Sample records for vairimorpha necatrix microsporia

  1. Interactions between the solitary endoparasitoid, Meteorus gyrator (Hymenoptera: Braconidae) and its host, Lacanobia oleracea (Lepidoptera: Noctuidae), infected with the entomopathogenic microsporidium, Vairimorpha necatrix (Microspora: Microsporidia).

    PubMed

    Down, R E; Smethurst, F; Bell, H A; Edwards, J P

    2005-04-01

    Infection of Lacanobia oleracea (Linnaeus) larvae with the microsporidium Vairimorpha necatrix (Kramer) resulted in significant effects on the survival and development of the braconid parasitoid, Meteorus gyrator (Thunberg). Female M. gyrator did not show any avoidance of V. necatrix-infected hosts when they were selecting hosts for oviposition. When parasitism occurred at the same time as infection by the pathogen, or up to four days later, no significant detrimental effects on the parasitoid were observed. However, when parasitism occurred six to eight days after infection, a greater proportion (12.5-14%) of hosts died before parasitoid larvae egressed. Successful eclosion of adult wasps was also reduced. When parasitism and infection were concurrent, parasitoid larval development was significantly faster in infected hosts, and cocoons were significantly heavier. However, as the time interval between infection and parasitism increased, parasitoid larval development was significantly extended by up to two days, and the cocoons formed were significantly (c. 20%) smaller. Vairimorpha necatrix spores were ingested by the developing parasitoid larvae, accumulated in the occluded midgut, and were excreted in the meconium upon pupation.

  2. Notes on Costia necatrix

    USGS Publications Warehouse

    Fish, F.F.

    1940-01-01

    Costiasis, or the disease produced by the flagellated protozoan ectoparasite, Costia necatrix, is of considerable importance in the artificial propagation of both warm- and cold-water fishes. In spite of its importance, costiasis seldom is accurately diagnosed probably because of the extremely small size and sedentary nature of the causative organism. A general resume of the specific diagnostic characteristics, pathology, and recommended measures for the prevention and control of Costia necatrix are presented. The application of available information concerning the parasite may eliminate effectively the losses of fish in hatcheries occasioned by it.

  3. Ribosomal RNA sequence suggest microsporidia are extremely ancient eukaryotes

    NASA Technical Reports Server (NTRS)

    Vossbrinck, C. R.; Maddox, J. V.; Friedman, S.; Debrunner-Vossbrinck, B. A.; Woese, C. R.

    1987-01-01

    A comparative sequence analysis of the 18S small subunit ribosomal RNA (rRNA) of the microsporidium Vairimorpha necatrix is presented. The results show that this rRNA sequence is more unlike those of other eukaryotes than any known eukaryote rRNA sequence. It is concluded that the lineage leading to microsporidia branched very early from that leading to other eukaryotes.

  4. Ribosomal DNA identification of Nosema/Vairimorpha in freshwater polychaete, Manayunkia speciosa, from Oregon/California and the Laurentian Great Lakes

    USGS Publications Warehouse

    Malakauskas, David M.; Altman, Emory C.; Malakauskas, Sarah J.; Thiem, Suzanne M.; Schloesser, Donald W.

    2015-01-01

    We examined Manayunkia speciosa individuals from the Klamath River, Oregon/California and Lake Erie, Michigan, USA for the presence of Microsporidia. We identified microsporidian spores and sequenced their SSU, ITS, and part of the LSU rDNA. Phylogenetic analysis of SSU rDNA indicated spores from both populations belonged to the Nosema/Vairimorpha clade. PCR showed an infection prevalence in Lake Erie M. speciosa of 0.6% (95% CI = 0.5%, 0.7%). This represents the first known example of molecularly characterized Nosema/Vairimorpha isolates infecting a non-arthropod host.

  5. Draft genome sequence and transcriptional analysis of Rosellinia necatrix infected with a virulent mycovirus.

    PubMed

    Shimizu, Takeo; Kanematsu, Satoko; Yaegashi, Hajime

    2018-04-24

    Understanding the molecular mechanisms of pathogenesis is useful in developing effective control methods for fungal diseases. The white root rot fungus Rosellinia necatrix is a soil-borne pathogen that causes serious economic losses in various crops, including fruit trees, worldwide. Here, using next-generation sequencing techniques, we first produced a 44-Mb draft genome sequence of R. necatrix strain W97, an isolate from Japan, in which 12,444 protein-coding genes were predicted. To survey differentially expressed genes (DEGs) associated with the pathogenesis of the fungus, the hypovirulent W97 strain infected with Rosellinia necatrix megabirnavirus 1 (RnMBV1) was used for a comprehensive transcriptome analysis. In total, 545 and 615 genes are up- and down-regulated, respectively, in R. necatrix infected with RnMBV1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEGs suggested that primary and secondary metabolism would be greatly disturbed in R. necatrix infected with RnMBV1. The genes encoding transcriptional regulators, plant cell wall-degrading enzymes, and toxin production, such as cytochalasin E, were also found in the DEGs. The genetic resources provided in this study will accelerate the discovery of genes associated with pathogenesis and other biological characteristics of R. necatrix, thus contributing to disease control.

  6. Novel, diverse RNA viruses from Mediterranean isolates of the phytopathogenic fungus, Rosellinia necatrix: insights into evolutionary biology of fungal viruses.

    PubMed

    Arjona-Lopez, Juan Manuel; Telengech, Paul; Jamal, Atif; Hisano, Sakae; Kondo, Hideki; Yelin, Mery Dafny; Arjona-Girona, Isabel; Kanematsu, Satoko; Lopez-Herrera, Carlos José; Suzuki, Nobuhiro

    2018-04-01

    To reveal mycovirus diversity, we conducted a search of as-yet-unexplored Mediterranean isolates of the phytopathogenic ascomycete Rosellinia necatrix for virus infections. Of seventy-nine, eleven fungal isolates tested RNA virus-positive, with many showing coinfections, indicating a virus incidence of 14%, which is slightly lower than that (approximately 20%) previously reported for extensive surveys of over 1000 Japanese R. necatrix isolates. All viral sequences were fully or partially characterized by Sanger and next-generation sequencing. These sequences appear to represent isolates of various new species spanning at least 6 established or previously proposed families such as Partiti-, Hypo-, Megabirna-, Yado-kari-, Fusagra- and Fusarividae, as well as a newly proposed family, Megatotiviridae. This observation greatly expands the diversity of R. necatrix viruses, because no hypo-, fusagra- or megatotiviruses were previously reported from R. necatrix. The sequence analyses showed a rare horizontal gene transfer event of the 2A-like protease domain between a dsRNA (phlegivirus) and a positive-sense, single-stranded RNA virus (hypovirus). Moreover, many of the newly detected viruses showed the closest relation to viruses reported from fungi other than R. necatrix, such as Fusarium spp., which are sympatric to R. necatrix. These combined results imply horizontal virus transfer between these soil-inhabitant fungi. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Induction of protective immunity against Eimeria tenella, Eimeria necatrix, Eimeria maxima and Eimeria acervulina infections using multivalent epitope DNA vaccines.

    PubMed

    Song, Xiaokai; Ren, Zhe; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-06-04

    Avian coccidiosis is mostly caused by mixed infection of several Eimeria species under natural conditions and immunity to avian coccidiosis is largely dependent on T-cell immune response. In this study, 14 T-cell epitope fragments from eight antigens of Eimeria tenella (E. tenella), Eimeria necatrix (E. necatrix), Eimeria maxima (E. maxima) and Eimeria acervulina (E. acervulina) were ligated with pVAX1 producing 14 monovalent DNA vaccines, respectively. Protective immunity of the monovalent DNA vaccines was assessed by in vivo challenge experiments and then four most protective fragments of each species were chosen to construct multivalent epitope DNA vaccines with or without chicken IL-2 as genetic adjuvant. Protective efficacies of the epitope DNA vaccines on chickens against E. tenella, E. necatrix, E. maxima and E. acervulina were evaluated. The results showed that the constructed multivalent epitope DNA vaccines significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds. Especially, the multivalent epitope DNA vaccines of pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1 and pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1-IL-2 not only significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds, but also resulted in anti-coccidial index (ACI) more than 170 against E. tenella, E. necatrix, E. maxima and E. acervulina, which indicated they could induce protective immunity against E. tenella, E. necatrix, E. maxima and E. acervulina. Our findings suggest the constructed multivalent epitope DNA vaccines are the potential candidate multivalent vaccines against mixed infection of Eimeria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Comparative transcriptome analysis of second- and third-generation merozoites of Eimeria necatrix.

    PubMed

    Su, Shijie; Hou, Zhaofeng; Liu, Dandan; Jia, Chuanli; Wang, Lele; Xu, Jinjun; Tao, Jianping

    2017-08-16

    Eimeria is a common genus of apicomplexan parasites that infect diverse vertebrates, most notably poultry, causing serious disease and economic losses. Eimeria species have complex life-cycles consisting of three developmental stages. However, the molecular basis of the Eimeria reproductive mode switch remains an enigma. Total RNA extracted from second- (MZ-2) and third-generation merozoites (MZ-3) of Eimeria necatrix was subjected to transcriptome analysis using RNA sequencing (RNA-seq) followed by qRT-PCR validation. A total of 6977 and 6901 unigenes were obtained from MZ-2 and MZ-3, respectively. Approximately 2053 genes were differentially expressed genes (DEGs) between MZ-2 and MZ-3. Compared with MZ-2, 837 genes were upregulated and 1216 genes were downregulated in MZ-3. Approximately 95 genes in MZ-2 and 48 genes in MZ-3 were further identified to have stage-specific expression. Gene ontology category and KEGG analysis suggested that 216 upregulated genes in MZ-2 were annotated by 70 GO assignments, 242 upregulated genes were associated with 188 signal pathways, while 321 upregulated genes in MZ-3 were annotated by 56 GO assignments, 322 upregulated genes were associated with 168 signal pathways. The molecular functions of upregulated genes in MZ-2 were mainly enriched for protein degradation and amino acid metabolism. The molecular functions of upregulated genes in MZ-3 were mainly enriched for transcriptional activity, cell proliferation and cell differentiation. To the best of our knowledge, this is the first RNA-seq data study of the MZ-2 and MZ-3 stages of E. necatrix; it demonstrates a high number of differentially expressed genes between the MZ-2 and MZ-3 of E. necatrix. This study forms a basis for deciphering the molecular mechanisms underlying the shift from the second to third generation schizogony in Eimeria. It also provides valuable resources for future studies on Eimeria, and provides insight into the understanding of reproductive mode

  9. Unique phylogenetic position of Diplomonadida based on the complete small subunit ribosomal RNA sequence of Giardia ardeae, G. muris, G. duodenalis and Hexamita sp.

    PubMed

    van Keulen, H; Gutell, R R; Gates, M A; Campbell, S R; Erlandsen, S L; Jarroll, E L; Kulda, J; Meyer, E A

    1993-01-01

    Complete small-subunit rRNA (SSU-rRNA) coding region sequences were determined for two species of the intestinal parasite Giardia: G. ardeae and G. muris, both belonging to the order Diplomonadida, and a free-living member of this order, Hexamita sp. These sequences were compared to published SSU-rDNA sequences from a third member of the genus Giardia, G. duodenalis (often called G. intestinalis or G. lamblia) and various representative organisms from other taxa. Of the three Giardia sequences analyzed, the SSU-rRNA from G. muris is the smallest (1432 bases as compared to 1435 and 1453 for G. ardeae and G. duodenalis, respectively) and has the lowest G+C content (58.9%). The Hexamita SSU-rRNA is the largest in this group, containing 1550 bases. Because the sizes of the SSU-rRNA are prokaryotic rather than typically eukaryotic, the secondary structures of the SSU-rRNAs were constructed. These structures show a number of typically eukaryotic signature sequences. Sequence alignments based on constraints imposed by secondary structure were used for construction of a phylogenetic tree for these four taxa. The results show that of the four diplomonads represented, the Giardia species form a distinct group. The other diplomonad Hexamita and the microsporidium Vairimorpha necatrix appear to be distinct from Giardia.

  10. Microsporosis in Orangutans and Gorillas

    DTIC Science & Technology

    A case of microsporia caused by Microsporum canis in an anthropoid ape stock is discussed; two young orangutans , two young gorillas, and an animal...keeper suffered from the disease. Two gorillas, a chimpanzee, and an orangutan - - all cage-mates of the infected animals -- as well as an adult chimpanzee and another animal keeper were latent carriers of M. canis.

  11. A Novel Hypovirus Species From Xylariaceae Fungi Infecting Avocado.

    PubMed

    Velasco, Leonardo; Arjona-Girona, Isabel; Ariza-Fernández, María T; Cretazzo, Enrico; López-Herrera, Carlos

    2018-01-01

    The white rot root disease caused by Rosellinia necatrix is a major concern for avocado cultivation in Spain. Healthy escapes of avocado trees surrounded by diseased trees prompted us to hypothesize the presence of hypovirulent R. necatrix due to mycovirus infections. Recently, we reported the presence of another fungal species, Entoleuca sp., belonging to the Xylariaceae , that was also found in healthy avocado trees and frequently co-infecting the same roots than R. necatrix . We investigated the presence of mycoviruses that might explain the hypovirulence. For that, we performed deep sequencing of dsRNAs from two isolates of Entoleuca sp. that revealed the simultaneous infection of several mycoviruses, not described previously. In this work, we report a new member of the Hypoviridae , tentatively named Entoleuca hypovirus 1 (EnHV1). The complete genome sequence was obtained for two EnHV1 strains, which lengths resulted to be 14,958 and 14,984 nt, respectively, excluding the poly(A) tails. The genome shows two ORFs separated by a 32-nt inter-ORF, and both 5'- and 3'-UTRs longer than any other hypovirus reported to date. The analysis of virus-derived siRNA populations obtained from Entoleuca sp. demonstrated antiviral silencing activity in this fungus. We screened a collection of Entoleuca sp. and R. necatrix isolates and found that EnHV1 was present in both fungal species. A genetic population analysis of EnHV1 strains revealed the presence of two main clades, each of them including members from both Entoleuca sp. and R. necatrix , which suggests intra- and interspecific virus transmission in the field. Several attempts failed to cure Entoleuca sp. from EnHV1. However, all Entoleuca sp. isolates collected from avocado, whether harboring the virus or not, showed hypovirulence. Conversely, all R. necatrix isolates were pathogenic to that crop, regardless of being infected by EnHV1.

  12. Impact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rot.

    PubMed

    Polonio, Álvaro; Vida, Carmen; de Vicente, Antonio; Cazorla, Francisco M

    2017-06-01

    The biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606 has the ability to protect avocado plants against white root rot produced by the phytopathogenic fungus Rosellinia necatrix. Moreover, PCL1606 displayed direct interactions with avocado roots and the pathogenic fungus. Thus, nonmotile (flgK mutant) and non-chemotactic (cheA mutant) derivatives of PCL1606 were constructed to emphasize the importance of motility and chemotaxis in the biological behaviour of PCL1606 during the biocontrol interaction. Plate chemotaxis assay showed that PCL1606 was attracted to the single compounds tested, such as glucose, glutamate, succinate, aspartate and malate, but no chemotaxis was observed to avocado or R. necatrix exudates. Using the more sensitive capillary assay, it was reported that smaller concentrations (1 mM) of single compounds elicited high chemotactic responses, and strong attraction was confirmed to avocado and R. necatrix exudates. Finally, biocontrol experiments revealed that the cheA and fglK derivative mutants reduced root protection against R. necatrix, suggesting an important role for these biological traits in biocontrol by P. chlororaphis PCL1606. [Int Microbiol 20(2):94-104 (2017)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  13. Field transmission of a microsporidian pathogen of gypsy moth, Lymantria dispar

    Treesearch

    Thomas Kolling; Andreas Linde

    2007-01-01

    The quantification of the transmission of entomopathogens is important for the evaluation of their establishment and potential as biological control agents, however, only few field or semi-field studies were performed. The microsporidium Vairimorpha sp. was isolated from a gypsy moth (Lymantria dispar) population in Bulgaria and is...

  14. Usage of the Heterologous Expression of the Antimicrobial Gene afp From Aspergillus giganteus for Increasing Fungal Resistance in Olive

    PubMed Central

    Narvaez, Isabel; Khayreddine, Titouh; Pliego, Clara; Cerezo, Sergio; Jiménez-Díaz, Rafael M.; Trapero-Casas, José L.; López-Herrera, Carlos; Arjona-Girona, Isabel; Martín, Carmen; Mercado, José A.; Pliego-Alfaro, Fernando

    2018-01-01

    The antifungal protein (AFP) produced by Aspergillus giganteus, encoded by the afp gene, has been used to confer resistance against a broad range of fungal pathogens in several crops. In this research, transgenic olive plants expressing the afp gene under the control of the constitutive promoter CaMV35S were generated and their disease response against two root infecting fungal pathogens, Verticillium dahliae and Rosellinia necatrix, was evaluated. Embryogenic cultures derived from a mature zygotic embryo of cv. ‘Picual’ were used for A. tumefaciens transformation. Five independent transgenic lines were obtained, showing a variable level of afp expression in leaves and roots. None of these transgenic lines showed enhanced resistance to Verticillium wilt. However, some of the lines displayed a degree of incomplete resistance to white root rot caused by R. necatrix compared with disease reaction of non-transformed plants or transgenic plants expressing only the GUS gene. The level of resistance to this pathogen correlated with that of the afp expression in root and leaves. Our results indicate that the afp gene can be useful for enhanced partial resistance to R. necatrix in olive, but this gene does not protect against V. dahliae. PMID:29875785

  15. Usage of the Heterologous Expression of the Antimicrobial Gene afp From Aspergillus giganteus for Increasing Fungal Resistance in Olive.

    PubMed

    Narvaez, Isabel; Khayreddine, Titouh; Pliego, Clara; Cerezo, Sergio; Jiménez-Díaz, Rafael M; Trapero-Casas, José L; López-Herrera, Carlos; Arjona-Girona, Isabel; Martín, Carmen; Mercado, José A; Pliego-Alfaro, Fernando

    2018-01-01

    The antifungal protein (AFP) produced by Aspergillus giganteus , encoded by the afp gene, has been used to confer resistance against a broad range of fungal pathogens in several crops. In this research, transgenic olive plants expressing the afp gene under the control of the constitutive promoter CaMV35S were generated and their disease response against two root infecting fungal pathogens, Verticillium dahliae and Rosellinia necatrix , was evaluated. Embryogenic cultures derived from a mature zygotic embryo of cv. 'Picual' were used for A. tumefaciens transformation. Five independent transgenic lines were obtained, showing a variable level of afp expression in leaves and roots. None of these transgenic lines showed enhanced resistance to Verticillium wilt. However, some of the lines displayed a degree of incomplete resistance to white root rot caused by R. necatrix compared with disease reaction of non-transformed plants or transgenic plants expressing only the GUS gene. The level of resistance to this pathogen correlated with that of the afp expression in root and leaves. Our results indicate that the afp gene can be useful for enhanced partial resistance to R. necatrix in olive, but this gene does not protect against V. dahliae .

  16. Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells.

    PubMed

    Vida, Carmen; Cazorla, Francisco M; de Vicente, Antonio

    The improvement in soil quality of avocado crops through organic amendments with composted almond shells has a positive effect on crop yield and plant health, and enhances soil suppressiveness against the phytopathogenic fungus Rosellinia necatrix. In previous studies, induced soil suppressiveness against this pathogen was related to stimulation of Gammaproteobacteria, especially some members of Pseudomonas spp. with biocontrol-related activities. In this work, we isolated bacteria from this suppressiveness-induced amended soil using a selective medium for Pseudomonas-like microorganisms. We characterized the obtained bacterial collection to aid in identification, including metabolic profiles, antagonistic responses, hybridization to biosynthetic genes of antifungal compounds, production of lytic exoenzymatic activities and plant growth-promotion-related traits, and sequenced and compared amplified 16S rDNA genes from representative bacteria. The final selection of representative strains mainly belonged to the genus Pseudomonas, but also included the genera Serratia and Stenotrophomonas. Their biocontrol-related activities were assayed using the experimental avocado model, and results showed that all selected strains protected the avocado roots against R. necatrix. This work confirmed the biocontrol activity of these Gammaproteobacteria-related members against R. necatrix following specific stimulation in a suppressiveness-induced soil after a composted almond shell application. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Phylogenetic relationships of three new microsporidian isolates from the silkworm, Bombyx mori.

    PubMed

    Nageswara Rao, S; Muthulakshmi, M; Kanginakudru, S; Nagaraju, J

    2004-07-01

    The pathogenicity, mode of transmission, tissue specificity of infection and the small subunit rRNA (SSU-rRNA) gene sequences of the three new microsporidian isolates from the silkworm Bombyx mori were studied. Out of the three, NIK-2r revealed life cycle features and SSU-rRNA gene sequence similar to Nosema bombycis, suggesting that it is N. bombycis. The other two, NIK-4m and NIK-3h, differed from each other as well as from N. bombycis. NIK-4m was highly pathogenic and did not show any vertical transmission, in accordance with the apparent lack of gonadal infection, whereas NIK-3h was less pathogenic and vertical transmission was not detected but could not be excluded. Phylogenetic analysis based on SSU-rRNA gene sequence placed NIK-3h and NIK-4m in a distinct clade that included almost all the Vairimorpha species and Nosema species that infect lepidopteran and non-lepidopteran hosts, while NIK-2r was included in a clade containing almost all the Nosema isolates that infect only lepidopteran hosts. Thus, we have presented molecular evidence that one of the three isolates is in fact the type species N. bombycis, while the other two isolates are Vairimorpha spp. There was distinct separation of microsporidian isolates infecting only lepidopteran hosts and those infecting lepidopteran and non-lepidopteran hosts, reflecting possible co-evolution of hosts and microsporidian isolates.

  18. 21 CFR 520.2261b - Sulfamethazine powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (bacterial scours) (E. coli), and bacterial pneumonia (Pasteurella spp.). (iii) Limitations. Add the required... (bacterial scours) (E. coli), necrotic pododermatitis (foot rot) (Fusobacterium necrophorum), calf diphtheria... coryza (Haemophilus gallinarum), coccidiosis (Eimeria tenella, E. necatrix), acute fowl cholera...

  19. Organic Amendments to Avocado Crops Induce Suppressiveness and Influence the Composition and Activity of Soil Microbial Communities

    PubMed Central

    Bonilla, Nuria; Vida, Carmen; Martínez-Alonso, Maira; Landa, Blanca B.; Gaju, Nuria; Cazorla, Francisco M.

    2015-01-01

    One of the main avocado diseases in southern Spain is white root rot caused by the fungus Rosellinia necatrix Prill. The use of organic soil amendments to enhance the suppressiveness of natural soil is an inviting approach that has successfully controlled other soilborne pathogens. This study tested the suppressive capacity of different organic amendments against R. necatrix and analyzed their effects on soil microbial communities and enzymatic activities. Two-year-old avocado trees were grown in soil treated with composted organic amendments and then used for inoculation assays. All of the organic treatments reduced disease development in comparison to unamended control soil, especially yard waste (YW) and almond shells (AS). The YW had a strong effect on microbial communities in bulk soil and produced larger population levels and diversity, higher hydrolytic activity and strong changes in the bacterial community composition of bulk soil, suggesting a mechanism of general suppression. Amendment with AS induced more subtle changes in bacterial community composition and specific enzymatic activities, with the strongest effects observed in the rhizosphere. Even if the effect was not strong, the changes caused by AS in bulk soil microbiota were related to the direct inhibition of R. necatrix by this amendment, most likely being connected to specific populations able to recolonize conducive soil after pasteurization. All of the organic amendments assayed in this study were able to suppress white root rot, although their suppressiveness appears to be mediated differentially. PMID:25769825

  20. Sporulation dynamics of poultry Eimeria oocysts in Chennai.

    PubMed

    Venkateswara Rao, P; Raman, M; Gomathinayagam, S

    2015-12-01

    The infective form of Eimeria is the highly resistant oocyst, which is shed in the faeces of infected animals. Present study was carried out to understand the sporulation dynamics of six Eimeria oocysts viz. E. acervulina, E. brunetti, E. maxima, E. mitis, E. necatrix and E. tenella in Chennai. Faecal samples of poultry were collected from various poultry farms located in and around Tamil Nadu. Oocysts of various Eimeria species were examined microscopically for sporulation on a 6 h interval basis till complete sporulation is acheived. The sporulation time recorded was 168, 120, 216, 192, 96 and 96 h for E. acervulina, E. brunetti, E. maxima, E. mitis, E. necatrix and E. tenella respectively. It can be concluded on comparison with previous studies that humid weather conditions delay the sporulation time and dry weather and wet litter is the ideal condition for rapid sporulation.

  1. Organic amendments to avocado crops induce suppressiveness and influence the composition and activity of soil microbial communities.

    PubMed

    Bonilla, Nuria; Vida, Carmen; Martínez-Alonso, Maira; Landa, Blanca B; Gaju, Nuria; Cazorla, Francisco M; de Vicente, Antonio

    2015-05-15

    One of the main avocado diseases in southern Spain is white root rot caused by the fungus Rosellinia necatrix Prill. The use of organic soil amendments to enhance the suppressiveness of natural soil is an inviting approach that has successfully controlled other soilborne pathogens. This study tested the suppressive capacity of different organic amendments against R. necatrix and analyzed their effects on soil microbial communities and enzymatic activities. Two-year-old avocado trees were grown in soil treated with composted organic amendments and then used for inoculation assays. All of the organic treatments reduced disease development in comparison to unamended control soil, especially yard waste (YW) and almond shells (AS). The YW had a strong effect on microbial communities in bulk soil and produced larger population levels and diversity, higher hydrolytic activity and strong changes in the bacterial community composition of bulk soil, suggesting a mechanism of general suppression. Amendment with AS induced more subtle changes in bacterial community composition and specific enzymatic activities, with the strongest effects observed in the rhizosphere. Even if the effect was not strong, the changes caused by AS in bulk soil microbiota were related to the direct inhibition of R. necatrix by this amendment, most likely being connected to specific populations able to recolonize conducive soil after pasteurization. All of the organic amendments assayed in this study were able to suppress white root rot, although their suppressiveness appears to be mediated differentially. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Chickens. (i) As an aid in the control of outbreaks of coccidiosis caused by Eimeria tenella, E. necatrix... not change litter unless absolutely necessary. Do not give flushing mashes. (3) Chickens and turkeys... sulfaquinoxaline and fowl typhoid caused by Salmonella gallinarum susceptible to sulfaquinoxaline. (ii) Administer...

  3. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Chickens. (i) As an aid in the control of outbreaks of coccidiosis caused by Eimeria tenella, E. necatrix... not change litter unless absolutely necessary. Do not give flushing mashes. (3) Chickens and turkeys... sulfaquinoxaline and fowl typhoid caused by Salmonella gallinarum susceptible to sulfaquinoxaline. (ii) Administer...

  4. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Chickens. (i) As an aid in the control of outbreaks of coccidiosis caused by Eimeria tenella, E. necatrix... not change litter unless absolutely necessary. Do not give flushing mashes. (3) Chickens and turkeys... sulfaquinoxaline and fowl typhoid caused by Salmonella gallinarum susceptible to sulfaquinoxaline. (ii) Administer...

  5. 21 CFR 558.515 - Robenidine hydrochloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... respiratory disease (CRD) and air sac infection caused by M. gallisepticum and E. coli susceptible to.... maxima, and E. necatrix. As an aid in the reduction of mortality due to E. coli susceptible to... caused by Mycoplasma gallisepticum and E. coli susceptible to oxytetracycline. Feed continuously for 7 to...

  6. 21 CFR 558.515 - Robenidine hydrochloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... respiratory disease (CRD) and air sac infection caused by M. gallisepticum and E. coli susceptible to.... maxima, and E. necatrix. As an aid in the reduction of mortality due to E. coli susceptible to... caused by Mycoplasma gallisepticum and E. coli susceptible to oxytetracycline. Feed continuously for 7 to...

  7. 21 CFR 558.515 - Robenidine hydrochloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... respiratory disease (CRD) and air sac infection caused by M. gallisepticum and E. coli susceptible to.... maxima, and E. necatrix. As an aid in the reduction of mortality due to E. coli susceptible to... caused by Mycoplasma gallisepticum and E. coli susceptible to oxytetracycline. Feed continuously for 7 to...

  8. 21 CFR 558.515 - Robenidine hydrochloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... respiratory disease (CRD) and air sac infection caused by M. gallisepticum and E. coli susceptible to.... maxima, and E. necatrix. As an aid in the reduction of mortality due to E. coli susceptible to... caused by Mycoplasma gallisepticum and E. coli susceptible to oxytetracycline. Feed continuously for 7 to...

  9. 21 CFR 558.195 - Decoquinate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... It is used as follows: (1) Chickens. Decoquinate in grams/ton Combination in grams/ton Indications for use Limitations Sponsor (i) 27.2 Broiler chickens: For prevention of coccidiosis caused by Eimeria tenella, E. necatrix, E. mivati, E. acervulina, E. maxima, and E. brunetti. Do not feed to laying chickens...

  10. 21 CFR 558.195 - Decoquinate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... It is used as follows: (1) Chickens. Decoquinate in grams/ton Combination in grams/ton Indications for use Limitations Sponsor (i) 27.2 Broiler chickens: For prevention of coccidiosis caused by Eimeria tenella, E. necatrix, E. mivati, E. acervulina, E. maxima, and E. brunetti. Do not feed to laying chickens...

  11. 21 CFR 558.195 - Decoquinate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... It is used as follows: (1) Chickens. Decoquinate in grams/ton Combination in grams/ton Indications for use Limitations Sponsor (i) 27.2 Broiler chickens: For prevention of coccidiosis caused by Eimeria tenella, E. necatrix, E. mivati, E. acervulina, E. maxima, and E. brunetti. Do not feed to laying chickens...

  12. Diversity of eukaryotic microorganisms: computer-based resources, "The Handbook of Protoctista" and its "Glossary"

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Olendzenski, L.; Dolan, M.; MacIntyre, F.

    1996-01-01

    The kingdom Protoctista comprises some 30 phyla, including the eukaryotic anaerobes that permanently lack mitochondria, the Phylum Archaeprotista, with its three classes: (i) Archamoebae, e.g., Pelomyxa, Mastigina, (ii) Metamonada, e.g., Giardia, Pyrsonympha, and (iii) Parabasalia, e.g., Trichomonas, Calonympha, and the Phylum Microspora (Microsporidia), e.g., Vairimorpha. These and all algae, protozoa, labyrinthulids, "water molds" (oomycota, plasmodiophorans, hyphochytrids, chytrids, etc.) and other eukaryotes excluded from plants, animals and fungi are detailed in the Handbook of Protoctista. The Illustrated Glossary of Protoctista contains descriptions of the morphology and taxonomy of these microorganisms, including the many equivalent and homologous structures with different names. The Glossary has also been made into a Macintosh-compatible CD-ROM disk.

  13. Prevalence of Eimeria spp. in Broilers by Multiplex PCR in the Southern Region of Brazil on Two Hundred and Fifty Farms.

    PubMed

    Moraes, Julio Cesar; França, Marciél; Sartor, Amélia Aparecida; Bellato, Valdomiro; de Moura, Anderson Barbosa; de Lourdes Borba Magalhães, Maria; de Souza, Antonio Pereira; Miletti, Luiz Claudio

    2015-06-01

    Parasitic infections caused by Eimeria species are responsible for most economic losses in poultry production. Prevalence studies can adequately assist the design of prophylaxis strategies for disease control. Therefore, stool samples from 251 flocks of broilers from 28 to 48 days old were collected in 21 municipalities in the state of Santa Catarina, Brazil, to detect and examine the prevalence of Eimeria acervulina, Eimeria maxima, Eimeria tenella, Eimeria mitis, Eimeria praecox, Eimeria necatrix, and Eimeria brunetti. The oocysts were recovered and quantified, and the species were identified by a multiplex PCR technique. Amplicons of seven Eimeria species originating from the PCR-positive samples were cloned. Microscopy studies demonstrated that 96% of the farms were positive for the Eimeria. Seven species were identified, as follows: E. maxima (63.7%) and E. acervulina (63.3%) were the most prevalent species, followed by E. tenella (54.6%), E. mitis (38.6%), E. praecox (25.1%), E. necatrix (24.3%), and E. brunetti (13.1%). The average number of species detected per farm was 2.96, and the most common were E. acervulina, E. maxima, and E. tenella (9.16%). The sequencing of the clones confirmed the specificity and effectiveness of multiplex PCR for the identification of seven species of Eimeria, so this tool can be useful in studying circulating species in poultry farms, thereby assisting prophylactic measures against coccidiosis.

  14. Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process.

    PubMed

    Calderón, Claudia E; de Vicente, Antonio; Cazorla, Francisco M

    2014-07-01

    Different bacterial traits can contribute to the biocontrol of soilborne phytopathogenic fungus. Among others, (1) antagonism, (2) competition for nutrients and niches, (3) induction of systemic resistance of the plants and (4) predation and parasitism are the most studied. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium that produces the antifungal metabolite 2-hexyl, 5-propyl resorcinol (HPR). This bacterium can biologically control the avocado white root rot caused by Rosellinia necatrix. Confocal laser scanning microscopy of the avocado rhizosphere revealed that this biocontrol bacterium and the fungal pathogen compete for the same niche and presumably also for root exudate nutrients. The use of derivative mutants in the geners related to HPR biosynthesis (dar genes) revealed that the lack of HPR production by P. chlororaphis PCL1606 negatively influences the bacterial colonisation of the avocado root surface. Microscopical analysis showed that P. chlororaphis PCL1606 closely interacts and colonises the fungal hyphae, which may represent a novel biocontrol mechanism in this pseudomonad. Additionally, the presence of HPR-producing biocontrol bacteria negatively affects the ability of the fungi to infect the avocado root. HPR production negatively affects hyphal growth, leading to alterations in the R. necatrix physiology visible under microscopy, including the curling, vacuolisation and branching of hyphae, which presumably affects the colonisation and infection abilities of the fungus. This study provides the first report of multitrophic interactions in the avocado rhizosphere, advancing our understanding of the role of HPR production in those interactions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells

    PubMed Central

    Vida, Carmen; Bonilla, Nuria; de Vicente, Antonio; Cazorla, Francisco M.

    2016-01-01

    This study focused on the microbial profile present in an agricultural soil that becomes suppressive after the application of composted almond shells (AS) as organic amendments. For this purpose, we analyzed the functions and composition of the complex communities present in an experimental orchard of 40-year-old avocado trees, many of them historically amended with composted almond shells. The role of microbes in the suppression of Rosellinia necatrix, the causative agent of avocado white root rot, was determined after heat-treatment and complementation experiments with different types of soil. Bacterial and fungal profiles obtained from natural soil samples based on the 16S rRNA gene and ITS sequencing revealed slight differences among the amended (AS) and unamended (CT) soils. When the soil was under the influence of composted almond shells as organic amendments, an increase in Proteobacteria and Ascomycota groups was observed, as well as a reduction in Acidobacteria and Mortierellales. Complementary to these findings, functional analysis by GeoChip 4.6 confirmed these subtle differences, mainly present in the relative abundance of genes involved in the carbon cycle. Interestingly, a group of specific probes included in the “soil benefit” category was present only in AS-amended soils, corresponding to specific microorganisms previously described as potential biocontrol agents, such as Pseudomonas spp., Burkholderia spp., or Actinobacteria. Considering the results of both analyses, we determined that AS-amendments to the soil led to an increase in some orders of Gammaproteobacteria, Betaproteobacteria, and Dothideomycetes, as well as a reduction in the abundance of Xylariales fungi (where R. necatrix is allocated). The combination of microbial action and substrate properties of suppressiveness are discussed. PMID:26834725

  16. A polymerase chain reaction-coupled high-resolution melting curve analytical approach for the monitoring of monospecificity of avian Eimeria species.

    PubMed

    Kirkpatrick, Naomi C; Blacker, Hayley P; Woods, Wayne G; Gasser, Robin B; Noormohammadi, Amir H

    2009-02-01

    Coccidiosis is a significant disease of poultry caused by different species of Eimeria. Differentiation of Eimeria species is important for the quality control of the live attenuated Eimeria vaccines derived from monospecific lines of Eimeria spp. In this study, high-resolution melting (HRM) curve analysis of the amplicons generated from the second internal transcribed spacer of nuclear ribosomal DNA (ITS-2) was used to distinguish between seven pathogenic Eimeria species of chickens, and the results were compared with those obtained from the previously described technique, capillary electrophoresis. Using a series of known monospecific lines of Eimeria species, HRM curve analysis was shown to distinguish between Eimeria acervulina, Eimeria brunetti, Eimeria maxima, Eimeria mitis, Eimeria necatrix, Eimeria praecox and Eimeria tenella. Computerized analysis of the HRM curves and capillary electrophoresis profiles could detect the dominant species in several specimens containing different ratios of E. necatrix and E. maxima and of E. tenella and E. acervulina. The HRM curve analysis identified all of the mixtures as "variation" to the reference species, and also identified the minor species in some mixtures. Computerized HRM curve analysis also detected impurities in 21 possible different combinations of the seven Eimeria species. The PCR-based HRM curve analysis of the ITS-2 provides a powerful tool for the detection and identification of pure Eimeria species. The HRM curve analysis could also be used as a rapid tool in the quality assurance of Eimeria vaccine production to confirm the purity of the monospecific cell lines. The HRM curve analysis is rapid and reliable and can be performed in a single test tube in less than 3 h.

  17. Formalin for external protozoan parasites: A report on the prevention and control of Costia necatrix

    USGS Publications Warehouse

    Fisher, Frederick S.

    1940-01-01

    This apparent lack of interest in Costia certainly does not result from the infrequency of its appearances nor from any lack of pathogenicity on its part when it does occur. Preserved specimens of ailing trout an dsalmon submitted to the Seattle Pathology Laboratory for diagnosis have yielded very surprising indications concerning the frequency, intensity, and geographic distribution of Costiasis - surprising in that a parasite should be so widespread, so pathogenic, and yet so seldom mentioned. The answer undoubtedly lies in the fact that Costia, being small in size and usually sedentary in its habits, is being overlooked during parasitic examinations. Although Costia is not at all difficult to recognize, even well-trained workers unfamiliar with its appearance almost invariably pass it by.

  18. Host specificity of microsporidia pathogenic to the gypsy moth, Lymantria dispar (L.): field studies in Slovakia.

    PubMed

    Solter, Leellen F; Pilarska, Daniela K; McManus, Michael L; Zúbrik, Milan; Patocka, Jan; Huang, Wei-Fone; Novotný, Julius

    2010-09-01

    Several species of microsporidia are important chronic pathogens of Lymantria dispar in Europe but have never been recovered from North American gypsy moth populations. The major issue for their introduction into North American L. dispar populations is concern about their safety to native non-target insects. In this study, we evaluated the susceptibility of sympatric non-target Lepidoptera to two species of microsporidia, Nosema lymantriae and Vairimorpha disparis, isolated from European populations of L. dispar and applied in field plots in Slovakia. Application of ultra low volume sprays of the microsporidia maximized coverage of infective spores in a complex natural environment and, thus, exposure of non-target species to the pathogens. Of 653 non-target larvae collected from plots treated with V. disparis in 2002, 18 individual larvae representing nine species in four families were infected. These plots were monitored for two subsequent seasons and V. disparis was not recovered from non-target species. Of 2571 non-target larvae collected in N. lymantriae-treated sites, one larva was found to be infected. Both species of microsporidia, particularly N. lymantriae, appear to have a very narrow host range in the field, even when an inundative technique is used for their introduction. V. disparis infections in L. dispar exceeded 40% of recovered larvae in the treated study sites; infection rates were lower in sites sprayed with N. lymantriae. Several naturally-occurring pathogens were recorded from the non-target species. The most common pathogen, isolated from 21 species in eight families, was a microsporidium in the genus Cystosporogenes. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Pseudacteon decapitating flies (Diptera: Phoridae): Are they potential vectors of the fire ant pathogens Kneallhazia(=Thelohania)solenopsae (Microsporidia: Thelohaniidae)and Vairimorpha invictae (Microsporidia: Burenellidae)?

    USDA-ARS?s Scientific Manuscript database

    Fire ant decapitating flies in the genus Pseudacteon were tested for their potential as hosts or vectors of two microsporidian pathogens of the red imported fire ant, Solenopsis invicta. Decapitating flies which attacked or were reared from S. invicta workers infected by Kneallhazia (=Thelohania)...

  20. Chicken Coccidiosis in Central Java, Indonesia: A Recent Update.

    PubMed

    Hamid, Penny Humaidah; Kristianingrum, Yuli Purwandari; Wardhana, April Hari; Prastowo, Sigit; da Silva, Liliana Machado Ribeiro

    2018-01-01

    Avian coccidiosis is a huge problem worldwide. Heavily infected animals that show severe clinical signs and coccidiostat resistance are causing important economic losses. The present study aimed to update the recent cases of coccidiosis in Central Java, Indonesia, and to show the importance of the disease in the region. A total of 699 samples were obtained from different chicken breed. Different Eimeria species were detected in 175 individuals (25.04%). Three different groups of chicken breed were considered: local chicken (autochthonous chickens of Sentul and Jawa), commercial broiler, and layer. Broiler chickens showed the highest prevalence of infection (34%), followed by layer (26.26%) and local chickens (10.45%). Mild to severe clinical signs of avian coccidiosis were observed in 42% of the infected animals, while 58% of the infected animals showed no clinical signs other than low feed conversion rates. Seven different Eimeria species were identified: E. tenella was the most prevalent (43.3%), followed by E. maxima (26.3%), E. necatrix (15.7%), E. acervulina (8%), E. praecox (3.1%), E. mitis (2.2%), and E. brunetti (1.3%). Coinfections with several Eimeria species were diagnosed. With this study we found massive usage of coccidiostat in the region even though its usage cannot guarantee coccidiosis-free chicken production.

  1. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens

    PubMed Central

    Cruz, Andre Freire; Ishii, Takaaki

    2012-01-01

    Summary The aim of this research was to isolate and characterize bacteria from spores of arbuscular mycorrhizal fungi (AMF). We designated these bacteria ‘probable endobacteria’ (PE). Three bacterial strains were isolated from approximately 500 spores of Gigaspora margarita (Becker and Hall) using a hypodermic needle (diameter, 200 μm). The bacteria were identified by morphological methods and on the basis of ribosomal gene sequences as Bacillus sp. (KTCIGM01), Bacillus thuringiensis (KTCIGM02), and Paenibacillus rhizospherae (KTCIGM03). We evaluated the effect of these probable endobacteria on antagonistic activity to the soil-borne plant pathogens (SBPPs) Fusarium oxysporum f. sp. lactucae MAFF 744088, Rosellinia necatrix, Rhizoctonia solani MAFF 237426, and Pythium ultimum NBRC 100123. We also tested whether these probable endobacteria affected phosphorus solubilization, ethylene production, nitrogenase activity (NA), and stimulation of AMF hyphal growth. In addition, fresh samples of spores and hyphae were photographed using an in situ scanning electron microscope (SEM) (Quanta 250FEG; FEI Co., Japan). Bacterial aggregates (BAs), structures similar to biofilms, could be detected on the surface of hyphae and spores. We demonstrate that using extraction with an ultrathin needle, it is possible to isolate AMF-associated bacterial species that are likely derived from inside the fungal spores. PMID:23213368

  2. Isolation and analysis of bacteria associated with spores of Gigaspora margarita.

    PubMed

    Cruz, A F; Horii, S; Ochiai, S; Yasuda, A; Ishii, T

    2008-06-01

    The aim of this work was to observe bacteria associated with the spores of Gigaspora margarita, an arbuscular mycorrhizal fungus (AMF). First, a direct analysis of DNA from sterilized spores indicated the bacteria belonging to the genus Janthinobacterium. In the second assay, two bacterial strains were isolated by osmosis from protoplasts, which were derived from spores by using two particular enzymes: lysing enzymes and yatalase. After isolation, cultivation and identification by their DNA as performed in the first experiment, the species with the closest relation were Janthinobacterium lividum (KCIGM01) and Paenibacillus polymyxa (KCIGM04) isolated with lysing enzymes and yatalase respectively. Morphologically, J. lividum was Gram negative and oval, while P. polymyxa was also oval, but Gram positive. Both strains had antagonistic effects to the pathogenic fungi Rosellimia necatrix, Pythium ultimum, Fusarium oxysporum and Rhizoctonia solani. In particular, J. lividum was much stronger in this role. However, in phosphorus (P) solubilization P. polymyxa functioned better than J. lividum. This experiment had revealed two new bacteria species (P. polymyxa and J. lividum), associated with AMF spores, which functioned to suppress diseases and to solubilize P. AMF spores could be a useful source for bacterial antagonists to soil-borne diseases and P solubilization.

  3. Detection of four important Eimeria species by multiplex PCR in a single assay.

    PubMed

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. (Cryptic) sex in the microsporidian Nosema granulosis--evidence from parasite rDNA and host mitochondrial DNA.

    PubMed

    Krebes, Lukas; Zeidler, Lisza; Frankowski, Jens; Bastrop, Ralf

    2014-01-01

    Microsporidia are single-celled, intracellular eukaryotes that parasitise a wide range of animals. The Nosema/Vairimorpha group includes some putative asexual species, and asexuality is proposed to have originated multiple times from sexual ancestors. Here, we studied the variation in the ribosomal DNA (rDNA) of 14 isolates of the presumed apomictic and vertically transmitted Nosema granulosis to evaluate its sexual status. The analysed DNA fragment contained a part of the small-subunit ribosomal gene (SSU) and the entire intergenic spacer (IGS). The mitochondrial cox1 gene of the host Gammarus duebeni (Crustacea) was analysed to temporally calibrate the system and to test the expectation of cophylogeny of host and parasite genealogies. Genetic variability of the SSU gene was very low within and between the isolates. In contrast, intraisolate (within a single host) variability of the IGS felt in two categories, because 12 isolates possess a very high IGS genetic diversity and two isolates were almost invariable in the IGS. This difference suggests variable models of rDNA evolution involving birth-and-death and unexpectedly concerted evolution. An alternative explanation could be a likewise unattended mixed infection of host individuals by more than one parasite strain. Despite considerable genetic divergence between associated host mitochondrial haplotypes, some N. granulosis 'IGS populations' seem not to belong to different gene pools; the relevant tests failed to show significant differences between populations. A set of recombinant IGS sequences made our data incompatible with the model of a solely maternally inherited, asexual species. In line with recent reports, our study supports the hypothesis that some assumed apomictic Microsporidia did not entirely abstain from the evolutionary advantages of sex. In addition, the presented data indicate that horizontal transmission may occur occasionally. This transmission mode could be a survival strategy of N

  5. Report: In vivo anticoccidial effects of Azadirachta indica and Carica papaya L. with salinomycin drug as a dietary feed supplement in broiler chicks.

    PubMed

    Hema, Srinivasan; Arun, Thangavel; Senthilkumar, Balakrishnan; Senbagam, Duraisamy; Sureshkumar, Muthusamy

    2015-07-01

    A total of thirty suspected broiler chicks were screened for coccidiosis, of them 25 chicks were found to be infected with coccidiosis viz. Eimeria tenella (15) Eimeria maxima (5) Eimeria necatrix (6) and Eimeria mitis (4). The anticoccidial efficacy of Azadirachta indica and Carica papaya with Salinomycin as a dietary feed supplement on the representative E. tenella (25 x 10³ oocyst) infection challenged in broiler chicks was studied in six groups for the period of six weeks. A. indica and C. papaya leaves were administered in powder form at the concentration of 0.1% and 0.2% respectively. The Oocysts per gram (OPG) count were observed on 8th, 9th, 10th, 11th day of post inoculation (DPI). The challenged experimental chicks revealed haemorrhage, thickening of mucosa, cores of blood and ballooning of caecum. The experimental group T5 chicks treated with A. indica were analyzed to possess the maximum weight gain (2.003), better feed conversion ratio (FCR) (2.32), OPG count (5.87), livability percentage (88) and the lesion score (3.33). Chi-square test analysis revealed no significant differences among the treated groups and the performance parameters. Therefore, this study concludes that plant sources used as a remedial curate for coccidiosis is a perforated growth in the commercial broiler industries.

  6. Characterization of a novel single-stranded RNA virus, closely related to fusariviruses, infecting the plant pathogenic fungus Alternaria brassicicola.

    PubMed

    Zhong, Jie; Shang, Hong Hong; Zhu, Chuan Xia; Zhu, Jun Zi; Zhu, Hong Jian; Hu, Yan; Gao, Bi Da

    2016-06-02

    The alternaria blackspot of rapeseed is one of the most prominent diseases of rapeseed. It is caused by three species of the genus Alternaria: Alternaria brassicicola, Alternaria brassicae, and Alternaria raphanin. Here we report a novel positive-sense RNA virus from an A. brassicicola strain 817-14. The virus has a 6639 nucleotide (nt) long genome, excluding a poly (A)-tail, and was predicted to contain three putative open reading frames (ORF1, ORF2, and ORF3). The large ORF1 encoded a 174-kDa polyprotein (composed of 1522 amino acid residues) containing a conserved RNA-dependent RNA polymerase (RdRp) domain and a helicase domain. The other two smaller ORFs encoded polypeptides with unknown function. Homology search and phylogenetic analysis, based on the RdRp and helicase domains, suggest that this virus is related to and grouped with Sclerotinia sclerotiorum fusarivirus 1 (SsFV1), Rosellinia necatrix fusarivirus 1 (RnFV1), Fusarium graminearum virus-DK21 (FgV1), and Penicillium roqueforti RNA mycovirus 1 (PrRV1), all of which belong to a newly proposed family Fusariviridae. For this study, we designed the virus as "Alternaria brassicicola fusarivirus 1" (AbFV1). Virus elimination revealed that AbFV1 has no conspicuous impact on the biological properties of its host. Copyright © 2016. Published by Elsevier B.V.

  7. Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions.

    PubMed

    Mehta, Preeti; Walia, Abhishek; Kulshrestha, Saurabh; Chauhan, Anjali; Shirkot, Chand Karan

    2015-01-01

    P-solubilizing bacterial isolate CB7 isolated from apple rhizosphere soil of Himachal Pradesh, India was identified as Bacillus circulans on the basis of phenotypic characteristics, biochemical tests, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The isolate exhibited plant growth-promoting traits of P-solubilization, auxin, 1-aminocyclopropane-1-carboxylate deaminase activity, siderophore, nitrogenase activity, and antagonistic activity against Dematophora necatrix. In vitro studies revealed that P-solubilization and other plant growth-promoting traits were dependent on the presence of glucose in PVK medium and removal of yeast extract had no significant effect on plant growth-promoting traits. Plant growth-promoting traits of isolate CB7 were repressed in the presence of KH2 PO4 . P-solubilization activity was associated with the release of organic acids and a drop in the pH of the Pikovskaya's medium. HPLC analysis detected gluconic and citric acid as major organic acids in the course of P-solubilization. Remarkable increase was observed in seed germination (22.32%), shoot length (15.91%), root length (25.10%), shoot dry weight (52.92%) and root dry weight (31.4%), nitrogen (18.75%), potassium (57.69%), and phosphorus (22.22%) content of shoot biomass over control. These results demonstrate that isolate CB7 has the promising PGPR attributes to be developed as a biofertilizer to enhance soil fertility and promote plant growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Expression of the β-1,3-glucanase gene bgn13.1 from Trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth.

    PubMed

    Mercado, José A; Barceló, Marta; Pliego, Clara; Rey, Manuel; Caballero, José L; Muñoz-Blanco, Juan; Ruano-Rosa, David; López-Herrera, Carlos; de Los Santos, Berta; Romero-Muñoz, Fernando; Pliego-Alfaro, Fernando

    2015-12-01

    The expression of antifungal genes from Trichoderma harzianum, mainly chitinases, has been used to confer plant resistance to fungal diseases. However, the biotechnological potential of glucanase genes from Trichoderma has been scarcely assessed. In this research, transgenic strawberry plants expressing the β-1,3-glucanase gene bgn13.1 from T. harzianum, under the control of the CaMV35S promoter, have been generated. After acclimatization, five out of 12 independent lines analysed showed a stunted phenotype when growing in the greenhouse. Moreover, most of the lines displayed a reduced yield due to both a reduction in the number of fruit per plant and a lower fruit size. Several transgenic lines showing higher glucanase activity in leaves than control plants were selected for pathogenicity tests. When inoculated with Colletotrichum acutatum, one of the most important strawberry pathogens, transgenic lines showed lower anthracnose symptoms in leaf and crown than control. In the three lines selected, the percentage of plants showing anthracnose symptoms in crown decreased from 61 % to a mean value of 16.5 %, in control and transgenic lines, respectively. Some transgenic lines also showed an enhanced resistance to Rosellinia necatrix, a soil-borne pathogen causing root and crown rot in strawberry. These results indicate that bgn13.1 from T. harzianum can be used to increase strawberry tolerance to crown rot diseases, although its constitutive expression affects plant growth and fruit yield. Alternative strategies such as the use of tissue specific promoters might avoid the negative effects of bgn13.1 expression in plant performance.

  9. Molecular characterization of eimeria species naturally infecting egyptian baldi chickens.

    PubMed

    Gadelhaq, Sahar M; Arafa, Waleed M; Aboelhadid, Shawky M

    2015-01-01

    Coccidiosis is a serious protozoal disease of poultry. The identification of Eimeria species has important implications for diagnosis and control as well as for epidemiology. The molecular characterization of Eimeria species infecting Egyptian baladi chickens was investigated. Eimeria species oocysts were harvested from intestines of naturally infected Egyptian baldi chickens. The morphometry characterization of oocysts along with COCCIMORPH software was done. The DNA was extracted initially by freezing and thawing then the prepared samples was subjected to commercial DNA kits. The DNA products were analyzed through conventional polymerase chain reaction by using amplified region (SCAR) marker. The PCR results confirmed the presence of 7 Eimeria species in the examined fecal samples of Egyptian baldi breed with their specific ampilicon sizes being E. acervulina (811bp), E. brunette (626bp), E. tenella (539bp), E. maxima (272bp), E. necatrix (200bp), E. mitis (327bp) and E. praecopx (354bp). A sequencing of the two most predominant species of Eimeria was done, on E. tenella and E. máxima. Analysis of the obtained sequences revealed high identities 99% between Egyptian isolates and the reference one. Similarly, E. maxima isolated from Egyptian baldi chickens showed 98% nucleotide identities with the reference strain. Only single nucleotide substitution was observed among the Egyptian E. tenella isolates (A181G) when compared to the reference one. The Egyptian isolates acquired 4 unique mutations (A68T, C164T, G190A and C227G) in compared with the reference sequence. This is the first time to identify the 7 species of Eimeria from Egyptian baladi chickens.

  10. Cryptic Eimeria genotypes are common across the southern but not northern hemisphere.

    PubMed

    Clark, Emily L; Macdonald, Sarah E; Thenmozhi, V; Kundu, Krishnendu; Garg, Rajat; Kumar, Saroj; Ayoade, Simeon; Fornace, Kimberly M; Jatau, Isa Danladi; Moftah, Abdalgader; Nolan, Matthew J; Sudhakar, N R; Adebambo, A O; Lawal, I A; Álvarez Zapata, Ramón; Awuni, Joseph A; Chapman, H David; Karimuribo, Esron; Mugasa, Claire M; Namangala, Boniface; Rushton, Jonathan; Suo, Xun; Thangaraj, Kumarasamy; Srinivasa Rao, Arni S R; Tewari, Anup K; Banerjee, Partha S; Dhinakar Raj, G; Raman, M; Tomley, Fiona M; Blake, Damer P

    2016-08-01

    The phylum Apicomplexa includes parasites of medical, zoonotic and veterinary significance. Understanding the global distribution and genetic diversity of these protozoa is of fundamental importance for efficient, robust and long-lasting methods of control. Eimeria spp. cause intestinal coccidiosis in all major livestock animals and are the most important parasites of domestic chickens in terms of both economic impact and animal welfare. Despite having significant negative impacts on the efficiency of food production, many fundamental questions relating to the global distribution and genetic variation of Eimeria spp. remain largely unanswered. Here, we provide the broadest map yet of Eimeria occurrence for domestic chickens, confirming that all the known species (Eimeria acervulina, Eimeria brunetti, Eimeria maxima, Eimeria mitis, Eimeria necatrix, Eimeria praecox, Eimeria tenella) are present in all six continents where chickens are found (including 21 countries). Analysis of 248 internal transcribed spacer sequences derived from 17 countries provided evidence of possible allopatric diversity for species such as E. tenella (FST values ⩽0.34) but not E. acervulina and E. mitis, and highlighted a trend towards widespread genetic variance. We found that three genetic variants described previously only in Australia and southern Africa (operational taxonomic units x, y and z) have a wide distribution across the southern, but not the northern hemisphere. While the drivers for such a polarised distribution of these operational taxonomic unit genotypes remains unclear, the occurrence of genetically variant Eimeria may pose a risk to food security and animal welfare in Europe and North America should these parasites spread to the northern hemisphere. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Molecular Characterization of Eimeria Species Naturally Infecting Egyptian Baldi Chickens

    PubMed Central

    GADELHAQ, Sahar M; ARAFA, Waleed M; ABOELHADID, Shawky M

    2015-01-01

    Background: Coccidiosis is a serious protozoal disease of poultry. The identification of Eimeria species has important implications for diagnosis and control as well as for epidemiology. The molecular characterization of Eimeria species infecting Egyptian baladi chickens was investigated. Methods: Eimeria species oocysts were harvested from intestines of naturally infected Egyptian baldi chickens. The morphometry characterization of oocysts along with COCCIMORPH software was done. The DNA was extracted initially by freezing and thawing then the prepared samples was subjected to commercial DNA kits. The DNA products were analyzed through conventional polymerase chain reaction by using amplified region (SCAR) marker. Results: The PCR results confirmed the presence of 7 Eimeria species in the examined fecal samples of Egyptian baldi breed with their specific ampilicon sizes being E. acervulina (811bp), E. brunette (626bp), E. tenella (539bp), E. maxima (272bp), E. necatrix (200bp), E. mitis (327bp) and E. praecopx (354bp). A sequencing of the two most predominant species of Eimeria was done, on E. tenella and E. máxima. Analysis of the obtained sequences revealed high identities 99% between Egyptian isolates and the reference one. Similarly, E. maxima isolated from Egyptian baldi chickens showed 98% nucleotide identities with the reference strain. Only single nucleotide substitution was observed among the Egyptian E. tenella isolates (A181G) when compared to the reference one. The Egyptian isolates acquired 4 unique mutations (A68T, C164T, G190A and C227G) in compared with the reference sequence. Conclusion: This is the first time to identify the 7 species of Eimeria from Egyptian baladi chickens. PMID:25904950

  12. [Epizootiological and parasitological status of the flocks at a poultry combine].

    PubMed

    Kolev, V; Markarian, M; Genchev, G; Donev, A; Tsvetkov, S

    1976-01-01

    A comprehensive epizootiologic study has been carried out at one of the large poultry dressing combines in this country. Results have shown that the part played by infections as against the remaining diseases established in the various technologic categories is as follows: 9 to 23.8 per cent in growing parents; 16.0 to 24.6 per cent in adult parents; and 4.8 to 13.4 per cent in broilers. So far as parasitic diseases are concerned the respective figures are 3.2 to 9.9 per cent, 3.0 to 3.3. per cent, and 2.9 to 3.0 to per cent. The import of birds from France and England intended for satisfying the needs of the poultry dressing combine in Roussé has contributed to the introduction of infections which have later on assumed an epizootic course, such as infections encephalomyelitis, infectious bronchitis, and Marek' disease. The epizootic status has been aggravated with the development of a number of diseases already existing in this country--fowl pox, lymphoid leukosis, chronic respiratory disease, salmonellosis, and above all infections caused by the so-called occasionally pathogenic agents--coli organisms, staphylococci, and Pseudomonas. Of the parasitic diseases only coccidiosis has developed, being caused by a variety of species: Eimeria acervulina, Eimeria necatrix, Eimeria maxima, Eimeria muvati and Eimeria tenella. The absence of helminth infections is due to the routinely adopted technological practice of raising birds in confinement and the strict veterinary control and guard. On the basis of the results obtained and the conclusions drawn some more effective prophylactic measures are suggested correcting and supplementing the existing prophylactic programme.

  13. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification.

    PubMed

    El-Sherry, Shiem; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2013-07-01

    Multiple 18S rDNA sequences were obtained from two single-oocyst-derived lines of each of Eimeria meleagrimitis and Eimeria adenoeides. After analysing the 15 new 18S rDNA sequences from two lines of E. meleagrimitis and 17 new sequences from two lines of E. adenoeides, there were clear indications that divergent, paralogous 18S rDNA copies existed within the nuclear genome of E. meleagrimitis. In contrast, mitochondrial cytochrome c oxidase subunit I (COI) partial sequences from all lines of a particular Eimeria sp. were identical and, in phylogenetic analyses, COI sequences clustered unambiguously in monophyletic and highly-supported clades specific to individual Eimeria sp. Phylogenetic analysis of the new 18S rDNA sequences from E. meleagrimitis showed that they formed two distinct clades: Type A with four new sequences; and Type B with nine new sequences; both Types A and B sequences were obtained from each of the single-oocyst-derived lines of E. meleagrimitis. Together these rDNA types formed a well-supported E. meleagrimitis clade. Types A and B 18S rDNA sequences from E. meleagrimitis had a mean sequence identity of only 97.4% whereas mean sequence identity within types was 99.1-99.3%. The observed intraspecific sequence divergence among E. meleagrimitis 18S rDNA sequence types was even higher (approximately 2.6%) than the interspecific sequence divergence present between some well-recognized species such as Eimeria tenella and Eimeria necatrix (1.1%). Our observations suggest that, unlike COI sequences, 18S rDNA sequences are not reliable molecular markers to be used alone for species identification with coccidia, although 18S rDNA sequences have clear utility for phylogenetic reconstruction of apicomplexan parasites at the genus and higher taxonomic ranks. Copyright © 2013. Published by Elsevier Ltd.

  14. Validation of a quantitative Eimeria spp. PCR for fresh droppings of broiler chickens.

    PubMed

    Peek, H W; Ter Veen, C; Dijkman, R; Landman, W J M

    2017-12-01

    A quantitative Polymerase Chain Reaction (qPCR) for the seven chicken Eimeria spp. was modified and validated for direct use on fresh droppings. The analytical specificity of the qPCR on droppings was 100%. Its analytical sensitivity (non-sporulated oocysts/g droppings) was 41 for E. acervulina, ≤2900 for E. brunetti, 710 for E. praecox, 1500 for E. necatrix, 190 for E. tenella, 640 for E. maxima, and 1100 for E. mitis. Field validation of the qPCR was done using droppings with non-sporulated oocysts from 19 broiler flocks. To reduce the number of qPCR tests five grams of each pooled sample (consisting of ten fresh droppings) per time point were blended into one mixed sample. Comparison of the oocysts per gram (OPG)-counting method with the qPCR using pooled samples (n = 1180) yielded a Pearson's correlation coefficient of 0.78 (95% CI: 0.76-0.80) and a Pearson's correlation coefficient of 0.76 (95% CI: 0.70-0.81) using mixed samples (n = 236). Comparison of the average of the OPG-counts of the five pooled samples with the mixed sample per time point (n = 236) showed a Pearson's correlation coefficient (R) of 0.94 (95% CI: 0.92-0.95) for the OPG-counting method and 0.87 (95% CI: 0.84-0.90) for the qPCR. This indicates that mixed samples are practically equivalent to the mean of five pooled samples. The good correlation between the OPG-counting method and the qPCR was further confirmed by the visual agreement between the total oocyst/g shedding patterns measured with both techniques in the 19 broiler flocks using the mixed samples.

  15. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect.

    PubMed

    Chauhan, Anjali; Guleria, Shiwani; Balgir, Praveen P; Walia, Abhishek; Mahajan, Rishi; Mehta, Preeti; Shirkot, Chand Karan

    Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260mg/L), nitrogen fixation (202.91nmolethylenemL -1 h -1 ), indole-3-acetic acid (IAA) (8.1μg/mL), siderophores (61.60%), HCN (hydrogen cyanide) production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC) study showed that isolate CKMV1 produced mainly gluconic (1.34%) and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh) gene and pyrroloquinoline quinone synthase (pqq) gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H) gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58%) followed by Fusarium oxysporum (64.3%), Dematophora necatrix (52.71%), Rhizoctonia solani (91.58%), Alternaria sp. (71.08%) and Phytophthora sp. (71.37%). Remarkable increase was observed in seed germination (27.07%), shoot length (42.33%), root length (52.6%), shoot dry weight (62.01%) and root dry weight (45.7%) along with NPK (0.74, 0.36, 1.82%) content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Coccidian oöcysts as type-specimens: long-term storage in aqueous potassium dichromate solution preserves DNA.

    PubMed

    Williams, R B; Thebo, P; Marshall, R N; Marshall, J A

    2010-05-01

    Preservation of the exogenous oöcyst stage of coccidian parasites (phylum Apicomplexa N.D. Levine, 1970) as type-specimens of newly described species has long been problematical. Conventional fixatives have proved unsatisfactory, and compromises such as embedding oöcysts in resin or photographing them are not entirely appropriate for various reasons. As an alternative, chilled potassium dichromate solution (normally used in the laboratory to prevent putrefaction of temporary preparations of live oöcysts) has been tested as a long-term preservative of sporulated oöcysts of Eimeria brunetti P.P. Levine, 1942, E. maxima Tyzzer, 1929, E. mitis Tyzzer, 1929, E. necatrix Johnson, 1930, E. praecox Johnson, 1930 and E. tenella (Railliet & Lucet, 1891) (suborder Eimeriorina Léger, 1911; family Eimeriidae Minchin, 1903). Oöcysts from faeces of chickens Gallus gallus (Linnaeus) were placed in 2.5% w/v aqueous potassium dichromate solution (PDS) and stored in the dark at 4 +/- 2 degrees C. After 23 years in storage, oöcysts of each species were administered orally to chickens and failed to initiate infections, indicating that the oöcysts were dead. Nevertheless, after about 24 years, DNA was still recoverable from the oöcysts, and the original species identifications made by classic parasitological methods were confirmed by polymerase chain reaction assays. Furthermore, after almost 25 years, microscopical examination revealed that the walls and internal structures remained well preserved in 83-98% of the oöcysts of the six species investigated. Hence, PDS is potentially suitable for the long-term preservation of sporulated coccidian oöcysts as type-specimens for taxonomic purposes. The samples used in this study are now in the care of the Natural History Museum, London, UK. It is recommended that they be monitored in like manner, by suitably qualified scientists, at intervals of about 5 years to assess their state of preservation and the recoverability of DNA

  17. Effects of Artemisia annua extracts on sporulation of Eimeria oocysts.

    PubMed

    Fatemi, Ahmadreza; Razavi, Seyyed Mostafa; Asasi, Keramat; Goudarzi, Majid Torabi

    2015-03-01

    The present study aimed to compare the effect of different Artemisia annua extracts on sporulation rate of mixed oocysts of Eimeria acervulina, Eimeria necatrix, and Eimeria tenella. Three types of A. annua extracts including petroleum ether (PE), ethanol 96° (E), and water (W) extracts were prepared. Artemisinin, a sesquiterpene lactone endoperoxide derived from the A. annua analysis of each extract was done by high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Fresh fecal samples containing three Eimeria species were floated and counted, and the oocysts were transferred into 50 tubes, each containing 10(5) oocysts per milliliter. Five tubes were control. Each of the other 45 tubes contained one of three doses (1 part per thousand (ppt), 2 ppt, and 5 ppt) and one of three extracts (PE, E, and W extracts) with five replications. The tubes were incubated for 48 h at 25-29 °C and aerated. Sporulation inhibition assay was used to evaluate the activity of extracts. The results showed that the E and PE extracts inhibit sporulation in 2 and 5 ppt concentrations, but the W extract stimulates it in all concentrations. The proportions of oocyst inhibition relative to control were 31 % (5 ppt) and 29 % (2 ppt) for PE and 34 % (5 ppt) and 46 % (2 ppt) for E extract. Furthermore, many oocysts in PE and E groups were wrinkled and contained abnormal sporocysts. The proportions of sporulation stimulation relative to control were 22 % (5 ppt), 24 % (2 ppt), and 27 % (1 ppt) in W extract. Our study is the first to demonstrate that all types of A. annua extracts do not necessarily have a similar activity, and the interaction of all contents and their relative concentrations is an important factor for sporulation stimulation or inhibition. It seems, some parts of unmetabolized excreted PE and E extracts could inhibit oocyst sporulation and eventually affect infection transmission.

  18. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    PubMed

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    via host switching from another avian host. Phylogenetic analyses suggest E. necatrix and E. tenella are related distantly to other Eimeria of chickens. Mitochondrial genomes of Eimeria species sequenced to date are highly conserved with regard to gene content and structure. Nonetheless, complete mitochondrial genome sequences and, particularly the three CDS, possess sufficient sequence variability for differentiating Eimeria species of poultry. The mitochondrial genome sequences are highly suited for molecular diagnostics and phylogenetics of coccidia and, potentially, genetic markers for molecular epidemiology.

  19. Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity.

    PubMed

    Chengat Prakashbabu, B; Thenmozhi, V; Limon, G; Kundu, K; Kumar, S; Garg, R; Clark, E L; Srinivasa Rao, A S R; Raj, D G; Raman, M; Banerjee, P S; Tomley, F M; Guitian, J; Blake, D P

    2017-01-15

    Coccidiosis is one of the biggest challenges faced by the global poultry industry. Recent studies have highlighted the ubiquitous distribution of all Eimeria species which can cause this disease in chickens, but intriguingly revealed a regional divide in genetic diversity and population structure for at least one species, Eimeria tenella. The drivers associated with such distinct geographic variation are unclear, but may impact on the occurrence and extent of resistance to anticoccidial drugs and future subunit vaccines. India is one of the largest poultry producers in the world and includes a transition between E. tenella populations defined by high and low genetic diversity. The aim of this study was to identify risk factors associated with the prevalence of Eimeria species defined by high and low pathogenicity in northern and southern states of India, and seek to understand factors which vary between the regions as possible drivers for differential genetic variation. Faecal samples and data relating to farm characteristics and management were collected from 107 farms from northern India and 133 farms from southern India. Faecal samples were analysed using microscopy and PCR to identify Eimeria occurrence. Multiple correspondence analysis was applied to transform correlated putative risk factors into a smaller number of synthetic uncorrelated factors. Hierarchical cluster analysis was used to identify poultry farm typologies, revealing three distinct clusters in the studied regions. The association between clusters and presence of Eimeria species was assessed by logistic regression. The study found that large-scale broiler farms in the north were at greatest risk of harbouring any Eimeria species and a larger proportion of such farms were positive for E. necatrix, the most pathogenic species. Comparison revealed a more even distribution for E. tenella across production systems in south India, but with a lower overall occurrence. Such a polarised region- and

  20. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys

    PubMed Central

    2014-01-01

    ; Eimeria dispersa may have arisen via host switching from another avian host. Phylogenetic analyses suggest E. necatrix and E. tenella are related distantly to other Eimeria of chickens. Conclusions Mitochondrial genomes of Eimeria species sequenced to date are highly conserved with regard to gene content and structure. Nonetheless, complete mitochondrial genome sequences and, particularly the three CDS, possess sufficient sequence variability for differentiating Eimeria species of poultry. The mitochondrial genome sequences are highly suited for molecular diagnostics and phylogenetics of coccidia and, potentially, genetic markers for molecular epidemiology. PMID:25034633