wound healing and cell linage tracing. PMID:28233843

  15. Bivariate flow cytometric analysis of murine intestinal epithelial cells for cytokinetic studies

    SciTech Connect

    Pallavicini, M.G.; Ng, C.R.; Gray, J.W.

    1984-01-01

    The heterogeneous nature of the small intestine and the lack of methods to obtain pure crypt populations has, in the past, limited the application of standard flow cytometric analysis for cytokinetic studies of the proliferating crypts. The authors describe a flow cytometric technique to discriminate crypt and villus cells in an epithelial cell suspension on the basis of cell length, and to measure the DNA content of the discriminated subpopulations. These data indicate that bivariate analysis of a mixed epithelial cell suspension can be used to distinguish mature villus cells, G/sub 1/ crypt cells, and S-phase crypt cells. In addition, continuous labeling studies suggest that the position of a cell on the cell length axis reflects epithelial cell maturity. The authors applied this flow cytometric technique to determine the cytokinetic nature of epithelial cells obtained by sequential digestion of the small intestine. 22 references, 4 figures, 2 tables.

  16. TGF-beta suppresses EGF-induced MAPK signaling and proliferation in asthmatic epithelial cells.

    PubMed

    Semlali, Abdelhabib; Jacques, Eric; Plante, Sophie; Biardel, Sabrina; Milot, Julie; Laviolette, Michel; Boulet, Louis-Philippe; Chakir, Jamila

    2008-02-01

    Epithelial damage is an important pathophysiologic feature of asthma. Bronchial epithelium damage results in release of growth factors such as transforming growth factor (TGF)-beta(1) that may affect epithelial cell proliferation. The objective of our study is to evaluate the importance of TGF-beta(1) in regulating epithelial cell repair in asthma. We evaluated the effect of TGF-beta(1) on epidermal growth factor (EGF)-induced proliferation and downstream signaling in epithelial cells obtained from subjects with asthma compared with cells from healthy subjects. Cell proliferation was evaluated by bromodeoxyuridine incorporation. EGF receptor (EGFR), mitogen-activated protein kinase, TGF-beta receptors, Smads, Smad anchor for receptor activation (SARA), and cyclin-dependant kinase inhibitors were evaluated by Western blot. TGF-beta(1) and receptor expression were measured by RT-PCR and by enzyme-linked immunosorbent assay. Proliferation of epithelial cells at baseline and after EGF stimulation was significantly reduced in cells derived from subjects with asthma compared with cells obtained from healthy control subjects. EGF-induced ERK1/2 phosphorylation was reduced in epithelial cells from subjects with asthma compared with cells from healthy control subjects. This was paralleled with a reduced EGFR phosphorylation. Addition of TGF-beta(1) significantly decreased EGF-induced cell proliferation. TGF-beta(1) production was higher in asthmatic epithelial cells compared with normal cells. This was supported by a high expression of pSmad 3 and SARA in cells derived from individuals with asthma compared with normal subjects. Cycline-dependent kinase inhibitors were highly expressed in asthmatic compared with normal cells. Inhibition of TGF-beta(1) signaling in asthmatic epithelial cells restored EGFR, ERK1/2 phosphorylation, and cell proliferation induced by EGF. Our results suggest that TGF-beta restrains EGFR phosphorylation and downstream signaling in bronchial

  17. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    PubMed

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia.

  18. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    PubMed

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  19. Epithelialization of mouse ovarian tumor cells originating in the fallopian tube stroma

    PubMed Central

    Hua, Yuanyuan; Choi, Pui-Wah; Trachtenberg, Alexander J.; Ng, Allen C.; Kuo, Winston P.; Ng, Shu-Kay; Dinulescu, Daniela M.; Matzuk, Martin M.; Berkowitz, Ross S.; Ng, Shu-Wing

    2016-01-01

    Epithelial ovarian carcinoma accounts for 90% of all ovarian cancer and is the most deadly gynecologic malignancy. Recent studies have suggested that fallopian tube fimbriae can be the origin of cells for high-grade serous subtype of epithelial ovarian carcinoma (HGSOC). A mouse HGSOC model with conditional Dicer-Pten double knockout (Dicer-Pten DKO) developed primary tumors, intriguingly, from the fallopian tube stroma. We examined the growth and epithelial phenotypes of the Dicer-Pten DKO mouse tumor cells contributable by each gene knockout. Unlike human ovarian epithelial cancer cells that expressed full-length E-cadherin, the Dicer-Pten DKO stromal tumor cells expressed cleaved E-cadherin fragments and metalloproteinase 2, a mixture of epithelial and mesenchymal markers. Although the Dicer-Pten DKO tumor cells lost the expression of mature microRNAs as expected, they showed high levels of tRNA fragment expression and enhanced AKT activation due to the loss of PTEN function. Introduction of a Dicer1-expressing construct into the DKO mouse tumor cells significantly reduced DNA synthesis and the cell growth rate, with concurrent diminished adhesion and ZO1 epithelial staining. Hence, it is likely that the loss of Dicer promoted mesenchymal-epithelial transition in fallopian tube stromal cells, and in conjunction with Pten loss, further promoted cell proliferation and epithelial-like tumorigenesis. PMID:27602775

  20. Establishment and Characterization of a Buffalo (Bubalus bubalis) Mammary Epithelial Cell Line

    PubMed Central

    Anand, Vijay; Dogra, Nilambra; Singh, Surender; Kumar, Sudarshan N.; Jena, Manoj K.; Malakar, Dhruba; Dang, Ajay K.; Mishra, Bishnu P.; Mukhopadhyay, Tapas K.; Kaushik, Jai K.; Mohanty, Ashok K.

    2012-01-01

    Background The objective of this study was to establish the buffalo mammary epithelial cell line (BuMEC) and characterize its mammary specific functions. Methodology Buffalo mammary tissue collected from the slaughter house was processed enzymatically to obtain a heterogenous population of cells containing both epithelial and fibroblasts cells. Epithelial cells were purified by selective trypsinization and were grown in a plastic substratum. The purified mammary epithelial cells (MECs) after several passages were characterized for mammary specific functions by immunocytochemistry, RT-PCR and western blot. Principal Findings The established buffalo mammary epithelial cell line (BuMEC) exhibited epithelial cell characteristics by immunostaining positively with cytokeratin 18 and negatively with vimentin. The BuMEC maintained the characteristics of its functional differentiation by expression of β-casein, κ-casein, butyrophilin and lactoferrin. BuMEC had normal growth properties and maintained diploid chromosome number (2n = 50) before and after cryopreservation. A spontaneously immortalized buffalo mammary epithelial cell line was established after 20 passages and was continuously subcultured for more than 60 passages without senescence. Conclusions We have established a buffalo mammary epithelial cell line that can be used as a model system for studying mammary gland functions. PMID:22792341

  1. Examination of the role of galectins in cell migration and re-epithelialization of wounds.

    PubMed

    Cao, Zhiyi; Saravanan, Chandrassegar; Chen, Wei-Sheng; Panjwani, Noorjahan

    2015-01-01

    Re-epithelialization is a crucial step for wound healing. As galectins play important roles in re-epithelialization, we describe here protocols for in vivo, ex vivo and in vitro examination of the role of galectins in cell migration and in re-epithelialization of wounds. For in vivo models, mouse corneas are wounded by a variety of techniques and the rate of re-epithelialization is quantified. For ex vivo organ culture models, mouse corneas are wounded in situ, the eyes are enucleated, the eyeballs are cultured in the presence or absence of galectins and the rate of re-epithelialization is quantified. For cell cultured-based in vitro assays, we examine formation of lamellipodia and activation of focal adhesion kinase in various epithelial cells.

  2. α-Amylase in Vaginal Fluid: Association With Conditions Favorable to Dominance of Lactobacillus.

    PubMed

    Nasioudis, Dimitrios; Beghini, Joziani; Bongiovanni, Ann Marie; Giraldo, Paulo C; Linhares, Iara M; Witkin, Steven S

    2015-11-01

    Vaginal glycogen is degraded by host α-amylase and then converted to lactic acid by Lactobacilli. This maintains the vaginal pH at ≤4.5 and prevents growth of other bacteria. Therefore, host α-amylase activity may promote dominance of Lactobacilli. We evaluated whether the α-amylase level in vaginal fluid is altered in women with bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC) and whether its concentration was associated with levels of lactic acid isomers and host mediators. Vaginal fluid was obtained from 43 women with BV, 50 women with VVC, and 62 women with no vulvovaginal disorders. Vaginal fluid concentrations of α-amylase, secretory leukocyte protease inhibitor (SLPI), hyaluronan, hyaluronidase-1, β-defensin, and elafin were measured by enzyme-linked immunosorbent assay (ELISA). Vaginal concentrations of neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase (MMP) 8, and d- and l-lactic acid levels in these patients were previously reported. The median vaginal fluid α-amylase level was 1.83 mU/mL in control women, 1.45 mU/mL in women with VVC, and 1.07 mU/mL in women with BV. Vaginal levels of α-amylase were correlated with d-lactic acid (P = .003) but not with l-lactic acid (P > .05) and with SLPI (P < .001), hyaluronidase-1 (P < .001), NGAL (P = .001), and MMP-8 (P = .005). The exfoliation of glycogen-rich epithelial cells into the vaginal lumen by hyaluronidase-1 and MMP-8 may increase glycogen availability and promote α-amylase activity. The subsequent enhanced availability of glycogen breakdown products would favor proliferation of Lactobacilli, the primary producers of d-lactic acid in the vagina. Concomitant production of NGAL and SLPI would retard growth of BV-related bacteria.

  3. Characterization of protamine uptake by opossum kidney epithelial cells.

    PubMed

    Nagai, Junya; Komeda, Takuji; Katagiri, Yuki; Yumoto, Ryoko; Takano, Mikihisa

    2013-01-01

    Protamine, a mixture of polypeptides that is rich in arginine, has been used clinically as an antidote to heparin overdoses and a complexing agent in a long-acting insulin preparation. When protamine is administered intravenously, its abundant accumulation in the kidneys has been reported. However, the renal uptake mechanism for protamine is not clear. In this study, we examined the transport mechanism for protamine in opossum kidney (OK) cells, a suitable in vitro model for renal proximal tubular epithelial cells. Flow cytometric analysis revealed that the association of fluorescein isothiocyanate (FITC)-labeled protamine from salmon (FITC-protamine) by OK cells was inhibited by unlabeled protamine in a concentration-dependent manner. The association of FITC-protamine was temperature- and energy-dependent. Confocal microscopy analysis showed that the fluorescence was localized in the cytoplasm and nucleus of OK cells. In addition, FITC-protamine association was inhibited by cationic drugs such as polycationic gentamicin and polymixin B, but it was increased by a basic amino acid, arginine. Inhibitors for clathrin- and caveolin-dependent endocytosis showed inhibitory effects on FITC-protamine association. Pretreatment with heparinase III partially but significantly decreased the association of FITC-protamine. These results suggest that protamine may be taken up by OK cells via receptor-mediated endocytosis, which may result in its localization in the cytoplasm and nucleus of the cells.

  4. Effect of Stratification on Surface Properties of Corneal Epithelial Cells

    PubMed Central

    Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.

    2015-01-01

    Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762

  5. Ionizing radiation induces heritable disruption of epithelial cell interactions

    NASA Technical Reports Server (NTRS)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  6. Oral mucosal pellicle. Adsorption and transpeptidation of salivary components to buccal epithelial cells.

    PubMed Central

    Bradway, S D; Bergey, E J; Jones, P C; Levine, M J

    1989-01-01

    The present investigation was carried out to examine the mechanism(s) whereby salivary molecules interact with human buccal epithelial cells. By utilizing antiserum against human parotid saliva, selected salivary components were detected by electrophoretic-transfer analysis of 1.5% SDS extracts of epithelial cells. Incubation of the cells and their aqueous cell-free extracts with 125I-labelled parotid saliva resulted in the formation of an iodinated high-molecular-mass complex which was not present in 125I-labelled saline alone. Formation of this complex was time-dependent and was inhibited by treating the buccal epithelial cells or their cell-free extracts with EGTA, iodoacetamide, N-ethylmaleimide or by heating at 100 degrees C for 15 min. The epithelial cells also promoted incorporation of [14C]putrescine into high-molecular-mass complexes whose formation was inhibited by iodoacetamide, unlabelled putrescine and EGTA. Cell extracts mediated cross-linking of monodansylcadaverine into alpha-casein, and this interaction was inhibited by iodoacetamide. Significant amounts of radioactivity were recovered with the epithelial-cell envelopes after exhaustive extraction of 125I-saliva- or [14C]putrescine-treated epithelial cells with 4% (w/v) SDS/10% (v/v) beta-mercaptoethanol. The incorporation of radioactivity into epithelial-cell envelopes was inhibited by pretreatment of the cells with putrescine, EGTA, iodoacetamide, or heating at 100 degrees C for 15 min. These data suggest that: (1) oral mucosal pellicle is formed by the selective adsorption of saliva to the epithelial-cell plasma membrane and its associated cytoskeleton; and (2) the adsorbed salivary components may be cross-linked to each other or the epithelial cytoskeleton by epithelial transglutaminases. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2572218

  7. Vaginal itching and discharge - child

    MedlinePlus

    Pruritus vulvae; Itching - vaginal area; Vulvar itching; Yeast infection - child ... vagina or the skin around the vagina. Vaginal yeast infection . Vaginitis . Vaginitis in girls before puberty is ...

  8. Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells

    PubMed Central

    Hegan, Peter S.; Ostertag, Eric; Geurts, Aron M.; Mooseker, Mark S.

    2015-01-01

    In wild type (WT) tracheal epithelial cells, ciliary basal bodies are oriented such that all cilia on the cell surface beat in the same upward direction. This precise alignment of basal bodies and, as a result, the ciliary axoneme, is termed rotational planar cell polarity (PCP). Rotational PCP in the multi-ciliated epithelial cells of the trachea is perturbed in rats lacking myosin Id (Myo1d). Myo1d is localized in the F-actin and basal body rich subapical cortex of the ciliated tracheal epithelial cell. Scanning and transmission electron microscopy of Myo1d knock out (KO) trachea revealed that the unidirectional bending pattern is disrupted. Instead, cilia splay out in a disordered, often radial pattern. Measurement of the alignment axis of the central pair axonemal microtubules was much more variable in the KO, another indicator that rotational PCP is perturbed. The asymmetric localization of the PCP core protein Vangl1 is lost. Both the velocity and linearity of cilia-driven movement of beads above the tracheal mucosal surface was impaired in the Myo1d KO. Multi-ciliated brain ependymal epithelial cells exhibit a second form of PCP termed translational PCP in which basal bodies and attached cilia are clustered at the anterior side of the cell. The precise asymmetric clustering of cilia is disrupted in the ependymal cells of the Myo1d KO rat. While basal body clustering is maintained, left-right positioning of the clusters is lost. PMID:26446290

  9. Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells.

    PubMed

    Hegan, Peter S; Ostertag, Eric; Geurts, Aron M; Mooseker, Mark S

    2015-10-01

    In wild type (WT) tracheal epithelial cells, ciliary basal bodies are oriented such that all cilia on the cell surface beat in the same upward direction. This precise alignment of basal bodies and, as a result, the ciliary axoneme, is termed rotational planar cell polarity (PCP). Rotational PCP in the multi-ciliated epithelial cells of the trachea is perturbed in rats lacking myosin Id (Myo1d). Myo1d is localized in the F-actin and basal body rich subapical cortex of the ciliated tracheal epithelial cell. Scanning and transmission electron microscopy of Myo1d knock out (KO) trachea revealed that the unidirectional bending pattern is disrupted. Instead, cilia splay out in a disordered, often radial pattern. Measurement of the alignment axis of the central pair axonemal microtubules was much more variable in the KO, another indicator that rotational PCP is perturbed. The asymmetric localization of the PCP core protein Vangl1 is lost. Both the velocity and linearity of cilia-driven movement of beads above the tracheal mucosal surface was impaired in the Myo1d KO. Multi-ciliated brain ependymal epithelial cells exhibit a second form of PCP termed translational PCP in which basal bodies and attached cilia are clustered at the anterior side of the cell. The precise asymmetric clustering of cilia is disrupted in the ependymal cells of the Myo1d KO rat. While basal body clustering is maintained, left-right positioning of the clusters is lost.

  10. The core planar cell polarity gene, Vangl2, directs adult corneal epithelial cell alignment and migration

    PubMed Central

    Findlay, Amy S.; Panzica, D. Alessio; Walczysko, Petr; Holt, Amy B.; Henderson, Deborah J.; West, John D.; Rajnicek, Ann M.

    2016-01-01

    This study shows that the core planar cell polarity (PCP) genes direct the aligned cell migration in the adult corneal epithelium, a stratified squamous epithelium on the outer surface of the vertebrate eye. Expression of multiple core PCP genes was demonstrated in the adult corneal epithelium. PCP components were manipulated genetically and pharmacologically in human and mouse corneal epithelial cells in vivo and in vitro. Knockdown of VANGL2 reduced the directional component of migration of human corneal epithelial (HCE) cells without affecting speed. It was shown that signalling through PCP mediators, dishevelled, dishevelled-associated activator of morphogenesis and Rho-associated protein kinase directs the alignment of HCE cells by affecting cytoskeletal reorganization. Cells in which VANGL2 was disrupted tended to misalign on grooved surfaces and migrate across, rather than parallel to the grooves. Adult corneal epithelial cells in which Vangl2 had been conditionally deleted showed a reduced rate of wound-healing migration. Conditional deletion of Vangl2 in the mouse corneal epithelium ablated the normal highly stereotyped patterns of centripetal cell migration in vivo from the periphery (limbus) to the centre of the cornea. Corneal opacity owing to chronic wounding is a major cause of degenerative blindness across the world, and this study shows that Vangl2 activity is required for directional corneal epithelial migration. PMID:27853583

  11. Human Normal Bronchial Epithelial Cells: A Novel In Vitro Cell Model for Toxicity Evaluation

    PubMed Central

    Huang, Haiyan; Xia, Bo; Liu, Hongya; Li, Jie; Lin, Shaolin; Li, Tiyuan; Liu, Jianjun; Li, Hui

    2015-01-01

    Human normal cell-based systems are needed for drug discovery and toxicity evaluation. hTERT or viral genes transduced human cells are currently widely used for these studies, while these cells exhibited abnormal differentiation potential or response to biological and chemical signals. In this study, we established human normal bronchial epithelial cells (HNBEC) using a defined primary epithelial cell culture medium without transduction of exogenous genes. This system may involve decreased IL-1 signaling and enhanced Wnt signaling in cells. Our data demonstrated that HNBEC exhibited a normal diploid karyotype. They formed well-defined spheres in matrigel 3D culture while cancer cells (HeLa) formed disorganized aggregates. HNBEC cells possessed a normal cellular response to DNA damage and did not induce tumor formation in vivo by xenograft assays. Importantly, we assessed the potential of these cells in toxicity evaluation of the common occupational toxicants that may affect human respiratory system. Our results demonstrated that HNBEC cells are more sensitive to exposure of 10~20 nm-sized SiO2, Cr(VI) and B(a)P compared to 16HBE cells (a SV40-immortalized human bronchial epithelial cells). This study provides a novel in vitro human cells-based model for toxicity evaluation, may also be facilitating studies in basic cell biology, cancer biology and drug discovery. PMID:25861018

  12. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells

    PubMed Central

    2014-01-01

    Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis. PMID:25012153

  13. Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods.

    PubMed

    Gildea, John J; McGrath, Helen E; Van Sciver, Robert E; Wang, Dora Bigler; Felder, Robin A

    2013-01-01

    The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.

  14. Repeated vaginal SHIV challenges in macaques receiving oral or topical Pre-Exposure Prophylaxis induce virus-specific T cell responses

    PubMed Central

    Tsegaye, Theodros Solomon; Butler, Katherine; Luo, Wei; Radzio, Jessica; Srinivasan, Priya; Sharma, Sunita; Aubert, Rachael D.; Hanson, Debra L.; Dobard, Charles; Garcia-Lerma, J. Gerardo; Heneine, Walid; McNicholl, Janet M.; Kersh, Ellen N.

    2015-01-01

    Background Pre-Exposure Prophylaxis (PrEP) for HIV prevention is a novel biomedical prevention method. We have previously modeled PrEP during rectal SHIV exposures in macaques and identified that SHIV-specific T cell responses were induced in the presence of antiretroviral drugs, an observation previously termed T cell chemo-vaccination. This report expands those initial findings by examining a larger group of macaques that were given oral or topical PrEP during repeated vaginal virus exposure. Methods Thirty-six female pigtail macaques received up to 20 repeat low-dose vaginal inoculations with wild type (WT) SHIVSF162P3 (n=24) or a clonal derivative with the tenofovir K65R drug resistant mutation (n=12). PrEP consisted of oral Truvada (n=6, WT), tenofovir vaginal gel (n=6, K65R), or tenofovir intra-vaginal ring (n=6, WT). The remaining animals were PrEP-inexperienced controls (n=12, WT; n=6, K65R). SHIV-specific T cells were identified and characterized using IFNγ ELISPOT and multi-parameter flow cytometry. Results Of nine animals that were on PrEP and remained uninfected during WT SHIV vaginal challenges, eight (88.9%) developed virus-specific T cell responses. T cells were in CD4 and CD8 compartments, reached up to 4,900 IFNγ producing cells per million PBMCs, and primarily pol directed. In contrast, the replication impaired K65R virus did not induce detectable T cell responses, likely reflecting the need for adequate replication. Conclusion Virus-specific T cell responses occur frequently in oral or topical PrEP-protected pigtail macaques after vaginal exposure to WT SHIV virus. The contribution of such immune responses to protection from infection during and following PrEP warrants further investigation. PMID:25886925

  15. Oxidized glutathione (GSSG) inhibits epithelial sodium channel activity in primary alveolar epithelial cells

    PubMed Central

    Downs, Charles A.; Kreiner, Lisa; Zhao, Xing-Ming; Trac, Phi; Johnson, Nicholle M.; Hansen, Jason M.; Brown, Lou Ann

    2015-01-01

    Amiloride-sensitive epithelial Na+ channels (ENaC) regulate fluid balance in the alveoli and are regulated by oxidative stress. Since glutathione (GSH) is the predominant antioxidant in the lungs, we proposed that changes in glutathione redox potential (Eh) would alter cell signaling and have an effect on ENaC open probability (Po). In the present study, we used single channel patch-clamp recordings to examine the effect of oxidative stress, via direct application of glutathione disulfide (GSSG), on ENaC activity. We found a linear decrease in ENaC activity as the GSH/GSSG Eh became less negative (n = 21; P < 0.05). Treatment of 400 μM GSSG to the cell bath significantly decreased ENaC Po from 0.39 ± 0.06 to 0.13 ± 0.05 (n = 8; P < 0.05). Likewise, back-filling recording electrodes with 400 μM GSSG reduced ENaC Po from 0.32 ± 0.08 to 0.17 ± 0.05 (n = 10; P < 0.05), thus implicating GSSG as an important regulatory factor. Biochemical assays indicated that oxidizing potentials promote S-glutathionylation of ENaC and irreversible oxidation of cysteine residues with N-ethylmaleimide blocked the effects of GSSG on ENaC Po. Additionally, real-time imaging studies showed that GSSG impairs alveolar fluid clearance in vivo as opposed to GSH, which did not impair clearance. Taken together, these data show that glutathione Eh is an important determinant of alveolar fluid clearance in vivo. PMID:25713321

  16. Involvement of Egr-1 in lens epithelial cell death induced by selenite.

    PubMed

    Nakajima, T; Belusko, P B; Walkup, R D; Azuma, M; Shearer, T R

    2006-05-01

    Selenite-overdose cataract in young rats may be caused by an initial insult to the lens epithelial cells. Our previous DNA array analysis revealed a significant increase in the expression of mRNA for early growth response protein-1 (Egr-1) in lens epithelial cells after injection of selenite. This suggested that up-regulation of Egr-1 mRNA may be involved in lens epithelial cell death. The purpose of the present experiment was to further clarify the involvement of Egr-1 in lens epithelial cell death induced by selenite. Rat lens epithelial explants were cultured with sodium selenite. Selenite caused epithelial explants to leak LDH into the medium. During LDH leakage, increased expression of mRNA for Egr-1 was observed by RT-PCR. To further test the involvement of Egr-1 in selenite-induced cell death, mouse lens epithelial cell line (alpha-TN4 cells) was treated with antisense oligonucleotide for Egr-1. Antisense oligonucleotide for Egr-1 significantly diminished expression of Egr-1 protein and leakage of LDH. These results suggested that increased activity of Egr-1 may be a factor in lens epithelial cell death induced by selenite.

  17. Diet Does Not Affect Putative Mammary Epithelial Stem Cells in Pre-weaned Holstein Heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Overfeeding prepubertal heifers can impair mammary epithelial growth and development, processes that depend on stem cells. In this study we evaluated effects of diet composition on putative bovine mammary epithelial stem cell populations using a 5-bromo-2-deoxyrudine (BrdU; a thymidine analog) label...

  18. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  19. Roles of Wnt/{beta}-catenin signaling in epithelial differentiation of mesenchymal stem cells

    SciTech Connect

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng; Li, Yan; Qin, Jizheng; Han, Xiaodong

    2009-12-25

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/{beta}-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/{beta}-catenin signaling were determined, suggested down-regulation of Wnt/{beta}-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3{alpha} can inhibit the epithelial differentiation of MSCs. A loss of {beta}-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated {beta}-catenin expression and subsequently decreased {beta}-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/{beta}-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  20. Release of simian virus 40 virions from epithelial cells is polarized and occurs without cell lysis.

    PubMed Central

    Clayson, E T; Brando, L V; Compans, R W

    1989-01-01

    We have investigated the process of release of simian virus 40 (SV40) virions from several monkey kidney cell lines. High levels of virus release were observed prior to any significantly cytopathic effects in all cell lines examined, indicating that SV40 utilizes a mechanism for escape from the host cell which does not involve cell lysis. We demonstrate that SV40 release was polarized in two epithelial cell types (Vero C1008 and primary African green monkey kidney cells) grown on permeable supports; release of virus occurs almost exclusively at apical surfaces. In contrast, equivalent amounts of SV40 virions were recovered from apical and basal culture fluids of nonpolarized CV-1 cells. SV40 virions were observed in large numbers on apical surfaces of epithelial cells and in cytoplasmic smooth membrane vesicles. The sodium ionophore monensin, an inhibitor of vesicular transport, was found to inhibit SV40 release without altering viral protein synthesis or infectious virus production. Images PMID:2539518

  1. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    PubMed Central

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study , we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA – mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. PMID:26780400

  2. Streptococcus salivarius K12 Limits Group B Streptococcus Vaginal Colonization.

    PubMed

    Patras, Kathryn A; Wescombe, Philip A; Rösler, Berenice; Hale, John D; Tagg, John R; Doran, Kelly S

    2015-09-01

    Streptococcus agalactiae (group B streptococcus [GBS]) colonizes the rectovaginal tract in 20% to 30% of women and during pregnancy can be transmitted to the newborn, causing severe invasive disease. Current routine screening and antibiotic prophylaxis have fallen short of complete prevention of GBS transmission, and GBS remains a leading cause of neonatal infection. We have investigated the ability of Streptococcus salivarius, a predominant member of the native human oral microbiota, to control GBS colonization. Comparison of the antibacterial activities of multiple S. salivarius strains by use of a deferred-antagonism test showed that S. salivarius strain K12 exhibited the broadest spectrum of activity against GBS. K12 effectively inhibited all GBS strains tested, including disease-implicated isolates from newborns and colonizing isolates from the vaginal tract of pregnant women. Inhibition was dependent on the presence of megaplasmid pSsal-K12, which encodes the bacteriocins salivaricin A and salivaricin B; however, in coculture experiments, GBS growth was impeded by K12 independently of the megaplasmid. We also demonstrated that K12 adheres to and invades human vaginal epithelial cells at levels comparable to GBS. Inhibitory activity of K12 was examined in vivo using a mouse model of GBS vaginal colonization. Mice colonized with GBS were treated vaginally with K12. K12 administration significantly reduced GBS vaginal colonization in comparison to nontreated controls, and this effect was partially dependent on the K12 megaplasmid. Our results suggest that K12 may have potential as a preventative therapy to control GBS vaginal colonization and thereby prevent its transmission to the neonate during pregnancy.

  3. Regulation of epithelial cell organization by tuning cell-substrate adhesion.

    PubMed

    Ravasio, Andrea; Le, Anh Phuong; Saw, Thuan Beng; Tarle, Victoria; Ong, Hui Ting; Bertocchi, Cristina; Mège, René-Marc; Lim, Chwee Teck; Gov, Nir S; Ladoux, Benoit

    2015-10-01

    Collective migration of cells is of fundamental importance for a number of biological functions such as tissue development and regeneration, wound healing and cancer metastasis. The movement of cell groups consisting of multiple cells connected by cell-cell junctions depends on both extracellular and intercellular contacts. Epithelial cell assemblies are thus regulated by a cross-talk between cell-substrate and cell-cell interactions. Here, we investigated the onset of collective migration in groups of cells as they expand from a few cells into large colonies as a function of extracellular matrix (ECM) protein coating. By varying the amount of ECM presented to the cells, we observe that the mode of colony expansion, as well as their overall geometry, is strongly dependent on substrate adhesiveness. On high ECM protein coated surfaces, cells at the edges of the colonies are well spread exhibiting large outward-pointing protrusive activity, whereas cellular colonies display more circular and convex shapes on less adhesive surfaces. Actin structures at the edge of the colonies also show different organizations with the formation of lamellipodial structures on highly adhesive surfaces and a pluricellular actin cable on less adhesive ones. The analysis of traction forces and cell velocities within the cellular assemblies confirm these results. By increasing ECM protein density, cells exert higher traction forces together with a higher outward motility at the edges. Furthermore, tuning cell-cell adhesion of epithelial cells modified the mode of expansion of the colonies. Finally, we used a recently developed computational model to recapitulate the emergent experimental behaviors of expanding cell colonies and extract that the main effect of the different cell-substrate interactions is on the ability of edge cells to form outward lamellipodia-driven motility. Overall, our data suggest that switching behaviors of epithelial cell assemblies result in a tug-of-war between

  4. Disruption of the keratin filament network during epithelial cell division.

    PubMed Central

    Lane, E B; Goodman, S L; Trejdosiewicz, L K

    1982-01-01

    The behaviour of keratin filaments during cell division was examined in a wide range of epithelial lines from several species. Almost half of them show keratin disruption as described previously: by immunofluorescence, filaments are replaced during mitosis by a 'speckled' pattern of discrete cytoplasmic dots. In the electron microscope these ' speckles ' are seen as granules around the cell periphery, just below the actin cortical mesh, with no detectable 10 nm filament structure inside them and no keratin filament bundles in the rest of the cytoplasm. A time course of the filament reorganization was constructed from double immunofluorescence data; filaments are disrupted in prophase, and the filament network is intact again by cytokinesis. The phenomenon is restricted to cells rich in keratin filaments, such as keratinocytes; it is unrelated to the co-existence of vimentin in many of these cells, and vimentin is generally maintained as filaments while the keratin is restructured. Some resistance to the effect may be conferred by an extended cycle time. Filament reorganization takes place within minutes, so that a reversible mechanism seems more likely than one involving de novo protein synthesis, at this metabolically quiet stage of the cell cycle. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6202508

  5. ABCF1 extrinsically regulates retinal pigment epithelial cell phagocytosis

    PubMed Central

    Guo, Feiye; Ding, Ying; Caberoy, Nora; Alvarado, Gabriela; Wang, Feng; Chen, Rui; Li, Wei

    2015-01-01

    Phagocytosis of shed photoreceptor outer segments (POSs) by retinal pigment epithelial (RPE) cells is critical to retinal homeostasis and shares many conserved signaling pathways with other phagocytes, including extrinsic regulations. Phagocytotic ligands are the key to cargo recognition, engulfment initiation, and activity regulation. In this study, we identified intracellular protein ATP-binding cassette subfamily F member 1 (ABCF1) as a novel RPE phagocytotic ligand by a new approach of functional screening. ABCF1 was independently verified to extrinsically promote phagocytosis of shed POSs by D407 RPE cells. This finding was further corroborated with primary RPE cells and RPE explants. Internalized POS vesicles were colocalized with a phagosome marker, suggesting that ABCF1-mediated engulfment is through a phagocytic pathway. ABCF1 was released from apoptotic cells and selectively bound to shed POS vesicles and apoptotic cells, possibly via externalized phosphatidylserine. ABCF1 is predominantly expressed in POSs and colocalized with the POS marker rhodopsin, providing geographical convenience for regulation of RPE phagocytosis. Collectively these results suggest that ABCF1 is released from and binds to shed POSs in an autocrine manner to facilitate RPE phagocytosis through a conserved pathway. Furthermore, the new approach is broadly applicable to many other phagocytes and will enable systematic elucidation of their ligands to understand extrinsic regulation and cargo recognition. PMID:25904329

  6. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    SciTech Connect

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  7. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  8. Calpain Mediates Epithelial Cell Microvillar Effacement by Enterohemorrhagic Escherichia Coli

    PubMed Central

    Lai, YuShuan; Riley, Kathleen; Cai, Andrew; Leong, John M.; Herman, Ira M.

    2011-01-01

    A member of the attaching and effacing (AE) family of pathogens, enterohemorrhagic Escherichia coli (EHEC) induces dramatic changes to the intestinal cell cytoskeleton, including effacement of microvilli. Effacement by the related pathogen enteropathogenic E. coli (EPEC) requires the activity of the Ca+2-dependent host protease, calpain, which participates in a variety of cellular processes, including cell adhesion and motility. We found that EHEC infection results in an increase in epithelial (CaCo-2a) cell calpain activity and that EHEC-induced microvillar effacement was blocked by ectopic expression of calpastatin, an endogenous calpain inhibitor, or by pretreatment of intestinal cells with a cell-penetrating version of calpastatin. In addition, ezrin, a known calpain substrate that links the plasma membrane to axial actin filaments in microvilli, was cleaved in a calpain-dependent manner during EHEC infection and lost from its normal locale within microvilli. Calpain may be a central conduit through which EHEC and other AE pathogens induce enterocyte cytoskeletal remodeling and exert their pathogenic effects. PMID:22073041

  9. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  10. Investigating the Responses of Human Epithelial Cells to Predatory Bacteria

    PubMed Central

    Monnappa, Ajay K.; Bari, Wasimul; Choi, Seong Yeol; Mitchell, Robert J.

    2016-01-01

    One beguiling alternative to antibiotics for treating multi-drug resistant infections are Bdellovibrio-and-like-organisms (BALOs), predatory bacteria known to attack human pathogens. Consequently, in this study, the responses from four cell lines (three human and one mouse) were characterized during an exposure to different predatory bacteria, Bdellovibrio bacteriovorus HD100, Bacteriovorus BY1 and Bacteriovorax stolpii EB1. TNF-α levels were induced in Raw 264.7 mouse macrophage cultures with each predator, but paled in comparison to those obtained with E. coli. This was true even though the latter strain was added at an 11.1-fold lower concentration (p < 0.01). Likewise, E. coli led to a significant (54%) loss in the Raw 264.7 murine macrophage viability while the predatory strains had no impact. Tests with various epithelial cells, including NuLi-1 airway, Caco2, HT29 and T84 colorectal cells, gave similar results, with E. coli inducing IL-8 production. The viabilities of the NuLi-1 and Caco-2 cells were slightly reduced (8%) when exposed to the predators, while T84 viability remained steady. In no cases did the predatory bacteria induce actin rearrangement. These results clearly demonstrate the gentle natures of predatory bacteria and their impacts on human cells. PMID:27629536

  11. Basal cell induced differentiation of noncancerous prostate epithelial cells (RWPE-1) by glycitein.

    PubMed

    Clubbs, Elizabeth A; Bomser, Joshua A

    2009-01-01

    Increased consumption of soy and soy isoflavones is associated with a reduced risk for prostate cancer (PCa). PCa progression is characterized, in part, by a loss of luminal/basal epithelial differentiation; however, the effects of soy isoflavones on cellular differentiation in the prostate are unknown. The present study examined the effects of the soy isoflavone glycitein on cellular differentiation in prostate epithelial cells (RWPE-1, WPE1-NB14, and RWPE-2). Glycitein significantly inhibited RWPE-1 cellular proliferation at concentrations ranging from 0.4 to 50 microM. Expression of the luminal epithelial cell marker cytokeratin 18 was not affected by glycitein treatment in the WPE1-NB14 and RWPE-2 cell lines. However, expression of cytokeratin 18 and prostate specific antigen (PSA) was decreased in the RWPE-1 cell line in response to glycitein treatment, whereas the expression of the basal epithelial cell markers p63 and cytokeratin 5 remained unchanged. These data suggest that glycitein may induce basal cell differentiation in the RWPE-1 cell line.

  12. Retinal Pigment Epithelial Cell Line Suppression of Phagolysosome Activation.

    PubMed

    Taylor, A W; Dixit, S; Yu, J

    2015-01-29

    The eye is an immune privileged tissue with multiple mechanisms of immunosuppression to protect the light gathering tissues from the damage of inflammation. One of theses mechanisms involves retinal pigment epithelial cell suppression of phagosome activation in macrophages. The objective of this work is to determine if the human RPE cell line ARPE-19 is capable of suppressing the activation of the phagolysosome in macrophages in a manner similar to primary RPE. The conditioned media of RPE eyecups, sub-confluent, just confluent cultures, or established confluent cultures of human ARPE-19 cells were generated. These condition media were used to treat macrophages phagocytizing pHrodo bioparticles. After 24 hours incubation the macrophages were imaged by fluorescent microscopy, and fluorescence was measured. The fluorescent intensity is proportional to the amount of bioparticles phagocytized and are in an activated phagolysosome. The conditioned media of in situ mouse RPE eyecups significantly suppressed the activation of phagolysosome. The conditioned media from cultures of human ARPE-19 cells, grown to sub-confluence (50%) or grown to confluence had no effect on phagolysosome activation. In contrast, the conditioned media from established confluent cultures significantly suppressed phagolysosome activation. The neuropeptides alpha-MSH and NPY were depleted from the conditioned media of established confluent ARPE-19 cell cultures. This depleted conditioned media had diminished suppression of phagolysosome activation while promoting macrophage cell death. In addition, the condition media from cultures of ARPE-19 monolayers wounded with a bisecting scrape was diminished in suppressing phagolysosome activation. This technical report suggests that like primary RPE monolayers, established confluent cultures of ARPE-19 cells produce soluble factors that suppress the activation of macrophages, and can be used to study the molecular mechanisms of retinal immunobiology. In

  13. Dynamic transcriptional and epigenomic reprogramming from pediatric nasal epithelial cells to induced pluripotent stem cells

    PubMed Central

    Ji, Hong; Zhang, Xue; Oh, Sunghee; Mayhew, Christopher N.; Ulm, Ashley; Somineni, Hari K.; Ericksen, Mark; Wells, James M.; Khurana Hershey, Gurjit K.

    2014-01-01

    Background Induced pluripotent stem cells (iPSCs) hold tremendous potential, both as a biological tool to uncover the pathophysiology of disease by creating relevant human cell models, and as a source of cells for cell-based therapeutic applications. Studying the reprogramming process will also provide significant insight into tissue development. Objective We sought to characterize the derivation of iPSC lines from nasal epithelial cells isolated from the nasal mucosa samples of children, a highly relevant and easily accessible tissue for pediatric populations. Methods We performed detailed comparative analysis on the transcriptomes and methylomes of nasal epithelial cells, iPSCs derived from nasal epithelial cells (NEC-iPSCs), and ESCs. Results NEC-iPSCs express pluripotent cell markers, can differentiate into all three germ layers in vivo and in vitro, and have a transcriptome and methylome remarkably similar to ESCs. However, residual DNA methylation marks exist, which are differentially methylated between NEC-iPSCs and ESCs. A subset of these methylation markers related to epithelium development and asthma and specific to iPSCs generated from nasal epithelial cells persisted after several passages in vitro, suggesting the retention of an epigenetic memory of their tissue of origin. Our analysis also identified novel candidate genes with dynamic gene expression and DNA methylation changes during reprogramming, indicative of possible roles in airway epithelium development. Conclusion Nasal epithelial cells are an excellent tissue source to generate iPSCs in pediatric asthmatics, and detailed characterization of the resulting iPSC lines would help us better understand the reprogramming process and retention of epigenetic memory. PMID:25441642

  14. Molecular Evidence for Rhesus Lymphocryptovirus Infection of Epithelial Cells in Immunosuppressed Rhesus Macaques

    PubMed Central

    Kutok, Jeffery L.; Klumpp, Sherry; Simon, Meredith; MacKey, John J.; Nguyen, Vuong; Middeldorp, Jaap M.; Aster, Jon C.; Wang, Fred

    2004-01-01

    Epstein-Barr virus (EBV) is a human oncogenic herpesvirus associated with epithelial cell and B-cell malignancies. EBV infection of B lymphocytes is essential for acute and persistent EBV infection in humans; however, the role of epithelial cell infection in the normal EBV life cycle remains controversial. The rhesus lymphocryptovirus (LCV) is an EBV-related herpesvirus that naturally infects rhesus macaques and can be used experimentally to model persistent B-cell infection and B-cell lymphomagenesis. We now show that the rhesus LCV can infect epithelial cells in immunosuppressed rhesus macaques and can induce epithelial cell lesions resembling oral hairy leukoplakia in AIDS patients. Electron microscopy, immunohistochemistry, and DNA-RNA in situ hybridization were used to identify the presence of a lytic rhesus LCV infection in these proliferative, hyperkeratotic, or parakeratotic epithelial cell lesions. These studies demonstrate that the rhesus LCV has tropism for epithelial cells, in addition to B cells, and is a relevant animal model system for studying the role of epithelial cell infection in EBV pathogenesis. PMID:15016868

  15. Epithelial-mesenchymal transitions during cell culture of primary thyroid tumors?

    PubMed

    Herrmann, M E; Trevor, K T

    1993-04-01

    Fibroblast contamination of epithelial tumor cell cultures is of great concern when examining tumor cells in vitro for specific biochemical and cytogenetic changes. The observations of normal karyotypes in thyroid tumor cell cultures have raised the concern of whether residual tissue fibroblasts might obscure the cytogenetic analysis of transformed epithelial cells. We have characterized early passaged thyroid tumor cells to examine the proportions of epithelial and fibroblastic cell types. Cells were analyzed by immunocytology using antibodies recognizing the thyroid prohormone thyroglobulin, epithelial cytokeratins, and vimentin, a mesenchyme marker. Tumors consisted of one follicular adenoma and five papillary carcinomas. When examined by day 15 in culture, all cells contained filaments composed of vimentin, which most likely represents an adaptation to culture conditions. Double immunofluorescence staining for thyroglobulin and cytokeratin revealed the presence of not only epithelial but also spindle-like fibroblastoid cells possessing thyroid epithelial cell markers. The results suggest that in thyroid tumor cultures there is a unique cell type intermediate between epithelial and mesenchyme phenotypes that must be considered when performing cytogenetic analysis.

  16. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  17. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    PubMed Central

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  18. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    NASA Astrophysics Data System (ADS)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-11-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  19. Studies on microperoxisomes. VII. Pigment epithelial cells and other cell types in the retina of rodents

    PubMed Central

    1975-01-01

    The pigment epithelial cell of the retina actively participates in two aspects of lipid metabolism: (a) the fatty acid esterification of vitamin A and its storage and transport to the photoreceptors, and (b) the phagocytosis and degradation of the lipoprotein membrane disks shed from the photoreceptor cells. Study of the pigment epithelial cells of adult albino and pigmented rodents has revealed the abundance of an organelle, microperoxisomes, not previously known to exist in this cell type. The metabolism, transport, and storage of lipids are major functions of other cell types which possess large numbers of microperoxisomes associated with a highly developed smooth endoplasmic reticulum. Microperoxisomes were encountered, but relatively rarely, in Muller cells and vascular endothelial cells. A tubular system in photoreceptor terminals is reactive in the cytochemical procedure used to visualize microperoxisomes. PMID:1168648

  20. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells

    PubMed Central

    Daniel, Nadia M.; van der Vlugt, Luciën E. P. M.; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S.

    2016-01-01

    Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression. PMID:27829065

  1. Interleukin-1 stimulates zinc uptake by human thymic epithelial cells

    SciTech Connect

    Coto, J.A.; Hadden, J.W. )

    1991-03-15

    Thymic epithelial cells (TEC) are known to secrete peptides which influence the differentiation and maturation of T-lymphocytes. These peptides include the thymic hormones thymulin, thymosin-{alpha}1, and thymopoietin. The biological activity of thymulin is dependent on the presence of zinc in an equimolar ratio. The authors have shown that both interleukin-1{alpha}(IL-1{alpha}) and interleukin-1{beta}(IL-1{beta}), which stimulate proliferation of TEC, stimulate the uptake of Zn-65 in-vitro independent of this proliferation. Mitomycin-C was used to inhibit the proliferation of TEC. Two other stimulators of proliferation of TEC, bovine pituitary extract (BPE) and epidermal growth factor (EGF), did not stimulate zinc uptake by the TEC independent of proliferation. They have also shown, utilizing in-situ hybridization, that IL-1 and zinc induce metallothionein(MT) mRNA expression in human thymic epithelial cells. The exact role of metallothionein is not clear, but it is thought to be involved in regulation of trace metal metabolism, especially in maintenance of zinc homeostasis. Their current hypothesis is that IL-1 stimulates uptake of zinc into the TEC, followed by its complexing with metallothionein. Zinc is then thought to be transferred from metallothionein to thymulin. Immunostaining, utilizing an antithymulin antibody and a fluoresceinated goat anti-rabbit second antibody, confirms the presence of thymulin in TEC and its dependence on zinc. Upon stimulation, thymulin is then secreted. Known stimulants for thymulin include progesterone, dexamethasone, estradiol, testosterone, and prolactin. None of these secretagogues increase zinc uptake, suggesting the priming of the zinc-thymulin complex is unrelated to the regulation of its secretion.

  2. Nectin4 is an epithelial cell receptor for canine distemper virus and involved in neurovirulence.

    PubMed

    Pratakpiriya, Watanyoo; Seki, Fumio; Otsuki, Noriyuki; Sakai, Kouji; Fukuhara, Hideo; Katamoto, Hiromu; Hirai, Takuya; Maenaka, Katsumi; Techangamsuwan, Somporn; Lan, Nguyen Thi; Takeda, Makoto; Yamaguchi, Ryoji

    2012-09-01

    Canine distemper virus (CDV) uses signaling lymphocyte activation molecule (SLAM), expressed on immune cells, as a receptor. However, epithelial and neural cells are also affected by CDV in vivo. Wild-type CDV strains showed efficient replication with syncytia in Vero cells expressing dog nectin4, and the infection was blocked by an anti-nectin4 antibody. In dogs with distemper, CDV antigen was preferentially detected in nectin4-positive neurons and epithelial cells, suggesting that nectin4 is an epithelial cell receptor for CDV and also involved in its neurovirulence.

  3. Nectin4 Is an Epithelial Cell Receptor for Canine Distemper Virus and Involved in Neurovirulence

    PubMed Central

    Pratakpiriya, Watanyoo; Seki, Fumio; Otsuki, Noriyuki; Sakai, Kouji; Fukuhara, Hideo; Katamoto, Hiromu; Hirai, Takuya; Maenaka, Katsumi; Techangamsuwan, Somporn; Lan, Nguyen Thi; Takeda, Makoto

    2012-01-01

    Canine distemper virus (CDV) uses signaling lymphocyte activation molecule (SLAM), expressed on immune cells, as a receptor. However, epithelial and neural cells are also affected by CDV in vivo. Wild-type CDV strains showed efficient replication with syncytia in Vero cells expressing dog nectin4, and the infection was blocked by an anti-nectin4 antibody. In dogs with distemper, CDV antigen was preferentially detected in nectin4-positive neurons and epithelial cells, suggesting that nectin4 is an epithelial cell receptor for CDV and also involved in its neurovirulence. PMID:22761370

  4. New mammary epithelial and fibroblastic cell clones in coculture form structures competent to differentiate functionally

    PubMed Central

    1989-01-01

    We have established and characterized a spontaneously immortalized, nontumorigenic mouse mammary cell line, designated IM-2. IM-2 cells synthesize large amounts of the milk protein beta-casein upon addition of lactogenic hormones. The induction of beta-casein occurs rapidly and does not require any exogenous extracellular matrix components. The IM- 2 cell line is morphologically heterogeneous and could be separated into cell clones with epithelial and fibroblastic characteristics. In monoculture, none of the epithelial clones could be induced to synthesize caseins. Coculture of epithelial and fibroblastic clones, however, rendered the epithelial cells competent to differentiate functionally; the addition of lactogenic hormones to these cocultures resulted in the synthesis of beta-casein in amounts comparable to that seen with the original IM-2 line. Using this unique cell system, we have investigated the interrelationships between different steps in differentiation leading to hormone-induced casein production. Independent of hormones, epithelial-fibroblastic cell contacts led to the formation of characteristic structures showing the deposition of laminin. We found that the epithelial cells located in these structures also exhibited significantly increased levels of cytokeratin intermediate filament polypeptides. Double immunofluorescence revealed that the cells inducible by hormones to synthesize casein, colocalized exactly with the areas of laminin deposition and with the cells showing greatly intensified cytokeratin expression. These results suggest that hormone-independent differentiation events take place in response to intercellular epithelial-mesenchymal contacts. These events in turn bring about a state of competence for functional differentiation after lactogenic hormonal stimulation. PMID:2466037

  5. In vitro isolation and cultivation of rabbit tracheal epithelial cells using tissue explant technique.

    PubMed

    Shi, Hong-Can; Lu, Dan; Li, Hai-Jia; Han, Shi; Zeng, Yan-Jun

    2013-04-01

    Epithelial cells from tracheal mucosa offer significant potential as a cell source in development of tissue-engineered trachea. The purpose of this study was to investigate and optimize a suitable culture system for tracheal epithelial cells, including the methods of primary culture, passage, identification, and cryopreservation. Epithelial cells were isolated from rabbit tracheal mucosa using tissue explant technique and were subjected to immunohistochemistry, immunofluorescence, and cryopreservation after purification. Epithelial cells reached confluency at 14-15 d. Immunohistochemical staining for cytokeratin showed brown yellow-positive cytoplasm and blue-counterstained nuclei, while immunofluorescence staining for cytokeratin showed green-positive cytoplasm and clear cell outline, indicating that the cultured cells had properties of epithelial cells. After recovery, epithelial cells exhibited high survival and viability. The results demonstrated that in vitro isolation and cultivation model was successfully established to provide high proliferative capacity, typical morphology and characteristics of tracheal epithelial cells from trachea mucosa by the use of the tissue explant technique.

  6. Interaction of oral bacteria with gingival epithelial cell multilayers.

    PubMed

    Dickinson, B C; Moffatt, C E; Hagerty, D; Whitmore, S E; Brown, T A; Graves, D T; Lamont, R J

    2011-06-01

    Primary gingival epithelial cells were cultured in multilayers as a model for the study of interactions with oral bacteria associated with health and periodontal disease. Multilayers maintained at an air-liquid interface in low-calcium medium displayed differentiation and cytokeratin properties characteristic of junctional epithelium. Multilayers were infected with fluorescently labeled Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum or Streptococcus gordonii, and bacterial association was determined by confocal microscopy and quantitative image analysis. Porphyromonas gingivalis invaded intracellularly and spread from cell to cell; A. actinomycetemcomitans and F. nucleatum remained extracellular and showed intercellular movement through the multilayer; whereas S. gordonii remained extracellular and predominantly associated with the superficial cell layer. None of the bacterial species disrupted barrier function as measured by transepithelial electrical resistance. P. gingivalis did not elicit secretion of proinflammatory cytokines. However, A. actinomycetemcomitans and S. gordonii induced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and IL-8 secretion; and F. nucleatum stimulated production of IL-1β and TNF-α. Aggregatibacter actinomycetemcomitans, F. nucleatum and S. gordonii, but not P. gingivalis, increased levels of apoptosis after 24 h infection. The results indicate that the organisms with pathogenic potential were able to traverse the epithelium, whereas the commensal bacteria did not. In addition, distinct host responses characterized the interaction between the junctional epithelium and oral bacteria.

  7. Carbocisteine inhibits rhinovirus infection in human tracheal epithelial cells.

    PubMed

    Yasuda, H; Yamaya, M; Sasaki, T; Inoue, D; Nakayama, K; Yamada, M; Asada, M; Yoshida, M; Suzuki, T; Nishimura, H; Sasaki, H

    2006-07-01

    The aim of the study was to examine the effects of a mucolytic drug, carbocisteine, on rhinovirus (RV) infection in the airways. Human tracheal epithelial cells were infected with a major-group RV, RV14. RV14 infection increased virus titres and the cytokine content of supernatants. Carbocisteine reduced supernatant virus titres, the amount of RV14 RNA in cells, cell susceptibility to RV infection and supernatant cytokine concentrations, including interleukin (IL)-6 and IL-8, after RV14 infection. Carbocisteine reduced the expression of mRNA encoding intercellular adhesion molecule (ICAM)-1, the receptor for the major group of RVs. It also reduced the supernatant concentration of a soluble form of ICAM-1, the number and fluorescence intensity of acidic endosomes in the cells before RV infection, and nuclear factor-kappaB activation by RV14. Carbocisteine also reduced the supernatant virus titres of the minor group RV, RV2, although carbocisteine did not reduce the expression of mRNA encoding a low density lipoprotein receptor, the receptor for RV2. These results suggest that carbocisteine inhibits rhinovirus 2 infection by blocking rhinovirus RNA entry into the endosomes, and inhibits rhinovirus 14 infection by the same mechanism as well as by reducing intercellular adhesion molecule-1 levels. Carbocisteine may modulate airway inflammation by reducing the production of cytokines in rhinovirus infection.

  8. Ionizing radiation induces heritable disruption of epithelial cell interactions

    PubMed Central

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, β-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell–cell communication, aberrant cell–extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization. PMID:12960393

  9. Epithelial LTβR signaling controls the population size of the progenitors of medullary thymic epithelial cells in neonatal mice

    PubMed Central

    Wu, Weiwei; Shi, Yaoyao; Xia, Huan; Chai, Qian; Jin, Caiwei; Ren, Boyang; Zhu, Mingzhao

    2017-01-01

    The establishment of T cell central tolerance critically relies on the development and maintenance of the medullary thymic epithelial cells (mTECs). Disrupted signaling of lymphotoxin beta receptor (LTβR) results in dramatically reduced mTEC population. However, whether LTβR directly or indirectly control mTECs remains undetermined; how LTβR controls this process also remain unclear. In this study, by utilizing K14-Cre × Ltbrfl/fl conditional knockout (cKO) mice, we show that epithelial intrinsic LTβR was essential for the mTEC development postnatally. Mechanistically, LTβR did not directly impact the proliferation or survival of mTECs; the maturation of mTECs from MHC-IIlo to MHC-IIhi stage was also unaltered in the absence of LTβR; interestingly, the number of mTEC progenitors (Cld3,4hiSSEA-1+) was found significantly reduced in LTβR cKO mice at the neonatal stage, but not at E18.5. Consequently, epithelial deficiency of LTβR resulted in significant defect of thymic negative selection as demonstrated using OT-I and RIP-OVA transgenic mouse system. In summary, our study clarifies the epithelial intrinsic role of LTβR on mTEC development and function; more importantly, it reveals a previously unrecognized function of LTβR on the control of the size of mTEC progenitor population. PMID:28290551

  10. Campylobacter jejuni Induces Secretion of Proinflammatory Chemokines from Human Intestinal Epithelial Cells

    DTIC Science & Technology

    2005-07-01

    Gudis, T. Tsukui, and C. Sakamoto. 2003. Monocyte chemoat- tractant protein 1 (MCP-1) released from Helicobacter pylori stimulated gastric epithelial...S. Day. 2004. Gastric epithelial cell CXC chemokine secretion following Helicobacter pylori infection in vitro. J. Gastroenterol. Hepatol. 19:982...K. Kashima, and J. Imanishi. 1998. Chemokines in the gastric mucosa in Helicobacter pylori infection. Gut 42:609–617. 15. Yang, S. K., L. Eckmann, A

  11. Identification of mouse mammary epithelial cells by immunofluorescence with rabbit and guinea pig antikeratin antisera.

    PubMed Central

    Asch, B B; Burstein, N A; Vidrich, A; Sun, T T

    1981-01-01

    Few markers are available to identify the three types of mammary epithelial cells--ductal, alveolar, and myoepithelial--especially in pathological conditions and in cell cultures. We have used antisera to human keratins in immunofluorescence to facilitate the identification of the three mouse mammary epithelial cell types. In frozen tissue sections and primary cell cultures, a rabbit antikeratin antiserum specifically stained cytoplasmic filaments in all three types of epithelial cells. A guinea pig antiserum against the same keratin preparation, however, reacted preferentially with filaments in myoepithelial cells and readily detected this cell type in normal, dysplastic, and malignant mammary tissues and cell cultures. Neither antisera reacted with fibroblasts or any other mesenchymal cells. The combined use of the two antikeratin antisera thereby permits rapid surveys of tissue sections and cultures for the localization of not only all epithelial cells but also the subpopulation of myoepithelial cells. Moreover, when mammary cultures established from late-pregnant or lactating mice were stained simultaneously with guinea pig antikeratin and rabbit anticasein antisera, three populations of epithelial cells were mutually exclusive: those stained by anticasein antiserum, those stained by guinea pig antikeratin antiserum, and those stained by neither, consistent with properties of alveolar, myoepithelial, and ductal cells, respectively. These antisera thus offer a tool for studying different epithelial cell types during mammary development, tumorigenesis, and malignant progression. Images PMID:6170984

  12. Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis.

    PubMed

    Chen, Yi-Jen; Li, Hsin-Yang; Huang, Chi-Hung; Twu, Nae-Fang; Yen, Ming-Shyen; Wang, Peng-Hui; Chou, Teh-Ying; Liu, Yen-Ni; Chao, Kuan-Chong; Yang, Muh-Hwa

    2010-11-01

    Adenomyosis is an oestrogen-dependent disease caused by a downward extension of the endometrium into the uterine myometrium. Epithelial-mesenchymal transition (EMT) endows cells with migratory and invasive properties and can be induced by oestrogen. We hypothesized that oestrogen-induced EMT is critical in the pathogenesis of adenomyosis. We first investigated whether EMT occurred in adenomyotic lesions and whether it correlated with serum 17β-oestradiol (E2) levels. Immunohistochemistry was performed on adenomyotic lesions and corresponding eutopic endometrium samples from women with adenomyosis. Endometria from women without endometrial disorders were used as a control. In the epithelial component of adenomyotic lesions, vimentin expression was up-regulated and E-cadherin expression was down-regulated compared to the eutopic endometrium, suggesting that EMT occurs in adenomyosis. In adenomyosis, the serum E2 level was negatively correlated with E-cadherin expression in the epithelial components of the eutopic endometrium and adenomyotic lesions, suggesting the involvement of oestrogen-induced EMT in endometrial cells. In oestrogen receptor-positive Ishikawa endometrial epithelial cells, oestrogen induced a morphological change to a fibroblast-like phenotype, a shift from epithelial marker expression to mesenchymal marker expression, increased migration and invasion, and up-regulation of the EMT regulator Slug. Raloxifene, a selective oestrogen receptor modulator, abrogated these effects. To determine the role of oestrogen-induced EMT in the implantation of ectopic endometrium, we xenotransplanted eutopic endometrium or adenomyotic lesions from adenomyosis patients into ovariectomized SCID mice. The implantation of endometrium was oestrogen-dependent and was suppressed by raloxifene. Collectively, these data highlight the crucial role of oestrogen-induced EMT in the development of adenomyosis and suggest that raloxifene may be a potential therapeutic agent for

  13. An improved method for isolation of epithelial and stromal cells from the human endometrium

    PubMed Central

    MASUDA, Ayako; KATOH, Noriko; NAKABAYASHI, Kazuhiko; KATO, Kiyoko; SONODA, Kenzo; KITADE, Mari; TAKEDA, Satoru; HATA, Kenichiro; TOMIKAWA, Junko

    2016-01-01

    We aimed to improve the efficiency of isolating endometrial epithelial and stromal cells (EMECs and EMSCs) from the human endometrium. We revealed by immunohistochemical staining that the large tissue fragments remaining after collagenase treatment, which are usually discarded after the first filtration in the conventional protocol, consisted of glandular epithelial and stromal cells. Therefore, we established protease treatment and cell suspension conditions to dissociate single cells from the tissue fragments and isolated epithelial (EPCAM-positive) and stromal (CD13-positive) cells by fluorescence-activated cell sorting. Four independent experiments showed that, on average, 1.2 × 106 of EMECs and 2.8 × 106 EMSCs were isolated from one hysterectomy specimen. We confirmed that the isolated cells presented transcriptomic features highly similar to those of epithelial and stromal cells obtained by the conventional method. Our improved protocol facilitates future studies to better understand the molecular mechanisms underlying the dynamic changes of the endometrium during the menstrual cycle. PMID:26853786

  14. Specific N-glycan alterations are coupled in epithelial-mesenchymal transition induced by EGF in GE11 epithelial cells.

    PubMed

    Xu, Qingsong; Qu, Chen; Wang, Wenjing; Gu, Jianguo; Du, Yuguang; Song, Linsheng

    2017-02-01

    Epithelial-mesenchymal transition (EMT) is a phenomenon in cancer progression during which cancer cells undergo remarkable alteration acquiring highly invasive property. The aim of this study was to evaluate specific N-glycan alterations during EMT induced by epidermal growth factor (EGF) in GE11 epithelial cells. Herein, we demonstrated that EGF activated epidermal growth factor receptor (EGFR)/Akt/extracellular signal-regulated kinase (ERK) phosphorylation and promoted GE11 cell proliferation. Meanwhile, EGF stimulated the epithelial cells to undergo morphological alteration, destroying cell-cell inter-contact and exhibiting mesenchymal cells higher metastatic potential. A wound-healing assay showed the migratory ability increased 1.5-fold after EGF treatment. Moreover, the relative intensity of N-cadherin versus E-cadherin increased 2.6-fold, and the E-cadherin distribution in cell-cell junctions became jagged and faint after EGF incubation for 72 h. Interestingly, the amounts of bisecting GlcNAc structure were dramatically declined, by contrast, the formation of β1,6 GlcNAc branches on cell surface was upregulated during EMT induced by EGF. To understand the roles of N-glycans in EGF-induced EMT, the cells were stably transfected with N-acetylglucosaminyltransferase III (GnT-III), which catalyzes the bisecting GlcNAc structure formation. As the markers for EMT, EGF-induced E-cadherin decrease and fibronectin increase were delayed in GnT-III-overexpressing cells. Taken together, these results demonstrated that specific N-glycan alterations were coupled in EMT induced by EGF, which might be contributed to diagnosis and therapy of tumor metastasis.

  15. Acute respiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in Rhesus monkeys exposed to ozone

    SciTech Connect

    Castleman, W.L.; Dungworth, D.L.; Schwartz, L.W.; Tyler, W.S.

    1980-03-01

    The pathogenesis of acute respiratory bronchiolitis was examined in Rhesus monkeys exposed to 0.8 ppM ozone for 4 to 50 hours. Epithelial injury and renewal were qualitatively and quantitatively characterized by correlated techniques of scanning and transmission electron microscopy as well as by light-microscopic autoradiography following labeling with tritiated thymidine. Extensive degeneration and necrosis of Type 1 epithelial cells occurred on the respiratory bronchiolar wall during the initial 4 to 12 hours of exposure. Increased numbers of labeled epithelial cells were present in this region after 18 hours of exposure, and the highest labeling index (18%) was measured after 50 hours of exposure. Most (67 to 80%) of the labeled cells and all the mitotic epithelial cells (22) observed ultrastructurally were cuboidal bronchiolar epithelial cells. Of the labeled epithelial cells, 20 to 33% were Type 2 epithelial cells. After 50 hours of exposure the respiratory bronchiolar epithelium was hyperplastic. The predominant inflammatory cell in respiratory bronchiolar exudate was the alveolar macrophage. Monkeys that were exposed for 50 hours and allowed to recover in unozonized air for 7 days had incomplete resolution of respiratory bronchiolar epithelial hyperplasia. The results indicate that Type 1 epithelial cells lining respiratory bronchioles are the cell types most sensitive to injury and that both cuboidal bronchiolar epithelial cells and Type 2 epithelial cells function as stem cells in epithelial renewal.

  16. Elastase induces lung epithelial cell autophagy through placental growth factor

    PubMed Central

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD. PMID:24988221

  17. Cytotoxic Effects of Curcumin in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Hollborn, Margrit; Chen, Rui; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas; Kohen, Leon

    2013-01-01

    Backround Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE) cells in vitro. Methodology/Principal Findings Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM) and delayed apoptosis (above 1 µM). The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. Conclusion It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM) has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as concomitant therapy of

  18. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage.

    PubMed

    Aparicio-Domingo, Patricia; Romera-Hernandez, Monica; Karrich, Julien J; Cornelissen, Ferry; Papazian, Natalie; Lindenbergh-Kortleve, Dicky J; Butler, James A; Boon, Louis; Coles, Mark C; Samsom, Janneke N; Cupedo, Tom

    2015-10-19

    Disruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence of this high mitotic activity, mucosal surfaces are frequently targeted by anticancer therapies, leading to dose-limiting side effects. The cellular mechanisms that control tissue protection and mucosal healing in response to intestinal damage remain poorly understood. Type 3 innate lymphoid cells (ILC3s) are regulators of homeostasis and tissue responses to infection at mucosal surfaces. We now demonstrate that ILC3s are required for epithelial activation and proliferation in response to small intestinal tissue damage induced by the chemotherapeutic agent methotrexate. Multiple subsets of ILC3s are activated after intestinal tissue damage, and in the absence of ILC3s, epithelial activation is lost, correlating with increased pathology and severe damage to the intestinal crypts. Using ILC3-deficient Lgr5 reporter mice, we show that maintenance of intestinal stem cells after damage is severely impaired in the absence of ILC3s or the ILC3 signature cytokine IL-22. These data unveil a novel function of ILC3s in limiting tissue damage by preserving tissue-specific stem cells.

  19. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport

    PubMed Central

    Birch, Nigel P.; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10−8 cm/s vs (738 ± 190) ×10−8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  20. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    PubMed Central

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Paena, Massimilano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-01-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten’s ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer related pathways in transformed clones as determined by RNA seq. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data shows the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  1. Molecular basis of potassium channels in pancreatic duct epithelial cells.

    PubMed

    Hayashi, Mikio; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K(+) channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K(+) channels in pancreatic duct cells, including KCNN4 (KCa 3.1), KCNMA1 (KCa 1.1), KCNQ1 (Kv 7.1), KCNH2 (Kv 11.1), KCNH5 (Kv 10.2), KCNT1 (KCa 4.1), KCNT2 (KCa 4.2), and KCNK5 (K 2P 5.1). We will give an overview of K(+) channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K(+) channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K(+) channels may be of importance.

  2. Culture models of human mammary epithelial cell transformation

    SciTech Connect

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  3. Molecular basis of potassium channels in pancreatic duct epithelial cells

    PubMed Central

    Hayashi, Mikio; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance. PMID:23962792

  4. Vaginal yeast infection

    MedlinePlus

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the ...

  5. Vaginitis test - wet mount

    MedlinePlus

    ... after intercourse. Trichomoniasis , a sexually transmitted disease Vaginal yeast infection Risks There are no risks with this ... Vaginal itching and discharge - adult and adolescent Vaginal yeast infection Review Date 8/14/2015 Updated by: ...

  6. Metabolic detoxication pathways for sterigmatocystin in primary tracheal epithelial cells.

    PubMed

    Cabaret, Odile; Puel, Olivier; Botterel, Françoise; Pean, Michel; Khoufache, Khaled; Costa, Jean-Marc; Delaforge, Marcel; Bretagne, Stéphane

    2010-11-15

    Human health effects of inhaled mycotoxins remain poorly documented, despite the large amounts present in bioaerosols. Among these mycotoxins, sterigmatocystin is one of the most prevalent. Our aim was to study the metabolism and cellular consequences of sterigmatocystin once it is in contact with the airway epithelium. Metabolites were analyzed first in vitro, using recombinant P450 1A1, 1A2, 2A6, 2A13, and 3A4 enzymes, and subsequently in porcine tracheal epithelial cell (PTEC) primary cultures at an air-liquid interface. Expressed enzymes and PTECs were exposed to sterigmatocystin, uniformly enriched with (13)C to confirm the relationship between sterigmatocystin and metabolites. Induction of the expression of xenobiotic-metabolizing enzymes upon sterigmatocystin exposure was examined by real-time quantitative real-time polymerase chain reaction. Incubation of 50 μM sterigmatocystin with recombinant P450 1A1 led to the formation of three metabolites: monohydroxy-sterigmatocystin (M1), dihydroxy-sterigmatocystin (M2), and one glutathione adduct (M3), the latter after the formation of a transient epoxide. Recombinant P450 1A2 also led to M1 and M3. P450 3A4 led to only M3. In PTEC, 1 μM sterigmatocystin metabolism resulted in a glucuro conjugate (M4) mainly excreted at the basal side of cells. If PTEC were treated with β-naphthoflavone prior to sterigmatocystin incubation, two other products were detected, i.e., a sulfo conjugate (M5) and a glucoro conjugate (M6) of hydroxy-sterigmatocystin. Exposure of PTEC for 24 h to 1 μM sterigmatocystin induced an 18-fold increase in the mRNA levels of P450 1A1, without significantly induced 7-ethoxyresorufin O-deethylation activity. These data suggest that sterigmatocystin is mainly detoxified and is unable to produce significant amounts of reactive epoxide metabolites in respiratory cells. However, sterigmatocystin increases the P450 1A1 mRNA levels with unknown long-term consequences. These in vitro results obtained in

  7. A rapid method for the evaluation of the ionic permeabilities across epithelial cell membranes.

    PubMed

    Movileanu, L

    1999-02-08

    This short note presents a recipe for the calculation of the ionic permeabilities across epithelial cell membranes. The method requires the Goldman-Hodgkin-Katz formalism as well as the consideration of the equivalent electrical circuit for an epithelial cell. The equivalent electrical circuit is solved in terms of the equivalent electromotive forces coupled in series with the ionic resistances of both cell membranes (apical and basolateral). The present procedure is feasible for any leaky epithelial cell membrane with the condition that this membrane (apical or basolateral) does not contain primary or secondary mechanisms for active transport.

  8. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    SciTech Connect

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline; Donner, Catherine; Perez-Morga, David; De Vos, Rita; Snoeck, Robert; Marchant, Arnaud

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  9. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets

    PubMed Central

    Wang, Xiaocheng; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-01-01

    The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets. PMID:27022727

  10. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    SciTech Connect

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  11. Regulation of Epithelial-Mesenchymal Transition in Breast Cancer Cells by Cell Contact and Adhesion

    PubMed Central

    Cichon, Magdalena A; Nelson, Celeste M; Radisky, Derek C

    2015-01-01

    Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell–cell interactions is a key step in the earliest stages of cancer development. PMID:25698877

  12. Adherence of Candida albicans and Candida parapsilosis to epithelial cells correlates with fungal cell surface carbohydrates.

    PubMed

    Lima-Neto, Reginaldo G; Beltrão, Eduardo I C; Oliveira, Patrícia C; Neves, Rejane P

    2011-01-01

    Many studies have described the adherence of Candida albicans to epithelial cells but little is known about Candida parapsilosis adhesion and its role in host cell surface recognition. This study was designed to evaluate the correlation between the adherence of 20 C. albicans and 12 C. parapsilosis strains to human buccal epithelial cells and the expression of fungal cell surface carbohydrates using lectin histochemistry. Adherence assays were carried out by incubating epithelial cells in yeast suspensions (10(7) cells ml(-1) ) and peroxidase conjugated lectins (Con A, WGA, UEA I and PNA at 25 μg ml(-1) ) were used for lectin histochemistry. The results showed that adherence was overall greater for C. albicans than for C. parapsilosis (P < 0.01) and that the individual strain differences correlated with a high content of cell surface α-l-fucose residues as indicated by the UEA I staining pattern. Based on the saccharide specificity of the lectins used, these results suggest that l-fucose residues on cell surface glycoconjugates may represent recognition molecules for interactions between the yeast strain studied and the host (r = 0.6985, P = 0.0045). In addition, our results indicated the presence of α-d-glucose/α-d-mannose, N-acetyl-D-glucosamine/N-acetylneuraminic acid and D-galactose/N-acetyl-D-galactosamine in fungal cell wall.

  13. Thymic Medullary Epithelial Cell Differentiation, Thymocyte Emigration, and the Control of Autoimmunity Require Lympho–Epithelial Cross Talk via LTβR

    PubMed Central

    Boehm, Thomas; Scheu, Stefanie; Pfeffer, Klaus; Bleul, Conrad C.

    2003-01-01

    Thymocytes depend on the interaction with thymic epithelial cells for the generation of a diverse, nonautoreactive T cell repertoire. In turn, thymic epithelial cells acquire their three-dimensional cellular organization via instructive signals from developing thymocytes. The nature of these signals has been elusive so far. We show that thymocytes and medullary epithelial cells (MECs) communicate via the lymphotoxin β receptor (LTβR) signaling axis. Normal differentiation of thymic MECs requires LTβR ligand on thymocytes and LTβR together with nuclear factor–κB-inducing kinase (Nik) in thymic epithelial cells. Impaired lympho–epithelial cross talk in the absence of the LTβR causes aberrant differentiation and reduced numbers of thymic MECs, leads to the retention of mature T lymphocytes, and is associated with autoimmune phenomena, suggesting an unexpected role for LTβR signaling in central tolerance induction. PMID:12953095

  14. Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion.

    PubMed

    Kulawiec, Mariola; Safina, Alfiya; Desouki, Mohamed Mokhtar; Still, Ivan; Matsui, Sei-Ichi; Bakin, Andrei; Singh, Keshav K

    2008-11-01

    Human mitochondrial DNA (mtDNA) encodes 13 proteins involved in oxidative phosphorylation (OXPHOS). In order to investigate the role of mitochondrial OXPHOS genes in breast tumorigenesis, we have developed a breast epithelial cell line devoid of mtDNA (rho(0) cells). Our analysis revealed that depletion of mtDNA in breast epithelial cells results in in vitro tumorigenic phenotype as well as breast tumorigenesis in a xenograft model. We identified two major gene networks which were differentially regulated between parental and rho(0) epithelial cells. The focal proteins in these networks include (i) FN1 (fibronectin) and (ii) p53. Bioinformatic analyses of FN1 network identified laminin, integrin and 3 of 6 members of peroxiredoxin whose expression were altered in rho(0) epithelial cells. In the p53 network, we identified SMC4 and WRN whose changes in expression suggest that this network may affect chromosomal stability. Consistent with above finding our study revealed an increase in DNA double strand breaks and unique chromosomal rearrangements in rho(0) breast epithelial cells. Additionally, we identified tight junction proteins claudin-1 and claudin-7 in p53 network. To determine the functional relevance of altered gene expression, we focused on detailed analyses of claudin-1 and -7 proteins in breast tumorigenesis. Our study determined that (i) claudin-1 and 7 were indeed downregulated in rho(0) breast epithelial cells, (ii) downregulation of claudin-1 or -7 led to neoplastic transformation of breast epithelial cells, and (iii) claudin-1 and -7 were also downregulated in primary breast tumors. Together, our study suggest that mtDNA encoded OXPHOS genes play a key role in transformation of breast epithelial cells and that multiple pathway involved in mitochondria-to-nucleus retrograde regulation contribute to transformation of breast epithelial cells.

  15. Differential transformation of mammary epithelial cells by Wnt genes.

    PubMed Central

    Wong, G T; Gavin, B J; McMahon, A P

    1994-01-01

    The mouse Wnt family includes at least 10 genes that encode structurally related secreted glycoproteins. Wnt-1 and Wnt-3 were originally identified as oncogenes activated by the insertion of mouse mammary tumor virus in virus-induced mammary adenocarcinomas, although they are not expressed in the normal mammary gland. However, five other Wnt genes are differentially expressed during development of adult mammary tissue, suggesting that they may play distinct roles in various phases of mammary gland growth and development. Induction of transformation by Wnt-1 and Wnt-3 may be due to interference with these normal regulatory events; however, there is no direct evidence for this hypothesis. We have tested Wnt family members for the ability to induce transformation of cultured mammary cells. The results demonstrate that the Wnt gene family can be divided into three groups depending on their ability to induce morphological transformation and altered growth characteristics of the C57MG mammary epithelial cell line. Wnt-1, Wnt-3A, and Wnt-7A were highly transforming and induced colonies which formed and shed balls of cells. Wnt-2, Wnt-5B, and Wnt-7B also induced transformation but with a lower frequency and an apparent decrease in saturation density. In contrast, Wnt-6 and two other family members which are normally expressed in C57MG cells, Wnt-4 and Wnt-5A, failed to induce transformation. These data demonstrate that the Wnt genes have distinct effects on cell growth and should not be regarded as functionally equivalent. Images PMID:8065359

  16. Action of cholera toxin in the intestinal epithelial cells

    SciTech Connect

    Hyun, C.S.

    1982-01-01

    The primary event in the action of cholera toxin on the isolated chick intestinal epithelial cell is its interaction with the cell membrane. This involves a large number (17 million per cell) of high affinity binding sites which belong to a single class. Binding of biologically active /sup 125/I-labeled toxin is rapid, temperature-dependent, reversible, and saturable over a wide range of concentrations and includes only a small contribution from nonspecific sites. A characteristic lag phase of 10 min occurs following the complete binding of toxin before any increase in cellular cAMP levels can be detected in the isolated cells. The response (elevation of cellular cAMP) of the enterocytes to cholera toxin is linear with time for 40-50 min and causes a six- to eight-fold increase over control levels at steady stae. cAMP and agents that increase cAMP production inhibit Cl/sup -/-independent Na/sup +/ influx into the isolated enterocytes whereas chlorporomazine (CPZ) which completely abolishes toxin-induced elevation of cAMP both reverses and prevents the cAMP-mediated inhibition of Na/sup +/ entry. Correlation between cellular cAMP levels and the magnitude of Na/sup +/ influx into the enterocytes provides evidence for a cAMP-mediated control of intestinal Na/sup +/ uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT and Na/sup +/ during induction of intestinal secretion. The effect of cAMP on Na/sup +/ but no Cl/sup -/ influx in our villus cell preparation can be partially explained in terms of a cAMP-regulated Na/sup +//H/sup +/ neutral exchange system.

  17. Predictive value of the "clue cells" investigation and the amine volatilization test in vaginal infections caused by Gardnerella vaginalis.

    PubMed Central

    Marquez-Davila, G; Martinez-Barreda, C E

    1985-01-01

    Although still controversial, an etiologic role of Gardnerella vaginalis is imputed in vaginitis. Besides isolation of the organism by culture, two alternative diagnostic procedures have been claimed to be useful: the investigation of "clue cells" in clinical specimens and the amine volatilization test or fishy odor perception in genital secretions. Herein we report on the findings of the simultaneous use of G. vaginalis isolation, the clue cell test and amine volatilization perception in specimens from 1,263 consecutive female patients referred to our clinic. Our results show that the simultaneous use of both alternative tests is very useful as a screening procedure. A negative result of both tests predicts a negative culture result in 99% of the cases. However, a positive result of either or both should be considered as an indication to proceed to culture and not as diagnostic of infection. PMID:3878365

  18. Comparison of nonciliated tracheal epithelial cells in six mammalian species: ultrastructure and population densities.

    PubMed

    Plopper, C G; Mariassy, A T; Wilson, D W; Alley, J L; Nishio, S J; Nettesheim, P

    1983-12-01

    Three types of nonciliated epithelial cells in mammalian conducting respiratory airways are thought to be secretory: mucous (goblet) cells, serous epithelial cells, and Clara cells. Mucous and serous cells are considered to be the secretory cells of the trachea. Clara cells are considered to be the secretory cells of the most distal conducting airways or bronchioles. To ascertain if mucous and serous epithelial cells are common to the tracheal epithelium of mammalian species, we characterized the ultrastructure and population densities of tracheal epithelial cells in six species: hamster (H), rat (Rt), rabbit (Rb), cat (C), Bonnet monkey (M. radiata) (B), and sheep (S). Following fixation by airway infusion with glutaraldehyde/paraformaldehyde, tracheal tissue was processed for light and electron microscopy (EM) by a selective embedding technique. Tracheal epithelium over cartilage was quantitated by light microscopy and characterized by transmission EM. Mucous cells were defined by abundant large nonhomogeneous granules, numerous Golgi complexes, basally located nuclei and granular endoplasmic reticulum (GER). The percentage of mucous cells in the tracheal epithelium was: H (0%), Rt (0.5%), Rb (1.3%), C (20.2%), B (8%), S (5.1%). Serous cells had homogeneous, electron-dense granules and extensive GER. Serous cells were present only in rats (39.2%). Clara cells had homogeneous electron-dense granules, abundant agranular endoplasmic reticulum (AER) and basal GER. Clara cells were found in hamsters (41.4%) and rabbits (17.6%). In sheep trachea, 35.9% of the epithelial cells had small electron-lucent granules, abundant AER and numerous Golgi complexes. In Bonnet monkey trachea, 16% of the epithelial cells had small electron-lucent granules, numerous polyribosomes, perinuclear Golgi apparatus and moderate GER. In cat trachea, 5.4% of the epithelial cells lacked granules, and had moderate numbers of mitochondria, moderate amounts of polyribosomes, a central nucleus, and

  19. Potassium ion fluxes in corneal epithelial cells exposed to UVB

    PubMed Central

    Ubels, John L.; Van Dyken, Rachel E.; Louters, Julienne R.; Schotanus, Mark P.; Haarsma, Loren D.

    2011-01-01

    The goal of this study was to investigate the efflux of K+ from human corneal limbal epithelial cells (HCLE) exposed to ambient levels of UVB, which is known to cause apoptosis, and to examine the effect of K+ channel blockers on loss of potassium induced by UVB. HCLE cells were exposed to 100–200 mJ/cm2 UVB, followed by incubation in culture media with 5.5 – 100 mM K+, BDS-1, Ba2+ or ouabain. To measure intracellular cations, cells were washed in 280 mM sucrose and lysed in DI water. K+ and Na+ levels in lysates were measured by ion chromatography. HCLE cells showed maximal loss of [K+]i 10 minutes after exposure to UVB and 5.5 mM K+ media, with recovery of normal K+ levels after 90 minutes. Treatment with 1 µM BDS-1 following UVB exposure reduced the loss of [K+]i retained by HCLE cells. Exposure to 0.1–5 mM Ba2+ inhibited UVB-induced K+ loss in a time and dose dependent manner. These results confirm that blocking K+ channels in HCLE cells exposed to UVB prevents efflux of K+, confirming that UVB activates K+ channels in these cells. Electrophysiology data shows that K+ channels remain highly active at least 90 minutes after UVB exposure. HCLE cells exposed to UVB and incubated 0.01–1µM ouabain did not recover from UVB-induced K+ loss. These data suggest that the Na/K pump may act to restore [K+]i to control levels in HCLE cells following UVB exposure and that the pump is not damaged by exposure to UVB. Incubation of HCLE cells exposed to UVB in medium with 25–100mM K+ media prevented K+ efflux at extracellular concentrations as low as 25mM (the concentration in tear fluid), maintaining control levels of [K+]i. In all experiments inward fluxes and intracelluar Na+ levels mirrored K+ changes, albeit at the expected lower concentrations. The prevention of UVB-induced K+i loss by 25 mM K+o is consistent with the possible contribution of the relatively high K+ concentration in tears to protection of the corneal epithelium from ambient UVB. PMID:21377460

  20. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis

    PubMed Central

    Yang, Huansheng; Wang, Xiaocheng; Xiong, Xia; Yin, Yulong

    2016-01-01

    Intestinal epithelial cells continuously migrate and mature along crypt-villus axis (CVA), while the changes in energy metabolism during maturation are unclear in neonates. The present study was conducted to test the hypothesis that the energy metabolism in intestinal epithelial cells would be changed during maturation along CVA in neonates. Eight 21-day-old suckling piglets were used. Intestinal epithelial cells were isolated sequentially along CVA, and proteomics was used to analyze the changes in proteins expression in epithelial cells along CVA. The identified differentially expressed proteins were mainly involved in cellular process, metabolic process, biological regulation, pigmentation, multicellular organizational process and so on. The energy metabolism in intestinal epithelial cells of piglets was increased from the bottom of crypt to the top of villi. Moreover, the expression of proteins related to the metabolism of glucose, most of amino acids, and fatty acids was increased in intestinal epithelial cells during maturation along CVA, while the expression of proteins related to glutamine metabolism was decreased from crypt to villus tip. The expression of proteins involved in citrate cycle was also increased intestinal epithelial cells during maturation along CVA. Moreover, dietary supplementation with different energy sources had different effects on intestinal structure of weaned piglets. PMID:27558220

  1. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    PubMed Central

    Osherov, Nir

    2012-01-01

    Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia) into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides, and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome. PMID:23055997

  2. Epithelial monolayer culture system for real‐time single‐cell analyses

    PubMed Central

    Seo, Jong Bae; Moody, Mark; Koh, Duk‐Su

    2014-01-01

    Abstract Many epithelial cells form polarized monolayers under in vivo and in vitro conditions. Typically, epithelial cells are cultured for differentiation on insert systems where cells are plated on a porous filter membrane. Although the cultured monolayers have been a standard system to study epithelial physiology, there are some limits: The epithelial cells growing inside the commercial inserts are not optimal to visualize directly through lenses on inverted microscopes. The cell images are optically distorted and background fluorescence is bright due to the filter membrane positioned between the cells and the lens. In addition, the cells are not easily accessible by electrodes due to the presence of tall side walls. Here, we present the design, fabrication, and practical applications of an improved system for analysis of polarized epithelial monolayers. This new system allows (1) direct imaging of cells without an interfering filter membrane, (2) electrophysiological measurements, and (3) detection of apical secretion with minimal dilution. Therefore, our culture method is optimized to study differentiated epithelial cells at the single‐cell and subcellular levels, and can be extended to other cell types with minor modifications. PMID:24771696

  3. Nuclear factor I and epithelial cell-specific transcription of human papillomavirus type 16.

    PubMed Central

    Apt, D; Chong, T; Liu, Y; Bernard, H U

    1993-01-01

    The transcription of human papillomavirus type 16 (HPV-16) is mediated by the viral enhancer. Epithelial cell-specific activation is achieved by the cooperative interaction of apparently ubiquitous transcriptional factors. One of them, nuclear factor I (NFI), binds seven sites within the HPV-16 enhancer. Point mutations on enhancer fragments, which retain epithelial cell specificity, verify the functional contribution of NFI. In band shift experiments, the epithelial cell-derived NFI proteins CTF-1, CTF-2, and CTF-3 form a characteristic pattern of heterodimeric complexes which are observed in all epithelial cells tested. Divergence from this pattern in fibroblasts, liver cells, and lymphoid cells correlates with the lack of HPV-16 enhancer activation. The HPV-16 enhancer can be activated by CTF-1 in SL-2 cells, which lack NFI-like proteins. However, exogenous CTF-1 fails to overcome the inactivity of the viral enhancer in fibroblasts. Western immunoblot and supershift analysis shows that exogenously introduced CTF-1 proteins form different heterodimer complexes with the given subset of endogenous NFI proteins in epithelial or fibroblast cells. Polymerase chain reaction analysis and cDNA library screens identified the endogenous fibroblast type NFI as NFI-X, an NFI family member originally cloned from hamster liver cells. The strict correlation between the activation or lack of activation of the HPV-16 enhancer and cell-specific subsets of NFI proteins argues for the pivotal role of NFI binding sites in the epithelial cell-specific function of the viral enhancer. Images PMID:8392590

  4. Feasibility of obtaining breast epithelial cells from healthy women for studies of cellular proliferation.

    PubMed

    Miller, N A; Thomas, M; Martin, L J; Hedley, D W; Michal, S; Boyd, N F

    1997-05-01

    Increased dietary fat intake and rate of breast epithelial cell proliferation have each been associated with the development of breast cancer. The goal of this study was to measure the effect of a low fat, high carbohydrate diet on the rate of breast epithelial cell proliferation in women at high risk for breast cancer. Women were recruited from the intervention and control groups of a randomized low fat dietary intervention trial, breast epithelial cells were obtained by fine needle aspiration, and cell proliferation was assessed in these samples using immunofluorescent detection of Ki-67 and PCNA. The effects of needle size and study group on cell yield and cytologic features of the cells were also examined. Fifty three women (20 in the intervention group and 33 in the control group) underwent the biopsy procedure. Slides from 38 subjects were stained for Ki-67 and from 14 subjects for PCNA. No cell proliferation (fluorescence) was detected for either Ki-67 or PCNA in any of the slides. Epithelial cell yield and number of stromal fragments were greater with a larger needle size. Numbers of stromal fragments and bipolar naked nuclei were greater in the low fat as compared to the control group but no differences in epithelial cell yield were observed between the two groups. This study confirms that fine needle aspiration biopsy is a feasible method of obtaining epithelial cells from women without discrete breast masses, but suggests that cell proliferation cannot be assessed using Ki-67 and PCNA in such samples.

  5. [Changes in proliferation and differentiation of basal cells during wound healing of rabbit corneal epithelial abrasions].

    PubMed

    Yamada, M; Mashima, Y

    1995-01-01

    Changes in the mitotic rate and epithelial keratin expression of corneal epithelial basal cells following corneal abrasion (7.0 mm in diameter) in rabbits were studied immunohistochemically using antiproliferating cell nuclear antigen (PCNA) monoclonal antibody and anti-epithelial keratin 1 (AE1). In the non-wounded control, the mitotic rate (PCNA positive cells in the basal cell layer) was approximately 4%, and only the superficial cells were stained by AE1 monoclonal antibody. One day after wounding, migrating epithelial cells at the leading edge, which reacted to AE1, showed low mitotic activity. At days 3 and 7, the mitotic rates of basal cells of regenerating epithelium were 3 times higher than that of controls. These basal cells displayed intensive staining with AE1, while the epithelium over the unwounded cornea exhibited a normal pattern limited to superficial cells. By 14 days after injury, the mitotic rate returned to normal and all epithelial cells expressed a normal AE1 staining pattern. Theses results suggest that regeneration of corneal epithelial basal cells involves changes in keratin expression, which might correlate with changes in the mitotic rate.

  6. Effect of vaginal or systemic estrogen on dynamics of collagen assembly in the rat vaginal wall.

    PubMed

    Montoya, T Ignacio; Maldonado, P Antonio; Acevedo, Jesus F; Word, R Ann

    2015-02-01

    The objective of this study was to compare the effects of systemic and local estrogen treatment on collagen assembly and biomechanical properties of the vaginal wall. Ovariectomized nulliparous rats were treated with estradiol or conjugated equine estrogens (CEEs) either systemically, vaginal CEE, or vaginal placebo cream for 4 wk. Low-dose local CEE treatment resulted in increased vaginal epithelial thickness and significant vaginal growth without uterine hyperplasia. Furthermore, vaginal wall distensibility increased without compromise of maximal force at failure. Systemic estradiol resulted in modest increases in collagen type I with no change in collagen type III mRNA. Low-dose vaginal treatment, however, resulted in dramatic increases in both collagen subtypes whereas moderate and high dose local therapies were less effective. Consistent with the mRNA results, low-dose vaginal estrogen resulted in increased total and cross-linked collagen content. The inverse relationship between vaginal dose and collagen expression may be explained in part by progressive downregulation of estrogen receptor-alpha mRNA with increasing estrogen dose. We conclude that, in this menopausal rat model, local estrogen treatment increased total and cross-linked collagen content and markedly stimulated collagen mRNA expression in an inverse dose-effect relationship. High-dose vaginal estrogen resulted in downregulation of estrogen receptor-alpha and loss of estrogen-induced increases in vaginal collagen. These results may have important clinical implications regarding the use of local vaginal estrogen therapy and its role as an adjunctive treatment in women with loss of vaginal support.

  7. Carcinoma cells induce lumen filling and EMT in epithelial cells through soluble E-cadherin-mediated activation of EGFR

    PubMed Central

    Patil, Pratima U.; D'Ambrosio, Julia; Inge, Landon J.; Mason, Robert W.; Rajasekaran, Ayyappan K.

    2015-01-01

    ABSTRACT In epithelial cancers, carcinoma cells coexist with normal cells. Although it is known that the tumor microenvironment (TME) plays a pivotal role in cancer progression, it is not completely understood how the tumor influences adjacent normal epithelial cells. In this study, a three-dimensional co-culture system comprising non-transformed epithelial cells (MDCK) and transformed carcinoma cells (MSV-MDCK) was used to demonstrate that carcinoma cells sequentially induce preneoplastic lumen filling and epithelial–mesenchymal transition (EMT) in epithelial cysts. MMP-9 secreted by carcinoma cells cleaves cellular E-cadherin (encoded by CDH1) from epithelial cells to generate soluble E-cadherin (sE-cad), a pro-oncogenic protein. We show that sE-cad induces EGFR activation, resulting in lumen filling in MDCK cysts. Long-term sE-cad treatment induced EMT. sE-cad caused lumen filling by induction of the ERK signaling pathway and triggered EMT through the sustained activation of the AKT pathway. Although it is known that sE-cad induces MMP-9 release and consequent EGFR activation in tumor cells, our results, for the first time, demonstrate that carcinoma cells can induce sE-cad shedding in adjacent epithelial cells, which leads to EGFR activation and the eventual transdifferentiation of the normal epithelial cells. PMID:26483386

  8. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    PubMed

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  9. Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B.

    PubMed

    Ekstrand-Hammarström, Barbro; Akfur, Christine M; Andersson, Per Ola; Lejon, Christian; Osterlund, Lars; Bucht, Anders

    2012-09-01

    We have compared the cellular uptake and responses of five preparations of nanocrystalline titanium dioxide (TiO(2)) between normal human bronchial epithelial (NHBE) cells and epithelial cell lines (A549 and BEAS-2B). The P25 nanoparticles, containing both anatase and rutile modifications, induced reactive oxygen species (ROS) and secretion of the neutrophil chemoattractant IL-8 in all three cell types used. Pure anatase and rutile particles provoked differential IL-8 response in A549 and no response in BEAS-2B cells despite similar formation of ROS. The pure TiO(2) modifications also provoked release of the inflammatory mediators: IL-6, G-CSF and VEGF, in NHBE cells but not in the two cell lines. We conclude that the responsiveness of lung epithelial cells is strongly dependent on both the physicochemical properties of TiO(2) nanoparticles and the type of responder cells. The differential pro-inflammatory responsiveness of primary lung epithelial cells compared with immortalized cell lines should be considered in the assessment of adverse reactions to inhaled nanoparticles.

  10. The comparison of glycosphingolipids isolated from an epithelial ovarian cancer cell line and a nontumorigenic epithelial ovarian cell line using MALDI-MS and MALDI-MS/MS.

    PubMed

    Rajanayake, Krishani K; Taylor, William R; Isailovic, Dragan

    2016-08-05

    Glycosphingolipids (GSLs) are important biomolecules, which are linked to many diseases such as GSL storage disorders and cancer. Consequently, the expression of GSLs may be altered in ovarian cancer cell lines in comparison to apparently healthy cell lines. Here, differential expressions of GSLs in an epithelial ovarian cancer cell line SKOV3 and a nontumorigenic epithelial ovarian cell line T29 were studied using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and MALDI-MS/MS. The isolation of GSLs from SKOV3 and T29 cell lines was carried out using Folch partition. GSLs were successfully detected by MALDI-MS, and structurally assigned by a comparison of their MALDI-MS/MS fragmentation patterns with MS/MS data found in SimLipid database. Additionally, LIPID MAPS was used to assign GSL ion masses in MALDI-MS spectra. Seventeen neutral GSLs were identified in Folch partition lower (chloroform/methanol) phases originating from both cell lines, while five globo series neutral GSLs were identified only in the Folch partition lower phase of SKOV3 cell line. Several different sialylated GSLs were detected in Folch partition upper (water/methanol) phases of SKOV3 and T29 cell lines. Overall, this study demonstrates the alteration and increased glycosylation of GSLs in an epithelial ovarian cancer cell line in comparison to a nontumorigenic epithelial ovarian cell line.

  11. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS.

    PubMed

    Kim, Kyeong Ah; Kim, Ju Young; Lee, Young Ah; Min, Arim; Bahk, Young Yil; Shin, Myeong Heon

    2013-02-01

    Entamoeba histolytica, which causes amoebic colitis and occasionally liver abscess in humans, is able to induce host cell death. However, signaling mechanisms of colon cell death induced by E. histolytica are not fully elucidated. In this study, we investigated the signaling role of NOX in cell death of HT29 colonic epithelial cells induced by E. histolytica. Incubation of HT29 cells with amoebic trophozoites resulted in DNA fragmentation that is a hallmark of apoptotic cell death. In addition, E. histolytica generate intracellular reactive oxygen species (ROS) in a contact-dependent manner. Inhibition of intracellular ROS level with treatment with DPI, an inhibitor of NADPH oxidases (NOXs), decreased Entamoeba-induced ROS generation and cell death in HT29 cells. However, pan-caspase inhibitor did not affect E. histolytica-induced HT29 cell death. In HT29 cells, catalytic subunit NOX1 and regulatory subunit Rac1 for NOX1 activation were highly expressed. We next investigated whether NADPH oxidase 1 (NOX1)-derived ROS is closely associated with HT29 cell death induced by E. histolytica. Suppression of Rac1 by siRNA significantly inhibited Entamoeba-induced cell death. Moreover, knockdown of NOX1 by siRNA, effectively inhibited E. histolytica-triggered DNA fragmentation in HT29 cells. These results suggest that NOX1-derived ROS is required for apoptotic cell death in HT29 colon epithelial cells induced by E. histolytica.

  12. Graded activation of the MEK1/MT1-MMP axis determines renal epithelial cell tumor phenotype.

    PubMed

    Mahimkar, Rajeev; Alfonso-Jaume, Maria Alejandra; Cape, Leslie M; Dahiya, Rajvir; Lovett, David H

    2011-12-01

    Activation of Raf/Ras/mitogen-activated protein kinase (MEK)/mitogen-activated protein kinase signaling and elevated expression of membrane type-1 matrix metalloproteinase (MT1-MMP) are associated with von Hippel-Lindau gene alterations in renal cell carcinoma. We postulated that the degree of MEK activation was related to graded expression of MT1-MMP and the resultant phenotype of renal epithelial tumors. Madin Darby canine kidney epithelial cells transfected with a MEK1 expression plasmid yielded populations with morphologic phenotypes ranging from epithelial, mixed epithelial/mesenchymal to mesenchymal. Clones were analyzed for MEK1 activity, MT1-MMP expression and extent of epithelial-mesenchymal transition. Phenotypes of the MDCK-MEK1 clones were evaluated in vivo with nu/nu mice. Tissue microarray of renal cell cancers was quantitatively assessed for expression of phosphorylated MEK1 and MT1-MMP proteins and correlations drawn to Fuhrma