Sample records for vaginal muscle stimulator

  1. [Effects of Electric Stimulation and Biofeedback for Pelvic Floor Muscle Exercise in Women with Vaginal Rejuvenation Women].

    PubMed

    Lee, Jung Bok; Choi, So Young

    2015-10-01

    The purpose of this study was to investigate the effects of pelvic floor muscle exercise using electric stimulation and biofeedback on maximum pressure of vaginal contraction, vaginal contraction duration and sexual function in women who have had vaginal rejuvenation. The research design was a non-equivalent control group non-synchronized design study. Participants in this study were women who had vaginal rejuvenation at C obstetrics and gynecology hospital. The 15 participants in the experimental group were given pelvic floor muscle exercise using electric stimulation and biofeedback and the 15 participants in the control group received self pelvic floor muscle exercise. For maximum pressure of vaginal contraction, the experimental group showed a statistically significant increase compared to than the control group (t=5.96, p<.001). For vaginal contraction duration, the experimental group also showed a statistically significant increase compared to the control group (t=3.23, p=.003). For women's sexual function, the experimental group showed a significant increase when compared to the control group in total sexual function scores (t=3.41, p=.002). The results indicate that pelvic floor muscle exercise with electric stimulation and biofeedback after vaginal rejuvenation is effective in strengthening vaginal contraction pressure, vaginal contraction and that it also positively functions to increase women's sexual function.

  2. 21 CFR 884.5940 - Powered vaginal muscle stimulator for therapeutic use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered vaginal muscle stimulator for therapeutic use. 884.5940 Section 884.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... for therapeutic use in increasing muscular tone and strength in the treatment of sexual dysfunction...

  3. 21 CFR 884.5940 - Powered vaginal muscle stimulator for therapeutic use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered vaginal muscle stimulator for therapeutic use. 884.5940 Section 884.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... for therapeutic use in increasing muscular tone and strength in the treatment of sexual dysfunction...

  4. 21 CFR 884.5940 - Powered vaginal muscle stimulator for therapeutic use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered vaginal muscle stimulator for therapeutic use. 884.5940 Section 884.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... for therapeutic use in increasing muscular tone and strength in the treatment of sexual dysfunction...

  5. 21 CFR 884.5940 - Powered vaginal muscle stimulator for therapeutic use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered vaginal muscle stimulator for therapeutic use. 884.5940 Section 884.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... for therapeutic use in increasing muscular tone and strength in the treatment of sexual dysfunction...

  6. 21 CFR 884.5940 - Powered vaginal muscle stimulator for therapeutic use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered vaginal muscle stimulator for therapeutic use. 884.5940 Section 884.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... for therapeutic use in increasing muscular tone and strength in the treatment of sexual dysfunction...

  7. More frequent vaginal orgasm is associated with experiencing greater excitement from deep vaginal stimulation.

    PubMed

    Brody, Stuart; Klapilova, Katerina; Krejčová, Lucie

    2013-07-01

    Research indicated that: (i) vaginal orgasm (induced by penile-vaginal intercourse [PVI] without concurrent clitoral masturbation) consistency (vaginal orgasm consistency [VOC]; percentage of PVI occasions resulting in vaginal orgasm) is associated with mental attention to vaginal sensations during PVI, preference for a longer penis, and indices of psychological and physiological functioning, and (ii) clitoral, distal vaginal, and deep vaginal/cervical stimulation project via different peripheral nerves to different brain regions. The aim of this study is to examine the association of VOC with: (i) sexual arousability perceived from deep vaginal stimulation (compared with middle and shallow vaginal stimulation and clitoral stimulation), and (ii) whether vaginal stimulation was present during the woman's first masturbation. A sample of 75 Czech women (aged 18-36), provided details of recent VOC, site of genital stimulation during first masturbation, and their recent sexual arousability from the four genital sites. The association of VOC with: (i) sexual arousability perceived from the four genital sites and (ii) involvement of vaginal stimulation in first-ever masturbation. VOC was associated with greater sexual arousability from deep vaginal stimulation but not with sexual arousability from other genital sites. VOC was also associated with women's first masturbation incorporating (or being exclusively) vaginal stimulation. The findings suggest (i) stimulating the vagina during early life masturbation might indicate individual readiness for developing greater vaginal responsiveness, leading to adult greater VOC, and (ii) current sensitivity of deep vaginal and cervical regions is associated with VOC, which might be due to some combination of different neurophysiological projections of the deep regions and their greater responsiveness to penile stimulation. © 2013 International Society for Sexual Medicine.

  8. Elevation of pain threshold by vaginal stimulation in women.

    PubMed

    Whipple, B; Komisaruk, B R

    1985-04-01

    In 2 studies with 10 women each, vaginal self-stimulation significantly increased the threshold to detect and tolerate painful finger compression, but did not significantly affect the threshold to detect innocuous tactile stimulation. The vaginal self-stimulation was applied with a specially designed pressure transducer assembly to produce a report of pressure or pleasure. In the first study, 6 of the women perceived the vaginal stimulation as producing pleasure. During that condition, the pain tolerance threshold increased significantly by 36.8% and the pain detection threshold increased significantly by 53%. A second study utilized other types of stimuli. Vaginal self-stimulation perceived as pressure significantly increased the pain tolerance threshold by 40.3% and the pain detection threshold by 47.4%. In the second study, when the vaginal stimulation was self-applied in a manner that produced orgasm, the pain tolerance threshold and pain detection threshold increased significantly by 74.6% and 106.7% respectively, while the tactile threshold remained unaffected. A variety of control conditions, including various types of distraction, did not significantly elevate pain or tactile thresholds. We conclude that in women, vaginal self-stimulation decreases pain sensitivity, but does not affect tactile sensitivity. This effect is apparently not due to painful or non-painful distraction.

  9. Multiparity modifies contractile properties of pelvic muscles affecting the genesis of vaginal pressure in rabbits.

    PubMed

    López-Juárez, Rhode; Zempoalteca, René; Corona-Quintanilla, Dora Luz; Jiménez-Estrada, Ismael; Castelán, Francisco; Martínez-Gómez, Margarita

    2018-01-01

    To characterize the contractile properties of the bulbospongiosus (Bsm), isquiocavernosus (Ism), and pubococcygeus muscles (Pcm), and their involvement in the genesis of vaginal pressure in nulliparous and multiparous rabbits. Age-matched nulliparous and multiparous rabbits were used to record the isometric contractile responses of each muscle as well as the intravaginal pressure evoked by single square electrical pulses and stimulation trains of ascending frequency. To establish significant differences between groups, two-tail unpaired Student t tests were carried out. The linear correlation between intravaginal pressure and muscle contractile force was analyzed with Pearson correlation tests. For all cases, a P ≤ 0.05 was set as statistically significant. Multiparity decreased the contractile force of Bsm and Ism generated by high-frequency stimulation trains. The normalized force of the Pcm increased when evoked at 1, 4, and 10 Hz while this decreased at higher frequencies (20, 50, and 100 Hz). The contraction of both Bsm and Ism raised particularly the pressure on the perineal vagina while that of the Pcm increased the pressure in the pelvic vagina. Such a functional segregation is still present in multiparous rabbits albeit it was modified. Multiparity induces changes in the contractile responses of Bsm, Ism, and Pcm, which alterates the vaginal pressure. © 2017 Wiley Periodicals, Inc.

  10. Impact of vaginal parity and aging on the architectural design of pelvic floor muscles.

    PubMed

    Alperin, Marianna; Cook, Mark; Tuttle, Lori J; Esparza, Mary C; Lieber, Richard L

    2016-09-01

    Vaginal delivery and aging are key risk factors for pelvic floor muscle dysfunction, which is a critical component of pelvic floor disorders. However, alterations in the pelvic floor muscle intrinsic structure that lead to muscle dysfunction because of childbirth and aging remain elusive. The purpose of this study was to determine the impact of vaginal deliveries and aging on human cadaveric pelvic floor muscle architecture, which is the strongest predictor of active muscle function. Coccygeus, iliococcygeus, and pubovisceralis were obtained from younger donors who were ≤51 years old, vaginally nulliparous (n = 5) and vaginally parous (n = 6) and older donors who were >51 years old, vaginally nulliparous (n = 6) and vaginally parous (n = 6), all of whom had no history of pelvic floor disorders. Architectural parameters, which are predictive of muscle's excursion and force-generating capacity, were determined with the use of validated methods. Intramuscular collagen content was quantified by hydroxyproline assay. Main effects of parity and aging and the interactions were determined with the use of 2-way analysis of variance, with Tukey's post-hoc testing and a significance level of .05. The mean age of younger and older donors differed by approximately 40 years (P = .001) but was similar between nulliparous and parous donors within each age group (P > .9). The median parity was 2 (range, 1-3) in younger and older vaginally parous groups (P = .7). The main impact of parity was increased fiber length in the more proximal coccygeus (P = .03) and iliococcygeus (P = .04). Aging changes manifested as decreased physiologic cross-sectional area across all pelvic floor muscles (P < .05), which substantially exceeded the age-related decline in muscle mass. The physiologic cross-sectional area was lower in younger vaginally parous, compared with younger vaginally nulliparous, pelvic floor muscles; however, the differences did not reach statistical significance

  11. IMPACT OF VAGINAL PARITY AND AGING ON THE ARCHITECTURAL DESIGN OF PELVIC FLOOR MUSCLES

    PubMed Central

    Alperin, Marianna; Cook, Mark; Tuttle, Lori J.; Esparza, Mary C.; Lieber, Richard L.

    2016-01-01

    Background Vaginal delivery and aging are key risk factors for pelvic floor muscle dysfunction, which is a critical component of pelvic floor disorders. However, alterations in the PFM intrinsic structure due to childbirth and aging that lead to muscle dysfunction remain elusive. Objectives To determine the impact of vaginal deliveries and aging on human cadaveric PFM architecture, the strongest predictor of active muscle function. Study Design Coccygeus, iliococcygeus and pubovisceralis were obtained from younger, ≤ 51 years, vaginally nulliparous (N=5) and vaginally parous (N=6), and older, >51 years, vaginally nulliparous (N=6) and vaginally parous (N=6) donors without history of PFDs. Architectural parameters, predictive of muscle’s excursion and force-generating capacity, were determined using validated methods. Intramuscular collagen content was quantified by hydroxyproline assay. Main effects of parity and aging and the interactions were determined using two-way ANOVA, with Tukey’s post-hoc testing with significance level of 0.05. Results The mean age of younger and older donors differed by ~40 years (P=0.001), but was similar between nulliparous and parous donors within each age group (P>0.9). Median parity was 2 (range 1–3) in younger and older vaginally parous groups, P=0.7. The main impact of parity was increased fiber length in the more proximal coccygeus (P=0.03), and iliococcygeus (P=0.04). Aging changes manifested as decreased physiological cross sectional area across all pelvic floor muscles, P<0.05, which substantially exceeded the age-related decline in muscle mass. Physiological cross sectional area was lower in younger vaginally parous, compared to younger vaginally nulliparous pelvic floor muscles, however the differences did not reach statistical significance. Pelvic floor muscles’ collagen content was not altered by parity, but increased dramatically with aging, P<0.05. Conclusions Increased fiber length in more proximal pelvic

  12. Levator Ani Muscle Stretch Induced by Simulated Vaginal Birth

    PubMed Central

    Lien, Kuo-Cheng; Mooney, Brian; DeLancey, John O. L.; Ashton-Miller, James A.

    2005-01-01

    OBJECTIVE: To develop a three-dimensional computer model to predict levator ani muscle stretch during vaginal birth. METHODS: Serial magnetic resonance images from a healthy nulliparous 34-year-old woman, published anatomic data, and engineering graphics software were used to construct a structural model of the levator ani muscles along with related passive tissues. The model was used to quantify pelvic floor muscle stretch induced during the second stage of labor as a model fetal head progressively engaged and then stretched the iliococcygeus, pubococcygeus, and puborectalis muscles. RESULTS: The largest tissue strain reached a stretch ratio (tissue length under stretch/original tissue length) of 3.26 in medial pubococcygeus muscle, the shortest, most medial and ventral levator ani muscle. Regions of the ileococcygeus, pubococcygeus, and puborectalis muscles reached maximal stretch ratios of 2.73, 2.50, and 2.28, respectively. Tissue stretch ratios were proportional to fetal head size: For example, increasing fetal head diameter by 9% increased medial pubococcygeus stretch by the same amount. CONCLUSION: The medial pubococcygeus muscles undergo the largest stretch of any levator ani muscles during vaginal birth. They are therefore at the greatest risk for stretch-related injury. PMID:14704241

  13. Regional Differences in Rat Vaginal Smooth Muscle Contractility and Morphology

    PubMed Central

    Skoczylas, Laura C.; Jallah, Zegbeh; Sugino, Yoshio; Stein, Suzan E.; Feola, Andrew; Yoshimura, Naoki

    2013-01-01

    The objective of this study was to define the regional differences in rat vaginal smooth muscle contractility and morphology. We evaluated circumferential segments from the proximal, middle, and distal rat vagina (n = 21) in vitro. Contractile responses to carbachol, phenylephrine, potassium chloride, and electrical field stimulation (EFS) were measured. Immunohistochemical analyses were also performed. The dose–response curves for carbachol- and phenylephrine-dependent contractions were different in the distal (P = .05, P = .04) compared to the proximal/middle regions. Adjusted for region-dependent changes in contractility, the distal vagina generated lower force in response to carbachol and higher force in response to phenylephrine. There was less force with increasing EFS frequency in the distal (P = .03), compared to the proximal/middle regions. Cholinergic versus adrenergic nerves were more frequent in the proximal region (P = .03). In summary, the results indicate that functional and morphological differences in smooth muscle and nerve fibers of the distal versus proximal/middle regions of the vagina exist. PMID:23298869

  14. Clitorally Stimulated Orgasms Are Associated With Better Control of Sexual Desire, and Not Associated With Depression or Anxiety, Compared With Vaginally Stimulated Orgasms.

    PubMed

    Prause, Nicole; Kuang, Lambert; Lee, Peter; Miller, Geoffrey

    2016-11-01

    Most women report that clitoral stimulation is an integral aspect of their orgasm experience. Thus, recent claims that vaginal stimulation and vaginally generated orgasms are superior to clitoral stimulation and clitorally generated orgasms pathologize most women and maintain a clitoral vs vaginal dichotomy that might not accurately reflect the complexity of women's sexual experience. To have women report on their experienced source of orgasm, including combinations of vaginal and clitoral stimulation, the solo or partnered context of the stimulation, and the intensity of the orgasms from different sources and to predict indicators of mental health and sexual health using the orgasm source. Eighty-eight women 18 to 53 years old answered detailed questions about their usual and recent orgasm experiences, sexual history, depression, and anxiety. Then, they viewed a series of neutral and sexual films. They were instructed to increase or decrease their sexual arousal or respond "as usual" to the sexual films. They reported their sexual arousal after each film. Outcomes assessed included mental health (depression and anxiety) and sexual health (orgasm quality, ability to regulate sexual response to sex films). Reported sexual arousal was analyzed for the regulation task. Most women (64%) reported that clitoral and vaginal stimulation contributed to their usual method of reaching orgasm. Women who reported that clitoral stimulation was primarily responsible for their orgasm reported a higher desire to self-stimulate and demonstrated greater control over their self-reported sexual arousal. The primary stimulation site for orgasm was unrelated to measurements of depression or anxiety despite sufficient statistical power. Most women reported that clitoral and vaginal stimulation is important in orgasm. Women experience orgasms in many varied patterns, a complexity that is often ignored by current methods of assessing orgasm source. The reported source of orgasm was

  15. Influence of pelvic floor muscle contraction on the profile of vaginal closure pressure in continent and stress urinary incontinent women.

    PubMed

    Shishido, Keiichi; Peng, Qiyu; Jones, Ruth; Omata, Sadao; Constantinou, Christos E

    2008-05-01

    We characterized the vaginal pressure profile as a representation of closure forces along the length and circumference of the vaginal wall. Vaginal pressure profile data were used to test the hypothesis that the strength of pelvic floor muscle contractions differs significantly between continent women and women with stress urinary incontinence. Vaginal pressure profile recordings were made in 23 continent subjects and in 10 patients with stress urinary incontinence. The recordings characterized closure forces along the entire length of the vagina and identified differences among the anterior, posterior, left and right sides of the vaginal wall. Using a novel, directionally sensitive vaginal probe we made vaginal pressure profile measurements with the women at rest and during pelvic floor muscle contraction while supine. The nature of the vaginal pressure profile was characterized in terms of force distribution in the anterior and posterior vaginal walls, which was significantly greater than that on the left and right sides. The continent group had significant greater maximum pressure than the stress urinary incontinence group on the posterior side at rest (mean +/- SE 3.4 +/- 0.3 vs 2.01 +/- 0.36 N/cm(2)) and during pelvic floor muscle contraction (4.18 +/- 0.26 vs 2.25 +/- 0.41 N/cm(2)). The activity pressure difference between the posterior and anterior vaginal walls in the continent group was significantly increased when the pelvic floor muscles contracted vs that at rest (3.29 +/- 0.21 vs 2.45 +/- 0.26 N/cm(2)). However, the change observed in the stress urinary incontinence group was not significant (1.85 +/- 0.38 vs 1.35 +/- 0.27 N/cm(2)). The results demonstrate that the voluntary pelvic floor muscles impose significant closure forces along the vaginal wall of continent women but not in women with stress urinary incontinence. The implication of these findings is that extrinsic urethral closure pressure is insufficiently augmented by pelvic floor muscle

  16. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use in...

  17. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use in...

  18. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use in...

  19. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use in...

  20. 21 CFR 890.5860 - Ultrasound and muscle stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasound and muscle stimulator. 890.5860 Section... Ultrasound and muscle stimulator. (a) Ultrasound and muscle stimulator for use in applying therapeutic deep heat for selected medical conditions—(1) Identification. An ultrasound and muscle stimulator for use in...

  1. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles.

    PubMed

    Maneski, Lana Z Popović; Malešević, Nebojša M; Savić, Andrej M; Keller, Thierry; Popović, Dejan B

    2013-12-01

    One important reason why functional electrical stimulation (FES) has not gained widespread clinical use is the limitation imposed by rapid muscle fatigue due to non-physiological activation of the stimulated muscles. We aimed to show that asynchronous low-pulse-rate (LPR) electrical stimulation applied by multipad surface electrodes greatly postpones the occurrence of muscle fatigue compared with conventional stimulation (high pulse rate, HPR). We compared the produced force vs. time of the forearm muscles responsible for finger flexion in 2 stimulation protocols, LPR (fL = 10 Hz) and HPR (fH = 40 Hz). Surface-distributed low-frequency asynchronous stimulation (sDLFAS) doubles the time interval before the onset of fatigue (104 ± 80%) compared with conventional synchronous stimulation. Combining the performance of multipad electrodes (increased selectivity and facilitated positioning) with sDLFAS (decreased fatigue) can improve many FES applications in both the lower and upper extremities. Copyright © 2013 Wiley Periodicals, Inc.

  2. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  3. The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)

    NASA Astrophysics Data System (ADS)

    Azman, M. F.; Azman, A. W.

    2017-11-01

    Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.

  4. The Effect of Paired Muscle Stimulation on Preparation for Movement.

    PubMed

    Brownjohn, Philip W; Blakemore, Rebekah L; Fox, Jonathan A; Shemmell, Jonathan

    2018-06-07

    Paired muscle stimulation is used clinically to facilitate the performance of motor tasks for individuals with motor dysfunction. However, the optimal temporal relationship between stimuli for enhancing movement remains unknown. We hypothesized that synchronous, muscle stimulation would increase the extent to which stimulated muscles are concurrently prepared for movement. We validated a measure of muscle-specific changes in corticomotor excitability prior to movement. We used this measure to examine the preparation of the first dorsal interosseous (FDI), abductor digiti minimi (ADM), abductor pollicis brevis (APB) muscles prior to voluntary muscle contractions before and after paired muscle stimulation at four interstimulus intervals (0, 5, 10, and 75 ms). Paired muscle stimulation increased premovement excitability in the stimulated FDI, but not in the ADM muscle. Interstimulus interval was not a significant factor in determining efficacy of the protocol. Paired stimulation, therefore, did not result in a functional association being formed between the stimulated muscles. Somatosensory potentials evoked by the muscle stimuli were small compared to those commonly elicited by stimulation of peripheral nerves, suggesting that the lack of functional association formation between muscles may be due to the small magnitude of afferent volleys from the stimulated muscles, particularly the ADM, reaching the cortex.

  5. The Effects of Partner Presence and Sexual Stimulation on the Appraisal of Vaginal Pressure and Sexual Arousal.

    PubMed

    Dewitte, Marieke; Schepers, Jan; Melles, Reinhilde

    2018-04-01

    Sex research lacks experimental studies in which both partners participate in a laboratory procedure. This is relevant in the context of genital pain because painful vaginal sensations often occur in the presence of the partner. To examine the effects of partner presence, sexual stimulation, and vaginal pressure on the appraisal of vaginal sensations and sexual arousal, ultimately aiming to increase the ecologic validity of laboratory designs. A community sample of 42 women and their male partners watched sexual and neutral films while separated or together. We induced gradually increasing vaginal pressure in the women using an intravaginal inflatable rubber balloon. Women reported on pleasant and painful vaginal pressure and perceived genital arousal. Men and women reported on subjective sexual arousal. We also examined whether these appraisals were moderated by relationship satisfaction. The appraisal of vaginal pressure varied as a function of relationship satisfaction. Less satisfied women reported more painful pressure than women who were highly satisfied and highly satisfied women appraised the pressure as more pleasant in the context of a sex film and in the presence (vs absence) of their partner. In men and women, although partner presence had a negative effect on subjective sexual arousal, the presence of the partner did increase women's perception of genital arousal when vaginal pressure was induced during a sex film, particularly when women felt highly satisfied with their relationship. Also, the effects on subjective sexual arousal were moderated by relationship satisfaction. For couples in which the woman was less satisfied, the induction of vaginal pressure resulted in higher subjective sexual arousal when the partner was absent compared with when he was present, whereas when the man felt less satisfied, partner presence had a positive effect on sexual arousal. Interventions need to focus on the importance of sexual arousal during vaginal pressure

  6. An Electrical Muscle Stimulation Suit for Increasing Blood Pressure

    DTIC Science & Technology

    2008-09-01

    an exploratory way in about 100 trials. Maximal indi- vidual stimulation intensity was selected to give a solid, tetanic muscle contraction without...therapy and in muscle strength training in athletes. However, if the electrical stimulation is too intense, the result will be muscle contraction pain...Each subject was instructed to have the investigator lower the intensity or stop the stimulation if muscle contraction pain was experienced

  7. Muscle Stimulation Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Goddard Space Flight Center contract, Electrologic of America was able to refine the process of densely packing circuitry on personal computer boards, providing significant contributions to the closed-loop systems for the Remote Manipulator System Simulator. The microcircuitry work was then applied to the StimMaster FES Ergometer, an exercise device used to stimulate muscles suffering from paralysis. The electrical stimulation equipment was developed exclusively for V-Care Health Systems, Inc. Product still commercially available as of March 2002.

  8. A woman's history of vaginal orgasm is discernible from her walk.

    PubMed

    Nicholas, Aurelie; Brody, Stuart; de Sutter, Pascal; de Carufel, François

    2008-09-01

    Research has demonstrated the association between vaginal orgasm and better mental health. Some theories of psychotherapy assert a link between muscle blocks and disturbances of both character and sexual function. In Functional-Sexological therapy, one focus of treatment is amelioration of voluntary movement. The present study examines the association of general everyday body movement with history of vaginal orgasm. The objective was to determine if appropriately trained sexologists could infer women's history of vaginal orgasm from observing only their gait. Women with known histories of either vaginal orgasm or vaginal anorgasmia were videotaped walking on the street, and their orgasmic status was judged by sexologists blind to their history. The concordance between having had orgasms triggered by penile-vaginal intercourse (not orgasm from direct clitoral stimulation) and raters' inferences of vaginal orgasm history based on observation of the woman's walk was the main outcome measure. In the sample of healthy young Belgian women (half of whom were vaginally orgasmic), history of vaginal orgasm (triggered solely by penile-vaginal intercourse) was diagnosable at far better than chance level (81.25% correct, Fisher's Exact Test P < 0.05) by appropriately trained sexologists. Clitoral orgasm history was unrelated to both ratings and to vaginal orgasm history. Exploratory analyses suggest that greater pelvic and vertebral rotation and stride length might be characteristic of the gait of women who have experienced vaginal orgasm (r = 0.51, P < 0.05). The discerning observer may infer women's experience of vaginal orgasm from a gait that comprises fluidity, energy, sensuality, freedom, and absence of both flaccid and locked muscles. Results are discussed with regard to previous research on gait, the effect of the musculature on sexual function, the special nature of vaginal orgasm, and implications for sexual therapy.

  9. Muscle velocity recovery cycles: effects of repetitive stimulation on two muscles.

    PubMed

    Boërio, Delphine; Z'Graggen, Werner J; Tan, S Veronica; Guetg, Andri; Ackermann, Karin; Bostock, Hugh

    2012-07-01

    We sought to characterize the excitability properties of tibialis anterior (TA) and brachioradialis (BR) muscles at rest and during electrically induced muscle activation in normal subjects. Two centers recruited 10 subjects each. Multi-fiber velocity recovery cycles (VRCs) were recorded from TA (both centers) and BR (one center). VRCs were assessed at rest and during repetitive stimulation (intermittent 20 Hz for 6 min). Changes in latency and peak amplitude of the muscle action potential induced by a frequency ramp to 30 Hz were also characterized. Excitability properties recorded from TA were very similar between centers. Repetitive stimulation generated marked excitability changes, which were similar between TA and BR. Standardized tests of muscle VRCs and responses to repetitive stimulation can provide consistent measures of membrane function and may encourage their wider use in clinical neurophysiology to investigate the pathophysiology of neuromuscular disorders. Copyright © 2012 Wiley Periodicals, Inc.

  10. Finite element model focused on stress distribution in the levator ani muscle during vaginal delivery.

    PubMed

    Krofta, Ladislav; Havelková, Linda; Urbánková, Iva; Krčmář, Michal; Hynčík, Luděk; Feyereisl, Jaroslav

    2017-02-01

    During vaginal delivery, the levator ani muscle (LAM) undergoes severe deformation. This stress can lead to stretch-related LAM injuries. The objective of this study was to develop a sophisticated MRI-based model to simulate changes in the LAM during vaginal delivery. A 3D finite element model of the female pelvic floor and fetal head was developed. The model geometry was based on MRI data from a nulliparous woman and 1-day-old neonate. Material parameters were estimated using uniaxial test data from the literature and by least-square minimization method. The boundary conditions reflected all anatomical constraints and supports. A simulation of vaginal delivery with regard to the cardinal movements of labor was then performed. The mean stress values in the iliococcygeus portion of the LAM during fetal head extension were 4.91-7.93 MPa. The highest stress values were induced in the pubovisceral and puborectal LAM portions (mean 27.46 MPa) at the outset of fetal head extension. The last LAM subdivision engaged in the changes in stress was the posteromedial section of the puborectal muscle. The mean stress values were 16.89 MPa at the end of fetal head extension. The LAM was elongated by nearly 2.5 times from its initial resting position. The cardinal movements of labor significantly affect the subsequent heterogeneous stress distribution in the LAM. The absolute stress values were highest in portions of the muscle that arise from the pubic bone. These areas are at the highest risk for muscle injuries with long-term complications.

  11. A Nerve Clamp Electrode Design for Indirect Stimulation of Skeletal Muscle

    DTIC Science & Technology

    2010-10-01

    neurons. This device enables stimulation of muscle contraction indirectly as opposed to contraction from direct muscle stimulation. The electrode is able...to stimulate indirect muscle contraction when tested on ex vivo preparations from rodent phrenic nerve-hemidiaphragm muscle in similar fashion to...unsuccessful in stimulating indirect muscle contraction . Therefore, this novel electrode is useful for physiological assessment of nerve agents and

  12. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  13. Effect of postpartum pelvic floor muscle training on vaginal symptoms and sexual dysfunction-secondary analysis of a randomised trial.

    PubMed

    Kolberg Tennfjord, M; Hilde, G; Staer-Jensen, J; Siafarikas, F; Engh, M Ellström; Bø, K

    2016-03-01

    Evaluate effect of pelvic floor muscle training (PFMT) on vaginal symptoms and sexual matters, dyspareunia and coital incontinence in primiparous women stratified by major or no defects of the levator ani muscle. Randomised controlled trial (RCT). Akershus University Hospital, Norway. About 175 primiparous women with a singleton vaginal delivery. Two-armed assessor blinded parallel group RCT from 6 weeks to 6 months postpartum comparing effect of PFMT versus control. International Consultation on Incontinence Modular Questionnaire-vaginal symptoms questionnaire (ICIQ-VS) and ICIQ sexual matters module (ICIQ-FLUTSsex). Overall, analysis (n = 175) showed no difference between training and control groups in women having vaginal symptoms or symptoms related to sexual dysfunction 6 months postpartum. The majority of women (88%) had intercourse and there was no difference between groups. Unadjusted subgroup analysis of women with a major defect of the levator ani muscle (n = 55) showed that women in the training group had 45% less risk of having the symptom 'vagina feels loose or lax' compared with the control group (relative risk 0.55, 95% confidence interval 0.31, 0.95; P = 0.03). Unadjusted analysis showed that in women with major defect of the levator ani muscle, significantly fewer in the training group had the symptom 'vagina feels loose or lax' compared with the control group. No difference was found between groups for symptoms related to sexual dysfunction. More studies are needed to explore effect of PFMT on vaginal symptoms and sexual dysfunction. Unadjusted analysis shows that PFMT might prevent symptoms of 'vagina feels loose or lax'. © 2015 Royal College of Obstetricians and Gynaecologists.

  14. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1

    PubMed Central

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-01-01

    An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30–50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40–50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30–40% in tension developing muscle but did not affect contraction-stimulated glucose transport in muscles in which force development was prevented. Our findings suggest that Rac1 and the actin cytoskeleton regulate stretch-stimulated glucose transport and that Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. Key

  15. Oxytocin stimulates cell proliferation in vaginal cell line Vk2E6E7.

    PubMed

    Kallak, Theodora K; Uvnäs-Moberg, Kerstin

    2017-03-01

    Objective During and after menopause, the symptoms of vaginal atrophy cause great discomfort and necessitate effective treatment options. Currently, vaginally applied oxytocin is being investigated as a treatment for the symptoms of vaginal atrophy in postmenopausal women. To clarify the mechanisms behind oxytocins effects on vaginal atrophy, the present study investigated the effects of oxytocin on cell proliferation in the cells of the Vk2E6E7 line, a non-tumour vaginal cell line. The study also compared the effects of oxytocin with those of estradiol (E2). Study design The effects of both oxytocin and E2 on the proliferation of Vk2E6E7 cells were investigated using Cell Proliferation ELISA BrdU Colorimetric Assay. The expression of both oxytocin and oxytocin receptor was studied in Vk2E6E7 cells using quantitative real-time polymerase chain reaction and immunofluorescent staining. Main outcome measures Cell proliferation and gene expression. Results Oxytocin increased cell proliferation both time dependently and dose dependently. This differed from the effect pattern observed in cells treated with E2. In addition, in oxytocin-treated cells, the oxytocin receptor was found to be co-localized with caveolin-1, indicating pro-proliferative signalling within the cell. Conclusions Oxytocin stimulates cell proliferation and the co-localization of oxytocin receptor with caveolin-1 in oxytocin-treated cells, supporting the role of oxytocin signalling in cell proliferation. In addition, these findings suggest that increased cell proliferation is one mechanism by which local vaginal oxytocin treatment increases vaginal thickness and relieves vaginal symptoms in postmenopausal women with vaginal atrophy.

  16. Effects of electrical muscle stimulation on oxygen consumption.

    PubMed

    Hayter, Tina L; Coombes, Jeff S; Knez, Wade L; Brancato, Tania L

    2005-02-01

    Electrical muscle stimulation (EMS) devices are being marketed as weight/ fat loss devices throughout the world. Commercially available stimulators have the ability to evoke muscle contractions that may affect caloric expenditure while the device is being used. The aim of this study was to test the effects of two different EMS devices (Abtronic and Feminique) on oxygen consumption at rest. Subjects arrived for testing after an overnight fast, had the devices fitted, and then positioned supine with expired air measured to determine oxygen consumption. After a 10-minute acclimation period, oxygen consumption was measured for 20 minutes with the device switched off (resting) then 20 minutes with the device switched on (stimulated). There were no significant differences (p > 0.05) in oxygen consumption between the resting and stimulated periods with either the Abtronic (mean +/- SD; resting, 3.40 +/- 0.44; stimulated, 3.45 +/- 0.53 ml of O(2).kg(-1).min(-1)) or the Feminique (resting, 3.73 +/- 0.45; stimulated, 3.75 +/- 0.46 ml of O(2).kg(-1).min(-1)). In summary, the EMS devices tested had no effect on oxygen consumption during muscle stimulation.

  17. Concept Developed for an Implanted Stimulated Muscle-Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David; Gustafson, Kenneth

    2005-01-01

    Implanted electronic devices are typically powered by batteries or transcutaneous power transmission. Batteries must be replaced or recharged, and transcutaneous power sources burden the patient or subject with external equipment prone to failure. A completely self-sustaining implanted power source would alleviate these limitations. Skeletal muscle provides an available autologous power source containing native chemical energy that produces power in excess of the requirements for muscle activation by motor nerve stimulation. A concept has been developed to convert stimulated skeletal muscle power into electrical energy (see the preceding illustration). We propose to connect a piezoelectric generator between a muscle tendon and bone. Electrically stimulated muscle contractions would exert force on the piezoelectric generator, charging a storage circuit that would be used to power the stimulator and other devices.

  18. Biceps brachii muscle oxygenation in electrical muscle stimulation.

    PubMed

    Muthalib, Makii; Jubeau, Marc; Millet, Guillaume Y; Maffiuletti, Nicola A; Ferrari, Marco; Nosaka, Kazunori

    2010-09-01

    The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23-39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2-3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0.05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0.05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0.05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.

  19. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1.

    PubMed

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian; Richter, Erik A; Jensen, Thomas E

    2015-02-01

    Rac1 regulates stretch-stimulated (i.e. mechanical stress) glucose transport in muscle. Actin depolymerization decreases stretch-induced glucose transport in skeletal muscle. Rac1 is a required part of the mechanical stress-component of the contraction-stimulus to glucose transport in skeletal muscle. An alternative to the canonical insulin signalling pathway for glucose transport is muscle contraction/exercise. Mechanical stress is an integrated part of the muscle contraction/relaxation cycle, and passive stretch stimulates muscle glucose transport. However, the signalling mechanism regulating stretch-stimulated glucose transport is not well understood. We recently reported that the actin cytoskeleton regulating GTPase, Rac1, was activated in mouse muscle in response to stretching. Rac1 is a regulator of contraction- and insulin-stimulated glucose transport, however, its role in stretch-stimulated glucose transport and signalling is unknown. We therefore investigated whether stretch-induced glucose transport in skeletal muscle required Rac1 and the actin cytoskeleton. We used muscle-specific inducible Rac1 knockout mice as well as pharmacological inhibitors of Rac1 and the actin cytoskeleton in isolated soleus and extensor digitorum longus muscles. In addition, the role of Rac1 in contraction-stimulated glucose transport during conditions without mechanical load on the muscles was evaluated in loosely hanging muscles and muscles in which cross-bridge formation was blocked by the myosin ATPase inhibitors BTS and Blebbistatin. Knockout as well as pharmacological inhibition of Rac1 reduced stretch-stimulated glucose transport by 30-50% in soleus and extensor digitorum longus muscle. The actin depolymerizing agent latrunculin B similarly decreased glucose transport in response to stretching by 40-50%. Rac1 inhibition reduced contraction-stimulated glucose transport by 30-40% in tension developing muscle but did not affect contraction-stimulated glucose transport in

  20. Electromyography and vaginal pressure of the pelvic floor muscles in women with recurrent vulvovaginal candidiasis and vulvodynia.

    PubMed

    Polpeta, Nádia Cristina; Giraldo, Paulo César; Juliato, Cássia Raquel Teatin; Yoshida, Laura Pagotto; do Amaral, Rose Luce Gomes; Eleutério, José

    2012-01-01

    To evaluate the electrical potentials and pressure exerted by the pelvic floor muscles in women with recurrent vulvovaginal candidiasis (RVVC) or vulvodynia as compared to control women. A cross-sectional study performed in the Female Outpatient Clinic of Genital Infections in the Department of Obstetrics and Gynecology of the Universidade Estadual de Campinas analyzed and compared electromyography (EMG) and vaginal pressure of the pelvic floor muscles in 61 women. Of these 61 women, 19 had vulvodynia, 12 had RVVC and 30 women had no disorder (control group). For data collection, the instrument used was the Miotool Uro device and its software Biotrainer (Miotec Ltd., Porto Alegre, Rio Grande do Sul, Brazil). The EMG evaluation of the pelvic floor muscles showed significantly lower values in the vulvodynia group (tonic contractions) and RVVC group (phasic and tonic contractions) when compared to the control group. No significant differences in basal tone EMG and vaginal pressure values at rest or during pelvic floor muscle contractions were found among groups. The maximum time of sustained contraction in patients with RVVC or vulvodynia was significantly lower (p < 0.0001) than in controls. Women with vulvodynia and RVVC have more frequent pelvic floor muscle dysfunction than controls when observed by EMG evaluation.

  1. Method to Reduce Muscle Fatigue During Transcutaneous Neuromuscular Electrical Stimulation in Major Knee and Ankle Muscle Groups.

    PubMed

    Sayenko, Dimitry G; Nguyen, Robert; Hirabayashi, Tomoyo; Popovic, Milos R; Masani, Kei

    2015-09-01

    A critical limitation with transcutaneous neuromuscular electrical stimulation as a rehabilitative approach is the rapid onset of muscle fatigue during repeated contractions. We have developed a method called spatially distributed sequential stimulation (SDSS) to reduce muscle fatigue by distributing the center of electrical field over a wide area within a single stimulation site, using an array of surface electrodes. To extend the previous findings and to prove feasibility of the method by exploring the fatigue-reducing ability of SDSS for lower limb muscle groups in the able-bodied population, as well as in individuals with spinal cord injury (SCI). SDSS was delivered through 4 active electrodes applied to the knee extensors and flexors, plantarflexors, and dorsiflexors, sending a stimulation pulse to each electrode one after another with 90° phase shift between successive electrodes. Isometric ankle torque was measured during fatiguing stimulations using SDSS and conventional single active electrode stimulation lasting 2 minutes. We demonstrated greater fatigue-reducing ability of SDSS compared with the conventional protocol, as revealed by larger values of fatigue index and/or torque peak mean in all muscles except knee flexors of able-bodied individuals, and in all muscles tested in individuals with SCI. Our study has revealed improvements in fatigue tolerance during transcutaneous neuromuscular electrical stimulation using SDSS, a stimulation strategy that alternates activation of subcompartments of muscles. The SDSS protocol can provide greater stimulation times with less decrement in mechanical output compared with the conventional protocol. © The Author(s) 2014.

  2. Protection against rat vaginal candidiasis by adoptive transfer of vaginal B lymphocytes.

    PubMed

    De Bernardis, Flavia; Santoni, Giorgio; Boccanera, Maria; Lucciarini, Roberta; Arancia, Silvia; Sandini, Silvia; Amantini, Consuelo; Cassone, Antonio

    2010-06-01

    Vulvovaginal candidiasis is a mucosal infection affecting many women, but the immune mechanisms operating against Candida albicans at the mucosal level remain unknown. A rat model was employed to further characterize the contribution of B and T cells to anti-Candida vaginal protection. Particularly, the protective role of vaginal B cells was studied by means of adoptive transfer of vaginal CD3(-) CD5(+) IgM(+) cells from Candida-immunized rats to naïve animals. This passive transfer of B cells resulted into a number of vaginal C. albicans CFU approximately 50% lower than their controls. Sorted CD3(-) CD5(+) IgM(+) vaginal B lymphocytes from Candida-infected rats proliferated in response to stimulation with an immunodominant mannoprotein (MP) antigen of the fungus. Importantly, anti-MP antibodies and antibody-secreting B cells were detected in the supernatant and cell cultures, respectively, of vaginal B lymphocytes from infected rats incubated in vitro with vaginal T cells and stimulated with MP. No such specific antibodies were found when using vaginal B cells from uninfected rats. Furthermore, inflammatory and anti-inflammatory cytokines, such as interleukin-2 (IL-2), IL-6 and IL-10, were found in the supernatant of vaginal B cells from infected rats. These data are evidence of a partial anti-Candida protective role of CD3(-) CD5(+) IgM(+) vaginal B lymphocytes in our experimental model.

  3. Functional electrical stimulation to the abdominal wall muscles synchronized with the expiratory flow does not induce muscle fatigue.

    PubMed

    Okuno, Yukako; Takahashi, Ryoichi; Sewa, Yoko; Ohse, Hirotaka; Imura, Shigeyuki; Tomita, Kazuhide

    2017-03-01

    [Purpose] Continuous electrical stimulation of abdominal wall muscles is known to induce mild muscle fatigue. However, it is not clear whether this is also true for functional electrical stimulation delivered only during the expiratory phase of breathing. This study aimed to examine whether or not intermittent electrical stimulation delivered to abdominal wall muscles induces muscle fatigue. [Subjects and Methods] The subjects were nine healthy adults. Abdominal electrical stimulation was applied for 1.5 seconds from the start of expiration and then turned off during inspiration. The electrodes were attached to both sides of the abdomen at the lower margin of the 12th rib. Abdominal electrical stimulation was delivered for 15 minutes with the subject in a seated position. Expiratory flow was measured during stimulus. Trunk flexor torque and electromyography activity were measured to evaluate abdominal muscle fatigue. [Results] The mean stimulation on/off ratio was 1:2.3. The declining rate of abdominal muscle torque was 61.1 ± 19.1% before stimulus and 56.5 ± 20.9% after stimulus, not significantly different. The declining rate of mean power frequency was 47.8 ± 11.7% before stimulus and 47.9 ± 10.2% after stimulus, not significantly different. [Conclusion] It was found that intermittent electrical stimulation to abdominal muscles synchronized with the expiratory would not induce muscle fatigue.

  4. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    PubMed

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  5. Matching initial torque with different stimulation parameters influences skeletal muscle fatigue.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Azuero, Andres

    2012-01-01

    A fundamental barrier to using electrical stimulation in the clinical setting is an inability to maintain torque production secondary to muscle fatigue. Electrical stimulation parameters are manipulated to influence muscle torque production, and they may also influence fatigability during repetitive stimulation. Our purpose was to determine the response of the quadriceps femoris to three different fatigue protocols using the same initial torque obtained by altering stimulator parameter settings. Participants underwent fatigue protocols in which either pulse frequency (lowHz), pulse duration (lowPD), or voltage (lowV) was manipulated to obtain an initial torque that equaled 25% of maximum voluntary isometric contraction. Muscle soreness was reported on a visual analog scale 48 h after each fatigue test. The lowHz protocol resulted in the least fatigue (25% +/- 14%); the lowPD (50% +/- 13%) and lowV (48% +/- 14%) protocols had similar levels of fatigue. The lowHz protocol resulted in significantly less muscle soreness than the higher frequency protocols. Stimulation protocols that use a lower frequency coupled with long pulse durations and high voltages result in lesser amounts of muscle fatigue and perceived soreness. The identification of optimal stimulation patterns to maximize muscle performance will reduce the effect of muscle fatigue and potentially improve clinical efficacy.

  6. Kinematic MRI study of upper-airway biomechanics using electrical muscle stimulation

    NASA Astrophysics Data System (ADS)

    Brennick, Michael J.; Margulies, Susan S.; Ford, John C.; Gefter, Warren B.; Pack, Allan I.

    1997-05-01

    We have developed a new and powerful method to study the movement and function of upper airway muscles. Our method is to use direct electrical stimulation of individual upper airway muscles, while performing state of the art high resolution magnetic resonance imaging (MRI). We have adapted a paralyzed isolated UA cat model so that positive or negative static pressure in the UA can be controlled at specific levels while electrical muscle stimulation is applied during MRI. With these techniques we can assess the effect of muscle stimulation on airway cross-sectional area compliance and soft tissue motion. We are reporting the preliminary results and MRI techniques which have enabled us to examine changes in airway dimensions which result form electrical stimulation of specific upper airway dilator muscles. The results of this study will be relevant to the development of new clinical treatments for obstructive sleep apnea by providing new information as to exactly how upper airway muscles function to dilate the upper airway and the strength of stimulation required to prevent the airway obstruction when overall muscle tone may not be sufficient to maintain regular breathing.

  7. In vivo sup 31 P-NMR spectroscopy of chronically stimulated canine skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, B.J. III; McCully, A.K.; Subramanian, H.V.

    1988-02-01

    Chronic stimulation converts skeletal muscle of mixed fiber type to a uniform muscle made up of type I, fatigue-resistant fibers. Here, the bioenergetic correlates of fatigue resistance in conditioned canine latissimus dorsi are assessed with in vivo phosphorus-31 nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy. After chronic electrical stimulation, five dogs underwent {sup 31}P-NMR spectroscopic and isometric tension measurements on conditioned and contralateral control muscle during stimulation for 200, 300, 500, and 800 ms of an 1,100-ms duty cycle. With stimulation, phosphocreatine (PCr) fell proportional to the degree of stimulation in both conditioned and control muscle but fell significantly less inmore » conditioned muscle at all the least intense stimulation period (200 ms). Isometric tension, expressed as a tension time index per gram muscle, was significantly greater in the conditioned muscle at the two longest stimulation periods. The overall small change in PCr and the lack of a plateau in tension observed in the conditioned muscle are similar to that seen in cardiac muscle during increased energy demand. This study indicates that the conditioned muscle's markedly enhanced resistance to fatigue is in part the result of its increased capacity for oxidative phosphorylation.« less

  8. Vaginal disorders.

    PubMed

    Soderberg, S F

    1986-05-01

    Chronic vaginitis is the most common vaginal disorder. Dogs with vaginitis show no signs of systemic illness but often lick at the vulva and have purulent or hemorrhagic vaginal discharges. Vaginitis is most commonly secondary to a noninfectious inciting factor such as congenital vaginal anomalies, clitoral hypertrophy, foreign bodies, trauma to the vaginal mucosa, or vaginal tumors. Inspection of the caudal vagina and vestibule both visually and digitally will often reveal the source of vaginal irritation. Vaginal cytology is used to establish the stage of the estrous cycle as well as distinguish uterine from vaginal sources of discharge. Vaginal cultures are used to establish the predominant offending organism associated with vaginal discharges and may be used as a guide for selection of a therapeutic agent. Vaginitis is best managed by removing the inciting cause and treating the area locally with antiseptic douches. Congenital malformations at the vestibulovaginal or vestibulovulvar junction may prevent normal intromission. Affected bitches may be reluctant to breed naturally because of pain. Such defects are detected best by digital examination. Congenital vaginal defects may be corrected by digital or surgical means. Prolapse of tissue through the lips of the vulva may be caused by clitoral hypertrophy, vaginal hyperplasia, or vaginal tumors. Enlargement of clitoral tissue is the result of endogenous or exogenous sources of androgens. Treatment of this condition includes removal of the androgen source and/or surgical removal of clitoral tissue. Vaginal hyperplasia is detected during proestrus or estrus of young bitches. Hyperplastic tissue will regress during diestrus. Tissue that is excessively traumatized and/or prolapse of the entire vaginal circumference may be removed surgically. Ovariohysterectomy may be used to prevent recurrence. Vaginal tumors are detected most often in older intact bitches. Such tumors are generally of smooth muscle or fibrous

  9. Growth of arterioles in chronically stimulated adult rat skeletal muscle.

    PubMed

    Hansen-Smith, F; Egginton, S; Hudlicka, O

    1998-01-01

    The purpose of this study was to test the hypothesis that capillary growth induced by chronic electrical stimulation of skeletal muscle is accompanied by the growth of small arterioles. Lower limb flexor muscles of Sprague-Dawley rats were stimulated by electrodes implanted in the vicinity of the peroneal nerve at 10 Hz for 8 h/d for 2 and 7 days. Cryostat sections from the proximal, middle, and distal regions of the extensor digitorum longus muscle (EDL) were fluorescently immunolabeled with alpha-smooth muscle actin (alpha SMA) and myosin heavy chain (MHC) to identify mature (alpha SMA and MHC-positive) and immature (alpha SMA-positive, MHC-negative) arterioles. The fluorescent derivative of the lectin Griffonia simplicifolia I (GSI) was used to identify all microvessels, including arterioles, capillaries, and venules. The number of vessels positive for GSI or alpha SMA surrounding muscle fibers was similar in all three muscle regions (proximal, middle, distal). The mean values +/- SEM for GSI-positive vessels from all regions were similar in control (4.3 +/- 0.07) and 2-day stimulated (4.7 +/- 0.08) but higher in 7-day stimulated muscles (6.7 +/- 0.1, p < 0.05), thus confirming the previous findings on capillary growth. A similar increase was found in the number of alpha SMA positive vessels < or = 10 microns outer diameter (1.3 +/- 0.09 versus 0.4 +/- 0.03 around muscle fibers in controls). The density of terminal arterioles (< or = 10 microns) was slightly but not significantly higher after 2 days of stimulation (19.5 +/- 4 versus 15.6 +/- 2 profiles/mm2 in control muscles) and significantly higher after 7 days (33 +/- 7). While a similar increase was observed in the density of preterminal arterioles > 10 microns (17 +/- 3 control, 22 +/- 3 at 2 days and 40 +/- 5 at 7 days), the density of MHC-positive vessels muscles stimulated for 7 days was unchanged. Seven-day stimulated muscle also had a fivefold higher density of microvessel profiles < or = 10 microns

  10. 21 CFR 890.5850 - Powered muscle stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered muscle stimulator. 890.5850 Section 890.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5850 Powered muscle...

  11. 21 CFR 890.5850 - Powered muscle stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered muscle stimulator. 890.5850 Section 890.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5850 Powered muscle...

  12. 21 CFR 890.5850 - Powered muscle stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered muscle stimulator. 890.5850 Section 890.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5850 Powered muscle...

  13. 21 CFR 890.5850 - Powered muscle stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered muscle stimulator. 890.5850 Section 890.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5850 Powered muscle...

  14. 21 CFR 890.5850 - Powered muscle stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered muscle stimulator. 890.5850 Section 890.5850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5850 Powered muscle...

  15. Stimulation of TLRs by LMW-HA induces self-defense mechanisms in vaginal epithelium.

    PubMed

    Dusio, Giuseppina F; Cardani, Diego; Zanobbio, Laura; Mantovani, Martina; Luchini, Patrizia; Battini, Lorenzo; Galli, Valentina; Diana, Angela; Balsari, Andrea; Rumio, Cristiano

    2011-07-01

    The innate immune system is present throughout the female reproductive tract and functions in synchrony with the adaptive immune system to provide protection in a way that enhances the chances for fetal survival, while protecting against potential pathogens. Recent data show that activation of Toll-like receptor (TLR)2 and 4 by low-molecular weight hyaluronic acid (LMW-HA) in the epidermis induces secretion of the antimicrobial peptide β-defensin 2. In the present work, we show that LMW-HA induces vaginal epithelial cells to release different antimicrobial peptides, via activation of TLR2 and TLR4. Further, we found that LMW-HA favors repair of vaginal epithelial injury, involving TLR2 and TLR4, and independently from its classical receptor CD44. This wound-healing activity of LMW-HA is dependent from an Akt/phosphatidylinositol 3 kinase pathway. Therefore, these findings suggest that the vaginal epithelium is more than a simple physical barrier to protect against invading pathogens: on the contrary, this surface acts as efficient player of innate host defense, which may modulate its antimicrobial properties and injury restitution activity, following LMW-HA stimulation; this activity may furnish an additional protective activity to this body compartment, highly and constantly exposed to microbiota, ameliorating the self-defense of the vaginal epithelium in both basal and pathological conditions.

  16. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation.

    PubMed

    Goodman, Craig A; Horvath, Deanna; Stathis, Christos; Mori, Trevor; Croft, Kevin; Murphy, Robyn M; Hayes, Alan

    2009-07-01

    Recent studies report that depletion and repletion of muscle taurine (Tau) to endogenous levels affects skeletal muscle contractility in vitro. In this study, muscle Tau content was raised above endogenous levels by supplementing male Sprague-Dawley rats with 2.5% (wt/vol) Tau in drinking water for 2 wk, after which extensor digitorum longus (EDL) muscles were examined for in vitro contractile properties, fatigue resistance, and recovery from fatigue after two different high-frequency stimulation bouts. Tau supplementation increased muscle Tau content by approximately 40% and isometric twitch force by 19%, shifted the force-frequency relationship upward and to the left, increased specific force by 4.2%, and increased muscle calsequestrin protein content by 49%. Force at the end of a 10-s (100 Hz) continuous tetanic stimulation was 6% greater than controls, while force at the end of the 3-min intermittent high-frequency stimulation bout was significantly higher than controls, with a 12% greater area under the force curve. For 1 h after the 10-s continuous stimulation, tetanic force in Tau-supplemented muscles remained relatively stable while control muscle force gradually deteriorated. After the 3-min intermittent bout, tetanic force continued to slowly recover over the next 1 h, while control muscle force again began to decline. Tau supplementation attenuated F(2)-isoprostane production (a sensitive indicator of reactive oxygen species-induced lipid peroxidation) during the 3-min intermittent stimulation bout. Finally, Tau transporter protein expression was not altered by the Tau supplementation. Our results demonstrate that raising Tau content above endogenous levels increases twitch and subtetanic and specific force in rat fast-twitch skeletal muscle. Also, we demonstrate that raising Tau protects muscle function during high-frequency in vitro stimulation and the ensuing recovery period and helps reduce oxidative stress during prolonged stimulation.

  17. Response of the urethral and intracorporeal pressures to cavernosus muscle stimulation: role of the muscles in erection and ejaculation.

    PubMed

    Shafik, A

    1995-07-01

    The role of the bulbocavernosus (BC) and ischiocavernosus (IC) muscles in erection and ejaculation was studied. The response of the urethral and intracorporeal pressure to cavernosus muscle stimulation was evaluated in 18 male volunteers (mean age, 36.6 years). A two-channel microtip catheter was placed in the prostatic and bulbous urethra. Muscle stimulation was done by two needle electrodes inserted into the BC and IC muscles. BC muscle stimulation caused an increase in the pressure of the bulbous urethra (P < 0.001) and corpus spongiosum (P < 0.01) and an insignificant change in the prostatic and pendulous urethral and corpus cavernosal pressures (difference not significant). IC muscle stimulation effected an increase in the corpus cavernosal pressure (P < 0.001) without changing the urethral pressure (difference not significant). The BC muscle contracts rhythmically at orgasm and this might help to eject the semen from the posterior to the anterior urethra. It is apparent that the muscle has minimal or no role in erection. IC muscle may have a role in erection by increasing the intracavernosal pressure. It seems that it has no role in ejaculation. BC may be considered the "muscle of ejaculation," and IC the "muscle of erection."

  18. Vaginal Microbiomes Associated With Aerobic Vaginitis and Bacterial Vaginosis.

    PubMed

    Kaambo, Evelyn; Africa, Charlene; Chambuso, Ramadhani; Passmore, Jo-Ann Shelley

    2018-01-01

    A healthy vaginal microbiota is considered to be significant for maintaining vaginal health and preventing infections. However, certain vaginal bacterial commensal species serve an important first line of defense of the body. Any disruption of this microbial barrier might result in a number of urogenital conditions including aerobic vaginitis (AV) and bacterial vaginosis (BV). The health of the vagina is closely associated with inhabitant microbiota. Furthermore, these microbes maintain a low vaginal pH, prevent the acquisition of pathogens, stimulate or moderate the local innate immune system, and further protect against complications during pregnancies. Therefore, this review will focus on vaginal microbial "health" in the lower reproductive tract of women and on the physiological characteristics that determine the well-being of reproductive health. In addition, we explore the distinct versus shared characteristics of BV and AV, which are commonly associated with increased risk for preterm delivery.

  19. Vaginal Microbiomes Associated With Aerobic Vaginitis and Bacterial Vaginosis

    PubMed Central

    Kaambo, Evelyn; Africa, Charlene; Chambuso, Ramadhani; Passmore, Jo-Ann Shelley

    2018-01-01

    A healthy vaginal microbiota is considered to be significant for maintaining vaginal health and preventing infections. However, certain vaginal bacterial commensal species serve an important first line of defense of the body. Any disruption of this microbial barrier might result in a number of urogenital conditions including aerobic vaginitis (AV) and bacterial vaginosis (BV). The health of the vagina is closely associated with inhabitant microbiota. Furthermore, these microbes maintain a low vaginal pH, prevent the acquisition of pathogens, stimulate or moderate the local innate immune system, and further protect against complications during pregnancies. Therefore, this review will focus on vaginal microbial “health” in the lower reproductive tract of women and on the physiological characteristics that determine the well-being of reproductive health. In addition, we explore the distinct versus shared characteristics of BV and AV, which are commonly associated with increased risk for preterm delivery. PMID:29632854

  20. In vivo stimulation of oestrogen receptor α increases insulin-stimulated skeletal muscle glucose uptake

    PubMed Central

    Gorres, Brittany K; Bomhoff, Gregory L; Morris, Jill K; Geiger, Paige C

    2011-01-01

    Abstract Previous studies suggest oestrogen receptor α (ERα) is involved in oestrogen-mediated regulation of glucose metabolism and is critical for maintenance of whole body insulin action. Despite this, the effect of direct ERα modulation in insulin-responsive tissues is unknown. The purpose of the current study was to determine the impact of ERα activation, using the ER subtype-selective ligand propylpyrazoletriyl (PPT), on skeletal muscle glucose uptake. Two-month-old female Sprague–Dawley rats, ovariectomized for 1 week, were given subcutaneous injections of PPT (10 mg kg−1), oestradiol benzoate (EB; 20 μg kg−1), the ERβ agonist diarylpropionitrile (DPN, 10 mg kg−1) or vehicle every 24 h for 3 days. On the fourth day, insulin-stimulated skeletal muscle glucose uptake was measured in vitro and insulin signalling intermediates were assessed via Western blotting. Activation of ERα with PPT resulted in increased insulin-stimulated glucose uptake into the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles, activation of insulin signalling intermediates (as measured by phospho-Akt (pAkt) and pAkt substrate (PAS)) and phosphorylation of AMP-activated protein kinase (AMPK). GLUT4 protein was increased only in the EDL muscle. Rats treated with EB or DPN for 3 days did not show an increase in insulin-stimulated skeletal muscle glucose uptake compared to vehicle-treated animals. These new findings reveal that direct activation of ERα positively mediates glucose uptake and insulin action in skeletal muscle. Evidence that oestrogens and ERα stimulate glucose uptake has important implications for understanding mechanisms of glucose homeostasis, particularly in postmenopausal women. PMID:21486807

  1. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM--mechanism of growth hormone stimulation of skeletal muscle growth in cattle.

    PubMed

    Jiang, H; Ge, X

    2014-01-01

    Growth hormone, also called somatotropin (ST), is a polypeptide hormone produced by the anterior pituitary. The major functions of GH include stimulating bone and skeletal muscle growth, lipolysis, milk production, and expression of the IGF-I gene in the liver. Based on these functions, recombinant bovine ST (bST) and recombinant porcine ST (pST) have been used to improve milk production in dairy cows and lean tissue growth in pigs, respectively. However, despite these applications, the mechanisms of action of GH are not fully understood. Indeed, there has been a lot of controversy over the role of liver-derived circulating IGF-I and locally produced IGF-I in mediating the growth-stimulatory effect of GH during the last 15 yr. It is in this context that we have conducted studies to further understand how GH stimulates skeletal muscle growth in cattle. Our results do not support a role of skeletal muscle-derived IGF-I in GH-stimulated skeletal muscle growth in cattle. Our results indicate that GH stimulates skeletal muscle growth in cattle, in part, by stimulating protein synthesis in muscle through a GH receptor-mediated, IGF-I-independent mechanism. In this review, besides discussing these results, we also argue that liver-derived circulating IGF-I should be still considered as the major mechanism that mediates the growth-stimulatory effect of GH on skeletal muscle in cattle and other domestic animals.

  2. Effect of glycogen synthase overexpression on insulin-stimulated muscle glucose uptake and storage.

    PubMed

    Fogt, Donovan L; Pan, Shujia; Lee, Sukho; Ding, Zhenping; Scrimgeour, Angus; Lawrence, John C; Ivy, John L

    2004-03-01

    Insulin-stimulated muscle glucose uptake is inversely associated with the muscle glycogen concentration. To investigate whether this association is a cause and effect relationship, we compared insulin-stimulated muscle glucose uptake in noncontracted and postcontracted muscle of GSL3-transgenic and wild-type mice. GSL3-transgenic mice overexpress a constitutively active form of glycogen synthase, which results in an abundant storage of muscle glycogen. Muscle contraction was elicited by in situ electrical stimulation of the sciatic nerve. Right gastrocnemii from GSL3-transgenic and wild-type mice were subjected to 30 min of electrical stimulation followed by hindlimb perfusion of both hindlimbs. Thirty minutes of contraction significantly reduced muscle glycogen concentration in wild-type (49%) and transgenic (27%) mice, although transgenic mice retained 168.8 +/- 20.5 micromol/g glycogen compared with 17.7 +/- 2.6 micromol/g glycogen for wild-type mice. Muscle of transgenic and wild-type mice demonstrated similar pre- (3.6 +/- 0.3 and 3.9 +/- 0.6 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) and postcontraction (7.9 +/- 0.4 and 7.0 +/- 0.4 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) insulin-stimulated glucose uptakes. However, the [14C]glucose incorporated into glycogen was greater in noncontracted (151%) and postcontracted (157%) transgenic muscle vs. muscle of corresponding wild-type mice. These results indicate that glycogen synthase activity is not rate limiting for insulin-stimulated glucose uptake in skeletal muscle and that the inverse relationship between muscle glycogen and insulin-stimulated glucose uptake is an association, not a cause and effect relationship.

  3. Female Longitudinal Anal Muscles or Conjoint Longitudinal Coats Extend into the Subcutaneous Tissue along the Vaginal Vestibule: A Histological Study Using Human Fetuses

    PubMed Central

    Arakawa, Takashi; Abe, Hiroshi; Rodríguez-Vízquez, Jose Francisco; Murakami, Gen; Sugihara, Kenichi

    2013-01-01

    Purpose It is still unclear whether the longitudinal anal muscles or conjoint longitudinal coats (CLCs) are attached to the vagina, although such an attachment, if present, would appear to make an important contribution to the integrated supportive system of the female pelvic floor. Materials and Methods Using immunohistochemistry for smooth muscle actin, we examined semiserial frontal sections of 1) eleven female late-stage fetuses at 28-37 weeks of gestation, 2) two female middle-stage fetus (2 specimens at 13 weeks), and, 3) six male fetuses at 12 and 37 weeks as a comparison of the morphology. Results In late-stage female fetuses, the CLCs consistently (11/11) extended into the subcutaneous tissue along the vaginal vestibule on the anterior side of the external anal sphincter. Lateral to the CLCs, the external anal sphincter also extended anteriorly toward the vaginal side walls. The anterior part of the CLCs originated from the perimysium of the levator ani muscle without any contribution of the rectal longitudinal muscle layer. However, in 2 female middle-stage fetuses, smooth muscles along the vestibulum extended superiorly toward the levetor ani sling. In male fetuses, the CLCs were separated from another subcutaneous smooth muscle along the scrotal raphe (posterior parts of the dartos layer) by fatty tissue. Conclusion In terms of topographical anatomy, the female anterior CLCs are likely to correspond to the lateral extension of the perineal body (a bulky subcutaneous smooth muscle mass present in adult women), supporting the vaginal vestibule by transmission of force from the levator ani. PMID:23549829

  4. Vaginal eroticism: a replication study.

    PubMed

    Alzate, H

    1985-12-01

    Vaginal eroticism was investigated in a group of 27 coitally experienced volunteers by means of systematic digital stimulation of both vaginal walls. Erogenous zones were found in all subjects, mainly located on the upper anterior wall and the lower posterior one. An orgasmic response was elicited by stimulation of these zones in 89% of the subjects. This study supports previous findings regarding vaginal eroticism. It does not support the existence of the discrete anatomical structure called the Grafenberg spot. It supports the contention that there are two distinct types of female orgasm, vaginally evoked and clitorally evoked. It also supports the finding that some women expel a fluid through the urethra at the time of orgasm. In this particular case the fluid was chemically indistinguishable from urine.

  5. Vibrating vaginal balls to improve pelvic floor muscle performance in women after childbirth: a protocol for a randomised controlled feasibility trial.

    PubMed

    Oblasser, Claudia; McCourt, Christine; Hanzal, Engelbert; Christie, Janice

    2016-04-01

    This paper presents a feasibility trial protocol the purpose of which is to prepare for a future randomised controlled trial to determine the effectiveness of vibrating vaginal pelvic floor training balls for postpartum pelvic floor muscle rehabilitation. Vibrating vaginal pelvic floor training balls are available in Austria to enhance women's pelvic floor muscles and thus prevent or treat urinary incontinence and other pelvic floor problems following childbirth. Nonetheless, there is currently little empirical knowledge to substantiate their use or assess their relative effectiveness in comparison to current standard care, which involves pelvic floor muscle exercises. Single blind, randomised controlled feasibility trial with two parallel groups. It is planned to recruit 56 postpartum women in Vienna, who will be randomised into one of two intervention groups to use either vibrating vaginal balls or a comparator pelvic floor muscle exercises for 12 weeks. As this is a feasibility study, study design features (recruitment, selection, randomisation, intervention concordance, data collection methods and tools) will be assessed and participants' views and experiences will be surveyed. Tested outcome measures, collected before and after the intervention, will be pelvic floor muscle performance as reported by participants and measured by perineometry. Descriptive and inferential statistics and content analysis will serve the preparation of the future trial. The results of this feasibility trial will inform the design and conduct of a full randomised controlled trial and provide insight into the experiences of women regarding the interventions and study participation. © 2015 John Wiley & Sons Ltd.

  6. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    PubMed

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  7. Electrical Stimulation of Coleopteran Muscle for Initiating Flight

    PubMed Central

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093

  8. Deciphering the role of a coleopteran steering muscle via free flight stimulation.

    PubMed

    Sato, Hirotaka; Vo Doan, Tat Thang; Kolev, Svetoslav; Huynh, Ngoc Anh; Zhang, Chao; Massey, Travis L; van Kleef, Joshua; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M

    2015-03-16

    Testing hypotheses of neuromuscular function during locomotion ideally requires the ability to record cellular responses and to stimulate the cells being investigated to observe downstream behaviors [1]. The inability to stimulate in free flight has been a long-standing hurdle for insect flight studies. The miniaturization of computation and communication technologies has delivered ultra-small, radio-enabled neuromuscular recorders and stimulators for untethered insects [2-8]. Published stimulation targets include the areas in brain potentially responsible for pattern generation in locomotion [5], the nerve chord for abdominal flexion [9], antennal muscles [2, 10], and the flight muscles (or their excitatory junctions) [7, 11-13]. However, neither fine nor graded control of turning has been demonstrated in free flight, and responses to the stimulation vary widely [2, 5, 7, 9]. Technological limitations have precluded hypotheses of function validation requiring exogenous stimulation during flight. We investigated the role of a muscle involved in wing articulation during flight in a coleopteran. We set out to identify muscles whose stimulation produced a graded turning in free flight, a feat that would enable fine steering control not previously demonstrated. We anticipated that gradation might arise either as a function of the phase of muscle firing relative to the wing stroke (as in the classic fly b1 muscle [14, 15] or the dorsal longitudinal and ventral muscles of moth [16]), or due to regulated tonic control, in which phase-independent summation of twitch responses produces varying amounts of force delivered to the wing linkages [15, 17, 18]. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Urethral sphincters response to cavernosus muscles stimulation with identification of cavernoso-urethral reflex.

    PubMed

    Shafik, A; Shafik, A A; Shafik, I; el-Sibai, O

    2005-01-01

    The functional activity of the urethral sphincters during cavernosus muscles' contraction at coitus has been poorly addressed in the literature. We investigated the hypothesis that cavernosus muscles' contraction affects reflex contraction of the urethral sphincters to guard against semen reflux into the urinary bladder or urine leakage from the bladder during orgasm and ejaculation. The electromyographic (EMG) response of the external (EUS) and internal (IUS) urethral sphincters to ischio- (ICM) and bulbo- (BCM) cavernosus muscle stimulation was studied in 15 healthy volunteers (9 men, 6 women, age 39.3 +/- 8.2 SD years). An electrode was applied to each of ICM and BCM (stimulating electrodes) and the 2 urethral sphincters (recording electrodes). The test was repeated after individual anesthetization of the urethral sphincters and the 2 cavernosus muscles, and after using saline instead of lidocaine. Upon stimulation of each of the 2 cavernosus muscles, the EUS and IUS recorded increased EMG activity. Repeated cavernosus muscles' stimulation evoked the urethral sphincteric response without fatigue. The urethral sphincters did not respond to stimulation of the anesthetized cavernosus muscles nor did the anesthetized urethral sphincters respond to cavernosus muscle stimulation. Saline infiltration instead of lidocaine did not affect the urethral sphincteric response to cavernosal muscle stimulation. Results were reproducible. Cavernosus muscles' contraction is suggested to effect EUS and IUS contraction. This action seems to be reflex and mediated through the 'cavernoso-urethral reflex.' Urethral sphincters contraction upon cavernosus muscles contraction during sexual intercourse presumably prevents urine leak from the urinary bladder to urethra, prevents retrograde ejaculation, and propels ejaculate from the posterior to the penile urethra. The cavernoso-urethral reflex can act a diagnostic tool in the investigations of patients with ejaculatory disorders.

  10. [Effect of biological electric stimulation on free muscle transfer].

    PubMed

    Yuang, F; Guan, W; Cao, Y

    1997-01-01

    The rectus femoris muscles of rabbits were used as muscle model. The electrical stimulation which resembled the normal motor-unit activity was used to observe its effects on free transferred muscle. After three months, the moist muscle weight (MW), its maximum cross-section area, its contractility and its histochemical characteristics were examined. The results showed that the function and morphology of the muscles were well preserved. These findings might encourage its clinical application.

  11. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    NASA Astrophysics Data System (ADS)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  12. Chronic low-frequency stimulation transforms cat masticatory muscle fibers into jaw-slow fibers.

    PubMed

    Kang, Lucia H D; Hoh, Joseph F Y

    2011-09-01

    Cat masticatory muscle during regeneration expresses masticatory-specific myofibrillar proteins upon innervation by a fast muscle nerve but acquires the jaw-slow phenotype when innervated by a slow muscle nerve. Here, we test the hypothesis that chronic low-frequency stimulation simulating impulses from the slow nerve can result in masticatory-to-slow fiber-type transformation. In six cats, the temporalis muscle was continuously stimulated directly at 10 Hz for up to 12 weeks using a stimulator affixed to the skull. Stimulated muscles were analyzed by immunohistochemistry using, among others, monoclonal antibodies against masticatory-specific myosin heavy chain (MyHC), myosin binding protein-C, and tropomyosins. Under the electrodes, stimulation induced muscle regeneration, which generated slow fibers. Deep to the electrodes, at two to three weeks, two distinct populations of masticatory fibers began to express slow MyHC: 1) evenly distributed fibers that completely suppressed masticatory-specific proteins but transiently co-expressed fetal MyHCs, and 2) incompletely transformed fibers that express slow and masticatory but not fetal MyHCs. SDS-PAGE confirmed de novo expression of slow MyHC and β-tropomyosin in the stimulated muscles. We conclude that chronic low-frequency stimulation induces masticatory-to-slow fiber-type conversion. The two populations of transforming masticatory fibers may differ in their mode of activation or lineage of their myogenic cells.

  13. Acute molecular response of mouse hindlimb muscles to chronic stimulation.

    PubMed

    LaFramboise, W A; Jayaraman, R C; Bombach, K L; Ankrapp, D P; Krill-Burger, J M; Sciulli, C M; Petrosko, P; Wiseman, R W

    2009-09-01

    Stimulation of the mouse hindlimb via the sciatic nerve was performed for a 4-h period to investigate acute muscle gene activation in a model of muscle phenotype conversion. Initial force production (1.6 +/- 0.1 g/g body wt) declined 45% within 10 min and was maintained for the remainder of the experiment. Force returned to initial levels upon study completion. An immediate-early growth response was present in the extensor digitorum longus (EDL) muscle (FOS, JUN, activating transcription factor 3, and musculoaponeurotic fibrosarcoma oncogene) with a similar but attenuated pattern in the soleus muscle. Transcript profiles showed decreased fast fiber-specific mRNA (myosin heavy chains 2A and 2B, fast troponins T(3) and I, alpha-tropomyosin, muscle creatine kinase, and parvalbumin) and increased slow transcripts (myosin heavy chain-1beta/slow, troponin C slow, and tropomyosin 3y) in the EDL versus soleus muscles. Histological analysis of the EDL revealed glycogen depletion without inflammatory cell infiltration in stimulated versus control muscles, whereas ultrastructural analysis showed no evidence of myofiber damage after stimulation. Multiple fiber type-specific transcription factors (tea domain family member 1, nuclear factor of activated T cells 1, peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -beta, circadian locomotor output cycles kaput, and hypoxia-inducible factor-1alpha) increased in the EDL along with transcription factors characteristic of embryogenesis (Kruppel-like factor 4; SRY box containing 17; transcription factor 15; PBX/knotted 1 homeobox 1; and embryonic lethal, abnormal vision). No established in vivo satellite cell markers or genes activated in our parallel experiments of satellite cell proliferation in vitro (cyclins A(2), B(2), C, and E(1) and MyoD) were differentially increased in the stimulated muscles. These results indicated that the molecular onset of fast to slow phenotype conversion occurred in the EDL within

  14. Proinflammatory Cytokines as Regulators of Vaginal Microbiota.

    PubMed

    Kremleva, E A; Sgibnev, A V

    2016-11-01

    It was shown that IL-1β, IL-8, and IL-6 in concentrations similar to those in the vagina of healthy women stimulated the growth of normal microflora (Lactobacillus spp.) and suppressed the growth and biofilm production by S. aureus and E. coli. On the contrary, these cytokines in higher concentrations typical of vaginal dysbiosis suppressed normal microflora and stimulated the growth of opportunistic microorganisms. TGF-β1 in both doses produced a stimulating effects on study vaginal microsymbionts. It is hypothesized that pro-inflammatory cytokines serve as the molecules of interspecies communication coordinating the interactions of all components of the vaginal symbiotic system.

  15. Tongue muscle plasticity following hypoglossal nerve stimulation in aged rats

    PubMed Central

    Connor, Nadine P.; Russell, John A.; Jackson, Michelle A.; Kletzien, Heidi; Wang, Hao; Schaser, Allison J.; Leverson, Glen E.; Zealear, David L.

    2012-01-01

    Introduction Age-related decreases in tongue muscle mass and strength have been reported. It may be possible to prevent age-related tongue muscle changes using neuromuscular electrical stimulation (NMES). Our hypothesis was that alterations in muscle contractile properties and myosin heavy chain composition would be found following NMES. Methods Fifty-four young, middle-aged and old Fischer 344/Brown Norway rats were included. Twenty-four rats underwent bilateral electrical stimulation of the hypoglossal nerves for 8 weeks and were compared with control or sham rats. Muscle contractile properties and myosin heavy chain (MHC) in the genioglossus (GG), styloglossus (SG) and hyoglossus (HG) muscles were examined. Results In comparison with unstimulated control rats, we found reduced muscle fatigue, increased contraction and half decay times and increased twitch and tetanic tension. Increased Type I MHC was found, except for GG in old and middle-aged rats. Discussion Transitions in tongue muscle contractile properties and phenotype were found following NMES. PMID:23169566

  16. Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.

    PubMed

    Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z

    2017-03-01

    A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.

  17. A Comparison of Vaginal Pressures and Abdominal Muscle Thickness According to Childbirth Delivery Method during the Valsalva Maneuver

    PubMed Central

    Kim, Haroo; Kak, Hwang-Bo; Kim, Boin

    2014-01-01

    [Purpose] The purpose of this study was to compare the effect of childbirth delivery method on vaginal pressure and abdominal thickness during the Valsalva maneuver (VAL). [Subjects] Thirty healthy female volunteers (26–39 years of age) were selected for this research. Their delivery histories were: nulliparous 10, vaginal delivery 10, and Cesarean delivery 10. None of the participants had a history of incontinence. [Methods] In the crook-lying position, a perineometer probe was inserted into the vagina and the transducer was placed transversely on the right side of the body during the Valsalva maneuver. [Results] There were significant differences in the thickness of the transverses abdominis (TrA) between in all the groups rest and the Valsalva maneuver, and there were significant differences in the internus oblique (IO) in the nulliparous group. During the Valsalva maneuver, there were significant differences in the TrA between the nulliparous group and the vaginal delivery group, and there were significant differences in the IO between the nulliparous delivery group and the vaginal delivery group, and between the nulliparous group and the Cesarean section group. Delivery history changed vaginal pressure, and there were significant differences between the nulliparous group and the vaginal delivery group, and between the nulliparous group and the Cesarean delivery group. [Conclusion] Pregnancy and delivery method may affect pelvic floor and abdominal muscles during the Valsalva maneuver. PMID:24707104

  18. Cisapride stimulates contraction of idiopathic megacolonic smooth muscle in cats.

    PubMed

    Hasler, A H; Washabau, R J

    1997-01-01

    We have previously shown that cisapride, a substituted piperidinyl benzamide, stimulates contraction of healthy feline colonic smooth muscle. The purpose of the present investigation was to determine the effect of cisapride on feline idiopathic megacolonic smooth muscle function. Longitudinal smooth muscle strips from ascending and descending colon were obtained from cats with idiopathic megacolon, suspended in a 1.5 mM Ca(2+)-HEPES buffer solution (37 degrees C, 100% O2, pH 7.4), attached to isometric force transducers, and stretched to optimal muscle length (Lo). Control responses were obtained at each muscle site with acetylcholine (10(-8) to 10(-4) M), substance P (10(-11) to 10(-7) M), or potassium chloride (10 to 80 mM). Muscles were then stimulated with cumulative (10(-9) to 10(-6) M) doses of cisapride in the absence or presence of tetrodotoxin (10(-6) M) and atropine (10(-6) M), or in a 0 calcium HEPES buffer solution. In cats with idiopathic megacolon, cisapride stimulated contractions of longitudinal smooth muscle from both the ascending and the descending colon. Cisapride-induced contractions were similar in magnitude to those induced by substance P and acetylcholine in the ascending colon, but were less than those observed in the descending colon. Cisapride-induced contractions in megacolonic smooth muscle were only partially inhibited by tetrodotoxin and atropine, but were virtually abolished by removal of extracellular calcium. We concluded that cisapride-induced contractions of feline megacolonic smooth muscle are largely smooth muscle mediated and dependent on influx of extracellular calcium. Cisapride-induced contractions in megacolonic smooth muscle are only partially dependent on enteric cholinergic nerves. Thus, cisapride may be useful in the treatment of cats with idiopathic megacolon.

  19. Muscle electrical stimulation improves neurovascular control and exercise tolerance in hospitalised advanced heart failure patients.

    PubMed

    Groehs, Raphaela V; Antunes-Correa, Ligia M; Nobre, Thais S; Alves, Maria-Janieire Nn; Rondon, Maria Urbana Pb; Barreto, Antônio Carlos Pereira; Negrão, Carlos E

    2016-10-01

    We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction ≤ 30% were consecutively randomly assigned into two groups: functional electrical stimulation (n = 15; 54 ± 2 years) and control (n = 15; 49 ± 2 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10 Hz frequency, 150 ms pulse width and 70 mA intensity for 60 minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of < 20 mA. Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with

  20. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

    PubMed Central

    Miura, Naoto; Watanabe, Takashi

    2016-01-01

    Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES. PMID:27110556

  1. Induction of cortical plasticity for reciprocal muscles by paired associative stimulation

    PubMed Central

    Suzuki, Makoto; Kirimoto, Hikari; Sugawara, Kazuhiro; Watanabe, Makoto; Shimizu, Shinobu; Ishizaka, Ikuyo; Yamada, Sumio; Matsunaga, Atsuhiko; Fukuda, Michinari; Onishi, Hideaki

    2014-01-01

    Background Paired associative stimulation (PAS) is widely used to induce plasticity in the human motor cortex. Although reciprocal inhibition of antagonist muscles plays a fundamental role in human movements, change in cortical circuits for reciprocal muscles by PAS is unknown. Methods We investigated change in cortical plasticity for reciprocal muscles during PAS. PAS consisted of 200 pairs of peripheral electric stimulation of the right median nerve at the wrist at a frequency of 0.25 Hz followed by transcranial magnetic stimulation of the left M1 at the midpoint between the center of gravities of the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles. Measures of motor cortical excitability included resting motor threshold (RMT), GABAA-mediated short-interval intracortical inhibition (SICI), and GABAB-mediated long-interval intracortical inhibition (LICI). Results Motor evoked potential amplitude-conditioned LICI for the FCR muscle was significantly decreased after PAS (P = 0.020), whereas that for the ECR muscle was significantly increased (P = 0.033). Changes in RMT and SICI for the FCR and ECR muscles were not significantly different before and after PAS. Corticospinal excitability for both reciprocal muscles was increased during PAS, but GABAB-mediated cortical inhibitory functions for the agonist and antagonist muscles were reciprocally altered after PAS. Conclusion These results implied that the cortical excitability for reciprocal muscles including GABAB-ergic inhibitory systems within human M1 could be differently altered by PAS. PMID:25365805

  2. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed tomore » differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.« less

  3. Selective and graded recruitment of cat hamstring muscles with intrafascicular stimulation.

    PubMed

    Dowden, Brett R; Wilder, Andrew M; Hiatt, Scott D; Normann, Richard A; Brown, Nicholas A T; Clark, Gregory A

    2009-12-01

    The muscles of the hamstring group can produce different combinations of hip and knee torque. Thus, the ability to activate the different hamstring muscles selectively is of particular importance in eliciting functional movements such as stance and gait in a person with spinal cord injury. We investigated the ability of intrafascicular stimulation of the muscular branch of the sciatic nerve to recruit the feline hamstring muscles in a selective and graded fashion. A Utah Slanted Electrode Array, consisting of 100 penetrating microelectrodes, was implanted into the muscular branch of the sciatic nerve in six cats. Muscle twitches were evoked in the three compartments of biceps femoris (anterior, middle, and posterior), as well as semitendinosus and semimembranosus, using pulse-width modulated constant-voltage pulses. The resultant compound muscle action potentials were recorded using intramuscular fine-wire electrodes. 74% of the electrodes per implant were able to evoke a threshold response in these muscles, and these electrodes were evenly distributed among the instrumented muscles. Of the five muscles instrumented, on average 2.5 could be selectively activated to 90% of maximum EMG, and 3.5 could be selectively activated to 50% of maximum EMG. The muscles were recruited selectively with a mean stimulus dynamic range of 4.14 +/- 5.05 dB between threshold and either spillover to another muscle or a plateau in the response. This selective and graded activation afforded by intrafascicular stimulation of the muscular branch of the sciatic nerve suggests that it is a potentially useful stimulation paradigm for eliciting distinct forces in the hamstring muscle group in motor neuroprosthetic applications.

  4. Kinesthetic illusions attenuate experimental muscle pain, as do muscle and cutaneous stimulation.

    PubMed

    Gay, André; Aimonetti, Jean-Marc; Roll, Jean-Pierre; Ribot-Ciscar, Edith

    2015-07-30

    In the present study, muscle pain was induced experimentally in healthy subjects by administrating hypertonic saline injections into the tibialis anterior (TA) muscle. We first aimed at comparing the analgesic effects of mechanical vibration applied to either cutaneous or muscle receptors of the TA or to both types simultaneously. Secondly, pain alleviation was compared in subjects in whom muscle tendon vibration evoked kinesthetic illusions of the ankle joint. Muscle tendon vibration, which primarily activated muscle receptors, reduced pain intensity by 30% (p<0.01). In addition, tangential skin vibration reduced pain intensity by 33% (p<0.01), primarily by activating cutaneous receptors. Concurrently stimulating both sensory channels induced stronger analgesic effects (-51%, p<0.01), as shown by the lower levels of electrodermal activity. The strongest analgesic effects of the vibration-induced muscle inputs occurred when illusory movements were perceived (-38%, p=0.01). The results suggest that both cutaneous and muscle sensory feedback reduce muscle pain, most likely via segmental and supraspinal processes. Further clinical trials are needed to investigate these new methods of muscle pain relief. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    PubMed

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  6. Pelvic floor muscle exercise by biofeedback and electrical stimulation to reinforce the pelvic floor muscle after normal delivery.

    PubMed

    Lee, In Sook; Choi, Euy Soon

    2006-12-01

    This study was conducted to investigate the effectiveness of pelvic floor muscle exercise using biofeedback and electrical stimulation after normal delivery. The subjects of this study were 49 (experimental group: 25, control group: 24) postpartum women who passed 6 weeks after normal delivery without complication of pregnancy, delivery and postpartum. The experimental group was applied to the pelvic muscle enforcement program by biofeedback and electrical stimulation for 30 minutes per session, twice a week for 6 weeks, after then self-exercise of pelvic floor muscle was done 50-60 repetition per session, 3 times a day for 6 weeks. Maximum pressure of pelvic floor muscle contraction (MPPFMC), average pressure of pelvic floor muscle contraction (APPFMC), duration time of pelvic floor muscle contraction (DTPFMC) and the subjective lower urinary symptoms were measured by digital perineometer and Bristol Female Urinary Symptom Questionnaire and compared between two groups prior to trial, at the end of treatment and 6 weeks after treatment. The results of this study indicated that MPPFMC, APPFMC, DTPFMC were significantly increased and subjective lower urinary symptoms were significantly decreased after treatment in the experimental group than in the control group. This study suggested that the pelvic floor muscle exercise using biofeedback and electrical stimulation might be a safer and more effective program for reinforcing pelvic floor muscle after normal delivery.

  7. Pairing Voluntary Movement and Muscle-Located Electrical Stimulation Increases Cortical Excitability

    PubMed Central

    Jochumsen, Mads; Niazi, Imran K.; Signal, Nada; Nedergaard, Rasmus W.; Holt, Kelly; Haavik, Heidi; Taylor, Denise

    2016-01-01

    Learning new motor skills has been correlated with increased cortical excitability. In this study, different location of electrical stimulation (ES), nerve, or muscle, was paired with voluntary movement to investigate if ES paired with voluntary movement (a) would increase the excitability of cortical projections to tibialis anterior and (b) if stimulation location mattered. Cortical excitability changes were quantified using motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) at varying intensities during four conditions. Twelve healthy subjects performed 50 dorsiflexions at the ankle during nerve or muscle ES at motor threshold (MTh). ES alone was delivered 50 times and the movement was performed 50 times. A significant increase in the excitability from pre- to post-intervention (P = 0.0061) and pre- to 30 min post-intervention (P = 0.017) measurements was observed when voluntary movement was paired with muscle ES located at tibialis anterior. An increase of 50 ± 57 and 28 ± 54% in the maximum MEPs was obtained for voluntary movement paired with muscle-located and nerve-located ES, respectively. The maximum MEPs for voluntary movement alone and muscle-located ES alone were −5 ± 28 and 2 ± 42%, respectively. Pairing voluntary movement with muscle-located ES increases excitability of corticospinal projections of tibialis anterior in healthy participants. This finding suggests that active participation during muscle-located ES protocols increases cortical excitability to a greater extent than stimulation alone. The next stage of this research is to investigate the effect in people with stroke. The results may have implications for motor recovery in patients with motor impairments following neurological injury. PMID:27733823

  8. Verification of an optimized stimulation point on the abdominal wall for transcutaneous neuromuscular electrical stimulation for activation of deep lumbar stabilizing muscles.

    PubMed

    Baek, Seung Ok; Cho, Hee Kyung; Jung, Gil Su; Son, Su Min; Cho, Yun Woo; Ahn, Sang Ho

    2014-09-01

    Transcutaneous neuromuscular electrical stimulation (NMES) can stimulate contractions in deep lumbar stabilizing muscles. An optimal protocol has not been devised for the activation of these muscles by NMES, and information is lacking regarding an optimal stimulation point on the abdominal wall. The goal was to determine a single optimized stimulation point on the abdominal wall for transcutaneous NMES for the activation of deep lumbar stabilizing muscles. Ultrasound images of the spinal stabilizing muscles were captured during NMES at three sites on the lateral abdominal wall. After an optimal location for the placement of the electrodes was determined, changes in the thickness of the lumbar multifidus (LM) were measured during NMES. Three stimulation points were investigated using 20 healthy physically active male volunteers. A reference point R, 1 cm superior to the iliac crest along the midaxillary line, was used. Three study points were used: stimulation point S1 was located 2 cm superior and 2 cm medial to the anterior superior iliac spine, stimulation point S3 was 2 cm below the lowest rib along the same sagittal plane as S1, and stimulation point S2 was midway between S1 and S3. Sessions were conducted stimulating at S1, S2, or S3 using R for reference. Real-time ultrasound imaging (RUSI) of the abdominal muscles was captured during each stimulation session. In addition, RUSI images were captured of the LM during stimulation at S1. Thickness, as measured by RUSI, of the transverse abdominis (TrA), obliquus internus, and obliquus externus was greater during NMES than at rest for all three study points (p<.05). Transverse abdominis was significantly stimulated more by NMES at S1 than at the other points (p<.05). The LM thickness was also significantly greater during NMES at S1 than at rest (p<.05). Neuromuscular electrical stimulation at S1 optimally activated deep spinal stabilizing muscles, TrA and LM, as evidenced by RUSI. The authors recommend this

  9. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.

    PubMed

    Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-04-24

    Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.

  10. Pelvic floor muscle training for urgency urinary incontinence in women: a systematic review.

    PubMed

    Greer, Joy A; Smith, Ariana L; Arya, Lily A

    2012-06-01

    The objective of this study is to evaluate the effectiveness of existing physiotherapy modalities for the treatment of urge urinary incontinence (UUI). A systematic review was performed for primary studies of physiotherapy techniques for UUI published in English between 1996 and August 2010 in major electronic databases. Only randomized clinical trials that reported outcomes separately for women with UUI were included. Outcomes assessed were reduction in UUI, urinary frequency, and nocturia. Data from 13 full-text trials including the modalities of pelvic floor muscles exercises with or without biofeedback, vaginal electrical stimulation, magnetic stimulation, and vaginal cones were analyzed. The methodologic quality of these trials was fair. Significant improvement in UUI was reported for all physiotherapy techniques except vaginal cone therapy. There are insufficient data to determine if pelvic physiotherapy improves urinary frequency or nocturia. Evidence suggests that physiotherapy techniques may be beneficial for the treatment of UUI.

  11. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    PubMed

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue.

    PubMed

    Ahadian, Samad; Ramón-Azcón, Javier; Ostrovidov, Serge; Camci-Unal, Gulden; Hosseini, Vahid; Kaji, Hirokazu; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu

    2012-09-21

    Engineered skeletal muscle tissues could be useful for applications in tissue engineering, drug screening, and bio-robotics. It is well-known that skeletal muscle cells are able to differentiate under electrical stimulation (ES), with an increase in myosin production, along with the formation of myofibers and contractile proteins. In this study, we describe the use of an interdigitated array of electrodes as a novel platform to electrically stimulate engineered muscle tissues. The resulting muscle myofibers were analyzed and quantified in terms of their myotube characteristics and gene expression. The engineered muscle tissues stimulated through the interdigitated array of electrodes demonstrated superior performance and maturation compared to the corresponding tissues stimulated through a conventional setup (i.e., through Pt wires in close proximity to the muscle tissue). In particular, the ES of muscle tissue (voltage 6 V, frequency 1 Hz and duration 10 ms for 1 day) through the interdigitated array of electrodes resulted in a higher degree of C2C12 myotube alignment (∼80%) as compared to ES using Pt wires (∼65%). In addition, higher amounts of C2C12 myotube coverage area, myotube length, muscle transcription factors and protein biomarkers were found for myotubes stimulated through the interdigitated array of electrodes compared to those stimulated using the Pt wires. Due to the wide array of potential applications of ES for two- and three-dimensional (2D and 3D) engineered tissues, the suggested platform could be employed for a variety of cell and tissue structures to more efficiently investigate their response to electrical fields.

  13. In Vivo Demonstration of a Self-Sustaining, Implantable, Stimulated-Muscle-Powered Piezoelectric Generator Prototype

    PubMed Central

    Lewandowski, B. E.; Kilgore, K. L.; Gustafson, K. J.

    2010-01-01

    An implantable, stimulated-muscle-powered piezoelectric active energy harvesting generator was previously designed to exploit the fact that the mechanical output power of muscle is substantially greater than the electrical power necessary to stimulate the muscle’s motor nerve. We reduced to practice the concept by building a prototype generator and stimulator. We demonstrated its feasibility in vivo, using rabbit quadriceps to drive the generator. The generated power was sufficient for self-sustaining operation of the stimulator and additional harnessed power was dissipated through a load resistor. The prototype generator was developed and the power generating capabilities were tested with a mechanical muscle analog. In vivo generated power matched the mechanical muscle analog, verifying its usefulness as a test-bed for generator development. Generator output power was dependent on the muscle stimulation parameters. Simulations and in vivo testing demonstrated that for a fixed number of stimuli/minute, two stimuli applied at a high frequency generated greater power than single stimuli or tetanic contractions. Larger muscles and circuitry improvements are expected to increase available power. An implanted, self-replenishing power source has the potential to augment implanted battery or transcutaneously powered electronic medical devices. PMID:19657742

  14. Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle.

    PubMed

    Moylan, Jennifer S; Smith, Jeffrey D; Wolf Horrell, Erin M; McLean, Julie B; Deevska, Gergana M; Bonnell, Mark R; Nikolova-Karakashian, Mariana N; Reid, Michael B

    2014-01-01

    Sphingolipid and oxidant signaling affect glucose uptake, atrophy, and force production of skeletal muscle similarly and both are stimulated by tumor necrosis factor (TNF), suggesting a connection between systems. Sphingolipid signaling is initiated by neutral sphingomyelinase (nSMase), a family of agonist-activated effector enzymes. Northern blot analyses suggest that nSMase3 may be a striated muscle-specific nSMase. The present study tested the hypothesis that nSMase3 protein is expressed in skeletal muscle and functions to regulate TNF-stimulated oxidant production. We demonstrate constitutive nSMase activity in skeletal muscles of healthy mice and humans and in differentiated C2C12 myotubes. nSMase3 (Smpd4 gene) mRNA is highly expressed in muscle. An nSMase3 protein doublet (88 and 85 kD) is derived from alternative mRNA splicing of exon 11. The proteins partition differently. The full-length 88 kD isoform (nSMase3a) fractionates with membrane proteins that are resistant to detergent extraction; the 85 kD isoform lacking exon 11 (nSMase3b) is more readily extracted and fractionates with detergent soluble membrane proteins; neither variant is detected in the cytosol. By immunofluorescence microscopy, nSMase3 resides in both internal and sarcolemmal membranes. Finally, myotube nSMase activity and cytosolic oxidant activity are stimulated by TNF. Both if these responses are inhibited by nSMase3 knockdown. These findings identify nSMase3 as an intermediate that links TNF receptor activation, sphingolipid signaling, and skeletal muscle oxidant production. Our data show that nSMase3 acts as a signaling nSMase in skeletal muscle that is essential for TNF-stimulated oxidant activity.

  15. 21 CFR 890.1850 - Diagnostic muscle stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic muscle stimulator. 890.1850 Section 890.1850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1850 Diagnostic...

  16. 21 CFR 890.1850 - Diagnostic muscle stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic muscle stimulator. 890.1850 Section 890.1850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1850 Diagnostic...

  17. 21 CFR 890.1850 - Diagnostic muscle stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic muscle stimulator. 890.1850 Section 890.1850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1850 Diagnostic...

  18. 21 CFR 890.1850 - Diagnostic muscle stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic muscle stimulator. 890.1850 Section 890.1850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890.1850 Diagnostic...

  19. Fiber transformation and replacement in low-frequency stimulated rabbit fast-twitch muscles.

    PubMed

    Schuler, M; Pette, D

    1996-08-01

    The fast-to-slow conversion of rabbit skeletal muscles by chronic low-frequency (10 Hz, 12 h daily) stimulation involves (1) sequential fast-to-slow fiber-type transitions in the order of type IID-->type IIA-->type I, and (2) the replacement of deteriorating fast-twitch glycolytic fibers by new fibers derived from satellite cells and myotubes. These two processes were analyzed in 30- and 60-day stimulated extensor digitorum longus and tibialis anterior muscles. Fast-to-slow transforming fibers were identified by myofibrillar actomyosin histochemistry as type C fibers and immunohistochemically by their reaction with monoclonal antibodies specific to slow and fast myosin heavy chain isoforms. In situ hybridization of mRNA specific to the myosin heavy chain I isoform identified all fibers expressing slow myosin, i.e., type I and C fibers. The fraction of transforming fibers ranged between 35% and 50% in 30-day stimulated muscles. The percentage of type I fibers (20%) was threefold elevated in extensor digitorum longus muscle, but unaltered (3.5%) in tibialis anterior muscle, suggesting that fast-to-slow fiber conversion was more advanced in the former than in the latter. Fiber replacement was indicated by the finding that the fiber populations of both muscles contained 15% myotubes or small fibers with central nuclei. In situ hybridization revealed that myotubes and small regenerating fibers uniformly expressed myosin heavy chain I mRNA. Similarly, high percentages of slow-myosin-expressing myotubes and small fibers were found in 60-day stimulated muscles.

  20. Transcutaneous electrical nerve stimulation (TENS) for pain control after vaginal delivery and cesarean section.

    PubMed

    Kayman-Kose, Seda; Arioz, Dagistan Tolga; Toktas, Hasan; Koken, Gulengul; Kanat-Pektas, Mine; Kose, Mesut; Yilmazer, Mehmet

    2014-10-01

    The present study aims to determine the efficiency and reliability of transcutaneous electrical nerve stimulation (TENS) in the management of pain related with uterine contractions after vaginal delivery and the pain related with both abdominal incision uterine contractions after cesarean section. A hundred healthy women who underwent cesarean section under general anesthesia were randomly assigned to the placebo group (Group 1) or the TENS group (Group 2), while 100 women who delivered by vaginal route without episiotomy were randomized into the placebo group (Group 3) or the TENS group (Group 4). The patients in Group 2 had statistically lower visual analog scale (VAS) and verbal numerical scale (VNS) scores than the patients in Group 1 (p < 0.001 for both). The patients in Group 4 had statistically lower VAS and VNS scores than the patients in Group 3 (p = 0.022 and p = 0.005, respectively). The analgesic requirement at the eighth hour of cesarean section was significantly lower in the patients who were treated with TENS (p = 0.006). The need for analgesics at the eighth hour of vaginal delivery was statistically similar in the patients who were treated with TENS and the patients who received placebo (p = 0.830). TENS is an effective, reliable, practical and easily available modality of treatment for postpartum pain.

  1. Simultaneous perineal ultrasound and vaginal pressure measurement prove the action of electrical pudendal nerve stimulation in treating female stress incontinence.

    PubMed

    Wang, Siyou; Zhang, Shujing

    2012-11-01

    Study Type - Diagnostic (case series) Level of Evidence 4. What's known on the subject? and What does the study add? Pelvic floor muscle training (PFMT) and transvaginal electrical stimulation (TES) are two commonly used forms of conservative treatment for stress urinary incontinence (SUI). PFMT may build up the structural support of the pelvis, but many SUI patients are unable to perform PFMT effectively and its primary disadvantage is lack of long-term patient compliance. TES is a passive treatment that produces PFM contraction and patient compliance with it is good; however, its effect is not as good as that of PFMT when performed correctly. Electrical pudendal nerve stimulation (EPNS) combines the advantages of PFMT and TES and incorporates the technique of deep insertion of long needles. In this study, simultaneous perineal ultrasound and vaginal pressure measurement prove that EPNS can contract the PFM and simulate PFMT. It is shown that EPNS is an alternative therapy for female SUI patients who fail PFMT and TES and the therapy can also be used for severe SUI. • To prove that electrical pudendal nerve stimulation (EPNS) can contract the pelvic floor muscles (PFM) and simulate pelvic floor muscle training (PFMT). • To show that EPNS is an alternative therapy for female stress urinary incontinence (SUI) that does not respond effectively to PFMT and transvaginal electrical stimulation (TES). • Thirty-five female patients with SUI who did not respond effectively to PFMT and TES (group I) were enrolled and 60 other female patients with SUI were allocated to group II (30 patients) and group III (30 patients). • Long needles were deeply inserted into four sacral points and electrified to stimulate the pudendal nerves. Group I and group II were treated by a doctor skilled in performing EPNS and group III, by a doctor unskilled in performing EPNS. • When EPNS was performed in group I, perineal ultrasonographic PFM movements, vaginal pressure (VP) and PFM

  2. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.

    2014-10-01

    Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical

  3. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    PubMed Central

    Crago, Patrick E; Makowski, Nathaniel S; Cole, Natalie M

    2014-01-01

    Objective Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity, without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main Results Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously - voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical

  4. The immediate effect of vaginal and caesarean delivery on anal sphincter measurements.

    PubMed

    Karcaaltincaba, Deniz; Erkaya, Salim; Isik, Hatice; Haberal, Ali

    2016-08-01

    This study evaluated the effects of vaginal and caesarean delivery on internal and external anal sphincter muscle thickness using translabial ultrasonography (TL-US). This prospective cohort study enrolled nulliparous women who either had vaginal or caesarean deliveries. The thickness of the hypoechoic internal anal sphincter (IAS) and hyperechoic external anal sphincter (EAS) at the 12, 3, 6, and 9 o'clock positions at the distal level were measured before delivery and within 24-48 h after delivery. A total 105 consecutive women were enrolled in the study: 60 in the vaginal delivery group and 45 in the caesarean delivery group. The IAS muscle thickness at the 12 o'clock position in the vaginal delivery group was significantly thicker before compared with after delivery (mean ± SD: 2.31 ± 0.74 mm versus 1.81 ± 0.64 mm, respectively). The EAS muscle thickness at the 12 o'clock position in the vaginal delivery group was significantly thicker before compared with after delivery (mean ± SD: 2.42 ± 0.64 mm versus 1.97 ± 0.85, respectively). There was significant muscle thinning of both the IAS and EAS at the 12 o'clock position after vaginal delivery, but not after caesarean delivery. © The Author(s) 2016.

  5. Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-2-0190 TITLE: Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone PRINCIPAL...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...2015 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

  6. Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis.

    PubMed

    Dirks, Marlou L; Groen, Bart B L; Franssen, Rinske; van Kranenburg, Janneau; van Loon, Luc J C

    2017-01-01

    Short periods of muscle disuse result in substantial skeletal muscle atrophy. Recently, we showed that both neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. In this study, we test our hypothesis that NMES can augment the use of presleep protein-derived amino acids for overnight muscle protein synthesis in older men. Twenty healthy, older [69 ± 1 (SE) yr] men were subjected to 24 h of bed rest, starting at 8:00 AM. In the evening, volunteers were subjected to 70-min 1-legged NMES, while the other leg served as nonstimulated control (CON). Immediately following NMES, 40 g of intrinsically l-[1- 13 C]-phenylalanine labeled protein was ingested prior to sleep. Blood samples were taken throughout the night, and muscle biopsies were obtained from both legs in the evening and the following morning (8 h after protein ingestion) to assess dietary protein-derived l-[1- 13 C]-phenylalanine enrichments in myofibrillar protein. Plasma phenylalanine concentrations and plasma l-[1- 13 C]-phenylalanine enrichments increased significantly following protein ingestion and remained elevated for up to 6 h after protein ingestion (P < 0.05). During overnight sleep, myofibrillar protein-bound l-[1- 13 C]-phenylalanine enrichments (MPE) increased to a greater extent in the stimulated compared with the control leg (0.0344 ± 0.0019 vs. 0.0297 ± 0.0016 MPE, respectively; P < 0.01), representing 18 ± 6% greater incorporation of presleep protein-derived amino acids in the NMES compared with CON leg. In conclusion, application of NMES prior to presleep protein feeding stimulates the use of dietary protein-derived amino acids for overnight muscle protein synthesis in older men. Neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. Here we demonstrate that in older

  7. Labial and vaginal blood volume responses to visual and tactile stimuli.

    PubMed

    Henson, D E; Rubin, H B; Henson, C

    1982-02-01

    Five women volunteers participated in two experimental sessions designed to evaluate the response patterns of two objective psychophysiological measure of women's sexual arousal to different methods (and intensities) of sexual stimulation (i.e., an erotic film and manual self-stimulation). A vaginal photoplethysmograph was used to measure vaginal blood volume response and a labial thermistor-clip was used to measure temperature changes of one of the minor labia. Both measures usually covaried in a highly significant manner during both types of stimulation, with the largest responses typically being evoked by the physical stimulation. The response patterns for the two measures were also similar following both methods of stimulation if the woman did not experience orgasm; both measures decreased to some extent after the stimulation ended but usually remained well above the prestimulatory baseline. Orgasm, however, affected the two genital measures differently. The vaginal blood volume measure decreased dramatically during the reported orgasm, possibly because of vaginal contractions, and then increased to at least the preorgasmic level that occurred during the stimulation. The labial measure did not change during the reported orgasm but decreased relatively rapidly soon after.

  8. Efficacy of functional electrical stimulation-biofeedback with sexual cognitive-behavioral therapy as treatment of vaginismus.

    PubMed

    Seo, Ju Tae; Choe, Jin Ho; Lee, Won Sik; Kim, Kyung Hee

    2005-07-01

    To report 12 cases of vaginismus that were successfully treated with functional electrical stimulation (FES)-biofeedback with sexual cognitive-behavioral therapy (SCBT) to determine the efficacy of FES-biofeedback with SCBT as a standard therapy for vaginismus. Vaginismus is an involuntary spasm of the musculature of the outer third of the vagina that leads to impossible vaginal penetration, causing personal distress. Various therapeutic approaches, both physiologic and psychological, have been considered. Twelve women with vaginismus referred from a checkup outpatient clinic participated in this study. The patients enrolled in this study had vaginismus according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders. The patients were assessed before and after treatment with gynecologic examinations and structured interviews pertaining to sexual function and psychological adjustment. After the diagnosis of vaginismus, we conducted weekly pelvic floor muscle relaxation using FES-biofeedback. Once the patients became tolerable to vaginal manipulation, the eight-stage SCBT (eight-stage gradual desensitization described by Kaplan using vaginal self-dilation with fingers and vaginal probe insertion) was added for 8 weeks. After 8 weeks of treatment, all 12 couples had completed the program, had become tolerable to vaginal insertion of larger size probes, and could achieve satisfactory vaginal intercourse. FES-biofeedback with SCBT is an effective aid for patients with vaginismus to learn muscle control. Therefore, it may increase the success rate of treatment of vaginismus.

  9. Anatomic distribution of nerves and microvascular density in the human anterior vaginal wall: prospective study.

    PubMed

    Li, Ting; Liao, Qinping; Zhang, Hong; Gao, Xuelian; Li, Xueying; Zhang, Miao

    2014-01-01

    The presence of the G-spot (an assumed erotic sensitive area in the anterior wall of the vagina) remains controversial. We explored the histomorphological basis of the G-spot. Biopsies were drawn from a 12 o'clock direction in the distal- and proximal-third areas of the anterior vagina of 32 Chinese subjects. The total number of protein gene product 9.5-immunoreactive nerves and smooth muscle actin-immunoreactive blood vessels in each specimen was quantified using the avidin-biotin-peroxidase assay. Vaginal innervation was observed in the lamina propria and muscle layer of the anterior vaginal wall. The distal-third of the anterior vaginal wall had significantly richer small-nerve-fiber innervation in the lamina propria than the proximal-third (p = 0.000) and in the vaginal muscle layer (p = 0.006). There were abundant microvessels in the lamina propria and muscle layer, but no small vessels in the lamina propria and few in the muscle layer. Significant differences were noted in the number of microvessels when comparing the distal- with proximal-third parts in the lamina propria (p = 0.046) and muscle layer (p = 0.002). Significantly increased density of nerves and microvessels in the distal-third of the anterior vaginal wall could be the histomorphological basis of the G-spot. Distal anterior vaginal repair could disrupt the normal anatomy, neurovascular supply and function of the G-spot, and cause sexual dysfunction.

  10. Transcutaneous calf-muscle electro-stimulation: A prospective treatment for diabetic claudicants?

    PubMed

    Ellul, Christian; Gatt, Alfred

    2016-11-01

    First-line therapy for claudicants with diabetes include supervised exercise programmes to improve walking distance. However, exercise comes with a number of barriers and may be contraindicated in certain conditions. The aim of this study was to evaluate whether calf-muscle electro-stimulation improves claudication distance. A prospective, one-group, pretest-posttest study design was employed on 40 participants living with type 2 diabetes mellitus, peripheral artery disease (ankle-brachial pressure index < 0.90) and calf-muscle claudication. Calf-muscle electro-stimulation of varying frequencies (1-250 Hz) was applied on both ischaemic limbs (N = 80) for 1 h per day for 12 consecutive weeks. The absolute claudication distance was measured at baseline and following the intervention. The cohort (n = 40; 30 males; mean age = 71 years; mean ankle-brachial pressure index = 0.70) registered a mean baseline absolute claudication distance of 333.71 m (standard deviation = 208). Following 91.68 days (standard deviation = 6.23) of electrical stimulation, a significant mean increase of 137 m (standard deviation = 136) in the absolute claudication distance was registered (p = 0.000, Wilcoxon signed rank test). Electrical stimulation of varying low to high frequencies on ischaemic calf muscles significantly increased the maximal walking capacity in claudicants with type 2 diabetes. This therapeutic approach may be considered in patients with impaired exercise tolerance or as an adjunct treatment modality. © The Author(s) 2016.

  11. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces

    PubMed Central

    Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-01-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734

  12. Release of “neurokinin” on nervous and electrical stimulation of a frog stomach muscle preparation

    PubMed Central

    Singh, I.

    1964-01-01

    Activation of a frog stomach muscle preparation by electrical stimulation of a vagus nerve or by direct stimulation released two polypeptides. One was destroyed by trypsin or chymotrypsin in about 10 min; the activity of the other was enhanced by trypsin for about 10 min, but was destroyed by chymotrypsin. Similar stimulation of dog stomach muscle did not release these polypeptides. Correspondingly, the transmission from vagus nerve to stomach muscle in the frog was resistant to atropine, but was blocked by atropine in the dog. PMID:14190475

  13. The effect of long-term stimulation of fast muscles on their blood flow, metabolism and ability to withstand fatigue.

    PubMed

    Hudlická, O; Brown, M; Cotter, M; Smith, M; Vrbová, G

    1977-06-08

    Chronic stimulation of fast rabbit muscles (tibialis anterior, extensor digitorum longus and the peroneal muscle group) at a frequency naturally occurring in nerves to slow muscles increased their ability to withstand fatigue. Isometric tension decreased during a 10-min period of contractions at 4 Hz by 75% in control muscles, but only 55% in muscles chronically stimulated for 4 days, and 23% in muscles stimulated for 28 days. Chronic stimulation had little effect on resting blood flow, oxygen or glucose consumption. The output or consumption of lactate and free fatty acids (FFA) at rest were also unaffected. The glycogen content was regularly increased, and was apparent after only 2 days of stimulation. The activity of fatty acid activating enzyme was increased after 28 days. During a 10-min period of isometric contractions at 4 Hz, there was a markedly greater increase in blood flow and oxygen consumption in muscles stimulated for 14-28 days than in control muscles; lactic acid output was lower in muscles stimulated for 28 days, and the uptake of FFA was significantly higher. It is therefore suggested that muscles chronically stimulated for 14-28 days use fats as the main source of energy during isometric contractions. The predominantly oxidative metabolism is probably facilitated by the higher density of capillaries. The latter also enables more efficient delivery of oxygen, and therefore smaller fatiguability, already after 4 days of chronic stimulation.

  14. 25-hydroxycholecalciferol stimulation of muscle metabolism.

    PubMed Central

    Birge, S J; Haddad, J G

    1975-01-01

    Intact diaphragms from vitamin D-deficient rats were incubated in vitro with [3H]leucine. Oral administration of 10 mug (400 U) of cholecalciferol 7 h before incubation increased leucine incorporation into diaphragm muscle protein by 136% (P less than 0.001) of the preparation from untreated animals. Nephrectomy did not obliterate this response. ATP content of the diaphragm muscle was also enhanced 7 h after administration of the vitamin. At 4 h after administration of cholecalciferol, serum phosphorus concentration was reduced by 0.7 mg/100 ml (P less than 0.025) and the rate of inorganic 32PO4 accumulation by diaphragm muscle was increased by 18% (P less than 0.025) over the untreated animals. Increasing serum phosphate concentration of the vitamin D-deficient animals by dietary supplementation with phosphate for 3 days failed to significantly enhance leucine incorporation into protein. However, supplementation of the rachitogenic, vitamin D-deficient diet with phosphorus for 3 wk stimulated the growth of the animal and muscle ATP levels. This increase in growth and muscle ATP content attributed to the addition of phosphorus to the diet was less than the increase in growth and muscle ATP levels achieved by the addition of both phosphorus and vitamin D to the diet. To eliminate systemic effects of the vitamin, the epitrochlear muscle of the rat foreleg of vitamin D-depleted rats was maintained in tissue culture. Addition of 20 ng/ml of 25-hydroxycholecalciferol (25-OHD3) to the medium enhanced ATP content of the muscle and increased leucine incorporation into protein. Vitamin D3 at a concentration of 20 mug/ml and 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) at a concentration of 500 pg/ml were without effect. Analysis of muscle cytosol in sucrose density gradients revealed a protein fraction which specifically bound 25-OHD3 and which demonstrated a lesser affinity for 1,25-(OH)2D3. These studies suggest that 25-OHD3 may influence directly the intracellular

  15. Myoelectric stimulation on peroneal muscles resists simulated ankle sprain motion.

    PubMed

    Fong, Daniel Tik-Pui; Chu, Vikki Wing-Shan; Chan, Kai-Ming

    2012-07-26

    The inadequate reaction time of the peroneal muscles in response to an incorrect foot contact event has been proposed as one of the etiological factors contributing to ankle joint inversion injury. Thus, the current study aimed to investigate the efficacy of a myoelectric stimulation applied to the peroneal muscles in the prevention of a simulated ankle inversion trauma. Ten healthy male subjects performed simulated inversion and supination tests on a pair of mechanical sprain simulators. An electrical signal was delivered to the peroneal muscles of the subjects through a pair of electrode pads. The start of the stimulus was synchronized with the drop of the sprain simulator's platform. In order to determine the maximum delay time which the stimulus could still resist the simulated ankle sprain motion, different delay time were test (0, 5, 10, and 15ms). Together with the control trial (no stimulus), there were 5 testing conditions for both simulated inversion and supination test. The effect was quantified by the drop in maximum ankle tilting angle and angular velocity, as determined by a motion analysis system with a standard laboratory procedure. Results showed that the myoelectric stimulation was effective in all conditions except the one with myoelectric stimulus delayed for 15ms in simulated supination test. It is concluded that myoelectric stimulation on peroneal muscles could resist an ankle spraining motion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Acromiohumeral Distance During Neuromuscular Electrical Stimulation of the Lower Trapezius and Serratus Anterior Muscles in Healthy Participants.

    PubMed

    Bdaiwi, Alya H; Mackenzie, Tanya Anne; Herrington, Lee; Horsley, Ian; Cools, Ann M

    2015-07-01

    Compromise to the acromiohumeral distance has been reported in participants with subacromial impingement syndrome compared with healthy participants. In clinical practice, patients with subacromial shoulder impingement are given strengthening programs targeting the lower trapezius (LT) and serratus anterior (SA) muscles to increase scapular posterior tilt and upward rotation. We are the first to use neuromuscular electrical stimulation to stimulate these muscle groups and evaluate how the muscle contraction affects the acromiohumeral distance. To investigate if electrical muscle stimulation of the LT and SA muscles, both separately and simultaneously, increases the acromiohumeral distance and to identify which muscle-group contraction or combination most influences the acromiohumeral distance. Controlled laboratory study. Human performance laboratory. Twenty participants (10 men and 10 women, age = 26.9 ± 8.0 years, body mass index = 23.8) were screened. Neuromuscular electrical stimulation of the LT and SA. Ultrasound measurement of the acromiohumeral distance. Acromiohumeral distance increased during contraction via neuromuscular electrical stimulation of the LT muscle (t(19) = -3.89, P = .004), SA muscle (t(19) = -7.67, P = .001), and combined LT and SA muscles (t(19) = -5.09, P = .001). We observed no differences in the increased acromiohumeral distance among the 3 procedures (F(2,57) = 3.109, P = .08). Our results supported the hypothesis that the muscle force couple around the scapula is important in rehabilitation and scapular control and influences acromiohumeral distance.

  17. Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES)

    PubMed Central

    Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander

    2017-01-01

    Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101

  18. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  19. Muscle Activation During Peripheral Nerve Field Stimulation Occurs Due to Recruitment of Efferent Nerve Fibers, Not Direct Muscle Activation.

    PubMed

    Frahm, Ken Steffen; Hennings, Kristian; Vera-Portocarrero, Louis; Wacnik, Paul W; Mørch, Carsten Dahl

    2016-08-01

    Peripheral nerve field stimulation (PNFS) is a potential treatment for chronic low-back pain. Pain relief using PNFS is dependent on activation of non-nociceptive Aβ-fibers. However, PNFS may also activate muscles, causing twitches and discomfort. In this study, we developed a mathematical model, to investigate the activation of sensory and motor nerves, as well as direct muscle fiber activation. The extracellular field was estimated using a finite element model based on the geometry of CT scanned lumbar vertebrae. The electrode was modeled as being implanted to a depth of 10-15 mm. Three implant directions were modeled; horizontally, vertically, and diagonally. Both single electrode and "between-lead" stimulation between contralateral electrodes were modeled. The extracellular field was combined with models of sensory Aβ-nerves, motor neurons and muscle fibers to estimate their activation thresholds. The model showed that sensory Aβ fibers could be activated with thresholds down to 0.563 V, and the lowest threshold for motor nerve activation was 7.19 V using between-lead stimulation with the cathode located closest to the nerves. All thresholds for direct muscle activation were above 500 V. The results suggest that direct muscle activation does not occur during PNFS, and concomitant motor and sensory nerve fiber activation are only likely to occur when using between-lead configuration. Thus, it may be relevant to investigate the location of the innervation zone of the low-back muscles prior to electrode implantation to avoid muscle activation. © 2016 International Neuromodulation Society.

  20. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  1. Intramuscular Electrical Stimulation for Muscle Activation of the Tibialis Anterior After Surgical Repair: A Case Report.

    PubMed

    Hollis, Sharon; McClure, Philip

    2017-12-01

    Background Loss of voluntary activation of musculature can result in muscle weakness. External neuromuscular stimulation can be utilized to improve voluntary activation but is often poorly tolerated because of pain associated with required stimulus level. Intramuscular electrical stimulation requires much lower voltage and may be better tolerated, and therefore more effective at restoring voluntary muscle activation. Case Description A 71-year-old man sustained a rupture of the distal attachment of the tibialis anterior tendon. Thirty-two weeks after surgical repair, there was no palpable or visible tension development in the muscle belly or tendon. Dorsiflexion was dependent on toe extensors. Electrical stimulation applied via a dry needling placement in the muscle belly was utilized to induce an isometric contraction. Outcomes Five sessions of intramuscular electrical stimulation were delivered. By day 4 (second visit), the patient was able to dorsiflex without prominent use of the extensor hallucis longus. By day 6 (third visit), active-range-of-motion dorsiflexion with toes flexed increased 20° (-10° to 10°). Eighteen days after the initial treatment, the patient walked without his previous high-step gait pattern, and the tibialis anterior muscle test improved to withstanding moderate resistance (manual muscle test score, 4/5). Discussion The rapid change in muscle function observed suggests that intramuscular electrical stimulation may facilitate voluntary muscle activation. Level of Evidence Therapy, level 5. J Orthop Sports Phys Ther 2017;47(12):965-969. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7368.

  2. A three-dimensional muscle activity imaging technique for assessing pelvic muscle function

    NASA Astrophysics Data System (ADS)

    Zhang, Yingchun; Wang, Dan; Timm, Gerald W.

    2010-11-01

    A novel multi-channel surface electromyography (EMG)-based three-dimensional muscle activity imaging (MAI) technique has been developed by combining the bioelectrical source reconstruction approach and subject-specific finite element modeling approach. Internal muscle activities are modeled by a current density distribution and estimated from the intra-vaginal surface EMG signals with the aid of a weighted minimum norm estimation algorithm. The MAI technique was employed to minimally invasively reconstruct electrical activity in the pelvic floor muscles and urethral sphincter from multi-channel intra-vaginal surface EMG recordings. A series of computer simulations were conducted to evaluate the performance of the present MAI technique. With appropriate numerical modeling and inverse estimation techniques, we have demonstrated the capability of the MAI technique to accurately reconstruct internal muscle activities from surface EMG recordings. This MAI technique combined with traditional EMG signal analysis techniques is being used to study etiologic factors associated with stress urinary incontinence in women by correlating functional status of muscles characterized from the intra-vaginal surface EMG measurements with the specific pelvic muscle groups that generated these signals. The developed MAI technique described herein holds promise for eliminating the need to place needle electrodes into muscles to obtain accurate EMG recordings in some clinical applications.

  3. Rapid fast to slow fiber transformation in response to chronic stimulation of immobilized muscles of the rabbit.

    PubMed

    Cotter, M; Phillips, P

    1986-09-01

    Limb immobilization causes muscle atrophy particularly of slow oxidative fibers which also suffer the greatest decrement in neural activation. In this study a fast muscle, tibialis anterior, was chronically stimulated using an activity pattern characteristic of nerve fibers to slow muscles to see whether or not this could prevent immobilization induced slow fiber atrophy. Four groups of rabbits were used: unoperated controls, stimulated (10 Hz, 8 h/day), immobilized (neutral position), and a stimulated plus immobilized group. The experimental period was 28 to 30 days or 44 to 50 days. Immobilization caused significant decrease in slow oxidative fiber area which was completely prevented by stimulation. In animals tested for the longer period there was 56% hypertrophy. In addition, the combination of stimulation and immobilization caused a two-fold increase in the number of slow oxidative fibers and greatly increased the proportion of intermediate fibers. Stimulation without immobilization had no effect. Slow fibers in stimulated immobilized muscles had a bimodal area distribution; the number of large fibers (mean area 7059 micron2) was the same as the number of slow oxidative fibers in contralateral muscles, suggesting that they were the preexisting slow fibers, and a small fiber population (mean area 3143 micron2) represented newly converted fast fibers. We conclude that slow muscle units benefit from restoration of activity by chronic stimulation. In addition, the combination of stimulation and immobilization accelerates fast to slow fiber conversion. We suggest that isometric conditions as well as enhanced glucocorticoid effects could account for these findings.

  4. Selective stimulation of facial muscles with a penetrating electrode array in the feline model

    PubMed Central

    Sahyouni, Ronald; Bhatt, Jay; Djalilian, Hamid R.; Tang, William C.; Middlebrooks, John C.; Lin, Harrison W.

    2017-01-01

    Objective Permanent facial nerve injury is a difficult challenge for both patients and physicians given its potential for debilitating functional, cosmetic, and psychological sequelae. Although current surgical interventions have provided considerable advancements in facial nerve rehabilitation, they often fail to fully address all impairments. We aim to introduce an alternative approach to facial nerve rehabilitation. Study design Acute experiments in animals with normal facial function. Methods The study included three anesthetized cats. Four facial muscles (levator auris longus, orbicularis oculi, nasalis, and orbicularis oris) were monitored with a standard electromyographic (EMG) facial nerve monitoring system with needle electrodes. The main trunk of the facial nerve was exposed and a 16-channel penetrating electrode array was placed into the nerve. Electrical current pulses were delivered to each stimulating electrode individually. Elicited EMG voltage outputs were recorded for each muscle. Results Stimulation through individual channels selectively activated restricted nerve populations, resulting in selective contraction of individual muscles. Increasing stimulation current levels resulted in increasing EMG voltage responses. Typically, selective activation of two or more distinct muscles was successfully achieved via a single placement of the multi-channel electrode array by selection of appropriate stimulation channels. Conclusion We have established in the animal model the ability of a penetrating electrode array to selectively stimulate restricted fiber populations within the facial nerve and to selectively elicit contractions in specific muscles and regions of the face. These results show promise for the development of a facial nerve implant system. PMID:27312936

  5. Functional magnetic stimulation of the abdominal muscles in humans.

    PubMed

    Polkey, M I; Luo, Y; Guleria, R; Hamnegård, C H; Green, M; Moxham, J

    1999-08-01

    Functional magnetic stimulation (FMS) of the thoracic nerve roots to simulate cough has been suggested as a treatment approach in patients unable to voluntarily activate the abdominal muscles. However, factors that could influence the efficacy of FMS in clinical use have not been evaluated. In the present investigation we studied train length, posture, and frequency to determine the optimal stimulation protocol. We also evaluated the use of a valve at the mouth to enhance glottic function and investigated whether lung volume at the time of stimulation would influence the tension generated by the abdominal muscles. Studies were performed using a Magstim rapid stimulator augmented by four booster packs in nine healthy subjects; we measured the change in gastric (DeltaPga(FMS)), esophageal (DeltaPes(FMS)), and mouth pressure and expiratory flow. With our apparatus pressure generation was maximized by having a train length of at least 300 ms and a frequency of 25 Hz. Posture and valve use were not important determinants of DeltaPga(FMS) or DeltaPes(FMS). Lung volume exerted only a minor influence on DeltaPga(FMS), but the ratio DeltaPes(FMS):DeltaPga(FMS) was increased at TLC compared with FRC. Expiratory flow was increased by adopting a seated posture and using an occlusion valve with an opening threshold close to the maximum DeltaPes(FMS) generated by the stimulus train; however, expiratory flow was susceptible to interference from glottic incoordination. Representative results (with train length 600 ms, 25 Hz, and 100% power, seated) were mean DeltaPga(FMS), 166 cm H(2)O; mean DeltaPes(FMS), 108 cm H(2)O; and mean expiratory flow, 311 L/min. We confirm that FMS of the abdominal muscles can generate a substantial positive intra-abdominal and intrathoracic pressure and, consequently, expiratory flow in normal subjects.

  6. Haemodynamic responses in chronically painful, human trapezius muscle to cold pressor stimulation.

    PubMed

    Acero, C O; Kuboki, T; Maekawa, K; Yamashita, A; Clark, G T

    1999-10-01

    The aim was to compare haemodynamic responses in trapezius muscles to cold pressor stimulation in individuals with localized trapezius myalgia and asymptomatic controls. Nine males with chronic localized pain in the trapezius (mean age, 23.2 years) and nine male controls (mean age, 24.6 years) who had no medical history of migraine, hypertension or sustained pain in the trapezius region were investigated. Two experimental (cold pressor and mock) trials were performed in a randomly assigned sequence. In the cold pressor trial the participant's left foot and ankle were immersed in 4 degrees C cold water for 2 min; the mock trial was done without that stimulus. Blood volume was continuously recorded 1 min before, 2 min during, and 5 min after cold pressor stimulation using near-infrared spectroscopy. Each participant's blood-volume data were baseline-corrected and submitted to statistical analysis. Results showed that the individuals with muscle pain exhibited a significantly lower mean blood volume than the controls during cold pressor stimulation (p = 0.0367). Upon withdrawal of that stimulation, the mean blood volume in both groups fell below the baseline. These results suggest that individuals with chronic regional trapezius myalgia have less capacity to vasodilate this muscle during cold pressor stimulation than those without such myalgia. It is not yet known if this difference in the haemodynamic response is a cause or an effect of the myalgia.

  7. Mapping of electrical muscle stimulation using MRI

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Harris, Robert T.; Woodard, Daniel; Dudley, Gary A.

    1993-01-01

    The pattern of muscle contractile activity elicited by electromyostimulation (EMS) was mapped and compared to the contractile-activity pattern produced by voluntary effort. This was done by examining the patterns and the extent of contrast shift, as indicated by T2 values, im magnetic resonance (MR) images after isometric activity of the left m. quadriceps of human subjects was elicited by EMS (1-sec train of 500-microsec sine wave pulses at 50 Hz) or voluntary effort. The results suggest that, whereas EMS stimulates the same fibers repeatedly, thereby increasing the metabolic demand and T2 values, the voluntary efforts are performed by more diffuse asynchronous activation of skeletal muscle even at forces up to 75 percent of maximal to maintain performance.

  8. Effect of vaginal or systemic estrogen on dynamics of collagen assembly in the rat vaginal wall.

    PubMed

    Montoya, T Ignacio; Maldonado, P Antonio; Acevedo, Jesus F; Word, R Ann

    2015-02-01

    The objective of this study was to compare the effects of systemic and local estrogen treatment on collagen assembly and biomechanical properties of the vaginal wall. Ovariectomized nulliparous rats were treated with estradiol or conjugated equine estrogens (CEEs) either systemically, vaginal CEE, or vaginal placebo cream for 4 wk. Low-dose local CEE treatment resulted in increased vaginal epithelial thickness and significant vaginal growth without uterine hyperplasia. Furthermore, vaginal wall distensibility increased without compromise of maximal force at failure. Systemic estradiol resulted in modest increases in collagen type I with no change in collagen type III mRNA. Low-dose vaginal treatment, however, resulted in dramatic increases in both collagen subtypes whereas moderate and high dose local therapies were less effective. Consistent with the mRNA results, low-dose vaginal estrogen resulted in increased total and cross-linked collagen content. The inverse relationship between vaginal dose and collagen expression may be explained in part by progressive downregulation of estrogen receptor-alpha mRNA with increasing estrogen dose. We conclude that, in this menopausal rat model, local estrogen treatment increased total and cross-linked collagen content and markedly stimulated collagen mRNA expression in an inverse dose-effect relationship. High-dose vaginal estrogen resulted in downregulation of estrogen receptor-alpha and loss of estrogen-induced increases in vaginal collagen. These results may have important clinical implications regarding the use of local vaginal estrogen therapy and its role as an adjunctive treatment in women with loss of vaginal support. © 2015 by the Society for the Study of Reproduction, Inc.

  9. Alcohol impairs skeletal muscle protein synthesis and mTOR signaling in a time-dependent manner following electrically stimulated muscle contraction

    PubMed Central

    Lang, Charles H.

    2014-01-01

    Alcohol (EtOH) decreases protein synthesis and mammalian target of rapamycin (mTOR)-mediated signaling and blunts the anabolic response to growth factors in skeletal muscle. The purpose of the current investigation was to determine whether acute EtOH intoxication antagonizes the contraction-induced increase in protein synthesis and mTOR signaling in skeletal muscle. Fasted male mice were injected intraperitoneally with 3 g/kg EtOH or saline (control), and the right hindlimb was electrically stimulated (10 sets of 6 contractions). The gastrocnemius muscle complex was collected 30 min, 4 h, or 12 h after stimulation. EtOH decreased in vivo basal protein synthesis (PS) in the nonstimulated muscle compared with time-matched Controls at 30 min, 4 h, and 12 h. In Control, but not EtOH, PS was decreased 15% after 30 min. In contrast, PS was increased in Control 4 h poststimulation but remained unchanged in EtOH. Last, stimulation increased PS 10% in Control and EtOH at 12 h, even though the absolute rate remained reduced by EtOH. The stimulation-induced increase in the phosphorylation of S6K1 Thr421/Ser424 (20–52%), S6K1 Thr389 (45–57%), and its substrate rpS6 Ser240/244 (37–72%) was blunted by EtOH at 30 min, 4 h, and 12 h. Phosphorylation of 4E-BP1 Ser65 was also attenuated by EtOH (61%) at 4 h. Conversely, phosphorylation of extracellular signal-regulated kinase Thr202/Tyr204 was increased by stimulation in Control and EtOH mice at 30 min but only in Control at 4 h. Our data indicate that acute EtOH intoxication suppresses muscle protein synthesis for at least 12 h and greatly impairs contraction-induced changes in synthesis and mTOR signaling. PMID:25257868

  10. Acromiohumeral Distance During Neuromuscular Electrical Stimulation of the Lower Trapezius and Serratus Anterior Muscles in Healthy Participants

    PubMed Central

    Bdaiwi, Alya H.; Mackenzie, Tanya Anne; Herrington, Lee; Horsley, Ian; Cools, Ann M.

    2015-01-01

    Context Compromise to the acromiohumeral distance has been reported in participants with subacromial impingement syndrome compared with healthy participants. In clinical practice, patients with subacromial shoulder impingement are given strengthening programs targeting the lower trapezius (LT) and serratus anterior (SA) muscles to increase scapular posterior tilt and upward rotation. We are the first to use neuromuscular electrical stimulation to stimulate these muscle groups and evaluate how the muscle contraction affects the acromiohumeral distance. Objective To investigate if electrical muscle stimulation of the LT and SA muscles, both separately and simultaneously, increases the acromiohumeral distance and to identify which muscle-group contraction or combination most influences the acromiohumeral distance. Design Controlled laboratory study. Setting Human performance laboratory. Patients or Other Participants Twenty participants (10 men and 10 women, age = 26.9 ± 8.0 years, body mass index = 23.8) were screened. Intervention(s) Neuromuscular electrical stimulation of the LT and SA. Main Outcome Measure(s) Ultrasound measurement of the acromiohumeral distance. Results Acromiohumeral distance increased during contraction via neuromuscular electrical stimulation of the LT muscle (t19 = −3.89, P = .004), SA muscle (t19 = −7.67, P = .001), and combined LT and SA muscles (t19 = −5.09, P = .001). We observed no differences in the increased acromiohumeral distance among the 3 procedures (F2,57 = 3.109, P = .08). Conclusions Our results supported the hypothesis that the muscle force couple around the scapula is important in rehabilitation and scapular control and influences acromiohumeral distance. PMID:25933249

  11. Cardiac cycle-synchronized electrical muscle stimulator for lower limb training with the potential to reduce the heart's pumping workload

    PubMed Central

    Matsuse, Hiroo; Akimoto, Ryuji; Kamiya, Shiro; Moritani, Toshio; Sasaki, Motoki; Ishizaki, Yuta; Ohtsuka, Masanori; Nakayoshi, Takaharu; Ueno, Takafumi; Shiba, Naoto; Fukumoto, Yoshihiro

    2017-01-01

    Background The lower limb muscle may play an important role in decreasing the heart’s pumping workload. Aging and inactivity cause atrophy and weakness of the muscle, leading to a loss of the heart-assisting role. An electrical lower limb muscle stimulator can prevent atrophy and weakness more effectively than conventional resistance training; however, it has been reported to increase the heart’s pumping workload in some situations. Therefore, more effective tools should be developed. Methods We newly developed a cardiac cycle-synchronized electrical lower limb muscle stimulator by combining a commercially available electrocardiogram monitor and belt electrode skeletal muscle electrical stimulator, making it possible to achieve strong and wide but not painful muscle contractions. Then, we tested the stimulator in 11 healthy volunteers to determine whether the special equipment enabled lower limb muscle training without harming the hemodynamics using plethysmography and a percutaneous cardiac output analyzer. Results In 9 of 11 subjects, the stimulator generated diastolic augmentation waves on the dicrotic notches and end-diastolic pressure reduction waves on the plethysmogram waveforms of the brachial artery, showing analogous waveforms in the intra-aortic balloon pumping heart-assisting therapy. The heart rate, stroke volume, and cardiac output significantly increased during the stimulation. There was no change in the systolic or diastolic blood pressure during the stimulation. Conclusion Cardiac cycle-synchronized electrical muscle stimulation for the lower limbs may enable muscle training without harmfully influencing the hemodynamics and with a potential to reduce the heart’s pumping workload, suggesting a promising tool for effectively treating both locomotor and cardiovascular disorders. PMID:29117189

  12. Muscle oxygenation of vastus lateralis and medialis muscles during alternating and pulsed current electrical stimulation.

    PubMed

    Aldayel, Abdulaziz; Muthalib, Makii; Jubeau, Marc; McGuigan, Michael; Nosaka, Kazunori

    2011-05-01

    This study compared between alternating and pulsed current electrical muscle stimulation (EMS) for muscle oxygenation and blood volume during isometric contractions. Nine healthy men (23-48 years) received alternating current EMS (2500 Hz) modulated at 75 Hz on the knee extensors of one leg, and pulsed current EMS (75 Hz) for the other leg separated by 2 weeks in a randomised, counter-balanced order. Pulse duration (400 μs), on-off ratio (5-15 s) and other stimulation parameters were matched between conditions and 30 isometric contractions were induced at the knee joint angle of 100° (0° full extension). Changes in tissue oxygenation index (∆TOI) and total hemoglobin volume (∆tHb) of vastus lateralis and medialis muscles over 30 contractions were assessed by a near-infrared spectroscopy, and were compared between conditions by a two-way repeated measures ANOVA. Peak torque produced during EMS increased over 30 contractions in response to the increase in the stimulation intensity for pulsed current, but not for the alternating current EMS. The torque during each isometric contraction was less stable in alternating than pulsed current EMS. The changes in ∆TOI amplitude during relaxation phases and ∆tHb amplitude were not significantly different between conditions. However, the decreases in ∆TOI amplitude during contraction phases from baseline were significantly (P < 0.05) greater for the pulsed current than alternating current from the 18th contraction (-15.6 ± 2.3 vs. -8.9 ± 1.8%) to 30th contraction (-10.7 ± 1.8 vs. -4.8 ± 1.5%). These results suggest that the muscles were less activated in the alternating current EMS when compared with the pulsed current EMS.

  13. Evaluation of innate immune stimulating activity of polysaccharides using a silkworm (Bombyx mori) muscle contraction assay.

    PubMed

    Fujiyuki, T; Hamamoto, H; Ishii, K; Urai, M; Kataoka, K; Takeda, T; Shibata, S; Sekimizu, K

    2012-04-01

    In silkworm larvae, the mature form of paralytic peptide (PP), an insect cytokine, is produced from pro-PP in association with activation of innate immune responses, resulting in slow muscle contraction. We utilized this reaction, muscle contraction in silkworms coupled with innate immunity stimulation, to quantitatively measure the innate immune stimulating activity of various natural polysaccharides. β-Glucan of Gyrophora esculenta (GE-3), fucoidan from sporophyll of Undaria pinnatifida, and curldan induced silkworm muscle contraction. We further demonstrated that GE-3 had therapeutic effects on silkworms infected by baculovirus. Based on these findings, we propose that the silkworm muscle contraction assay is useful for screening substances that stimulate innate immunity before evaluating therapeutic effectiveness in mammals.

  14. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training

    PubMed Central

    Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.

    2012-01-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI. PMID:16575026

  15. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.

    PubMed

    Shields, Richard K; Dudley-Javoroski, Shauna; Littmann, Andrew E

    2006-08-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.

  16. Electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle induces involuntary reflex contraction of the frontalis muscles.

    PubMed

    Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Ryokuya

    2013-02-01

    The levator and frontalis muscles lack interior muscle spindles, despite consisting of slow-twitch fibres that involuntarily sustain eyelid-opening and eyebrow-raising against gravity. To compensate for this anatomical defect, this study hypothetically proposes that initial voluntary contraction of the levator fast-twitch muscle fibres stretches the mechanoreceptors in Müller's muscle and evokes proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study sought to determine whether unilateral transcutaneous electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle could induce electromyographic responses in the frontalis muscles, with monitoring responses in the orbicularis oculi muscles. The study population included 27 normal subjects and 23 subjects with aponeurotic blepharoptosis, who displayed persistently raised eyebrows on primary gaze and light eyelid closure. The stimulation induced a short-latency response in the ipsilateral frontalis muscle of all subjects and long-latency responses in the bilateral frontalis muscles of normal subjects. However, it did not induce long-latency responses in the bilateral frontalis muscles of subjects with aponeurotic blepharoptosis. The orbicularis oculi muscles showed R1 and/or R2 responses. The stimulation might reach not only the proprioceptive fibres, but also other sensory fibres related to the blink or corneal reflex. The experimental system can provoke a monosynaptic short-latency response in the ipsilateral frontalis muscle, probably through the mesencephalic trigeminal proprioceptive neuron and the frontalis motor neuron, and polysynaptic long-latency responses in the bilateral frontalis muscles through an unknown pathway. The latter neural circuit appeared to be engaged by the circumstances of aponeurotic blepharoptosis.

  17. Bioelectrical activity of limb muscles during cold shivering of stimulation of the vestibular apparatus

    NASA Technical Reports Server (NTRS)

    Kuzmina, G. I.

    1980-01-01

    The effects of caloric and electric stimulation of the vestibular receptors on the EMG activity of limb muslces in anesthetized cats during cold induced shivering involved flexor muscles alone. Both types of stimulation suppressed bioelectrical activity more effectively in the ipsilateral muscles. The suppression of shivering activity seems to be due to the increased inhibitory effect of descending labyrinth pathways on the function of flexor motoneurons.

  18. Effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy

    PubMed Central

    Choi, Jong-Bae

    2016-01-01

    [Purpose] The aim of this study was to investigate the effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy. [Subjects and Methods] Nine subjects received the electrical stimulation and traditional dysphagia therapy. Electrical stimulation was applied to stimulate each subject’s facial muscles 30 minutes a day, 5 days a week, for 4 weeks. [Results] Subjects showed significant improvement in cheek and lip strength and oral function after the intervention. [Conclusion] This study demonstrates that electrical stimulation improves facial muscle strength and oral function in stroke patients with dysphagia. PMID:27799689

  19. The effect of electrical muscle stimulation on the prevention of disuse muscle atrophy in patients with consciousness disturbance in the intensive care unit.

    PubMed

    Hirose, Tomoya; Shiozaki, Tadahiko; Shimizu, Kentaro; Mouri, Tomoyoshi; Noguchi, Kazuo; Ohnishi, Mitsuo; Shimazu, Takeshi

    2013-08-01

    Disuse atrophy of the lower limbs of patients with consciousness disturbance has often been recognized as "an unavoidable consequence," such that the mechanism was not investigated diligently. In this study, we examined the preventive effects of electrical muscle stimulation (EMS) against disuse atrophy of the lower limbs in patients in coma after stroke or traumatic brain injury in the intensive care unit. We evaluated changes in cross-sectional area of lower limb muscles weekly with computed tomography in 6 control group patients and 9 EMS group patients. Electrical muscle stimulation was performed daily from day 7 after admission. We evaluated the anterior thigh muscle compartment, posterior thigh muscle compartment, anterior leg muscle compartment, and posterior leg muscle compartment. In the control group, the decrease in cross-sectional area progressed in all compartments every week (P < .0001). Cross-sectional areas of all compartments at day 14 were significantly decreased in the control group compared with those in the EMS group at day 7 (P < .001). We were able to limit the rate of muscle atrophy as measured in the cross-sectional areas to within 4% during the period of EMS (days 7-42) in 5 patients. The difference between the control and the EMS groups was statistically significant (P < .001). Electrical muscle stimulation is effective in the prevention of disuse muscle atrophy in patients with consciousness disorder. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Counteracting Muscle Atrophy using Galvanic Stimulation of the Vestibular System

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; Polyakov, Igor

    1999-01-01

    The unloading of weight bearing from antigravity muscles during space flight produces significant muscle atrophy and is one of the most serious health problems facing the space program. Various exercise regimens have been developed and used either alone or in combination with pharmacological techniques to ameliorate this atrophy, but no effective countermeasure exists for this problem. The research in this project was conducted to evaluate the potential use of vestibular galvanic stimulation (VGS) to prevent muscle atrophy resulting from unloading of weight bearing from antigravity muscles. This approach was developed based on two concepts related to the process of maintaining the status of the anti-gravity neuromuscular system. These two premises are: (1) The "tone," or bias on spinal motorneurons is affected by vestibular projections that contribute importantly to maintaining muscle health and status. (2) VGS can be used to modify the excitability, or 'tone' of motorneuron of antigravity muscles. Thus, the strategy is to use VGS to modify the gain of vestibular projections to antigravity muscles and thereby change the general status of these muscles.

  1. Evaluation of the innate immune-stimulating activity of amazake using a silkworm muscle contraction assay.

    PubMed

    Maruki-Uchida, Hiroko; Sai, Masahiko; Sekimizu, Kazuhisa

    2017-11-22

    We evaluated the innate immune-stimulating activity of amazake using a silkworm muscle contraction assay. Sake cake, a raw material used to make amazake, had high innate immunity-stimulating activity, whereas rice malt, another raw material used to make amazake, did not, even after fermentation. These results suggest that the silkworm muscle contraction assay is a useful tool to screen foods with high innate immune-stimulating activity and that amazake made from sake cake has immunomodulatory potential.

  2. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  3. Leucine supplementation stimulates protein synthesis and reduces degradation signal activation in muscle of newborn pigs during acute endotoxemia

    USDA-ARS?s Scientific Manuscript database

    Sepsis disrupts skeletal muscle proteostasis and mitigates the anabolic response to leucine (Leu) in muscle of mature animals. We have shown that Leu stimulates muscle protein synthesis (PS) in healthy neonatal piglets. To determine if supplemental Leu can stimulate PS and reduce protein degradation...

  4. Can angiogenesis induced by chronic electrical stimulation enhance latissimus dorsi muscle flap survival for application in cardiomyoplasty?

    PubMed

    Overgoor, Max L E; Carroll, Sean M; Papanicolau, George; Carroll, Camilla M A; Ustüner, Tuncay E T; Stremel, Richard W; Anderson, Gary L; Franken, Ralph J P M; Kon, Moshe; Barker, John H

    2003-01-01

    In cardiomyoplasty, the latissimus dorsi muscle is lifted on its primary neurovascular pedicle and wrapped around a failing heart. After 2 weeks, it is trained for 6 weeks using chronic electrical stimulation, which transforms the latissimus dorsi muscle into a fatigue-resistant muscle that can contract in synchrony with the beating heart without tiring. In over 600 cardiomyoplasty procedures performed clinically to date, the outcomes have varied. Given the data obtained in animal experiments, the authors believe these variable outcomes are attributable to distal latissimus dorsi muscle flap necrosis. The aim of the present study was to investigate whether the chronic electrical stimulation training used to transform the latissimus dorsi muscle into fatigue-resistant muscle could also be used to induce angiogenesis, increase perfusion, and thus protect the latissimus dorsi muscle flap from distal necrosis. After 14 days of chronic electrical stimulation (10 Hz, 330 microsec, 4 to 6 V continuous, 8 hours/day) of the right or left latissimus dorsi muscle (randomly selected) in 11 rats, both latissimus dorsi muscles were lifted on their thoracodorsal pedicles and returned to their anatomical beds. Four days later, the resulting amount of distal flap necrosis was measured. Also, at predetermined time intervals throughout the experiment, muscle surface blood perfusion was measured using scanning laser Doppler flowmetry. Finally, latissimus dorsi muscles were excised in four additional stimulated rats, to measure angiogenesis (capillary-to-fiber ratio), fiber type (oxidative or glycolytic), and fiber size using histologic specimens. The authors found that chronic electrical stimulation (1) significantly (p < 0.05) increased angiogenesis (mean capillary-to-fiber ratio) by 82 percent and blood perfusion by 36 percent; (2) did not reduce the amount of distal flap necrosis compared with nonchronic electrical stimulation controls (29 +/- 5.3 percent versus 26.6 +/- 5

  5. Changes in the size and synthetic activity of nuclear populations in chronically stimulated rabbit skeletal muscle.

    PubMed Central

    Joplin, R E; Franchi, L L; Salmons, S

    1987-01-01

    The adaptive response of mammalian fast-twitch skeletal muscle to long-term low-frequency stimulation involves coordinated changes in the expression of a large number of genes and an increase in the synthesis of proteins and nucleic acids. Morphological correlates of these changes were sought in a qualitative and quantitative study of nuclear populations that included autoradiography at both light and electron microscopic levels. Stimulation-induced changes in biosynthetic activity were found to be supported by increases in the numbers of both non-muscle and muscle nuclei, and myonuclear counts were significantly increased in relation to sarcoplasmic volume. Moreover, the chronically stimulated muscle fibres showed ultrastructural signs consistent with mobilisation of transcriptional and translational activity. Images Fig. 2 Fig. 4 (cont.) Fig. 4 Fig. 5 PMID:3503051

  6. Muscle-Specific Deletion of Rictor Impairs Insulin-Stimulated Glucose Transport and Enhances Basal Glycogen Synthase Activity▿

    PubMed Central

    Kumar, Anil; Harris, Thurl E.; Keller, Susanna R.; Choi, Kin M.; Magnuson, Mark A.; Lawrence, John C.

    2008-01-01

    Rictor is an essential component of mTOR (mammalian target of rapamycin) complex 2 (mTORC2), a kinase complex that phosphorylates Akt at Ser473 upon activation of phosphatidylinositol 3-kinase (PI-3 kinase). Since little is known about the role of either rictor or mTORC2 in PI-3 kinase-mediated physiological processes in adult animals, we generated muscle-specific rictor knockout mice. Muscle from male rictor knockout mice exhibited decreased insulin-stimulated glucose uptake, and the mice showed glucose intolerance. In muscle lacking rictor, the phosphorylation of Akt at Ser473 was reduced dramatically in response to insulin. Furthermore, insulin-stimulated phosphorylation of the Akt substrate AS160 at Thr642 was reduced in rictor knockout muscle, indicating a defect in insulin signaling to stimulate glucose transport. However, the phosphorylation of Akt at Thr308 was normal and sufficient to mediate the phosphorylation of glycogen synthase kinase 3 (GSK-3). Basal glycogen synthase activity in muscle lacking rictor was increased to that of insulin-stimulated controls. Consistent with this, we observed a decrease in basal levels of phosphorylated glycogen synthase at a GSK-3/protein phosphatase 1 (PP1)-regulated site in rictor knockout muscle. This change in glycogen synthase phosphorylation was associated with an increase in the catalytic activity of glycogen-associated PP1 but not increased GSK-3 inactivation. Thus, rictor in muscle tissue contributes to glucose homeostasis by positively regulating insulin-stimulated glucose uptake and negatively regulating basal glycogen synthase activity. PMID:17967879

  7. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    PubMed

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Bin Aziz, Mohamed Fareez; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).

  8. Colour stability of bovine Longissimus and Psoas major muscle as affected by electrical stimulation and hot boning.

    PubMed

    van Laack, R L; Smulders, F J

    1990-01-01

    From eight electrically stimulated and eight non-stimulated cows the righthand-side longissimus and psoas major muscles were hot boned within 1 1 2 h post mortem, vacuum packaged and chilled and storred at 1±1°C. Immediately after slaughter, the lefthand carcass-sides were blast-chilled for 1 1 2 h and subsequently chilled at 1±1°C until the following day. After cold boning, the longissimus and psoas major muscle were packaged, chilled and stored as the hot boned muscles. After 12 days of storage, steaks, cut from the primals, were displayed at 1±1°C under continuous illumination (300-400 lx). Colour measurements after 0, 2 and 4 days of display revealed a significant (p<0·10) effect of time of boning on non-stimulated psoas major muscle (lower values for a (∗), b (∗) values, chroma and %R630-%R580). Significant effects of electrical stimulation were not observed. Changes in hue tended to be more pronounced when the meat had been stimulated. Changes in chroma were largest (p<0·10) is non-stimulated, hot boned psoas muscle. Analysis of variances showed that in the longissimus muscle significant effects (p<0·10) of time boning and electrical stimulation were present. The effect of time of boning was often influenced by the use of electrical stimulation. Changes in hue and chroma indicated that hot boned samples had a higher colour stability than cold boned controls, especially when the carcasses had not been stimulated electrically. The observed differences in colour stability were rather small in all treatment groups and are not expected to present any practical merchandising problem. Copyright © 1990. Published by Elsevier Ltd.

  9. Effect of Vaginal or Systemic Estrogen on Dynamics of Collagen Assembly in the Rat Vaginal Wall1

    PubMed Central

    Montoya, T. Ignacio; Maldonado, P. Antonio; Acevedo, Jesus F.; Word, R. Ann

    2014-01-01

    ABSTRACT The objective of this study was to compare the effects of systemic and local estrogen treatment on collagen assembly and biomechanical properties of the vaginal wall. Ovariectomized nulliparous rats were treated with estradiol or conjugated equine estrogens (CEEs) either systemically, vaginal CEE, or vaginal placebo cream for 4 wk. Low-dose local CEE treatment resulted in increased vaginal epithelial thickness and significant vaginal growth without uterine hyperplasia. Furthermore, vaginal wall distensibility increased without compromise of maximal force at failure. Systemic estradiol resulted in modest increases in collagen type I with no change in collagen type III mRNA. Low-dose vaginal treatment, however, resulted in dramatic increases in both collagen subtypes whereas moderate and high dose local therapies were less effective. Consistent with the mRNA results, low-dose vaginal estrogen resulted in increased total and cross-linked collagen content. The inverse relationship between vaginal dose and collagen expression may be explained in part by progressive downregulation of estrogen receptor-alpha mRNA with increasing estrogen dose. We conclude that, in this menopausal rat model, local estrogen treatment increased total and cross-linked collagen content and markedly stimulated collagen mRNA expression in an inverse dose-effect relationship. High-dose vaginal estrogen resulted in downregulation of estrogen receptor-alpha and loss of estrogen-induced increases in vaginal collagen. These results may have important clinical implications regarding the use of local vaginal estrogen therapy and its role as an adjunctive treatment in women with loss of vaginal support. PMID:25537371

  10. Vaginal secretions increase the likelihood of intermale aggression in Syrian hamsters.

    PubMed

    Fischer, R B; Brown, P S

    1993-08-01

    Although sexually receptive female hamsters prefer dominant males as mating partners, it is not clear what role the female might play facilitating aggressive interactions among males that would lead to the establishment of a status relationship. The ability of vaginal odors to stimulate male aggression was examined by paring randomly chosen males in a neutral arena with vaginal odors either present or absent. Males exhibited significantly more aggression when tested in the scented arena. Vaginal odors are efficient broadcast signals serving to space females, attract males, and to stimulate aggressive interactions among the males while inhibiting aggression towards the female.

  11. Role of skeletal muscle mitochondrial density on exercise-stimulated lipid oxidation.

    PubMed

    Galgani, Jose E; Johannsen, Neil M; Bajpeyi, Sudip; Costford, Sheila R; Zhang, Zhengyu; Gupta, Alok K; Ravussin, Eric

    2012-07-01

    Reduced skeletal muscle mitochondrial density is proposed to lead to impaired muscle lipid oxidation and increased lipid accumulation in sedentary individuals. We assessed exercise-stimulated lipid oxidation by imposing a prolonged moderate-intensity exercise in men with variable skeletal muscle mitochondrial density as measured by citrate synthase (CS) activity. After a 2-day isoenergetic high-fat diet, lipid oxidation was measured before and during exercise (650 kcal at 50% VO(2)max) in 20 healthy men with either high (HI-CS = 24 ± 1; mean ± s.e.) or low (LO-CS = 17 ± 1 nmol/min/mg protein) muscle CS activity. Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Respiratory exchange data and blood samples were collected at rest and throughout the exercise. HI-CS subjects had higher VO(2)max (50 ± 1 vs. 44 ± 2 ml/kg fat free mass/min; P = 0.01), lower fasting respiratory quotient (RQ) (0.81 ± 0.01 vs. 0.85 ± 0.01; P = 0.04) and higher ex vivo muscle palmitate oxidation (866 ± 168 vs. 482 ± 78 nmol/h/mg muscle; P = 0.05) compared to LO-CS individuals. However, whole-body exercise-stimulated lipid oxidation (20 ± 2 g vs. 19 ± 1 g; P = 0.65) and plasma glucose, lactate, insulin, and catecholamine responses were similar between the two groups. In conclusion, in response to the same energy demand during a moderate prolonged exercise bout, reliance on lipid oxidation was similar in individuals with high and low skeletal muscle mitochondrial density. This data suggests that decreased muscle mitochondrial density may not necessarily impair reliance on lipid oxidation over the course of the day since it was normal under a high-lipid oxidative demand condition. Twenty-four-hour lipid oxidation and its relationship with mitochondrial density need to be assessed.

  12. Early changes in fiber profile and capillary density in long-term stimulated muscles.

    PubMed

    Hudlická, O; Dodd, L; Renkin, E M; Gray, S D

    1982-10-01

    Predominantly fast skeletal muscles of rabbits [tibialis anterior (TA), extensor digitorum longus (EDL)] were stimulated at a frequency naturally occurring in nerves to slow muscles (10 Hz continuously) for 8 h/day for 2--4 days. Such stimulation is known to convert all glycolytic fibers to oxidative and to increase capillary density. Our aim was to study early stages of conversion to investigate the factors responsible for the changes. Staining of quick-frozen sections for myosin ATPase, succinic dehydrogenase, and alkaline phosphatase was used to study the distribution of different fiber types and to measure fiber cross-sectional areas, capillaries per square millimeter, and capillary-to-fiber ratios in each fiber category. TA but not EDL showed conversion of fast glycolytic to fast oxidative fibers after 2 days, more after 4 days of stimulation. In both muscles, the largest fast glycolytic fibers were diminished in number after stimulation. There was significant increase in total capillaries per square millimeter after 4 days and some increase after 2 days of stimulation. The increase in capillaries per square millimeter exceeded the increase in the number of fibers per square millimeter, and since there was no change in mean fiber area, the increase is attributed to capillary growth. In EDL, there was an increase in the number of capillaries supplying both fast glycolytic and fast oxidative fibers, suggesting that capillary growth precedes fiber type conversion. In TA, the number of capillaries supplying fast oxidative fibers was increased but that to fast glycolytic fibers, was not. This is consistent with capillary growth simultaneous with or following fiber conversion. In both TA and EDL the number of capillaries perfused after contraction was higher in stimulated muscles, suggesting that increased capillary flow contributed to capillary growth.

  13. Intraoperative muscle electrical stimulation for accurate positioning of the temporalis muscle tendon during dynamic, one-stage lengthening temporalis myoplasty for facial and lip reanimation.

    PubMed

    Har-Shai, Yaron; Gil, Tamir; Metanes, Issa; Labbé, Daniel

    2010-07-01

    Facial paralysis is a significant functional and aesthetic handicap. Facial reanimation is performed either by two-stage microsurgical methods or by regional one-stage muscle pedicle flaps. Labbé has modified and improved the regional muscle pedicle transfer flaps for facial reanimation (i.e., the lengthening temporalis myoplasty procedure). This true myoplasty technique is capable of producing a coordinated, spontaneous, and symmetrical smile. An intraoperative electrical stimulation of the temporal muscle is proposed to simulate the smile of the paralyzed side on the surgical table. The intraoperative electrical stimulation of the temporalis muscle, employing direct percutaneous electrode needles or transcutaneous electrical stimulation electrodes, was utilized in 11 primary and four secondary cases with complete facial palsy. The duration of the facial paralysis was up to 12 years. Postoperative follow-up ranged from 3 to 12 months. The insertion points of the temporalis muscle tendon to the nasolabial fold, upper lip, and oral commissure had been changed according to the intraoperative muscle stimulation in six patients of the 11 primary cases (55 percent) and in all four secondary (revisional) cases. A coordinated, spontaneous, and symmetrical smile was achieved in all patients by 3 months after surgery by employing speech therapy and biofeedback. This adjunct intraoperative refinement provides crucial feedback for the surgeon in both primary and secondary facial palsy cases regarding the vector of action of the temporalis muscle and the accuracy of the anchoring points of its tendon, thus enhancing a more coordinated and symmetrical smile.

  14. Activation of somatosensory afferents elicit changes in vaginal blood flow and the urethrogenital reflex via autonomic efferents.

    PubMed

    Cai, R S; Alexander, M Sipski; Marson, L

    2008-09-01

    We examined the effects of pudendal sensory nerve stimulation and urethral distention on vaginal blood flow and the urethrogenital reflex, and the relationship between somatic and autonomic pathways regulating sexual responses. Distention of the urethra and stimulation of the pudendal sensory nerve were used to evoke changes in vaginal blood flow (laser Doppler perfusion monitoring) and pudendal motor nerve activity in anesthetized, spinally transected female rats. Bilateral cuts of either the pelvic or hypogastric nerve or both autonomic nerves were made, and blood flow and pudendal nerve responses were reexamined. Stimulation of the pudendal sensory nerve or urethral distention elicited consistent increases in vaginal blood flow and rhythmic firing of the pudendal motor nerve. Bilateral cuts of the pelvic plus hypogastric nerves significantly reduced vaginal blood flow responses without altering pudendal motor nerve responses. Pelvic nerve cuts also significantly reduced vaginal blood flow responses. In contrast, hypogastric nerve cuts did not significantly change vaginal blood flow. Bilateral cuts of the pudendal sensory nerve blocked pudendal motor nerve responses but stimulation of the central end evoked vaginal blood flow and pudendal motor nerve responses. Stimulation of the sensory branch of the pudendal nerve elicits vasodilatation of the vagina. The likely mechanism is via activation of spinal pathways that in turn activate pelvic nerve efferents to produced changes in vaginal blood flow. Climatic-like responses (firing of the pudendal motor nerve) occur in response to stimulation of the pudendal sensory nerve and do not require intact pelvic or hypogastric nerves.

  15. Electrolysis stimulates creatine transport and transporter cell surface expression in incubated mouse skeletal muscle: potential role of ROS.

    PubMed

    Derave, Wim; Straumann, Nadine; Olek, Robert A; Hespel, Peter

    2006-12-01

    Electrical field stimulation of isolated, incubated rodent skeletal muscles is a frequently used model to study the effects of contractions on muscle metabolism. In this study, this model was used to investigate the effects of electrically stimulated contractions on creatine transport. Soleus and extensor digitorum longus muscles of male NMRI mice (35-50 g) were incubated in an oxygenated Krebs buffer between platinum electrodes. Muscles were exposed to [(14)C]creatine for 30 min after either 12 min of repeated tetanic isometric contractions (contractions) or electrical stimulation of only the buffer before incubation of the muscle (electrolysis). Electrolysis was also investigated in the presence of the reactive oxygen species (ROS) scavenging enzymes superoxide dismutase (SOD) and catalase. Both contractions and (to a lesser degree) electrolysis stimulated creatine transport severalfold over basal. The amount of electrolysis, but not contractile activity, induced (determined) creatine transport stimulation. Incubation with SOD and catalase at 100 and 200 U/ml decreased electrolysis-induced creatine transport by approximately 50 and approximately 100%, respectively. The electrolysis effects on creatine uptake were completely inhibited by beta-guanidino propionic acid, a competitive inhibitor of (creatine for) the creatine transporter (CRT), and were accompanied by increased cell surface expression of CRT. Muscle glucose transport was not affected by electrolysis. The present results indicate that electrical field stimulation of incubated mouse muscles, independently of contractions per se, stimulates creatine transport by a mechanism that depends on electrolysis-induced formation of ROS in the incubation buffer. The increased creatine uptake is paralleled by an increased cell surface expression of the creatine transporter.

  16. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.

    PubMed

    van Bolhuis, A I; Holsheimer, J; Savelberg, H H

    2001-05-30

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.

  17. Neuromuscular electrical stimulation of the hindlimb muscles for movement therapy in a rodent model.

    PubMed

    Ichihara, Kazuhiko; Venkatasubramanian, Ganapriya; Abbas, James J; Jung, Ranu

    2009-01-30

    Neuromuscular electrical stimulation (NMES) can provide functional movements in people after central nervous system injury. The neuroplastic effects of long-term NMES-induced repetitive limb movement are not well understood. A rodent model of neurotrauma in which NMES can be implemented may be effective for such investigations. We present a rodent model for NMES of the flexor and extensor muscles of the hip, knee, and ankle hindlimb muscles. Custom fabricated intramuscular stimulating electrodes for rodents were implanted near identified motor points of targeted muscles in ten adult, female Long Evans rats. The effects of altering NMES pulse stimulation parameters were characterized using strength duration curves, isometric joint torque recruitment curves and joint angle measures. The data indicate that short pulse widths have the advantage of producing graded torque recruitment curves when current is used as the control parameter. A stimulus frequency of 75 Hz or more produces fused contractions. The data demonstrate ability to accurately implant the electrodes and obtain selective, graded, repeatable, strong muscle contractions. Knee and ankle angular excursions comparable to those obtained in normal treadmill walking in the same rodent species can be obtained by stimulating the target muscles. Joint torques (normalized to body weight) obtained were larger than those reported in the literature for small tailed therian mammals and for peak isometric ankle plantarflexion in a different rodent species. This model system could be used for investigations of NMES assisted hindlimb movement therapy.

  18. X-ray kinematics analysis of vaginal scent marking in female Syrian hamsters (Mesocricetus auratus)

    PubMed Central

    Been, Laura E.; Bauman, Jay M.; Petrulis, Aras; Chang, Young-Hui

    2012-01-01

    Vaginal marking is a stereotyped scent marking behavior in female Syrian hamsters used to attract male hamsters for mating. Although the modulation of vaginal marking by hormones and odors is well understood, the motor control of this proceptive reproductive behavior remains unknown. Therefore, we used x-ray videography to visualize individual bone movements during vaginal marking. Kinematic analyses revealed several consistent motor patterns of vaginal marking. Despite exhibiting a diversity of trial-to-trial non-marking behaviors (e.g. locomotor stepping), we found that lowering and raising the pelvis consistently corresponded with coordinated flexion and extension cycles of the hip, knee, and tail, suggesting that these movements are fundamental to vaginal marking behavior. Surprisingly, we observed only small changes in the angles of the pelvic and sacral regions, suggesting previous reports of pelvic rotation during vaginal marking may need to be reconsidered. From these kinematic data, we inferred that vaginal marking is primarily due to the actions of hip and knee extensor muscles of the trailing leg working against gravity to support the weight of the animal as it controls the descent of the pelvis to the ground. The cutaneous trunci muscle likely mediates the characteristic flexion of the tail. Interestingly, this tail movement occurred on the same time scale as the joint kinematics suggesting possible synergistic recruitment of these muscle groups. These data therefore provide new targets for future studies examining the peripheral control of female reproductive behaviors. PMID:22138441

  19. [Effect of IL-1beta on growth properties of vaginal microsymbionts].

    PubMed

    Kremleva, E A; Bukharin, O V

    2013-01-01

    Study the effect of IL-1beta in concentrations that are characteristic for vaginal normo- and pathocenosis on growth properties of vaginal microsymbionts. Concentration of IL-1beta in vaginal contents of women during bacterial vaginosis and normocenosis was determined by using enzume immunoassay. Changes of growth characteristics and biofilm formation ability of Staphylococcus aureus, Escherichia coli, Lactobacilus spp., Corynebacterium spp. under the effect of various IL-1beta concentrations by method of O'Toole G.A. (1999) were studied. IL-1beta in concentrations characteristic for normocenosis was shown to be able to cause stimulating effect on growth properties of lactobacilli and corynebacteria and suppress growth of S. aureus and E. coli in both plankton and biofilm cultures. IL-1beta concentrations characteristic for vaginal dysbiosis on the contrary result in suppression of growth of lactobacilli biomass against the background of stimulation of growth properties and biofilm formation ability of S. aureus and E. coli. Differential dose-dependent effect of IL-1beta on biomass growth and biofilm formation ability of vaginal microsymbionts is a mechanism of regulation of vaginal microbiocenosis.

  20. Daily Electrical Muscle Stimulation Enhances Functional Recovery Following Nerve Transection and Repair in Rats.

    PubMed

    Willand, Michael P; Chiang, Cameron D; Zhang, Jennifer J; Kemp, Stephen W P; Borschel, Gregory H; Gordon, Tessa

    2015-08-01

    Incomplete recovery following surgical reconstruction of damaged peripheral nerves is common. Electrical muscle stimulation (EMS) to improve functional outcomes has not been effective in previous studies. To evaluate the efficacy of a new, clinically translatable EMS paradigm over a 3-month period following nerve transection and immediate repair. Rats were divided into 6 groups based on treatment (EMS or no treatment) and duration (1, 2, or 3 months). A tibial nerve transection injury was immediately repaired with 2 epineurial sutures. The right gastrocnemius muscle in all rats was implanted with intramuscular electrodes. In the EMS group, the muscle was electrically stimulated with 600 contractions per day, 5 days a week. Terminal measurements were made after 1, 2, or 3 months. Rats in the 3-month group were assessed weekly using skilled and overground locomotion tests. Neuromuscular junction reinnervation patterns were also examined. Muscles that received daily EMS had significantly greater numbers of reinnervated motor units with smaller average motor unit sizes. The majority of muscle endplates were reinnervated by a single axon arising from a nerve trunk with significantly fewer numbers of terminal sprouts in the EMS group, the numbers being small. Muscle mass and force were unchanged but EMS improved behavioral outcomes. Our results demonstrated that EMS using a moderate stimulation paradigm immediately following nerve transection and repair enhances electrophysiological and behavioral recovery. © The Author(s) 2014.

  1. A Geometric Capacity–Demand Analysis of Maternal Levator Muscle Stretch Required for Vaginal Delivery

    PubMed Central

    Tracy, Paige V.; DeLancey, John O.; Ashton-Miller, James A.

    2016-01-01

    Because levator ani (LA) muscle injuries occur in approximately 13% of all vaginal births, insights are needed to better prevent them. In Part I of this paper, we conducted an analysis of the bony and soft tissue factors contributing to the geometric “capacity” of the maternal pelvis and pelvic floor to deliver a fetal head without incurring stretch injury of the maternal soft tissue. In Part II, we quantified the range in demand, represented by the variation in fetal head size and shape, placed on the maternal pelvic floor. In Part III, we analyzed the capacity-to-demand geometric ratio, g, in order to determine whether a mother can deliver a head of given size without stretch injury. The results of a Part I sensitivity analysis showed that initial soft tissue loop length (SL) had the greatest effect on maternal capacity, followed by the length of the soft tissue loop above the inferior pubic rami at ultimate crowning, then subpubic arch angle (SPAA) and head size, and finally the levator origin separation distance. We found the more caudal origin of the puborectal portion of the levator muscle helps to protect it from the stretch injuries commonly observed in the pubovisceral portion. Part II fetal head molding index (MI) and fetal head size revealed fetal head circumference values ranging from 253 to 351 mm, which would increase up to 11 mm upon face presentation. The Part III capacity-demand analysis of g revealed that, based on geometry alone, the 10th percentile maternal capacity predicted injury for all head sizes, the 25th percentile maternal capacity could deliver half of all head sizes, while the 50th percentile maternal capacity could deliver a head of any size without injury. If ultrasound imaging could be operationalized to make measurements of ratio g, it might be used to usefully inform women on their level of risk for levator injury during vaginal birth. PMID:26746116

  2. A Geometric Capacity-Demand Analysis of Maternal Levator Muscle Stretch Required for Vaginal Delivery.

    PubMed

    Tracy, Paige V; DeLancey, John O; Ashton-Miller, James A

    2016-02-01

    Because levator ani (LA) muscle injuries occur in approximately 13% of all vaginal births, insights are needed to better prevent them. In Part I of this paper, we conducted an analysis of the bony and soft tissue factors contributing to the geometric "capacity" of the maternal pelvis and pelvic floor to deliver a fetal head without incurring stretch injury of the maternal soft tissue. In Part II, we quantified the range in demand, represented by the variation in fetal head size and shape, placed on the maternal pelvic floor. In Part III, we analyzed the capacity-to-demand geometric ratio, g, in order to determine whether a mother can deliver a head of given size without stretch injury. The results of a Part I sensitivity analysis showed that initial soft tissue loop length (SL) had the greatest effect on maternal capacity, followed by the length of the soft tissue loop above the inferior pubic rami at ultimate crowning, then subpubic arch angle (SPAA) and head size, and finally the levator origin separation distance. We found the more caudal origin of the puborectal portion of the levator muscle helps to protect it from the stretch injuries commonly observed in the pubovisceral portion. Part II fetal head molding index (MI) and fetal head size revealed fetal head circumference values ranging from 253 to 351 mm, which would increase up to 11 mm upon face presentation. The Part III capacity-demand analysis of g revealed that, based on geometry alone, the 10th percentile maternal capacity predicted injury for all head sizes, the 25th percentile maternal capacity could deliver half of all head sizes, while the 50th percentile maternal capacity could deliver a head of any size without injury. If ultrasound imaging could be operationalized to make measurements of ratio g, it might be used to usefully inform women on their level of risk for levator injury during vaginal birth.

  3. The stimulation of the vaginal immune system with short-term administration of a vaginal gel containing fraction of Propionibacterium acnes, hyaluronic acid and polycarbophil is efficacious in vaginal infections dependent on disorders in the vaginal ecosystem.

    PubMed

    Melis, Gian Benedetto; Piras, Bruno; Marotto, Maria Francesca; Neri, Manuela; Corda, Valentina; Vallerino, Valerio; Saba, Alessandra; Lello, Stefano; Pilloni, Monica; Zedda, Pierina; Paoletti, Anna Maria; Mais, Valerio

    2018-04-12

    The vaginal immune system (VIS) is the first defense against antigens recognized as foreign. Substances capable of locally activating the VIS could be a valid strategy to treat vulvo-vaginal infections (VVI), caused by changes in the vaginal ecosystem, such as bacterial vaginosis (BV), vulvo-vaginal candidiasis (CA), and mixed vaginitis (MV). Bacterial lysates, obtained by crushing bacterial cultures, exert immuno-modulatory activities. The parietal fraction from Propionibacterium acnes is a patent of Depofarma (MoglianoVeneto, Italy). The preparation that associates such fraction to hyaluronic acid and polycarbophil is a registered trademark, commercially available in Italy as vaginal gel, Immunovag ® . The study aimed to evaluate whether a 5-day-treatment with Immunovag ® improves the symptoms and signs of VVI, in 60 women with Gardnerella vaginalis (GV), 154 with CA, 95 with MV, diagnosed with vulvar vaginal swab (VVS), and in 283 with BV, diagnosed with the Amsel criteria. At the end of the treatment (visit 2), the symptoms and signs of VVI disappeared in a significant number of subjects (χ 2 p < .02 vs pre-treatment) in all VVI groups, and their intensity was significantly (p < .0002) reduced in the subjects in which they were still present. Immunovag ® represents a valid treatment of VVI induced by changes in the vaginal ecosystem.

  4. Effect of vaginal spheres and pelvic floor muscle training in women with urinary incontinence: a randomized, controlled trial.

    PubMed

    Porta-Roda, Oriol; Vara-Paniagua, Jesús; Díaz-López, Miguel A; Sobrado-Lozano, Pilar; Simó-González, Marta; Díaz-Bellido, Paloma; Reula-Blasco, María C; Muñoz-Garrido, Francisco

    2015-08-01

    To compare the efficacy and safety of Kegel exercises performed with or without, vaginal spheres as treatment for women with urinary incontinence. Multicentre parallel-group, open, randomized controlled trial. Women were allocated to either a pelvic floor muscle-training program consisting of Kegel exercises performed twice daily, 5 days/week at home, over 6 months with vaginal spheres, or to the same program without spheres. The primary endpoint was women's report of urinary incontinence at 6 months using the International Consultation on Incontinence Questionnaire-Short Form (ICIQ-UI-SF). Secondary outcome measures were the 1 hr pad-test, King's Health Questionnaire (KHQ) and a five-point Likert scale for subjective evaluation. Adherence was measured with the Morisky-Green test. Thirty-seven women were randomized to the spheres group and 33 to the control group. The primary endpoint was evaluated in 65 women (35 in the spheres group vs. 30 controls). ICIQ-UI-SF results improved significantly at 1-month follow-up in the spheres group (P < 0.01) and at 6 months in the controls. The 1 hr pad-test improved in the spheres group but not in the control group. No significant differences were found in the KHQ results or in the subjective evaluation of efficacy and safety. Adherence was higher in the spheres group but differences were not significant. Mild transient side effects were reported in four patients in the spheres group and one in the control group. Both treatments improved urinary incontinence but women who performed the exercises with vaginal spheres showed an earlier improvement. Vaginal spheres were well tolerated and safe. © 2014 Wiley Periodicals, Inc.

  5. Hyperexcitability to electrical stimulation and accelerated muscle fatiguability of taut bands in rats.

    PubMed

    Wang, Yong-Hui; Yin, Ming-Jing; Fan, Zhen-Zhen; Arendt-Nielsen, Lars; Ge, Hong-You; Yue, Shou-Wei

    2014-04-01

    Myofascial trigger points contribute significantly to musculoskeletal pain and motor dysfunction and may be associated with accelerated muscle fatiguability. The aim of this study was to investigate the electrically induced force and fatigue characteristics of muscle taut bands in rats. Muscle taut bands were dissected out and subjected to trains of electrical stimulation. The electrical threshold intensity for muscle contraction and maximum contraction force (MCF), electrical intensity dependent fatigue and electrical frequency dependent fatigue characteristics were assessed in three different sessions (n=10 each) and compared with non-taut bands in the biceps femoris muscle. The threshold intensity for muscle contraction and MCF at the 10th, 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those of non-taut bands (all p<0.05). The MCF at the 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those at the 1st and 5th stimuli (all p<0.01). The MCF in the frequency dependent fatigue test was significantly higher and the stimulus frequency that induced MCF was significantly lower for taut bands than for non-taut bands (both p<0.01). The present study demonstrates that the muscle taut band itself was more excitable to electrical stimulation and significantly less fatigue resistant than normal muscle fibres.

  6. Electrical stimulation (ES) in the management of sexual pain disorders.

    PubMed

    Nappi, Rossella E; Ferdeghini, Francesea; Abbiati, Ileana; Vercesi, Claudia; Farina, Claudio; Polatti, Franco

    2003-01-01

    We performed an open study to investigate the use of electrical stimulation (ES) on the vestibular area and vaginal introitus in women with sexual pain disorders. We recruited 29 women (age range 20-45 years) from among the patients at our Reproductive Psychobiology Unit to participate in the present study. They each experienced vestibular pain, inducing dyspareunia and vaginism. We performed ES with an ECL43400 apparatus (Elite, EssediEsse srl, Milan, Italy) once a week for 10 weeks. To evaluate the muscular activity of the perineal floor and sexual function, we employed the same apparatus with a vaginal probe for recording myoelectrical activity (muV), we employed a VAS scale for evaluating pain, and we administered the Female Sexual Function Index (FSFI; Rosen et al., 2000) before and after the study protocol. We analyzed data by parametric and nonparametric comparisons and correlations, as appropriate. Our major findings were as follows: (a) the contractile ability of pelvic floor muscles (p < 0.001), as well as the resting ability (p < 0.001), significantly improved following ES; (b) the current intensity tolerated significantly increased (p < 0.001) throughout the study, from 41.3 +/- 7.4 mA at the start of the study to 50 +/- 7.4 mA at the end of the stimulation protocol; (c) the Visual Analogic Scale (VAS) for pain significantly declined (p < 0.001), whereas FSFI pain scores (p < 0.001) and full scale scores (p < 0.001) significantly improved following ES, and 4 out of 9 women with vaginism went back to coital activity; (d) FSFI pain score and the current intensity tolerated, both before (R = .59; p < 0.006) and at the end (R = .53; p < 0.02) of the stimulation protocol, positively correlated. ES may be effective in the management of sexual pain disorders. Further controlled studies are necessary to standardize stimulation protocols according to the severity of pain and to better clarify the long-term clinical effects of ES.

  7. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior

    PubMed Central

    Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2013-01-01

    There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering. PMID:23823664

  8. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior.

    PubMed

    Ahadian, Samad; Ostrovidov, Serge; Hosseini, Vahid; Kaji, Hirokazu; Ramalingam, Murugan; Bae, Hojae; Khademhosseini, Ali

    2013-01-01

    There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.

  9. A new vibrator to stimulate muscle proprioceptors in fMRI.

    PubMed

    Montant, Marie; Romaiguère, Patricia; Roll, Jean-Pierre

    2009-03-01

    Studying cognitive brain functions by functional magnetic resonance imaging (fMRI) requires appropriate stimulation devices that do not interfere with the magnetic fields. Since the emergence of fMRI in the 90s, a number of stimulation devices have been developed for the visual and auditory modalities. Only few devices, however, have been developed for the somesthesic modality. Here, we present a vibration device for studying somesthesia that is compatible with high magnetic field environments and that can be used in fMRI machines. This device consists of a poly vinyl chloride (PVC) vibrator containing a wind turbine and of a pneumatic apparatus that controls 1-6 vibrators simultaneously. Just like classical electromagnetic vibrators, our device stimulates muscle mechanoreceptors (muscle spindles) and generates reliable illusions of movement. We provide the fMRI compatibility data (phantom test), the calibration curve (vibration frequency as a function of air flow), as well as the results of a kinesthetic test (perceived speed of the illusory movement as a function of vibration frequency). This device was used successfully in several brain imaging studies using both fMRI and magnetoencephalography.

  10. The effects of neuromuscular electrical stimulation at different frequencies on the activations of deep abdominal stabilizing muscles.

    PubMed

    Cho, Hee Kyung; Jung, Gil Su; Kim, Eun Hyuk; Cho, Yun Woo; Kim, Sang Woo; Ahn, Sang Ho

    2016-01-01

    Low back pain is associated with transversus abdominis (TrA) dysfunction. Recently, it was proposed that Neuromuscular Electrical Stimulation (NMES) could be used to stimulate deep abdominal muscle contractions and improve lumbopelvic stability. The purpose of this study was to determine the optimal stimulation frequency required during NMES for the activation of deep abdominal muscles. Twenty healthy volunteers between the ages of 24 and 32 were included. The portable research-stimulator was applied using a 10 second contraction time, and a 10 second resting time at 20 Hz, 50 Hz, and 80 Hz. Changes in muscle thicknesses were determined for the TrA, obliquus internus (OI), and obliquus externus (OE) by real time ultrasound imaging. Significant thickness increases in the TrA, OI, and OE were observed during NMES versus the resting state (p < 0.05). Of the frequencies examined, 50 Hz NMES produced the greatest increase in TrA thickness (1.33 fold as compared with 1.22 fold at 20 Hz and 1.21 fold at 80 Hz) (p < 0.05). Our results indicate that NMES can preferentially stimulate contractions in deep abdominal stabilizing muscles. Most importantly, 50 Hz NMES produced greater muscle thickness increases than 20 or 80 Hz.

  11. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.

    1986-02-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine weremore » inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.« less

  12. Transcranial magnetic stimulation of the human brain: responses in muscles supplied by cranial nerves.

    PubMed

    Benecke, R; Meyer, B U; Schönle, P; Conrad, B

    1988-01-01

    The present investigation demonstrates that time-varying magnetic fields induced over the skull elicit distinct types of responses in muscles supplied by the cranial nerves both on the ipsilateral and the contralateral side. When the center of the copper coil was positioned 4 cm lateral to the vertex on a line from the vertex to the external auditory meatus, bilateral responses in the masseter, orbicularis oculi, mentalis, and sternocleidomastoideus muscles with a delay of about 10 to 14 ms after the stimulus occurred. Similar to the transcranially evoked muscle responses in hand muscles, the responses in the cranial muscles can be influenced in latency and amplitude by background excitation. It is concluded that these responses are induced by excitation of the face-associated motor cortex followed by multiple I-waves in the corticonuclear tract with both ipsilateral and contralateral projections to the corresponding motoneurones. Additionally, at higher stimulation strengths "short-latency" ipsilateral responses in muscles supplied by the trigeminal, facial, and accessory nerves occurred which we suggest are induced by direct stimulation of the peripheral cranial nerves in their intracisternal course. The present study confirms the bilateral projection of corticonuclear tracts in awake unanesthetised human subjects which has been observed by electrical stimulation on the exposed cortex during surgical procedures already decades ago. The present investigation will serve as a basis for the assessment of pathophysiological mechanisms involving the corticonuclear system or the peripheral cranial nerves in their proximal parts in awake humans.

  13. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease

    PubMed Central

    Dong, Jiangling; Dong, Yanjun; Chen, Zihong; Mitch, William E.; Zhang, Liping

    2016-01-01

    Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD) but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We have identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD. PMID:27653838

  14. Vaginal orgasm is associated with less use of immature psychological defense mechanisms.

    PubMed

    Brody, Stuart; Costa, Rui Miguel

    2008-05-01

    Freud implied a link between inability to have a vaginal orgasm and psychosexual immaturity. Since Kinsey, many sexologists have asserted that no such link exists. However, empirical testing of the issue has been lacking. The objective was to determine the relationship between different sexual behavior triggers of female orgasm and use of immature psychological defense mechanisms. Women reported their past month frequency of different sexual behaviors and corresponding orgasm rates and completed the Defense Style Questionnaire (DSQ-40). The association between ability to have vaginal intercourse orgasm (versus clitoral orgasm) and the use of DSQ-40 immature psychological defense mechanisms (associated with various psychopathologies) was examined. In a sample of 94 healthy Portuguese women, vaginal orgasm (triggered solely by penile-vaginal intercourse) was associated with less use of DSQ-40 immature defenses. Vaginal orgasm was associated with less somatization, dissociation, displacement, autistic fantasy, devaluation, and isolation of affect. Orgasm from clitoral stimulation or combined clitoral-intercourse stimulation was not associated with less use of immature defenses, and was associated with more use of some immature defenses. In one regression analysis, more masturbation and less vaginal orgasm consistency made independent contributions to the statistical prediction of immature defenses. In another regression analysis, any use of extrinsic clitoral stimulation for intercourse orgasm, and lack of any vaginal orgasm, made independent contributions to the statistical prediction of immature defenses. Vaginally anorgasmic women had immature defenses scores comparable to those of established (depression, social anxiety disorder, panic disorder, and obsessive-compulsive disorder) outpatient psychiatric groups. Results were not confounded by social desirability responding or relationship quality. The results linking penile-vaginal orgasm with less use of immature

  15. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Strietzel, C. J.

    2000-01-01

    Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  16. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Cyclic AMP Production in Chicken and Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    2000-01-01

    Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  17. Coital incontinence and vaginal symptoms and the relationship to pelvic floor muscle function in primiparous women at 12 months postpartum: a cross-sectional study.

    PubMed

    Tennfjord, Merete Kolberg; Hilde, Gunvor; Stær-Jensen, Jette; Siafarikas, Franziska; Engh, Marie Ellström; Bø, Kari

    2015-04-01

    Symptoms related to sexual dysfunction postpartum are scarcely addressed in the literature, and the relationship to pelvic floor muscle (PFM) function is largely unknown. The aim of this study was to investigate primiparous women 12 months postpartum and study: (i) prevalence and bother of coital incontinence, vaginal symptoms, and sexual matters; and (ii) whether coital incontinence and vaginal symptoms were associated with vaginal resting pressure (VRP), PFM strength, and endurance. International Consultation on Incontinence Modular Questionnaire (ICIQ) sexual matters module and ICIQ-Vaginal Symptoms Questionnaire were used for questions on coital incontinence, vaginal symptoms, and sexual matters, respectively. PFM function was assessed by manometer (Camtech AS, Sandvika, Norway). Coital incontinence, vaginal symptoms, and PFM function were the main outcome measures. One hundred seventy-seven primiparous women, mean age 28.7 (standard deviation [SD] 4.3) participated. Of the 94% of women having sexual intercourse, coital incontinence was found for 1.2% whereas 34.5% reported at least one vaginal symptom interfering with the sexual life of primiparous women. Of the symptoms investigated, "vagina feels dry," "vagina feels sore," and "vagina feels loose or lax" were most prevalent, but the overall impact on the woman's sexual life was minimally bothersome, mean 1.4 out of 10 (SD 2.5). Women reporting "vagina feels loose or lax" had lower VRP, PFM strength, and endurance when compared with women without the symptom. Twelve-month postpartum coital incontinence was rare, whereas the prevalence of vaginal symptoms interfering with sexual life was more common. The large majority of primiparous women in our study had sexual intercourse at 12 months postpartum and the reported overall bother on sexual life was low. Women reporting "vagina feels loose or lax" had lower VRP, PFM strength, and endurance when compared with women without the symptom. © 2015 International

  18. Mechanical stimulation of skeletal muscle mitigates glucocorticoid induced decreases in prostaglandin synthesis

    NASA Technical Reports Server (NTRS)

    Chromiak, Joseph A.; Vandenburgh, Herman H.

    1993-01-01

    The glucocorticoid dexamethasone (Dex) induces a decline in protein synthesis and protein content of tissue cultured, avian skeletal muscle cells, and this atrophy is attenuated by repetitive mechanical stretch. Since the prostaglandin synthesis inhibitor indomethacin mitigated this stretch attenuation of muscle atrophy, the role of prostaglandins as growth modulators in these processes was examined. Dex at 10(exp -8) M reduced PGF(sub 2(alpha)) production 55 percent - 65 percent and PGE(sub 2) production 84 - 90 percent after 24 - 72 h of incubation in static cultures. Repetitive 10 percent stretch-relaxations of the non-Dex treated cultures increased PGF(sub 2(alpha)) efflux 41 percent at 24 h and 276 percent at 72 h and increased PGE(sub 2) production 51 percent at 24 h and 236 percent at 72 h. Mechanical stimulation of Dex treated cultures increased PGF(sub 2(alpha)) production 162 percent after 24 h, thus returning PGF(sub 2(alpha)) efflux to the level of non-Dex treated cultures. At 72 h, stretch increased PGF(sub 2(alpha)) efflux 65 percent in Dex treated cultures, but PGF(sub 2(alpha)) production was 45-84 percent less than non-Dex treated cultures. Mechanical stimulation of Dex treated cultures increased PGE(sub 2) production at 24 h, but not at 72 h. Dex reduced prostaglandin H synthase (PGHS) activity in the muscle cultures by 70 percent after 8 - 24 h of incubation, and mechanical stimulation increased PGHS activity of the Dex treated cultures by 98 percent. It is concluded that repetitive mechanical stimulation attenuates the catabolic effects of Dex on cultured skeletal muscle cells in part by reversing the Dex-induced declines in PGHS activity and prostaglandin production.

  19. Commensal Bacteria Modulate Innate Immune Responses of Vaginal Epithelial Cell Multilayer Cultures

    PubMed Central

    Rose, William A.; McGowin, Chris L.; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D.; Popov, Vsevolod L.; Pyles, Richard B.

    2012-01-01

    The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives. PMID:22412914

  20. Vaginal cones or balls to improve pelvic floor muscle performance and urinary continence in women post partum: A quantitative systematic review.

    PubMed

    Oblasser, Claudia; Christie, Janice; McCourt, Christine

    2015-11-01

    the vaginal use of cones or balls aims to increase muscle performance and thereby prevent or treat urinary incontinence. To date, no systematic review has focused on the effectiveness of these devices specifically during the postpartum period. The objectives of this review were: to compare the effectiveness of vaginal cones or balls for improvement of pelvic floor muscle performance and urinary continence in the postpartum period to no treatment, placebo, sham treatment or active controls; to gather information on effect on perineal descent or pelvic organ prolapse, adverse effects and economical aspects. quantitative systematic review. 14 scientific databases (including PubMed and CINAHL) and the world-wide web; experts were contacted for published and unpublished data. studies had to be randomised/quasi-randomised trials and have female participants up to one year after childbirth. The intervention is compared to no treatment, placebo, sham treatment or active controls. Outcome measures relate to pelvic floor muscle performance or urinary incontinence. Studies were selected, 'risk of bias' assessed, and data extracted by two reviewers independently with inter-reviewer agreement. one study met the inclusion criteria; its original data were re-analysed. In an intention-to-treat analysis, compared with the control group, the cone group showed a statistically significant lower rate of urinary incontinence; compared with the exercise group, the prevalence was similar. However, the validity of the analysis is limited. the evidence gained from this systematic review is very limited. The use of cones may be helpful for urinary incontinence after childbirth, but further research is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue.

    PubMed

    Vromans, Maria; Faghri, Pouran

    2017-12-05

    This investigation aimed to determine the force and muscle surface electromyography (EMG) responses to different frequencies of electrical stimulation (ES) in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions) during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB) and vastus lateralis (VL) when activated by ES at three frequencies (10, 35, and 50Hz). Ten healthy adults (mean age: 23.2 ± 3.0 years) were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1) identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC) at each ES frequency and 2) evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05). However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition) should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  2. Recovery Effect of the Muscle Fatigue by the Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Uchida, Kousuke; Nuruki, Atsuo; Tsujimura, Sei-Ichi; Tamari, Youzou; Yunokuchi, Kazutomo

    The purpose of this study is to investigate the effect of magnetic stimulation for muscle fatigue. The six healthy subjects participated in the experiment with the repetition grasp using a hand dynamometer. The measurement of EMG (electromyography) and MMG (mechanomyography) is performed on the left forearm. All subjects performed MVC (maximum voluntary contraction), and repeated exercise in 80%MVC after the MVC measurement. The repetition task was entered when display muscular strength deteriorated. We used an EMG and MMG for the measurement of the muscle fatigue. Provided EMG and MMG waves were calculated integral calculus value (iEMG, and iMMG). The result of iEMG and iMMG were divided by muscular strength, because we calculate integral calculus value per the unit display muscular strength. The result of our study, we found recovery effect by the magnetic stimulation in voluntarily muscular strength and iEMG. However, we can not found in a figure of iMMG.

  3. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy*

    PubMed Central

    Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.

    2016-01-01

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547

  4. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy.

    PubMed

    Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J

    2016-10-14

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2 fl/fl ) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2 fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β 2 -adrenergic receptor (β 2 AR) agonist, was significantly enhanced in MLC-Cre:GRK2 fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β 2 AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Ovine multiparity is associated with diminished vaginal muscularis, increased elastic fibres and vaginal wall weakness: implication for pelvic organ prolapse

    PubMed Central

    Emmerson, Stuart; Young, Natharnia; Rosamilia, Anna; Parkinson, Luke; Edwards, Sharon L.; Vashi, Aditya V.; Davies-Tuck, Miranda; White, Jacinta; Elgass, Kirstin; Lo, Camden; Arkwright, John; Werkmeister, Jerome A.; Gargett, Caroline E.

    2017-01-01

    Pelvic Organ Prolapse (POP) is a major clinical burden affecting 25% of women, with vaginal delivery a major contributing factor. We hypothesised that increasing parity weakens the vagina by altering the extracellular matrix proteins and smooth muscle thereby leading to POP vulnerability. We used a modified POP-quantification (POP-Q) system and a novel pressure sensor to measure vaginal wall weakness in nulliparous, primiparous and multiparous ewes. These measurements were correlated with histological, biochemical and biomechanical properties of the ovine vagina. Primiparous and multiparous ewes had greater displacement of vaginal tissue compared to nulliparous at points Aa, Ap and Ba and lower pressure sensor measurements at points equivalent to Ap and Ba. Vaginal wall muscularis of multiparous ewes was thinner than nulliparous and had greater elastic fibre content. Collagen content was lower in primiparous than nulliparous ewes, but collagen organisation did not differ. Biomechanically, multiparous vaginal tissue was weaker and less stiff than nulliparous. Parity had a significant impact on the structure and function of the ovine vaginal wall, as the multiparous vaginal wall was weaker and had a thinner muscularis than nulliparous ewes. This correlated with “POP-Q” and pressure sensor measurements showing greater tissue laxity in multiparous compared to nulliparous ewes. PMID:28374826

  6. [Selective training of the vastus medialis muscle using electrical stimulator for chondromalacia patella].

    PubMed

    Guo, K; Ye, Q; Lin, J; Shen, J; Yang, X

    1996-04-01

    Chondromalacia patella is closely related with subluxation and tilt of patella, as well as with muscular atrophy of quadriceps, especially in vastus medialis muscle. 364 cases of chondromalacia patella were treated with selective training of the vastus medialis muscle using electrical stimulator in our hospital. 211 cases were followed up after treatment from 6 months to 3 years. Among them excellent and good results were seen in 130 cases (62%), fair results were seen in 69 cases (33%) and no change was seen in 12 cases (5%). Significant reduction of CA (P < 0.01) and LPA (P < 0.001) were observed in all these patients in comparison with their primary angle. We believe that the selective training of the vastus medialis muscle using electrical stimulator is one of the effective methods for the treatment of chondromalacia patella.

  7. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease.

    PubMed

    Dong, Jiangling; Dong, Yanjun; Chen, Zihong; Mitch, William E; Zhang, Liping

    2017-01-01

    Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD), but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin, which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes, indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. Acylated and unacylated ghrelin do not directly stimulate glucose transport in isolated rodent skeletal muscle.

    PubMed

    Cervone, Daniel T; Dyck, David J

    2017-07-01

    Emerging evidence implicates ghrelin, a gut-derived, orexigenic hormone, as a potential mediator of insulin-responsive peripheral tissue metabolism. However, in vitro and in vivo studies assessing ghrelin's direct influence on metabolism have been controversial, particularly due to confounding factors such as the secondary rise in growth hormone (GH) after ghrelin injection. Skeletal muscle is important in the insulin-stimulated clearance of glucose, and ghrelin's exponential rise prior to a meal could potentially facilitate this. This study was aimed at elucidating any direct stimulatory action that ghrelin may have on glucose transport and insulin signaling in isolated rat skeletal muscle, in the absence of confounding secondary factors. Oxidative soleus and glycolytic extensor digitorum longus skeletal muscles were isolated from male Sprague Dawley rats in the fed state and incubated with various concentrations of acylated and unacylated ghrelin in the presence or absence of insulin. Ghrelin did not stimulate glucose transport in either muscle type, with or without insulin. Moreover, GH had no acute, direct stimulatory effect on either basal or insulin-stimulated muscle glucose transport. In agreement with the lack of observed effect on glucose transport, ghrelin and GH also had no stimulatory effect on Ser 473 AKT or Thr 172 AMPK phosphorylation, two key signaling proteins involved in glucose transport. Furthermore, to our knowledge, we are among the first to show that ghrelin can act independent of its receptor and cause an increase in calmodulin-dependent protein kinase 2 (CaMKII) phosphorylation in glycolytic muscle, although this was not associated with an increase in glucose transport. We conclude that both acylated and unacylated ghrelin have no direct, acute influence on skeletal muscle glucose transport. Furthermore, the immediate rise in GH in response to ghrelin also does not appear to directly stimulate glucose transport in muscle. © 2017 The

  9. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    PubMed Central

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (P<0.01) lipidation of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) (∼50%) and the LC3‐II/LC3‐I ratio (∼60%) indicating that content of autophagosomes decreases with exercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (P<0.01) the LC3‐II/LC3‐I ratio (∼80%) in muscle of the exercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the

  10. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Coupling Efficiency in Chicken and Rat Skeleton Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    1999-01-01

    Expression of the beta-adrenergic receptor (bAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the bAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the bAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. Thus, in chicken muscle cells an enhanced level of contraction reduced the coupling efficiency of bAR for cyclic AMP production by approximately 55% compared to controls. In contrast, the bAR population in rat muscle cells was increased by approximately 25% by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was also increased by almost two-fold. Thus, in rat muscle cells an enhanced level of contraction increased the coupling efficiency of bAR for cyclic AMP production by approximately 50% compared to controls. The basal levels of intracellular cyclic AMP in both rat muscle cells and chicken muscle cells were not affected by electrical stimulation.

  11. Influence of peripheral magnetic stimulation of soleus muscle on H and M waves.

    PubMed

    Matsuda, Tadamitsu; Kurayama, Taichi; Tagami, Miki; Fujino, Yuji; Manji, Atsushi; Kusumoto, Yasuaki; Amimoto, Kazu

    2018-05-01

    [Purpose] This study evaluated the effects of repetitive peripheral magnetic stimulation of the soleus muscle on spinal cord and peripheral motor nerve excitability. [Subjects and Methods] Twelve healthy adults (mean age 22 years) who provided written informed consent were administered repetitive peripheral magnetic stimulation for 10 min. Pre-and post-stimulation latencies and amplitudes of H- and M-waves of the soleus muscle were measured using electromyography and compared using paired t-tests. [Results] Pre- and post-stimulation latencies (28.3 ± 3.3 vs. 29.1 ± 1.3 ms, respectively) and amplitudes (35.8 ± 1.3 vs. 35.8 ± 1.1 mV, respectively) of H-waves were similar. Pre-stimulation latencies of M-waves were significantly higher than post-stimulation latencies (6.1 ± 2.2 vs. 5.0 ± 0.9 ms, respectively), although pre- and post-stimulation amplitudes were similar (12.2 ± 1.4 vs. 12.2 ± 1.3 mV, respectively). Motor neuron excitability, based on the excitability of motor nerves and peripheral nerve action, was increased by M-waves following magnetic stimulation. [Conclusion] The lack of effect of magnetic stimulation on the amplitude and latency of the H-reflex suggests that magnetic stimulation did not activate sensory nerve synapses of α motor neurons in the spinal cord. However, because motor nerves were stimulated together with sensory nerves, the increased H-wave amplitude may have reflected changes in peripheral rather than in α motor nerves.

  12. Vaginal cones or balls to improve pelvic floor muscle performance and urinary continence in women postpartum: a quantitative systematic review and meta-analysis protocol.

    PubMed

    Oblasser, Claudia; Christie, Janice; McCourt, Christine

    2015-04-01

    To identify, critically appraise and synthesize the best current evidence on the use of vaginal cones or balls to improve pelvic floor muscle performance and urinary continence in women post partum. The vaginal use of cones or balls is a pelvic floor muscle training method that aims to enhance muscle performance and thereby prevent or treat urinary incontinence. Nonetheless to date, no systematic review has focused on the effectiveness of these devices specifically during the postpartum period. Quantitative systematic review with potential meta-analysis. The review will be undertaken by searching 14 scientific databases (including PubMed and CINAHL, without date restriction) and the world-wide web; experts will also be contacted for published and unpublished data. Included studies must be randomized or quasi-randomized trials and have female participants until 1 year after childbirth. The intervention will be compared with no treatment, placebo, sham treatment or active controls. Outcome measures will relate to pelvic floor muscle performance or urinary incontinence. Studies will be selected, 'risk of bias' assessed and data extracted by two reviewers independently. Following inter-reviewer agreement of included studies, data will be checked after entry into systematic review processing software. If appropriate, data will be synthesized by meta-analysis; if this is not possible, a narrative review only will be undertaken. The information gained from this systematic review will help midwives, nurses, other health professionals and women after childbirth decide how to promote female pelvic floor health and in defining further areas of study. © 2014 John Wiley & Sons Ltd.

  13. Effects of Electrical Stimulation on Skeletal Muscle of Old Sedentary People

    PubMed Central

    Mosole, Simone; Zampieri, Sandra; Furlan, Sandra; Carraro, Ugo; Löefler, Stefan; Kern, Helmut; Volpe, Pompeo

    2018-01-01

    Physical activity plays an important role in preventing muscle atrophy and chronic diseases in adults and in the elderly. Calcium (Ca2+) cycling and activation of specific molecular pathways are essential in contraction-induced muscle adaptation. This study attains human muscle sections and total homogenates prepared from biopsies obtained before (control) and after 9 weeks of training by electrical stimulation (ES) on a group of volunteers. The aim of the study was to investigate about the molecular mechanisms that support functional muscle improvement by ES. Evidences of kinase/phosphatase pathways activation after ES were obtained. Moreover, expression of Sarcalumenin, Calsequestrin and sarco/endoplasmic reticulum Ca2+-ATPase (Serca) isoforms was regulated by training. In conclusion, this work shows that neuromuscular ES applied to vastus lateralis muscle of sedentary seniors combines fiber remodeling with activation of Ca2+-Calmodulin molecular pathways and modulation of key Ca2+-handling proteins. PMID:29662923

  14. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation.

    PubMed

    Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko

    2002-01-01

    Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.

  15. Stimulation of abdominal and upper thoracic muscles with surface electrodes for respiration and cough: Acute studies in adult canines.

    PubMed

    Walter, James S; Posluszny, Joseph; Dieter, Raymond; Dieter, Robert S; Sayers, Scott; Iamsakul, Kiratipath; Staunton, Christine; Thomas, Donald; Rabbat, Mark; Singh, Sanjay

    2018-05-01

    To optimize maximal respiratory responses with surface stimulation over abdominal and upper thorax muscles and using a 12-Channel Neuroprosthetic Platform. Following instrumentation, six anesthetized adult canines were hyperventilated sufficiently to produce respiratory apnea. Six abdominal tests optimized electrode arrangements and stimulation parameters using bipolar sets of 4.5 cm square electrodes. Tests in the upper thorax optimized electrode locations, and forelimb moment was limited to slight-to-moderate. During combined muscle stimulation tests, the upper thoracic was followed immediately by abdominal stimulation. Finally, a model of glottal closure for cough was conducted with the goal of increased peak expiratory flow. Optimized stimulation of abdominal muscles included three sets of bilateral surface electrodes located 4.5 cm dorsal to the lateral line and from the 8 th intercostal space to caudal to the 13 th rib, 80 or 100 mA current, and 50 Hz stimulation frequency. The maximal expired volume was 343 ± 23 ml (n=3). Optimized upper thorax stimulation included a single bilateral set of electrodes located over the 2 nd interspace, 60 to 80 mA, and 50 Hz. The maximal inspired volume was 304 ± 54 ml (n=4). Sequential stimulation of the two muscles increased the volume to 600 ± 152 ml (n=2), and the glottal closure maneuver increased the flow. Studies in an adult canine model identified optimal surface stimulation methods for upper thorax and abdominal muscles to induce sufficient volumes for ventilation and cough. Further study with this neuroprosthetic platform is warranted.

  16. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation.

    PubMed

    Santos, J M; Benite-Ribeiro, S A; Queiroz, G; Duarte, J A

    2014-12-01

    Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3-kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin-activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho-aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho-aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Group-level variations in motor representation areas of thenar and anterior tibial muscles: Navigated Transcranial Magnetic Stimulation Study.

    PubMed

    Niskanen, Eini; Julkunen, Petro; Säisänen, Laura; Vanninen, Ritva; Karjalainen, Pasi; Könönen, Mervi

    2010-08-01

    Navigated transcranial magnetic stimulation (TMS) can be used to stimulate functional cortical areas at precise anatomical location to induce measurable responses. The stimulation has commonly been focused on anatomically predefined motor areas: TMS of that area elicits a measurable muscle response, the motor evoked potential. In clinical pathologies, however, the well-known homunculus somatotopy theory may not be straightforward, and the representation area of the muscle is not fixed. Traditionally, the anatomical locations of TMS stimulations have not been reported at the group level in standard space. This study describes a methodology for group-level analysis by investigating the normal representation areas of thenar and anterior tibial muscle in the primary motor cortex. The optimal representation area for these muscles was mapped in 59 healthy right-handed subjects using navigated TMS. The coordinates of the optimal stimulation sites were then normalized into standard space to determine the representation areas of these muscles at the group-level in healthy subjects. Furthermore, 95% confidence interval ellipsoids were fitted into the optimal stimulation site clusters to define the variation between subjects in optimal stimulation sites. The variation was found to be highest in the anteroposterior direction along the superior margin of the precentral gyrus. These results provide important normative information for clinical studies assessing changes in the functional cortical areas because of plasticity of the brain. Furthermore, it is proposed that the presented methodology to study TMS locations at the group level on standard space will be a suitable tool for research purposes in population studies. 2010 Wiley-Liss, Inc.

  18. Generation of Electrical Power from Stimulated Muscle Contractions Evaluated

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.

    2004-01-01

    This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.

  19. Comparing Serum Follicle-Stimulating Hormone (FSH) Level with Vaginal PH in Women with Menopausal Symptoms.

    PubMed

    Vahidroodsari, Fatemeh; Ayati, Seddigheh; Yousefi, Zohreh; Saeed, Shohreh

    2010-01-01

    Despite the important implication for women's health and reproduction, very few studies have focused on vaginal PH for menopausal diagnosis. Recent studies have suggested vaginal PH as a simple, noninvasive and inexpensive method for this purpose. The aim of this study is to compare serum FSH level with vaginal PH in menopause. This is a cross-sectional, descriptive study, conducted on 103 women (aged 31-95 yrs) with menopausal symptoms who were referred to the Menopausal Clinic at Ghaem Hospital during 2006. Vaginal pH was measured using pH meter strips and serum FSH levels were measured using immunoassay methods. The data was analyzed using SPSS software (version 11.5) and results were evaluated statistically by the Chi-square and Kappa tests. p≤0.05 was considered statistically significant. According to this study, in the absence of vaginal infection, the average vaginal pH in these 103 menopausal women was 5.33±0.53. If the menopausal hallmark was considered as vaginal pH>4.5, and serum FSH as ≥20 mIU/ml, then the sensitivity of vaginal pH for menopausal diagnosis was 97%. The mean of FSH levels in this population was 80.79 mIU/ml. Vaginal pH is a simple, accurate, and cost effective tool that can be suggested as a suitable alternative to serum FSH measurement for the diagnosis of menopause.

  20. Sexual function and quality of life in women with urinary incontinence treated by a complete pelvic floor rehabilitation program (biofeedback, functional electrical stimulation, pelvic floor muscles exercises, and vaginal cones).

    PubMed

    Rivalta, Massimo; Sighinolfi, Maria Chiara; Micali, Salvatore; De Stefani, Stefano; Bianchi, Giampaolo

    2010-03-01

    Urinary incontinence (UI) is a debilitating condition that can cause discomfort, embarrassment, loss of confidence; it can lead to withdrawal from social life, and adversely affects physical and mental health, sexual function and quality of life (QoL) in women. The aim is to determine the impact of combined pelvic floor rehabilitation (PFR) on UI, female sexual dysfunction, and QoL. Female Sexual Function Index questionnaire (FSFI) and King's Health Questionnaire (KHQ). Sixteen patients with UI were selected and underwent a complete PFR program (biofeedback, functional electrical stimulation, pelvic floor muscles exercises, and vaginal cones). Patient filled out the FSFI questionnaire and the KHQ at the baseline and at follow-up. After PFR none of the patients reported urine leakage during sexual activity. Resolution of incontinence was achieved in 13 (81.25%) women. Only three (18.75%) patients had positive 1-hour pad test after the treatment. There was significant difference between pad test leakage before and after the PFR (P < 0.001). The mean Stamey incontinence score was 1.37 +/- 0.5 at the baseline vs. 0.25 +/- 0.57 at the follow up (P < 0.001). Before PFR, FSFI total score ranged from 25.8 to 2 (mean 14.65 +/- 6.88), after treatment the FSFI total score ranged from 36 to 2 (mean 22.65 +/- 9.5) (P < 0.001). The improvement of the scores in the six FSFI domains, 5 months after the conclusion of PFR, was statistically significant (desire, arousal, lubrication, orgasm, satisfaction, and pain). All the nine domains in the KHQ presented a low average score after treatment and the improvements were statistically significant. PFR led to a significant difference in the daily use of pads, 1-hour pad test, and Stamey incontinence scores. The treatment caused an improvement in patient's QoL index and sexual function.

  1. Altered responsiveness of the guinea-pig isolated ileum to smooth muscle stimulants and to electrical stimulation after in situ ischemia.

    PubMed

    Rodriguez, Rodolfo; Ventura-Martinez, Rosa; Santiago-Mejia, Jacinto; Avila-Costa, Maria R; Fortoul, Teresa I

    2006-02-01

    1. We evaluated changes in contractility of the guinea-pig isolated ileum, using intact segments and myenteric plexus-longitudinal muscle (MPLM) preparations, after several times (5-160 min) of ischemia in situ. 2. Intestinal ischemia was produced by clamping the superior mesenteric artery. Ischemic and nonischemic segments, obtained from the same guinea-pig, were mounted in organ baths containing Krebs-bicarbonate (K-B) solution, maintained at 37 degrees C and gassed with 95% O2/5% CO2. The preparations were allowed to equilibrate for 60 min under continuous superfusion of warm K-B solution and then electrically stimulated at 40 V (0.3 Hz, 3.0 ms). Thereafter, complete noncumulative concentration-response curves were constructed for acetylcholine (ACh), histamine (HIS), potassium chloride (KCl), and barium chloride (BaCl2). Mean Emax (maximal response) values were calculated for each drug. 3. Our study shows that alterations of chemically and electrically evoked contractions are dependent on ischemic periods. It also demonstrates that contractile responses of ischemic tissues to neurogenic stimulation decreases earlier and to a significantly greater extent than the non-nerve mediated responses of the intestinal smooth muscle. Contractile responses to smooth muscle stimulants were all similarly affected by ischemia. Electron microscopy images indicated necrotic neuronal death. The decrease in reactivity of ischemic tissues to electrical stimulation was ameliorated by dexrazoxane, an antioxidant agent. 4. We consider the guinea-pig isolated ileum as a useful model system to study the processes involved in neuronal ischemia, and we propose that the reduction in maximal responses to electrical stimulation is a useful parameter to study neuroprotection.

  2. Expression of aquaporin water channels in rat vagina: potential role in vaginal lubrication.

    PubMed

    Park, Kwangsung; Han, Ho Jae; Kim, Soo Wan; Jung, Seung Il; Kim, Sun-Ouck; Lee, Hyun-Suk; Lee, Mi Na; Ahn, Kyuyoun

    2008-01-01

    Aquaporins (AQPs) are membrane proteins that facilitate water movement across biological membranes. There has been little research on the role of AQPs in the female sexual arousal response. The purposes of this study were to investigate the localization and functional roles of AQP1, AQP2, and AQP3 in rat vagina. Female Sprague-Dawley rats (230-240 g, N = 20) were anesthetized. The vaginal branch of the pelvic nerve was stimulated for 60 seconds (10 V, 16 Hz, 0.8 ms), and the animals were sacrificed either immediately or 5 minutes later. The expression and cellular localization of AQP1, 2, and 3 were determined by Western blot and immunohistochemistry of the vagina. The intracellular membrane and plasma membrane fractions of the proteins in vaginal tissue were studied by immunoblot analysis with the differential centrifugation. The expression and cellular localization of AQPs, and pelvic nerve stimulation induced translocation of AQPs in rat vaginal tissue. Immunolabeling showed that AQP1 was mainly expressed in the capillaries and venules of the vagina. AQP2 was expressed in the cytoplasm of the epithelium, and AQP3 was mainly associated with the plasma membrane of the vaginal epithelium. AQPs were found to be present primarily in the cytosolic fraction of untreated tissues. The translocation of AQP1 and 2 isoforms from the cytosolic compartment to the membrane compartment was observed immediately after nerve stimulation and had declined at 5 minutes after nerve stimulation, while the subcellular localization of AQP3 was not changed by nerve stimulation. These results showed a distinct localization of AQPs in the rat vagina. Pelvic nerve stimulation modulated short-term translocation of AQP1 and 2. These results imply that AQPs may play an important role in vaginal lubrication.

  3. Cytokine Response of Cultured Skeletal Muscle Cells Stimulated with Proinflammatory Factors Depends on Differentiation Stage

    PubMed Central

    Podbregar, Matej; Lainscak, Mitja; Prelovsek, Oja; Mars, Tomaz

    2013-01-01

    Myoblast proliferation and myotube formation are critical early events in skeletal muscle regeneration. The attending inflammation and cytokine signaling are involved in regulation of skeletal muscle cell proliferation and differentiation. Secretion of muscle-derived cytokines upon exposure to inflammatory factors may depend on the differentiation stage of regenerating muscle cells. Cultured human myoblasts and myotubes were exposed to 24-hour treatment with tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS). Secretion of interleukin 6 (IL-6), a major muscle-derived cytokine, and interleukin 1 (IL-1), an important regulator of inflammatory response, was measured 24 hours after termination of TNF-α or LPS treatment. Myoblasts pretreated with TNF-α or LPS displayed robustly increased IL-6 secretion during the 24-hour period after removal of treatments, while IL-1 secretion remained unaltered. IL-6 secretion was also increased in myotubes, but the response was less pronounced compared with myoblasts. In contrast to myoblasts, IL-1 secretion was markedly stimulated in LPS-pretreated myotubes. We demonstrate that preceding exposure to inflammatory factors stimulates a prolonged upregulation of muscle-derived IL-6 and/or IL-1 in cultured skeletal muscle cells. Our findings also indicate that cytokine response to inflammatory factors in regenerating skeletal muscle partially depends on the differentiation stage of myogenic cells. PMID:23509435

  4. Na+,K+-pump stimulation improves contractility in isolated muscles of mice with hyperkalemic periodic paralysis

    PubMed Central

    Nielsen, Ole Bækgaard; Clausen, Johannes D.; Pedersen, Thomas Holm; Hayward, Lawrence J.

    2011-01-01

    In patients with hyperkalemic periodic paralysis (HyperKPP), attacks of muscle weakness or paralysis are triggered by K+ ingestion or rest after exercise. Force can be restored by muscle work or treatment with β2-adrenoceptor agonists. A missense substitution corresponding to a mutation in the skeletal muscle voltage-gated Na+ channel (Nav1.4, Met1592Val) causing human HyperKPP was targeted into the mouse SCN4A gene (mutants). In soleus muscles prepared from these mutant mice, twitch, tetanic force, and endurance were markedly reduced compared with soleus from wild type (WT), reflecting impaired excitability. In mutant soleus, contractility was considerably more sensitive than WT soleus to inhibition by elevated [K+]o. In resting mutant soleus, tetrodotoxin (TTX)-suppressible 22Na uptake and [Na+]i were increased by 470 and 58%, respectively, and membrane potential was depolarized (by 16 mV, P < 0.0001) and repolarized by TTX. Na+,K+ pump–mediated 86Rb uptake was 83% larger than in WT. Salbutamol stimulated 86Rb uptake and reduced [Na+]i both in mutant and WT soleus. Stimulating Na+,K+ pumps with salbutamol restored force in mutant soleus and extensor digitorum longus (EDL). Increasing [Na+]i with monensin also restored force in soleus. In soleus, EDL, and tibialis anterior muscles of mutant mice, the content of Na+,K+ pumps was 28, 62, and 33% higher than in WT, respectively, possibly reflecting the stimulating effect of elevated [Na+]i on the synthesis of Na+,K+ pumps. The results confirm that the functional disorders of skeletal muscles in HyperKPP are secondary to increased Na+ influx and show that contractility can be restored by acute stimulation of the Na+,K+ pumps. Calcitonin gene-related peptide (CGRP) restored force in mutant soleus but caused no detectable increase in 86Rb uptake. Repeated excitation and capsaicin also restored contractility, possibly because of the release of endogenous CGRP from nerve endings in the isolated muscles. These

  5. Phospholemman is not required for the acute stimulation of Na⁺-K⁺-ATPase α₂-activity during skeletal muscle fatigue.

    PubMed

    Manoharan, Palanikumar; Radzyukevich, Tatiana L; Hakim Javadi, Hesamedin; Stiner, Cory A; Landero Figueroa, Julio A; Lingrel, Jerry B; Heiny, Judith A

    2015-12-15

    The Na(+)-K(+)-ATPase α2-isoform in skeletal muscle is rapidly stimulated during muscle use and plays a critical role in fatigue resistance. The acute mechanisms that stimulate α2-activity are not completely known. This study examines whether phosphorylation of phospholemman (PLM/FXYD1), a regulatory subunit of Na(+)-K(+)-ATPase, plays a role in the acute stimulation of α2 in working muscles. Mice lacking PLM (PLM KO) have a normal content of the α2-subunit and show normal exercise capacity, in contrast to the greatly reduced exercise capacity of mice that lack α2 in the skeletal muscles. Nerve-evoked contractions in vivo did not induce a change in total PLM or PLM phosphorylated at Ser63 or Ser68, in either WT or PLM KO. Isolated muscles of PLM KO mice maintain contraction and resist fatigue as well as wild type (WT). Rb(+) transport by the α2-Na(+)-K(+)-ATPase is stimulated to the same extent in contracting WT and contracting PLM KO muscles. Phosphorylation of sarcolemmal membranes prepared from WT but not PLM KO skeletal muscles stimulates the activity of both α1 and α2 in a PLM-dependent manner. The stimulation occurs by an increase in Na(+) affinity without significant change in Vmax and is more effective for α1 than α2. These results demonstrate that phosphorylation of PLM is capable of stimulating the activity of both isozymes in skeletal muscle; however, contractile activity alone is not sufficient to induce PLM phosphorylation. Importantly, acute stimulation of α2, sufficient to support exercise and oppose fatigue, does not require PLM or its phosphorylation. Copyright © 2015 the American Physiological Society.

  6. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation

    USDA-ARS?s Scientific Manuscript database

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study...

  7. Caffeine and contraction synergistically stimulate 5′-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle

    PubMed Central

    Tsuda, Satoshi; Egawa, Tatsuro; Kitani, Kazuto; Oshima, Rieko; Ma, Xiao; Hayashi, Tatsuya

    2015-01-01

    5′-Adenosine monophosphate-activated protein kinase (AMPK) has been identified as a key mediator of contraction-stimulated insulin-independent glucose transport in skeletal muscle. Caffeine acutely stimulates AMPK in resting skeletal muscle, but it is unknown whether caffeine affects AMPK in contracting muscle. Isolated rat epitrochlearis muscle was preincubated and then incubated in the absence or presence of 3 mmol/L caffeine for 30 or 120 min. Electrical stimulation (ES) was used to evoke tetanic contractions during the last 10 min of the incubation period. The combination of caffeine plus contraction had additive effects on AMPKα Thr172 phosphorylation, α-isoform-specific AMPK activity, and 3-O-methylglucose (3MG) transport. In contrast, caffeine inhibited basal and contraction-stimulated Akt Ser473 phosphorylation. Caffeine significantly delayed muscle fatigue during contraction, and the combination of caffeine and contraction additively decreased ATP and phosphocreatine contents. Caffeine did not affect resting tension. Next, rats were given an intraperitoneal injection of caffeine (60 mg/kg body weight) or saline, and the extensor digitorum longus muscle was dissected 15 min later. ES of the sciatic nerve was performed to evoke tetanic contractions for 5 min before dissection. Similar to the findings from isolated muscles incubated in vitro, the combination of caffeine plus contraction in vivo had additive effects on AMPK phosphorylation, AMPK activity, and 3MG transport. Caffeine also inhibited basal and contraction-stimulated Akt phosphorylation in vivo. These findings suggest that caffeine and contraction synergistically stimulate AMPK activity and insulin-independent glucose transport, at least in part by decreasing muscle fatigue and thereby promoting energy consumption during contraction. PMID:26471759

  8. Secretory Aspartyl Proteinases Cause Vaginitis and Can Mediate Vaginitis Caused by Candida albicans in Mice

    PubMed Central

    Pericolini, Eva; Gabrielli, Elena; Amacker, Mario; Kasper, Lydia; Roselletti, Elena; Luciano, Eugenio; Sabbatini, Samuele; Kaeser, Matthias; Moser, Christian; Hube, Bernhard; Vecchiarelli, Anna

    2015-01-01

    ABSTRACT Vaginal inflammation (vaginitis) is the most common disease caused by the human-pathogenic fungus Candida albicans. Secretory aspartyl proteinases (Sap) are major virulence traits of C. albicans that have been suggested to play a role in vaginitis. To dissect the mechanisms by which Sap play this role, Sap2, a dominantly expressed member of the Sap family and a putative constituent of an anti-Candida vaccine, was used. Injection of full-length Sap2 into the mouse vagina caused local neutrophil influx and accumulation of the inflammasome-dependent interleukin-1β (IL-1β) but not of inflammasome-independent tumor necrosis factor alpha. Sap2 could be replaced by other Sap, while no inflammation was induced by the vaccine antigen, the N-terminal-truncated, enzymatically inactive tSap2. Anti-Sap2 antibodies, in particular Fab from a human combinatorial antibody library, inhibited or abolished the inflammatory response, provided the antibodies were able, like the Sap inhibitor Pepstatin A, to inhibit Sap enzyme activity. The same antibodies and Pepstatin A also inhibited neutrophil influx and cytokine production stimulated by C. albicans intravaginal injection, and a mutant strain lacking SAP1, SAP2, and SAP3 was unable to cause vaginal inflammation. Sap2 induced expression of activated caspase-1 in murine and human vaginal epithelial cells. Caspase-1 inhibition downregulated IL-1β and IL-18 production by vaginal epithelial cells, and blockade of the IL-1β receptor strongly reduced neutrophil influx. Overall, the data suggest that some Sap, particularly Sap2, are proinflammatory proteins in vivo and can mediate the inflammasome-dependent, acute inflammatory response of vaginal epithelial cells to C. albicans. These findings support the notion that vaccine-induced or passively administered anti-Sap antibodies could contribute to control vaginitis. PMID:26037125

  9. Force-length relationship in the pelvic floor muscles under transverse vaginal distension: a method study in healthy women.

    PubMed

    Verelst, M; Leivseth, G

    2004-01-01

    The purpose of this study was to investigate whether there is a relationship between changes in the diameter of the urogenital hiatus and force developed in pelvic floor musculature. In addition, we wanted to examine the reliability of the method that measures force development in the pelvic floor in the transverse direction of the urogenital hiatus. Passive and total force in the pelvic floor was measured with an intra-vaginal device in 20 healthy parous volunteers. The measurements were done with a consecutively increasing diameter in the transverse plane of the urogenital hiatus. The procedure was repeated with a few days interval. The measurements show an increase in force with an increasing device-diameter. The results are reliable at all the diameters tested, estimated by the within-subject day-to-day variability which was non-significant. The 40 mm diameter device is most favourable, estimated by Bland Altman plots of the test-retest measurements. Force development in pelvic floor muscles increased as a function of vaginal diameter when measured in the frontal plane. The measurements were reliable at all the different diameters chosen. 2004 Wiley-Liss, Inc.

  10. Chronic muscle stimulation improves muscle function and reverts the abnormal surface EMG pattern in Myotonic Dystrophy: a pilot study

    PubMed Central

    2013-01-01

    Background To date, in Myotonic Dystrophy type 1 (DM1) the rehabilitative interventions have always been aimed at muscle strengthening, increasing of fatigue resistance and improving of aerobic metabolism efficiency whereas the electrical membrane fault has always been addressed pharmacologically. Neuromuscular electrical stimulation (NMES) is a useful therapeutic tool in sport medicine and in the rehabilitation of many clinical conditions characterized by motor impairment such as stroke, cerebral palsy and spinal cord injury. The aim of our pilot study was to evaluate the effects of chronic electrical stimulation both on functional and electrical properties of muscle in a small group of DM1 patients. Methods Five DM1 patients and one patient with Congenital Myotonia (CM) performed a home electrical stimulation of the tibialis anterior muscle lasting 15 days with a frequency of two daily sessions of 60 minutes each. Muscle strength was assessed according to the MRC scale (Medical Research Council) and functional tests (10 Meter Walking Test, 6 Minutes Walking Test and Timed Up and Go Test) were performed. We analyzed the average rectified value of sEMG signal amplitude (ARV) to characterize the sarcolemmal excitability. Results After the treatment an increase of muscle strength in those DM1 patients with a mild strength deficit was observed. In all subjects an improvement of 10MWT was recorded. Five patients improved their performance in the 6MWT. In TUG test 4 out of 6 patients showed a slight reduction in execution time. All patients reported a subjective improvement when walking. A complete recovery of the normal increasing ARV curve was observed in 4 out of 5 DM1 patients; the CM patient didn’t show modification of the ARV pattern. Conclusions NMES determined a clear-cut improvement of both the muscular weakness and the sarcolemmal excitability alteration in our small group of DM1 patients. Therefore this rehabilitative approach, if confirmed by further

  11. Effect of Electrical Stimulation of the Suprahyoid Muscles in Brain-Injured Patients with Dysphagia.

    PubMed

    Beom, Jaewon; Oh, Byung-Mo; Choi, Kyoung Hyo; Kim, Won; Song, Young Jin; You, Dae Sang; Kim, Sang Jun; Han, Tai Ryoon

    2015-08-01

    The purpose of this study is to determine whether neuromuscular electrical stimulation of the suprahyoid muscle is effective compared to that of the infrahyoid muscle in brain-injured patients with dysphagia. A total of 132 patients with stroke, traumatic brain injury, or brain tumor in 2 university hospitals were allocated to 2 groups: those who received electrical stimulation therapy (EST) on the suprahyoid muscles (SM group, n = 66) and those who received EST with one pair of electrodes on the suprahyoid muscle and the other pair on the infrahyoid muscle (SI group, n = 66). Patients received 11.2 ± 3.4 sessions of electrical stimulation in the SM group and 11.9 ± 3.4 sessions in the SI group. The functional dysphagia scale (FDS), swallow function score (SFS), supraglottic penetration, and subglottic aspiration were measured using videofluoroscopic swallowing study. FDS scores decreased from 42.0 ± 19.1 to 32.3 ± 17.8 in the SM group and from 44.8 ± 17.4 to 32.9 ± 18.8 in the SI group by per-protocol (PP) analysis, and those decreased from 41.2 ± 20.9 to 34.5 ± 20.3 in the SM group and from 44.3 ± 19.1 to 35.7 ± 20.5 in the SI group by intention-to-treat (ITT) analysis, after electrical stimulation (p < 0.001 for each). SFSs increased from 3.3 ± 1.8 to 4.2 ± 1.6 in the SM group and from 2.8 ± 1.8 to 4.0 ± 1.8 in the SI group by PP analysis, and those increased from 3.3 ± 1.6 to 3.9 ± 1.6 in the SM group and from 2.8 ± 1.9 to 3.6 ± 2.0 in the SI group by ITT analysis, after electrical stimulation (p < 0.001, respectively). However, changes in FDS scores, SFSs, penetration, and aspiration were comparable between the SM and the SI groups. The results suggest that both SM and SI therapies induced similar improvements in swallowing function in brain-injured patients.

  12. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes

    PubMed Central

    Freundl, Brigitta; Binder, Heinrich; Minassian, Karen

    2018-01-01

    Epidural electrical stimulation of the lumbar spinal cord is currently regaining momentum as a neuromodulation intervention in spinal cord injury (SCI) to modify dysregulated sensorimotor functions and augment residual motor capacity. There is ample evidence that it engages spinal circuits through the electrical stimulation of large-to-medium diameter afferent fibers within lumbar and upper sacral posterior roots. Recent pilot studies suggested that the surface electrode-based method of transcutaneous spinal cord stimulation (SCS) may produce similar neuromodulatory effects as caused by epidural SCS. Neurophysiological and computer modeling studies proposed that this noninvasive technique stimulates posterior-root fibers as well, likely activating similar input structures to the spinal cord as epidural stimulation. Here, we add a yet missing piece of evidence substantiating this assumption. We conducted in-depth analyses and direct comparisons of the electromyographic (EMG) characteristics of short-latency responses in multiple leg muscles to both stimulation techniques derived from ten individuals with SCI each. Post-activation depression of responses evoked by paired pulses applied either epidurally or transcutaneously confirmed the reflex nature of the responses. The muscle responses to both techniques had the same latencies, EMG peak-to-peak amplitudes, and waveforms, except for smaller responses with shorter onset latencies in the triceps surae muscle group and shorter offsets of the responses in the biceps femoris muscle during epidural stimulation. Responses obtained in three subjects tested with both methods at different time points had near-identical waveforms per muscle group as well as same onset latencies. The present results strongly corroborate the activation of common neural input structures to the lumbar spinal cord—predominantly primary afferent fibers within multiple posterior roots—by both techniques and add to unraveling the basic mechanisms

  13. Contractile Skeletal Muscle Cells Cultured with a Conducting Soft Wire for Effective, Selective Stimulation.

    PubMed

    Nagamine, Kuniaki; Sato, Hirotaka; Kai, Hiroyuki; Kaji, Hirokazu; Kanzaki, Makoto; Nishizawa, Matsuhiko

    2018-02-02

    Contractile skeletal muscle cells were cultured so as to wrap around an electrode wire to enable their selective stimulation even when they were co-cultured with other electrically-excitable cells. Since the electrode wire was composed of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and polyurethane (PU), which is soft and highly capacitive (~10 mF cm -2 ), non-faradaic electrical stimulation with charge/discharge currents could be applied to the surrounding cells without causing significant damage even for longer periods (more than a week). The advantage of this new culture system was demonstrated in the study of chemotactic interaction of monocytes and skeletal muscle cells via myokines.

  14. Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability.

    PubMed

    Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki

    2017-01-01

    Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 ( n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 ( n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability.

  15. Presence and Absence of Muscle Contraction Elicited by Peripheral Nerve Electrical Stimulation Differentially Modulate Primary Motor Cortex Excitability

    PubMed Central

    Sasaki, Ryoki; Kotan, Shinichi; Nakagawa, Masaki; Miyaguchi, Shota; Kojima, Sho; Saito, Kei; Inukai, Yasuto; Onishi, Hideaki

    2017-01-01

    Modulation of cortical excitability by sensory inputs is a critical component of sensorimotor integration. Sensory afferents, including muscle and joint afferents, to somatosensory cortex (S1) modulate primary motor cortex (M1) excitability, but the effects of muscle and joint afferents specifically activated by muscle contraction are unknown. We compared motor evoked potentials (MEPs) following median nerve stimulation (MNS) above and below the contraction threshold based on the persistence of M-waves. Peripheral nerve electrical stimulation (PES) conditions, including right MNS at the wrist at 110% motor threshold (MT; 110% MNS condition), right MNS at the index finger (sensory digit nerve stimulation [DNS]) with stimulus intensity approximately 110% MNS (DNS condition), and right MNS at the wrist at 90% MT (90% MNS condition) were applied. PES was administered in a 4 s ON and 6 s OFF cycle for 20 min at 30 Hz. In Experiment 1 (n = 15), MEPs were recorded from the right abductor pollicis brevis (APB) before (baseline) and after PES. In Experiment 2 (n = 15), M- and F-waves were recorded from the right APB. Stimulation at 110% MNS at the wrist evoking muscle contraction increased MEP amplitudes after PES compared with those at baseline, whereas DNS at the index finger and 90% MNS at the wrist not evoking muscle contraction decreased MEP amplitudes after PES. M- and F-waves, which reflect spinal cord or muscular and neuromuscular junctions, did not change following PES. These results suggest that muscle contraction and concomitant muscle/joint afferent inputs specifically enhance M1 excitability. PMID:28392766

  16. A pilot study of contralateral homonymous muscle activity simulated electrical stimulation in chronic hemiplegia.

    PubMed

    Osu, Rieko; Otaka, Yohei; Ushiba, Junichi; Sakata, Sachiko; Yamaguchi, Tomofumi; Fujiwara, Toshiyuki; Kondo, Kunitsugu; Liu, Meigen

    2012-01-01

    For the recovery of hemiparetic hand function, a therapy was developed called contralateral homonymous muscle activity stimulated electrical stimulation (CHASE), which combines electrical stimulation and bilateral movements, and its feasibility was studied in three chronic stroke patients with severe hand hemiparesis. Patients with a subcortical lesion were asked to extend their wrist and fingers bilaterally while an electromyogram (EMG) was recorded from the extensor carpi radialis (ECR) muscle in the unaffected hand. Electric stimulation was applied to the homonymous wrist and finger extensors of the affected side. The intensity of the electrical stimulation was computed based on the EMG and scaled so that the movements of the paretic hand looked similar to those of the unaffected side. The patients received 30-minutes of therapy per day for 2 weeks. Improvement in the active range of motion of wrist extension was observed for all patients. There was a decrease in the scores of modified Ashworth scale in the flexors. Fugl-Meyer assessment scores of motor function of the upper extremities improved in two of the patients. The results suggest a positive outcome can be obtained using the CHASE system for upper extremity rehabilitation of patients with severe hemiplegia.

  17. Chronic vaginal discharge and left leg edema after a transobturator tape procedure.

    PubMed

    Kim, Tae-Hee; Lee, Hae-Hyeog; Kim, Jun-Mo

    2014-05-01

    We report on a patient who underwent total vaginal hysterectomy for urinary incontinence 8 years previously with a sling operation using transobturator tape (TOT). She was admitted to our hospital after complaints of vaginal discharge, foul odor, and bleeding, left thigh pain, and edema. Magnetic resonance imaging (MRI) and computed tomography (CT) revealed a fistula tract from the vagina or urethra with remnant sling tape. We removed the remnant tape using intraoperative ultrasonography. This case exemplifies the rare occurrence of a vaginal fistula extending to the obturator, adductor, and pectineus muscles combined with myositis after TOT placement. It is important that urogynecologists recognize that TOT procedures may result in complications accompanied by common recurrent vaginal symptoms, such as vaginal odor and spotting, which can be identified by MRI or CT.

  18. ROS-mediated decline in maximum Ca2+-activated force in rat skeletal muscle fibers following in vitro and in vivo stimulation.

    PubMed

    Dutka, Travis L; Verburg, Esther; Larkins, Noni; Hortemo, Kristin H; Lunde, Per K; Sejersted, Ole M; Lamb, Graham D

    2012-01-01

    We hypothesised that normal skeletal muscle stimulated intensely either in vitro or in situ would exhibit reactive oxygen species (ROS)-mediated contractile apparatus changes common to many pathophysiological conditions. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of the rat were bubbled with 95% O(2) and stimulated in vitro at 31°C to give isometric tetani (50 Hz for 0.5 s every 2 s) until maximum force declined to ≤30%. Skinned superficial slow-twitch fibers from the SOL muscles displayed a large reduction (∼41%) in maximum Ca(2+)-activated specific force (F(max)), with Ca(2+)-sensitivity unchanged. Fibers from EDL muscles were less affected. The decrease in F(max) in SOL fibers was evidently due to oxidation effects on cysteine residues because it was reversed if the reducing agent DTT was applied prior to activating the fiber. The GSH:GSSG ratio was ∼3-fold lower in the cytoplasm of superficial fibers from stimulated muscle compared to control, confirming increased oxidant levels. The presence of Tempol and L-NAME during in vitro stimulation prevented reduction in F(max). Skinned fibers from SOL muscles stimulated in vivo at 37°C with intact blood supply also displayed reduction in F(max), though to a much smaller extent (∼12%). Thus, fibers from muscles stimulated even with putatively adequate O(2) supply display a reversible oxidation-induced decrease in F(max) without change in Ca(2+)-sensitivity, consistent with action of peroxynitrite (or possibly superoxide) on cysteine residues of the contractile apparatus. Significantly, the changes closely resemble the contractile deficits observed in a range of pathophysiological conditions. These findings highlight how readily muscle experiences ROS-related deficits, and also point to potential difficulties when defining muscle performance and fatigue.

  19. ROS-Mediated Decline in Maximum Ca2+-Activated Force in Rat Skeletal Muscle Fibers following In Vitro and In Vivo Stimulation

    PubMed Central

    Dutka, Travis L.; Verburg, Esther; Larkins, Noni; Hortemo, Kristin H.; Lunde, Per K.; Sejersted, Ole M.; Lamb, Graham D.

    2012-01-01

    We hypothesised that normal skeletal muscle stimulated intensely either in vitro or in situ would exhibit reactive oxygen species (ROS)-mediated contractile apparatus changes common to many pathophysiological conditions. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of the rat were bubbled with 95% O2 and stimulated in vitro at 31°C to give isometric tetani (50 Hz for 0.5 s every 2 s) until maximum force declined to ≤30%. Skinned superficial slow-twitch fibers from the SOL muscles displayed a large reduction (∼41%) in maximum Ca2+-activated specific force (Fmax), with Ca2+-sensitivity unchanged. Fibers from EDL muscles were less affected. The decrease in Fmax in SOL fibers was evidently due to oxidation effects on cysteine residues because it was reversed if the reducing agent DTT was applied prior to activating the fiber. The GSH∶GSSG ratio was ∼3-fold lower in the cytoplasm of superficial fibers from stimulated muscle compared to control, confirming increased oxidant levels. The presence of Tempol and L-NAME during in vitro stimulation prevented reduction in Fmax. Skinned fibers from SOL muscles stimulated in vivo at 37°C with intact blood supply also displayed reduction in Fmax, though to a much smaller extent (∼12%). Thus, fibers from muscles stimulated even with putatively adequate O2 supply display a reversible oxidation-induced decrease in Fmax without change in Ca2+-sensitivity, consistent with action of peroxynitrite (or possibly superoxide) on cysteine residues of the contractile apparatus. Significantly, the changes closely resemble the contractile deficits observed in a range of pathophysiological conditions. These findings highlight how readily muscle experiences ROS-related deficits, and also point to potential difficulties when defining muscle performance and fatigue. PMID:22629297

  20. Differences in end-point force trajectories elicited by electrical stimulation of individual human calf muscles

    PubMed Central

    Giordano, S B; Segal, R L; Abelew, T A

    2009-01-01

    The purpose of this study was to investigate the end-point force trajectories of the fibularis longus (FIB), lateral gastrocnemius (LG) and medial gastrocnemius (MG) muscles. Most information about individual muscle function has come from studies which use models based on electromyographic (EMG) recordings. In this study (N=20 subjects) we used electrical stimulation (20Hz) to elicit activity in individual muscles, recorded the end-point forces at the foot and verified the selectivity of stimulation by using magnetic resonance imaging. Unexpectedly, no significant differences were found between LG and MG force directions. Stimulation of LG and MG resulted in downward and medial or lateral forces depending on the subject. We found FIB end-point forces to be significantly different than those of LG and MG. In all subjects, stimulation of FIB resulted in downward and lateral forces. Based on our results, we suggest that there are multiple factors determining when and whether LG or MG will produce a medial or lateral force and FIB consistently plays a significant role in eversion/abduction and plantarflexion. We suggest that the inter-subject variability we found is not simply an artifact of experimental or technical error but is functionally relevant and should be addressed in future studies and models. PMID:20095454

  1. The response of the cat anococcygeus muscle to nerve or drug stimulation and a comparison with the rat anococcygeus

    PubMed Central

    Gillespie, J.S.; McGrath, J.C.

    1974-01-01

    1 The cat anococcygeus muscle is shown to possess a dual innervation similar to the rat anococcygeus, with a motor adrenergic innervation and an inhibitory innervation whose transmitter is unknown. The pharmacological properties of the cat muscle were investigated and compared with those of the rat muscle. 2 The cat muscle contracts to noradrenaline, 5-hydroxytryptamine, tyramine, amphetamine, guanethidine, cocaine and lysergic acid diethylamide (LSD). The effects of noradrenaline and 5-hydroxytryptamine are blocked by phentolamine and methysergide respectively. 3 The cat anococcygeus is relaxed by acetylcholine, carbachol, isoprenaline, ATP, prostaglandins E1, E2 and F2α and vasopressin, all of which contract the rat muscle. The effects of acetylcholine and carbachol are blocked by atropine and those of isoprenaline by propranolol. 4 Field stimulation produces contraction of the cat anococcygeus, which is blocked by phentolamine and guanethidine but unaffected by hexamethonium, atropine or neostigmine. 5 In the presence of guanethidine (10-5 M), the tone of the muscle is raised and field stimulation produces relaxation of the muscle. These inhibitory responses are unaffected by phentolamine, hexamethonium, atropine or neostigmine. 6 Neostigmine potentiates the effects of acetylcholine, but not of carbachol in relaxing the cat anococcygeus and in contracting the rat anococcygeus, but has no effect on either motor or inhibitory responses to field stimulation. 7 Cold storage for up to eight days had little effect on either the motor response to noradrenaline or the motor or inhibitory response to field stimulation of the cat anococcygeus. Beyond eight days, the response to field stimulation diminishes more rapidly than the response to noradrenaline. PMID:4823462

  2. Electrical Stimulation of the Suprahyoid Muscles in Brain-injured Patients with Dysphagia: A Pilot Study

    PubMed Central

    Beom, Jaewon; Kim, Sang Jun

    2011-01-01

    Objective To investigate the therapeutic effects of repetitive electrical stimulation of the suprahyoid muscles in brain-injured patients with dysphagia. Method Twenty-eight brain-injured patients who showed reduced laryngeal elevation and supraglottic penetration or subglottic aspiration during a videofluoroscopic swallowing study (VFSS) were selected. The patients received either conventional dysphagia management (CDM) or CDM with repetitive electrical stimulation of the suprahyoid muscles (ESSM) for 4 weeks. The videofluoroscopic dysphagia scale (VDS) using the VFSS and American Speech-Language-Hearing Association National Outcome Measurement System (ASHA NOMS) swallowing scale (ASHA level) was used to determine swallowing function before and after treatment. Results VDS scores decreased from 29.8 to 17.9 in the ESSM group, and from 29.2 to 16.6 in the CDM group. However, there was no significant difference between the groups (p=0.796). Six patients (85.7%) in the ESSM group and 14 patients (66.7%) in the CDM group showed improvement according to the ASHA level with no significant difference between the ESSM and CDM groups (p=0.633). Conclusion Although repetitive neuromuscular electrical stimulation of the suprahyoid muscles did not further improve the swallowing function of dysphagia patients with reduced laryngeal elevation, more patients in the ESSM group showed improvement in the ASHA level than those in the CDM group. Further studies with concurrent controls and a larger sample group are required to fully establish the effects of repetitive neuromuscular electrical stimulation of the suprahyoid muscles in dysphagia patients. PMID:22506140

  3. Adherence to pelvic floor muscle training with or without vaginal spheres in women with urinary incontinence: a secondary analysis from a randomized trial.

    PubMed

    Porta Roda, Oriol; Díaz López, Miguel A; Vara Paniagua, Jesús; Simó González, Marta; Díaz Bellido, Paloma; Espinós Gómez, Juan J

    2016-08-01

    Pelvic floor muscle training (PFMT) is widely recommended as first-line therapy for women with urinary incontinence. However, adherence to PFMT decreases over time, and information regarding barriers to PFMT is scarce. The primary aim of our study was to investigate whether a vaginal spheres device helped improve adherence to PFMT. The secondary aim was to assess determinants of adherence and the association with treatment outcome. This was a secondary analysis of a randomized trial with a 6-month follow-up in women with urinary incontinence (UI) in whom we evaluated adherence to PFMT, performed either with (spheres group) or without (control group) vaginal spheres. The Morisky-Green Questionnaire (MGQ) was used to assess adherence, defined as the extent to which participants corresponded to the agreed recommendations; participants were classified as adherent or nonadherent according to their responses. Efficacy of PFMT was assessed using the International Consultation on Incontinence Questionnaire Short Form scale (ICIQ-SF). Seventy women were enrolled and data from 65 (35 treated and 30 controls) were suitable for analysis. There were no significant differences in adherence to treatment between groups at the end of follow-up (33.3 % in controls and 42.9 % in spheres). The largest group of nonadherent women in both arms were those who mainly forgot to do the exercises. ICIQ-SF results between adherent and nonadherent women did not differ significantly [mean 0.55, 95 % confidence interval (CI) 1.13-2.25]. No significant difference was observed between women who attained greater and lesser improvement in UI after treatment (4.5 %; 95 % CI -11.7 to 20.6). In patients with UI, vaginal spheres as an adjunct to PFMT did not increase adherence to pelvic muscle exercises. Lack of persistence appeared to be due to forgetfulness and did not seem to be influenced by the efficacy of PFMT.

  4. The role of frequency in the effects of long-term intermittent stimulation of denervated slow-twitch muscle in the rat.

    PubMed Central

    Al-Amood, W S; Lewis, D M

    1987-01-01

    1. Rat soleus muscle was denervated by sciatic transection and electrically stimulated for periods of between 3 and 9 weeks with intermittent 1 s bursts of pulses. Most of the bursts were either repeated every 90 s and pulses within them had frequencies between 10 and 100 Hz, or had a frequency of 50 Hz and were repeated at intervals between 60 and 600 s. Comparisons were made with continuous stimulation at 10 Hz. 2. At the end of the period of stimulation, isometric twitches and tetani were measured and, in a proportion, also isotonic shortening velocity. 3. Isometric twitch duration (contraction and relaxation) decreased with time of stimulation. Very similar effects were seen in all animals in which intermittent stimulation had been used. There was a significant relationship between the change in twitch duration and the frequency used within the bursts of chronic stimulation, with slightly larger effects at frequencies of 40 and 60 Hz. The lowest burst repetition rate produced the largest effects. 4. It was confirmed that similar changes were found in denervated muscles that were not stimulated, although these changes were smaller and developed more slowly. 5. The extreme loss of tetanic tension induced in the muscle by denervation was reduced by chronic stimulation, with no significant difference between different regimes, although there were small differences which showed the same patterns of effectiveness described for twitch durations. 6. Continuous stimulation at 10 Hz maintained the twitch contraction and relaxation phases at the values found 3 weeks after denervation, that is it prevented secondary shortening of the twitch. Continuous stimulation reduced tension loss but was, perhaps, less effective than intermittent stimulation. 7. Twitch-tetanus ratio increased with denervation with little spontaneous reversal later. Stimulation at all frequencies reduced the ratio, but it did not reach normal values. 8. Isotonic shortening velocity was measured in many

  5. Motor evoked responses from the thigh muscles to the stimulation of the upper limb nerves in patients with late poliomyelitis.

    PubMed

    Ertekin, Cumhur; On, Arzu Yagiz; Kirazli, Yeşim; Kurt, Tülay; Gürgör, Nevin

    2002-04-01

    To demonstrate a clear-cut M response recorded from the severely affected thigh muscles to the stimulation of the upper limb nerves in a serial of patients with late poliomyelitis. Fifteen patients with late poliomyelitis, 7 patients with spinal cord disorders and 11 control subjects were included. Evoked muscle responses were investigated in quadriceps femoris and/or thigh adductor muscles to the stimulation of the brachial plexus, median and ulnar nerves. Evoked muscle responses were obtained from the thigh muscles in all 12 late polio patients with proximal lower extremity involvement. The response could not be recorded from the thigh muscles neither in the 3 polio patients with upper extremity involvement nor in the healthy control subjects and in patients with other spinal cord disorders of anterior horn cell. It is proposed that the electrical stimulation of the arm nerves produce interlimb descending muscle responses in the severely affected atrophic thigh muscles of the patients with late polio. This finding suggests that there might be a focal and/or specific loss of inhibitory interneurons between injured and normal motor neurons and increased facilitatory synaptic action at the end of long propriospinal descending fibers in the case of late poliomyelitis.

  6. [Streptococcus group B--association with Aerobic vaginitis and ability to human cell lines activation].

    PubMed

    Romanik, Małgorzata; Kafel, Joanna; Lagergård, Teresa; Martirosian, Gayane

    2007-01-01

    The aim of this study was to estimate: the frequency of aerobic vaginitis, susceptibility of the GBS isolated from vagina of non-pregnant women with and without cervicitis to selected antibiotics and chemotherapeutics and the proinflammatory cytokines production by HeLa, THP-I, U - 937 cells after stimulation by vaginal GBS. Our results indicated low frequency of the aerobic vaginitis -4.5% among non-pregnant young women and ability of the vaginal GBS to release proinflammatory cytokines by human cell lines in vitro.

  7. Inflammatory cells in rat skeletal muscle are elevated after electrically stimulated contractions.

    PubMed

    McLoughlin, Thomas J; Mylona, Eleni; Hornberger, Troy A; Esser, Karyn A; Pizza, Francis X

    2003-03-01

    We determined the effect of muscle contractions resulting from high-frequency electrical stimulation (HFES) on inflammatory cells in rat tibialis anterior (TA), plantaris (Pln), and soleus (Sol) muscles at 6, 24, and 72 h post-HFES. A minimum of four and a maximum of seven rats were analyzed at each time point. HFES, applied to the sciatic nerve, caused the Sol and Pln to contract concentrically and the TA to contract eccentrically. Neutrophils were higher (P < 0.05) at 6 and 24 h after HFES in the Sol, Pln, and TA muscles relative to control muscles. ED1(+) macrophages in the Pln were elevated at 6 and 24 h after HFES and were also elevated in the Sol and TA after HFES relative to controls. ED2(+) macrophages in the Sol and TA were elevated at 24 and 72 h after HFES, respectively, and were also elevated in the Pln after HFES relative to controls. In contrast to the TA muscles, the Pln and Sol muscles showed no gross histological abnormalities. Collectively, these data indicate that both eccentric and concentric contractions can increase inflammatory cells in muscle, regardless of whether overt histological signs of injury are apparent.

  8. Blood flow variation in human muscle during electrically stimulated exercise bouts.

    PubMed

    Vanderthommen, Marc; Depresseux, Jean-Claude; Dauchat, Luc; Degueldre, Christian; Croisier, Jean-Louis; Crielaard, Jean-Michel

    2002-07-01

    To evaluate, with a high spatial resolution, the blood flow variations in human skeletal muscle during neuromuscular electric stimulation (NMES) and hence to gain better understanding of the mechanisms of muscle spatial recruitment during NMES. One thigh was submitted to 3 stimulation bouts of different durations (S1=4min, S2=8min, S3=12min) with a workload corresponding to 10% of quadriceps maximal isometric voluntary torque. A cyclotron research center at a Belgian university. Ten healthy male volunteers. Not applicable. Participants were studied with positron emission tomography and H(2)(15)O. Tissue blood flow was evaluated during the last 4 minutes of each stimulation bout in multiple regions of interest (ROIs) selected in the transverse section of the stimulated thigh. Mean tissue blood flow was significantly lower during S1 (5.9+/-1.3mL. min(-1). 100g(-1)) than during S2 (10.6+/-3.4mL. min(-1). 100g(-1)) and S3 (11.6+/-3.7mL. min(-1). 100g(-1)) (P<.05). For each ROI, an arbitrary tissue blood flow activation level of 5mLmin(-1)100g(-1) was fixed. The mean percentage of activated ROIs reached 42.4%, 62.7%, and 63.6% during S1, S2, and S3, respectively. Between S1 and S3, the newly recruited ROIs were preferentially located far from the electrode. During NMES, new muscular regions situated far from the stimulation site are recruited. These recruitment mechanisms are particular and contrast with the recruitment of motor units seen during voluntary contraction. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  9. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation.

    PubMed

    Orellana, Renán A; Jeyapalan, Asumthia; Escobar, Jeffery; Frank, Jason W; Nguyen, Hanh V; Suryawan, Agus; Davis, Teresa A

    2007-11-01

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 microg.kg(-1).h(-1)), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.

  10. Newly developed vaginal atrophy symptoms II and vaginal pH: a better correlation in vaginal atrophy?

    PubMed

    Tuntiviriyapun, P; Panyakhamlerd, K; Triratanachat, S; Chatsuwan, T; Chaikittisilpa, S; Jaisamrarn, U; Taechakraichana, N

    2015-04-01

    The primary objective of this study was to evaluate the correlation among symptoms, signs, and the number of lactobacilli in postmenopausal vaginal atrophy. The secondary objective was to develop a new parameter to improve the correlation. A cross-sectional descriptive study. Naturally postmenopausal women aged 45-70 years with at least one clinical symptom of vaginal atrophy of moderate to severe intensity were included in this study. All of the objective parameters (vaginal atrophy score, vaginal pH, the number of lactobacilli, vaginal maturation index, and vaginal maturation value) were evaluated and correlated with vaginal atrophy symptoms. A new parameter of vaginal atrophy, vaginal atrophy symptoms II, was developed and consists of the two most bothersome symptoms (vaginal dryness and dyspareunia). Vaginal atrophy symptoms II was analyzed for correlation with the objective parameters. A total of 132 naturally postmenopausal women were recruited for analysis. Vaginal pH was the only objective parameter found to have a weak correlation with vaginal atrophy symptoms (r = 0.273, p = 0.002). The newly developed vaginal atrophy symptoms II parameter showed moderate correlation with vaginal pH (r = 0.356, p < 0.001) and a weak correlation with the vaginal atrophy score (r = 0.230, p < 0.001). History of sexual intercourse within 3 months was associated with a better correlation between vaginal atrophy symptoms and the objective parameters. Vaginal pH was significantly correlated with vaginal atrophy symptoms. The newly developed vaginal atrophy symptoms II was associated with a better correlation. The vaginal atrophy symptoms II and vaginal pH may be better tools for clinical evaluation and future study of the vaginal ecosystem.

  11. Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Shansky, Janet; Karlisch, Patricia; Solerssi, Rosa Lopez

    1991-01-01

    Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins E2 and F2(alpha) which regulate protein turnover rates and muscle cell growth. Mechnical stimulation significantly increases the breakdown rate of (3)H-arachidonic acid labelled phospholipids, releasing free (3)H-arachidonic acid, and the rate-limiting precursor of prostaglandin synthesis. Mechanical stimulation also significantly increases (3)H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-2-(3)H inositol labelled phospholipids. Phospholipase A2, phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are activated by stretch. The lipase inhibitors bromophenacylbromide and RHC80267 together reduce stretch-induced prostaglandin production by 73-83 percent. The stretch-induced increases in prostaglandin production, (3)H-arachidonic acid labelled phospholipid breakdown, and (3)H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive) whereas the formation of inositol phosphates from myo-2-(3)H inositol labelled phospholipids are dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and prostaglandins through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.

  12. Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Shansky, J.; Karlisch, P.; Solerssi, R. L.

    1993-01-01

    Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins (PG) E2 and F2 alpha which regulate protein turnover rates and muscle cell growth. These stretch-induced PG increases are reduced in low extracellular calcium medium and by specific phospholipase inhibitors. Mechanical stimulation increases the breakdown rate of 3H-arachidonic acid labelled phospholipids, releasing free 3H-arachidonic acid, the rate-limiting precursor of PG synthesis. Mechanical stimulation also increases 3H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-[2-3H]inositol labelled phospholipids. Phospholipase A2 (PLA2), phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are all activated by stretch. The stretch-induced increases in PG production, 3H-arachidonic acid labelled phospholipid breakdown, and 3H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitive) whereas the formation of inositol phosphates from myo-[2-3H]inositol labelled phospholipids is dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and PG through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC.

  13. Assessment of abdominal muscle function in individuals with motor-complete spinal cord injury above T6 in response to transcranial magnetic stimulation.

    PubMed

    Bjerkefors, Anna; Squair, Jordan W; Chua, Romeo; Lam, Tania; Chen, Zhen; Carpenter, Mark G

    2015-02-01

    To use transcranial magnetic stimulation and electromyography to assess the potential for preserved function in the abdominal muscles in individuals classified with motor-complete spinal cord injury above T6. Five individuals with spinal cord injury (C5-T3) and 5 able-bodied individuals. Transcranial magnetic stimulation was delivered over the abdominal region of primary motor cortex during resting and sub-maximal (or attempted) contractions. Surface electromyography was used to record motor-evoked potentials as well as maximal voluntary (or attempted) contractions in the abdominal muscles and the diaphragm. Responses to transcranial magnetic stimulation in the abdominal muscles occurred in all spinal cord injury subjects. Latencies of muscle response onsets were similar in both groups; however, peak-to-peak amplitudes were smaller in the spinal cord injury group. During maximal voluntary (or attempted) contractions all spinal cord injury subjects were able to elicit electromyography activity above resting levels in more than one abdominal muscle across tasks. Individuals with motor-complete spinal cord injury above T6 were able to activate abdominal muscles in response to transcranial magnetic stimulation and during maximal voluntary (or attempted) contractions. The activation was induced directly through corticospinal pathways, and not indirectly by stretch reflex activations of the diaphragm. Transcranial magnetic stimulation and electromyography measurements provide a useful method to assess motor preservation of abdominal muscles in persons with spinal cord injury.

  14. Muscle-Specific Vascular Endothelial Growth Factor Deletion Induces Muscle Capillary Rarefaction Creating Muscle Insulin Resistance

    PubMed Central

    Bonner, Jeffrey S.; Lantier, Louise; Hasenour, Clinton M.; James, Freyja D.; Bracy, Deanna P.; Wasserman, David H.

    2013-01-01

    Muscle insulin resistance is associated with a reduction in vascular endothelial growth factor (VEGF) action and muscle capillary density. We tested the hypothesis that muscle capillary rarefaction critically contributes to the etiology of muscle insulin resistance in chow-fed mice with skeletal and cardiac muscle VEGF deletion (mVEGF−/−) and wild-type littermates (mVEGF+/+) on a C57BL/6 background. The mVEGF−/− mice had an ∼60% and ∼50% decrease in capillaries in skeletal and cardiac muscle, respectively. The mVEGF−/− mice had augmented fasting glucose turnover. Insulin-stimulated whole-body glucose disappearance was blunted in mVEGF−/− mice. The reduced peripheral glucose utilization during insulin stimulation was due to diminished in vivo cardiac and skeletal muscle insulin action and signaling. The decreased insulin-stimulated muscle glucose uptake was independent of defects in insulin action at the myocyte, suggesting that the impairment in insulin-stimulated muscle glucose uptake was due to poor muscle perfusion. The deletion of VEGF in cardiac muscle did not affect cardiac output. These studies emphasize the importance for novel therapeutic approaches that target the vasculature in the treatment of insulin-resistant muscle. PMID:23002035

  15. Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction

    PubMed Central

    Ramos, Sofhia V.; Vandenboom, Rene; Roy, Brian D.; Peters, Sandra J.

    2013-01-01

    Evidence indicates that skeletal muscle lipid droplet-associated proteins (PLINs) regulate lipolysis through protein-protein interactions on the lipid droplet surface. In adipocytes, PLIN1 is thought to regulate lipolysis by directly interacting with comparative gene identification-58 (CGI-58), an activator of adipose triglyceride lipase (ATGL). Upon lipolytic stimulation, PLIN1 is phosphorylated, releasing CGI-58 to fully activate ATGL and initiate triglyceride breakdown. The absence of PLIN1 in skeletal muscle leads us to believe that other PLIN family members undertake this role. Our purpose was to examine interactions between PLIN2, PLIN3, and PLIN5, with ATGL and its coactivator CGI-58 at rest and following contraction. Isolated rat solei were incubated for 30 min at rest or during 30 min of intermittent tetanic stimulation [150-ms volleys at 60 Hz with a train rate of 20 tetani/min (25°C)] to maximally stimulate intramuscular lipid breakdown. Results show that the interaction between ATGL and CGI-58 increased 128% following contraction (P = 0.041). Further, ATGL interacts with PLIN2, PLIN3, and PLIN5 at rest and following contraction. The PLIN2-ATGL interaction decreased significantly by 21% following stimulation (P = 0.013). Both PLIN3 and PLIN5 coprecipitated with CGI-58 at rest and following contraction, while there was no detectable interaction between PLIN2 and CGI-58 in either condition. Therefore, our findings indicate that in skeletal muscle, during contraction-induced muscle lipolysis, ATGL and CGI-58 strongly associate and that the PLIN proteins work together to regulate lipolysis, in part, by preventing ATGL and CGI-58 interactions at rest. PMID:23408028

  16. Evoked EMG versus Muscle Torque during Fatiguing Functional Electrical Stimulation-Evoked Muscle Contractions and Short-Term Recovery in Individuals with Spinal Cord Injury

    PubMed Central

    Estigoni, Eduardo H.; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M.; Davis, Glen M.

    2014-01-01

    This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery. PMID:25479324

  17. Evoked EMG versus muscle torque during fatiguing functional electrical stimulation-evoked muscle contractions and short-term recovery in individuals with spinal cord injury.

    PubMed

    Estigoni, Eduardo H; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M; Davis, Glen M

    2014-12-03

    This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery.

  18. The effect of subthalamic stimulation on viscoelastic stiffness of skeletal muscles in patients with Parkinson's disease.

    PubMed

    Rätsep, Tõnu; Asser, Toomas

    2017-05-01

    Myotonometric evaluation of viscoelastic stiffness of skeletal muscles has been proposed to document the effect of surgical or pharmacological treatment on rigidity in patients with Parkinson's disease. The aim of the study was to analyze the changes of viscoelastic stiffness induced by deep brain stimulation. Fifteen patients in an advanced stage of Parkinson's disease participated in the study. The study took place in the off-medication conditions after one night of drug withdrawal. The Unified Parkinson's Disease Rating Scale was used for clinical assessment of the disease. Myotonometry was used to measure viscoelastic stiffness in the resting muscles before and directly after passive wrist movements, commonly used for clinical evaluation of rigidity. The measurements were repeated during the stimulation-on and stimulation-off periods and compared with fifteen healthy control persons. The clinical scores for wrist rigidity improved from 3.0 (1-4) to 0.93 (0-2) (P<0.05) due to brain stimulation. The mean values of viscoelastic stiffness were similar before and after passive wrist movements, but the differences between the patients with high vs. low rigidity values (354.9 vs 310.2N/m; P<0.05) and in stimulation-off vs. stimulation-on conditions (342.7 vs 310.5N/m; P<0.05) were significant only if the measurements had been performed after passive wrist movements. Effective deep brain stimulation and increased rigidity can significantly change viscoelastic stiffness in the resting muscles in patients with Parkinson's disease, especially if evaluated after passive wrist movements. This paper supports the use of myotonometry for objective quantification of parkinsonian rigidity at rest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold.

    PubMed

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-04-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.

  20. The comparative effects of aminoglycoside antibiotics and muscle relaxants on electrical field stimulation response in rat bladder smooth muscle.

    PubMed

    Min, Chang Ho; Min, Young Sil; Lee, Sang Joon; Sohn, Uy Dong

    2016-06-01

    It has been reported that several aminoglycoside antibiotics have a potential of prolonging the action of non-depolarizing muscle relaxants by drug interactions acting pre-synaptically to inhibit acetylcholine release, but antibiotics itself also have a strong effect on relaxing the smooth muscle. In this study, four antibiotics of aminoglycosides such as gentamicin, streptomycin, kanamycin and neomycin were compared with skeletal muscle relaxants baclofen, tubocurarine, pancuronium and succinylcholine, and a smooth muscle relaxant, papaverine. The muscle strips isolated from the rat bladder were stimulated with pulse trains of 40 V in amplitude and 10 s in duration, with pulse duration of 1 ms at the frequency of 1-8 Hz, at 1, 2, 4, 6, 8 Hz respectively. To test the effect of four antibiotics on bladder smooth muscle relaxation, each of them was treated cumulatively from 1 μM to 0.1 mM with an interval of 5 min. Among the four antibiotics, gentamicin and neomycin inhibited the EFS response. The skeletal muscle relaxants (baclofen, tubocurarine, pancuronium and succinylcholine) and inhibitory neurotransmitters (GABA and glycine) did not show any significant effect. However, papaverine, had a significant effect in the relaxation of the smooth muscle. It was suggested that the aminoglycoside antibiotics have inhibitory effect on the bladder smooth muscle.

  1. Distributed stimulation increases force elicited with functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Buckmire, Alie J.; Lockwood, Danielle R.; Doane, Cynthia J.; Fuglevand, Andrew J.

    2018-04-01

    Objective. The maximum muscle forces that can be evoked using functional electrical stimulation (FES) are relatively modest. The reason for this weakness is not fully understood but could be partly related to the widespread distribution of motor nerve branches within muscle. As such, a single stimulating electrode (as is conventionally used) may be incapable of activating the entire array of motor axons supplying a muscle. Therefore, the objective of this study was to determine whether stimulating a muscle with more than one source of current could boost force above that achievable with a single source. Approach. We compared the maximum isometric forces that could be evoked in the anterior deltoid of anesthetized monkeys using one or two intramuscular electrodes. We also evaluated whether temporally interleaved stimulation between two electrodes might reduce fatigue during prolonged activity compared to synchronized stimulation through two electrodes. Main results. We found that dual electrode stimulation consistently produced greater force (~50% greater on average) than maximal stimulation with single electrodes. No differences, however, were found in the fatigue responses using interleaved versus synchronized stimulation. Significance. It seems reasonable to consider using multi-electrode stimulation to augment the force-generating capacity of muscles and thereby increase the utility of FES systems.

  2. Spatial factors and muscle spindle input influence the generation of neuromuscular responses to stimulation of the human foot

    NASA Astrophysics Data System (ADS)

    Layne, Charles S.; Forth, Katharine E.; Abercromby, Andrew F. J.

    2005-05-01

    Removal of the mechanical pressure gradient on the soles leads to physiological adaptations that ultimately result in neuromotor degradation during spaceflight. We propose that mechanical stimulation of the soles serves to partially restore the afference associated with bipedal loading and assists in attenuating the negative neuromotor consequences of spaceflight. A dynamic foot stimulus device was used to stimulate the soles in a variety of conditions with different stimulation locations, stimulation patterns and muscle spindle input. Surface electromyography revealed the lateral side of the sole elicited the greatest neuromuscular response in ankle musculature, followed by the medial side, then the heel. These responses were modified by preceding stimulation. Neuromuscular responses were also influenced by the level of muscle spindle input. These results provide important information that can be used to guide the development of a "passive" countermeasure that relies on sole stimulation and can supplement existing exercise protocols during spaceflight.

  3. Magnetic stimulation of the upper trapezius muscles in patients with migraine - A pilot study.

    PubMed

    Sollmann, Nico; Trepte-Freisleder, Florian; Albers, Lucia; Jung, Nikolai H; Mall, Volker; Meyer, Bernhard; Heinen, Florian; Krieg, Sandro M; Landgraf, Mirjam N

    2016-11-01

    Repetitive peripheral magnetic stimulation (rPMS) has been applied to musculoskeletal pain conditions. Since recent data show that migraine and tension-type headache (TTH) might be closely related to peripheral muscular pain in the neck and shoulder region (supporting the concept of the trigemino-cervical complex (TCC)), this pilot study explores the acceptance of rPMS to the upper trapezius muscles in migraine (partly in combination with TTH). We used rPMS to stimulate active myofascial trigger points (aTrPs) of the upper trapezius muscles in 20 young adults suffering from migraine. Acceptance was assessed by a standardized questionnaire, whereas self-rated effectiveness was evaluated by headache calendars and the Migraine Disability Assessment (MIDAS). Algometry was performed to explore the local effect of rPMS on the muscles. Acceptance of rPMS was shown in all subjects without any adverse events, and rPMS had a statistically significant impact on almost every parameter of the headache calendar and MIDAS. Among others, the number of migraine attacks (p < 0.001) and migraine intensity (p = 0.001) significantly decreased regarding pre- and post-stimulation assessments. Accordingly, 100.0% of subjects would repeat the stimulation, while 90.0% would recommend rPMS as a treatment option for migraine. rPMS might represent a promising tool to alleviate migraine symptoms within the context of myofascial pain. This might be due to stimulation-dependent modulation of the peripheral sensory effect within the TCC in migraine. However, sham-controlled studies with larger and more homogeneous cohorts are needed to prove a potential beneficial effect. Ethics Committee Registration Numbers: 356-14 and 447/14. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. Depressed tetanic contactile function cannot be compensated by increasing stimulating frequency in unloaded soleus muscle

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Yu, Zhi-Bin

    2005-08-01

    The weightlessness-induced muscle atrophy is associated with a reduced force and power and with an increased fatigability [1]. In prolonged manned space missions, these alterations in skeletal muscles could limit the crew's ability to work in space and to rapidly egress in an emergency on return to Earth. In order to elucidate the underlying mechanisms of the increased fatigability in the atrophic skeletal muscle, we isolated the typically fast and slow muscle, extensor digitorum longus (EDL) and soleus (SOL), to observe the changes in maximal contraction tension, optimal stimulating frequency, and recovery features after fatigue in the intermittent tetanic contraction.

  5. ANODAL TRANSCRANIAL DIRECT CURRENT STIMULATION (TDCS) INCREASES ISOMETRIC STRENGTH OF SHOULDER ROTATORS MUSCLES IN HANDBALL PLAYERS.

    PubMed

    Hazime, Fuad Ahmad; da Cunha, Ronaldo Alves; Soliaman, Renato Rozenblit; Romancini, Ana Clara Bezerra; Pochini, Alberto de Castro; Ejnisman, Benno; Baptista, Abrahão Fontes

    2017-06-01

    Weakness of the rotator cuff muscles can lead to imbalances in the strength of shoulder external and internal rotators, change the biomechanics of the glenohumeral joint and predispose an athlete to injury. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has demonstrated promising results in a variety of health conditions. However few studies addressed its potential approach in the realm of athletics. The purpose of this study was to investigate if transcranial direct current stimulation (tDCS) technique increases the isometric muscle strength of shoulder external and internal rotators in handball athletes. Randomized, double-blind, placebo-controlled, crossover study. Eight female handball players aged between 17 and 21 years (Mean=19.65; SD=2.55) with 7.1 ± 4.8 years of experience in training, participating in regional and national competitions were recruited. Maximal voluntary isometric contraction (MVIC) of shoulder external and internal rotator muscles was evaluated during and after 30 and 60 minutes post one session of anodal and sham current (2mA; 0.057mA/cm 2 ) with a one-week interval between stimulations. Compared to baseline, MVIC of shoulder external and internal rotators significantly increased after real but not sham tDCS. Between-group differences were observed for external and internal rotator muscles. Maximal voluntary isometric contraction of external rotation increased significantly during tDCS, and 30 and 60 minutes post-tDCS for real tDCS compared to that for sham tDCS. For internal rotation MVIC increased significantly during and 60 minutes post-tDCS. The results indicate that transcranial direct current stimulation temporarily increases maximal isometric contractions of the internal and external rotators of the shoulder in handball players. 2.

  6. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation

    USDA-ARS?s Scientific Manuscript database

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were tr...

  7. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    PubMed Central

    Nakagawa, Kouki; Hayao, Keishi; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki

    2017-01-01

    The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES) on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP) immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON), denervation (DN), and denervation with direct ES (DN + ES). Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA), and capillary-to-fiber (C/F) ratio of the tibialis anterior (TA) muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs. PMID:28497057

  8. Effect of neuromuscular electrical stimulation on motor cortex excitability upon release of tonic muscle contraction.

    PubMed

    Sugawara, Kenichi; Tanabe, Shigeo; Suzuki, Tomotaka; Higashi, Toshio

    The aim of the present study was to investigate the neurophysiological triggers underlying muscle relaxation from the contracted state, and to examine the mechanisms involved in this process and their subsequent modification by neuromuscular electrical stimulation (NMES). Single-pulse transcranial magnetic stimulation (TMS) was used to produce motor-evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) in 23 healthy participants, wherein motor cortex excitability was examined at the onset of voluntary muscle relaxation following a period of voluntary tonic muscle contraction. In addition, the effects of afferent input on motor cortex excitability, as produced by NMES during muscle contraction, were examined. In particular, two NMES intensities were used for analysis: 1.2 times the sensory threshold and 1.2 times the motor threshold (MT). Participants were directed to execute constant wrist extensions and to release muscle contraction in response to an auditory "GO" signal. MEPs were recorded from the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles, and TMS was applied at three different time intervals (30, 60, and 90 ms) after the "GO" signal. Motor cortex excitability was greater during voluntary ECR and FCR relaxation using high-intensity NMES, and relaxation time was decreased. Each parameter differed significantly between 30 and 60 ms. Moreover, in both muscles, SICI was larger in the presence than in the absence of NMES. Therefore, the present findings suggest that terminating a muscle contraction triggers transient neurophysiological mechanisms that facilitate the NMES-induced modulation of cortical motor excitability in the period prior to muscle relaxation. High-intensity NMES might facilitate motor cortical excitability as a function of increased inhibitory intracortical activity, and therefore serve as a transient trigger for the relaxation of prime mover muscles in a therapeutic context.

  9. A REVIEW OF ELECTRICAL STIMULATION AND ITS EFFECT ON LINGUAL, LABIAL AND BUCCAL MUSCLE STRENGTH.

    PubMed

    Safi, Mohammed F; Wright-Harp, Wilhelmina; Lucker, Jay R; Payne, Joan C; Harris, Ovetta

    2014-11-01

    Lingual, labial and buccal weakness (LLBW) is a widespread consequence of several neurological insults. LLBW impact on oral motor functions such as speech production and swallowing is well documented in the literature. Therefore, it is important for the speech-language pathologists to have access to evidence-based approaches for treatment. Thus, it is imperative that the speech-language pathology field search for effective treatment approaches and explore new treatment modalities that can improve therapy outcomes. One relatively new modality in this field is neuromuscular electrical stimulation (NMES). The purpose of this paper is fivefold: (a) to provide an overview of the general effects of NMES on skeletal muscles; (b) to review the effect of NMES on orofacial musculature evaluating the potential appropriateness of NMES for use in strengthening lingual, labial and buccal muscles; (c) to identify future directions for research with consideration of its potential role in improving speech intelligibility and the oral preparatory phase of swallowing in patients with oral motor weakness; (d) to provide a brief anatomic and physiologic bases of LLBW; (e) to provide background information for orofacial myologists who may encounter individuals with LLBW. NMES is a modality that is commonly used in physical therapy and occupational therapy fields that assists in treating several motor and sensory muscular disorders including muscular weakness. The literature reviewed demonstrate that very limited data related to the use of NMES on orofacial muscles exist despite the fact that these muscles can be easily accessed by electrical stimulation from the surface. This review of the research using electrical stimulation of muscles highlights the need for experimental treatment studies that investigate the effect of NMES on orofacial weakness.

  10. Relationship between functional electrical stimulation duty cycle and fatigue in wrist extensor muscles of patients with hemiparesis.

    PubMed

    Packman-Braun, R

    1988-01-01

    The purpose of this study was to investigate, in a sample of patients with hemiparesis secondary to cerebrovascular accident, the relationship between the ratio of stimulus on time to off time and muscle fatigue using a commercial electrical stimulation unit. An experimental model was used to test the hypothesis that the smaller the stimulus off time relative to stimulus on time, the greater will be the muscle fatigue over time. The wrist extensor muscles of 18 patients with hemiparesis were stimulated electrically, and isometric force output was recorded continuously using an adapted strain gauge-recorder apparatus. For each testing session, peak on time of the electrical stimulus was set at 5 seconds, and off time was set at 5, 15, or 25 seconds. Six randomly assigned treatment groups participated in three separate treatment sessions in a different order at 48-hour intervals. Treatment sessions were continued either until wrist extensor muscle force output decreased to 50% of its initial value or for a maximum of 30 minutes. Data analysis revealed that significant differences in muscle tension developed among all duty cycles (p less than .01). Duty-cycle ratios of 1:1, 1:3, and 1:5 were shown to be progressively less fatiguing. Within the limits of this investigation, the 1:5 duty-cycle ratio was determined to be the best suited for initial use in programs of prolonged stimulation to the wrist extensor muscles of patients with hemiparesis. The hypothesis was accepted that the smaller the stimulus off time (rest interval) with respect to the stimulus on time, the greater will be the muscle fatigue over time.

  11. Vaginal toxic shock reaction triggering desquamative inflammatory vaginitis.

    PubMed

    Pereira, Nigel; Edlind, Thomas D; Schlievert, Patrick M; Nyirjesy, Paul

    2013-01-01

    The study aimed to report 2 cases of desquamative inflammatory vaginitis associated with toxic shock syndrome toxin 1 (TSST-1)-producing Staphylococcus aureus strains. Case report of 2 patients, 1 with an acute and 1 with a chronic presentation, diagnosed with desquamative inflammatory vaginitis on the basis of clinical findings and wet mount microscopy. Pretreatment and posttreatment vaginal bacterial and yeast cultures were obtained. Pretreatment vaginal bacterial cultures from both patients grew TSST-1-producing S. aureus. Subsequent vaginal bacterial culture results after oral antibiotic therapy were negative. Desquamative inflammatory vaginitis may be triggered through TSST-1-mediated vaginal toxic shock reaction.

  12. On the Biomechanics of Vaginal Birth and Common Sequelae

    PubMed Central

    Ashton-Miller, James A.; DeLancey, John O.L.

    2010-01-01

    Approximately 11% of U.S. women undergo surgery for pelvic floor dysfunction, including genital organ prolapse and urinary and fecal incontinence. The major risk factor for developing these conditions is giving vaginal birth. Vaginal birth is a remarkable event about which little is known from a biomechanical perspective. We first review the functional anatomy of the female pelvic floor, the normal loads acting on the pelvic floor in activities of daily living, and the functional capacity of the pelvic floor muscles. Computer models show that the stretch ratio in the pelvic floor muscles can reach an extraordinary 3.26 by the end of the second stage of labor. Magnetic resonance images provide evidence that show that the pelvic floor regions experiencing the most stretch are at the greatest risk for injury, especially in forceps deliveries. A conceptual model suggests how these injuries may lead to the most common form of pelvic organ prolapse, a cystocele. PMID:19591614

  13. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    PubMed

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  14. Mechanical stimulation of skeletal muscle cells mitigates glucocorticoid-induced decreases in prostaglandin production and prostaglandin synthase activity

    NASA Technical Reports Server (NTRS)

    Chromiak, J. A.; Vandenburgh, H. H.

    1994-01-01

    The glucocorticoid dexamethasone (Dex) induces a decline in protein synthesis and protein content in tissue cultured, avian skeletal muscle cells, and this atrophy is attenuated by repetitive mechanical stretch. Since the prostaglandin synthesis inhibitor indomethacin mitigated this stretch attenuation of muscle atrophy, the effects of Dex and mechanical stretch on prostaglandin production and prostaglandin H synthase (PGHS) activity were examined. In static cultures, 10(-8) M Dex reduced PGF2 alpha production 55-65% and PGE2 production 84-90% after 24-72 h of incubation. Repetitive 10% stretch-relaxations of non-Dex-treated cultures increased PGF2 alpha efflux 41% at 24 h and 276% at 72 h, and increased PGE2 production 51% at 24 h and 236% at 72 h. Mechanical stimulation of Dex-treated cultures increased PGF2 alpha production 162% after 24 h, returning PGF2 alpha efflux to the level of non-Dex-treated cultures. At 72 h, stretch increased PGF2 alpha efflux 65% in Dex-treated cultures. Mechanical stimulation of Dex-treated cultures also increased PGE2 production at 24 h, but not at 72 h. Dex reduced PGHS activity in the muscle cultures by 70% after 8-24 h of incubation, and mechanical stimulation of the Dex-treated cultures increased PGHS activity by 98% after 24 h. Repetitive mechanical stimulation attenuates the catabolic effects of Dex on cultured skeletal muscle cells in part by mitigating the Dex-induced declines in PGHS activity and prostaglandin production.

  15. Effect of fusimotor stimulation on Ia discharge during shortening of cat soleus muscle at different speeds

    PubMed Central

    Appenteng, K.; Prochazka, A.; Proske, U.; Wand, P.

    1982-01-01

    1. In barbiturate-anaesthetized cats, the L7 and S1 dorsal and ventral roots were dissected to isolate functionally single afferents identified as primary endings of soleus muscle spindles, and motor filaments which exerted a fusimotor action on the afferents with limited action on extrafusal muscle. Up to seven filaments, with an action on a given primary ending, could be isolated and each was classified as exerting either a predominantly dynamic or static action. 2. Combined stimulation of these filaments, at rates up to 200 impulses/s could maintain afferent firing during muscle shortenings at speeds up to 200 mm/s. 3. Fusimotor stimulation could also maintain afferent firing at a target frequency of 100 impulses/s during muscle shortenings up to 200 mm/s. The timing, in relation to the onset of shortening, and the rates of fusimotor stimulation were found to be critical in achieving the target frequency. 4. Sinusoidal modulation of the frequency of fusimotor stimulation was used to study the conditions required to achieve constant afferent firing in the face of imposed sinusoidal length changes. 5. For given depths of modulation, the phase advance of fusimotor stimulation needed to produce minimum modulation of afferent firing (best compensation) increased with increasing frequency of the sinusoids. The compensation deteriorated with an increase in the frequency of the sinusoids and a change in the mean muscle lengths, although in some cases it could be restored by adjustments to the depth of modulation of fusimotor rate. This suggests that for movements of varying speeds and amplitudes, settings which are appropriate for shortening at a given velocity and mean muscle length, do not apply if either of these two variables are altered. 6. These findings demonstrate that the fusimotor system is potentially capable of eliciting constant afferent firing as envisaged in the `servo-assistance' hypothesis (Matthews, 1964, 1972; Stein, 1974). This, and the fact that

  16. Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans.

    PubMed

    Kras, Katon A; Hoffman, Nyssa; Roust, Lori R; Patel, Shivam H; Carroll, Chad C; Katsanos, Christos S

    2017-12-01

    Obesity is associated with mitochondrial dysfunction in skeletal muscle. Increasing the plasma amino acid (AA) concentrations stimulates mitochondrial adenosine triphosphate (ATP) production in lean individuals. To determine whether acute elevation in plasma AAs enhances muscle mitochondrial respiration and ATP production in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in obese adults. Assessment of SS and IMF mitochondrial function during saline (i.e., control) and AA infusions. Eligible participants were healthy lean (body mass index, <25 kg/m2; age, 37 ± 3 years; n = 10) and obese (body mass index >30 kg/m2; age 35 ± 3 years; n = 11) subjects. Single trial of saline infusion followed by AA infusion. SS and IMF mitochondria were isolated from muscle biopsies collected at the end of the saline and AA infusions. Mitochondrial respiration and ATP production. AA infusion increased adenosine 5'-diphosphate (ADP)-stimulated respiration and ATP production rates of SS mitochondria in the lean (P < 0.05), but not obese, subjects. Furthermore, AA infusion increased the uncoupled (i.e., non-ADP-stimulated) respiration of SS mitochondria in the lean subjects only (P < 0.05). AA infusion had no effect on any of these parameters in IMF mitochondria in either lean or obese subjects (P > 0.05). Increasing the plasma AA concentrations enhances the capacity for respiration and ATP production of muscle SS, but not IMF, mitochondria in lean individuals, in parallel with increases in uncoupled respiration. However, neither of these parameters increases in muscle SS or IMF mitochondria in obese individuals. Copyright © 2017 Endocrine Society

  17. Sonomyography Analysis on Thickness of Skeletal Muscle During Dynamic Contraction Induced by Neuromuscular Electrical Stimulation: A Pilot Study.

    PubMed

    Qiu, Shuang; Feng, Jing; Xu, Jiapeng; Xu, Rui; Zhao, Xin; Zhou, Peng; Qi, Hongzhi; Zhang, Lixin; Ming, Dong

    2017-01-01

    Neuromuscular electrical stimulation (NMES) that stimulates skeletal muscles to induce contractions has been widely applied to restore functions of paralyzed muscles. However, the architectural changes of stimulated muscles induced by NMES are still not well understood. The present study applies sonomyography (SMG) to evaluate muscle architecture under NMES-induced and voluntary movements. The quadriceps muscles of seven healthy subjects were tested for eight cycles during an extension exercise of the knee joint with/without NMES, and SMG and the knee joint angle were recorded during the process of knee extension. A least squares support vector machine (LS-SVM) LS-SVM model was developed and trained using the data sets of six cycles collected under NMES, while the remaining data was used to test. Muscle thickness changes were extracted from ultrasound images and compared between NMES-induced and voluntary contractions, and LS-SVM was used to model a relationship between dynamical knee joint angles and SMG signals. Muscle thickness showed to be significantly correlated with joint angle in NMES-induced contractions, and a significant negative correlation was observed between Vastus intermedius (VI) thickness and rectus femoris (RF) thickness. In addition, there was a significant difference between voluntary and NMES-induced contractions . The LS-SVM model based on RF thickness and knee joint angle provided superior performance compared with the model based on VI thickness and knee joint angle or total thickness and knee joint angle. This suggests that a strong relation exists between the RF thickness and knee joint angle. These results provided direct evidence for the potential application of RF thickness in optimizing NMES system as well as measuring muscle state under NMES.

  18. Vaginal blood flow after radical hysterectomy with and without nerve sparing. A preliminary report.

    PubMed

    Pieterse, Q D; Ter Kuile, M M; Deruiter, M C; Trimbos, J B M Z; Kenter, G G; Maas, C P

    2008-01-01

    Radical hysterectomy with pelvic lymphadenectomy (RHL) for cervical cancer causes damage to the autonomic nerves, which are responsible for increased vaginal blood flow during sexual arousal. The aim of the study of which we now report preliminary data was to determine whether a nerve-sparing technique leads to an objectively less disturbed vaginal blood flow response during sexual stimulation. Photoplethysmographic assessment of vaginal pulse amplitude (VPA) during sexual stimulation by erotic films was performed. Subjective sexual arousal was assessed after each stimulus. Thirteen women after conventional RHL, 10 women after nerve-sparing RHL, and 14 healthy premenopausal women participated. Data were collected between January and August 2006. The main outcome measure was the logarithmically transformed mean VPA. To detect statistically significant differences in mean VPA levels between the three groups, a univariate analysis of variance was used. Mean VPA differed between the three groups (P= 0.014). The conventional group had a lower vaginal blood flow response than the control group (P= 0.016), which tended also to be lower than that of the nerve-sparing group (P= 0.097). These differences were critically dependent on baseline vaginal blood flow differences between the groups. The conventional group follows a vaginal blood flow pattern similar to postmenopausal women. Conventional RHL is associated with an overall disturbed vaginal blood flow response compared with healthy controls. Because it is not observed to the same extent after nerve-sparing RHL, it seems that the nerve-sparing technique leads to a better overall vaginal blood flow caused by less denervation of the vagina.

  19. Repeatability and reliability of muscle relaxation properties induced by motor cortical stimulation.

    PubMed

    Molenaar, Joery P; Voermans, Nicol C; de Jong, Lysanne A; Stegeman, Dick F; Doorduin, Jonne; van Engelen, Baziel G

    2018-03-15

    Impaired muscle relaxation is a feature of many neuromuscular disorders. However, there are few tests available to quantify muscle relaxation. Transcranial magnetic stimulation (TMS) of the motor cortex can induce muscle relaxation by abruptly inhibiting corticospinal drive. The aim of our study is to investigate if repeatability and reliability of TMS-induced relaxation is greater than voluntary relaxation. Furthermore, effects of sex, cooling and fatigue on muscle relaxation properties were studied. Muscle relaxation of deep finger flexors was assessed in twenty-five healthy subjects (14 M and 11 F, aged 39.1{plus minus}12.7 and 45.3{plus minus}8.7 years old, respectively) using handgrip dynamometry. All outcome measures showed greater repeatability and reliability in TMS-induced relaxation compared to voluntary relaxation. The within-subject coefficient of variability of normalized peak relaxation rate was lower in TMS-induced relaxation than in voluntary relaxation (3.0 vs 19.7% in men, and 6.1 vs 14.3% in women). The repeatability coefficient was lower (1.3 vs 6.1 s -1 in men and 2.3 vs 3.1 s -1 in women), and the intraclass correlation coefficient was higher (0.95 vs 0.53 in men and 0.78 vs 0.69 in women), for TMS-induced relaxation compared to voluntary relaxation. TMS enabled to demonstrate slowing effects of sex, muscle cooling, and muscle fatigue on relaxation properties that voluntary relaxation could not. In conclusion, repeatability and reliability of TMS-induced muscle relaxation was greater compared to voluntary muscle relaxation. TMS-induced muscle relaxation has the potential to be used in clinical practice for diagnostic purposes and therapy effect monitoring in patients with impaired muscle relaxation.

  20. Non-specific vaginitis or vaginitis of undetermined aetiology.

    PubMed

    Faro, S; Phillips, L E

    1987-01-01

    Vaginitis is a complex syndrome that is probably the most common outpatient disease seen by the gynaecologist. The specific aetiologies of vaginitis are many. One of the most common entities, however, is "non-specific vaginitis" which can be subdivided into: Gardnerella vaginitis, anaerobic vaginosis, and vaginitis of undetermined aetiology. The role of Gardnerella as a causative agent for vaginitis has been studied in depth but its specific role remains controversial. Anaerobic vaginosis can be diagnosed by noting on microscopic examination the presence of clue cells, free-floating bacteria and numerous white blood cells (WBC's). Culturing an aliquot of the vaginal discharge reveals a high number of anaerobes. In addition, this condition responds to antibiotics effective against anaerobes, e.g., metronidazole. Vaginitis of undetermined aetiology is more complex and is characterized by a purulent vaginal discharge, a pH of 4.0-4.6, numerous WBC's, and a high concentration of bacteria. The microbiology of this vaginitis includes many facultative Gram-negative rods and Gram-positive cocci. Anaerobes may be present but do not make up a large component of the endogenous microflora. This condition does not respond to the usual antibiotic therapies employed in treating bacterial vaginitis. Since this condition appears to be primarily an inflammatory reaction, it may be responsive to topical antiinflammatory agents such as benzydamine.

  1. Vaginal cancer

    MedlinePlus

    Vaginal cancer; Cancer - vagina; Tumor - vaginal ... Most vaginal cancers occur when another cancer, such as cervical or endometrial cancer , spreads. This is called secondary vaginal cancer. Cancer ...

  2. Intercostal muscle twitching: An unusual manifestation of extracardiac stimulation related to right ventricular outflow tract pacing

    PubMed Central

    Erdogan, Okan

    2007-01-01

    The present case report describes a patient who underwent successful dual-chamber pacemaker implantation with active ventricular lead fixation at a high septal region in the right ventricular outflow tract. Unexpectedly, stimulation at a high output in the right ventricular outflow tract caused an unusual extracardiac stimulation, specifically, intercostal muscle twitching. PMID:17703261

  3. Low-frequency electric muscle stimulation combined with physical therapy after total hip arthroplasty for hip osteoarthritis in elderly patients: a randomized controlled trial.

    PubMed

    Gremeaux, Vincent; Renault, Julien; Pardon, Laurent; Deley, Gaelle; Lepers, Romuald; Casillas, Jean-Marie

    2008-12-01

    To assess the effects of low-frequency electric muscle stimulation associated with usual physiotherapy on functional outcome after total hip arthroplasty (THA) for hip osteoarthritis (OA) in elderly subjects. Randomized controlled trial; pre- and posttreatment measurements. Hospital rehabilitation department. Subjects (N=29) referred to the rehabilitation department after THA for hip OA. The intervention group (n=16; 78+/-8 y) received simultaneous low-frequency electric muscle stimulation of bilateral quadriceps and calf muscles (highest tolerated intensity, 1h session, 5 d/wk, for 5 weeks) associated with conventional physical therapy including resistance training. The control group (n=13; 76+/-10 y) received conventional physical therapy alone (25 sessions). Maximal isometric strength of knee extensors, FIM instrument, before and after; a six-minute walk test and a 200 m fast walk test, after; length of stay (LOS). Low-frequency electric muscle stimulation was well tolerated. It resulted in a greater improvement in strength of knee extensors on the operated side (77% vs 23%; P<.01), leading to a better balance of muscle strength between the operated and nonoperated limb. The low-frequency electric muscle stimulation group also showed a greater improvement in FIM scores, though improvements in the walk tests were similar for the 2 groups, as was LOS. Low-frequency electric muscle stimulation is a safe, well-tolerated therapy after THA for hip OA. It improves knee extensor strength, which is one of the factors leading to greater functional independence after THA.

  4. Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects.

    PubMed

    Bawa, P; Hamm, J D; Dhillon, P; Gross, P A

    2004-10-01

    Anatomical and behavioural work on primates has shown bilateral innervation of axial and proximal limb muscles, and contralateral control of distal limb muscles. The following study examined if a clear boundary exists between the distal and proximal upper limb muscles that are controlled contralaterally or bilaterally. The right motor cortical area representing the upper limb was stimulated, while surface EMG was recorded bilaterally from various upper limb muscles during rest and phasic voluntary contractions. Peak-to-peak amplitude of motor evoked potential (MEP) was measured for each muscle on both sides. The ratio R = (ipsilateral MEP: contralateral MEP) was calculated for seven pairs of muscles. For each of the seven pairs, R was less than 1.0, implying that for each muscle and subject, the contralateral control is stronger. The boundary where R changed from almost zero to a clearly measurable magnitude depended on the subject. Ipsilateral MEPs from trapezius and pectoralis could be recorded with a small background contraction from almost all subjects; on the other hand, in deltoid and biceps brachii, ipsilateral MEPs were observed only with bimanual phasic contractions. The forearm and hand muscles, in general, did not show any ipsilateral MEPs. Major differences between subjects lay in the presence or the absence of ipsilateral MEPs in biceps brachii and deltoid, without defining a sharp boundary between proximal and distal muscles.

  5. Calorie restriction enhances insulin-stimulated glucose uptake and Akt phosphorylation in both fast-twitch and slow-twitch skeletal muscle of 24-month-old rats.

    PubMed

    Sequea, Donel A; Sharma, Naveen; Arias, Edward B; Cartee, Gregory D

    2012-12-01

    Calorie restriction (CR) induces enhanced insulin-stimulated glucose uptake in fast-twitch (type II) muscle from old rats, but the effect of CR on slow-twitch (type I) muscle from old rats is unknown. The purpose of this study was to assess insulin-stimulated glucose uptake and phosphorylation of key insulin signaling proteins in isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from 24-month-old ad libitum fed and CR (consuming 65% of ad libitum, intake) rats. Muscles were incubated with and without 1.2 nM insulin. CR versus ad libitum rats had greater insulin-stimulated glucose uptake and Akt phosphorylation (pAkt) on T308 and S473 for both muscles incubated with insulin. GLUT4 protein abundance and phosphorylation of the insulin receptor (Y1162/1163) and AS160 (T642) were unaltered by CR in both muscles. These results implicate enhanced pAkt as a potential mechanism for the CR-induced increase in insulin-stimulated glucose uptake by the fast-twitch epitrochlearis and slow-twitch soleus of old rats.

  6. Mifepristone enhances insulin-stimulated Akt phosphorylation and glucose uptake in skeletal muscle cells.

    PubMed

    Bernal-Sore, Izela; Navarro-Marquez, Mario; Osorio-Fuentealba, César; Díaz-Castro, Francisco; Del Campo, Andrea; Donoso-Barraza, Camila; Porras, Omar; Lavandero, Sergio; Troncoso, Rodrigo

    2018-02-05

    Mifepristone is the only FDA-approved drug for glycaemia control in patients with Cushing's syndrome and type 2 diabetes. Mifepristone also has beneficial effects in animal models of diabetes and patients with antipsychotic treatment-induced obesity. However, the mechanisms through which Mifepristone produces its beneficial effects are not completely elucidated. To determine the effects of mifepristone on insulin-stimulated glucose uptake on a model of L6 rat-derived skeletal muscle cells. Mifepristone enhanced insulin-dependent glucose uptake, GLUT4 translocation to the plasma membrane and Akt Ser 473 phosphorylation in L6 myotubes. In addition, mifepristone reduced oxygen consumption and ATP levels and increased AMPK Thr 172 phosphorylation. The knockdown of AMPK prevented the effects of mifepristone on insulin response. Mifepristone enhanced insulin-stimulated glucose uptake through a mechanism that involves a decrease in mitochondrial function and AMPK activation in skeletal muscle cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Vaginal spasm, pain, and behavior: an empirical investigation of the diagnosis of vaginismus.

    PubMed

    Reissing, Elke D; Binik, Yitzchak M; Khalifé, Samir; Cohen, Deborah; Amsel, Rhonda

    2004-02-01

    This study investigated the roles of vaginal spasm, pain, and behavior in vaginismus and the ability of psychologists, gynecologists, and physical therapists to agree on a diagnosis of vaginismus. Eighty-seven women, matched on age, relationship status, and parity, were assigned to one of three groups: vaginismus, dyspareunia resulting from vulvar vestibulitis syndrome (VVS), and no pain with intercourse. Diagnostic agreement was poor for vaginismus; vaginal spasm and pain measures did not differentiate between women in the vaginismus and dyspareunia/VVS groups; however, women in the vaginismus group demonstrated significantly higher vaginal/pelvic muscle tone and lower muscle strength. Women in the vaginismus group also displayed a significantly higher frequency of defensive/avoidant distress behaviors during pelvic examinations and recalled past attempts at intercourse with more affective distress. These data suggest that the spasm-based definition of vaginismus is not adequate as a diagnostic marker for vaginismus. Pain and fear of pain, pelvic floor dysfunction, and behavioral avoidance need to be included in a multidimensional reconceptualization of vaginismus.

  8. Vaginal Atrophy

    MedlinePlus

    ... an Endocrinologist Search Featured Resource Menopause Map™ View Vaginal Atrophy October 2017 Download PDFs English Editors Christine ... during this time, including vaginal dryness. What is vaginal atrophy? Vaginal atrophy (also referred to as vulvovaginal ...

  9. Vaginal health in contraceptive vaginal ring users - A review.

    PubMed

    Lete, Iñaki; Cuesta, María C; Marín, Juan M; Guerra, Sandra

    2013-08-01

    To provide an overview of the available data from clinical studies of vaginal conditions in women who use a vaginal ring as a contraceptive. A systematic review of the literature. Millions of women have already used the ethylene vinyl acetate vaginal ring that releases ethinylestradiol and etonogestrel for contraception. Because of its small size, more than four out of five women using the ring report that they do not feel it, even during sexual intercourse. No colposcopic or cytological changes have been observed in users, although approximately 10% have increased vaginal discharge. While in vitro studies have shown adhesion of Candida yeasts to the vaginal ring surface, clinical studies have not demonstrated a greater incidence of Candida infections compared to users of equivalent oral contraceptives. Some clinical studies suggest a lower incidence of bacterial vaginosis. No interaction exists between concomitant use of the vaginal ring and other drugs or products for vaginal use. The use of a contraceptive vaginal ring does not alter the vaginal ecosystem and therefore does not substantially affect vaginal health.

  10. [Anatomy of the levator ani muscle and implications for obstetrics and gynaecology].

    PubMed

    Nyangoh Timoh, K; Bessede, T; Zaitouna, M; Peschaud, F; Chevallier, J-M; Fauconnier, A; Benoit, G; Moszkowicz, D

    2015-01-01

    Pelvic floor disorders include urogenital and anorectal prolapse, urinary and faecal incontinence. These diseases affect 25% of patients. Most of time, treatment is primarily surgical with a high post-operative risk of recurrence, especially for pelvic organ prolapse. Vaginal delivery is the major risk factor for pelvic floor disorders through levator ani muscle injury or nerve damage. After vaginal delivery, 20% of patients experiment elevator ani trauma. These injuries are more common in case of instrumental delivery by forceps, prolonged second phase labor, increased neonatal head circumference and associated anal sphincter injuries. Moreover, 25% of patients have temporary perineal neuropathy. Recently, pelvic three-dimensional reconstructions from RMI data allowed a better understanding of detailed levator ani muscle morphology and gave birth to a clear new nomenclature describing this muscle complex to be developed. Radiologic and anatomic studies have allowed exploring levator ani innervation leading to speculate on the muscle and nerve damage mechanisms during delivery. We then reviewed the levator ani muscle anatomy and innervation to better understand pelvic floor dysfunction observed after vaginal delivery. Copyright © 2015. Published by Elsevier SAS.

  11. Multi-muscle electrical stimulation and stand training: Effects on standing.

    PubMed

    Momeni, Kamyar; Ramanujam, Arvind; Garbarini, Erica L; Forrest, Gail F

    2018-02-15

    To examine the biomechanical and neuromuscular effects of a longitudinal multi-muscle electrical stimulation (submaximal intensities) training of the lower limbs combined with/without activity-based stand training, on the recovery of stability and function for one individual with spinal cord injury (SCI). Single-subject, longitudinal study. Neuroplasticity laboratory. A 34-year-old male, with sensory- and motor-complete SCI (C5/C6). Two consecutive interventions: 61 hours of supine, lower-limb ES (ES-alone) and 51 hours of ES combined with stand training using an overhead body-weight support system (ST + ES). Clinical measures, trunk stability, and muscle activity were assessed and compared across time points. Trunk Stability Limit (TSL) determined improvements in trunk independence. Functional clinical values increased after both interventions, with further increases post ST + ES. Post ES-alone, trunk stability was maintained at 81% body-weight (BW) loading before failure; post ST + ES, BW loading increased to 95%. TSL values decreased post ST + ES (TSL A/P =54.0 kg.cm, TSL M/L =14.5 kg.cm), compared to ES-alone (TSL A/P =8.5 kg.cm, TSL M/L =3.9 kg.cm). Trunk muscle activity decreased post ST + ES training, compared to ES-alone. Neuromuscular and postural trunk control dramatically improved following the multi-muscle ES of the lower limbs with stand training. Multi-muscle ES training paradigm of the lower limb, using traditional parameters, may contribute to the functional recovery of the trunk.

  12. Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Yi-Ping; Chen, Yuling; Li, Andrew S.; Reid, Michael B.

    2003-01-01

    Reactive oxygen species (ROS) are thought to promote muscle atrophy in chronic wasting diseases, but the underlying mechanism has not been determined. Here we show that H2O2 stimulates ubiquitin conjugation to muscle proteins through transcriptional regulation of the enzymes (E2 and E3 proteins) that conjugate ubiquitin to muscle proteins. Incubation of C2C12 myotubes with 100 microM H2O2 increased the rate of 125I-labeled ubiquitin conjugation to muscle proteins in whole cell extracts. This response required at least 4-h exposure to H2O2 and persisted for at least 24 h. Preincubating myotubes with cycloheximide or actinomycin D blocked H2O2 stimulation of ubiquitin-conjugating activity, suggesting that gene transcription is required. Northern blot analyses revealed that H2O2 upregulates expression of specific E3 and E2 proteins that are thought to regulate muscle catabolism, including atrogin1/MAFbx, MuRF1, and E214k. These results suggest that ROS stimulate protein catabolism in skeletal muscle by upregulating the ubiquitin conjugation system.

  13. Long-term leucine induced stimulation of muscle protein synthesis is amino acid dependent

    USDA-ARS?s Scientific Manuscript database

    Infusing leucine for 1 h increases skeletal muscle protein synthesis in the neonate, but this is not sustained for 2 h unless the corresponding fall in amino acids is prevented. This study aimed to determine whether a continuous leucine infusion can stimulate protein synthesis for a prolonged period...

  14. Brain-controlled muscle stimulation for the restoration of motor function

    PubMed Central

    Ethier, Christian; Miller, Lee E

    2014-01-01

    Loss of the ability to move, as a consequence of spinal cord injury or neuromuscular disorder, has devastating consequences for the paralyzed individual, and great economic consequences for society. Functional Electrical Stimulation (FES) offers one means to restore some mobility to these individuals, improving not only their autonomy, but potentially their general health and well-being as well. FES uses electrical stimulation to cause the paralyzed muscles to contract. Existing clinical systems require the stimulation to be preprogrammed, with the patient typically using residual voluntary movement of another body part to trigger and control the patterned stimulation. The rapid development of neural interfacing in the past decade offers the promise of dramatically improved control for these patients, potentially allowing continuous control of FES through signals recorded from motor cortex, as the patient attempts to control the paralyzed body part. While application of these ‘Brain Machine Interfaces’ (BMIs) has undergone dramatic development for control of computer cursors and even robotic limbs, their use as an interface for FES has been much more limited. In this review, we consider both FES and BMI technologies and discuss the prospect for combining the two to provide important new options for paralyzed individuals. PMID:25447224

  15. Functional Magnetic Stimulation of Inspiratory and Expiratory Muscles in Subjects With Tetraplegia.

    PubMed

    Zhang, Xiaoming; Plow, Ela; Ranganthan, Vinoth; Huang, Honglian; Schmitt, Melissa; Nemunaitis, Gregory; Kelly, Clay; Frost, Frederick; Lin, Vernon

    2016-07-01

    Respiratory complications are major causes of morbidity and mortality in persons with a spinal cord injury, partly because of respiratory muscle paralysis. Earlier investigation has demonstrated that functional magnetic stimulation (FMS) can be used as a noninvasive technology for activating expiratory muscles, thus producing useful expiratory functions (simulated cough) in subjects with spinal cord injury. To evaluate the effectiveness of FMS for conditioning inspiratory and expiratory muscles in persons with tetraplegia. A prospective before and after trial. FMS Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH. Six persons with tetraplegia. Each subject participated in a 6-week FMS protocol for conditioning the inspiratory and expiratory muscles. A magnetic stimulator was used with the center of a magnetic coil placed at the C7-T1 and T9-T10 spinous processes, respectively. Pulmonary function tests were performed before, during, and after the protocol. Respiratory variables included maximal inspiratory pressure (MIP), inspiratory reserve volume (IRV), peak inspiratory flow (PIF), maximal expiratory pressure (MEP), expiratory reserve volume (ERV), and peak expiratory flow (PEF). After 6 weeks of conditioning, the main outcome measurements (mean ± standard error) were as follows: MIP, 89.6 ± 7.3 cm H2O; IRV, 1.90 ± 0.34 L; PIF, 302.4 ± 36.3 L/min; MEP, 67.4 ± 11.1 cm H2O; ERV, 0.40 ± 0.06 L; and PEF, 372.4 ± 31.9 L/min. These values corresponded to 117%, 107%, 136%, 109%, 130%, and 124% of pre-FMS conditioning values, respectively. Significant improvements were observed in MIP (P = .022), PIF (P = .0001), and PEF (P = .0006), respectively. When FMS was discontinued for 4 weeks, these values showed decreases from their values at the end of the conditioning protocol, which suggests that continual FMS may be necessary to maintain improved respiratory functions. FMS conditioning of the inspiratory and expiratory muscles improved

  16. A new reconstructive technique for posterior vaginal wall defects, a case report.

    PubMed

    Zetlitz, Elisabeth; Manook, Miriam; MacLeod, Alison; Hamilton, Stuart

    2013-10-01

    Post-partum vaginal laxity is a problem encountered by many women. More uncommon is a resulting vaginal defect. In most cases of laxity, a period of extensive physiotherapy can strengthen the pelvic muscles enough for symptoms to be minimized. However, this is not the case once there is a tissue defect. To present a new reconstructive method for patients with posterior vaginal wall defects. We present a case of a 38-year-old female who, 12 years prior to presentation, had a vaginal delivery. Due to complications during the delivery, she sustained pelvic trauma and developed a posterior vaginal wall defect. She had a sizable soft tissue defect, causing sexual, urinary, and confidence problems. Fat was harvested from the patient's abdomen and injected into the defect after more conservative treatment options were exhausted. The defect was corrected successfully using the minimally invasive Coleman fat grafting technique. This is to our knowledge the first case in the literature where a posterior vaginal defect has been corrected using Coleman fat grafting, and we believe that this treatment method may be of benefit to more patients. © 2013 International Society for Sexual Medicine.

  17. Effects of transportation during the hot season, breed and electrical stimulation on histochemical and meat quality characteristics of goat longissimus muscle.

    PubMed

    Kadim, Isam T; Mahgoub, Osman; Al-Marzooqi, Waleed; Khalaf, Samera; Al-Sinawi, Shadia S H; Al-Amri, Issa

    2010-06-01

    The effects of transportation and electrical stimulation (90 V) on physiological, histochemical and meat quality characteristics of two breeds of Omani goats were assessed. Twenty 1-year-old male goats from each breed (Batina and Dhofari) were divided into two groups: 3 h transported during the hot season (42 degrees C day time temperature) and non-transported. Animals were blood-sampled before loading and prior to slaughter. Electrical stimulation was applied 20 min postmortem to 50% randomly selected carcasses of both breeds. Temperature and pH decline of the Longissimus was monitored. Ultimate pH, shear force, sarcomere length, myofibrillar fragmentation index, expressed juice, cooking loss and colour were measured from samples of Longissimus dorsi muscles. Electrical stimulation and transportation had a significant effect on most biochemical and meat quality characteristics of Longissimus dorsi. The transported goats had higher plasma cortisol (P < 0.01), adrenaline, nor-adrenaline and dopamine concentrations (P < 0.05) than non-transported goats. Electrical stimulation resulted in a significantly (P < 0.05) more rapid muscle pH fall during the first 12 h after slaughter. Muscles from electrically-stimulated carcasses had significantly (P < 0.05) longer sarcomeres, lower shear force value, a lighter colour (higher L* value), higher expressed juice and myofibrillar fragmentation index than those from non-stimulated ones. Meat from transported goats had significantly higher pH, expressed juice and shear force, but contained significantly lower sarcomere length and L* values than non-transported goats. The proportion of the myosin ATPase staining did not change as a function of stimulation, transportation or breed. These results indicated that subjecting goats to transportation for 3 h under high ambient temperatures can generate major physiological and muscle metabolism responses. Electrical stimulation improved quality characteristics of meat from both groups

  18. Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation

    PubMed Central

    MacPherson, Rebecca E K; Vandenboom, Rene; Roy, Brian D; Peters, Sandra J

    2013-01-01

    In adipose tissue, access of adipose triglyceride and hormone-sensitive lipases (ATGL and HSL) to the lipid droplet depends on PLIN1 phosphorylation, however, PLIN1 is not expressed in skeletal muscle and the phosphorylation of the expressed PLINs has yet to be investigated. Further, direct interactions between skeletal muscle PLINs and HSL are unknown. We investigated the isolated and combined effects of epinephrine and contraction on PLIN-to-lipase interactions as well as phosphorylation. Isolated rat solei were assigned to one of four 30 min in vitro conditions (25°C): (1) rest; (2) intermittent tetanic stimulation (60 Hz for 150 msec; train rate 20/min); (3) 5 nmol/L epinephrine; (4) intermittent tetanic stimulation and 5 nmol/L epinephrine. Immunoprecipitation of serine phosphorylated proteins followed by Western blotting for PLIN2, PLIN3, PLIN5, revealed that only PLIN2 is not phosphorylated under any of the experimental conditions. This is the first study to show that in whole rat skeletal muscle PLIN3 and PLIN5 are serine phosphorylated. The degree of serine phosphorylation remained unchanged following adrenergic and/or contractile stimulation. Oil red O staining of muscle sections for lipid content shows a significant decrease following each condition, confirming lipolysis occurred (P < 0.05). PLIN2, 3, and 5 all interact with HSL and ATGL, but these interactions were unchanged following treatments. Our results show that in skeletal muscle, PLIN2 is not serine phosphorylated at rest or with lipolytic stimulation and that while PLIN3, PLIN5 are serine phosphorylated at rest, the degree of phosphorylation does not change with lipolytic stimulation. PMID:24303154

  19. Electrical stimulation of the lumbrical muscles in an incomplete quadriplegic patient: case report.

    PubMed

    Carroll, S G; Bird, S F; Brown, D J

    1992-03-01

    The increasing number of incomplete cervical spinal cord injuries means that more attention needs to be focused on the rehabilitation of the incomplete quadriplegic hand. A case study, describing the application of electrical stimulation for strengthening the paretic lumbrical muscles, is presented. A 2 week strengthening program resulted in a 33% increase in the force produced by the lumbrical muscles. No loss of strength had occurred 4 weeks after cessation of the treatment. The magnitude and speed of this result should be of interest to those clinicians who seek to maximise patient independence in minimal time.

  20. Analysis of muscle activation in each body segment in response to the stimulation intensity of whole-body vibration.

    PubMed

    Lee, Dae-Yeon

    2017-02-01

    [Purpose] The purpose of this study was to investigate the effects of a whole-body vibration exercise, as well as to discuss the scientific basis to establish optimal intensity by analyzing differences between muscle activations in each body part, according to the stimulation intensity of the whole-body vibration. [Subjects and Methods ] The study subjects included 10 healthy men in their 20s without orthopedic disease. Representative muscles from the subjects' primary body segments were selected while the subjects were in upright positions on exercise machines; electromyography electrodes were attached to the selected muscles. Following that, the muscle activities of each part were measured at different intensities. No vibration, 50/80 in volume, and 10/25/40 Hz were mixed and applied when the subjects were on the whole-vibration exercise machines in upright positions. After that, electromyographic signals were collected and analyzed with the root mean square of muscular activation. [Results] As a result of the analysis, it was found that the muscle activation effects had statistically meaningful differences according to changes in exercise intensity in all 8 muscles. When the no-vibration status was standardized and analyzed as 1, the muscle effect became lower at higher frequencies, but became higher at larger volumes. [Conclusion] In conclusion, it was shown that the whole-body vibration stimulation promoted muscle activation across the entire body part, and the exercise effects in each muscle varied depending on the exercise intensities.

  1. Bilateral pedicled myocutaneous vertical rectus abdominus muscle flaps to close vesicovaginal and pouch-vaginal fistulas with simultaneous vaginal and perineal reconstruction in irradiated pelvic wounds.

    PubMed

    Horch, Raymund E; Gitsch, G; Schultze-Seemann, W

    2002-09-01

    Chronic postoperative pouch-vaginal and vesicovaginal fistulas after hysterectomy and irradiation to treat advanced cervical cancer do not respond to conventional treatment because of the low vascularity in the irradiated area. We present the successful repair of these complications in a female patient, in whom several vaginal and abdominal approaches had been tried and had resulted not only in failure but also in tissue loss and fibrosis and persisting fistulas. First, a synchronous vaginoabdominal approach using a vertical myocutaneous distally based rectus abdominis myocutaneous flap was used successfully to close a pouch-vaginal fistula and simultaneously reconstruct the posterior vaginal wall. In a second approach, the persisting vesicovaginal fistula was closed by a right rectus abdominis myocutaneous flap while simultaneously reconstructing the anterior vaginal wall, closing the enterocutaneous stoma and performing an appendicovesicostomy as a continence channel for catheterization. Despite unfavorable local wound situations, including an enterocutaneous stoma through the rectus abdominis and various previous incision lines, the transfer of axially well-vascularized tissue can solve these problem wounds. Consecutive bilateral use of the rectus abdominis flap may be necessary to deal with extensive pelvic wounds. This technique should be considered as one repair modality in irradiated pelvic wounds with fistulas. Previous enterostomy is not a contraindication to the use of this flap.

  2. Effects of dexamethasone treatment on insulin-stimulated rates of glycolysis and glycogen synthesis in isolated incubated skeletal muscles of the rat.

    PubMed Central

    Leighton, B; Challiss, R A; Lozeman, F J; Newsholme, E A

    1987-01-01

    1. Rats were treated with dexamethasone for 4 days before measurement of the rates of lactate formation [which is an index of hexose transport; see Challiss, Lozeman, Leighton & Newsholme (1986) Biochem. J. 233, 377-381] and glycogen synthesis in response to various concentrations of insulin in isolated incubated soleus and extensor digitorum longus muscle preparations. 2. The concentration of insulin required to stimulate these processes half-maximally in soleus and extensor digitorum longus muscles isolated from control rats was about 100 muunits/ml. 3. Dexamethasone increases the concentration of insulin required to stimulate glycolysis half-maximally in soleus and extensor digitorum longus preparations to 250 and 300 muunits/ml respectively. The respective insulin concentrations necessary to stimulate glycogen synthesis half-maximally were about 430 and 370 muunits/ml for soleus and extensor digitorum longus muscle preparations isolated from steroid-treated rats. 5. Dexamethasone treatment did not change the amount of insulin bound to soleus muscle. PMID:3318810

  3. Analysis of Vaginal Cell Populations during Experimental Vaginal Candidiasis

    PubMed Central

    Fidel, Paul L.; Luo, Wei; Steele, Chad; Chabain, Joseph; Baker, Marc; Wormley, Floyd

    1999-01-01

    Studies with an estrogen-dependent murine model of vaginal candidiasis suggest that local cell-mediated immunity (CMI) is more important than systemic CMI for protection against vaginitis. The present study, however, showed that, compared to uninfected mice, little to no change in the percentage or types of vaginal T cells occurred during a primary vaginal infection or during a secondary vaginal infection where partial protection was observed. Furthermore, depletion of polymorphonuclear leukocytes (PMN) had no effect on infection in the presence or absence of pseudoestrus. These results indicate a lack of demonstrable effects by systemic CMI or PMN against vaginitis and suggest that if local T cells are important, they are functioning without showing significant increases in numbers within the vaginal mucosa during infection. PMID:10338532

  4. Whole body heat stress attenuates the pressure response to muscle metaboreceptor stimulation in humans.

    PubMed

    Cui, Jian; Blaha, Cheryl; Sinoway, Lawrence I

    2016-11-01

    The effects of whole body heat stress on sympathetic and cardiovascular responses to stimulation of muscle metaboreceptors and mechanoreceptors remains unclear. We examined the muscle sympathetic nerve activity (MSNA), blood pressure, and heart rate in 14 young healthy subjects during fatiguing isometric handgrip exercise, postexercise circulatory occlusion (PECO), and passive muscle stretch during PECO. The protocol was performed under normothermic and whole body heat stress (increase internal temperature ~0.6°C via a heating suit) conditions. Heat stress increased the resting MSNA and heart rate. Heat stress did not alter the mean blood pressure (MAP), heart rate, and MSNA responses (i.e., changes) to fatiguing exercise. During PECO, whole body heat stress accentuated the heart rate response [change (Δ) of 5.8 ± 1.5 to Δ10.0 ± 2.1 beats/min, P = 0.03], did not alter the MSNA response (Δ16.4 ± 2.8 to Δ17.3 ± 3.8 bursts/min, P = 0.74), and lowered the MAP response (Δ20 ± 2 to Δ12 ± 1 mmHg, P < 0.001). Under normothermic conditions, passive stretch during PECO evoked significant increases in MAP and MSNA (both P < 0.001). Of note, heat stress prevented the MAP and MSNA responses to stretch during PECO (both P > 0.05). These data suggest that whole body heat stress attenuates the pressor response due to metaboreceptor stimulation, and the sympathetic nerve response due to mechanoreceptor stimulation. Copyright © 2016 the American Physiological Society.

  5. Pelvic muscles' mechanical response to strains in the absence and presence of pregnancy-induced adaptations in a rat model.

    PubMed

    Catanzarite, Tatiana; Bremner, Shannon; Barlow, Caitlin L; Bou-Malham, Laura; O'Connor, Shawn; Alperin, Marianna

    2018-05-01

    Maternal birth trauma to the pelvic floor muscles is thought to be consequent to mechanical demands placed on these muscles during fetal delivery that exceed muscle physiological limits. The above is consistent with studies of striated limb muscles that identify hyperelongation of sarcomeres, the functional muscle units, as the primary cause of mechanical muscle injury and resultant muscle dysfunction. However, pelvic floor muscles' mechanical response to strains have not been examined at a tissue level. Furthermore, we have previously demonstrated that during pregnancy, rat pelvic floor muscles acquire structural and functional adaptations in preparation for delivery, which likely protect against mechanical muscle injury by attenuating the strain effect. We sought to determine the mechanical impact of parturition-related strains on pelvic floor muscles' microstructure, and test the hypothesis that pregnancy-induced adaptations modulate muscle response to strains associated with vaginal delivery. Three-month-old Sprague-Dawley late-pregnant (N = 20) and nonpregnant (N = 22) rats underwent vaginal distention, replicating fetal crowning, with variable distention volumes. Age-matched uninjured pregnant and nonpregnant rats served as respective controls. After sacrifice, pelvic floor muscles, which include coccygeus, iliocaudalis, and pubocaudalis, were fixed in situ and harvested for fiber and sarcomere length measurements. To ascertain the extent of physiological strains during spontaneous vaginal delivery, analogous measurements were obtained in intrapartum rats (N = 4) sacrificed during fetal delivery. Data were compared with repeated measures and 2-way analysis of variance, followed by pairwise comparisons, with significance set at P < .05. Gross anatomic changes were observed in the pelvic floor muscles following vaginal distention, particularly in the entheseal region of pubocaudalis, which appeared translucent. The above appearance resulted from dramatic

  6. Vaginal Toxic Shock Reaction Triggering Desquamative Inflammatory Vaginitis

    PubMed Central

    Pereira, Nigel; Edlind, Thomas D.; Schlievert, Patrick M.; Nyirjesy, Paul

    2012-01-01

    Objective To report two cases of desquamative inflammatory vaginitis (DIV) associated with toxic shock syndrome toxin-1 (TSST-1)-producing Staphylococcus aureus strains. Materials and Methods Case report of two patients, one with an acute and one with a chronic presentation, diagnosed with DIV on the basis of clinical findings and wet mount microscopy. Pre- and posttreatment vaginal bacterial and yeast cultures were obtained. Results Pretreatment vaginal bacterial cultures from both patients grew TSST-1-producing S. aureus. Subsequent vaginal bacterial cultures following oral antibiotic therapy were negative. Conclusions DIV may be triggered through TSST-1-mediated vaginal toxic shock reaction. PMID:23222054

  7. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice

    USDA-ARS?s Scientific Manuscript database

    Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue...

  8. Effects of combined application of progressive resistance training and Russian electrical stimulation on quadriceps femoris muscle strength in elderly women with knee osteoarthritis.

    PubMed

    Park, Seong Hoon; Hwangbo, Gak

    2015-03-01

    [Purpose] The aim of this study was to investigate the effects of combined application of progressive resistance training and Russian electrical stimulation on quadriceps femoris muscle strength in elderly women with osteoarthritis of the knee. [Subjects] Thirty women over 65 years of age diagnosed with knee osteoarthritis participated in the present study. The subjects were randomly assigned to a control group (n=10), a progressive resistance training group (n=10), or a Russian electrical stimulation group (n=10). [Methods] Each group was treated 3 times weekly for 8 weeks, and each session lasted 45 minutes. Muscle strength was assessed by measuring the peak torque of the quadriceps femoris muscle. Outcome measurements were performed at baseline and at the fourth and eighth weeks of the treatment period. [Results] All groups showed significant intragroup differences in the quadriceps femoris muscle peak torque after the treatment intervention. There were significant intergroup differences between the Russian electrical stimulation group and the other groups. [Conclusion] The results of this study suggest that combined application of progressive resistance training and Russian electrical stimulation can be effective in strengthening the quadriceps femoris muscle in elderly women with knee osteoarthritis.

  9. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force.

    PubMed

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2017-05-02

    Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.

  10. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans.

    PubMed

    Everman, Sarah; Meyer, Christian; Tran, Lee; Hoffman, Nyssa; Carroll, Chad C; Dedmon, William L; Katsanos, Christos S

    2016-10-01

    Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P < 0.01) whole body phenylalanine rate of appearance (μmol·kg -1 ·min -1 ), indicating suppression of muscle proteolysis, in both the control (1.02 ± 0.04 vs 0.76 ± 0.04) and the BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA. Copyright © 2016 the American Physiological Society.

  11. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans

    PubMed Central

    Everman, Sarah; Meyer, Christian; Tran, Lee; Hoffman, Nyssa; Carroll, Chad C.; Dedmon, William L.

    2016-01-01

    Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P < 0.01) whole body phenylalanine rate of appearance (μmol·kg−1·min−1), indicating suppression of muscle proteolysis, in both the control (1.02 ± 0.04 vs 0.76 ± 0.04) and the BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA. PMID:27530230

  12. Promising Prebiotic Candidate Established by Evaluation of Lactitol, Lactulose, Raffinose, and Oligofructose for Maintenance of a Lactobacillus-Dominated Vaginal Microbiota

    PubMed Central

    McMillan, Amy; Seney, Shannon; van der Veer, Charlotte; Kort, Remco; Sumarah, Mark W.

    2017-01-01

    ABSTRACT Perturbations to the vaginal microbiota can lead to dysbiosis, including bacterial vaginosis (BV), which affects a large portion of the female population. In a healthy state, the vaginal microbiota is characterized by low diversity and colonization by Lactobacillus spp., whereas in BV, these species are displaced by a highly diverse population of bacteria associated with adverse vaginal health outcomes. Since prebiotic ingestion has been a highly effective approach to invigorate lactobacilli for improved intestinal health, we hypothesized that these compounds could stimulate lactobacilli at the expense of BV organisms to maintain vaginal health. Monocultures of commensal Lactobacillus crispatus, Lactobacillus vaginalis, Lactobacillus gasseri, Lactobacillus johnsonii, Lactobacillus jensenii, and Lactobacillus iners, in addition to BV-associated organisms and Candida albicans, were tested for their ability to utilize a representative group of prebiotics consisting of lactitol, lactulose, raffinose, and oligofructose. The disaccharide lactulose was found to most broadly and specifically stimulate vaginal lactobacilli, including the strongly health-associated species L. crispatus, and importantly, not to stimulate BV organisms or C. albicans. Using freshly collected vaginal samples, we showed that exposure to lactulose promoted commensal Lactobacillus growth and dominance and resulted in healthy acidity partially through lactic acid production. This provides support for further testing of lactulose to prevent dysbiosis and potentially to reduce the need for antimicrobial agents in managing vaginal health. IMPORTANCE Bacterial vaginosis (BV) and other dysbioses of the vaginal microbiota significantly affect the quality of life of millions of women. Antimicrobial therapy is often poorly effective, causes side effects, and does not prevent recurrences. We report one of very few studies that have evaluated how prebiotics—compounds that are selectively fermented

  13. Neuromuscular Electrical Stimulation for Treatment of Muscle Impairment: Critical Review and Recommendations for Clinical Practice

    PubMed Central

    Houghton, Pamela; Anthony, Joseph; Rennie, Sandy; Shay, Barbara L.; Hoens, Alison M.

    2017-01-01

    Purpose: In response to requests from physiotherapists for guidance on optimal stimulation of muscle using neuromuscular electrical stimulation (NMES), a review, synthesis, and extraction of key data from the literature was undertaken by six Canadian physical therapy (PT) educators, clinicians, and researchers in the field of electrophysical agents. The objective was to identify commonly treated conditions for which there was a substantial body of literature from which to draw conclusions regarding the effectiveness of NMES. Included studies had to apply NMES with visible and tetanic muscle contractions. Method: Four electronic databases (CINAHL, Embase, PUBMED, and SCOPUS) were searched for relevant literature published between database inceptions until May 2015. Additional articles were identified from bibliographies of the systematic reviews and from personal collections. Results: The extracted data were synthesized using a consensus process among the authors to provide recommendations for optimal stimulation parameters and application techniques to address muscle impairments associated with the following conditions: stroke (upper or lower extremity; both acute and chronic), anterior cruciate ligament reconstruction, patellofemoral pain syndrome, knee osteoarthritis, and total knee arthroplasty as well as critical illness and advanced disease states. Summaries of key details from each study incorporated into the review were also developed. The final sections of the article outline the recommended terminology for describing practice using electrical currents and provide tips for safe and effective clinical practice using NMES. Conclusion: This article provides physiotherapists with a resource to enable evidence-informed, effective use of NMES for PT practice. PMID:29162949

  14. Effect of atropine and methylatropine on human vaginal blood flow, sexual arousal and climax.

    PubMed

    Wagner, G; Levin, R J

    1980-05-01

    No experimental data on the regulatory mechanism of the change in vaginal blood flow occurring at sexual arousal exist. Six women were in a controlled laboratory study given atropine 0.035 mg/kg intravenously. The basal vaginal blood flow was recorded by a heat probe kept at set temperature on the vaginal wall. During sexual stimulation the flow was increased as in women when no drugs are applied and orgasm was unaffected as well. The neurotransmitter has been supposed to be acetylcholine but the present experiments suggest that it is not an atropine sensitive traditional muscarinic transmission. Methylatropine was given in five subjects and neither in these cases any effect on the vaginal vascular response was observed.

  15. Effects of the belt electrode skeletal muscle electrical stimulation system on lower extremity skeletal muscle activity: Evaluation using positron emission tomography.

    PubMed

    Numata, Hitoaki; Nakase, Junsuke; Inaki, Anri; Mochizuki, Takafumi; Oshima, Takeshi; Takata, Yasushi; Kinuya, Seigo; Tsuchiya, Hiroyuki

    2016-01-01

    Lower-extremity muscle weakness in athletes after lower limb trauma or surgery can hinder their return to sports, and the associated muscle atrophy may lead to deterioration in performance after returning to sports. Recently, belt electrode skeletal muscle electrical stimulation (B-SES) which can contract all the lower limb skeletal muscles simultaneously was developed. However, no study has evaluated skeletal muscle activity with B-SES. Since only superficial muscles as well as a limited number of muscles can be investigated using electromyography, we investigated whether positron emission tomography (PET) can evaluate the activity of all the skeletal muscles in the body simultaneously. The purpose of this study was to evaluate the effectiveness of the B-SES system using PET. Twelve healthy males (mean age, 24.3 years) were divided into two groups. The subjects in the control group remained in a sitting position for 10 min, and [(18)F] fluorodeoxyglucose (FDG) was intravenously injected. In the exercise group, subjects exercised using the B-SES system for 20 min daily for three consecutive days as a pre-test exercise. On the measurement day, they exercised for 10 min, received an injection of FDG, and exercised for another 10 min. PET-computed tomography images were obtained in each group 60 min after the FDG injection. Regions of interest were drawn in each lower-extremity muscle. We compared each skeletal muscle metabolism using the standardized uptake value. In the exercise group, FDG accumulation in the gluteus maximus, gluteus medius, gluteus minimus, quadriceps femoris, sartorius, and hamstrings was significantly higher than the muscles in the control (P < 0.05). Exercise with B-SES increased the skeletal muscle activity of the gluteal muscles as well as the most lower-extremity muscles simultaneously. Copyright © 2015 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  16. Vaginal Atrophy

    MedlinePlus

    ... syndrome of menopause (GSM) increases your risk of: Vaginal infections. Changes in the acid balance of your vagina makes vaginal infections (vaginitis) more likely. Urinary problems. Urinary changes associated ...

  17. Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson's disease.

    PubMed

    De Nunzio, Alessandro M; Grasso, Margherita; Nardone, Antonio; Godi, Marco; Schieppati, Marco

    2010-02-01

    During the administration of timed bilateral alternate vibration to homonymous leg or trunk muscles during quiet upright stance, Parkinsonian (PD) patients undergo cyclic antero-posterior and medio-lateral transfers of the centre of foot pressure. This event might be potentially exploited for improving gait in these patients. Here, we tested this hypothesis by applying alternate muscle vibration during walking in PD. Fifteen patients and 15 healthy subjects walked on an instrumented walkway under four conditions: no vibration (no-Vib), and vibration of tibialis anterior (TA-Vib), soleus (Sol-Vib) and erector spinae (ES-Vib) muscles of both sides. Trains of vibration (internal frequency 100 Hz) were delivered to right and left side at alternating frequency of 10% above preferred step cadence. During vibration, stride length, cadence and velocity increased in both patients and healthy subjects, significantly so for ES-Vib. Stance and swing time tended to decrease. Width of support base increased with Sol-Vib or TA-Vib, but was unaffected by ES-Vib. Alternate ES vibration enhances gait velocity in PD. The stronger effect of ES over leg muscle vibration might depend on the relevance of the proprioceptive inflow from the trunk muscles and on the absence of adverse effects on the support base width. Trunk control is defective in PD. The effect of timed vibratory stimulation on gait suggests the potential use of trunk proprioceptive stimulation for tuning the central pattern generators for locomotion in PD. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Optimal arrangement of magnetic coils for functional magnetic stimulation of the inspiratory muscles in dogs.

    PubMed

    Lin, Vernon Weh-Hau; Zhu, Ercheng; Sasse, Scott A; Sassoon, Catherine; Hsiao, Ian N

    2005-12-01

    In an attempt to maximize inspiratory pressure and volume, the optimal position of a single or of dual magnetic coils during functional magnetic stimulation (FMS) of the inspiratory muscles was evaluated in twenty-three dogs. Unilateral phrenic magnetic stimulation (UPMS) or bilateral phrenic magnetic stimulation (BPMS), posterior cervical magnetic stimulation (PCMS), anterior cervical magnetic stimulation (ACMS) as well as a combination of PCMS and ACMS were performed. Trans-diaphragmatic pressure (Pdi), flow, and lung volume changes with an open airway were measured. Transdiaphragmatic pressure was also measured with an occluded airway. Changes in inspiratory parameters during FMS were compared with 1) electrical stimulation of surgically exposed bilateral phrenic nerves (BPES) and 2) ventral root electrical stimulation at C5-C7 (VRES C5-C7). Relative to the Pdi generated by BPES of 36.3 +/- 4.5 cm H2O (Mean +/- SEM), occluded Pdi(s) produced by UPMS, BPMS, PCMS, ACMS, and a combined PCMS + ACMS were 51.7%, 61.5%, 22.4%, 100.3%, and 104.5% of the maximal Pdi, respectively. Pdi(s) produced by UPMS, BPMS, PCMS, ACMS, and combined ACMS + PCMS were 38.0%, 45.2%, 16.5%, 73.8%, and 76.8%, respectively, of the Pdi induced by VRES (C5-C7) (48.0 +/- 3.9 cm H2O). The maximal Pdi(s) generated during ACMS and combined PCMS + ACMS were higher than the maximal Pdi(s) generated during UPMS, BPMS, or PCMS (p < 0.05). ACMS alone induced 129.8% of the inspiratory flow (73.0 +/- 9.4 L/ min) and 77.5% of the volume (626 +/- 556 ml) induced by BPES. ACMS and combined PCMS + ACMS produce a greater inspiratory pressure than UPMS, BPMS or PCMS. ACMS can be used to generate sufficient inspiratory pressure, flow, and volume for activation of the inspiratory muscles.

  19. Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

    DTIC Science & Technology

    2015-10-01

    JJPVAMC). During year 1 of the study, the Study Team (Drs. Forrest, Bauman, and Harkema) established a new partnership with a pharmaceutical company...AbbVie) to supply Drug and Placebo for all potential study participants. Each of the study sites submitted to the pharmaceutical company all requested...stimulation, dynamic standing protocol, muscle volume, MRI , bone mineral density, DXA, QCT scans, blood markers, urine markers, 60 sessions of training

  20. The pH heterogeneity in human calf muscle during neuromuscular electrical stimulation.

    PubMed

    Stutzig, Norman; Rzanny, Reinhard; Moll, Kevin; Gussew, Alexander; Reichenbach, Jürgen R; Siebert, Tobias

    2017-06-01

    The aim of the study was to examine pH heterogeneity during fatigue induced by neuromuscular electrical stimulation (NMES) using phosphorus magnetic resonance spectroscopy ( 31 P-MRS). It is hypothesized that three pH components would occur in the 31 P-MRS during fatigue, representing three fiber types. The medial gastrocnemius of eight subjects was stimulated within a 3-Tesla whole body MRI scanner. The maximal force during stimulation (F stim ) was examined by a pressure sensor. Phosphocreatine (PCr), adenosintriphosphate, inorganic phosphate (Pi), and the corresponding pH were estimated by a nonvolume-selective 31 P-MRS using a small loop coil at rest and during fatigue. During fatigue, F stim and PCr decreased to 27% and 33% of their initial levels, respectively. In all cases, the Pi peak increased when NMES was started and split into three different peaks. Based on the single Pi peaks during fatigue, an alkaline (6.76 ± 0.08), a medium (6.40 ± 0.06), and an acidic (6.09 ± 0.05) pH component were observed compared to the pH (7.02 ± 0.02) at rest. It is suggested that NMES is able to induce pH heterogeneity in the medial gastrocnemius, and that the single Pi peaks represent the different muscle fiber types of the skeletal muscle. Magn Reson Med 77:2097-2106, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. The effects of electromyography-triggered electrical stimulation on shoulder subluxation, muscle activation, pain, and function in persons with stroke: A pilot study.

    PubMed

    Jeon, Somyung; Kim, Young; Jung, Kyoungsim; Chung, Yijung

    2017-01-01

    The purpose of this study was to examine the effects of task-oriented electromyography-triggered stimulation for shoulder subluxation, muscle activation, pain and upper extremity function in hemiparetic stroke patients. Twenty participants with subacute hemiparetic stroke were recruited for this study and were randomly divided into two groups: experimental group (n = 10) and control group (n = 10). Subjects in the experimental group participated in task-oriented electromyography triggered stimulation for 30 minutes, five times a week for four weeks, whereas the control group received cyclic functional electrical stimulation for 30 minutes, five times a week for four weeks. Subjects in both groups received conventional physical therapy for four weeks (30 min/day, five times/week). Data collected included the degree of shoulder subluxation which had been confirmed by X-ray, muscle activation of the supraspinatus and posterior deltoid muscles by electromyography, pain by the Visual Analogue Scale (VAS), and hand function by the Fugl-Meyer Assessment (FMA) before and after the four week exercise period. The results showed significant improvement in shoulder subluxation, muscle activation, and VAS results in the experimental group, compared with the control group(p < 0.05). FMA scores showed no significant differences between the two groups. In conclusion, task-oriented electromyography-triggered stimulation improved shoulder subluxation, muscle activation, pain and upper extremity function. These results suggest that task-oriented electromyography-triggered stimulation is effective and beneficial for individuals with subacute stroke, and that further studies should be conducted on multivarious anatomical regions.

  2. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  3. Evoked Electromyographically Controlled Electrical Stimulation

    PubMed Central

    Hayashibe, Mitsuhiro

    2016-01-01

    Time-variant muscle responses under electrical stimulation (ES) are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications. Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES) are also well known source of time-varying characteristics coming from muscle response under ES. Therefore, it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favor of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG) signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm. PMID:27471448

  4. Women who prefer longer penises are more likely to have vaginal orgasms (but not clitoral orgasms): implications for an evolutionary theory of vaginal orgasm.

    PubMed

    Costa, Rui Miguel; Miller, Geoffrey F; Brody, Stuart

    2012-12-01

    Research indicates that (i) women's orgasm during penile-vaginal intercourse (PVI) is influenced by fitness-related male partner characteristics, (ii) penis size is important for many women, and (iii) preference for a longer penis is associated with greater vaginal orgasm consistency (triggered by PVI without concurrent clitoral masturbation). To test the hypothesis that vaginal orgasm frequency is associated with women's reporting that a longer than average penis is more likely to provoke their PVI orgasm. Three hundred twenty-three women reported in an online survey their past month frequency of various sexual behaviors (including PVI, vaginal orgasm, and clitoral orgasm), the effects of a longer than average penis on likelihood of orgasm from PVI, and the importance they attributed to PVI and to noncoital sex. Univariate analyses of covariance with dependent variables being frequencies of various sexual behaviors and types of orgasm and with independent variable being women reporting vs. not reporting that a longer than average penis is important for their orgasm from PVI. Likelihood of orgasm with a longer penis was related to greater vaginal orgasm frequency but unrelated to frequencies of other sexual behaviors, including clitoral orgasm. In binary logistic regression, likelihood of orgasm with a longer penis was related to greater importance attributed to PVI and lesser importance attributed to noncoital sex. Women who prefer deeper penile-vaginal stimulation are more likely to have vaginal orgasm, consistent with vaginal orgasm evolving as part of a female mate choice system favoring somewhat larger than average penises. Future research could extend the findings by overcoming limitations related to more precise measurement of penis length (to the pubis and pressed close to the pubic bone) and girth, and large representative samples. Future experimental research might assess to what extent different penis sizes influence women's satisfaction and likelihood

  5. [Repetitive peripheral muscle stimulation vs. pelvic floor muscle training : Comparison of two approaches to incontinence treatment].

    PubMed

    Schrank, Sabine; Adlbrecht, Laura; Mayer, Hanna

    2017-04-27

    Although there are various measures for the prevention, treatment, and management of urinary incontinence (UI), absorbing aids (and only scant continence-promoting measures) are primarily used in nursing homes in Austria. Repetitive peripheral muscle stimulation (RPMS) is already used as a common method for the treatment and prevention of incontinence in the outpatient setting and is an effective alternative compared to the usual incontinence treatments. However, there are no empirical data as yet on the effect of RPMS in nursing home residents. The primary objective of this study was to evaluate and compare two forms of UI treatment: RPMS and pelvic floor muscle exercises. To this end, a non-equivalent control group design was used. For the purposes of data collection, standardized instruments were used at three points of measurement. The sample consisted of 112 people from 22 institutions. The severity of UI showed a trend, albeit non-significant, toward improvement in both groups. However, a greater increase in quality of life and subjective satisfaction with treatment was observed in the RPMS group compared with the pelvic floor group. Pelvic floor muscle exercises carried out in a consistent and well-guided manner show similar effects compared with technology-assisted therapies. While pelvic floor muscle exercises are feasible in only a small proportion of nursing home residents, RPMS training could be a useful adjunct to conservative incontinence treatment and is also suitable for cognitively impaired individuals. As such, a larger number of elderly individuals could gain access to an appropriate and effective incontinence therapy.

  6. Association of Calf Muscle Pump Stimulation With Sleep Quality in Adults.

    PubMed

    Baniak, Lynn M; Pierce, Carolyn S; McLeod, Kenneth J; Chasens, Eileen R

    2016-12-01

    Prevention of lower extremity fluid pooling (LEFP) is associated with improved sleep quality. Physical activity and compression stockings are non-invasive methods used to manage LEFP, but both are associated with low adherence. Calf muscle pump (CMP) stimulation is an alternative and more convenient approach. Convenience sampling was used to recruit 11 participants between ages 45 and 65 with poor sleep quality. A within-person single-group pre-test-post-test design was used to evaluate changes in sleep quality, daytime sleepiness, and functional outcomes sensitive to impaired sleep as measured by the Pittsburgh Sleep Quality Index (PSQI), Functional Outcomes of Sleep Questionnaire, and Epworth Sleepiness Scale after 4 weeks of CMP stimulation. Statistical analysis included effect size (ES) calculations. After daily use of CMP stimulation, participants demonstrated improvement in overall sleep quality (ES = -.97) and a large reduction in daily disturbance from poor sleep (ES = -1.25). Moderate improvements were observed in daytime sleepiness (ES = -.53) and functional outcomes sensitive to sleepiness (ES = .49). Although causality could not be determined with this study design, these results support further research to determine whether CMP stimulation can improve sleep quality. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Dietary obacunone supplementation stimulates muscle hypertrophy, and suppresses hyperglycemia and obesity through the TGR5 and PPARγ pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiba, Taro, E-mail: thoriba@mail.kikkoman.co.jp; Katsukawa, Masahiro; Mita, Moeko

    Obacunone is a limonoid that is predominantly found in Citrus. Although various biological activities of limonoids have been reported, little is known about the beneficial effects of obacunone on metabolic disorders. In the present study, we examined the effects of dietary obacunone supplementation on obese KKAy mice, to clarify the function of obacunone in metabolic regulation. Mice were pair-fed a normal diet either alone or supplemented with 0.1% w/w obacunone for 28 days. Compared with the control, obacunone-fed mice had lower glycosylated hemoglobin, blood glucose, and white adipose tissue weight, although there was no significant difference in body weight. Obacunonemore » treatment also significantly increased the weight of the gastrocnemius and quadriceps muscles. Reporter gene assays revealed that obacunone stimulated the transcriptional activity of the bile acids-specific G protein-coupled receptor, TGR5, in a dose-dependent manner. In addition, obacunone inhibited adipocyte differentiation in 3T3-L1 cells and antagonized ligand-stimulated peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activity. These results suggest that obacunone stimulates muscle hypertrophy and prevents obesity and hyperglycemia, and that these beneficial effects are likely to be mediated through the activation of TGR5 and inhibition of PPARγ transcriptional activity. - Highlights: • Citrus limonoid obacunone prevents hyperglycemia in obese, diabetic KKAy mice. • Obacunone reduces fat content and stimulates muscle hypertrophy in KKAy mice. • Obacunone stimulates TGR5 transcriptional activities. • Obacunone antagonizes PPARγ and inhibits lipid accumulation in adipocytes.« less

  8. Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle.

    PubMed

    Chilibeck, P D; Bell, G; Jeon, J; Weiss, C B; Murdoch, G; MacLean, I; Ryan, E; Burnham, R

    1999-11-01

    The study purpose was to determine the effect of functional electrical stimulation (FES)-leg cycle ergometer training (30 minutes on 3 d/wk for 8 weeks) on the GLUT-1 and GLUT-4 content of paralyzed skeletal muscle. Biopsy samples of vastus lateralis muscle were obtained pre- and post-training from five individuals with motor-complete spinal cord injury ([SCI] four men and one woman aged 31 to 50 years, 3 to 25 years postinjury involving C5-T8). Western blot analysis indicated that GLUT-1 increased by 52% and GLUT-4 increased by 72% with training (P < .05). This coincided with an increase in the muscle oxidative capacity as indicated by a 56% increase in citrate synthase (CS) activity (P < .05) and an improvement in the insulin sensitivity index as determined from oral glucose tolerance tests (P < .05). It is concluded that FES endurance training is effective to increase glucose transporter protein levels in paralyzed skeletal muscle of individuals with SCI.

  9. Emphysematous vaginitis.

    PubMed

    Lima-Silva, Joana; Vieira-Baptista, Pedro; Cavaco-Gomes, João; Maia, Tiago; Beires, Jorge

    2015-04-01

    Emphysematous vaginitis is a rare condition, characterized by the presence of multiple gas-filled cysts in the vaginal and/or exocervical mucosa. Although its etiology is not completely understood, it is self-limited, with a benign clinical course. Vaginal discharge, sometimes bloody, and pruritus are the most common symptoms. Chronic and acute inflammation can be found, and diseases that impair the immune system and pregnancy have been associated with this condition. A 48-year-old postmenopausal woman, with a history of hysterectomy with several comorbidities, presented with a 4-month history of bloody discharge and vulvar pruritus. Examination showed multiple cystic lesions, 1 to 5 mm, occupying the posterior and right lateral vaginal walls. Speculum examination produced crepitus. Vaginal wet mount was normal, except for diminished lactobacilli; results of Trichomonas vaginalis DNA test and vaginal cultures were negative. Lugol's iodine applied to the vagina was taken up by the intact lesions. Biopsy result showed typical features of emphysematous vaginitis. This is an unusual entity, presenting with common gynecological complaints, and both physicians and pathologists should be aware to prevent misdiagnosis and overtreatment.

  10. Study of the pelvic floor muscles in vaginismus: a concept of pathogenesis.

    PubMed

    Shafik, Ahmed; El-Sibai, Olfat

    2002-10-10

    Neither the cause of vaginismus nor the muscles involved are precisely identified. To define the involved muscles and their role in the pathogenesis of vaginismus. The EMG activity of the levator ani (LA), puborectalis (PR) and bulbocavernosus (BC) muscles was studied in seven female patients (age (years): 25.6(mean)+/-1.2(S.D.)) and seven healthy volunteers who matched the patients in age. Recordings were performed at rest and during induction of vaginismus by a vaginal dilator. Upon approximating the vaginal dilator to the vaginal introitus or introducing it into the vagina of the healthy volunteers, the EMG activity of the LA, PR and BC muscles showed no significant difference from the basal activity. In the patients, the basal EMG activity of the examined muscles was significantly higher than that of the healthy volunteers (P<0.05). Upon vaginismus induction, the muscles showed a significant increase of the EMG activity (P<0.01). The latency recorded a mean of 14.2+/-2.3, 13.9+/-2.3 and 14.1+/-2.2ms (P>0.05) in the LA, PR and BC muscles, respectively. The muscle response was momentary lasting a mean of 31.2+/-5.7s. It was reproducible provided an off-time of a mean of 13.2+/-2.3s was observed. The pelvic floor muscles of vaginismus patients exhibited increased EMG activity at rest and on vaginismus induction; the cause is unknown. The concept of a disordered sacral reflex arc is put forward but needs further studies to be verified.

  11. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors.

    PubMed

    Barber, Laura; Scicchitano, Bianca Maria; Musaro, Antonio

    2015-08-24

    The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers), alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors..

  12. High spatial resolution pressure distribution of the vaginal canal in Pompoir practitioners: A biomechanical approach for assessing the pelvic floor.

    PubMed

    Cacciari, Licia P; Pássaro, Anice C; Amorim, Amanda C; Sacco, Isabel C N

    2017-08-01

    Pompoir is a technique poorly studied in the literature that claims to improve pelvic floor strength and coordination. This study aims to investigate the pelvic floor muscles' coordination throughout the vaginal canal among Pompoir practitioners and non-practitioners by describing a high resolution map of pressure distribution. This cross-sectional, study included 40 healthy women in two groups: control and Pompoir. While these women performed both sustained and "waveform" pelvic floor muscle contractions, the spatiotemporal pressure distribution in their vaginal canals was evaluated by a non-deformable probe fully instrumented with a 10×10 matrix of capacitive transducers. Pompoir group was able to sustain the pressure levels achieved for a longer period (40% longer, moderate effect, P=0.04). During the "waveform" contraction task, Pompoir group achieved lower, earlier peak pressures (moderate effect, P=0.05) and decreased rates of contraction (small effect, P=0.04) and relaxation (large effect, P=0.01). During both tasks, Pompoir group had smaller relative contributions by the mid-region and the anteroposterior planes and greater contributions by the caudal and cranial regions and the latero-lateral planes. Results suggest that specific coordination training of the pelvic floor muscles alters the pressure distribution profile, promoting a more-symmetric distribution of pressure throughout the vaginal canal. Therefore, this study suggests that pelvic floor muscles can be trained to a degree beyond strengthening by focusing on coordination, which results in changes in symmetry of the spatiotemporal pressure distribution in the vaginal canal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Two years of Functional Electrical Stimulation by large surface electrodes for denervated muscles improve skin epidermis in SCI

    PubMed Central

    Albertin, Giovanna; Kern, Helmut; Hofer, Christian; Guidolin, Diego; Porzionato, Andrea; Rambaldo, Anna; Caro, Raffaele De; Piccione, Francesco; Marcante, Andrea; Zampieri, Sandra

    2018-01-01

    Our previous studies have shown that severely atrophic Quadriceps muscles of spinal cord injury (SCI) patients suffering with complete conus and cauda equina lesions, and thus with permanent denervation-induced atrophy and degeneration of muscle fibers, were almost completely rescued to normal size after two years of home-based Functional Electrical Stimulation (h-bFES). Since we used large surface electrodes to stimulate the thigh muscles, we wanted to know if the skin was affected by long-term treatment. Here we report preliminary data of morphometry of skin biopsies harvested from legs of 3 SCI patients before and after two years of h-bFES to determine the total area of epidermis in transverse skin sections. By this approach we support our recently published results obtained randomly measuring skin thickness in the same biopsies after H-E stain. The skin biopsies data of three subjects, taken together, present indeed a statistically significant 30% increase in the area of the epidermis after two years of h-bFES. In conclusion, we confirm a long term positive modulation of electrostimulated epidermis, that correlates with the impressive improvements of the FES-induced muscle strength and bulk, and of the size of the muscle fibers after 2-years of h-bFES. PMID:29686823

  14. The combined influence of stretch, mobility and electrical stimulation in the prevention of muscle fiber atrophy caused hypokinesia and hypodynamia

    NASA Technical Reports Server (NTRS)

    Goldspink, G.; Goldspink, D.; Loughna, P.

    1984-01-01

    The morphological and biochemical changes which occur in the hind limb muscles of the rat in response to hypokinesia and hypodynamia were investigated. Hind limb cast fixation and suspension techniques were employed to study the musclar atrophy after five days of hypokinesia and hypodynamia induced by suspension, appreciable muscular atrophy was apparent, particularly in the anti-gravity muscles. The effect of passive stretching and electrical stimulation on muscle atrophy was studied. Changes in muscle protein mass were assessed with spectrophotometric and radioactive techniques. Passive stretch is shown to counteract muscle disuse atrophy. The change in the numbers of specific muscle fibers in atrophied muscles is discussed.

  15. Vaginal Cancer Overview

    MedlinePlus

    ... are here Home > Types of Cancer > Vaginal Cancer Vaginal Cancer This is Cancer.Net’s Guide to Vaginal Cancer. Use the menu below to choose the ... social workers, and patient advocates. Cancer.Net Guide Vaginal Cancer Introduction Statistics Medical Illustrations Risk Factors and ...

  16. Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor.

    PubMed

    Beckman, Sarah A; Chen, William C W; Tang, Ying; Proto, Jonathan D; Mlakar, Logan; Wang, Bing; Huard, Johnny

    2013-08-01

    We previously reported that mechanical stimulation increased the effectiveness of muscle-derived stem cells (MDSCs) for tissue repair. The objective of this study was to determine the importance of vascular endothelial growth factor (VEGF) on mechanically stimulated MDSCs in a murine model of muscle regeneration. MDSCs were transduced with retroviral vectors encoding the LacZ reporter gene (lacZ-MDSCs), the soluble VEGF receptor Flt1 (sFlt1-MDSCs), or a short hairpin RNA (shRNA) targeting messenger RNA of VEGF (shRNA_VEGF MDSCs). Cells were subjected to 24 hours of mechanical cyclic strain and immediately transplanted into the gastrocnemius muscles of mdx/scid mice. Two weeks after transplantation, angiogenesis, fibrosis, and regeneration were analyzed. There was an increase in angiogenesis in the muscles transplanted with mechanically stimulated lacZ-MDSCs compared with nonstimulated lacZ-MDSCs, sFlt1-MDSCs, and shRNA _VEGF MDSCs. Dystrophin-positive myofiber regeneration was significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. In vitro proliferation of MDSCs was not decreased by inhibition of VEGF; however, differentiation into myotubes and adhesion to collagen were significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. The beneficial effects of mechanical stimulation on MDSC-mediated muscle repair are lost by inhibiting VEGF.

  17. Beneficial Effect of Mechanical Stimulation on the Regenerative Potential of Muscle-Derived Stem Cells Is Lost by Inhibiting Vascular Endothelial Growth Factor

    PubMed Central

    Beckman, Sarah A.; Chen, William C.W.; Tang, Ying; Proto, Jonathan D.; Mlakar, Logan; Wang, Bing; Huard, Johnny

    2016-01-01

    Objective We previously reported that mechanical stimulation increased the effectiveness of muscle-derived stem cells (MDSCs) for tissue repair. The objective of this study was to determine the importance of vascular endothelial growth factor (VEGF) on mechanically stimulated MDSCs in a murine model of muscle regeneration. Approach and Results MDSCs were transduced with retroviral vectors encoding the LacZ reporter gene (lacZ-MDSCs), the soluble VEGF receptor Flt1 (sFlt1-MDSCs), or a short hairpin RNA (shRNA) targeting messenger RNA of VEGF (shRNA_VEGF MDSCs). Cells were subjected to 24 hours of mechanical cyclic strain and immediately transplanted into the gastrocnemius muscles of mdx/scid mice. Two weeks after transplantation, angiogenesis, fibrosis, and regeneration were analyzed. There was an increase in angiogenesis in the muscles transplanted with mechanically stimulated lacZMDSCs compared with nonstimulated lacZ-MDSCs, sFlt1-MDSCs, and shRNA _VEGF MDSCs. Dystrophin-positive myofiber regeneration was significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. In vitro proliferation of MDSCs was not decreased by inhibition of VEGF; however, differentiation into myotubes and adhesion to collagen were significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. Conclusions The beneficial effects of mechanical stimulation on MDSC-mediated muscle repair are lost by inhibiting VEGF. PMID:23723372

  18. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI).

    PubMed

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2018-02-13

    Neuromuscular electrical stimulation (NMES) is commonly used in skeletal muscles in people with spinal cord injury (SCI) with the aim of increasing muscle recruitment and thus muscle force production. NMES has been conventionally used in clinical practice as functional electrical stimulation (FES), using low levels of evoked force that cannot optimally stimulate muscular strength and mass improvements, and thus trigger musculoskeletal changes in paralysed muscles. The use of high intensity intermittent NMES training using wide-pulse width and moderate-intensity as a strength training tool could be a promising method to increase muscle force production in people with SCI. However, this type of protocol has not been clinically adopted because it may generate rapid muscle fatigue and thus prevent the performance of repeated high-intensity muscular contractions in paralysed muscles. Moreover, superimposing patellar tendon vibration onto the wide-pulse width NMES has been shown to elicit further increases in impulse or, at least, reduce the rate of fatigue in repeated contractions in able-bodied populations, but there is a lack of evidence to support this argument in people with SCI. Nine people with SCI received two NMES protocols with and without superimposing patellar tendon vibration on different days (i.e. STIM and STIM+vib), which consisted of repeated 30 Hz trains of 58 wide-pulse width (1000 μs) symmetric biphasic pulses (0.033-s inter-pulse interval; 2 s stimulation train; 2-s inter-train interval) being delivered to the dominant quadriceps femoris. Starting torque was 20% of maximal doublet-twitch torque and stimulations continued until torque declined to 50% of the starting torque. Total knee extensor impulse was calculated as the primary outcome variable. Total knee extensor impulse increased in four subjects when patellar tendon vibration was imposed (59.2 ± 15.8%) but decreased in five subjects (- 31.3 ± 25.7%). However, there were no

  19. Monitoring respiratory muscles.

    PubMed

    Nava, S

    1998-12-01

    The respiratory system consists of two main parts, the lung and the ventilatory pump. The latter consists of the bony structure of the thorax, the central respiratory controllers, the inspiratory and expiratory muscles, and the nerves innervating these muscles. Respiratory muscle fatigue occurs when respiratory muscle endurance is exceeded. Muscle fatigue is defined as a condition in which there is a reduction in the capacity for developing force and/or velocity of a muscle, resulting from muscle activity, and which is reversible by rest. The respiratory muscles are somewhat difficult to assess and the techniques employed are still relatively primitive. The most important methods of respiratory muscles function assessment are: 1) the vital capacity manoeuvre, which depends on maximum inspiratory and expiratory effort by the muscles and may be a useful indicator of respiratory muscle function; 2) radiological screening has been proposed for the detection of diaphragm paralysis. This may be helpful if the paralysis is unilateral, but bilateral paralysis is difficult to detect; and 3) respiratory muscles strength may be assessed with either voluntary or nonvoluntary manoeuvres. The function of the inspiratory muscles is assessed with 3 voluntary dependent manoeuvres. They are the so called Müller manoeuvre (or maximal inspiratory pressure), the sniff test and the combined test. All these three manoeuvres generate a pressure that is a reflection of complex interactions between several muscle groups since the efforts produce different mechanisms of activity of inspiratory and expiratory muscles. Two techniques are presently employed to assess diaphragm function, not being dependent on the patient's motivation: electrical phrenic nerve stimulation and cervical magnetic stimulation. Since it is less painful, magnetic cervical stimulation overcomes some of the difficulties encountered during electrical stimulation. With these two techniques recordings of diaphragmatic

  20. 40-Hz square-wave stimulation requires less energy to produce muscle contraction: compared with the TASER® X26 conducted energy weapon.

    PubMed

    Comeaux, James A; Jauchem, James R; Cox, D Duane; Crane, Carrie C; D'Andrea, John A

    2013-07-01

    Conducted energy weapons (CEWs) (including the Advanced TASER(®) X26 model produced by TASER International, Inc.) incapacitate individuals by causing muscle contractions. In this study using anesthetized swine, the potential incapacitating effect of primarily monophasic, 19-Hz voltage imposed by the commercial CEW was compared with the effect of voltages imposed by a laboratory device that created 40-Hz square waves. Forces of muscle contraction were measured with the use of strain gauges. Stimulation with 40-Hz square waves required less pulse energy than stimulation with the commercial CEW to produce similar muscle contraction. The square-pulse stimulation, at the higher repetition rate, caused a more complete tetanus at a lower energy. Use of such a simple shape of waveform may be used to make future nonlethal weapon devices more efficient. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  1. Is carbohydrate needed to further stimulate muscle protein synthesis/hypertrophy following resistance exercise?

    PubMed Central

    2013-01-01

    It is now well established that protein supplementation after resistance exercise promotes increased muscle protein synthesis, which ultimately results in greater net muscle accretion, relative to exercise alone or exercise with supplementary carbohydrate ingestion. However, it is not known whether combining carbohydrate with protein produces a greater anabolic response than protein alone. Recent recommendations have been made that the composition of the ideal supplement post-exercise would be a combination of a protein source with a high glycemic index carbohydrate. This is based on the hypothesis that insulin promotes protein synthesis, thus maximising insulin secretion will maximally potentiate this action. However, it is still controversial as to whether raising insulin level, within the physiological range, has any effect to further stimulate muscle protein synthesis. The present commentary will review the evidence underpinning the recommendation to consume carbohydrates in addition to a protein supplementation after resistance exercise for the specific purpose of increasing muscle mass. The paucity of data will be discussed, thus our conclusions are that further studies are necessary prior to any conclusions that enable evidence-based recommendations to be made. PMID:24066806

  2. The presence of vaginal Lactobacillus species does not contribute to a measureable difference in amniotic fluid lactate levels collected from the vaginal tract of laboring women.

    PubMed

    Hall, Beverley; Wong, Diana; Healy, Clare; Tracy, Mark B; Tracy, Sally K; Rawlinson, William D

    2017-04-01

    Amniotic fluid lactate research is based on the hypothesis that a relationship exists between fatigued uterine muscles and raised concentrations of the metabolite lactate, which is excreted into the amniotic fluid during labor. To assess potentially confounding effects of lactate-producing organisms on amniotic fluid lactate measurements, we aimed to determine if the presence of vaginal Lactobacillus species was associated with elevated levels of amniotic fluid lactate, measured from the vaginal tract of women in labor. Results from this study contribute to a large prospective longitudinal study of amniotic fluid lactate at a teaching hospital in Sydney, Australia. Amniotic fluid lactate measurement was assessed at the time of routine vaginal examination, after membranes had ruptured, using a hand-held lactate meter StatStripXPress (Nova Biomedical). Vaginal swab samples were collected at the time of the first amniotic fluid lactate measurement and stored for later detection and quantification of Lactobacillus species using a TaqMan real-time PCR assay. Swab sample and amniotic fluid lactate results were paired and analyzed. The PCR assay detected Lactobacillus species in 48 of 388 (12%) vaginal swab specimens (8% positive, 4% low positive) collected from women in labor after membranes had ruptured. There was no significant difference in median and mean (respectively) amniotic fluid lactate levels with (8.35 mmol/L; 8.95 mmol/L) or without (8.5 mmol/L; 9.08 mmol/L) Lactobacillus species detected. There was no association between the presence or level of vaginal Lactobacillus species and the measurement of amniotic fluid lactate collected from the vaginal tract of women during labor. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  3. Electrical stimulation and biofeedback exercise of pelvic floor muscle for children with faecal incontinence after surgery for anorectal malformation.

    PubMed

    Leung, M W Y; Wong, B P Y; Leung, A K P; Cho, J S Y; Leung, E T Y; Chao, N S Y; Chung, K W; Kwok, W K; Liu, K K W

    2006-12-01

    We report our experience of electrical stimulation and biofeedback exercise of pelvic floor muscle for children with faecal incontinence after surgery for anorectal malformation (ARM). Electrical stimulation and biofeedback exercise of pelvic floor muscle were performed on children with post-operative faecal soiling following repair of intermediate or high type ARM. Children under the age of 5 years or with learning difficulties were excluded. They had 6 months supervised programme in the Department of Physiotherapy followed by 6 months home based programme. Bowel management including toilet training, dietary advice, medications and enemas were started before the pelvic floor muscle exercise and continued throughout the programme. Soiling frequency rank, Rintala continence score, sphincter muscle electromyography (EMG) and anorectal manometry were assessed before and after the programme. Wilcoxon signed rank test was performed for statistical analysis. From March 2001 to May 2006, 17 children were referred to the programme. Twelve patients (M:F = 10:2; age = 5-17 years) completed the programme. There was a trend of improvement in Rintala score at sixth month (p = 0.206) and at the end of programme (p = 0.061). Faecal soiling was significantly improved at sixth month (p = 0.01) and at the end of the programme (p = 0.004). Mean sphincter muscle EMG before treatment was 1.699 microV. Mean EMG at sixth month and after the programme was 3.308 microV (p = 0.034) and 3.309 microV (p = 0.002) respectively. After the programme, there was a mean increase in anal sphincter squeeze pressure of 29.9 mmHg (p = 0.007). Electrical stimulation and biofeedback exercise of pelvic floor muscle is an effective adjunct for the treatment of faecal incontinence in children following surgery for anorectal malformation.

  4. Treatment of postmenopausal vaginal atrophy with 10-μg estradiol vaginal tablets.

    PubMed

    Panay, Nick; Maamari, Ricardo

    2012-03-01

    Postmenopausal estrogen deficiency can lead to symptoms of urogenital atrophy. Individuals with urogenital atrophy have symptoms that include vaginal dryness, vaginal and vulval irritation, vaginal soreness, pain and burning during urination (dysuria), increased vaginal discharge, vaginal odour, vaginal infections, recurrent urinary tract infections, pain associated with sexual activity (dyspareunia) and vaginal bleeding associated with sexual activity. Despite the frequency and effects of vaginal atrophy symptoms, they are often under-reported and, consequently, under-treated. Therefore, care of a menopausal woman should include a physical assessment of vaginal atrophy and a dialogue between the physician and the patient that explores existing symptoms and their effect on vulvovaginal health, sexuality and quality-of-life issues. The development of the ultra-low-dose 10-µg estradiol vaginal tablets is in line with the requirements of regulatory agencies and women's health societies regarding the use of the lowest effective hormonal dose. Because of its effectiveness and safety profiles, in addition to its minimal systemic absorption, the 10-µg estradiol vaginal tablet can offer greater reassurance to health-care providers and postmenopausal women with an annual estradiol administration of only 1.14 mg.

  5. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy

    PubMed Central

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.

    2015-01-01

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719

  6. Lipolysis-Stimulating Peptide from Soybean Protects Against High Fat Diet-Induced Apoptosis in Skeletal Muscles.

    PubMed

    Marthandam Asokan, Shibu; Hung, Tsu-Han; Chiang, Wen-Dee; Lin, Wan-Teng

    2018-03-01

    Obesity is generally associated with low-grade chronic inflammation that involves the recruitment of macrophages and other inflammation factors to the adipocytes of obese individuals. Tumor necrosis factor-alpha (TNF-α), a cytokine associated with systemic inflammation, is elevated in conditions of obesity. TNF-α is an important factor that plays an important role in skeletal muscle wasting. Apoptosis of myonuclei contributes to the loss of muscle mass and therefore plays an important role in skeletal muscle atrophy. In mouse models that were fed a high fat diet (HFD), a lipolysis-stimulating peptide-VHVV (purified from hydrolysate resulting from flavourzyme treatment of soy protein) was found to reduce HFD-related apoptotic effects in mice skeletal muscle and potentially control atrophy. HFD fed mice had heavier body weight than those fed with normal chow, and VHVV administration restricted lipid accumulation in muscle tissues of mice fed with HFD but increased nutrient uptake. Moreover, specific concentrations of VHVV regulated TNF-α expression that was elevated by HFD, suppressed apoptosis-related proteins and regulated the proteins of lipid metabolism.

  7. Home-Based Functional Electrical Stimulation for Long-Term Denervated Human Muscle: History, Basics, Results and Perspectives of the Vienna Rehabilitation Strategy

    PubMed Central

    Kern, Helmut

    2014-01-01

    We will here discuss the following points related to Home-based Functional Electrical Stimulation (h-b FES) as treatment for patients with permanently denervated muscles in their legs: 1. Upper (UMN) and lower motor neuron (LMN) damage to the lower spinal cord; 2. Muscle atrophy/hypertrophy versus processes of degeneration, regeneration, and recovery; 3. Recovery of twitch- and tetanic-contractility by h-b FES; 4. Clinical effects of h-b FES using the protocol of the “Vienna School”; 5. Limitations and perspectives. Arguments in favor of using the Vienna protocol include: 1. Increased muscle size in both legs; 2. Improved tetanic force production after 3-5 months of percutaneous stimulation using long stimulus pulses (> 100 msec) of high amplitude (> 80 mAmp), tolerated only in patients with no pain sensibility; 3. Histological and electron microscopic evidence that two years of h-b FES return muscle fibers to a state typical of two weeks denervated muscles with respect to atrophy, disrupted myofibrillar structure, and disorganized Excitation-Contraction Coupling (E-CC) structures; 4. The excitability never recovers to that typical of normal or reinnervated muscles where pulses less than 1 msec in duration and 25 mAmp in intensity excite axons and thereby muscle fibres. It is important to motivate these patients for chronic stimulation throughout life, preferably standing up against the load of the body weight rather than sitting. Only younger and low weight patients can expect to be able to stand-up and do some steps more or less independently. Some patients like to maintain the h-b FES training for decades. Limitations of the procedure are obvious, in part related to the use of multiple, large surface electrodes and the amount of time patients are willing to use for such muscle training. PMID:26913127

  8. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.

    PubMed

    Witt, R; Weigand, A; Boos, A M; Cai, A; Dippold, D; Boccaccini, A R; Schubert, D W; Hardt, M; Lange, C; Arkudas, A; Horch, R E; Beier, J P

    2017-02-28

    Volumetric muscle loss caused by trauma or after tumour surgery exceeds the natural regeneration capacity of skeletal muscle. Hence, the future goal of tissue engineering (TE) is the replacement and repair of lost muscle tissue by newly generating skeletal muscle combining different cell sources, such as myoblasts and mesenchymal stem cells (MSCs), within a three-dimensional matrix. Latest research showed that seeding skeletal muscle cells on aligned constructs enhance the formation of myotubes as well as cell alignment and may provide a further step towards the clinical application of engineered skeletal muscle. In this study the myogenic differentiation potential of MSCs upon co-cultivation with myoblasts and under stimulation with hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) was evaluated. We further analysed the behaviour of MSC-myoblast co-cultures in different 3D matrices. Primary rat myoblasts and rat MSCs were mono- and co-cultivated for 2, 7 or 14 days. The effect of different concentrations of HGF and IGF-1 alone, as well as in combination, on myogenic differentiation was analysed using microscopy, multicolour flow cytometry and real-time PCR. Furthermore, the influence of different three-dimensional culture models, such as fibrin, fibrin-collagen-I gels and parallel aligned electrospun poly-ε-caprolacton collagen-I nanofibers, on myogenic differentiation was analysed. MSCs could be successfully differentiated into the myogenic lineage both in mono- and in co-cultures independent of HGF and IGF-1 stimulation by expressing desmin, myocyte enhancer factor 2, myosin heavy chain 2 and alpha-sarcomeric actinin. An increased expression of different myogenic key markers could be observed under HGF and IGF-1 stimulation. Even though, stimulation with HGF/IGF-1 does not seem essential for sufficient myogenic differentiation. Three-dimensional cultivation in fibrin-collagen-I gels induced higher levels of myogenic differentiation

  9. Premenarchal, recurrent vaginal discharge associated with an incomplete obstructing longitudinal vaginal septum.

    PubMed

    Hansen, Keith A; DeWitt, Jason

    2005-12-01

    To describe an unusual, premenarchal presentation of an obstructive vaginal anomaly. Case Report. University Medical Center. Premenarchal subject Vaginogram, vaginal septum resection. Vaginal septum resection with resolution of vaginal discharge. This case demonstrates some of the typical features of uterus didelphys bicollis with incomplete obstructing hemivagina, but had a unique presentation with premenarchal, recurrent vaginal discharge. Typically, patients with an obstructing mullerian anomaly present after menarche with pelvic pain and a mass. The vaginogram assists in the preoperative definition of abnormal anatomy which allows the surgeon to develop the most appropriate surgical approach. Resection of this incompletely obstructing vaginal septum resulted in resolution of the recurrent vaginal discharge.

  10. Hysterectomy - vaginal - discharge

    MedlinePlus

    Vaginal hysterectomy - discharge; Laparoscopically assisted vaginal hysterectomy - discharge; LAVH - discharge ... you were in the hospital, you had a vaginal hysterectomy. Your surgeon made a cut in your ...

  11. Vaginal foreign bodies.

    PubMed

    Stricker, T; Navratil, F; Sennhauser, F H

    2004-04-01

    To evaluate the clinical features and outcome in girls with a vaginal foreign body. Retrospective review of medical records of 35 girls with a vaginal foreign body seen in an outpatient clinic for paediatric and adolescent gynaecology between 1980 and 2000. The ages ranged from 2.6 to 9.2 years. The most common symptom was blood-stained vaginal discharge/vaginal bleeding (49%). Duration of symptoms varied from 1 day to 2 years. Fifty-four percent of the patients recalled insertion of the foreign object, usually by the girl herself. All but three patients (91%) either recalled insertion of the foreign object and/or had vaginal bleeding or blood-stained or foul-smelling vaginal discharge, and/or visualization or palpation of the foreign body in physical examination. Symptoms resolved after removal of the foreign body followed by a single irrigation with Providon-Iod (Betadine). In the majority of patients a carefully obtained history and physical examination suggest the diagnosis of a vaginal foreign object. The leading symptoms are vaginal bleeding and blood-stained or foul smelling vaginal discharge. Removal of the foreign object followed by a single irrigation with Providon-Iod is the definitive treatment and does not require additional measures.

  12. Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles.

    PubMed

    Jessen, Niels; Pold, Rasmus; Buhl, Esben S; Jensen, Lasse S; Schmitz, Ole; Lund, Sten

    2003-04-01

    Physical activity is known to increase insulin action in skeletal muscle, and data have indicated that 5'-AMP-activated protein kinase (AMPK) is involved in the molecular mechanisms behind this beneficial effect. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) can be used as a pharmacological tool to repetitively activate AMPK, and the objective of this study was to explore whether the increase in insulin-stimulated glucose uptake after either long-term exercise or chronic AICAR administration was followed by fiber-type-specific changes in insulin signaling and/or changes in GLUT-4 expression. Wistar rats were allocated into three groups: an exercise group trained on treadmill for 5 days, an AICAR group exposed to daily subcutaneous injections of AICAR, and a sedentary control group. AMPK activity, insulin-stimulated glucose transport, insulin signaling, and GLUT-4 expression were determined in muscles characterized by different fiber type compositions. Both exercised and AICAR-injected animals displayed a fiber-type-specific increase in glucose transport with the most marked increase in muscles with a high content of type IIb fibers. This increase was accompanied by a concomitant increase in GLUT-4 expression. Insulin signaling as assessed by phosphatidylinositol 3-kinase and PKB/Akt activity was enhanced only after AICAR administration and in a non-fiber-type-specific manner. In conclusion, chronic AICAR administration and long-term exercise both improve insulin-stimulated glucose transport in skeletal muscle in a fiber-type-specific way, and this is associated with an increase in GLUT-4 content.

  13. Differences in muscle activation patterns during pelvic floor muscle contraction and Valsalva maneuver.

    PubMed

    Thompson, Judith A; O'Sullivan, Peter B; Briffa, N Kathryn; Neumann, Patricia

    2006-01-01

    To investigate the different muscle activation patterns around the abdomino-pelvic cavity in continent women and their effect on pressure generation during a correct pelvic floor muscle (PFM) contraction and a Valsalva maneuver. Thirteen continent women were assessed. Abdominal, chest wall, and PFM activity and vaginal and intra-abdominal pressure (IAP), were recorded during two tasks: PFM contraction and Valsalva whilst bladder base position was monitored on trans-abdominal ultrasound. A correct PFM contraction was defined as one that resulted in bladder base elevation and a Valsalva resulted in bladder base depression. Comparison of the mean of the normalized EMG activity of all the individual muscle groups was significantly different between PFM contraction and Valsalva (P = 0.04). During a correct PFM contraction, the PFM were more active than during Valsalva (P = 0.001). During Valsalva, all the abdominal muscles (IO (P = 0.006), EO (P < 0.001), RA (P = 0.011)), and the chest wall (P < 0.001) were more active than during PFM contraction. The change in IAP was greater during Valsalva (P = 0.001) but there was no difference in the change in vaginal pressure between PFM contraction and Valsalva (P = 0.971). This study demonstrates a difference in muscle activation patterns between a correct PFM contraction and Valsalva maneuver. It is important to include assessment of the abdominal wall, chest wall, and respiration in the clinical evaluation of women performing PFM exercises as abdominal wall bracing combined with an increase in chest wall activity may cause rises in IAP and PFM descent. (c) 2005 Wiley-Liss, Inc.

  14. Ketoisocaproic acid, a metabolite of leucine, suppresses insulin-stimulated glucose transport in skeletal muscle cells in a BCAT2-dependent manner

    PubMed Central

    Moghei, Mahshid; Tavajohi-Fini, Pegah; Beatty, Brendan

    2016-01-01

    Although leucine has many positive effects on metabolism in multiple tissues, elevated levels of this amino acid and the other branched-chain amino acids (BCAAs) and their metabolites are implicated in obesity and insulin resistance. While some controversies exist about the direct effect of leucine on insulin action in skeletal muscle, little is known about the direct effect of BCAA metabolites. Here, we first showed that the inhibitory effect of leucine on insulin-stimulated glucose transport in L6 myotubes was dampened when other amino acids were present, due in part to a 140% stimulation of basal glucose transport (P < 0.05). Importantly, we also showed that α-ketoisocaproic acid (KIC), an obligatory metabolite of leucine, stimulated mTORC1 signaling but suppressed insulin-stimulated glucose transport (−34%, P < 0.05) in an mTORC1-dependent manner. The effect of KIC on insulin-stimulated glucose transport was abrogated in cells depleted of branched-chain aminotransferase 2 (BCAT2), the enzyme that catalyzes the reversible transamination of KIC to leucine. We conclude that although KIC can modulate muscle glucose metabolism, this effect is likely a result of its transamination back to leucine. Therefore, limiting the availability of leucine, rather than those of its metabolites, to skeletal muscle may be more critical in the management of insulin resistance and its sequelae. PMID:27488662

  15. Clinical characteristics of aerobic vaginitis and its association to vaginal candidiasis, trichomonas vaginitis and bacterial vaginosis.

    PubMed

    Jahic, Mahira; Mulavdic, Mirsada; Nurkic, Jasmina; Jahic, Elmir; Nurkic, Midhat

    2013-12-01

    Examine clinical characteristics of aerobic vaginitis and mixed infection for the purpose of better diagnostic accuracy and treatment efficiency. Prospective research has been conducted at Clinic for Gynecology and Obstetrics, Department for Microbiology and Pathology at Polyclinic for laboratory diagnostic and Gynecology and Obstetrics Department at Health Center Sapna. Examination included 100 examinees with the signs of vaginitis. anamnesis, clinical, gynecological and microbiological examination of vaginal smear. The average age of the examinees was 32,62±2,6. Examining vaginal smears of the examinees with signs of vaginitis in 96% (N-96) different microorganisms have been isolated, while in 4% (N-4) findings were normal. AV has been found in 51% (N-51) of the examinees, Candida albicans in 17% (N-17), BV in 15% (N-15), Trichomonas vaginalis in 13% (N-13). In 21% (N-21) AV was diagnosed alone while associated with other agents in 30% (N-30). Most common causes of AV are E. coli (N-55) and E. faecalis (N-52). AV and Candida albicanis have been found in (13/30, 43%), Trichomonas vaginalis in (9/30, 30%) and BV (8/30, 26%). Vaginal secretion is in 70,05% (N-36) yellow coloured, red vagina wall is recorded in 31,13% (N-16) and pruritus in 72,54% (N-37). Increased pH value of vagina found in 94,10% (N-48). The average pH value of vaginal environment was 5,15±0,54 and in associated presence of AV and VVC, TV and BV was 5,29±0,56 which is higher value considering presence of AV alone but that is not statistically significant difference (p>0,05). Amino-odor test was positive in 29,94% (N-15) of associated infections. Lactobacilli are absent, while leukocytes are increased in 100% (N-51) of the examinees with AV. AV is vaginal infection similar to other vaginal infections. It is important to be careful while diagnosing because the treatment of AV differentiates from treatment of other vaginitis.

  16. A myosin II ATPase inhibitor reduces force production, glucose transport, and phosphorylation of AMPK and TBC1D1 in electrically stimulated rat skeletal muscle.

    PubMed

    Blair, David R; Funai, Katsuhiko; Schweitzer, George G; Cartee, Gregory D

    2009-05-01

    Contraction-stimulated glucose transport by skeletal muscle appears to be caused by the cumulative effects of multiple inputs [potentially including AMP-activated protein kinase (AMPK), Ca(2+) flux, and force production], making it challenging to isolate the roles of these putative regulatory factors. To distinguish the effects of force production from the direct consequences of Ca(2+) flux, the predominantly type II rat epitrochlearis muscle was incubated without (vehicle) or with N-benzyl-p-toluenesulfonamide (BTS), a highly specific myosin II ATPase inhibitor that prevents force production by electrically stimulated (ES) type II fibers without altering cytosolic Ca(2+). In ES muscles, BTS vs. vehicle had an 84% reduction in force production and a 57% decrement in contraction-stimulated 3-O-methylglucose transport (3MGT). BTS did not alter the ES increase in phosphorylation of CaMKII (indicative of cytosolic Ca(2+)) or the amount of glycogen depletion. ES caused significant reductions in ATP (48%) and phosphocreatine (67%) concentrations for vehicle-treated muscles. For BTS-treated muscles, ES did not reduce ATP and caused only a 42% decrease in phosphocreatine. There was an ES increase in phosphorylation of AMPK, acetyl-CoA carboxylase (an AMPK substrate), and TBC1D1 for vehicle-treated muscles but not for BTS-treated muscles. These results point toward an essential role for tension-related events, including AMPK activation, in the 57% contraction-stimulated increase in 3MGT that was inhibited by BTS and further suggest a possible role for TBC1D1 phosphorylation. Non-tension-related events (e.g., increased cytosolic Ca(2+) rather than increased AMPK and TBC1D1 phosphorylation) are implicated in the contraction-stimulated increase in 3MGT that persisted in the presence of BTS.

  17. Value of bacterial culture of vaginal swabs in diagnosis of vaginal infections.

    PubMed

    Nenadić, Dane; Pavlović, Miloš D

    2015-06-01

    Vaginal and cervical swab culture is still very common procedure in our country's everyday practice whereas simple and rapid diagnostic methods have been very rarely used. The aim of this study was to show that the employment of simple and rapid diagnostic tools [vaginal fluid wet mount microscopy (VFWMM), vaginal pH and potassium hydroxide (KOH) test] offers better assessment of vaginal environment than standard microbiologic culture commonly used in Serbia. This prospective study included 505 asymptomatic pregnant women undergoing VFWMM, test with 10% KOH, determination of vaginal pH and standard culture of cervicovaginal swabs. Combining findings from the procedures was used to make diagnoses of bacterial vaginosis (BV) and vaginitis. In addition, the number of polymorphonuclear leukocytes (PMN) was determined in each sample and analyzed along with other findings. Infections with Candida albicans and Trichomonas vaginalis were confirmed or excluded by microscopic examination. In 36 (6%) patients cervicovaginal swab cultures retrieved several aerobes and facultative anaerobes, whereas in 52 (11%) women Candida albicans was isolated. Based on VFWMM findings and clinical criteria 96 (19%) women had BV, 19 (4%) vaginitis, and 72 (14%) candidiasis. Of 115 women with BV and vaginitis, pH 4.5 was found in 5, and of 390 with normal findings 83 (21%) had vaginal pH 4.5. Elevated numbers of PMN were found in 154 (30%) women--in 83 (54%) of them VFWMM was normal. Specificity and sensitivity of KOH test and vaginal pH determination in defining pathological vaginal flora were 95% and 81%, and 79% and 91%, respectively. Cervicovaginal swab culture is expensive but almost non-informative test in clinical practice. The use of simpler and rapid methods as vaginal fluid wet mount microscopy, KOH test and vaginal pH offers better results in diagnosis, and probably in the treatment and prevention of sequels of vaginal infections.

  18. Fractional CO2 Laser: From Skin Rejuvenation to Vulvo-Vaginal Reshaping.

    PubMed

    Filippini, Maurizio; Del Duca, Ester; Negosanti, Francesca; Bonciani, Diletta; Negosanti, Luca; Sannino, Mario; Cannarozzo, Giovanni; Nisticò, Steven Paul

    2017-03-01

    The CO 2 laser has become the gold standard treatment in dermatologic surgery for the treatment of a large number of skin and mucosal lesions. The introduction of the fractional micro-ablative technology represented an integration to the ablative resurfacing technique, reducing the healing time and the side effects. Vaginal rejuvenation performed with this technique is a minimally invasive procedure that stimulates internal tissues of the female lower genital tract to regenerate the mucosa, improving tissue trophism and restoring the correct functionality. In our experience, 386 menopausal women affected with vulvo-vaginal atrophy (VVA) were treated with three section of fractional micro-ablative CO 2 laser. After three treatments, patients reported a complete improvement of the symptoms (59.94% dryness, 56.26% burn, sensation, 48.75% dyspareunia, 56.37% itch, 73.15% soreness, and 48.79% vaginal introitus pain). Fractional micro-ablative CO 2 laser seems to reduce symptoms related to vaginal atrophy. The beneficial effects were reported just after the first session and confirmed 12 months after the last session.

  19. Local Muscle Metabolic Demand Induced by Neuromuscular Electrical Stimulation and Voluntary Contractions at Different Force Levels: A NIRS Study.

    PubMed

    Muthalib, Makii; Kerr, Graham; Nosaka, Kazunori; Perrey, Stephane

    2016-06-13

    Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES) has been consistently documented to be greater than voluntary contractions (VOL) at the same force level (10-50% maximal voluntary contraction-MVC). However, we have shown using a near-infrared spectroscopy (NIRS) technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb) during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC) and VOL at 30% MVC (VOL-30%MVC) and MVC (VOL-MVC) level in 8 healthy men (23-33-y). Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL.

  20. Local Muscle Metabolic Demand Induced by Neuromuscular Electrical Stimulation and Voluntary Contractions at Different Force Levels: A NIRS Study

    PubMed Central

    Muthalib, Makii; Kerr, Graham; Nosaka, Kazunori; Perrey, Stephane

    2016-01-01

    Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES) has been consistently documented to be greater than voluntary contractions (VOL) at the same force level (10-50% maximal voluntary contraction-MVC). However, we have shown using a near-infrared spectroscopy (NIRS) technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb) during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC) and VOL at 30% MVC (VOL-30%MVC) and MVC (VOL-MVC) level in 8 healthy men (23-33-y). Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL. PMID:27478574

  1. Towards rebuilding vaginal support utilizing an extracellular matrix bioscaffold.

    PubMed

    Liang, Rui; Knight, Katrina; Easley, Deanna; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A

    2017-07-15

    As an alternative to polypropylene mesh, we explored an extracellular matrix (ECM) bioscaffold derived from urinary bladder matrix (MatriStem™) in the repair of vaginal prolapse. We aimed to restore disrupted vaginal support simulating application via transvaginal and transabdominal approaches in a macaque model focusing on the impact on vaginal structure, function, and the host immune response. In 16 macaques, after laparotomy, the uterosacral ligaments and paravaginal attachments to pelvic side wall were completely transected (IACUC# 13081928). 6-ply MatriStem was cut into posterior and anterior templates with a portion covering the vagina and arms simulating uterosacral ligaments and paravaginal attachments, respectively. After surgically exposing the correct anatomical sites, in 8 animals, a vaginal incision was made on the anterior and posterior vagina and the respective scaffolds were passed into the vagina via these incisions (transvaginal insertion) prior to placement. The remaining 8 animals underwent the same surgery without vaginal incisions (transabdominal insertion). Three months post implantation, firm tissue bands extending from vagina to pelvic side wall appeared in both MatriStem groups. Experimental endpoints examining impact of MatriStem on the vagina demonstrated that vaginal biochemical and biomechanical parameters, smooth muscle thickness and contractility, and immune responses were similar in the MatriStem no incision group and sham-operated controls. In the MatriStem incision group, a 41% decrease in vaginal stiffness (P=0.042), a 22% decrease in collagen content (P=0.008) and a 25% increase in collagen subtypes III/I was observed vs. Sham. Active MMP2 was increased in both Matristem groups vs. Sham (both P=0.002). This study presents a novel application of ECM bioscaffolds as a first step towards the rebuilding of vaginal support. Pelvic organ prolapse is a common condition related to failure of the supportive soft tissues of the vagina

  2. Effects of Stimulating Hip and Trunk Muscles on Seated Stability, Posture and Reach after Spinal Cord Injury

    PubMed Central

    Triolo, Ronald J.; Bailey, Stephanie Nogan; Miller, Michael E.; Lombardo, Lisa M.; Audu, Musa L.

    2014-01-01

    Objective To determine the stimulated strength of the paralyzed gluteal and paraspinal muscles and their effects on the seated function of individuals with paralysis. Design Case series with subjects acting as their own concurrent controls. Setting Hospital-based clinical biomechanics laboratory. Participants Eight users of implanted neuroprostheses for lower extremity function with low-cervical or thoracic level injuries. Interventions Dynamometry and digital motion capture both with and without stimulation to the hip and trunk muscles. Main Outcome Measure(s) Isometric trunk extension moment at 0, 15 and 30 degrees of flexion; seated stability in terms of simulated isokinetic rowing; pelvic tilt, shoulder height, loaded and unloaded bimanual reaching to different heights, and subjective ratings of difficulty during unsupported sitting. Results Stimulation produced significant increases in mean trunk extension moment (9.2±9.5Nm, p=0.0001) and rowing force (27.4±23.1N, p=0.0123) over baseline volitional values. Similarly, stimulation induced positive changes in average pelvic tilt (16.7±15.7deg) and shoulder height (2.2±2.5cm) during quiet sitting and bimanual reaching, and increased mean reach distance (5.5±6.6cm) over all subjects, target heights and loading conditions. Subjects consistently rated tasks with stimulation easier than voluntary effort alone. Conclusions In spite of considerable inter-subject variability, stabilizing the paralyzed trunk with electrical stimulation can positively impact seated posture, extend forward reach and allow exertion of larger forces on objects in the environment. PMID:23500182

  3. [Readjustment of the efferent activity of the scratching generator in response to stimulation of muscle afferents of the hindlimb of the decerebrate immobilized cat].

    PubMed

    Shimanskiĭ, Iu P; Baev, K V

    1987-01-01

    Rebuildings of the scratching generator activity caused by phasic electrical stimulation of ipsilateral hindlimb muscle nerves during different hindlimb positions were studied in decerebrated immobilized cats. Strong dependence of these rebuildings on the stimulation phase was observed. The character of the "scratch" cycle duration rebuilding was formed by the scratching generator tendency to bring efferent activity into such correlation with the stimulus that the stimulation moment coincided with the moment of efferent activity phase triggering. Phasic altering of the efferent activity intensity rebuilding was observed against a background of "aiming" and "scratching" activity correlation shift in the direction of strengthening activation of muscles innervated by the stimulated nerve. This rebuilding was intensified when the hindlimb deflects from the aimed position in the direction of corresponding muscles stretching. Physiological sense of "rebuilding absence phases" is discussed. It is postulated that absence of the duration and intensity changes can be achieved simultaneously only with definite correlation between phase and intensity of the afferent impulsation burst.

  4. Muscle and bone plasticity after spinal cord injury: Review of adaptations to disuse and to electrical muscle stimulation

    PubMed Central

    Dudley-Javoroski, Shauna; Shields, Richard K.

    2009-01-01

    The paralyzed musculoskeletal system retains a remarkable degree of plasticity after spinal cord injury (SCI). In response to reduced activity, muscle atrophies and shifts toward a fast-fatigable phenotype arising from numerous changes in histochemistry and metabolic enzymes. The loss of routine gravitational and muscular loads removes a critical stimulus for maintenance of bone mineral density (BMD), precipitating neurogenic osteoporosis in paralyzed limbs. The primary adaptations of bone to reduced use are demineralization of epiphyses and thinning of the diaphyseal cortical wall. Electrical stimulation of paralyzed muscle markedly reduces deleterious post-SCI adaptations. Recent studies demonstrate that physiological levels of electrically induced muscular loading hold promise for preventing post-SCI BMD decline. Rehabilitation specialists will be challenged to develop strategies to prevent or reverse musculoskeletal deterioration in anticipation of a future cure for SCI. Quantifying the precise dose of stress needed to efficiently induce a therapeutic effect on bone will be paramount to the advancement of rehabilitation strategies. PMID:18566946

  5. Adaptive change in electrically stimulated muscle: a framework for the design of clinical protocols.

    PubMed

    Salmons, Stanley

    2009-12-01

    Adult mammalian skeletal muscles have a remarkable capacity for adapting to increased use. Although this behavior is familiar from the changes brought about by endurance exercise, it is seen to a much greater extent in the response to long-term neuromuscular stimulation. The associated phenomena include a markedly increased resistance to fatigue, and this is the key to several clinical applications. However, a more rational basis is needed for designing regimes of stimulation that are conducive to an optimal outcome. In this review I examine relevant factors, such as the amount, frequency, and duty cycle of stimulation, the influence of force generation, and the animal model. From these considerations a framework emerges for the design of protocols that yield an overall functional profile appropriate to the application. Three contrasting examples illustrate the issues that need to be addressed clinically.

  6. Vaginal eroticism and female orgasm: a current appraisal.

    PubMed

    Alzate, H

    1985-01-01

    In the light of very recent studies, this paper reviews two controversial issues in the area of female sexuality: vaginal eroticism and female orgasm. From the available evidence, it is concluded that most (and probably all) women possess vaginal zones, mainly located on the anterior wall, whose tactile stimulation can lead to orgasm. The apparent contradiction between this finding and the ample evidence indicating that coitus is an inefficient method of eliciting female orgasm might be explained, at least in part, by topographical and mechanical reasons, as well as by differences between male and female orgasm latencies. As to the confusion regarding the types of female orgasm, it may be clarified by applying this concept not to the real phenomenon of orgasm, but only to its manner of elicitation.

  7. Vaginal yeast infection

    MedlinePlus

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the ...

  8. Leucine and alpha-Ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    The branched-chain amino acid, leucine, acts as a nutrient signal to stimulate protein synthesis in skeletal muscle of young pigs. However, the chemical structure responsible for this effect has not been identified. We have shown that the other branched-chain amino acids, isoleucine and valine, are ...

  9. Clinical Characteristics of Aerobic Vaginitis and Its Association to Vaginal Candidiasis, Trichomonas Vaginitis and Bacterial Vaginosis

    PubMed Central

    Jahic, Mahira; Mulavdic, Mirsada; Nurkic, Jasmina; Jahic, Elmir; Nurkic, Midhat

    2013-01-01

    ABSTRACT Aim of the work: Examine clinical characteristics of aerobic vaginitis and mixed infection for the purpose of better diagnostic accuracy and treatment efficiency. Materials and methods: Prospective research has been conducted at Clinic for Gynecology and Obstetrics, Department for Microbiology and Pathology at Polyclinic for laboratory diagnostic and Gynecology and Obstetrics Department at Health Center Sapna. Examination included 100 examinees with the signs of vaginitis. Examination consisted of: anamnesis, clinical, gynecological and microbiological examination of vaginal smear. Results: The average age of the examinees was 32,62±2,6. Examining vaginal smears of the examinees with signs of vaginitis in 96% (N-96) different microorganisms have been isolated, while in 4% (N-4) findings were normal. AV has been found in 51% (N-51) of the examinees, Candida albicans in 17% (N-17), BV in 15% (N-15), Trichomonas vaginalis in 13% (N-13). In 21% (N-21) AV was diagnosed alone while associated with other agents in 30% (N-30). Most common causes of AV are E. coli (N-55) and E. faecalis (N-52). AV and Candida albicanis have been found in (13/30, 43%), Trichomonas vaginalis in (9/30, 30%) and BV (8/30, 26%). Vaginal secretion is in 70,05% (N-36) yellow coloured, red vagina wall is recorded in 31,13% (N-16) and pruritus in 72,54% (N-37). Increased pH value of vagina found in 94,10% (N-48). The average pH value of vaginal environment was 5,15±0,54 and in associated presence of AV and VVC, TV and BV was 5,29±0,56 which is higher value considering presence of AV alone but that is not statistically significant difference (p>0,05). Amino-odor test was positive in 29,94% (N-15) of associated infections. Lactobacilli are absent, while leukocytes are increased in 100% (N-51) of the examinees with AV. Conclusion: AV is vaginal infection similar to other vaginal infections. It is important to be careful while diagnosing because the treatment of AV differentiates from

  10. Evaluation of stimulation parameters on aortomyoplasty, using Latissimus Dorsi muscle in a goat model: an acute study.

    PubMed

    Hakami, A; Santamore, W P; Stremel, R W; Tobin, G; Hjortdal, V E

    1999-08-01

    Dynamic aortomyoplasty using Latissimus Dorsi muscle (LDM) has been shown to improve myocardial function. However, systematic examination of the effects of stimulation parameters on aortic wrap function has not been done. Thus, the present study measures the direct effect of stimulation voltage, pulse train duration, frequency of the pulses, and the duration of the stimulation delay from R wave on the aortic wrap function. In eight female goats, the left LDM was wrapped around the descending aorta. The muscle was then subjected to electrical stimulation, altering frequency of stimulation pulses (16.6, 20, 25, 33 and 50 Hz), amplitude (2, 4, 6, 8 and 10 V), and number of pulses (2, 4, 6, 8 and 10 pulses) in a train stimulation. Left ventricular, aortic pressure, and pressure generated by LDM on aorta (wrap pressure) was measured. The changes in hemodynamic parameters mentioned above were calculated and compared for different stimulation parameters during unassisted and assisted cardiac cycles. Aortomyoplasty counterpulsation using LDM provided significant improvement in wrap pressure (78 mmHg +/- 2), aortic diastolic pressure, and changes in aortic diastolic pressure from 2 to 4 V (P < 0.05). Further increase in amplitude did not make any significant improvements of the above mentioned parameters. Significant augmentation of wrap pressure (82 mmHg +/- 2), aortic diastolic pressure (79 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) occurred at 6 pulses (P < 0.05). Other changes in number of pulses did not show any significant improvements. Significant improvement of wrap pressure (80 mmHg +/- 2), aortic diastolic pressure (73 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) was observed with a frequency of 33 Hz. To examine a wide range of delays from the onset of the QRS complex to LDM stimulation, stimulation was delivered randomly. The exact delay was determined from the ECG signal and superimposed LDM stimulation pulses

  11. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise

    PubMed Central

    Gundermann, David M.; Fry, Christopher S.; Dickinson, Jared M.; Walker, Dillon K.; Timmerman, Kyle L.; Drummond, Micah J.; Volpi, Elena

    2012-01-01

    Blood flow restriction (BFR) to contracting skeletal muscle during low-intensity resistance exercise training increases muscle strength and size in humans. However, the mechanism(s) underlying these effects are largely unknown. We have previously shown that mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis (MPS) are stimulated following an acute bout of BFR exercise. The purpose of this study was to test the hypothesis that reactive hyperemia is the mechanism responsible for stimulating mTORC1 signaling and MPS following BFR exercise. Six young men (24 ± 2 yr) were used in a randomized crossover study consisting of two exercise trials: low-intensity resistance exercise with BFR (BFR trial) and low-intensity resistance exercise with sodium nitroprusside (SNP), a pharmacological vasodilator infusion into the femoral artery immediately after exercise to simulate the reactive hyperemia response after BFR exercise (SNP trial). Postexercise mixed-muscle fractional synthetic rate from the vastus lateralis increased by 49% in the BFR trial (P < 0.05) with no change in the SNP trial (P > 0.05). BFR exercise increased the phosphorylation of mTOR, S6 kinase 1, ribosomal protein S6, ERK1/2, and Mnk1-interacting kinase 1 (P < 0.05) with no changes in mTORC1 signaling in the SNP trial (P > 0.05). We conclude that reactive hyperemia is not a primary mechanism for BFR exercise-induced mTORC1 signaling and MPS. Further research is necessary to elucidate the cellular mechanism(s) responsible for the increase in mTOR signaling, MPS, and hypertrophy following acute and chronic BFR exercise. PMID:22362401

  12. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise.

    PubMed

    Gundermann, David M; Fry, Christopher S; Dickinson, Jared M; Walker, Dillon K; Timmerman, Kyle L; Drummond, Micah J; Volpi, Elena; Rasmussen, Blake B

    2012-05-01

    Blood flow restriction (BFR) to contracting skeletal muscle during low-intensity resistance exercise training increases muscle strength and size in humans. However, the mechanism(s) underlying these effects are largely unknown. We have previously shown that mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis (MPS) are stimulated following an acute bout of BFR exercise. The purpose of this study was to test the hypothesis that reactive hyperemia is the mechanism responsible for stimulating mTORC1 signaling and MPS following BFR exercise. Six young men (24 ± 2 yr) were used in a randomized crossover study consisting of two exercise trials: low-intensity resistance exercise with BFR (BFR trial) and low-intensity resistance exercise with sodium nitroprusside (SNP), a pharmacological vasodilator infusion into the femoral artery immediately after exercise to simulate the reactive hyperemia response after BFR exercise (SNP trial). Postexercise mixed-muscle fractional synthetic rate from the vastus lateralis increased by 49% in the BFR trial (P < 0.05) with no change in the SNP trial (P > 0.05). BFR exercise increased the phosphorylation of mTOR, S6 kinase 1, ribosomal protein S6, ERK1/2, and Mnk1-interacting kinase 1 (P < 0.05) with no changes in mTORC1 signaling in the SNP trial (P > 0.05). We conclude that reactive hyperemia is not a primary mechanism for BFR exercise-induced mTORC1 signaling and MPS. Further research is necessary to elucidate the cellular mechanism(s) responsible for the increase in mTOR signaling, MPS, and hypertrophy following acute and chronic BFR exercise.

  13. Effect of estrogen on molecular and functional characteristics of the rodent vaginal muscularis

    PubMed Central

    Basha, Maureen E.; Chang, Shaohua; Burrows, Lara J.; Lassmann, Jenny; Wein, Alan J.; Moreland, Robert S.; Chacko, Samuel K.

    2013-01-01

    Introduction Vaginal atrophy is a consequence of menopause however little is known concerning the effect of a decrease in systemic estrogen on vaginal smooth muscle structure and function. As the incidence of pelvic floor disorders increases with age, it is important to determine if estrogen regulates the molecular composition and contractility of the vaginal muscularis. Aim The goal of this study was to determine the effect of estrogen on molecular and functional characteristics of the vaginal muscularis utilizing a rodent model of surgical menopause. Methods 3–4 month old Sprague Dawley rats underwent sham laparotomy (Sham, n=18) or ovariectomy (Ovx, n=39). Two weeks following surgery, animals received a subcutaneous osmotic pump containing vehicle (Sham, Ovx) or 17- β estradiol (Ovx). Animals were euthanized one week later and the proximal vagina was collected for analysis of contractile protein expression and in vitro studies of contractility. Measurements were analyzed using a one-way ANOVA followed by Tukey's post hoc analysis (α= 0.05). Main Outcome Measures Protein and mRNA transcript expression levels of contractile proteins, in vitro measurements of vaginal contractility Results Ovariectomy decreased the expression of carboxyl-terminal myosin heavy chain isoform SM1 and h-caldesmon and reduced the amplitude of contraction of the vaginal muscularis in response to KCl. Estradiol replacement reversed these changes. No differences were detected in the % vaginal muscularis, mRNA transcript expression of amino terminal MHC isoforms, l-caldesmon expression and maximal velocity of shortening. Conclusion Systemic estrogen replacement restores functional and molecular characteristics of the vaginal muscularis of ovariectomized rats. Our results indicate that menopause is associated with changes in the vaginal muscularis, which may contribute to the increased incidence of pelvic floor disorders with age. PMID:23438289

  14. Yeast Infection (Vaginal)

    MedlinePlus

    Yeast infection (vaginal) Overview A vaginal yeast infection is a fungal infection that causes irritation, discharge and intense itchiness ... symptoms Causes The fungus candida causes a vaginal yeast infection. Your vagina naturally contains a balanced mix of yeast, including ...

  15. Interaction of vaginal Lactobacillus strains with HeLa cells plasma membrane.

    PubMed

    Calonghi, N; Parolin, C; Sartor, G; Verardi, L; Giordani, B; Frisco, G; Marangoni, A; Vitali, B

    2017-08-24

    Vaginal lactobacilli offer protection against recurrent urinary and vaginal infections. The precise mechanisms underlying the interaction between lactobacilli and the host epithelium remain poorly understood at the molecular level. Deciphering such events can provide valuable information on the mode of action of commensal and probiotic bacteria in the vaginal environment. We investigated the effects exerted by five Lactobacillus strains of vaginal origin (Lactobacillus crispatus BC1 and BC2, Lactobacillus gasseri BC9 and BC11 and Lactobacillus vaginalis BC15) on the physical properties of the plasma membrane in a cervical cell line (HeLa). The interaction of the vaginal lactobacilli with the cervical cells determined two kinds of effects on plasma membrane: (1) modification of the membrane polar lipid organisation and the physical properties (L. crispatus BC1 and L. gasseri BC9); (2) modification of α5β1 integrin organisation (L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15). These two mechanisms can be at the basis of the protective role of lactobacilli against Candida albicans adhesion. Upon stimulation with all Lactobacillus strains, we observed a reduction of the basal oxidative stress in HeLa cells that could be related to modifications in physical properties and organisation of the plasma membrane. These results confirm the strictly strain-specific peculiarities of Lactobacillus and deepen the understanding of the mechanisms underlying the health-promoting role of this genus within the vaginal ecosystem.

  16. Vaginal Microbiota.

    PubMed

    Mendling, Werner

    2016-01-01

    The knowledge about the normal and abnormal vaginal microbiome has changed over the last years. Culturing techniques are not suitable any more for determination of a normal or abnormal vaginal microbiota. Non culture-based modern technologies revealed a complex and dynamic system mainly dominated by lactobacilli.The normal and the abnormal vaginal microbiota are complex ecosystems of more than 200 bacterial species influenced by genes, ethnic background and environmental and behavioral factors. Several species of lactobacilli per individuum dominate the healthy vagina. They support a defense system together with antibacterial substances, cytokines, defensins and others against dysbiosis, infections and care for an normal pregnancy without preterm birth.The numbers of Lactobacillus (L.) iners increase in the case of dysbiosis.Bacterial vaginosis (BV) - associated bacteria (BVAB), Atopobium vaginae and Clostridiales and one or two of four Gardnerella vaginalis - strains develop in different mixtures and numbers polymicrobial biofilms on the vaginal epithelium, which are not dissolved by antibiotic therapies according to guidelines and, thus, provoke recurrences.Aerobic vaginitis seems to be an immunological disorder of the vagina with influence on the microbiota, which is here dominated by aerobic bacteria (Streptococcus agalactiae, Escherichia coli). Their role in AV is unknown.Vaginal or oral application of lactobacilli is obviously able to improve therapeutic results of BV and dysbiosis.

  17. Changes in the electromechanical delay components during a fatiguing stimulation in human skeletal muscle: an EMG, MMG and force combined approach.

    PubMed

    Cè, Emiliano; Rampichini, Susanna; Monti, Elena; Venturelli, Massimo; Limonta, Eloisa; Esposito, Fabio

    2017-01-01

    Peripheral fatigue involves electrochemical and mechanical mechanisms. An electromyographic, mechanomyographic and force combined approach may permit a kinetic evaluation of the changes at the synaptic, skeletal muscle fiber, and muscle-tendon unit level during a fatiguing stimulation. Surface electromyogram, mechanomyogram, force and stimulation current were detected from the gastrocnemius medialis muscle in twenty male participants during a fatiguing stimulation (twelve blocks of 35 Hz stimulations, duty cycle 9 s on/1 s off, duration 120 s). The total electromechanical delay and its three components (between stimulation current and electromyogram, synaptic component; between electromyogram and mechanomyogram signal onset, muscle fiber electrochemical component, and between mechanomyogram and force signal onset, mechanical component) were calculated. Interday reliability and sensitivity were determined. After fatigue, peak force decreased by 48% (P < 0.05) and the total electromechanical delay and its synaptic, electrochemical and mechanical components lengthened from 25.8 ± 0.9, 1.47 ± 0.04, 11.2 ± 0.6, and 13.1 ± 1.3 ms to 29.0 ± 1.6, 1.56 ± 0.05, 12.4 ± 0.9, and 17.2 ± 0.6 ms, respectively (P < 0.05). During fatigue, the total electromechanical delay and the mechanical component increased significantly after the 40th second, and then remained stable. The synaptic and electrochemical components lengthened significantly after the 20th and 30th second, respectively. Interday reliability was high to very high, with an adequate level of sensitivity. The kinetic evaluation of the delays during the fatiguing stimulation highlighted different onsets and kinetics, with the events at synaptic level being the first to reveal a significant elongation, followed by those at the intra-fiber level. The mechanical events, which were the most affected by fatigue, were the last to lengthen.

  18. Contribution of impaired myofibril and ryanodine receptor function to prolonged low-frequency force depression after in situ stimulation in rat skeletal muscle.

    PubMed

    Watanabe, Daiki; Kanzaki, Keita; Kuratani, Mai; Matsunaga, Satoshi; Yanaka, Noriyuki; Wada, Masanobu

    2015-06-01

    The aim of this study was to examine whether prolonged low-frequency force depression (PLFFD) that occurs in situ is the result of decreased myofibrillar Ca(2+) sensitivity and/or reduced sarcoplasmic reticulum (SR) Ca(2+) release. Intact rat gastrocnemius muscles were electrically stimulated via the sciatic nerve until force was reduced to ~50% of the initial and dissected 30 min following the cessation of stimulation. Skinned fibre and whole muscle analyses were performed in the superficial region composed exclusively of type IIB fibres. Fatiguing stimulation significantly reduced the ratio of force at low frequency to that at high frequency to 65% in skinned fibres (1 vs. 50 Hz) and 73% in whole muscles (20 vs. 100 Hz). In order to evaluate changes in myofibrillar Ca(2+) sensitivity and ryanodine receptor caffeine sensitivity, skinned fibres were activated in Ca(2+)- and caffeine-containing solutions, respectively. Skinned fibres from fatigued muscles displayed decreased caffeine sensitivity together with increased myofibrillar Ca(2+) sensitivity. Treatment with 2,2'-dithiodipyridine and reduced glutathione induced a smaller increase in myofibrillar Ca(2+)sensitivity in fatigued than in rested fibres. In fatigued muscles, S-glutathionylation of troponin I was increased and submaximal SR Ca(2+) release, induced by 4-chloro-m-cresol, was decreased. These findings suggest that in the early stage of PLFFD that occurs in fast-twitch muscles of exercising animals and humans, S-glutathionylation of troponin I may attenuate PLFFD by increasing myofibrillar Ca(2+) sensitivity and that under such a circumstance, PLFFD may be ascribable to failure of SR Ca(2+) release.

  19. Short-Term effects of neuromuscular electrical stimulation on muscle architecture of the tibialis anterior and gastrocnemius in children with cerebral palsy: preliminary results of a prospective controlled study.

    PubMed

    Karabay, İlkay; Öztürk, Gökhan Tuna; Malas, Fevziye Ünsal; Kara, Murat; Tiftik, Tülay; Ersöz, Murat; Özçakar, Levent

    2015-09-01

    The aim of this study was to explore the short-term effects of neuromuscular electrical stimulation application on tibialis anterior (stimulated muscle) and gastrocnemius (antagonist) muscles' size and architecture in children with cerebral palsy by using ultrasound. This prospective, controlled study included 28 children diagnosed with spastic diplegic cerebral palsy. Participants were treated either with neuromuscular electrical stimulation application and conventional physiotherapy (group A) or with conventional physiotherapy alone (group B). Outcome was evaluated by clinical (gross motor function, selective motor control, range of motion, spasticity) and ultrasonographic (cross-sectional area, pennation angle, fascicle length of tibialis anterior and gastrocnemius muscles) measurements before and after treatment in both groups. Cross-sectional area values of tibialis anterior (238.7 ± 61.5 vs. 282.0 ± 67.1 mm) and gastrocnemius (207.9 ± 48.0 vs. 229.5 ± 52.4 mm) (P < 0.001 and P = 0.008, respectively) muscles were increased after treatment in group A. Cross-sectional area values of tibialis anterior muscle were decreased (257.3 ± 64.7 vs. 239.7 ± 60.0 mm) after treatment in group B (P < 0.001), and the rest of the measurements were found not to have changed significantly in either group. These results have shown that cross-sectional area of both the agonist and antagonist muscles increased after 20 sessions of neuromuscular electrical stimulation treatment. Future studies with larger samples and longer follow-up are definitely awaited for better evaluation of neuromuscular electrical stimulation application on muscle architecture and its possible correlates in clinical/functional outcome.

  20. Stimulation of Synthesis and Release of Brain-Derived Neurotropic Factor (BDNF) from Intestinal Smooth Muscle Cells by Substance P and Pituitary Adenylate Cyclase-Activating Peptide (PACAP)

    PubMed Central

    Al-Qudah, M.; Alkahtani, R.; Akbarali, H.I.; Murthy, K.S.; Grider, J.R.

    2015-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a neurotrophin present in the intestine where it participates in survival and growth of enteric neurons, augmentation of enteric circuits, and stimulation of intestinal peristalsis and propulsion. Previous studies largely focused on the role of neural and mucosal BDNF. The expression and release of BDNF from intestinal smooth muscle and the interaction with enteric neuropeptides has not been studied in gut. Methods The expression and secretion of BDNF from smooth muscle cultured from rabbit longitudinal intestinal muscle in response to substance P and pituitary adenylate cyclase activating peptide (PACAP) was measured by western blot and ELISA. BDNF mRNA was measured by rt-PCR. Key Results The expression of BNDF protein and mRNA was greater in smooth muscle cells from the longitudinal muscle than from circular muscle layer. PACAP and substance P increased the expression of BDNF protein and mRNA in cultured longitudinal smooth muscle cells. PACAP and substance P also stimulated the secretion of BDNF from cultured longitudinal smooth muscle cells. Chelation of intracellular calcium with BAPTA prevented substance P-induced increase in BDNF mRNA and protein expression as well as substance P-induced secretion of BDNF. Conclusions & Inferences Neuropeptides known to be present in enteric neurons innervating the longitudinal layer increase the expression of BDNF mRNA and protein in smooth muscle cells and stimulate the release of BDNF. Considering the ability of BDNF to enhance smooth muscle contraction, this autocrine loop may partially explain the characteristic hypercontractility of longitudinal muscle in inflammatory bowel disease. PMID:26088546

  1. Electrical stimulation attenuates morphological alterations and prevents atrophy of the denervated cranial tibial muscle.

    PubMed

    Bueno, Cleuber Rodrigo de Souza; Pereira, Mizael; Favaretto, Idvaldo Aparecido; Bortoluci, Carlos Henrique Fachin; Santos, Thais Caroline Pereira Dos; Dias, Daniel Ventura; Daré, Letícia Rossi; Rosa, Geraldo Marco

    2017-01-01

    To investigate if electrical stimulation through Russian current is able to maintain morphology of the cranial tibial muscle of experimentally denervated rats. Thirty-six Wistar rats were divided into four groups: the Initial Control Group, Final Control Group, Experimental Denervated and Treated Group, Experimental Denervated Group. The electrostimulation was performed with a protocol of Russian current applied three times per week, for 45 days. At the end, the animals were euthanized and histological and morphometric analyses were performed. Data were submitted to statistical analysis with a significance level of p<0.05. The Experimental Denervated Group and the Experimental Denervated and Treated Group had cross-sectional area of smaller fiber compared to the Final Control Group. However, there was significant difference between the Experimental Denervated Group and Experimental Denervated and Treated Group, showing that electrical stimulation minimized muscle atrophy. The Experimental Denervated and Treated Group and Initial Control Group showed similar results. Electrical stimulation through Russian current acted favorably in maintaining morphology of the cranial tibial muscle that was experimentally denervated, minimizing muscle atrophy. Investigar se a estimulação elétrica pela corrente russa é capaz de manter a morfologia do músculo tibial cranial de ratos desnervados experimentalmente. Foram utilizados 36 ratos Wistar, distribuídos em quatro grupos: Grupo Controle Inicial, Grupo Controle Final, Grupo Experimental Desnervado Tratado, Grupo Experimental Desnervado. A eletroestimulação foi realizada com um protocolo de corrente russa aplicada três vezes por semanas, durante 45 dias. Ao final, os animais foram eutanasiados e, em seguida, foram realizadas as análises histológica e morfométrica. Os dados foram submetidos à análise estatística, com nível de significância de p<0,05. Os Grupos Experimental Desnervado e o Grupo Experimental

  2. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation.

    PubMed

    Suryawan, Agus; Jeyapalan, Asumthia S; Orellana, Renan A; Wilson, Fiona A; Nguyen, Hanh V; Davis, Teresa A

    2008-10-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E.eIF4G complex and increased eIF4E.4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein beta-subunit-like protein (GbetaL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors.

  3. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation

    PubMed Central

    Suryawan, Agus; Jeyapalan, Asumthia S.; Orellana, Renan A.; Wilson, Fiona A.; Nguyen, Hanh V.; Davis, Teresa A.

    2008-01-01

    Skeletal muscle in the neonate grows at a rapid rate due in part to an enhanced sensitivity to the postprandial rise in amino acids, particularly leucine. To elucidate the molecular mechanism by which leucine stimulates protein synthesis in neonatal muscle, overnight-fasted 7-day-old piglets were treated with rapamycin [an inhibitor of mammalian target of rapamycin (mTOR) complex (mTORC)1] for 1 h and then infused with leucine for 1 h. Fractional rates of protein synthesis and activation of signaling components that lead to mRNA translation were determined in skeletal muscle. Rapamycin completely blocked leucine-induced muscle protein synthesis. Rapamycin markedly reduced raptor-mTOR association, an indicator of mTORC1 activation. Rapamycin blocked the leucine-induced phosphorylation of mTOR, S6 kinase 1 (S6K1), and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1) and formation of the eIF4E·eIF4G complex and increased eIF4E·4E-BP1 complex abundance. Rapamycin had no effect on the association of mTOR with rictor, a crucial component for mTORC2 activation, or G protein β-subunit-like protein (GβL), a component of mTORC1 and mTORC2. Neither leucine nor rapamycin affected the phosphorylation of AMP-activated protein kinase (AMPK), PKB, or tuberous sclerosis complex (TSC)2, signaling components that reside upstream of mTOR. Eukaryotic elongation factor (eEF)2 phosphorylation was not affected by leucine or rapamycin, although current dogma indicates that eEF2 phosphorylation is mTOR dependent. Together, these in vivo data suggest that leucine stimulates muscle protein synthesis in neonates by enhancing mTORC1 activation and its downstream effectors. PMID:18682538

  4. Sequential segmental neuromuscular stimulation: an effective approach to enhance fatigue resistance.

    PubMed

    Zonnevijlle, E D; Somia, N N; Stremel, R W; Maldonado, C J; Werker, P M; Kon, M; Barker, J H

    2000-02-01

    Electrical stimulation of skeletal muscle flaps is used clinically in applications that require contraction of muscle and force generation at the recipient site, for example, to assist a failing myocardium (cardiomyoplasty) or to reestablish urinary or fecal continence as a neo-sphincter (dynamic graciloplasty). A major problem in these applications (muscle fatigue) results from the nonphysiologic manner in which most of the fibers within the muscle are recruited in a single burst-like contraction. To circumvent this problem, current protocols call for the muscle to be put through a rigorous training regimen to transform it from a fatigue-prone to a fatigue-resistant state. This process takes several weeks during which, aside from becoming fatigue-resistant, the muscle loses power and contraction speed. This study tested the feasibility of electrically stimulating a muscle flap in a more physiologic way; namely, by stimulating different anatomical parts of the muscle sequentially rather than the entire muscle all at once. Sequential segmental neuromuscular stimulation (SSNS) allows parts of the muscle to rest while other parts are contracting. In a paired designed study in dogs (n = 7), the effects of SSNS on muscle fatigability and muscle blood perfusion in gracilis muscles were compared with conventional stimulation: SSNS on one side and whole muscle stimulation on the other. In SSNS, electrodes were implanted in the muscles in such a way that four separate segments of each muscle could be stimulated separately. Then, each segment was stimulated so that part of the muscle was always contracted while part was always resting. This type of stimulation permitted sequential yet continuous force generation. Muscles in both groups maintained an equal amount of continuous force. In SSNS muscles, separate segments were stimulated so that the duty cycle for any one segment was 25, 50, 75, or 100 percent, thus varying the amount of work and rest that any segment experienced

  5. Adaptive Plasticity of Vaginal Innervation in Term Pregnant Rats

    PubMed Central

    Liao, Zhaohui; Smith, Peter G.

    2011-01-01

    Changes in reproductive status place varied functional demands on the vagina. These include receptivity to male intromission and sperm transport in estrus, barrier functions during early pregnancy, and providing a conduit for fetal passage at parturition. Peripheral innervation regulates vaginal function, which in turn may be influenced by circulating reproductive hormones. We assessed vaginal innervation in diestrus and estrus (before and after the estrous cycle surge in estrogen), and in the early (low estrogen) and late (high estrogen) stages in pregnancy. In vaginal sections from cycling rats, axons immunoreactive for the pan-neuronal marker protein gene product 9.5 (PGP 9.5) showed a small reduction at estrus relative to diestrus, but this difference did not persist after correcting for changes in target size. No changes were detected in axons immunoreactive for tyrosine hydroxylase (sympathetic), vesicular acetylcholine transporter (parasympathetic), or calcitonin gene-related peptide and transient receptor potential vanilloid type 1 (TRPV-1; sensory nociceptors). In rats at 10 days of pregnancy, innervation was similar to that observed in cycling rats. However, at 21 days of pregnancy, axons immunoreactive for PGP 9.5 and each of the subpopulation-selective markers were significantly reduced both when expressed as percentage of sectional area or after correcting for changes in target size. Because peripheral nerves regulate vaginal smooth muscle tone, blood flow, and pain sensitivity, reductions in innervation may represent important adaptive mechanisms facilitating parturition. PMID:21666101

  6. The Effects of Active Exercise versus Passive Electronic Muscle Stimulation on Self-Concept, Anxiety, and Depression.

    ERIC Educational Resources Information Center

    Boyll, Jeffery R.

    Although positive physiological and psychological changes may occur as a result of exercise, many people do not exercise regularly. Either different methods to ensure exercise adherence must be examined or new ways of acquiring the desired changes must be found. The effectiveness of one alternative method, electronic muscle stimulation, was…

  7. Vaginal Cancer—Patient Version

    Cancer.gov

    Two-thirds of vaginal cancer cases are caused by human papillomavirus (HPV). Vaccines that protect against infection with HPV may reduce the risk of vaginal cancer. When found early, vaginal cancer can often be cured. Start here to find information on vaginal cancer treatment and research.

  8. Management of aerobic vaginitis.

    PubMed

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. Copyright © 2010 S. Karger AG, Basel.

  9. Effects of electrical stimulation-induced gluteal versus gluteal and hamstring muscles activation on sitting pressure distribution in persons with a spinal cord injury.

    PubMed

    Smit, C A J; Haverkamp, G L G; de Groot, S; Stolwijk-Swuste, J M; Janssen, T W J

    2012-08-01

    Ten participants underwent two electrical stimulation (ES) protocols applied using a custom-made electrode garment with built-in electrodes. Interface pressure was measured using a force-sensitive area. In one protocol, both the gluteal and hamstring (g+h) muscles were activated, in the other gluteal (g) muscles only. To study and compare the effects of electrically induced activation of g+h muscles versus g muscles only on sitting pressure distribution in individuals with a spinal cord injury (SCI). Ischial tuberosities interface pressure (ITs pressure) and pressure gradient. In all participants, both protocols of g and g+h ES-induced activation caused a significant decrease in IT pressure. IT pressure after g+h muscles activation was reduced significantly by 34.5% compared with rest pressure, whereas a significant reduction of 10.2% after activation of g muscles only was found. Pressure gradient reduced significantly only after stimulation of g+h muscles (49.3%). g+h muscles activation showed a decrease in pressure relief (Δ IT) over time compared with g muscles only. Both protocols of surface ES-induced of g and g+h activation gave pressure relief from the ITs. Activation of both g+h muscles in SCI resulted in better IT pressure reduction in sitting individuals with a SCI than activation of g muscles only. ES might be a promising method in preventing pressure ulcers (PUs) on the ITs in people with SCI. Further research needs to show which pressure reduction is sufficient in preventing PUs.

  10. Multimodal vaginal toning for bladder symptoms and quality of life in stress urinary incontinence.

    PubMed

    de la Torre, Sarah; Miller, Larry E

    2017-08-01

    Treatment options for women with stress urinary incontinence (SUI) have limitations. We hypothesized that multimodal vaginal toning therapy would improve bladder symptoms and quality of life in women with postpartum SUI and sexual function complaints. Patients self-administered 24 sessions of multimodal vaginal toning therapy lasting 10 min each over 50 days. Outcomes included 1-h pad weight test, Urogenital Distress Inventory Short Form (UDI-6), Incontinence Impact Questionnaire-Short Form (IIQ-7), Female Sexual Distress Scale-Revised 2005 (FSDS-R), Female Sexual Function Index (FSFI), pelvic floor muscle strength, patient satisfaction, and adverse events. Of the 55 patients enrolled (safety population), 48 completed the study per-protocol (PP population). A total of 38 (79%) patients had a positive 1-h pad weight test at baseline. In this group, urine leakage was moderate or severe in 82% of patients at baseline, but in only 18% after treatment. Treatment success was 84%, defined as >50% improvement in pad weight relative to baseline. In the PP population, mean UDI-6 score improved by 50% (p < 0.001) and IIQ-7 score improved by 69% (p < 0.001). Sexual function quality of life improved by 54% for FSDS-R and 15% for FSFI (both p < 0.001). Pelvic floor muscle strength significantly improved (p < 0.001). Patient satisfaction with therapy was reported in 83% of patients. In the safety population, 2 (3.6%) adverse events were reported-1 urinary tract infection and 1 report of discomfort due to excessive warmth. Multimodal vaginal toning therapy yields clinically meaningful improvements in bladder symptoms, pelvic floor muscle strength, and quality of life in women with SUI.

  11. EMG activity of finger flexor muscles and grip force following low-dose transcutaneous electrical nerve stimulation in healthy adult subjects.

    PubMed

    Kafri, Michal; Zaltsberg, Nir; Dickstein, Ruth

    2015-01-01

    Somatosensory stimulation modulates cortical and corticospinal excitability and consequently affects motor output. Therefore, low-amplitude transcutaneous electrical nerve stimulation (TENS) has the potential to elicit favorable motor responses. The purpose of the two presented pilot studies was to shed light on TENS parameters that are relevant for the enhancement of two desirable motor outcomes, namely, electromyographic (EMG) activity and contraction strength of the finger flexors and wrist muscles. In 5 and 10 healthy young adults (in Study I and Study II, respectively) TENS was delivered to the volar aspect of the forearm. We manipulated TENS frequency (150 Hz vs. 5 Hz), length of application (10, 20, and 60 min), and side of application (unilateral, right forearm vs. bilateral forearms). EMG amplitude and grip force were measured before (Pre), immediately after (Post), and following 15 min of no stimulation (Study I only). The results indicated that low-frequency bursts of TENS applied to the skin overlying the finger flexor muscles enhance the EMG activity of the finger flexors and grip force. The increase in EMG activity of the flexor muscles was observed after 20 min of stimulation, while grip force was increased only after 1 h. The effects of uni- and bilateral TENS were comparable. These observations allude to a modulatory effect of TENS on the tested motor responses; however, unequivocal conclusions of the findings are hampered by individual differences that affect motor outcomes, such as in level of attention.

  12. Assessing viability of extracorporeal preserved muscle transplants using external field stimulation: a novel tool to improve methods prolonging bridge-to-transplantation time

    PubMed Central

    Taeger, Christian D.; Friedrich, Oliver; Dragu, Adrian; Weigand, Annika; Hobe, Frieder; Drechsler, Caroline; Geppert, Carol I.; Arkudas, Andreas; Münch, Frank; Buchholz, Rainer; Pollmann, Charlotte; Schramm, Axel; Birkholz, Torsten; Horch, Raymund E.; Präbst, Konstantin

    2015-01-01

    Preventing ischemia-related cell damage is a priority when preserving tissue for transplantation. Perfusion protocols have been established for a variety of applications and proven to be superior to procedures used in clinical routine. Extracorporeal perfusion of muscle tissue though cumbersome is highly desirable since it is highly susceptible to ischemia-related damage. To show the efficacy of different perfusion protocols external field stimulation can be used to immediately visualize improvement or deterioration of the tissue during active and running perfusion protocols. This method has been used to show the superiority of extracorporeal perfusion using porcine rectus abdominis muscles perfused with heparinized saline solution. Perfused muscles showed statistically significant higher ability to exert force compared to nonperfused ones. These findings can be confirmed using Annexin V as marker for cell damage, perfusion of muscle tissue limits damage significantly compared to nonperfused tissue. The combination of extracorporeal perfusion and external field stimulation may improve organ conservation research. PMID:26145230

  13. Vaginal Bleeding

    MedlinePlus

    ... bleeding is any vaginal bleeding unrelated to normal menstruation. This type of bleeding may include spotting of ... two or more hours. Normal vaginal bleeding, or menstruation, occurs every 21 to 35 days when the ...

  14. Vaginal Odor

    MedlinePlus

    ... usually don't cause vaginal odors. Neither do yeast infections. Generally, if you have vaginal odor without ... Avoid douching. All healthy vaginas contain bacteria and yeast. The normal acidity of your vagina keeps bacteria ...

  15. Clindamycin Vaginal

    MedlinePlus

    ... an infection caused by an overgrowth of harmful bacteria in the vagina). Clindamycin is in a class ... works by slowing or stopping the growth of bacteria. Vaginal clindamycin cannot be used to treat vaginal ...

  16. Vaginal Diseases

    MedlinePlus

    Vaginal problems are some of the most common reasons women go to the doctor. They may have ... common problem is vaginitis, an inflammation of the vagina. Other problems that affect the vagina include sexually ...

  17. Successful vaginal delivery at term after vaginal reconstruction with labium minus flaps in a patient with vaginal atresia: A rare case report.

    PubMed

    Liu, Yu; Wang, Yi-Feng

    2017-07-01

    We report a case of successful vaginal delivery after vaginal reconstruction with labium minus flaps in a 23-year-old patient with congenital vaginal atresia. The patient primarily presented with amenorrhea and cyclic abdominal pain; transabdominal ultrasonography revealed an enlarged uterus due to hematometra and absence of the lower segment of the vagina. Eight years ago, she had undergone an unsuccessful attempt at canalization at a local hospital. Upon referral to our hospital, she underwent vaginal reconstruction with labium minus flaps. Four months after this procedure, she became pregnant and, subsequently, successfully and safely vaginally delivered a healthy female baby weighing 3250 g at 38 +1 weeks' gestation. The delivery did not involve perineal laceration by lateral episiotomy. To the best of our knowledge, this is the first reported case of successful vaginal delivery at term after vaginal reconstruction with labium minus flaps in a patient with vaginal atresia. © 2017 Japan Society of Obstetrics and Gynecology.

  18. Definition of a type of abnormal vaginal flora that is distinct from bacterial vaginosis: aerobic vaginitis.

    PubMed

    Donders, Gilbert G G; Vereecken, Annie; Bosmans, Eugene; Dekeersmaecker, Alfons; Salembier, Geert; Spitz, Bernard

    2002-01-01

    To define an entity of abnormal vaginal flora: aerobic vaginitis. Observational study. University Hospital Gasthuisberg, Leuven, Belgium. 631 women attending for routine prenatal care or attending vaginitis clinic. Samples were taken for fresh wet mount microscopy of vaginal fluid, vaginal cultures and measurement of lactate, succinate and cytokine levels in vaginal fluid. Smears deficient in lactobacilli and positive for clue cells were considered to indicate a diagnosis of bacterial vaginosis. Aerobic vaginitis was diagnosed if smears were deficient in lactobacilli, positive for cocci or coarse bacilli, positive for parabasal epithelial cells, and/or positive for vaginal leucocytes (plus their granular aspect). Genital complaints include red inflammation, yellow discharge, vaginal dyspareunia. Group B streptococci, escherichia coli, staphylococcus aureus and trichomonas vaginalis are frequently cultured. Vaginal lactate concentration is severely depressed in women with aerobic vaginitis, as in bacterial vaginosis, but vaginal succinate is not produced. Also in contrast to bacterial vaginosis, aerobic vaginitis produces a host immune response that leads to high production of interleukin-6, interleukin-1-beta and leukaemia inhibitory factor in the vaginal fluid. Aerobic vaginitis is associated with aerobic micro-organisms, mainly group B streptococci and E. coli. Its characteristics are different from those of bacterial vaginosis and elicit an important host response. The most severe form of aerobic vaginitis equals desquamative inflammatory vaginitis. In theory, aerobic vaginitis may be a better candidate than bacterial vaginosis as the cause of pregnancy complications, such as ascending chorioamnionitis, preterm rupture of the membranes and preterm delivery.

  19. Stimulation of synthesis and release of brain-derived neurotropic factor from intestinal smooth muscle cells by substance P and pituitary adenylate cyclase-activating peptide.

    PubMed

    Al-Qudah, M; Alkahtani, R; Akbarali, H I; Murthy, K S; Grider, J R

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin present in the intestine where it participates in survival and growth of enteric neurons, augmentation of enteric circuits, and stimulation of intestinal peristalsis and propulsion. Previous studies largely focused on the role of neural and mucosal BDNF. The expression and release of BDNF from intestinal smooth muscle and the interaction with enteric neuropeptides has not been studied in gut. The expression and secretion of BDNF from smooth muscle cultured from the rabbit intestinal longitudinal muscle layer in response to substance P (SP) and pituitary adenylate cyclase-activating peptide (PACAP) was measured by western blot and enzyme-linked immunosorbent assay. BDNF mRNA was measured by reverse-transcription polymerase chain reaction. The expression of BNDF protein and mRNA was greater in smooth muscle cells (SMCs) from the longitudinal muscle than from circular muscle layer. PACAP and SP increased the expression of BDNF protein and mRNA in cultured longitudinal SMCs. PACAP and SP also stimulated the secretion of BDNF from cultured longitudinal SMCs. Chelation of intracellular calcium with BAPTA (1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) prevented SP-induced increase in BDNF mRNA and protein expression and SP-induced secretion of BDNF. Neuropeptides known to be present in enteric neurons innervating the longitudinal layer increase the expression of BDNF mRNA and protein in SMCs and stimulate the release of BDNF. Considering the ability of BDNF to enhance smooth muscle contraction, this autocrine loop may partially explain the characteristic hypercontractility of longitudinal muscle in inflammatory bowel disease. © 2015 John Wiley & Sons Ltd.

  20. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease.

    PubMed

    Jones, Sarah; Man, William D-C; Gao, Wei; Higginson, Irene J; Wilcock, Andrew; Maddocks, Matthew

    2016-10-17

    This review is an update of a previously published review in the Cochrane Database of Systematic Reviews Issue 1, 2013 on Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease.Patients with advanced progressive disease often experience muscle weakness, which can impact adversely on their ability to be independent and their quality of life. In those patients who are unable or unwilling to undertake whole-body exercise, neuromuscular electrical stimulation (NMES) may be an alternative treatment to enhance lower limb muscle strength. Programmes of NMES appear to be acceptable to patients and have led to improvements in muscle function, exercise capacity, and quality of life. However, estimates regarding the effectiveness of NMES based on individual studies lack power and precision. Primary objective: to evaluate the effectiveness of NMES on quadriceps muscle strength in adults with advanced disease. Secondary objectives: to examine the safety and acceptability of NMES, and its effect on peripheral muscle function (strength or endurance), muscle mass, exercise capacity, breathlessness, and health-related quality of life. We identified studies from searches of the Cochrane Central Register of Controlled Trials (CENTRAL), Cochrane Database of Systematic Reviews (CDSR), and Database of Abstracts of Reviews of Effects (DARE) (the Cochrane Library), MEDLINE (OVID), Embase (OVID), CINAHL (EBSCO), and PsycINFO (OVID) databases to January 2016; citation searches, conference proceedings, and previous systematic reviews. We included randomised controlled trials in adults with advanced chronic respiratory disease, chronic heart failure, cancer, or HIV/AIDS comparing a programme of NMES as a sole or adjunct intervention to no treatment, placebo NMES, or an active control. We imposed no language restriction. Two review authors independently extracted data on study design, participants, interventions, and outcomes. We assessed risk of bias using

  1. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells.

    PubMed

    Díaz-Vegas, Alexis; Campos, Cristian A; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.

  2. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells

    PubMed Central

    Díaz-Vegas, Alexis; Campos, Cristian A.; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC. PMID:26053483

  3. Amine content of vaginal fluid from untreated and treated patients with nonspecific vaginitis.

    PubMed Central

    Chen, K C; Forsyth, P S; Buchanan, T M; Holmes, K K

    1979-01-01

    We examined the vaginal washings from patients with nonspecific vaginitis (NSV) to seek biochemical markers and possible explanations for the signs and symptoms of this syndrome. Seven amines were identified including methylamine, isobutylamine, putrescine, cadaverine, histamine, tyramine, and phenethylamine. These amines may contribute to the symptoms of NSV and may contribute to the elevated pH of the vaginal discharge. They may also be partly responsible for the "fishy" odor that is characteristic of vaginal discharges from these patients. Among the seven amines, putrescine and cadaverine were the most abundant and were present in all vaginal discharges from each of ten patients before treatment. These amines are produced in vitro during growth of mixed vaginal bacteria in chemically defined medium, presumably by decarboxylation of the corresponding amino acids. We hypothesize the anaerobic vaginal organisms, previously shown to be quantitatively increased in NSV, are responsible for the amine production, because metronidazole inhibited the production of amines by vaginal bacteria in vitro, and Haemophilus vaginalis did not produce amines. H. vaginalis did release high concentrations of pyruvic acid and of amino acids during growth in peptone-starch-dextrose medium, whereas, other vaginal flora consumed both pyruvic acid and amino acids in the same medium during growth. These findings suggest that a symbiotic relationship may exist between H. vaginalis and other vaginal flora in patients with NSV. Images PMID:447831

  4. Exploring the effect of electrical muscle stimulation as a novel treatment of intractable tremor in Parkinson's disease.

    PubMed

    Jitkritsadakul, Onanong; Thanawattano, Chusak; Anan, Chanawat; Bhidayasiri, Roongroj

    2015-11-15

    As the pathophysiology of tremor in Parkinson disease (PD) involves a complex interaction between central and peripheral mechanisms, we propose that modulation of peripheral reflex mechanism by electrical muscle stimulation (EMS) may improve tremor temporarily. To determine the efficacy of EMS as a treatment for drug resistant tremor in PD patients. This study was a single-blinded, quasi-experimental study involving 34 PD patients with classic resting tremor as confirmed by tremor analysis. The EMS was given at 50Hz over the abductor pollicis brevis and interrosseus muscles for 10s with identified tremor parameters before and during stimulation as primary outcomes. Compared to before stimulation, we observed a significant reduction in the root mean square (RMS) of the angular velocity (p<0.001) and peak magnitude (p<0.001) of resting tremor while tremor frequency (p=0.126) and dispersion (p=0.284) remained unchanged during stimulation. The UPDRS tremor score decreased from 10.59 (SD=1.74) before stimulation to 8.85 (SD=2.19) during stimulation (p<0.001). The average percentage of improvement of the peak magnitude and RMS angular velocity was 49.57% (SD=38.89) and 43.81% (SD=33.15) respectively. 70.6% and 61.8% of patients experienced at least 30% tremor attenuation as calculated from the peak magnitude and RMS angular velocity respectively. Our study demonstrated the efficacy of EMS in temporarily improving resting tremor in medically intractable PD patients. Although tremor severity decreased, they were not completely eliminated and continued with a similar frequency, thus demonstrating the role of peripheral reflex mechanism in the modulation of tremor, but not as a generator. EMS should be further explored as a possible therapeutic intervention for tremor in PD. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Vaginal Changes Due to Varying Degrees of Rectocele Prolapse: A Computational Study.

    PubMed

    Chanda, Arnab; Meyer, Isuzu; Richter, Holly E; Lockhart, Mark E; Moraes, Fabia R D; Unnikrishnan, Vinu

    2017-10-01

    Pelvic organ prolapse (POP), downward descent of the pelvic organs resulting in a protrusion of the vagina, is a highly prevalent condition, responsible for 300,000 surgeries in the U.S. annually. Rectocele, a posterior vaginal wall (PVW) prolapse of the rectum, is the second most common type of POP after cystocele. A rectocele usually manifests itself along with other types of prolapse with multicompartment pelvic floor defects. To date, the specific mechanics of rectocele formation are poorly understood, which does not allow its early stage detection and progression prediction over time. Recently, with the advancement of imaging and computational modeling techniques, a plethora of finite element (FE) models have been developed to study vaginal prolapse from different perspectives and allow a better understanding of dynamic interactions of pelvic organs and their supporting structures. So far, most studies have focused on anterior vaginal prolapse (AVP) (or cystocele) and limited data exist on the role of pelvic muscles and ligaments on the development and progression of rectocele. In this work, a full-scale magnetic resonance imaging (MRI) based three-dimensional (3D) computational model of the female pelvic anatomy, comprising the vaginal canal, uterus, and rectum, was developed to study the effect of varying degrees (or sizes) of rectocele prolapse on the vaginal canal for the first time. Vaginal wall displacements and stresses generated due to the varying rectocele size and average abdominal pressures were estimated. Considering the direction pointing from anterior to posterior side of the pelvic system as the positive Y-direction, it was found that rectocele leads to negative Y-direction displacements, causing the vaginal cross section to shrink significantly at the lower half of the vaginal canal. Besides the negative Y displacements, the rectocele bulging was observed to push the PVW downward toward the vaginal hiatus, exhibiting the well-known "kneeling

  6. Vaginal orgasm is associated with vaginal (not clitoral) sex education, focusing mental attention on vaginal sensations, intercourse duration, and a preference for a longer penis.

    PubMed

    Brody, Stuart; Weiss, Petr

    2010-08-01

    Evidence was recently provided for vaginal orgasm, orgasm triggered purely by penile-vaginal intercourse (PVI), being associated with better psychological functioning. Common sex education and sexual medicine approaches might undermine vaginal orgasm benefits. To examine the extent to which women's vaginal orgasm consistency is associated with (i) being told in childhood or adolescence that the vagina was the important zone for inducing female orgasm; (ii) how well they focus mentally on vaginal sensations during PVI; (iii) greater PVI duration; and (iv) preference for above-average penis length.   In a representative sample of the Czech population, 1,000 women reported their vaginal orgasm consistency (from never to almost every time; only 21.9% never had a vaginal orgasm), estimates of their typical foreplay and PVI durations, what they were told in childhood and adolescence was the important zone for inducing female orgasm, their degree of focus on vaginal sensations during PVI, and whether they were more likely to orgasm with a longer than average penis. The association of vaginal orgasm consistency with the predictors noted above. Vaginal orgasm consistency was associated with all hypothesized correlates. Multivariate analysis indicated the most important predictors were being educated that the vagina is important for female orgasm, being mentally focused on vaginal sensations during PVI, and in some analyses duration of PVI (but not foreplay) and preferring a longer than average penis. Focusing attention on penile-vaginal sensation supports vaginal orgasm and the myriad benefits thereof. Brody S, and Weiss P. Vaginal orgasm is associated with vaginal (not clitoral) sex education, focusing mental attention on vaginal sensations, intercourse duration, and a preference for a longer penis. © 2009 International Society for Sexual Medicine.

  7. Stimulation of muscle protein synthesis by somatotropin in pigs is independent of the somatotropin-induced increase in circulating insulin.

    PubMed

    Wilson, Fiona A; Orellana, Renán A; Suryawan, Agus; Nguyen, Hanh V; Jeyapalan, Asumthia S; Frank, Jason; Davis, Teresa A

    2008-07-01

    Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7-10 days of pST (150 microg x kg(-1) x day(-1)) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 microU/ml), 2) fed control (25 microU/ml), and 3) fed pST-treated (50 microU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1.eIF4E complex association and increased active eIF4E.eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation.

  8. Amino Acid Availability and Age Affect the Leucine Stimulation of Protein Synthesis and eIF4F Formation in Muscle

    PubMed Central

    Escobar, Jeffery; Frank, Jason W.; Suryawan, Agus; Nguyen, Hanh V.; Davis, Teresa A.

    2009-01-01

    We have previously shown that a physiological increase in plasma leucine for 60- and 120-min increases translation initiation factor activation in muscle of neonatal pigs. Although muscle protein synthesis is increased by leucine at 60 min, it is not maintained at 120 min, perhaps due to the decrease in plasma amino acids (AA). In the current study, 7- and 26-day-old pigs were fasted overnight and infused with leucine (0 or 400 µmol· kg−1· h−1) for 120 min to raise leucine within the postprandial range. The leucine was infused in the presence or absence of a replacement AA mixture (without leucine) to maintain baseline plasma AA levels. AA administration prevented the leucine-induced reduction in plasma AA in both age groups. At 7 days, leucine infusion alone increased eukaryotic initiation factor (eIF) 4E binding protein-1 (4E-BP1) phosphorylation, decreased inactive 4E-BP1·eIF4E complex abundance, and increased active eIF4G·eIF4E complex formation in skeletal muscle; leucine infusion with replacement AA also stimulated these, as well as S6K1, rpS6, and eIF4G phosphorylation. At 26 days, leucine infusion alone increased 4E-BP1 phosphorylation and decreased the inactive 4E-BP1·eIF4E complex only; leucine with AA also stimulated these, as well as S6K1 and rpS6 phosphorylation. Muscle protein synthesis was increased in 7-day-old (+60%) and 26-day-old (+40%) pigs infused with leucine and replacement AA, but not with leucine alone. Thus, the ability of leucine to stimulate eIF4F formation and protein synthesis in skeletal muscle is dependent on AA availability and age. PMID:17878223

  9. Considerations in high resolution skeletal muscle DTI using single-shot EPI with stimulated echo preparation and SENSE

    PubMed Central

    Karampinos, Dimitrios C.; Banerjee, Suchandrima; King, Kevin F.; Link, Thomas M.; Majumdar, Sharmila

    2011-01-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can non-invasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion weighted (DW)-EPI can be hindered by the inherently low SNR of muscle DW-EPI due to the short muscle T2 and the high sensitivity of single-shot EPI to off-resonance effects and T2* blurring. In the present work, eddy-current compensated diffusion-weighted stimulated echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and reduce the sensitivity to distortions and T2* blurring in high resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed for optimizing the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B0-induced distortions, T2* blurring effects and tissue incoherent motion effects. Based on the selected parameters in a high resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In vivo results show that high resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T2* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from reducing partial volume effects on resolving multi-pennate muscles and muscles with small cross sections in calf muscle DTI. PMID:22081519

  10. Vaginal cysts

    MedlinePlus

    ... essential to determine what type of cyst or mass you may have. A mass or bulge of the vaginal wall may be ... to rule out vaginal cancer, especially if the mass appears to be solid. If the cyst is ...

  11. Menopause and the vaginal microbiome.

    PubMed

    Muhleisen, Alicia L; Herbst-Kralovetz, Melissa M

    2016-09-01

    For over a century it has been well documented that bacteria in the vagina maintain vaginal homeostasis, and that an imbalance or dysbiosis may be associated with poor reproductive and gynecologic health outcomes. Vaginal microbiota are of particular significance to postmenopausal women and may have a profound effect on vulvovaginal atrophy, vaginal dryness, sexual health and overall quality of life. As molecular-based techniques have evolved, our understanding of the diversity and complexity of this bacterial community has expanded. The objective of this review is to compare the changes that have been identified in the vaginal microbiota of menopausal women, outline alterations in the microbiome associated with specific menopausal symptoms, and define how hormone replacement therapy impacts the vaginal microbiome and menopausal symptoms; it concludes by considering the potential of probiotics to reinstate vaginal homeostasis following menopause. This review details the studies that support the role of Lactobacillus species in maintaining vaginal homeostasis and how the vaginal microbiome structure in postmenopausal women changes with decreasing levels of circulating estrogen. In addition, the associated transformations in the microanatomical features of the vaginal epithelium that can lead to vaginal symptoms associated with menopause are described. Furthermore, hormone replacement therapy directly influences the dominance of Lactobacillus in the microbiota and can resolve vaginal symptoms. Oral and vaginal probiotics hold great promise and initial studies complement the findings of previous research efforts concerning menopause and the vaginal microbiome; however, additional trials are required to determine the efficacy of bacterial therapeutics to modulate or restore vaginal homeostasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Prevalence of vaginal candidiasis among pregnant women with abnormal vaginal discharge in Maiduguri.

    PubMed

    Ibrahim, S M; Bukar, M; Mohammed, Y; Mohammed, B; Yahaya, M; Audu, B M; Ibrahim, H M; Ibrahim, H A

    2013-01-01

    Pregnancy represents a risk factor in the occurrence of vaginal candidiasis. To determine the prevalence and clinical features associated with abnormal vaginal discharge and C. albicans infection in pregnant women. High vaginal swab samples and data on epidemiological characteristics were collected from 400 pregnant women with complaints of abnormal vaginal discharge at booking clinic of University of Maiduguri Teaching Hospital. The data was analysed using SPSS 16.0 statistical software. The prevalence of abnormal vaginal discharge in pregnancy was 31.5%. The frequency of abnormal vaginal discharge was 183 (45.8%) among those aged 20-24 years, 291 (72.8%) in multipara, 223 (55.8%) in those with Primary education and 293 (73.2%) in unemployed. Vulval pruritus 300 (75.0%) was significantly related to abnormal vaginal discharge (P < 0.001). The prevalence of C. albicans was 41%. The frequencies of Vulval itching, Dyspareunia and vulval excoriation among those with candidiasis were 151 (50.3%), 14 (56.0%) and 75 (75.0%) respectively (P < 0.001). The prevalence of abnormal vaginal discharge in pregnancy was high in this study and C. albicans was the commonest cause. It is recommended that a pregnant woman complaining of abnormal vaginal discharge be assessed and Laboratory diagnosis done in order to give appropriate treatment.

  13. Whole blood flow cytometric analysis of Ureaplasma-stimulated monocytes from pregnant women.

    PubMed

    Friedland, Yael D; Lee-Pullen, Tracey F; Nathan, Elizabeth; Watts, Rory; Keelan, Jeffrey A; Payne, Matthew S; Ireland, Demelza J

    2015-06-01

    We hypothesised that circulating monocytes of women with vaginal colonisation with Ureaplasma spp., genital microorganisms known to cause inflammation-driven preterm birth, would elicit a tolerised cytokine response to subsequent in vitro Ureaplasma parvum serovar 3 (UpSV3) stimulation. Using multi-parameter flow cytometry, we found no differences with regard to maternal colonisation status in the frequency of TNF-α-, IL-6-, IL-8- and IL-1β-expressing monocytes in response to subsequent UpSV3 stimulation (P > 0.10 for all cytokines). We conclude that vaginal Ureaplasma spp. colonisation does not specifically tolerise monocytes of pregnant women towards decreased responses to subsequent stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of the mylohyoid muscle in rabbits under conditions of hunger and satiety.

    PubMed

    Ignatova, Ju P; Kromin, A A

    2011-03-01

    Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of mylohyoid muscle were studied in chronic experiments under conditions of hunger and satiety. Threshold stimulation of the lateral hypothalamus in starving and satiated rabbits in the absence of food induced searching behavior associated with burst-like impulse activity with a bimodal distribution of interpulse intervals. Regular spike burst in the mylohyoid muscle during stimulation of the lateral hypothalamus in the absence of food serves as an example of the anticipatory type reaction. Increased food motivation during threshold stimulation of the lateral hypothalamus in starving and satiated rabbits with food offered led to successful food-procuring behavior, during which the frequency of spike bursts in the mylohyoid muscle became comparable with that under conditions of natural foraging behavior stimulated by the need in nutrients. Our results suggest that temporal structure of mylohyoid muscle impulse activity reflects convergent interactions of food-motivation excitation with reinforcement excitation on neurons of the masticatory and deglutitive centers.

  15. Video game-based neuromuscular electrical stimulation system for calf muscle training: a case study.

    PubMed

    Sayenko, D G; Masani, K; Milosevic, M; Robinson, M F; Vette, A H; McConville, K M V; Popovic, M R

    2011-03-01

    A video game-based training system was designed to integrate neuromuscular electrical stimulation (NMES) and visual feedback as a means to improve strength and endurance of the lower leg muscles, and to increase the range of motion (ROM) of the ankle joints. The system allowed the participants to perform isotonic concentric and isometric contractions in both the plantarflexors and dorsiflexors using NMES. In the proposed system, the contractions were performed against exterior resistance, and the angle of the ankle joints was used as the control input to the video game. To test the practicality of the proposed system, an individual with chronic complete spinal cord injury (SCI) participated in the study. The system provided a progressive overload for the trained muscles, which is a prerequisite for successful muscle training. The participant indicated that he enjoyed the video game-based training and that he would like to continue the treatment. The results show that the training resulted in a significant improvement of the strength and endurance of the paralyzed lower leg muscles, and in an increased ROM of the ankle joints. Video game-based training programs might be effective in motivating participants to train more frequently and adhere to otherwise tedious training protocols. It is expected that such training will not only improve the properties of their muscles but also decrease the severity and frequency of secondary complications that result from SCI. Copyright © 2010 IPEM. All rights reserved.

  16. Does vaginal closure force differ in the supine and standing positions?

    PubMed

    Morgan, Daniel M; Kaur, Gurpreet; Hsu, Yvonne; Fenner, Dee E; Guire, Kenneth; Miller, Janis; Ashton-Miller, James A; Delancey, John O L

    2005-05-01

    This study was undertaken to quantify resting vaginal closure force (VCF(REST)), maximum vaginal closure force (VCF(MAX)), and augmentation of vaginal closure force augmentation (VCF(AUG)) when supine and standing and to determine whether the change in intra-abdominal pressure associated with change in posture accounts for differences in VCF. Thirty-nine asymptomatic, continent women were recruited to determine, when supine and standing, the vaginal closure force (eg, the force closing the vagina in the mid-sagittal plane) and bladder pressures at rest and at maximal voluntary contraction. VCF was measured with an instrumented vaginal speculum and bladder pressure was determined with a microtip catheter. VCF(REST) was the resting pelvic floor tone, and VCF(MAX) was the peak pelvic floor force during a maximal voluntary contraction. VCF(AUG) was the difference between VCF(MAX) and VCF(REST). T tests and Pearson correlation coefficients were used for analysis. VCF(REST) when supine was 3.6 +/- 0.8 N and when standing was 6.9 +/- 1.5 N--a 92% difference (P < .001). The VCF(MAX) when supine was 7.5 +/- 2.9 N and when standing was 10.1 +/- 2.4 N--a 35% difference (P < .001). Bladder pressure when supine (10.5 +/- 4.7 cm H2O) was significantly less (P < .001) than when standing (31.0 +/- 6.4 cm H2O). The differences in bladder pressure when either supine or standing did not correlate with the corresponding differences in VCF at rest or at maximal voluntary contraction. The supine VCF(AUG) of 3.9 +/- 2.7 N, was significantly greater than the standing VCF(AUG) of 3.3+/-1.9 N. With change in posture, vaginal closure force increases because of higher intra-abdominal pressure and greater resistance in the pelvic floor muscles.

  17. Vaginal Fistula

    MedlinePlus

    Vaginal fistula Overview A vaginal fistula is an abnormal opening that connects your vagina to another organ, such as your bladder, colon or rectum. Your ... describe the condition as a hole in your vagina that allows stool or urine to pass through ...

  18. Comparison between vaginal royal jelly and vaginal estrogen effects on quality of life and vaginal atrophy in postmenopausal women: a clinical trial study.

    PubMed

    Seyyedi, Fatemeh; Kopaei, Mahmoud Rafiean; Miraj, Sepideh

    2016-11-01

    This study was conducted to evaluate the therapeutic effects of vaginal royal jelly and vaginal estrogen on quality of life and vaginal atrophy in postmenopausal women. This double-blind randomized controlled clinical trial was carried out at gynecology and obstetrics clinics of Hajar Hospital of Shahrekord University of Medical Sciences (Iran) from January 2013 to January 2014. The study was conducted on married postmenopausal women between 50 and 65 years old. Of 120 patients, 30 individuals were excluded based on the exclusion criteria, and 90 women were randomly distributed into three groups of 30 royal jelly vaginal cream 15%, vaginal Premarin, and placebo (lubricant), for three months. At the beginning and the end of the study, quality of life and vaginal cytology assay were evaluated. Data were analyzed by SPSS Version 11. Vaginal cream of royal jelly is significantly more effective than vaginal cream of Premarin and lubricant in improvement of quality of life in postmenopausal women (p<0.05). Moreover, Pap smear results showed that vaginal atrophy in vaginal Premarin group was lower than the other groups (p<0.001), and there was no significant difference between lubricant and royal jelly groups (p=0.89). Administration of vaginal royal jelly was effective in quality-of-life improvement of postmenopausal women. Given to the various properties of royal jelly and its effectiveness on quality of life and vaginal atrophy in postmenopausal women, further studies are recommended for using =royal jelly in improving menopausal symptoms. The trial was registered at the Iranian Registry of Clinical Trials (http://www.irct.ir) with the IRCT code: 2014112220043n1. Shahrekord University of Medical Sciences supported this research (project no. 1440).

  19. Dietary fish oil delays hypoxic skeletal muscle fatigue and enhances caffeine-stimulated contractile recovery in the rat in vivo hindlimb.

    PubMed

    Peoples, Gregory E; McLennan, Peter L

    2017-06-01

    Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O 2 (SaO 2 -98%) and hypoxia 14% O 2 (SaO 2 -89%)) the hindlimb was perfused at a constant flow and the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g -1 tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P < 0.05), and the time to decline to 50% of maximum twitch tension was extended (SF: 546 ± 58; n-6 PUFA: 522 ± 58; FO: 792 ± 96 s; P < 0.05). In addition, caffeine-stimulated skeletal muscle contractile recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.

  20. Mast cell migration to Th2 stimulated airway smooth muscle from asthmatics

    PubMed Central

    Sutcliffe, A; Kaur, D; Page, S; Woodman, L; Armour, C L; Baraket, M; Bradding, P; Hughes, J M; Brightling, C E

    2006-01-01

    Background Mast cell microlocalisation within the airway smooth muscle (ASM) bundle is an important determinant of the asthmatic phenotype. We hypothesised that mast cells migrate towards ASM in response to ASM derived chemokines. Methods Primary ASM cultures from subjects with and without asthma were stimulated with interleukin (IL)‐1β, IL‐4, and IL‐13 alone and in combination. Mast cell chemotaxis towards these ASM supernatants was investigated, and the chemotaxins mediating migration by using specific blocking antibodies for stem cell factor (SCF) and the chemokine receptors CCR3, CXCR1, 3 and 4 as well as the Gi inhibitor pertussis toxin and the tyrosine kinase inhibitor genistein were defined. The concentrations of CCL11, CXCL8, CXCL10, TGF‐β, and SCF in the supernatants were measured and the effect of non‐asthmatic ASM supernatants on the mast cell chemotactic activity of asthmatic ASM was examined. Results Human lung mast cells and HMC‐1 cells migrated towards Th2 stimulated ASM from asthmatics but not non‐asthmatics. Mast cell migration was mediated through the combined activation of CCR3 and CXCR1. CCL11 and CXCL8 expression by ASM increased markedly after stimulation, but was similar in those with and without asthma. ASM supernatants from non‐asthmatics inhibited mast cell migration towards the asthmatic ASM supernatant. Conclusion Th2 stimulated ASM from asthmatics is chemotactic for mast cells. Non‐asthmatic ASM releases a mediator or mediators that inhibit mast cell migration towards stimulated asthmatic ASM. Specifically targeting mast cell migration into the ASM bundle may provide a novel treatment for asthma. PMID:16601090

  1. Use of lactobacilli and estriol combination in the treatment of disturbed vaginal ecosystem: a review

    PubMed Central

    Ünlü, Cihat; Donders, Gilbert

    2011-01-01

    To maintain a healthy vaginal ecosystem or to restore any disturbance, sufficient estrogen levels, an intact mature vaginal epithelium, and physiological lactobacillary microflora are essential. Thus, a combination of beneficial lactobacilli and estrogen is an appealing treatment option. This article reviews the published data on the use of viable Lactobacillus acidophilus KS400 and a low dose of estriol (0.03 mg E3) in the form of vaginal tablets (Gynoflor®). In vitro studies demonstrated that L. acidophilus KS400 produces lactic acid and hydrogen peroxide (H2O2), inhibits the growth of relevant vaginal pathogens, and inhibits adherence of pathogens to epithelial cells. Topical administration of E3 for treatment of vaginal diseases is generally preferred, as this route of application of hormones produces a more significant local proliferative response and has no stimulating effect on the endometrium. Overall, 16 clinical studies have been published with the combination of L. acidophilus KS400 and 0.03 mg E3. The results of these trials have demonstrated that the combination improves the vaginal epithelium and the restoration of the lactobacillary microflora with an excellent safety profile, even during pregnancy. The combination can be used in pre- and postmenopausal women for the restoration of the vaginal flora after anti-infective therapy, for treatment of symptomatic vaginal atrophy, and for abnormal vaginal flora therapy. It can be also considered in repetitive therapy courses for the long-term prevention of recurrences of bacterial vaginosis, even though further clinical studies are needed to substantiate the benefit of this application. PMID:24592002

  2. Vaginal lactobacilli profile in pregnant women with normal & abnormal vaginal flora.

    PubMed

    Yeruva, Thirupathaiah; Rajkumar, Hemalatha; Donugama, Vasundhara

    2017-10-01

    Lactobacilli species that are better adapted to vaginal environment of women may colonize better and offer protection against vaginal pathogenic bacteria. In this study, the distribution of common Lactobacillus species was investigated in pregnant women. Sixty seven pregnant women were included in the study and vaginal samples were collected for Gram staining. Women were classified as normal vaginal flora, intermediate flora and bacterial vaginosis (BV) based on Nugent's score. Vaginal samples were also collected for the identification of Lactobacillus spp. by multiplex polymerase chain reaction (PCR) profiling of 16S rDNA amplification method. Lactobacillus crispatus (100%) was the most predominant Lactobacillus spp. present in pregnant women with normal flora, followed by L. iners (77%), L. jensenii (74%) and L. helveticus (60%). While, L. iners was commonly present across groups in women with normal, intermediate or BV flora, L. crispatus, L. jensenii and L. helveticus decreased significantly as the vaginal flora changed to intermediate and BV. In women with BV, except L. iners other species of lactobacilli was less frequently prevalent. Species such as L. rhamnosus, L. fermentum, L. paracasei and L. casei were not detected in any vaginal sample. L. crispatus, L. jensinii and L. helveticus were predominant species in women with normal flora. L. crispatus alone or in combination with L. jensinii and L. helveticus may be evaluated for probiotic properties for the prevention and treatment of BV.

  3. Vaginal biogenic amines: biomarkers of bacterial vaginosis or precursors to vaginal dysbiosis?

    PubMed Central

    Nelson, Tiffanie M.; Borgogna, Joanna-Lynn C.; Brotman, Rebecca M.; Ravel, Jacques; Walk, Seth T.; Yeoman, Carl J.

    2015-01-01

    Bacterial vaginosis (BV) is the most common vaginal disorder among reproductive age women. One clinical indicator of BV is a “fishy” odor. This odor has been associated with increases in several biogenic amines (BAs) that may serve as important biomarkers. Within the vagina, BA production has been linked to various vaginal taxa, yet their genetic capability to synthesize BAs is unknown. Using a bioinformatics approach, we show that relatively few vaginal taxa are predicted to be capable of producing BAs. Many of these taxa (Dialister, Prevotella, Parvimonas, Megasphaera, Peptostreptococcus, and Veillonella spp.) are more abundant in the vaginal microbial community state type (CST) IV, which is depleted in lactobacilli. Several of the major Lactobacillus species (L. crispatus, L. jensenii, and L. gasseri) were identified as possessing gene sequences for proteins predicted to be capable of putrescine production. Finally, we show in a small cross sectional study of 37 women that the BAs putrescine, cadaverine and tyramine are significantly higher in CST IV over CSTs I and III. These data support the hypothesis that BA production is conducted by few vaginal taxa and may be important to the outgrowth of BV-associated (vaginal dysbiosis) vaginal bacteria. PMID:26483694

  4. Vaginal biogenic amines: biomarkers of bacterial vaginosis or precursors to vaginal dysbiosis?

    PubMed

    Nelson, Tiffanie M; Borgogna, Joanna-Lynn C; Brotman, Rebecca M; Ravel, Jacques; Walk, Seth T; Yeoman, Carl J

    2015-01-01

    Bacterial vaginosis (BV) is the most common vaginal disorder among reproductive age women. One clinical indicator of BV is a "fishy" odor. This odor has been associated with increases in several biogenic amines (BAs) that may serve as important biomarkers. Within the vagina, BA production has been linked to various vaginal taxa, yet their genetic capability to synthesize BAs is unknown. Using a bioinformatics approach, we show that relatively few vaginal taxa are predicted to be capable of producing BAs. Many of these taxa (Dialister, Prevotella, Parvimonas, Megasphaera, Peptostreptococcus, and Veillonella spp.) are more abundant in the vaginal microbial community state type (CST) IV, which is depleted in lactobacilli. Several of the major Lactobacillus species (L. crispatus, L. jensenii, and L. gasseri) were identified as possessing gene sequences for proteins predicted to be capable of putrescine production. Finally, we show in a small cross sectional study of 37 women that the BAs putrescine, cadaverine and tyramine are significantly higher in CST IV over CSTs I and III. These data support the hypothesis that BA production is conducted by few vaginal taxa and may be important to the outgrowth of BV-associated (vaginal dysbiosis) vaginal bacteria.

  5. Dynamic Foot Stimulation Attenuates Soleus Muscle Atrophy Induced by Hindlimb Unloading in Rats

    NASA Technical Reports Server (NTRS)

    Kyparos, Antonios; Feeback, Daniel L.; Layne, Charles S.; Martinez, Daniel A.; Clarke, Mark S. F.

    2004-01-01

    Unloading-induced myofiber atrophy is a phenomenon that occurs in the aging population, bed-ridden patients and astronauts. The objective of this study was to determine whether or not dynamic foot stimulation (DFS) applied to the plantar surface of the rat foot can serve as a countermeasure to the soleus muscle atrophy normally observed in hindlimb unloaded (HU) rats. Thirty mature adult (6-month-old) male Wistar rats were randomly assigned into ambulatory control (AMB), hindlimb unloaded alone (HU), or hindlimb unloaded with the application of DFS (HU+DFS) groups. A dynamic pattern of pressure was applied to the right foot of each HU animal using a specially fabricated boot containing an inflatable air bladder connected to a solenoid air pump controlled by a laptop computer. The anti-atrophic effects of DFS were quantified morphometrically in frozen cross-sections of soleus muscle stained using the metachromatic-ATPase fiber typing technique. Application of DFS during HU significantly counteracted the atrophic response observed in the soleus by preventing approximately 85% of the reduction in Type I myofiber cross-sectional area (CSA) observed during HU. However, DFS did not protect type II fibers of the soleus from HU-induced atrophy or any fiber type in the soleus muscle of the contralateral control leg of the DFS-treated HU animals. These results illustrate that the application of DFS to the rat foot is an effective countermeasure to soleus muscle atrophy induced by HU.

  6. Vaginal bleeding in pregnancy

    MedlinePlus

    Pregnancy - vaginal bleeding; Maternal blood loss - vaginal ... Up to 1 in 4 women have vaginal bleeding at some time during their pregnancy. Bleeding is more common in the first 3 months (first trimester), especially with twins.

  7. Correlates of the molecular vaginal microbiota composition of African women.

    PubMed

    Gautam, Raju; Borgdorff, Hanneke; Jespers, Vicky; Francis, Suzanna C; Verhelst, Rita; Mwaura, Mary; Delany-Moretlwe, Sinead; Ndayisaba, Gilles; Kyongo, Jordan K; Hardy, Liselotte; Menten, Joris; Crucitti, Tania; Tsivtsivadze, Evgeni; Schuren, Frank; van de Wijgert, Janneke H H M

    2015-02-21

    Sociodemographic, behavioral and clinical correlates of the vaginal microbiome (VMB) as characterized by molecular methods have not been adequately studied. VMB dominated by bacteria other than lactobacilli may cause inflammation, which may facilitate HIV acquisition and other adverse reproductive health outcomes. We characterized the VMB of women in Kenya, Rwanda, South Africa and Tanzania (KRST) using a 16S rDNA phylogenetic microarray. Cytokines were quantified in cervicovaginal lavages. Potential sociodemographic, behavioral, and clinical correlates were also evaluated. Three hundred thirteen samples from 230 women were available for analysis. Five VMB clusters were identified: one cluster each dominated by Lactobacillus crispatus (KRST-I) and L. iners (KRST-II), and three clusters not dominated by a single species but containing multiple (facultative) anaerobes (KRST-III/IV/V). Women in clusters KRST-I and II had lower mean concentrations of interleukin (IL)-1α (p < 0.001) and Granulocyte Colony Stimulating Factor (G-CSF) (p = 0.01), but higher concentrations of interferon-γ-induced protein (IP-10) (p < 0.01) than women in clusters KRST-III/IV/V. A lower proportion of women in cluster KRST-I tested positive for bacterial sexually transmitted infections (STIs; ptrend = 0.07) and urinary tract infection (UTI; p = 0.06), and a higher proportion of women in clusters KRST-I and II had vaginal candidiasis (ptrend = 0.09), but these associations did not reach statistical significance. Women who reported unusual vaginal discharge were more likely to belong to clusters KRST-III/IV/V (p = 0.05). Vaginal dysbiosis in African women was significantly associated with vaginal inflammation; the associations with increased prevalence of STIs and UTI, and decreased prevalence of vaginal candidiasis, should be confirmed in larger studies.

  8. Control of thumb force using surface functional electrical stimulation and muscle load sharing

    PubMed Central

    2013-01-01

    Background Stroke survivors often have difficulties in manipulating objects with their affected hand. Thumb control plays an important role in object manipulation. Surface functional electrical stimulation (FES) can assist movement. We aim to control the 2D thumb force by predicting the sum of individual muscle forces, described by a sigmoidal muscle recruitment curve and a single force direction. Methods Five able bodied subjects and five stroke subjects were strapped in a custom built setup. The forces perpendicular to the thumb in response to FES applied to three thumb muscles were measured. We evaluated the feasibility of using recruitment curve based force vector maps in predicting output forces. In addition, we developed a closed loop force controller. Load sharing between the three muscles was used to solve the redundancy problem having three actuators to control forces in two dimensions. The thumb force was controlled towards target forces of 0.5 N and 1.0 N in multiple directions within the individual’s thumb work space. Hereby, the possibilities to use these force vector maps and the load sharing approach in feed forward and feedback force control were explored. Results The force vector prediction of the obtained model had small RMS errors with respect to the actual measured force vectors (0.22±0.17 N for the healthy subjects; 0.17±0.13 N for the stroke subjects). The stroke subjects showed a limited work range due to limited force production of the individual muscles. Performance of feed forward control without feedback, was better in healthy subjects than in stroke subjects. However, when feedback control was added performances were similar between the two groups. Feedback force control lead, especially for the stroke subjects, to a reduction in stationary errors, which improved performance. Conclusions Thumb muscle responses to FES can be described by a single force direction and a sigmoidal recruitment curve. Force in desired direction can be

  9. Human papillomavirus infection is associated with decreased levels of GM-CSF in cervico-vaginal fluid of infected women.

    PubMed

    Comar, Manola; Monasta, Lorenzo; Zanotta, Nunzia; Vecchi Brumatti, Liza; Ricci, Giuseppe; Zauli, Giorgio

    2013-10-01

    Although human papillomavirus (HPV) is the most common sexually transmitted infection, there are very scant data about the influence of this virus on the in vitro fertilization outcome. To assess the presence of HPV in the cervico-vaginal fluid in relationship to the in vitro fertilization (IVF) outcome and to the concentration of selected cytokines, known to affect embryo implantation and gestation: granulocyte-macrophage colony stimulating factor (GM-CSF) and granulocyte colony stimulating factor (G-CSF). Cervico-vaginal samples were collected on the day of oocyte pick-up from 82 women. Vaginas were flushed with 50 mL of sterile water and 3 mL of fluid was collected. Twelve women (15%) were positive for HPV. Interestingly, among HPV(+) women live birth rate was about half of the rate in HPV(-) women, although the differences were not statistically significant due to the low number of cases. Cervico-vaginal samples of a sub-group of 29 (8 HPV(+) and 21 HPV(-)) women were analyzed for GM-CSF and G-CSF by ELISA. GM-CSF but not G-CSF was significantly lower in the cervico-vaginal fluid of HPV(+) than in HPV(-) women. Since GM-CSF plays an important role during pregnancy, the reduced levels of GM-CSF in the cervico-vaginal fluid of HPV(+) women might contribute to explain the reduced live birth rate observed in HPV(+) women. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Vaginitis: diagnosis and management.

    PubMed

    Faro, S

    1996-01-01

    The various conditions that give rise to vaginitis include specific and nonspecific entities, such as candidiasis, trichomoniasis, bacterial vaginosis, group B streptococcal vaginitis, purulent vaginitis, volvodynia, and vestibulitis. The patient with chronic vaginitis usually develops this condition because of a misdiagnosis. It is critical that patients who have chronic vaginitis be thoroughly evaluated to determine if there is a specific etiology and whether their condition is recurrent or persistent, or is a reinfection. This also must include obtaining a detailed history, beginning with the patient's best recollection of when she felt perfectly normal. The physician must have an understanding of a healthy vaginal ecosystem and what mechanisms are in place to maintain the equilibrium. The vaginal ecosystem is a complex system of micro-organisms interacting with host factors to maintain its equilibrium. The endogenous microflora consists of a variety of bacteria, which include aerobic, facultative and obligate anaerobic bacteria. These organisms exist in a commensal, synergistic or antagonistic relationship. Therefore, it is important to understand what factors control the delicate equilibrium of the vaginal ecosystem, and which factors, both endogenous and exogenous, can disrupt this system. It is also important for the physician to understand that when a patient has symptoms of vaginitis it is not always due to an infectious etiology. There are situations in which an inflammatory reaction occurs but the specific etiology may not be determined. Thus, it is important that the physician not rush through the history or the examination.

  11. Citrulline stimulates muscle protein synthesis in the post-absorptive state in healthy people fed a low-protein diet - A pilot study.

    PubMed

    Jourdan, Marion; Nair, K Sreekumaran; Carter, Rickey E; Schimke, Jill; Ford, G Charles; Marc, Julie; Aussel, Christian; Cynober, Luc

    2015-06-01

    Amino acid (AA) availability is critical to maintain protein homeostasis and reduced protein intake causes a decline in protein synthesis. Citrulline, an amino acid metabolite, has been reported to stimulate muscle protein synthesis in malnourished rats. To determine whether citrulline stimulates muscle protein synthesis in healthy adults while on a low-protein diet, we studied 8 healthy participants twice in a cross-over study design. Following a 3-days of low-protein intake, either citrulline or a non-essential AA mixture (NEAA) was given orally as small boluses over the course of 8 h. [ring-(13)C6] phenylalanine and [(15)N] tyrosine were administered as tracers to assess protein metabolism. Fractional synthesis rates (FSR) of muscle proteins were measured using phenylalanine enrichment in muscle tissue fluid as the precursor pool. FSR of mixed muscle protein was higher during the administration of citrulline than during NEAA (NEAA: 0.049 ± 0.005; citrulline: 0.060 ± 0.006; P = 0.03), while muscle mitochondrial protein FSR and whole-body protein turnover were not different between the studies. Citrulline administration increased arginine and ornithine plasma concentrations without any effect on glucose, insulin, C-peptide, and IGF-1 levels. Citrulline administration did not promote mitochondria protein synthesis, transcripts, or citrate synthesis. Citrulline ingestion enhances mixed muscle protein synthesis in healthy participants on 3-day low-protein intake. This anabolic action of citrulline appears to be independent of insulin action and may offer potential clinical application in conditions involving low amino acid intake. Copyright © 2014. Published by Elsevier Ltd.

  12. Comparison between vaginal royal jelly and vaginal estrogen effects on quality of life and vaginal atrophy in postmenopausal women: a clinical trial study

    PubMed Central

    Seyyedi, Fatemeh; Kopaei, Mahmoud Rafiean; Miraj, Sepideh

    2016-01-01

    Objective This study was conducted to evaluate the therapeutic effects of vaginal royal jelly and vaginal estrogen on quality of life and vaginal atrophy in postmenopausal women. Methods This double-blind randomized controlled clinical trial was carried out at gynecology and obstetrics clinics of Hajar Hospital of Shahrekord University of Medical Sciences (Iran) from January 2013 to January 2014. The study was conducted on married postmenopausal women between 50 and 65 years old. Of 120 patients, 30 individuals were excluded based on the exclusion criteria, and 90 women were randomly distributed into three groups of 30 royal jelly vaginal cream 15%, vaginal Premarin, and placebo (lubricant), for three months. At the beginning and the end of the study, quality of life and vaginal cytology assay were evaluated. Data were analyzed by SPSS Version 11. Results Vaginal cream of royal jelly is significantly more effective than vaginal cream of Premarin and lubricant in improvement of quality of life in postmenopausal women (p<0.05). Moreover, Pap smear results showed that vaginal atrophy in vaginal Premarin group was lower than the other groups (p<0.001), and there was no significant difference between lubricant and royal jelly groups (p=0.89). Conclusion Administration of vaginal royal jelly was effective in quality-of-life improvement of postmenopausal women. Given to the various properties of royal jelly and its effectiveness on quality of life and vaginal atrophy in postmenopausal women, further studies are recommended for using =royal jelly in improving menopausal symptoms. Clinical trial registration The trial was registered at the Iranian Registry of Clinical Trials (http://www.irct.ir) with the IRCT code: 2014112220043n1. Funding Shahrekord University of Medical Sciences supported this research (project no. 1440). PMID:28070251

  13. Vaginal Cancer—Health Professional Version

    Cancer.gov

    Vaginal cancer is often squamous cell carcinoma. Other types of vaginal cancer are adenocarcinoma, melanoma, and sarcoma. Infection with certain types of human papillomavirus (HPV) causes most vaginal cancer. Find evidence-based information on vaginal cancer treatment and research.

  14. Vaginal drug distribution modeling.

    PubMed

    Katz, David F; Yuan, Andrew; Gao, Yajing

    2015-09-15

    This review presents and applies fundamental mass transport theory describing the diffusion and convection driven mass transport of drugs to the vaginal environment. It considers sources of variability in the predictions of the models. It illustrates use of model predictions of microbicide drug concentration distribution (pharmacokinetics) to gain insights about drug effectiveness in preventing HIV infection (pharmacodynamics). The modeling compares vaginal drug distributions after different gel dosage regimens, and it evaluates consequences of changes in gel viscosity due to aging. It compares vaginal mucosal concentration distributions of drugs delivered by gels vs. intravaginal rings. Finally, the modeling approach is used to compare vaginal drug distributions across species with differing vaginal dimensions. Deterministic models of drug mass transport into and throughout the vaginal environment can provide critical insights about the mechanisms and determinants of such transport. This knowledge, and the methodology that obtains it, can be applied and translated to multiple applications, involving the scientific underpinnings of vaginal drug distribution and the performance evaluation and design of products, and their dosage regimens, that achieve it. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Stimulation of muscle protein synthesis by somatotropin in pigs is independent of the somatotropin-induced increase in circulating insulin

    PubMed Central

    Wilson, Fiona A.; Orellana, Renán A.; Suryawan, Agus; Nguyen, Hanh V.; Jeyapalan, Asumthia S.; Frank, Jason; Davis, Teresa A.

    2008-01-01

    Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7–10 days of pST (150 μg·kg−1·day−1) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 μU/ml), 2) fed control (25 μU/ml), and 3) fed pST-treated (50 μU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1·eIF4E complex association and increased active eIF4E·eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation. PMID:18460595

  16. Stimulation of the BKCa channel in cultured smooth muscle cells of human trachea by magnolol

    PubMed Central

    Wu, S; Chen, C; Li, H; Lo, Y; Chen, S; Chiang, H

    2002-01-01

    Background: Magnolol, a compound isolated from the cortex of Magnolia officinalis, has been found to possess anti-allergic and anti-asthmatic activity. Methods: The effect of magnolol on ionic currents was studied in cultured smooth muscle cells of human trachea with the aid of the patch clamp technique. Results: In whole cell current recordings magnolol reversibly increased the amplitude of K+ outward currents. The increase in outward current caused by magnolol was sensitive to inhibition by iberiotoxin (200 nM) or paxilline (1 µM) but not by glibenclamide (10 µM). In inside out patches, magnolol added to the bath did not modify single channel conductance but effectively enhanced the activity of large conductance Ca2+ activated K+ (BKCa) channels. Magnolol increased the probability of these channel openings in a concentration dependent manner with an EC50 value of 1.5 µM. The magnolol stimulated increase in the probability of channels opening was independent of internal Ca2+. The application of magnolol also shifted the activation curve of BKCa channels to less positive membrane potentials. The change in the kinetic behaviour of BKCa channels caused by magnolol in these cells is the result of an increase in dissociation and gating constants. Conclusions: These results provide evidence that, in addition to the presence of antioxidative activity, magnolol is potent in stimulating BKCa channel activity in tracheal smooth muscle cells. The direct stimulation of these BKCa channels by magnolol may contribute to the underlying mechanism by which it acts as an anti-asthmatic compound. PMID:11809993

  17. Breathing-synchronised electrical stimulation of the abdominal muscles in patients with acute tetraplegia: A prospective proof-of-concept study.

    PubMed

    Liebscher, Thomas; Schauer, Thomas; Stephan, Ralph; Prilipp, Erik; Niedeggen, Andreas; Ekkernkamp, Axel; Seidl, Rainer O

    2016-11-01

    To examine whether, by enhancing breathing depth and expectoration, early use of breathing-synchronised electrical stimulation of the abdominal muscles (abdominal functional electrical stimulation, AFES) is able to reduce pulmonary complications during the acute phase of tetraplegia. Prospective proof-of-concept study. Spinal cord unit at a level 1 trauma center. Following cardiovascular stabilisation, in addition to standard treatments, patients with acute traumatic tetraplegia (ASIA Impairment Scale A or B) underwent breathing-synchronised electrical stimulation of the abdominal muscles to aid expiration and expectoration. The treatment was delivered in 30-minute sessions, twice a day for 90 days. The target was for nine of 15 patients to remain free of pneumonia meeting Centers for Disease Control and Prevention (CDC) diagnostic criteria. Eleven patients were recruited to the study between October 2011 and November 2012. Two patients left the study before completion. None of the patients contracted pneumonia during the study period. No complications from electrical stimulation were observed. AFES led to a statistically significant increase in peak inspiratory and expiratory flows and a non-statistically significant increase in tidal volume and inspiratory and expiratory flow. When surveyed, 6 out of 9 patients (67%) reported that the stimulation procedure led to a significant improvement in breathing and coughing. AFES appears to be able to improve breathing and expectoration and prevent pneumonia in the acute phase of tetraplegia (up to 90 days post-trauma). This result is being validated in a prospective multicentre comparative study.

  18. Electrical stimulation of transplanted motoneurons improves motor unit formation

    PubMed Central

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  19. Vaginal Cancer

    MedlinePlus

    Vaginal cancer is a rare type of cancer. It is more common in women 60 and older. You are also more likely to get it if you have had a human ... test can find abnormal cells that may be cancer. Vaginal cancer can often be cured in its ...

  20. The effect of vaginal cream containing ginger in users of clotrimazole vaginal cream on vaginal candidiasis.

    PubMed

    Shabanian, Sheida; Khalili, Sima; Lorigooini, Zahra; Malekpour, Afsaneh; Heidari-Soureshjani, Saeid

    2017-01-01

    Vulvovaginal candidiasis is one of the most common infections of the genital tract in women that causes many complications. Therefore, we examined the clinical effect of ginger cream along with clotrimazole compared to vaginal clotrimazole alone in this study. This double-blind clinical trial was conducted on 67 women admitted to the Gynecology Clinic of Hajar Hospital with vaginal candidiasis. The patients were divided randomly into two groups of 33 and 34 people. The diagnosis was made according to clinical symptoms, wet smear, and culture. Ginger-clotrimazole vaginal cream 1% and clotrimazole vaginal cream 1% were administered to groups 1 and 2, respectively, once a day for 7 days and therapeutic effects and symptoms were evaluated in readmission. Data analysis was performed using SPSS version 22, t -test and Chi-square. The mean value of variables itching ( P > 0.05), burning ( P > 0.05), and cheesy secretion ( P < 0.05) in users of ginger-clotrimazole was less than the other group after the treatment. Recurrence in clotrimazole group was 48.5% and in ginger-clotrimazole group 51.2% during the 1-month follow-up with no significant difference. Study results showed that cream containing ginger and clotrimazole 1% was more effective and may be more useful than the clotrimazole to treat vaginal candidiasis.

  1. Palpebral portion of the orbicularis oculi muscle to repetitive nerve stimulation testing: A potential assessment indicator in patients with generalized myasthenia gravis.

    PubMed

    Yan, Chong; Song, Jie; Pang, Song; Yi, Fangfang; Xi, Jianying; Zhou, Lei; Ding, Ding; Wang, Weifeng; Qiao, Kai; Zhao, Chongbo

    2018-02-01

    Repetitive nerve stimulation (RNS) is a valuable diagnostic method for myasthenia gravis (MG). However, its association with clinical severity was scarcely studied. We reviewed medical records and retrospectively enrolled 121 generalized MG patients. Sensitivity of different muscles to RNS and clinical scoring systems was evaluated. RNS testing revealed facial muscles have the highest positive rate, followed by proximal muscles and distal muscles, with the palpebral portion of the orbicularis oculi muscle most sensitive. Amplitude decrement of compound muscle action potential (CMAP) in the palpebral portion of the orbicularis oculi muscle is related to quantitative myasthenia gravis (QMG) scores, MG-specific manual muscle testing (MMT) scores and myasthenia gravis-related activities of daily living (MG-ADL) scores. We suggest that RNS testing of the palpebral portion of the orbicularis oculi muscle is a potential assessment indicator in patients with generalized MG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Vaginal mucosal flap as a sling preservation for the treatment of vaginal exposure of mesh.

    PubMed

    Kim, Sea Young; Park, Jong Yeon; Kim, Han Kwon; Park, Chang Hoo; Kim, Sung Jin; Sung, Gi Teck; Park, Chang Myon

    2010-06-01

    Tension-free vaginal tape (TVT) procedures are used for the treatment of stress urinary incontinence in women. The procedures with synthetic materials can have a risk of vaginal erosion. We experienced transobturator suburethral sling (TOT) tape-induced vaginal erosion and report the efficacy of a vaginal mucosal covering technique. A total of 560 female patients diagnosed with stress urinary incontinence underwent TOT procedures at our hospital between January 2005 and August 2009. All patients succeeded in follow-ups, among which 8 patients (mean age: 50.5 years) presented with vaginal exposure of the mesh. A vaginal mucosal covering technique was performed under local anesthesia after administration of antibiotics and vaginal wound dressings for 3-4 days. Seven of the 8 patients complained of persistent vaginal discharge postoperatively. Two of the 8 patients complained of dyspareunia of their male partners. The one remaining patient was otherwise asymptomatic, but mesh erosion was discovered at the routine follow-up visit. Six of the 8 patients showed complete mucosal covering of the mesh after the operation (mean follow-up period: 16 moths). Vaginal mucosal erosion recurred in 2 patients, and the mesh was then partially removed. One patient had recurrent stress urinary incontinence. Vaginal mucosal covering as a sling preservation with continued patient continence may be a feasible and effective option for the treatment of vaginal exposure of mesh after TOT tape procedures.

  3. The effect of pelvic floor muscle training alone or in combination with electrostimulation in the treatment of sexual dysfunction in women with multiple sclerosis.

    PubMed

    Lúcio, A C; D'Ancona, C A L; Lopes, M H B M; Perissinotto, M C; Damasceno, B P

    2014-11-01

    Sexual dysfunction (SD) affects up to 80% of multiple sclerosis (MS) patients and pelvic floor muscles (PFMs) play an important role in the sexual function of these patients. The objective of this paper is to evaluate the impact of a rehabilitation program to treat lower urinary tract symptoms on SD of women with MS. Thirty MS women were randomly allocated to one of three groups: pelvic floor muscle training (PFMT) with electromyographic (EMG) biofeedback and sham neuromuscular electrostimulation (NMES) (Group I), PFMT with EMG biofeedback and intravaginal NMES (Group II), and PFMT with EMG biofeedback and transcutaneous tibial nerve stimulation (TTNS) (Group III). Assessments, before and after the treatment, included: PFM function, PFM tone, flexibility of the vaginal opening and ability to relax the PFMs, and the Female Sexual Function Index (FSFI) questionnaire. After treatment, all groups showed improvements in all domains of the PERFECT scheme. PFM tone and flexibility of the vaginal opening was lower after the intervention only for Group II. All groups improved in arousal, lubrication, satisfaction and total score domains of the FSFI questionnaire. This study indicates that PFMT alone or in combination with intravaginal NMES or TTNS contributes to the improvement of SD. © The Author(s), 2014.

  4. Effects of vibratory stimulation on sexual response in women with spinal cord injury.

    PubMed

    Sipski, Marca L; Alexander, Craig J; Gomez-Marin, Orlando; Grossbard, Marissa; Rosen, Raymond

    2005-01-01

    Women with spinal cord injuries (SCIs) have predictable alterations in sexual responses. They commonly have a decreased ability to achieve genital sexual arousal. This study determined whether the use of vibratory stimulation would result in increased genital arousal as measured by vaginal pulse amplitude in women with SCIs. Subjects included 46 women with SCIs and 11 nondisabled control subjects. Results revealed vibratory clitoral stimulation resulted in increased vaginal pulse amplitude as compared with manual clitoral stimulation in both SCI and nondisabled subjects; however, these differences were not statistically significant. Subjective levels of arousal were also compared between SCI and nondisabled control subjects. Both vibratory and manual clitoral stimulation resulted in significantly increased arousal levels in both groups of subjects; however, statistically significant differences between the two conditions were only noted in nondisabled subjects. Further studies of the effects of repetitive vibratory stimulation are underway.

  5. The influence of strenuous muscle stimulation on the menarche.

    PubMed

    Yabuuchi, F; Ichikawa, Y; Arakawa, M; Chiba, G

    1984-03-01

    Nowadays, the average age at which menarche begins is lowering by three to four years every century, that is, four months every decade, according to both Japanese, and European and American annual changes of the average age. It emerged that the menarche shows a tendency to occur later in female gymnasts, because of the influence of strenuous muscle stimulation, and the fact that a higher level of technic is required in gymnastic games each year. These conclusions have been drawn from replies submitted to a questionnaire distributed among a relatively small number of gymnasts who participated in the competitions including the Inter High School Championship and the World Cup Championship. For example, at the age of 14, the percentage of women who had menstruated is almost 100% among women in general, but only 24% among World Cup Championship gymnasts, the average age at menarche of the latter being later than that of the former by as many as 3 years. At the age of 16, the percentage of women who had menstruated is 100% among women in general, but on the other hand, it is only 60% among World Cup Championship gymnasts, in other words, only a low percentage of women, of the latter group, had menstruated. Finally in our study, we established that the age at menarche of gymnasts is three or five years later than that of women in general. From our study, we concluded that the excessive burden imposed on muscles might cause an abnormal menstrual cycle, and the influence on menstruation would be considerable.

  6. T cell cytokine responses to stimulation with Ureaplasma parvum in pregnancy.

    PubMed

    Friedland, Yael D; Lee-Pullen, Tracey F; Nathan, Elizabeth A; Watts, Rory; Keelan, Jeffrey A; Payne, Matthew S; Ireland, Demelza J

    2016-08-01

    Ureaplasma spp. are a common vaginal microorganism causally linked to inflammation-driven preterm birth (PTB). The nature of the immune response to Ureaplasma spp. may influence PTB risk. This study sought to define maternal T cell cytokine responses to in vitro stimulation with Ureaplasma parvum serovar 3 (UpSV3) in vaginally colonised (UP+) and non-colonised (UP-) pregnant women. Whole blood flow cytometry demonstrated an increase (p=0.027) in the baseline frequency of IFNγ-positive CD3(+)CD4(-)(CD8(+)) T cells in UP+ women. UpSV3 stimulation resulted in a significant and specific increase (p=0.001) in the frequency of IFNγ-positive CD3(+)CD4(-)(CD8(+)) T cells, regardless of vaginal colonisation status. UpSV3 stimulation also increased the frequency of IFNγ-positive CD3(+)CD4(+) T cells, particularly in the UP+ group (p=0.003). This is the first published study to examine T cell responses to Ureaplasma spp. Future appropriately-powered studies are needed to assess whether insufficient priming or a loss of tolerance to Ureaplasma spp. is occurring in UP+ women at risk of PTB. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Transcranial magnetic stimulation (TMS) responses elicited in hindlimb muscles as an assessment of synaptic plasticity in spino-muscular circuitry after chronic spinal cord injury.

    PubMed

    Petrosyan, Hayk A; Alessi, Valentina; Sisto, Sue A; Kaufman, Mark; Arvanian, Victor L

    2017-03-06

    Electromagnetic stimulation applied at the cranial level, i.e. transcranial magnetic stimulation (TMS), is a technique for stimulation and neuromodulation used for diagnostic and therapeutic applications in clinical and research settings. Although recordings of TMS elicited motor-evoked potentials (MEP) are an essential diagnostic tool for spinal cord injured (SCI) patients, they are reliably recorded from arm, and not leg muscles. Mid-thoracic contusion is a common SCI that results in locomotor impairments predominantly in legs. In this study, we used a chronic T10 contusion SCI rat model and examined whether (i) TMS-responses in hindlimb muscles can be used for evaluation of conduction deficits in cortico-spinal circuitry and (ii) if plastic changes at spinal levels will affect these responses. In this study, plastic changes of transmission in damaged spinal cord were achieved by repetitive electro-magnetic stimulation applied over the spinal level (rSEMS). Spinal electro-magnetic stimulation was previously shown to activate spinal nerves and is gaining large acceptance as a non-invasive alternative to direct current and/or epidural electric stimulation. Results demonstrate that TMS fails to induce measurable MEPs in hindlimbs of chronically SCI animals. After facilitation of synaptic transmission in damaged spinal cord was achieved with rSEMS, however, MEPs were recorded from hindlimb muscles in response to single pulse TMS stimulation. These results provide additional evidence demonstrating beneficial effects of TMS as a diagnostic technique for descending motor pathways in uninjured CNS and after SCI. This study confirms the ability of TMS to assess plastic changes of transmission occurring at the spinal level. Published by Elsevier B.V.

  8. Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique?

    PubMed

    Miller, Elizabeth A; Beasley, DeAnna E; Dunn, Robert R; Archie, Elizabeth A

    2016-01-01

    The human vaginal microbiome is dominated by bacteria from the genus Lactobacillus , which create an acidic environment thought to protect women against sexually transmitted pathogens and opportunistic infections. Strikingly, lactobacilli dominance appears to be unique to humans; while the relative abundance of lactobacilli in the human vagina is typically >70%, in other mammals lactobacilli rarely comprise more than 1% of vaginal microbiota. Several hypotheses have been proposed to explain humans' unique vaginal microbiota, including humans' distinct reproductive physiology, high risk of STDs, and high risk of microbial complications linked to pregnancy and birth. Here, we test these hypotheses using comparative data on vaginal pH and the relative abundance of lactobacilli in 26 mammalian species and 50 studies ( N = 21 mammals for pH and 14 mammals for lactobacilli relative abundance). We found that non-human mammals, like humans, exhibit the lowest vaginal pH during the period of highest estrogen. However, the vaginal pH of non-human mammals is never as low as is typical for humans (median vaginal pH in humans = 4.5; range of pH across all 21 non-human mammals = 5.4-7.8). Contrary to disease and obstetric risk hypotheses, we found no significant relationship between vaginal pH or lactobacilli relative abundance and multiple metrics of STD or birth injury risk ( P -values ranged from 0.13 to 0.99). Given the lack of evidence for these hypotheses, we discuss two alternative explanations: the common function hypothesis and a novel hypothesis related to the diet of agricultural humans. Specifically, with regard to diet we propose that high levels of starch in human diets have led to increased levels of glycogen in the vaginal tract, which, in turn, promotes the proliferation of lactobacilli. If true, human diet may have paved the way for a novel, protective microbiome in human vaginal tracts. Overall, our results highlight the need for continuing research on non

  9. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    PubMed

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  10. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    PubMed

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  11. Spatial distribution of vaginal closure pressures of continent and stress urinary incontinent women.

    PubMed

    Peng, Qiyu; Jones, Ruth; Shishido, Keiichi; Omata, Sadao; Constantinou, Christos E

    2007-11-01

    Clinically the strength of the contraction of the female pelvic floor is qualitatively evaluated by vaginal tactile palpation. We therefore developed a probe to enable the quantitative evaluation of the closure pressures along the vagina. Four force sensors mounted on the four orthogonal directions of an intra-vaginal probe were used to measure the vaginal pressure profile (VPP) along the vaginal wall. Clinical experiments on 23 controls and 10 patients with stress urinary incontinence (SUI) were performed using the probe to test the hypothesis that the strength of pelvic floor muscle (PFM) contractions, imposed by voluntary contraction, is related to urinary continence. The results show that VPPs, characterized in terms of pressure distribution on the anterior and posterior vaginal walls, are significantly greater than those in the left and right vaginal walls. When the PFM contracted, the positions of the maximum posterior pressures in continent females and SUI patients were 0.63+/-0.15 cm and 1.19+/-0.2 cm proximal from their peak points of anterior pressure, which are 1.52+/-0.09 cm and 1.69+/-0.13 cm proximal from the introitus of vagina, respectively. The statistical analysis shows that the maximum posterior vaginal pressures of the controls were significantly greater than those of the SUI patients both at rest (continent: 3.4+/-0.3 N cm(-2), SUI: 2.01+/-0.36 N cm(-2), p<0.05) and during PFM contraction (continent: 4.18+/-0.26 N cm(-2), SUI: 2.25+/-0.41 N cm(-2), p<0.01). In addition, the difference between the posterior and anterior vaginal walls is significantly increased when the controls contract the PFM. By contrast, there are no significant differences in the SUI group. The results show that the VPP measured by the prototype probe can be used to quantitatively evaluate the strength of the PFM, which is a clinical index for the diagnosis or assessment of female SUI.

  12. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice.

    PubMed

    Hennebry, Alexander; Oldham, Jenny; Shavlakadze, Tea; Grounds, Miranda D; Sheard, Philip; Fiorotto, Marta L; Falconer, Shelley; Smith, Heather K; Berry, Carole; Jeanplong, Ferenc; Bracegirdle, Jeremy; Matthews, Kenneth; Nicholas, Gina; Senna-Salerno, Mônica; Watson, Trevor; McMahon, Christopher D

    2017-08-01

    Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue, we crossed myostatin null ( Mstn -/- ) mice with mice overexpressing Igf1 in skeletal muscle ( Igf1 + ) to generate six genotypes of male mice; wild type ( Mstn +/+ ), Mstn +/- , Mstn -/- , Mstn +/+ :Igf1 + , Mstn +/- :Igf1 + and Mstn -/- :Igf1 + Overexpression of Igf1 increased the mass of mixed fibre type muscles (e.g. Quadriceps femoris ) by 19% over Mstn +/+ , 33% over Mstn +/- and 49% over Mstn -/- ( P  < 0.001). By contrast, the mass of the gonadal fat pad was correspondingly reduced with the removal of Mstn and addition of Igf1 Myostatin regulated the number, while IGF1 regulated the size of myofibres, and the deletion of Mstn and Igf1 + independently increased the proportion of fast type IIB myosin heavy chain isoforms in T. anterior (up to 10% each, P  < 0.001). The abundance of AKT and rpS6 was increased in muscles of Mstn -/- mice , while phosphorylation of AKT S473 was increased in Igf1 + mice ( Mstn +/+ :Igf1 + , Mstn +/- :Igf1 + and Mstn -/- :Igf1 + ). Our results demonstrate that a greater than additive effect is observed on the growth of skeletal muscle and in the reduction of body fat when myostatin is absent and IGF1 is in excess. Finally, we show that myostatin and IGF1 regulate skeletal muscle size, myofibre type and gonadal fat through distinct mechanisms that involve increasing the total abundance and phosphorylation status of AKT and rpS6. © 2017 Society for Endocrinology.

  13. Stimulation of muscle protein synthesis by somatotropin in pigs is independent of the somatotropin-induced increase in circulating insulin

    USDA-ARS?s Scientific Manuscript database

    Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated ...

  14. Clothing factors and vaginitis.

    PubMed

    Heidrich, F E; Berg, A O; Bergman, J J

    1984-10-01

    Associations of clothing factors and vulvovaginal symptoms, signs, and microbiology were sought in 203 women seeking care at a university family medicine clinic. Clothing factors studied were use of panty hose, underwear for sleep, cotton lining panels, and pants vs skirts. Women wearing and not wearing panty hose had similar rates of vaginitis symptoms and signs, but yeast vaginitis was about three times more common among wearers. Relationships of other clothing factors to vaginitis were not found. Nonspecific vaginitis was not found to be related to clothing.

  15. The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk.

    PubMed

    Kindinger, Lindsay M; Bennett, Phillip R; Lee, Yun S; Marchesi, Julian R; Smith, Ann; Cacciatore, Stefano; Holmes, Elaine; Nicholson, Jeremy K; Teoh, T G; MacIntyre, David A

    2017-01-19

    Preterm birth is the primary cause of infant death worldwide. A short cervix in the second trimester of pregnancy is a risk factor for preterm birth. In specific patient cohorts, vaginal progesterone reduces this risk. Using 16S rRNA gene sequencing, we undertook a prospective study in women at risk of preterm birth (n = 161) to assess (1) the relationship between vaginal microbiota and cervical length in the second trimester and preterm birth risk and (2) the impact of vaginal progesterone on vaginal bacterial communities in women with a short cervix. Lactobacillus iners dominance at 16 weeks of gestation was significantly associated with both a short cervix <25 mm (n = 15, P < 0.05) and preterm birth <34 +0  weeks (n = 18; P < 0.01; 69% PPV). In contrast, Lactobacillus crispatus dominance was highly predictive of term birth (n = 127, 98% PPV). Cervical shortening and preterm birth were not associated with vaginal dysbiosis. A longitudinal characterization of vaginal microbiota (<18, 22, 28, and 34 weeks) was then undertaken in women receiving vaginal progesterone (400 mg/OD, n = 25) versus controls (n = 42). Progesterone did not alter vaginal bacterial community structure nor reduce L. iners-associated preterm birth (<34 weeks). L. iners dominance of the vaginal microbiota at 16 weeks of gestation is a risk factor for preterm birth, whereas L. crispatus dominance is protective against preterm birth. Vaginal progesterone does not appear to impact the pregnancy vaginal microbiota. Patients and clinicians who may be concerned about "infection risk" associated with the use of a vaginal pessary during high-risk pregnancy can be reassured.

  16. Pharmacological activation of PPARbeta/delta stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice.

    PubMed

    Miura, Pedro; Chakkalakal, Joe V; Boudreault, Louise; Bélanger, Guy; Hébert, Richard L; Renaud, Jean-Marc; Jasmin, Bernard J

    2009-12-01

    A therapeutic strategy to treat Duchenne muscular dystrophy (DMD) involves identifying compounds that can elevate utrophin A expression in muscle fibers of affected patients. The dystrophin homologue utrophin A can functionally substitute for dystrophin when its levels are enhanced in the mdx mouse model of DMD. Utrophin A expression in skeletal muscle is regulated by mechanisms that promote the slow myofiber program. Since activation of peroxisome proliferator-activated receptor (PPAR) beta/delta promotes the slow oxidative phenotype in skeletal muscle, we initiated studies to determine whether pharmacological activation of PPARbeta/delta provides functional benefits to the mdx mouse. GW501516, a PPARbeta/delta agonist, was found to stimulate utrophin A mRNA levels in C2C12 muscle cells through an element in the utrophin A promoter. Expression of PPARbeta/delta was greater in skeletal muscles of mdx versus wild-type mice. We treated 5-7-week-old mdx mice with GW501516 for 4 weeks. This treatment increased the percentage of muscle fibers expressing slower myosin heavy chain isoforms and stimulated utrophin A mRNA levels leading to its increased expression at the sarcolemma. Expression of alpha1-syntrophin and beta-dystroglycan was restored to the sarcolemma. Improvement of mdx sarcolemmal integrity was evidenced by decreased intracellular IgM staining and decreased in vivo Evans blue dye (EBD) uptake. GW501516 treatment also conferred protection against eccentric contraction (ECC)-induced damage of mdx skeletal muscles, as shown by a decreased contraction-induced force drop and reduction of dye uptake during ECC. These results demonstrate that pharmacological activation of PPARbeta/delta might provide functional benefits to DMD patients through enhancement of utrophin A expression.

  17. Effect of noxious electrical stimulation of the peroneal nerve on stretch reflex activity of the hamstring muscle in rats: possible implications of neuronal mechanisms in the development of tight hamstrings in lumbar disc herniation.

    PubMed

    Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige

    2005-05-01

    The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.

  18. Magnetic lumbosacral motor root stimulation with a flat, large round coil.

    PubMed

    Matsumoto, Hideyuki; Octaviana, Fitri; Hanajima, Ritsuko; Terao, Yasuo; Yugeta, Akihiro; Hamada, Masashi; Inomata-Terada, Satomi; Nakatani-Enomoto, Setsu; Tsuji, Shoji; Ugawa, Yoshikazu

    2009-04-01

    The aim of this paper is to develop a reliable method for supramaximal magnetic spinal motor root stimulation (MRS) for lower limb muscles using a specially devised coil. For this study, 42 healthy subjects were recruited. A 20-cm diameter coil designated as a Magnetic Augmented Translumbosacral Stimulation (MATS) coil was used. Compound muscle action potentials (CMAPs) were recorded from the abductor hallucis muscle. Their CMAPs were compared with those obtained by MRS using a conventional round or double coil and with those obtained using high-voltage electrical stimulation. The MATS coil evoked CMAPs to supramaximal stimulation in 80 of 84 muscles, although round and double coils elicited supramaximal CMAPs in only 15 and 18 of 84 muscles, respectively. The CMAP size to the MATS coil stimulation was the same as that to high-voltage electrical motor root stimulation. MATS coil achieved supramaximal stimulation of the lumbosacral spinal nerves. The CMAPs to supramaximal stimulation are necessary for measurement of the amplitude and area for the detection of conduction blocks. The MATS coil stimulation of lumbosacral motor roots is a reliable method for measuring the CMAP size from lower limb muscles in spinal motor root stimulation.

  19. Endothelin‐1 suppresses insulin‐stimulated Akt phosphorylation and glucose uptake via GPCR kinase 2 in skeletal muscle cells

    PubMed Central

    Hoshi, Akimasa; Harada, Takuya; Higa, Tsunaki; Karki, Sarita; Terada, Koji; Higashi, Tsunehito; Mai, Yosuke; Nepal, Prabha; Mazaki, Yuichi; Miwa, Soichi

    2016-01-01

    Background and Purpose Endothelin‐1 (ET‐1) reduces insulin‐stimulated glucose uptake in skeletal muscle, inducing insulin resistance. Here, we have determined the molecular mechanisms underlying negative regulation by ET‐1 of insulin signalling. Experimental Approach We used the rat L6 skeletal muscle cells fully differentiated into myotubes. Changes in the phosphorylation of Akt was assessed by Western blotting. Effects of ET‐1 on insulin‐stimulated glucose uptake was assessed with [3H]‐2‐deoxy‐d‐glucose ([3H]2‐DG). The C‐terminus region of GPCR kinase 2 (GRK2‐ct), a dominant negative GRK2, was overexpressed in L6 cells using adenovirus‐mediated gene transfer. GRK2 expression was suppressed by transfection of the corresponding short‐interfering RNA (siRNA). Key Results In L6 myotubes, insulin elicited sustained Akt phosphorylation at Thr308 and Ser473, which was suppressed by ET‐1. The inhibitory effects of ET‐1 were prevented by treatment with a selective ETA receptor antagonist and a Gq protein inhibitor, overexpression of GRK2‐ct and knockdown of GRK2. Insulin increased [3H]2‐DG uptake rate in a concentration‐dependent manner. ET‐1 noncompetitively antagonized insulin‐stimulated [3H]2‐DG uptake. Blockade of ETA receptors, overexpression of GRK2‐ct and knockdown of GRK2 prevented the ET‐1‐induced suppression of insulin‐stimulated [3H]2‐DG uptake. In L6 myotubes overexpressing FLAG‐tagged GRK2, ET‐1 facilitated the interaction of endogenous Akt with FLAG‐GRK2. Conclusions and Implications Activation of ETA receptors with ET‐1 suppressed insulin‐induced Akt phosphorylation at Thr308 and Ser473 and [3H]2‐DG uptake in a GRK2‐dependent manner in skeletal muscle cells. These findings suggest that ETA receptors and GRK2 are potential targets for overcoming insulin resistance. PMID:26660861

  20. Regular exercisers have stronger pelvic floor muscles than nonregular exercisers at midpregnancy.

    PubMed

    Bø, Kari; Ellstrøm Engh, Marie; Hilde, Gunvor

    2018-04-01

    Today all healthy pregnant women are encouraged to be physically active throughout pregnancy, with recommendations to participate in at least 30 minutes of aerobic activity on most days of the week in addition to performing strength training of the major muscle groups 2-3 days per week and also pelvic floor muscle training. There is, however, an ongoing debate whether general physical activity enhances or declines pelvic floor muscle function. The objectives of the study were to compare vaginal resting pressure, pelvic floor muscle strength, and endurance in regular exercisers (exercise ≥30 minutes 3 or more times per week) and nonexercisers at midpregnancy. Furthermore, another objective was to assess whether regular general exercise or pelvic floor muscle strength was associated with urinary incontinence. This was a cross-sectional study at mean gestational week 20.9 (±1.4) including 218 nulliparous pregnant women, with a mean age of 28.6 years (range, 19-40 years) and prepregnancy body mass index of 23.9 kg/m 2 (SD, 4.0). Vaginal resting pressure, pelvic floor muscle strength, and pelvic floor muscle endurance were measured by a high-precision pressure transducer connected to a vaginal balloon. The International Consultation on Incontinence Questionnaire Urinary Incontinence Short Form was used to assess urinary incontinence. Differences between groups were analyzed using an independent-sample Student t test. Linear regression analysis was conducted to adjust for prepregnancy body mass index, age, smoking during pregnancy, and regular pelvic floor muscle training during pregnancy. The significance value was set to P ≤ .05. Regular exercisers had statistically significant stronger (mean 6.4 cm H 2 O [95% confidence interval, 1.7-11.2]) and more enduring (mean 39.9 cm H 2 Osec [95% confidence interval, 42.2-75.7]) pelvic floor muscles. Only pelvic floor muscle strength remained statistically significant, when adjusting for possible confounders. Pelvic floor

  1. Citrulline stimulates muscle protein synthesis in the post-absorptive state in healthy people fed a low-protein diet – A pilot study

    PubMed Central

    Jourdan, Marion; Nair, K. Sreekumaran; Carter, Rickey E.; Schimke, Jill; Ford, G. Charles; Marc, Julie; Aussel, Christian; Cynober, Luc

    2015-01-01

    Background and Aims Amino acid (AA) availability is critical to maintain protein homeostasis and reduced protein intake causes a decline in protein synthesis. Citrulline, an amino acid metabolite, has been reported to stimulate muscle protein synthesis in malnourished rats. Methods To determine whether citrulline stimulates muscle protein synthesis in healthy adults while on a low-protein diet, we studied 8 healthy participants twice in a cross-over study design. Following a 3-days of low-protein intake, either citrulline or a non-essential AA mixture (NEAA) was given orally as small boluses over the course of 8 hours. [ring-13C6] phenylalanine and [15N] tyrosine were administered as tracers to assess protein metabolism. Fractional synthesis rates (FSR) of muscle proteins were measured using phenylalanine enrichment in muscle tissue fluid as the precursor pool. Results FSR of mixed muscle protein was higher during the administration of citrulline than during NEAA (NEAA: 0.049 ± 0.005; citrulline: 0.060 ± 0.006; p=0.03), while muscle mitochondrial protein FSR and whole-body protein turnover were not different between the studies. Citrulline administration increased arginine and ornithine plasma concentrations without any effect on glucose, insulin, C-peptide, and IGF-1 levels. Citrulline administration did not promote mitochondria protein synthesis, transcripts, or citrate synthesis. Conclusions Citrulline ingestion enhances mixed muscle protein synthesis in healthy participants on 3-day low-protein intake. This anabolic action of citrulline appears to be independent of insulin action and may offer potential clinical application in conditions involving low amino acid intake. PMID:24972455

  2. Leucine facilitates the insulin-stimulated glucose uptake and insulin signaling in skeletal muscle cells: involving mTORC1 and mTORC2.

    PubMed

    Liu, Hui; Liu, Rui; Xiong, Yufang; Li, Xiang; Wang, Xiaolei; Ma, Yan; Guo, Huailan; Hao, Liping; Yao, Ping; Liu, Liegang; Wang, Di; Yang, Xuefeng

    2014-08-01

    Leucine, a branched-chain amino acid, has been shown to promote glucose uptake and increase insulin sensitivity in skeletal muscle, but the exact mechanism remains unestablished. We addressed this issue in cultured skeletal muscle cells in this study. Our results showed that leucine alone did not have an effect on glucose uptake or phosphorylation of protein kinase B (AKT), but facilitated the insulin-induced glucose uptake and AKT phosphorylation. The insulin-stimulated glucose uptake and AKT phosphorylation were inhibited by the phosphatidylinositol 3-kinase inhibitor, wortmannin, but the inhibition was partially reversed by leucine. The inhibitor of mammalian target of rapamycin complex 1 (mTORC1), rapamycin, had no effect on the insulin-stimulated glucose uptake, but eliminated the facilitating effect of leucine in the insulin-stimulated glucose uptake and AKT phosphorylation. In addition, leucine facilitation of the insulin-induced AKT phosphorylation was neutralized by knocking down the core component of the mammalian target of rapamycin complex 2 (mTORC2) with specific siRNA. Together, these findings show that leucine can facilitate the insulin-induced insulin signaling and glucose uptake in skeletal muscle cells through both mTORC1 and mTORC2, implicating the potential importance of this amino acid in glucose homeostasis and providing new mechanistic insights.

  3. Anxious and avoidant attachment, vibrator use, anal sex, and impaired vaginal orgasm.

    PubMed

    Costa, Rui M; Brody, Stuart

    2011-09-01

    Disturbances in intimate relationships are among the risk factors for female sexual dysfunction. Insecure styles of anxious attachment (preoccupations about abandonment) and avoidant attachment (avoidance of closeness in relationships) are robustly associated with sexual problems, relationship difficulties, and several indices of poorer physical and mental health. Similar indices of poorer sexual, relationship, and health functioning are associated with impairment of orgasm triggered by penile-vaginal stimulation (vaginal orgasm), but unrelated or related to greater frequency of other sexual behaviors. However, research examining the differential association of sexual activities with insecure attachment styles has been lacking. The aim of this study was to test the hypotheses that insecure attachment styles are associated with lesser vaginal orgasm consistency, and are unrelated or directly related to greater frequency of other sexual behaviors. Seventy coitally experienced women recruited at a Scottish university completed the Revised Experience in Close Relationships scale, and reported their frequency of various sexual behaviors (and corresponding orgasms) in a recent representative month. The main outcome measures for this study are multivariate correlations of various sexual activities with insecure attachment styles, age, and social desirability response bias. Anxious attachment was associated with lesser vaginal orgasm consistency, but with higher frequency of vibrator and anal sex orgasms. Avoidant attachment was associated with higher frequency of vibrator orgasms. Neither anxious nor avoidant attachment was associated with lifetime number of penile-vaginal intercourse partners. The results provide evidence that inability to attain a vaginal orgasm is associated with anxious attachment, among other indices of poorer mental health and relatedness. Vaginal orgasm might be the relevant sexual activity for the maintenance of a secure attachment style with a

  4. Alcohol intoxication following muscle contraction in mice decreases muscle protein synthesis but not mTOR signal transduction.

    PubMed

    Steiner, Jennifer L; Lang, Charles H

    2015-01-01

    Alcohol (ethanol [EtOH]) intoxication antagonizes stimulation of muscle protein synthesis and mammalian target of rapamycin (mTOR) signaling. However, whether the anabolic response can be reversed when alcohol is consumed after the stimulus is unknown. A single bout of electrically stimulated muscle contractions (10 sets of 6 contractions) was induced in fasted male C57BL/6 mice 2 hours prior to alcohol intoxication. EtOH was injected intraperitoneally (3 g/kg), and the gastrocnemius/plantaris muscle complex was collected 2 hours later from the stimulated and contralateral unstimulated control leg. Muscle contraction increased protein synthesis 28% in control mice, while EtOH abolished this stimulation-induced increase. Further, EtOH suppressed the rate of synthesis ~75% compared to control muscle irrespective of stimulation. This decrease was associated with impaired protein elongation as EtOH increased the phosphorylation of eEF2 Thr(56) . In contrast, stimulation-induced increases in mTOR protein complex-1 (mTORC1) (S6K1 Thr(421) /Ser(424) , S6K1 Thr(389) , rpS6 Ser(240/244) , and 4E-BP1 Thr(37/46) ) and mitogen-activated protein kinase (MAPK) (JNK Thr(183) /Tyr(185) , p38 Thr(180) /Tyr(182) , and rpS6S(235/236) ) signaling were not reversed by acute EtOH. These data suggest that EtOH-induced decreases in protein synthesis in fasted mice may be independent of mTORC1 and MAPK signaling following muscle contraction and instead due to the antagonistic actions of EtOH on mRNA translation elongation. Therefore, EtOH suppresses the contraction-induced increase in protein synthesis, and over time has the potential to prevent skeletal muscle hypertrophy induced by repeated muscle contraction. Copyright © 2015 by the Research Society on Alcoholism.

  5. Alcohol intoxication following muscle contraction in mice decreases muscle protein synthesis but not mTOR signal transduction

    PubMed Central

    Steiner, Jennifer L.; Lang, Charles H.

    2014-01-01

    Background Alcohol [ethanol (EtOH)] intoxication antagonizes stimulation of muscle protein synthesis and mTOR signaling. However, whether the anabolic response can be reversed when alcohol is consumed after the stimulus is unknown. Methods A single bout of electrically stimulated muscle contractions (10 sets of 6 contractions) were induced in fasted male C57BL/6 mice 2 h prior to alcohol intoxication. EtOH was injected IP (3g/kg) and the gastrocnemius/plantaris muscle complex was collected 2 h later from the stimulated and contralateral unstimulated control leg. Results Muscle contraction increased protein synthesis 28% in control mice while EtOH abolished this stimulation-induced increase. Further, EtOH suppressed the rate of synthesis ~75% compared to control muscle irrespective of stimulation. This decrease was associated with impaired protein elongation as EtOH increased the phosphorylation of eEF2 Thr56. In contrast, stimulation-induced increases in mTORC1 (S6K1 Thr421/Ser424, S6K1 Thr389, rpS6 Ser240/244, 4E-BP1 Thr37/46) and MAPK (JNK Thr183/Tyr185, p38 Thr180/Tyr182, and rpS6S235/236) signaling were not reversed by acute EtOH. Conclusion These data suggest that EtOH-induced decreases in protein synthesis in fasted mice may be independent of mTORC1 and MAPK signaling following muscle contraction and instead due to the antagonistic actions of EtOH on mRNA translation elongation. Therefore, EtOH suppresses the contraction-induced increase in protein synthesis and over time has the potential to prevent skeletal muscle hypertrophy induced by repeated muscle contraction. PMID:25623400

  6. Assisted Vaginal Delivery

    MedlinePlus

    ... Patient Education FAQs Assisted Vaginal Delivery Patient Education Pamphlets - Spanish Assisted Vaginal Delivery FAQ192, February 2016 PDF ... on Patient Safety For Patients Patient FAQs Spanish Pamphlets Teen Health About ACOG About Us Leadership & Governance ...

  7. Vaginal estrogen: a dual-edged sword in postoperative healing of the vaginal wall.

    PubMed

    Ripperda, Christopher M; Maldonado, Pedro Antonio; Acevedo, Jesus F; Keller, Patrick W; Akgul, Yucel; Shelton, John M; Word, Ruth Ann

    2017-07-01

    Reconstructive surgery for pelvic organ prolapse is plagued with high failure rates possibly due to impaired healing or regeneration of the vaginal wall. Here, we tested the hypothesis that postoperative administration of local estrogen, direct injection of mesenchymal stem cells (MSCs), or both lead to improved wound healing of the injured vagina in a menopausal rat model. Ovariectomized rats underwent surgical injury to the posterior vaginal wall and were randomized to treatment with placebo (n = 41), estrogen cream (n = 47), direct injection of MSCs (n = 39), or both (n = 43). MSCs did not survive after injection and had no appreciable effects on healing of the vaginal wall. Acute postoperative administration of vaginal estrogen altered the response of the vaginal wall to injury with decreased stiffness, decreased collagen content, and decreased expression of transcripts for matrix components in the stromal compartment. Conversely, vaginal estrogen resulted in marked proliferation of the epithelial layer and increased expression of genes related to epithelial barrier function and protease inhibition. Transcripts for genes involved in chronic inflammation and adaptive immunity were also down-regulated in the estrogenized epithelium. Collectively, these data indicate that, in contrast to the reported positive effects of preoperative estrogen on the uninjured vagina, acute administration of postoperative vaginal estrogen has adverse effects on the early phase of healing of the stromal layer. In contrast, postoperative estrogen plays a positive role in healing of the vaginal epithelium after injury.

  8. Vaginal estrogen: a dual-edged sword in postoperative healing of the vaginal wall

    PubMed Central

    Ripperda, Christopher M.; Maldonado, Pedro Antonio; Acevedo, Jesus F.; Keller, Patrick W.; Akgul, Yucel; Shelton, John M.; Word, Ruth Ann

    2017-01-01

    Abstract Objective: Reconstructive surgery for pelvic organ prolapse is plagued with high failure rates possibly due to impaired healing or regeneration of the vaginal wall. Here, we tested the hypothesis that postoperative administration of local estrogen, direct injection of mesenchymal stem cells (MSCs), or both lead to improved wound healing of the injured vagina in a menopausal rat model. Methods: Ovariectomized rats underwent surgical injury to the posterior vaginal wall and were randomized to treatment with placebo (n = 41), estrogen cream (n = 47), direct injection of MSCs (n = 39), or both (n = 43). Results: MSCs did not survive after injection and had no appreciable effects on healing of the vaginal wall. Acute postoperative administration of vaginal estrogen altered the response of the vaginal wall to injury with decreased stiffness, decreased collagen content, and decreased expression of transcripts for matrix components in the stromal compartment. Conversely, vaginal estrogen resulted in marked proliferation of the epithelial layer and increased expression of genes related to epithelial barrier function and protease inhibition. Transcripts for genes involved in chronic inflammation and adaptive immunity were also down-regulated in the estrogenized epithelium. Conclusions: Collectively, these data indicate that, in contrast to the reported positive effects of preoperative estrogen on the uninjured vagina, acute administration of postoperative vaginal estrogen has adverse effects on the early phase of healing of the stromal layer. In contrast, postoperative estrogen plays a positive role in healing of the vaginal epithelium after injury. PMID:28169915

  9. Chronic Stimulation-Induced Changes in the Rodent Thyroarytenoid Muscle

    ERIC Educational Resources Information Center

    McMullen, Colleen A.; Butterfield, Timothy A.; Dietrich, Maria; Andreatta, Richard D.; Andrade, Francisco H.; Fry, Lisa; Stemple, Joseph C.

    2011-01-01

    Purpose: Therapies for certain voice disorders purport principles of skeletal muscle rehabilitation to increase muscle mass, strength, and endurance. However, applicability of limb muscle rehabilitation to the laryngeal muscles has not been tested. In this study, the authors examined the feasibility of the rat thyroarytenoid muscle to remodel as a…

  10. Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique?

    PubMed Central

    Miller, Elizabeth A.; Beasley, DeAnna E.; Dunn, Robert R.; Archie, Elizabeth A.

    2016-01-01

    The human vaginal microbiome is dominated by bacteria from the genus Lactobacillus, which create an acidic environment thought to protect women against sexually transmitted pathogens and opportunistic infections. Strikingly, lactobacilli dominance appears to be unique to humans; while the relative abundance of lactobacilli in the human vagina is typically >70%, in other mammals lactobacilli rarely comprise more than 1% of vaginal microbiota. Several hypotheses have been proposed to explain humans' unique vaginal microbiota, including humans' distinct reproductive physiology, high risk of STDs, and high risk of microbial complications linked to pregnancy and birth. Here, we test these hypotheses using comparative data on vaginal pH and the relative abundance of lactobacilli in 26 mammalian species and 50 studies (N = 21 mammals for pH and 14 mammals for lactobacilli relative abundance). We found that non-human mammals, like humans, exhibit the lowest vaginal pH during the period of highest estrogen. However, the vaginal pH of non-human mammals is never as low as is typical for humans (median vaginal pH in humans = 4.5; range of pH across all 21 non-human mammals = 5.4–7.8). Contrary to disease and obstetric risk hypotheses, we found no significant relationship between vaginal pH or lactobacilli relative abundance and multiple metrics of STD or birth injury risk (P-values ranged from 0.13 to 0.99). Given the lack of evidence for these hypotheses, we discuss two alternative explanations: the common function hypothesis and a novel hypothesis related to the diet of agricultural humans. Specifically, with regard to diet we propose that high levels of starch in human diets have led to increased levels of glycogen in the vaginal tract, which, in turn, promotes the proliferation of lactobacilli. If true, human diet may have paved the way for a novel, protective microbiome in human vaginal tracts. Overall, our results highlight the need for continuing research on non

  11. Muscle spindle autogenetic inhibition in the extraocular muscles of lamb.

    PubMed

    Pettorossi, V E; Filippi, G M

    1981-09-01

    The role of extraocular muscle (EOM) proprioceptors on eye motility has been investigated in lambs on "encéphale isolé", by evaluating the tension of EOMs at various lengths and velocities of stretch before and after proprioceptive blocks. The EOM tension, in the absence of proprioceptive input, was higher than in normal conditions. Such an effect occurred at lengthening values greater than 3 mm of stretch from resting muscle length, corresponding to 18 degrees of eye deviation and was dependent on the velocity of the stretch, being more effective at high velocity. The muscle receptors responsible for this effect was determined by comparing the sensitivity to vibratory stimulation of spindles and tendon organs to the amount of inhibition provoked by the same stimulation on an EOM electromyographic activity. The tension inhibition appeared to be correlated to muscle spindle activation. Thus, the presence of muscle spindles can determine a reduction of the tension within the stretched muscles. This result suggests that the EOM length and velocity signals operate moment to moment reduction on the stiffness of the muscle which antagonizes eye displacement, thus facilitating the ocular movements.

  12. Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord

    NASA Astrophysics Data System (ADS)

    Sharpe, Abigail N.; Jackson, Andrew

    2014-02-01

    Objective. Electrical stimulation of the spinal cord has potential applications following spinal cord injury for reanimating paralysed limbs and promoting neuroplastic changes that may facilitate motor rehabilitation. Here we systematically compare the efficacy, selectivity and frequency-dependence of different stimulation methods in the cervical enlargement of anaesthetized monkeys. Approach. Stimulating electrodes were positioned at multiple epidural and subdural sites on both dorsal and ventral surfaces, as well as at different depths within the spinal cord. Motor responses were recorded from arm, forearm and hand muscles. Main results. Stimulation efficacy increased from dorsal to ventral stimulation sites, with the exception of ventral epidural electrodes which had the highest recruitment thresholds. Compared to epidural and intraspinal methods, responses to subdural stimulation were more selective but also more similar between adjacent sites. Trains of stimuli delivered to ventral sites elicited consistent responses at all frequencies whereas from dorsal sites we observed a mixture of short-latency facilitation and long-latency suppression. Finally, paired stimuli delivered to dorsal surface and intraspinal sites exhibited symmetric facilitatory interactions at interstimulus intervals between 2-5 ms whereas on the ventral side interactions tended to be suppressive for near-simultaneous stimuli. Significance. We interpret these results in the context of differential activation of afferent and efferent roots and intraspinal circuit elements. In particular, we propose that distinct direct and indirect actions of spinal cord stimulation on motoneurons may be advantageous for different applications, and this should be taken into consideration when designing neuroprostheses for upper-limb function.

  13. The responses of muscle spindles to small, slow movements in passive muscle and during fusimotor activity.

    PubMed

    Wise, A K; Gregory, J E; Proske, U

    1999-03-06

    We have previously shown that movement detection thresholds at the human elbow joint were less than a degree of joint rotation in the passive limb but were higher if they were measured while subjects co-contracted elbow muscles [A.K. Wise, J.E. Gregory, U. Proske, J. Physiol., 508 (1998) 325-330]. Here we report observations on the responses of muscle spindles of the soleus muscle of the anaesthetised cat to determine their ability to signal small length changes in the passive muscle and during a contraction, under conditions resembling those of the human experiments. After appropriate conditioning of the muscle to control for history effects, primary endings of muscle spindles showed thresholds to ramp stretch at 20 micrometers s-1 of between less than 5 micrometers and 15 micrometers, which translates to 0.05 degrees -0.15 degrees of human elbow joint rotation. Thresholds were much higher following conditioning to introduce slack in the muscle. Since during a voluntary contraction there is likely to be alpha:gamma co-activation, responses of spindles were also recorded during slow stretches (100 micrometers at 20 micrometers s-1) during static fusimotor stimulation, dynamic fusimotor stimulation, combined fusimotor stimulation and fusimotor plus skeletomotor stimulation. Invariably, responses to passive stretch were larger than during motor stimulation. It is concluded that spindles are sensitive enough to signal fractions of a degree of elbow joint rotation and that the rise in threshold observed during a voluntary contraction may be accounted for by the actions of fusimotor and skeletomotor axons on spindle stretch responses. Copyright 1999 Elsevier Science B.V.

  14. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    PubMed

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  15. True vaginal prolapse in a bitch.

    PubMed

    Alan, M; Cetin, Y; Sendag, S; Eski, F

    2007-08-01

    Frequently, vaginal fold prolapse is the protrusion of edematous vaginal tissue into and through the opening of the vulva occurring during proestrus and estrus stages of the sexual cycle. True vaginal prolapse may occur near parturition, as the concentration of serum progesterone declines and the concentration of serum oestrogen increases. In the bitch, this type of true vaginal prolapse is a very rare condition. This short communication describes a 5-year-old female, cross-breed dog in moderate condition, weighing 33 kg, with distocia and true vaginal prolapse. Abdominal palpation and transabdominal ultrasonography revealed live and dead foetuses in the uterine horns. One dead and four live fetuses were removed from uterus by cesarean section. The ovariohysterectomy was performed after repositioning the vaginal wall with a combination of traction from within the abdomen and external manipulation through the vulva. Re-occurrence of a vaginal prolapse was not observed and the bitch recovered completely after the surgical therapy. Compared to other vaginal disorders, vaginal prolapse is an uncommon condition in the bitch. In the present case, extreme tenesmus arising from distocia may have predisposed to the vaginal prolapse. The cause of dystocia was probably the disposition of the first foetus. We concluded that the vaginal prolapse was the result of dystocia in the present case.

  16. Trains of electrical stimulation of the trapezius muscles redistribute the frequencies of body oscillations during stance.

    PubMed

    Nhouvannasak, V; Clément, S; Manto, M

    2015-09-01

    We investigated the postural effects of trains of electrical stimulation (TES) applied unilaterally or bilaterally on the trapezius muscle in 20 healthy subjects (mean age: 23.1 ± 1.33 years; F/M: 8/12). The anterior-posterior (AP) displacements (AP axis), medio-lateral displacements (ML axis) and total travelled distances (TTW) of the centre of pressure (COP) remained unchanged with TES. However, detailed spectral analysis of COP oscillations revealed a marked decrease of the magnitudes of peak power spectral density (peak PSD) following application of TES. Peak PSD was highly correlated with the intensity of stimulation (P < 0.001 both the AP and ML axes). For the AP axis, the integrals of the sub-bands 0-0.4, 0.4-1.5, 1.5-3 Hz were significantly decreased (P < 0.001), the integrals of the sub-bands 3-5 and 5-8 Hz were not significantly affected (P>0.30) and the integrals of the sub-band 8-10 Hz were significantly increased (P < 0.001). The ratios of the integrals of sub-bands 8-10 Hz/0-3 Hz were markedly enhanced with bilateral TES (P < 0.001). For the ML axis, the effects were striking (P < 0.001) for the sub-bands 0-0.4, 0.4-1.5 and 8-10 Hz. For both the AP and ML axes, a significant inverse linear relationship was found between the intensity of TES and the average speed of COP. We show that TES applied over the trapezius muscles exerts significant and so far unrecognised effects upon oscillations of the COP, decreasing low-frequency oscillations and enhancing high-frequency oscillations. Our data unravel a novel property of the trapezius muscles upon postural control. We suggest that this muscle plays a role of a distributor of low-frequency versus high-frequency sub-bands of frequency during stance. Previous studies have shown that patients with supra-tentorial stroke show an increased peak PSD in low frequencies of body oscillations. Therefore, our findings provide a rationale to assess neurostimulation of the

  17. Immature defense mechanisms are associated with lesser vaginal orgasm consistency and greater alcohol consumption before sex.

    PubMed

    Costa, Rui Miguel; Brody, Stuart

    2010-02-01

    Disturbances of emotional and physical awareness can impair female sexual function. Previous research revealed that immature psychological defense mechanisms (impairing emotional awareness) are associated specifically with impaired vaginal orgasm (orgasm triggered solely by penile-vaginal stimulation). Alcohol consumed before sex (ACBS) might impair vaginal orgasm or lead to avoiding the opportunity for it, but research examining immature defenses, ACBS, and specific sexual behaviors has been lacking. To test the hypothesis that greater use of immature defenses and greater ACBS are inversely associated with vaginal orgasm consistency, but unrelated or positively correlated with greater frequency of other sexual behaviors. Three hundred twenty-three coitally experienced women (predominantly Scottish) responded to an online survey reporting their frequency of various sexual activities (and corresponding orgasms) and their ACBS, and completed the Defense Style Questionnaire DSQ-40. Univariate and multivariate correlations of immature defenses, ACBS, and various sexual behaviors. Both immature defenses and ACBS were associated with less vaginal orgasm consistency, but unrelated or positively correlated with frequency of other sexual behaviors (including clitoral masturbation during penile-vaginal intercourse). Immature defenses were associated with more ACBS. Immature defenses explained the association between ACBS and both lack of vaginal orgasm and greater frequency of other sexual behaviors. The results provide further evidence that difficulty in having a vaginal orgasm is associated with immature defenses (and associated disturbances of sensibility), among other indicators of poorer health and relatedness. ACBS might impair vaginal orgasm or increase the likelihood of choosing other sexual activities, but this effect might be somewhat contingent on immature defenses. Based on various empirical studies, we call for examination of the possibility that lack of vaginal

  18. Dinoprostone vaginal insert versus intravenous oxytocin to reduce postpartum blood loss following vaginal or cesarean delivery.

    PubMed

    Ozalp, E; Tanir, H M; Sener, T

    2010-01-01

    To compare the impact of a dinoprostone vaginal insert and intravenous oxytocin in reducing blood loss of women undergoing vaginal or cesarean delivery. This study was conducted among term singleton pregnancies delivered vaginally or by elective cesarean section. In the vaginally delivered cases, active management of the third stage of labor was conducted. During cesarean delivery, 20 IU of intravenous oxytocin was administered. Women, who either delivered via the vaginal or abdominal route, were then randomly allocated to receive 10 mg vaginal dinoprostone insert for 12 hours (group I, n: 100) or intravenous oxytocin (group II, n: 100), respectively. Mean blood loss and need for additional uterotonics and postpartum hemoglobin and hematocrit levels at 24 and 36 hours after delivery did not differ between the two groups. Women allocated to the dinoprostone vaginal insert arm experienced more nausea and vomiting. Dinoprostone vaginal insert was as effective as intravenous oxytocin in the prevention of postpartum blood loss.

  19. Pelvic floor muscle training for urinary incontinence in female stroke patients: a randomized, controlled and blinded trial.

    PubMed

    Shin, Doo Chul; Shin, Seung Ho; Lee, Myung Mo; Lee, Kyoung Jin; Song, Chang Ho

    2016-03-01

    To examine the effects of pelvic floor muscle training (PFMT) on the contractility of pelvic floor muscle and lower urinary tract symptoms in female stroke patients. Randomized, single-blind controlled study. Outpatient rehabilitation hospital. Thirty one female patients who were more than three months post-stroke and stress urinary incontinence. The subjects were randomized to either a PFMT group (n = 16), or a control group (n = 15). Both groups received general rehabilitation exercise for 6 weeks, but the PFMT group additionally received PFMT for 6 weeks. Vaginal function test using a perineometer (maximal vaginal squeeze pressure) and intra-vaginal electromyography (activity of pelvic floor muscle), and urinary symptoms and quality of life using a Bristol Female Lower Urinary Tract Symptom questionnaire. After intervention, the maximal vaginal squeeze pressures for the PFMT and control groups were 18.35 (5.24) and 8.46 (3.50) mmHg, respectively. And the activities of pelvic floor muscle of the PFMT and control groups was 12.09 (2.24) ㎶ and 9.33 (3.40) ㎶, respectively. After intervention, the changes of scores for inconvenience in the activity of daily living of the PFMT and control groups were -15.00 (6.25) and -0.17 (1.59), respectively. In addition, the changes of score for lower urinary tract symptom was improved more in the PFMT group (-4.17 (4.00)) than in the control group (-0.25 (1.29)) (P < 0.05). These findings suggest that PFMT is beneficial for the management of urinary incontinence in female stroke patients. © The Author(s) 2015.

  20. Evaluation of vaginal complaints.

    PubMed

    Anderson, Matthew R; Klink, Kathleen; Cohrssen, Andreas

    2004-03-17

    Vaginal symptoms are one of the most common reasons for gynecological consultation. Clinicians have traditionally diagnosed vaginal candidiasis, bacterial vaginosis, and vaginal trichomoniasis using some combination of physical examination, pH, the wet mount, and the whiff test. To evaluate the role of the clinical examination and determine the positive and negative likelihood ratios (LRs) for the diagnosis of vaginal candidiasis, bacterial vaginosis, and vaginal trichomoniasis. Using a structured literature review, we abstracted information on sensitivity and specificity for symptoms, signs, and office laboratory procedures. We chose published (1966 to April 2003) articles that appeared in the MEDLINE database and were indexed under the combined search terms of diagnosis with vaginitis, vaginal discharge, candidiasis, bacterial vaginosis, and trichomoniasis. Included studies of symptomatic premenopausal women seen in primary care settings. Tests were evaluated only if they would provide diagnostic information during the office visit and were compared with an acceptable criterion standard. All 3 authors extracted the data and computed sensitivity and specificity from each article independently. The absence of standard definitions for symptoms and signs made it impossible to combine results across studies. Symptoms alone do not allow clinicians to distinguish confidently between the causes of vaginitis. However, a patient's lack of itching makes candidiasis less likely (range of LRs, 0.18 [95% confidence interval [CI], 0.05-0.70] to 0.79 [95% CI, 0.72-0.87]) and lack of perceived odor makes bacterial vaginosis unlikely (LR, 0.07 [95% CI, 0.01-0.51]). Similarly, physical examination signs are limited in their diagnostic power. The presence of inflammatory signs is associated with candidiasis (range of LRs, 2.1 [95% CI, 1.5-2.8] to 8.4 [95% CI, 2.3-31]). Presence of a "high cheese" odor on examination is predictive of bacterial vaginosis (LR, 3.2 [95% CI, 2

  1. Management of vaginal extrusion after tension-free vaginal tape procedure for urodynamic stress incontinence.

    PubMed

    Giri, Subhasis K; Sil, Debasri; Narasimhulu, Girish; Flood, Hugh D; Skehan, Mark; Drumm, John

    2007-06-01

    To report our experience in the management of vaginal extrusion after the tension-free vaginal tape (TVT) procedure for urodynamic stress incontinence. Five patients diagnosed with vaginal extrusion after a TVT procedure performed at our institution were identified. We reviewed the patients' records retrospectively. The interval from TVT placement to diagnosis, presenting symptoms and signs, duration of symptoms, diagnostic test findings, treatment, and postoperative results were recorded. Patients were followed up for at least 12 months. From January 2001 to June 2004, a total of 166 patients underwent the TVT procedure. Of these, 5 patients (3%) were diagnosed with isolated vaginal extrusion 4 to 40 months postoperatively. No cases of urethral or bladder erosion occurred in this series. The symptoms included vaginal discharge, pain, bleeding, and dyspareunia. The eroded margin of the vaginal mucosa was trimmed, mobilized, and closed over the tape with interrupted vertical mattress sutures in a single layer using 2-0 polyglactin 910 to avoid mucosal inversion. All patients remained symptom free without any evidence of defective healing or additional extrusion at a minimal follow-up of 12 months. Primary reclosure of the vaginal mucosa over the TVT tape is an effective first-line treatment option for vaginal extrusion without compromising continence. Patients undergoing the TVT procedure should be adequately counseled about the possibility of this complication and the available treatment options.

  2. Pelvic floor muscle training for female urinary incontinence: Does it work?

    PubMed

    Singh, Nilanjana; Rashid, Mumtaz; Bayliss, Lorna; Graham, Penny

    2016-06-01

    Supervised pelvic floor muscle training in patients of stress and mixed urinary incontinence has been recommended. Our aim was to assess the utilisation and effectiveness of our supervised pelvic floor muscle training service and assess the impact of incontinence scores before physiotherapy on the subsequent results of physiotherapy. All 271 patients referred to physiotherapy for symptoms of incontinence filled out the International Consultation on Incontinence Modular Questionnaire-Female Lower Urinary Tract Symptoms before starting treatment. Depending on pelvic floor muscle assessment, plans for exercises and follow up were made. If the strength of pelvic floor muscles was poor, electrical stimulation was offered. If awareness of the pelvic floor muscle contraction was poor, bio feedback was offered. Group sessions and vaginal cones were also used. Depending on the response to the treatment; patients were either discharged, referred to Urogynaecology clinic or continued physiotherapy. All patients who were discharged or referred for surgery were given a post treatment questionnaire to fill out. 79 (56 %) of 132 women with stress, 49 (51 %) of 98 with mixed and 27 (66 %) of 41 with urge incontinence reported successful control of symptoms (overall success 54 %). However, 65 % of women with incontinence scores of 0-5 before physiotherapy, 64 % with 6-10, 42 % with 11-15 and mere 28 % with 16-20 achieved success with physiotherapy. 27 (10 %) were lost to follow up. 1 in 2 women referred to physiotherapy for incontinence, achieved successful control of symptoms without the need for invasive investigations or surgery. However, poor incontinence scores before the start of physiotherapy is a poor prognostic indicator for success. 90 % women utilised the service.

  3. Vaginitis: current microbiologic and clinical concepts.

    PubMed Central

    Hill, L V; Embil, J A

    1986-01-01

    Infectious vaginitis occurs when the normal vaginal flora is disrupted; it may arise when saprophytes overwhelm the host immune response, when pathogenic organisms are introduced into the vagina or when changes in substrate allow an imbalance of microorganisms to develop. Examples of these types of vaginitis include the presence of chronic fungal infection in women with an inadequate cellular immune response to the yeast, the introduction of trichomonads into vaginal epithelium that has a sufficient supply of glycogen, and the alteration in bacterial flora, normally dominated by Lactobacillus spp., and its metabolites that is characteristic of "nonspecific vaginitis". The authors review microbiologic and clinical aspects of the fungal, protozoal and bacterial infections, including the interactions of bacteria thought to produce nonspecific vaginitis, that are now recognized as causing vaginitis. Other causes of vaginitis are also discussed. PMID:3510698

  4. Vaginitis: current microbiologic and clinical concepts.

    PubMed

    Hill, L V; Embil, J A

    1986-02-15

    Infectious vaginitis occurs when the normal vaginal flora is disrupted; it may arise when saprophytes overwhelm the host immune response, when pathogenic organisms are introduced into the vagina or when changes in substrate allow an imbalance of microorganisms to develop. Examples of these types of vaginitis include the presence of chronic fungal infection in women with an inadequate cellular immune response to the yeast, the introduction of trichomonads into vaginal epithelium that has a sufficient supply of glycogen, and the alteration in bacterial flora, normally dominated by Lactobacillus spp., and its metabolites that is characteristic of "nonspecific vaginitis". The authors review microbiologic and clinical aspects of the fungal, protozoal and bacterial infections, including the interactions of bacteria thought to produce nonspecific vaginitis, that are now recognized as causing vaginitis. Other causes of vaginitis are also discussed.

  5. Directed shift of vaginal microbiota induced by vaginal application of sucrose gel in rhesus macaques.

    PubMed

    Hu, Kai-tao; Zheng, Jin-xin; Yu, Zhi-jian; Chen, Zhong; Cheng, Hang; Pan, Wei-guang; Yang, Wei-zhi; Wang, Hong-yan; Deng, Qi-wen; Zeng, Zhong-ming

    2015-04-01

    Sucrose gel was used to treat bacterial vaginosis in a phase III clinical trial. However, the changes of vaginal flora after treatment were only examined by Nugent score in that clinical trial, While the vaginal microbiota of rhesus macaques is characterized by anaerobic, Gram-negative bacteria, few lactobacilli, and pH levels above 4.6, similar to the microbiota of patients with bacterial vaginosis. This study is aimed to investigate the change of the vaginal microbiota of rehsus macaques after topical use of sucrose gel to reveal more precisely the bacterial population shift after the topical application of sucrose gel. Sixteen rhesus macaques were treated with 0.5 g sucrose gel vaginally and three with 0.5 g of placebo gel. Vaginal swabs were collected daily following treatment. Vaginal pH levels and Nugent scores were recorded. The composition of the vaginal micotbiota was tested by V3∼V4 16S rDNA metagenomic sequencing. Dynamic changes in the Lactobacillus genus were analyzed by qPCR. The vaginal microbiota of rhesus macaques are dominated by anaerobic Gram-negative bacteria, with few lactobacilli and high pH levels above 4.6. After five days' treatment with topical sucrose gel, the component percentage of Lactobacillus in vaginal microbiota increased from 1.31% to 81.59%, while the component percentage of Porphyromonas decreased from 18.60% to 0.43%, Sneathia decreased from 15.09% to 0.89%, Mobiluncus decreased from 8.23% to 0.12%, etc.. The average vaginal pH values of 16 rhesus macaques of the sucrose gel group decreased from 5.4 to 3.89. There were no significant changes in microbiota and vaginal pH observed in the placebo group. Rhesus macaques can be used as animal models of bacterial vaginosis to develop drugs and test treatment efficacy. Furthermore, the topical application of sucrose gel induced the shifting of vaginal flora of rhesus macaques from a BV kind of flora to a lactobacilli-dominating flora. Copyright © 2015 The Authors. Published by

  6. Fast track vaginal surgery.

    PubMed

    Ottesen, Marianne; Sørensen, Mette; Rasmussen, Yvonne; Smidt-Jensen, Steen; Kehlet, Henrik; Ottesen, Bent

    2002-02-01

    Our aim was to describe the need for postoperative hospitalization after vaginal surgery for utero-vaginal prolapse with well-defined charts for postoperative care. A prospective, descriptive study. Consecutive women admitted for first-time vaginal surgery for utero-vaginal prolapse at a public university hospital in Copenhagen, Denmark, underwent surgery and postoperative care in a fast track setting from September 15, 1999 to June 15 2000. A multimodal rehabilitation model with emphasis on information, standardized general anesthesia, reduced surgical distress, optimized pain-relief, early oral nutrition and ambulation, minimal use of indwelling catheter and vaginal packing. Postoperative hospital stay, complications, re-admission, success rate, patients' satisfaction and acceptability. Forty-one women with a median age of 69 years (range, 44-88 years) were included. All underwent anterior and/or posterior vaginal repair. Nineteen (46.3%) underwent vaginal hysterectomy, and eight (19.5%) underwent the Manchester procedure. Postoperative hospital stay was median 24 hr. Only three (7.3%) were discharged later than 48 hr. No re-admissions occurred. The most frequent complications were urinary retention exceeding 450 ml, and urinary tract infection (12.2%, and 9.8%, respectively). Short-term success rate was 97.6%. Patients' satisfaction rates were 85.4-95.1%. The median score of acceptability was 10 on a 0-10 points scale. The need for postoperative hospitalization was median 24 hr after vaginal surgery in a fast track setting, independently of the complexity of the procedure performed. Short-term success rate, satisfaction rates, and acceptability were all excellent. Follow up has been established to evaluate long-term success rates and recurrence.

  7. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.

    PubMed

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2015-02-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild‑type (WT) mice. Administration of β‑estradiol to infant Sema4D‑deficient (Sema4D‑/‑) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β‑estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin‑B1, was examined as well as the level of apoptosis in the vaginal epithelia of five‑week‑old WT and Sema4D‑/‑ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin‑B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase‑3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five‑week‑old Sema4D‑/‑ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D‑/‑ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis‑inducing activity of Sema4D. The

  8. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling

    PubMed Central

    ITO, TAKUJI; BAI, TAO; TANAKA, TETSUJI; YOSHIDA, KENJI; UEYAMA, TAKASHI; MIYAJIMA, MASAYASU; NEGISHI, TAKAYUKI; KAWASAKI, TAKAHIKO; TAKAMATSU, HYOTA; KIKUTANI, HITOSHI; KUMANOGOH, ATSUSHI; YUKAWA, KAZUNORI

    2015-01-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild-type (WT) mice. Administration of β-estradiol to infant Sema4D-deficient (Sema4D−/−) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β-estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin-B1, was examined as well as the level of apoptosis in the vaginal epithelia of five-week-old WT and Sema4D−/− mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin-B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase-3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five-week-old Sema4D−/− mice compared with WT mice. The addition of recombinant Sema4D to Sema4D−/− vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis-inducing activity of Sema4D. The experimental reduction of

  9. Scapular kinematic and shoulder muscle activity alterations after serratus anterior muscle fatigue.

    PubMed

    Umehara, Jun; Kusano, Ken; Nakamura, Masatoshi; Morishita, Katsuyuki; Nishishita, Satoru; Tanaka, Hiroki; Shimizu, Itsuroh; Ichihashi, Noriaki

    2018-02-23

    Although the serratus anterior muscle has an important role in scapular movement, no study to date has investigated the effect of serratus anterior fatigue on scapular kinematics and shoulder muscle activity. The purpose of this study was to clarify the effect of serratus anterior fatigue on scapular movement and shoulder muscle activity. The study participants were 16 healthy men. Electrical muscle stimulation was used to fatigue the serratus anterior muscle. Shoulder muscle strength and endurance, scapular movement, and muscle activity were measured before and after the fatigue task. The muscle activity of the serratus anterior, upper and lower trapezius, anterior and middle deltoid, and infraspinatus muscles was recorded, and the median power frequency of these muscles was calculated to examine the degree of muscle fatigue. The muscle endurance and median power frequency of the serratus anterior muscle decreased after the fatigue tasks, whereas the muscle activities of the serratus anterior, upper trapezius, and infraspinatus muscles increased. External rotation of the scapula at the shoulder elevated position increased after the fatigue task. Selective serratus anterior fatigue due to electric muscle stimulation decreased the serratus anterior endurance at the flexed shoulder position. Furthermore, the muscle activities of the serratus anterior, upper trapezius, and infraspinatus increased and the scapular external rotation was greater after serratus anterior fatigue. These results suggest that the rotator cuff and scapular muscle compensated to avoid the increase in internal rotation of the scapula caused by the dysfunction of the serratus anterior muscle. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  10. Neuromuscular electrical stimulation of the cricothyroid muscle in patients with suspected superior laryngeal nerve weakness.

    PubMed

    Guzman, Marco; Rubin, Adam; Cox, Paul; Landini, Fernando; Jackson-Menaldi, Cristina

    2014-03-01

    In this retrospective case study, we report the apparent clinical effectiveness of neuromuscular electrical stimulation (NMES) in combination with voice therapy (VT) for rehabilitating dysphonia secondary to suspected superior laryngeal nerve (SLN) weakness in two female patients. Both patients failed or plateaued with traditional VT but had significant improvement with the addition of NMES of the cricothyroid muscle and SLN using a VitalStim unit. Stimulation was provided simultaneously with voice exercises based on musical phonatory tasks. Both acoustic analysis and endoscopic evaluation demonstrated important improvements after treatment. In the first patient, the major change was obtained within the primo passaggio region; specifically, a decrease in voice breaks was demonstrated. In the second patient, an improvement in voice quality (less breathiness) and vocal range were the most important findings. Additionally, each patient reported a significant improvement in their voice complaints. Neuromuscular laryngeal electrical stimulation in combination with vocal exercises might be a useful tool to improve voice quality in patients with SLN injury. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  11. Feedback Information and Analysis for Microprocessor Controlled Muscle Stimulation.

    DTIC Science & Technology

    1981-12-01

    muscle into fiberous tissue (Guyton, 1976) is not inevitable. The contractile power can be preserved and fiberous build-up reduced by electrical... isometric tension, velocity of contraction and coordination of movement, all with minimally induced muscle fatigue. The work of Petrofsky and Phillips... muscle . Each muscle fiber is innervated by only a single nerve, but a single motor nerve fiber branches to as many as thousands of different muscle

  12. Stimulation of skeletal muscle protein synthesis in neonatal pigs by long-term infusion of leucine is amino acid dependent

    USDA-ARS?s Scientific Manuscript database

    Infusing leucine for 1 hr increases skeletal muscle protein synthesis in neonatal pigs, but this is not sustained for 2 h unless the leucine-induced fall in amino acids is prevented. We aimed to determine whether continuous leucine infusion can stimulate protein synthesis for a prolonged period whe...

  13. Electrical stimulation with non-implanted devices for stress urinary incontinence in women.

    PubMed

    Stewart, Fiona; Berghmans, Bary; Bø, Kari; Glazener, Cathryn Ma

    2017-12-22

    Several treatment options are available for stress urinary incontinence (SUI), including pelvic floor muscle training (PFMT), drug therapy and surgery. Problems exist such as adherence to PFMT regimens, side effects linked to drug therapy and the risks associated with surgery. We have evaluated an alternative treatment, electrical stimulation (ES) with non-implanted devices, which aims to improve pelvic floor muscle function to reduce involuntary urine loss. To assess the effects of electrical stimulation with non-implanted devices, alone or in combination with other treatment, for managing stress urinary incontinence or stress-predominant mixed urinary incontinence in women. Among the outcomes examined were costs and cost-effectiveness. We searched the Cochrane Incontinence Specialised Register, which contains trials identified from the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, MEDLINE In-Process, MEDLINE Epub Ahead of Print, CINAHL, ClinicalTrials.gov, WHO ICTRP and handsearches of journals and conference proceedings (searched 27 February 2017). We also searched the reference lists of relevant articles and undertook separate searches to identify studies examining economic data. We included randomised or quasi-randomised controlled trials of ES with non-implanted devices compared with any other treatment for SUI in women. Eligible trials included adult women with SUI or stress-predominant mixed urinary incontinence (MUI). We excluded studies of women with urgency-predominant MUI, urgency urinary incontinence only, or incontinence associated with a neurologic condition. We would have included economic evaluations had they been conducted alongside eligible trials. Two review authors independently screened search results, extracted data from eligible trials and assessed risk of bias, using the Cochrane 'Risk of bias' tool. We would have performed economic evaluations using the approach recommended by Cochrane Economic Methods. We identified

  14. Bacterial vaginosis, vaginal flora patterns and vaginal hygiene practices in patients presenting with vaginal discharge syndrome in The Gambia, West Africa

    PubMed Central

    Demba, Edward; Morison, Linda; van der Loeff, Maarten Schim; Awasana, Akum A; Gooding, Euphemia; Bailey, Robin; Mayaud, Philippe; West, Beryl

    2005-01-01

    Background Bacterial vaginosis (BV) – a syndrome characterised by a shift in vaginal flora – appears to be particularly common in sub-Saharan Africa, but little is known of the pattern of vaginal flora associated with BV in Africa. We conducted a study aimed at determining the prevalence of BV and patterns of BV-associated vaginal micro-flora among women with vaginal discharge syndrome (VDS) in The Gambia, West Africa. Methods We enrolled 227 women with VDS from a large genito-urinary medicine clinic in Fajara, The Gambia. BV was diagnosed by the Nugent's score and Amsel's clinical criteria. Vaginal swabs were collected for T vaginalis and vaginal flora microscopy, and for Lactobacillus spp, aerobic organisms, Candida spp and BV-associated bacteria (Gardnerella vaginalis, anaerobic bacteria, and Mycoplasma spp) cultures; and cervical swabs were collected for N gonorrhoeae culture and C trachomatis PCR. Sera were tested for HIV-1 and HIV-2 antibodies. Sexual health history including details on sexual hygiene were obtained by standardised questionnaire. Results BV prevalence was 47.6% by Nugent's score and 30.8% by Amsel's clinical criteria. Lactobacillus spp were isolated in 37.8% of women, and 70% of the isolates were hydrogen-peroxide (H202)-producing strains. Prevalence of BV-associated bacteria were: G vaginalis 44.4%; Bacteroides 16.7%; Prevotella 15.2%; Peptostretococcus 1.5%; Mobiluncus 0%; other anaerobes 3.1%; and Mycoplasma hominis 21.4%. BV was positively associated with isolation of G vaginalis (odds-ratio [OR] 19.42, 95%CI 7.91 – 47.6) and anaerobes (P = 0.001 [OR] could not be calculated), but not with M hominis. BV was negatively associated with presence of Lactobacillus (OR 0.07, 95%CI 0.03 – 0.15), and H2O2-producing lactobacilli (OR 0.12, 95% CI 0.05 – 0.28). Presence of H2O2-producing lactobacilli was associated with significantly lower prevalence of G vaginalis, anaerobes and C trachomatis. HIV prevalence was 12.8%. Overall, there was

  15. Heterogeneity of Vaginal Microbial Communities within Individuals▿ #

    PubMed Central

    Kim, Tae Kyung; Thomas, Susan M.; Ho, Mengfei; Sharma, Shobha; Reich, Claudia I.; Frank, Jeremy A.; Yeater, Kathleen M.; Biggs, Diana R.; Nakamura, Noriko; Stumpf, Rebecca; Leigh, Steven R.; Tapping, Richard I.; Blanke, Steven R.; Slauch, James M.; Gaskins, H. Rex; Weisbaum, Jon S.; Olsen, Gary J.; Hoyer, Lois L.; Wilson, Brenda A.

    2009-01-01

    Recent culture-independent studies have revealed that a healthy vaginal ecosystem harbors a surprisingly complex assemblage of microorganisms. However, the spatial distribution and composition of vaginal microbial populations have not been investigated using molecular methods. Here, we evaluated site-specific microbial composition within the vaginal ecosystem and examined the influence of sampling technique in detection of the vaginal microbiota. 16S rRNA gene clone libraries were prepared from samples obtained from different locations (cervix, fornix, outer vaginal canal) and by different methods (swabbing, scraping, lavaging) from the vaginal tracts of eight clinically healthy, asymptomatic women. The data reveal that the vaginal microbiota is not homogenous throughout the vaginal tract but differs significantly within an individual with regard to anatomical site and sampling method used. Thus, this study illuminates the complex structure of the vaginal ecosystem and calls for the consideration of microenvironments when sampling vaginal microbiota as a clinical predictor of vaginal health. PMID:19158255

  16. Effects of a One Year Reusable Contraceptive Vaginal Ring on Vaginal Microflora and the Risk of Vaginal Infection: An Open-Label Prospective Evaluation.

    PubMed

    Huang, Yongmei; Merkatz, Ruth B; Hillier, Sharon L; Roberts, Kevin; Blithe, Diana L; Sitruk-Ware, Régine; Creinin, Mitchell D

    2015-01-01

    A contraceptive vaginal ring (CVR) containing Nestorone® (NES) and ethinyl estradiol (EE) that is reusable for 1- year (13 cycles) is under development. This study assessed effects of this investigational CVR on the incidence of vaginal infections and change in vaginal microflora. There were 120 women enrolled into a NES/EE CVR Phase III trial and a microbiology sub-study for up to 1- year of cyclic product use. Gynecological examinations were conducted at baseline, the first week of cycle 6 and last week of cycle 13 (or during early discontinuation visits). Vaginal swabs were obtained for wet mount microscopy, Gram stain and culture. The CVR was removed from the vagina at the last study visit and cultured. Semi-quantitative cultures for Lactobacillus, Gardnerella vaginalis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, anaerobic gram negative rods (GNRs), Candida albicans and other yeasts were performed on vaginal and CVR samples. Vaginal infections were documented throughout the study. Over 1- year of use, 3.3% of subjects were clinically diagnosed with bacterial vaginosis, 15.0% with vulvovaginal candidiasis, and 0.8% with trichomoniasis. The detection rate of these three infections did not change significantly from baseline to either Cycle 6 or 13. Nugent scores remained stable. H2O2-positive Lactobacillus dominated vaginal flora with a non-significant prevalence increase from 76.7% at baseline to 82.7% at cycle 6 and 90.2% at cycle 13, and a median concentration of 107 colony forming units (cfu) per gram. Although anaerobic GNRs prevalence increased significantly, the median concentration decreased slightly (104 to 103cfu per gram). There were no significant changes in frequency or concentrations of other pathogens. High levels of agreement between vaginal and ring surface microbiota were observed. Sustained use of the NES/EE CVR did not increase the risk of vaginal infection and was not disruptive to the vaginal ecosystem. Clinical

  17. Effects of a One Year Reusable Contraceptive Vaginal Ring on Vaginal Microflora and the Risk of Vaginal Infection: An Open-Label Prospective Evaluation

    PubMed Central

    Huang, Yongmei; Merkatz, Ruth B.; Hillier, Sharon L.; Roberts, Kevin; Blithe, Diana L.; Sitruk-Ware, Régine; Creinin, Mitchell D.

    2015-01-01

    Background A contraceptive vaginal ring (CVR) containing Nestorone® (NES) and ethinyl estradiol (EE) that is reusable for 1- year (13 cycles) is under development. This study assessed effects of this investigational CVR on the incidence of vaginal infections and change in vaginal microflora. Methods There were 120 women enrolled into a NES/EE CVR Phase III trial and a microbiology sub-study for up to 1- year of cyclic product use. Gynecological examinations were conducted at baseline, the first week of cycle 6 and last week of cycle 13 (or during early discontinuation visits). Vaginal swabs were obtained for wet mount microscopy, Gram stain and culture. The CVR was removed from the vagina at the last study visit and cultured. Semi-quantitative cultures for Lactobacillus, Gardnerella vaginalis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, anaerobic gram negative rods (GNRs), Candida albicans and other yeasts were performed on vaginal and CVR samples. Vaginal infections were documented throughout the study. Results Over 1- year of use, 3.3% of subjects were clinically diagnosed with bacterial vaginosis, 15.0% with vulvovaginal candidiasis, and 0.8% with trichomoniasis. The detection rate of these three infections did not change significantly from baseline to either Cycle 6 or 13. Nugent scores remained stable. H2O2-positive Lactobacillus dominated vaginal flora with a non-significant prevalence increase from 76.7% at baseline to 82.7% at cycle 6 and 90.2% at cycle 13, and a median concentration of 107 colony forming units (cfu) per gram. Although anaerobic GNRs prevalence increased significantly, the median concentration decreased slightly (104 to 103cfu per gram). There were no significant changes in frequency or concentrations of other pathogens. High levels of agreement between vaginal and ring surface microbiota were observed. Conclusion Sustained use of the NES/EE CVR did not increase the risk of vaginal infection and was not disruptive to

  18. Comparison of oral dydrogesterone with vaginal progesteronefor luteal support in IUI cycles: a randomized clinical trial.

    PubMed

    Khosravi, Donya; Taheripanah, Robabeh; Taheripanah, Anahita; Tarighat Monfared, Vahid; Hosseini-Zijoud, Seyed-Mostafa

    2015-07-01

    The aim of this study, we have compared the advantages of oral dydrogestrone with vaginal progesterone (cyclogest) for luteal support in intrauterine insemination (IUI) cycles. Progesterone supplementation is the first line treatment when luteal phase deficiency (LPD) can reasonably be assumed. This study was conduct to compare the effect of oral dydrogestrone with vaginal Cyclogest on luteal phase support in the IUI cycles. This prospective, randomized, double blind study was performed in a local infertility center from May 2013 to May 2014. It consisted of 150 infertile women younger than35years old undergoing ovarian stimulation for IUI cycles. They underwent ovarian stimulation with oral dydrogesterone (20 mg) as group A and vaginal cyclogest (400 mg) as group B in preparation for the IUI cycles. Clinical pregnancy and abortion rates, mid luteal progesterone (7daysafter IUI) and patient satisfaction were compared between two groups. The mean serum progesterone levels was significantly higher in group A in comparison with group B (p=0.001). Pregnancy rates in group A was not statistically different in comparison with group B (p =0.58). Abortion rate in two groups was not statistically different (p =0.056) although rate of abortion was higher in group B in comparison with A group. Satisfaction rates were significantly higher in group A compared to group B (p<0.001). We concluded that oral dydrogestrone is effective as vaginal progesterone for luteal-phase support in woman undergoing IUI cycles. Moreover, the mean serum progesterone levels and satisfaction rates in dydrogestrone group were higher than cyclogest group.

  19. Mechanism of impaired insulin-stimulated muscle glucose metabolism in subjects with insulin-dependent diabetes mellitus.

    PubMed Central

    Cline, G. W.; Magnusson, I.; Rothman, D. L.; Petersen, K. F.; Laurent, D.; Shulman, G. I.

    1997-01-01

    To determine the mechanism of impaired insulin-stimulated muscle glycogen metabolism in patients with poorly controlled insulin-dependent diabetes mellitus (IDDM), we used 13C-NMR spectroscopy to monitor the peak intensity of the C1 resonance of the glucosyl units in muscle glycogen during a 6-h hyperglycemic-hyperinsulinemic clamp using [1-(13)C]glucose-enriched infusate followed by nonenriched glucose. Under similar steady state (t = 3-6 h) plasma glucose (approximately 9.0 mM) and insulin concentrations (approximately 400 pM), nonoxidative glucose metabolism was significantly less in the IDDM subjects compared with age-weight-matched control subjects (37+/-6 vs. 73+/-11 micromol/kg of body wt per minute, P < 0.05), which could be attributed to an approximately 45% reduction in the net rate of muscle glycogen synthesis in the IDDM subjects compared with the control subjects (108+/-16 vs. 195+/-6 micromol/liter of muscle per minute, P < 0.001). Muscle glycogen turnover in the IDDM subjects was significantly less than that of the controls (16+/-4 vs. 33+/-5%, P < 0.05), indicating that a marked reduction in flux through glycogen synthase was responsible for the reduced rate of net glycogen synthesis in the IDDM subjects. 31P-NMR spectroscopy was used to determine the intramuscular concentration of glucose-6-phosphate (G-6-P) under the same hyperglycemic-hyperinsulinemic conditions. Basal G-6-P concentration was similar between the two groups (approximately 0.10 mmol/kg of muscle) but the increment in G-6-P concentration in response to the glucose-insulin infusion was approximately 50% less in the IDDM subjects compared with the control subjects (0.07+/-0.02 vs. 0.13+/-0.02 mmol/kg of muscle, P < 0.05). When nonoxidative glucose metabolic rates in the control subjects were matched to the IDDM subjects, the increment in the G-6-P concentration (0.06+/-0.02 mmol/kg of muscle) was no different than that in the IDDM subjects. Together, these data indicate that defective

  20. Surgical removal of a large vaginal calculus formed after a tension-free vaginal tape procedure.

    PubMed

    Zilberlicht, Ariel; Feiner, Benjamin; Haya, Nir; Auslender, Ron; Abramov, Yoram

    2016-11-01

    Vaginal calculus is a rare disorder which has been reported in association with urethral diverticulum, urogenital sinus anomaly, bladder exstrophy and the tension-free vaginal tape (TVT) procedure. We report a 42-year-old woman who presented with persistent, intractable urinary tract infection (UTI) following a TVT procedure. Cystoscopy demonstrated an eroded tape with the formation of a bladder calculus, and the patient underwent laser cystolithotripsy and cystoscopic resection of the tape. Following this procedure, her UTI completely resolved and she remained asymptomatic for several years. Seven years later she presented with a solid vaginal mass. Pelvic examination followed by transvaginal ultrasonography and magnetic resonance imaging demonstrated a large vaginal calculus located at the lower third of the anterior vaginal wall adjacent to the bladder neck. This video presents the transvaginal excision and removal of the vaginal calculus.

  1. Vaginal Calculus in a Woman With Mixed Urinary Incontinence and Vaginal Mesh Exposure.

    PubMed

    Winkelman, William D; Rabban, Joseph T; Korn, Abner P

    2016-01-01

    Vaginal calculi are extremely rare and are most commonly encountered in the setting of an urethrovaginal or vesicovaginal fistula. We present a case of a 72-year-old woman with mixed urinary incontinence and vaginal mesh exposure incidentally found to have a large vaginal calculus. We removed the calculus surgically and analyzed the components. Results demonstrated the presence of ammonium-magnesium phosphate hexahydrate and carbonate apatite.

  2. Quadro-pulse stimulation is more effective than paired-pulse stimulation for plasticity induction of the human motor cortex.

    PubMed

    Hamada, Masashi; Hanajima, Ritsuko; Terao, Yasuo; Arai, Noritoshi; Furubayashi, Toshiaki; Inomata-Terada, Satomi; Yugeta, Akihiro; Matsumoto, Hideyuki; Shirota, Yuichiro; Ugawa, Yoshikazu

    2007-12-01

    Repetitive paired-pulse transcranial magnetic stimulation (TMS) at I-wave periodicity has been shown to induce a motor-evoked potential (MEP) facilitation. We hypothesized that a greater enhancement of motor cortical excitability is provoked by increasing the number of pulses per train beyond those by paired-pulse stimulation (PPS). We explored motor cortical excitability changes induced by repetitive application of trains of four monophasic magnetic pulses (quadro-pulse stimulation: QPS) at 1.5-ms intervals, repeated every 5s over the motor cortex projecting to the hand muscles. The aftereffects of QPS were evaluated with MEPs to a single-pulse TMS, motor threshold (MT), and responses to brain-stem stimulation. These effects were compared to those after PPS. To evaluate the QPS safety, we also studied the spread of excitation and after discharge using surface electromyograms (EMGs) of hand and arm muscles. Sizes of MEPs from the hand muscle were enhanced for longer than 75min after QPS; they reverted to the baseline at 90min. Responses to brain-stem stimulation from the hand muscle and cortical MEPs from the forearm muscle were unchanged after QPS over the hand motor area. MT was unaffected by QPS. No spreads of excitation were detected after QPS. The appearance rate of after discharges during QPS was not different from that during sham stimulation. Results show that QPS can safely induce long-lasting, topographically specific enhancement of motor cortical excitability. QPS is more effective than PPS for inducing motor cortical plasticity.

  3. Providers' Experiences with Vaginal Dilator Training for Patients with Vaginal Agenesis.

    PubMed

    Patel, Vrunda; Hakim, Julie; Gomez-Lobo, Veronica; Amies Oelschlager, Anne-Marie

    2018-02-01

    To examine providers' experiences with vaginal dilator training for patients with vaginal agenesis. Anonymous electronic survey. Members of the North American Society for Pediatric and Adolescent Gynecology. How providers learn about vaginal dilator training, common techniques, and methods used for patient training, assessment of patient readiness, common patient complaints, issues leading to early discontinuation. There were a total of 55 completed survey responses of which 31 respondents (56%) had been in practice for more than 10 years. Forty-nine were gynecologists (89%), 20 had completed a fellowship in pediatric and adolescent gynecology (36%), and 6 were reproductive endocrinologists (11%). Thirty-one respondents had first learned about vaginal dilator training through lectures (56%) whereas only 9 through mentorship and fellowship (16%). According to respondents, the most common issue leading to early discontinuation was lack of patient motivation and readiness (n = 42; 76%). The most common complication was pain or discomfort (n = 45; 82%). More than half of respondents determined dilator therapy was successful when patients reported comfortable sexual intercourse (n = 30; 55%) and 65% (n = 35) did not delineate any restrictions to initiation of sexual intercourse. Most respondents (87%) requested further vaginal dilator training at either a clinical meeting (n = 26; 47%) or with a training video (n = 22; 40%). Our study in an experienced cohort of pediatric gynecology providers highlights the need for further research and training on vaginal dilation education. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  4. A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle.

    PubMed

    Lai, Yu-Chiang; Liu, Yang; Jacobs, Roxane; Rider, Mark H

    2012-10-01

    PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40 kDa and Akt substrate of 160 kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206 in a dose-dependent manner. Incubation with high doses of MK-2206 (10 μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.

  5. Vaginitis test - wet mount

    MedlinePlus

    ... prep - vaginitis; Vaginosis - wet mount; Trichomoniasis - wet mount; Vaginal candida - wet mount ... provider gently inserts an instrument (speculum) into the vagina to hold it open and view inside. A ...

  6. [Risk of uterine rupture in vaginal birth after cesarean: Systematic review].

    PubMed

    Hidalgo-Lopezosa, Pedro; Hidalgo-Maestre, María

    To assess the risk of uterine rupture (UR) in attempted vaginal birth after cesarean and to identify risk factors. Systematic review by consulting the following databases: PubMed (MEDLINE), Cochrane Library Plus, Embase, Nursing@Ovid, Cuidatge and Dialnet. The search was conducted between January and March 2015. MeSH descriptors used were: vaginal birth after cesarean; uterine rupture; labor induced and labor obstetric or trial of labor. There were no restrictions on date or language. The selection of articles was performed by 2 independent reviewers, standardized and unblinded. A critical review of the summary was conducted, and if was necessary, the full text was consulted. Prospective and retrospective documents were included. A total of 39 documents were included for their relevance and interest. Few clinical trials were found. The UR incidence on the results of the studies analyzed ranged from 0.15-0.98% in spontaneous labor; 0.3-1.5% in stimulation and induction with oxytocin, and 0.68-2.3% in prostaglandin inductions. The success of vaginal birth after cesarean is important and improves when conditions are optimal. However it is not without risks, the main one being UR. Induction of labor with oxytocin and/or prostaglandins appears as the main risk factor, while the spontaneous onset of labor and a prior vaginal birth are protective factors. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  7. Stimulation of muscle protein synthesis by prolonged parenteral infusion of leucine is dependent on amino acid availability in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    The postprandial rise in amino acids, particularly leucine, stimulates muscle protein synthesis in neonates. Previously, we showed that a 1-h infusion of leucine increased protein synthesis, but this response was not sustained for 2 h unless the leucine-induced decrease in amino acids was prevented....

  8. Neck muscle biomechanics and neural control.

    PubMed

    Fice, Jason Bradley; Siegmund, Gunter P; Blouin, Jean-Sebastien

    2018-04-18

    The mechanics, morphometry, and geometry of our joints, segments and muscles are fundamental biomechanical properties intrinsic to human neural control. The goal of our study was to investigate if the biomechanical actions of individual neck muscles predicts their neural control. Specifically, we compared the moment direction & variability produced by electrical stimulation of a neck muscle (biomechanics) to their preferred activation direction & variability (neural control). Subjects sat upright with their head fixed to a 6-axis load cell and their torso restrained. Indwelling wire electrodes were placed into the sternocleidomastoid (SCM), splenius capitis (SPL), and semispinalis capitis (SSC) muscles. The electrically stimulated direction was defined as the moment direction produced when a current (2-19mA) was passed through each muscle's electrodes. Preferred activation direction was defined as the vector sum of the spatial tuning curve built from RMS EMG when subjects produced isometric moments at 7.5% and 15% of their maximum voluntary contraction (MVC) in 26 3D directions. The spatial tuning curves at 15% MVC were well-defined (unimodal, p<0.05) and their preferred directions were 23, 39, & 21{degree sign} different from their electrically stimulated directions for the SCM, SPL, and SSC respectively (p<0.05). Intra-subject variability was smaller in electrically stimulated moment directions when compared to voluntary preferred directions, and intra-subject variability decreased with increased activation levels. Our findings show that the neural control of neck muscles is not based solely on optimizing individual muscle biomechanics but, as activation increases, biomechanical constraints in part dictate the activation of synergistic neck muscles.

  9. Vaginitis.

    PubMed

    Friedrich, E G

    1985-06-01

    Vaginitis is one of the most common complaints of women in the United States today. About 90% of patients with this problem suffer from infection of the vagina caused by Candida, Gardnerella, or Trichomonas. The diagnosis and effective treatment of these common infections depend on accurate identification of the entity, effective specific therapy, and restoration of the normal ecosystem of the vagina. At the same time women should be made aware that not all discharge means infection and that any attempts at self-treatment may only worsen their condition. Proper hygiene habits, dietary control, and management of stress are all helpful factors in the control of recurrent vaginal infections.

  10. Protective activity of geranium oil and its component, geraniol, in combination with vaginal washing against vaginal candidiasis in mice.

    PubMed

    Maruyama, Naho; Takizawa, Toshio; Ishibashi, Hiroko; Hisajima, Tatsuya; Inouye, Shigeharu; Yamaguchi, Hideyo; Abe, Shigeru

    2008-08-01

    In order to evaluate an effective administration method of essential oils for vaginal candidiasis, efficacy of vaginal application of essential oils against murine experimental candidiasis was investigated. The effect on vaginal inflammation and Candida growth form was also studied. Vaginal candidiasis was established by intravaginal infection of C. albicans to estradiol-treated mice. These mice intravaginally received essential oils such as geranium and tea tree singly or in combination with vaginal washing. Vaginal administration of clotrimazole significantly decreased the number of viable C. albicans cells in the vaginal cavity by itself. In contrast, these essential oils did not lower the cell number. When application of geranium oil or geraniol was combined with vaginal washing, the cell number was decreased significantly. The myeloperoxidase activity assay exhibited the possibility that essential oils worked not only to reduce the viable cell number of C. albicans, but also to improve vaginal inflammation. The smear of vaginal washing suspension suggested that more yeast-form cells appeared in vaginal smears of these oil-treated mice than in control mice. In vitro study showed that a very low concentration (25 microg/ml) of geranium oil and geraniol inhibited mycelial growth, but not yeast growth. Based on these findings, it is estimated that vaginal application of geranium oil or its main component, geraniol, suppressed Candida cell growth in the vagina and its local inflammation when combined with vaginal washing.

  11. The influence of Task-Related Training combined with Transcutaneous Electrical Nerve Stimulation on paretic upper limb muscle activation in patients with chronic stroke.

    PubMed

    Jung, Kyoungsim; Jung, Jinhwa; In, Taesung; Kim, Taehoon; Cho, Hwi-Young

    2017-01-01

    This study investigated the efficacy of Task-Related Training (TRT) Combined with Transcutaneous Electrical Nerve Stimulation (TENS) on the improvement of upper limb muscle activation in chronic stroke survivors with mild or moderate paresis. A single-blind, randomized clinical trial was conducted with 46stroke survivors with chronic paresis. They were randomly allocated two groups: the TRT+TENS group (n = 23) and the TRT+ placebo TENS (TRT+PLBO) group (n = 23). The TRT+TENS group received 30 minutes of high-frequency TENS on wrist and elbow extensors, while the TRT+PLBO group received placebo TENS that was not real ES. Both groups did 30 minutes of TRT after TENS application. Intervention was given five days a week for four weeks. The primary outcomes of upper limb muscle activation were measured by integrated EMG (IEMG), a digital manual muscle tester for muscle strength, active range of motion (AROM) and Fugl-Meyer Assessment of the upper extremity (FMA-UE). The measurements were performed before and after the 4 weeks intervention period. Both groups demonstrated significant improvements of outcomes in IEMG, AROM, muscle strength and FMA-UE during intervention period. When compared with the TRT+PLBO group, the TRT+TENS group showed significantly greater improvement in muscle activation (wrist extensors, P = 0.045; elbow extensors, P = 0.004), muscle strength (wrist extensors, P = 0.044; elbow extensors, P = 0.012), AROM (wrist extension, P = 0.042; elbow extensors, P = 0.040) and FMA-UE (total, P < 0.001; shoulder/elbow/forearm, P = 0.001; wrist, P = 0.002; coordination, P = 0.008) at the end of intervention. Our findings indicate that TRT Combined with TENS can improve paretic muscle activity in upper limb paresis, highlighting the benefits of somatosensory stimulation from TENS.

  12. Unilateral and Immediate Stimulation of Acupuncture Points Xiaohai (SI8) and Jianwaishu (SI14) of the Small Intestine Meridian Increases Electromyographic Activity and Strength in the Ipsilateral and Contralateral Upper Trapezius Muscle.

    PubMed

    de Souza, Leandro L; de Araujo, Fernanda L B; da Silva, Fernanda A M; Mucciaroni, Thaís S; de Araujo, João E

    2016-10-01

    We previously showed that a yin meridian of the upper limb decreased electromyographic activity (root mean square) and muscle strength ipsilateral and contralateral to the side of stimulation. Here, we tested the upper trapezius (UT) muscle response after stimulation of a yang meridian of the upper limb, the small intestine (SI). Thirty-eight healthy volunteers were randomized into the following groups: UT muscle (SI14), distant of the UT muscle (SI8), without stimulation (CG), and sham (R3). An acupuncturist certificated by the Brazilian Society of Physical Therapists and Acupuncturists performed the needle insertion. Each volunteer received only one stimulation to the right upper limb. The evaluation occurred before, 5 minutes after, and 20 minutes after needle withdrawal. The root mean square activity increased on the right side in the UT muscle for the SI8 and SI14 groups (F 3,37  = 4.67; p < 0.025) at the 20-minute evaluation. The most vigorous response occurred on the contralateral side because the effects were maintained for 5 minutes after withdrawal (F 3,37  = 4.52; p < 0.025). Both groups showed an increase in the UT muscle strength at the 20-minute evaluation (F 3,37  = 3.41; p < 0.025). The CG and R3 groups did not show any changes. Our data indicate that SI a yang meridian increases the UT muscle response. Copyright © 2016. Published by Elsevier B.V.

  13. Beneficial effects of a Coriolus versicolor-based vaginal gel on cervical epithelization, vaginal microbiota and vaginal health: a pilot study in asymptomatic women.

    PubMed

    Palacios, Santiago; Losa, Fernando; Dexeus, Damián; Cortés, Javier

    2017-03-16

    To assess the effect of a 12-day treatment using a vaginal gel based on niosomes containing hyaluronic acid, ß-glucan, alpha-glucan oligosaccharide, Coriolus versicolor, Asian centella, Azadirachta indica and Aloe vera on vaginal microbiota, cervical epithelization and vaginal health. Open-label, prospective pilot study conducted in asymptomatic women in daily practice. Cervical epithelization was evaluated by colposcopy using an ectopy epithelization score (from 5: no ectopy to 1: severe ectopy and bleeding), vaginal microbiota using the VaginaStatus-Diagnostic test (Instiüt für Mikroökologie, Herborn, Germany) and further rated by the investigator using a 5-point Liker scale (from 5: normal to 1: very severe deterioration in which all evaluated species were altered), and vaginal health using the Vaginal Health Index. In 21 women, a positive effect to improve epithelization of the cervical mucosa, with a mean score of 4.42 at the final visit as compared to 3.09 at baseline (P < 0.0001) (43% improvement). In 10 women, there was a trend of improving of vaginal microbiota status, with a mean score of 4.0 at the final visit vs. 3.3 at baseline (P = NS) (21.2% improvement). In 11 women, the Vaginal Health Index increased from 19.0 at baseline to 22.3 at the final visit (P = 0.007). The concentration of Lactobacillus spp. increased 54.5% of women and pH decreased from 4.32 to 4.09. These encouraging preliminary results provide the basis for designing a randomized controlled study, and for potential use in human papilloma virus infection. ISRCTN77955077 . Registration date: February 15, 2017. Retrospectively registered.

  14. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    PubMed

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery

  15. Vaginal metastasis presenting as postmenopausal bleeding.

    PubMed

    Ng, Qiu Ju; Namuduri, Rama Padma; Yam, Kwai Lam; Lim-Tan, Soo Kim

    2015-08-01

    Vaginal cancer is rare worldwide and represents 2% of all gynaecological cancers in Singapore. Primary vaginal malignancies are rare and vaginal metastases constitute the majority of vaginal malignancies. Most of these metastases arise from the cervix, endometrium or ovary, although they can also metastasise from distant sites such as the colon, breast and pancreas. We report a rare case of vaginal metastasis in a patient with previous gastric and rectal adenocarcinomas. An 89-year-old woman with a history of gastric and rectal malignancy presented with postmenopausal bleeding. A 2-cm vaginal tumour at the introitus was discovered upon examination. This case demonstrates the importance of performing a gynaecological examination during follow-up for patients with a history of malignancy. The prognosis for vaginal metastasis is poor, as it is often associated with disseminated disease. Depending on the extent of the lesions, radiotherapy or surgery can be considered.

  16. Administration of oral and vaginal prebiotic lactoferrin for a woman with a refractory vaginitis recurring preterm delivery: appearance of lactobacillus in vaginal flora followed by term delivery.

    PubMed

    Otsuki, Katsufumi; Tokunaka, Mayumi; Oba, Tomohiro; Nakamura, Masamitsu; Shirato, Nahoko; Okai, Takashi

    2014-02-01

    Lactoferrin (LF) is one of the prebiotics present in the human body. A 38-year-old multiparous woman with poor obstetrical histories, three consecutive preterm premature rupture of membrane at the 19th, 23rd and 25th week of pregnancy, was referred to our hospital. She was diagnosed as having refractory vaginitis. Although estriol vaginal tablets were used for 4 months, the vaginitis was not cured. We administrated vaginal tablets and oral agents of prebiotic LF, resulting in a Lactobacillus predominant vaginal flora. When she was pregnant, she continued to use the LF, and the Lactobacillus in the vaginal flora was continuously observed during pregnancy. An elective cesarean section was performed at the 38th week of pregnancy. When the administration of LF was discontinued after the delivery, Lactobacillus in the vaginal flora was disappeared. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  17. Phasic Contractions of the Mouse Vagina and Cervix at Different Phases of the Estrus Cycle and during Late Pregnancy

    PubMed Central

    Gravina, Fernanda S.; van Helden, Dirk F.; Kerr, Karen P.; de Oliveira, Ramatis B.; Jobling, Phillip

    2014-01-01

    Background/Aims The pacemaker mechanisms activating phasic contractions of vaginal and cervical smooth muscle remain poorly understood. Here, we investigate properties of pacemaking in vaginal and cervical tissues by determining whether: 1) functional pacemaking is dependent on the phase of the estrus cycle or pregnancy; 2) pacemaking involves Ca2+ release from sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) -dependent intracellular Ca2+ stores; and 3) c-Kit and/or vimentin immunoreactive ICs have a role in pacemaking. Methodology/Principal Findings Vaginal and cervical contractions were measured in vitro, as was the distribution of c-Kit and vimentin positive interstitial cells (ICs). Cervical smooth muscle was spontaneously active in estrus and metestrus but quiescent during proestrus and diestrus. Vaginal smooth muscle was normally quiescent but exhibited phasic contractions in the presence of oxytocin or the K+ channel blocker tetraethylammonium (TEA) chloride. Spontaneous contractions in the cervix and TEA-induced phasic contractions in the vagina persisted in the presence of cyclopiazonic acid (CPA), a blocker of the SERCA that refills intracellular SR Ca2+ stores, but were inhibited in low Ca2+ solution or in the presence of nifedipine, an inhibitor of L-type Ca2+channels. ICs were found in small numbers in the mouse cervix but not in the vagina. Conclusions/Significance Cervical smooth muscle strips taken from mice in estrus, metestrus or late pregnancy were generally spontaneously active. Vaginal smooth muscle strips were normally quiescent but could be induced to exhibit phasic contractions independent on phase of the estrus cycle or late pregnancy. Spontaneous cervical or TEA-induced vaginal phasic contractions were not mediated by ICs or intracellular Ca2+ stores. Given that vaginal smooth muscle is normally quiescent then it is likely that increases in hormones such as oxytocin, as might occur through sexual stimulation, enhance the

  18. Phasic contractions of the mouse vagina and cervix at different phases of the estrus cycle and during late pregnancy.

    PubMed

    Gravina, Fernanda S; van Helden, Dirk F; Kerr, Karen P; de Oliveira, Ramatis B; Jobling, Phillip

    2014-01-01

    The pacemaker mechanisms activating phasic contractions of vaginal and cervical smooth muscle remain poorly understood. Here, we investigate properties of pacemaking in vaginal and cervical tissues by determining whether: 1) functional pacemaking is dependent on the phase of the estrus cycle or pregnancy; 2) pacemaking involves Ca2+ release from sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) -dependent intracellular Ca2+ stores; and 3) c-Kit and/or vimentin immunoreactive ICs have a role in pacemaking. Vaginal and cervical contractions were measured in vitro, as was the distribution of c-Kit and vimentin positive interstitial cells (ICs). Cervical smooth muscle was spontaneously active in estrus and metestrus but quiescent during proestrus and diestrus. Vaginal smooth muscle was normally quiescent but exhibited phasic contractions in the presence of oxytocin or the K+ channel blocker tetraethylammonium (TEA) chloride. Spontaneous contractions in the cervix and TEA-induced phasic contractions in the vagina persisted in the presence of cyclopiazonic acid (CPA), a blocker of the SERCA that refills intracellular SR Ca2+ stores, but were inhibited in low Ca2+ solution or in the presence of nifedipine, an inhibitor of L-type Ca2+channels. ICs were found in small numbers in the mouse cervix but not in the vagina. Cervical smooth muscle strips taken from mice in estrus, metestrus or late pregnancy were generally spontaneously active. Vaginal smooth muscle strips were normally quiescent but could be induced to exhibit phasic contractions independent on phase of the estrus cycle or late pregnancy. Spontaneous cervical or TEA-induced vaginal phasic contractions were not mediated by ICs or intracellular Ca2+ stores. Given that vaginal smooth muscle is normally quiescent then it is likely that increases in hormones such as oxytocin, as might occur through sexual stimulation, enhance the effectiveness of such pacemaking until phasic contractile activity emerges.

  19. Vascular delay improves latissimus dorsi muscle perfusion and muscle function for use in cardiomyoplasty.

    PubMed

    Carroll, S M; Heilman, S J; Stremel, R W; Tobin, G R; Barker, J H

    1997-04-01

    Ischemia of the distal portion of the latissimus dorsi muscle occurs in muscle transfer for cardiomyoplasty and reduces distal muscle contractility and thus the mechanical effectiveness of cardiomyoplasty. We hypothesized that muscle function would be improved by a vascular delay procedure that increases distal muscle perfusion of the latissimus dorsi muscle. The latissimus dorsi muscles of 10 adult mongrel dogs were subjected to a vascular delay procedure on one side and a sham procedure on the other. Following 10 days of vascular delay, muscle perfusion was measured with a laser-Doppler perfusion imager before and after elevation of the muscles as flaps based only on their thoracodorsal neurovascular pedicles. The muscles were wrapped and sutured around silicone chambers (simulating cardiomyoplasty), a stimulating electrode was placed around each thoracodorsal nerve, and the muscles were stimulated to contract in both rhythmic and tetanic fashion. Circumferential (distal and middle latissimus dorsi muscle function) force generation and fatigue rates were measured independently. Circumferential muscle force, circumferential and longitudinal fatigue rate, and distal, middle, and overall perfusion were significantly (p < 0.05) improved in delayed muscle compared with nondelayed muscle. We found that a vascular delay procedure and a 10-day delay adaptation period significantly improve latissimus dorsi muscle flap perfusion and function, particularly in the distal and middle portions of the muscle. Delay should be considered as a means of improving the clinical outcome in cardiomyoplasty.

  20. Voluntary wheel running selectively augments insulin-stimulated vasodilation in arterioles from white skeletal muscle of insulin-resistant rats.

    PubMed

    Mikus, Catherine R; Roseguini, Bruno T; Uptergrove, Grace M; Morris, E Matthew; Rector, Randy Scott; Libla, Jessica L; Oberlin, Douglas J; Borengasser, Sarah J; Taylor, Angelina M; Ibdah, Jamal A; Laughlin, Maurice Harold; Thyfault, John P

    2012-11-01

    Exercise (RUN) prevents declines in insulin-mediated vasodilation, an important component of insulin-mediated glucose disposal, in rats prone to obesity and insulin resistance. Determine whether RUN (1) improves insulin-stimulated vasodilation after insulin resistance has been established, and (2) differentially affects arterioles from red and white muscle. Insulin signaling and vasoreactivity to insulin (1-1000 μIU/mL) were assessed in 2A from the Gw and Gr of SED OLETF rats at 12 and 20 weeks of age (SED12, SED20) and those undergoing RUN (RUN20) or caloric restriction (CR20; to match body weight of RUN) from 12 to 20 weeks. Glucose and insulin responses to i.p. glucose were reduced in RUN20, elevated in SED20 (p < 0.05 vs. SED12), and maintained in CR20. Insulin-stimulated vasodilation was greater in Gw but not Gr, 2As of RUN20 (p < 0.01 vs. all groups), and was improved by ET-1 receptor inhibition in Gw 2As from SED20 and CR20 (p < 0.05). There were no differences in microvascular insulin signaling among groups or muscle beds. RUN selectively improved insulin-mediated vasodilation in Gw 2As, in part through attenuated ET-1 sensitivity/production, an adaptation that was independent of changes in adiposity and may contribute to enhanced insulin-stimulated glucose disposal. © 2012 John Wiley & Sons Ltd.