Sample records for valence band spectrum

  1. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation.

    PubMed

    Chirayath, V A; Callewaert, V; Fairchild, A J; Chrysler, M D; Gladen, R W; Mcdonald, A D; Imam, S K; Shastry, K; Koymen, A R; Saniz, R; Barbiellini, B; Rajeshwar, K; Partoens, B; Weiss, A H

    2017-07-13

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.

  2. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation

    PubMed Central

    Chirayath, V. A.; Callewaert, V.; Fairchild, A. J.; Chrysler, M. D.; Gladen, R. W.; Mcdonald, A. D.; Imam, S. K.; Shastry, K.; Koymen, A. R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A. H.

    2017-01-01

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition. PMID:28703225

  3. Accurate determination of the valence band edge in hard x-ray photoemission spectra using GW theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lischner, Johannes, E-mail: jlischner597@gmail.com; Department of Physics and Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ; Nemšák, Slavomír

    We introduce a new method for determining accurate values of the valence-band maximum in x-ray photoemission spectra. Specifically, we align the sharpest peak in the valence-band region of the experimental spectrum with the corresponding feature of a theoretical valence-band density of states curve from ab initio GW theory calculations. This method is particularly useful for soft and hard x-ray photoemission studies of materials with a mixture of valence-band characters, where strong matrix element effects can render standard methods for extracting the valence-band maximum unreliable. We apply our method to hydrogen-terminated boron-doped diamond, which is a promising substrate material for novelmore » solar cell devices. By carrying out photoemission experiments with variable light polarizations, we verify the accuracy of our analysis and the general validity of the method.« less

  4. Valence-band-edge shift due to doping in p + GaAs

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-05-01

    Accurate knowledge of the shifts in valence- and conduction-band edges due to heavy doping effects is crucial in modeling GaAs device structures that utilize heavily doped layers. X-ray photoemission spectroscopy was used to deduce the shift in the valence-band-edge induced by carbon (p type) doping to a carrier density of 1×1020 cm-3 based on a determination of the bulk binding energy of the Ga and As core levels in this material. Analysis of the data indicates that the shift of the valence-band maximum into the gap and the penetration of the Fermi level into the valence bands exactly compensate at this degenerate carrier concentration, to give ΔEv =0.12±0.05 eV.

  5. Measurement of the low energy spectral contribution in coincidence with valence band (VB) energy levels of Ag(100) using VB-VB coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gladen, R. W.; Joglekar, P. V.; Lim, Z. H.; Shastry, K.; Hulbert, S. L.; Weiss, A. H.

    A set of coincidence measurements were obtained for the study and measurement of the electron contribution arising from the inter-valence band (VB) transitions along with the inelastically scattered VB electron contribution. These Auger-unrelated contributions arise in the Auger spectrum (Ag 4p NVV) obtained using Auger Photoelectron Coincidence Spectroscopy (APECS). The measured Auger-unrelated contribution can be eliminated from Auger spectrum to obtain the spectrum related to Auger. In our VB-VB coincidence measurement, a photon beam of energy 180eV was used to probe the Ag(100) sample. The coincidence spectrum was obtained using two Cylindrical Mirror Analyzers (CMA's). The scan CMA measured the low energy electron contribution in the energy range 0-70eV in coincidence with VB electrons measured by the fixed CMA. In this talk, we present the data obtained for VB-VB coincidence at the valence band energy of 171eV along with the coincidence measurements in the energy range of 4p core and valence band. NSF DMR 0907679, NSF Award Number: 1213727. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-98CH10886.

  6. Measurement of the low energy spectral contribution in coincidence with valence band (VB) energy levels of Ag(100) using VB-VB coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Joglekar, P. V.; Gladen, R.; Lim, Z. H.; Shastry, K.; Hulbert, S. L.; Weiss, A. H.

    2015-03-01

    A set of coincidence measurements were obtained for the study and measurement of the electron contribution arising from the inter-valence band (VB) transitions along with the inelastically scattered VB electron contribution. These Auger-unrelated contributions arise in the Auger spectrum (Ag 4p NVV) obtained using Auger Photoelectron Coincidence Spectroscopy (APECS). The measured Auger-unrelated contribution can be eliminated from Auger spectrum to obtain the spectrum related to Auger. In our VB-VB coincidence measurement, a photon beam of energy 180eV was used to probe the Ag(100) sample. The coincidence spectrum was obtained using two Cylindrical Mirror Analyzers (CMA's). The scan CMA measured the low energy electron contribution in the energy range 0-70eV in coincidence with VB electrons measured by the fixed CMA. In this talk, we present the data obtained for VB-VB coincidence at the valence band energy of 171eV along with the coincidence measurements in the energy range of 4p core and valence band. NSF DMR 0907679, NSF Award Number: 1213727. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  7. Valence-band states in Bi2(Ca,Sr,La)3Cu2O8

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Spicer, W. E.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.

    1989-09-01

    We have used photoemission spectroscopy to examine the symmetry of the occupied states of the valence band for the La-doped superconductor Bi2(Ca,Sr,La)3Cu2O8. While the oxygen states near the bottom of the 7-eV wide valence band exhibit predominantly O 2pz symmetry, the states at the top of the valence band extending to the Fermi level are found to have primarily O 2px and O 2py character. We have also examined anomalous intensity enhancements in the valence-band features for photon energies near 18 eV. These enhancements, which occur at photon energies ranging from 15.8 to 18.0 eV for the different valence-band features, are not consistent with either simple final-state effects or direct O 2s transitions to unoccupied O 2p states.

  8. Location of the valence band maximum in the band structure of anisotropic 1 T'-ReSe2

    NASA Astrophysics Data System (ADS)

    Eickholt, P.; Noky, J.; Schwier, E. F.; Shimada, K.; Miyamoto, K.; Okuda, T.; Datzer, C.; Drüppel, M.; Krüger, P.; Rohlfing, M.; Donath, M.

    2018-04-01

    Transition-metal dichalcogenides (TMDCs) are a focus of current research due to their fascinating optical and electronic properties with possible technical applications. ReSe2 is an interesting material of the TMDC family, with unique anisotropic properties originating from its distorted 1 T structure (1 T '). To develop a fundamental understanding of the optical and electric properties, we studied the underlying electronic structure with angle-resolved photoemission (ARPES) as well as band-structure calculations within the density functional theory (DFT)-local density approximation (LDA) and GdW approximations. We identified the Γ ¯M¯1 direction, which is perpendicular to the a axis, as a distinct direction in k space with the smallest bandwidth of the highest valence band. Using photon-energy-dependent ARPES, two valence band maxima are identified within experimental limits of about 50 meV: one at the high-symmetry point Z , and a second one at a non-high-symmetry point in the Brillouin zone. Thus, the position in k space of the global valence band maximum is undecided experimentally. Theoretically, an indirect band gap is predicted on a DFT-LDA level, while quasiparticle corrections lead to a direct band gap at the Z point.

  9. Determination of a natural valence-band offset - The case of HgTe and CdTe

    NASA Technical Reports Server (NTRS)

    Shih, C. K.; Spicer, W. E.

    1987-01-01

    A method to determine a natural valence-band offset (NVBO), i.e., the change in the valence-band maximum energy which is intrinsic to the bulk band structures of semiconductors is proposed. The HgTe-CdTe system is used as an example in which it is found that the valence-band maximum of HgTe lies 0.35 + or - 0.06 eV above that of CdTe. The NVBO of 0.35 eV is in good agreement with the X-ray photoemission spectroscopy measurement of the heterojunction offset. The procedure to determine the NVBO between semiconductors, and its implication on the heterojunction band lineup and the electronic structures of semiconductor alloys, are discussed.

  10. Nature of the valence band states in Bi2(Ca, Sr, La)3Cu2O8

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Spicer, W. E.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.

    1990-01-01

    We have used photoemission spectroscopy to examine the symmetry of the occupied states of the valence band for the La doped superconductor Bi2(Ca, Sr, La)3Cu2O8. While the oxygen states near the bottom of the 7 eV wide valence band exhibit predominantly O 2pz symmetry, the states at the top of the valence band extending to the Fermi level are found to have primarily O 2px and O 2py character. We have also examined anomalous intensity enhancements in the valence band feature for photon energies near 18 eV. These enhancements, which occur at photon energies ranging from 15.8 to 18.0 eV for the different valence band features, are not consistent with either simple final state effects or direct O2s transitions to unoccupied O2p states.

  11. On Valence-Band Splitting in Layered MoS2.

    PubMed

    Zhang, Youwei; Li, Hui; Wang, Haomin; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2015-08-25

    As a representative two-dimensional semiconducting transition-metal dichalcogenide (TMD), the electronic structure in layered MoS2 is a collective result of quantum confinement, interlayer interaction, and crystal symmetry. A prominent energy splitting in the valence band gives rise to many intriguing electronic, optical, and magnetic phenomena. Despite numerous studies, an experimental determination of valence-band splitting in few-layer MoS2 is still lacking. Here, we show how the valence-band maximum (VBM) splits for one to five layers of MoS2. Interlayer coupling is found to contribute significantly to phonon energy but weakly to VBM splitting in bilayers, due to a small interlayer hopping energy for holes. Hence, spin-orbit coupling is still predominant in the splitting. A temperature-independent VBM splitting, known for single-layer MoS2, is, thus, observed for bilayers. However, a Bose-Einstein type of temperature dependence of VBM splitting prevails in three to five layers of MoS2. In such few-layer MoS2, interlayer coupling is enhanced with a reduced interlayer distance, but thermal expansion upon temperature increase tends to decouple adjacent layers and therefore decreases the splitting energy. Our findings that shed light on the distinctive behaviors about VBM splitting in layered MoS2 may apply to other hexagonal TMDs as well. They will also be helpful in extending our understanding of the TMD electronic structure for potential applications in electronics and optoelectronics.

  12. Valence-Band Electronic Structures of High-Pressure-Phase PdF2-type Platinum-Group Metal Dioxides MO2 (M = Ru, Rh, Ir, and Pt)

    NASA Astrophysics Data System (ADS)

    Soda, Kazuo; Kobayashi, Daichi; Mizui, Tatsuya; Kato, Masahiko; Shirako, Yuichi; Niwa, Ken; Hasegawa, Masashi; Akaogi, Masaki; Kojitani, Hiroshi; Ikenaga, Eiji; Muro, Takayuki

    2018-04-01

    The valence-band electronic structures of high-pressure-phase PdF2-type (HP-PdF2-type) platinum-group metal dioxides MO2 (M = Ru, Rh, Ir, and Pt) were studied by synchrotron radiation photoelectron spectroscopy and first-principles calculations. The obtained photoelectron spectra for HP-PdF2-type RuO2, RhO2, and IrO2 agree well with the calculated valence-band densities of states (DOSs) for these compounds, indicating their metallic properties, whereas the DOS of HP-PdF2-type PtO2 (calculated in the presence and absence of spin-orbit interactions) predicts that this material may be metallic or semimetallic, which is inconsistent with the electric conductivity reported to date and the charging effect observed in current photoelectron measurements. Compared with the calculated results, the valence-band spectrum of PtO2 appears to have shifted toward the high-binding-energy side and reveals a gradual intensity decrease toward the Fermi energy EF, implying a semiconductor-like electronic structure. Spin-dependent calculations predict a ferromagnetic ground state with a magnetization of 0.475 μB per formula unit for HP-PdF2-type RhO2.

  13. Core Levels, Band Alignments, and Valence-Band States in CuSbS 2 for Solar Cell Applications

    DOE PAGES

    Whittles, Thomas J.; Veal, Tim D.; Savory, Christopher N.; ...

    2017-11-10

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa (1-x)Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from themore » antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.« less

  14. Core Levels, Band Alignments, and Valence-Band States in CuSbS2 for Solar Cell Applications.

    PubMed

    Whittles, Thomas J; Veal, Tim D; Savory, Christopher N; Welch, Adam W; de Souza Lucas, Francisco Willian; Gibbon, James T; Birkett, Max; Potter, Richard J; Scanlon, David O; Zakutayev, Andriy; Dhanak, Vinod R

    2017-12-06

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuIn x Ga (1-x) Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from the antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.

  15. Application of Koopmans' theorem for density functional theory to full valence-band photoemission spectroscopy modeling.

    PubMed

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-10-05

    In this work, Koopmans' theorem for Kohn-Sham density functional theory (KS-DFT) is applied to the photoemission spectra (PES) modeling over the entire valence-band. To examine the validity of this application, a PES modeling scheme is developed to facilitate a full valence-band comparison of theoretical PES spectra with experiments. The PES model incorporates the variations of electron ionization cross-sections over atomic orbitals and a linear dispersion of spectral broadening widths. KS-DFT simulations of pristine rubrene (5,6,11,12-tetraphenyltetracene) and potassium-rubrene complex are performed, and the simulation results are used as the input to the PES models. Two conclusions are reached. First, decompositions of the theoretical total spectra show that the dissociated electron of the potassium mainly remains on the backbone and has little effect on the electronic structures of phenyl side groups. This and other electronic-structure results deduced from the spectral decompositions have been qualitatively obtained with the anionic approximation to potassium-rubrene complexes. The qualitative validity of the anionic approximation is thus verified. Second, comparison of the theoretical PES with the experiments shows that the full-scale simulations combined with the PES modeling methods greatly enhance the agreement on spectral shapes over the anionic approximation. This agreement of the theoretical PES spectra with the experiments over the full valence-band can be regarded, to some extent, as a collective validation of the application of Koopmans' theorem for KS-DFT to valence-band PES, at least, for this hydrocarbon and its alkali-adsorbed complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Probability of Two-Step Photoexcitation of Electron from Valence Band to Conduction Band through Doping Level in TiO2.

    PubMed

    Nishikawa, Masami; Shiroishi, Wataru; Honghao, Hou; Suizu, Hiroshi; Nagai, Hideyuki; Saito, Nobuo

    2017-08-17

    For an Ir-doped TiO 2 (Ir:TiO 2 ) photocatalyst, we examined the most dominant electron-transfer path for the visible-light-driven photocatalytic performance. The Ir:TiO 2 photocatalyst showed a much higher photocatalytic activity under visible-light irradiation than nondoped TiO 2 after grafting with the cocatalyst of Fe 3+ . For the Ir:TiO 2 photocatalyst, the two-step photoexcitation of an electron from the valence band to the conduction band through the Ir doping level occurred upon visible-light irradiation, as observed by electron spin resonance spectroscopy. The two-step photoexcitation through the doping level was found to be a more stable process with a lower recombination rate of hole-electron pairs than the two-step photoexcitation process through an oxygen vacancy. Once electrons are photoexcited to the conduction band by the two-step excitation, the electrons can easily transfer to the surface because the conduction band is a continuous electron path, whereas the electrons photoexcited at only the doping level could not easily transfer to the surface because of the discontinuity of this path. The observed two-step photoexcitation from the valence band to the conduction band through the doping level significantly contributes to the enhancement of the photocatalytic performance.

  17. AgI alloying in SnTe boosts the thermoelectric performance via simultaneous valence band convergence and carrier concentration optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banik, Ananya; Biswas, Kanishka, E-mail: kanishka@jncasr.ac.in

    SnTe, a Pb-free analogue of PbTe, was earlier assumed to be a poor thermoelectric material due to excess p-type carrier concentration and large energy separation between light and heavy hole valence bands. Here, we report the enhancement of the thermoelectric performance of p-type SnTe by Ag and I co-doping. AgI (1–6 mol%) alloying in SnTe modulates its electronic structure by increasing the band gap of SnTe, which results in decrease in the energy separation between its light and heavy hole valence bands, thereby giving rise to valence band convergence. Additionally, iodine doping in the Te sublattice of SnTe decreases themore » excess p-type carrier concentration. Due to significant decrease in hole concentration and reduction of the energy separation between light and heavy hole valence bands, significant enhancement in Seebeck coefficient was achieved at the temperature range of 600–900 K for Sn{sub 1−x}Ag{sub x}Te{sub 1−x}I{sub x} samples. A maximum thermoelectric figure of merit, zT, of ~1.05 was achieved at 860 K in high quality crystalline ingot of p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}. - Graphical abstract: Significant decrease in hole concentration and reduction of the energy separation between light and heavy hole valence bands resulted in a maximum thermoelectric figure of merit, zT, of ~1.05 at 860 K in high quality crystalline ingot of p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}. - Highlights: • AgI alloying in SnTe increases the principle band gap. • Hole concentration reduction and valence band convergence enhances thermopower of SnTe-AgI. • A maximum zT of ~1.05 was achieved at 860 K in p-type Sn{sub 0.95}Ag{sub 0.05}Te{sub 0.95}I{sub 0.05}.« less

  18. The localized effect of the Bi level on the valence band in the dilute bismuth GaBixAs1-x alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Zhu, Min-Min; Wang, Jun; Wang, Sha-Sha; Lu, Ke-Qing

    2018-05-01

    The research on the temperature dependence of the band gap energy of the dilute bismuth GaBixAs1-x alloy has been done. It is found that its temperature insensitiveness is due to the enhanced localized character of the valence band state and the small decrease of the temperature coefficient for the conduction band minimum (CBM). The enhanced localized character of the valence band state is the main factor. In order to describe the localized effect of the Bi levels on the valence band, the localized energy is introduced into the Varshni's equation. It is found that the effect of the localized Bi level on the valence band becomes strong with increasing Bi content. In addition, it is found that the pressure dependence of the band gap energy of GaBixAs1-x does not seem to be influenced by the localized Bi levels. It is due to two factors. One is that the pressure dependence of the band gap energy is mainly determined by the D CBM of GaBixAs1-x. The D CBM of GaBixAs1-x is not influenced by the localized Bi levels. The other is that the small variation of the pressure coefficient for the D valence band maximum (VBM) state of GaBixAs1-x can be cancelled by the variation of the pressure coefficient for the D CBM state of GaBixAs1-x.

  19. Exchange-mediated anisotropy of (ga,mn)as valence-band probed by resonant tunneling spectroscopy.

    PubMed

    Elsen, M; Jaffrès, H; Mattana, R; Tran, M; George, J-M; Miard, A; Lemaître, A

    2007-09-21

    We report on experiments and theory of resonant tunneling anisotropic magnetoresistance (TAMR) in AlAs/GaAs/AlAs quantum wells (QW) contacted by a (Ga,Mn)As ferromagnetic electrode. Such resonance effects manifest themselves by bias-dependent oscillations of the TAMR signal correlated to the successive positions of heavy (HH) and light (LH) quantized hole energy levels in GaAs QW. We have modeled the experimental data by calculating the spin-dependent resonant tunneling transmission in the frame of the 6 x 6 valence-band k.p theory. The calculations emphasize the opposite contributions of the (Ga,Mn)As HH and LH subbands near the Gamma point, unraveling the anatomy of the diluted magnetic semiconductor valence band.

  20. Phase quantification by X-ray photoemission valence band analysis applied to mixed phase TiO2 powders

    NASA Astrophysics Data System (ADS)

    Breeson, Andrew C.; Sankar, Gopinathan; Goh, Gregory K. L.; Palgrave, Robert G.

    2017-11-01

    A method of quantitative phase analysis using valence band X-ray photoelectron spectra is presented and applied to the analysis of TiO2 anatase-rutile mixtures. The valence band spectra of pure TiO2 polymorphs were measured, and these spectral shapes used to fit valence band spectra from mixed phase samples. Given the surface sensitive nature of the technique, this yields a surface phase fraction. Mixed phase samples were prepared from high and low surface area anatase and rutile powders. In the samples studied here, the surface phase fraction of anatase was found to be linearly correlated with photocatalytic activity of the mixed phase samples, even for samples with very different anatase and rutile surface areas. We apply this method to determine the surface phase fraction of P25 powder. This method may be applied to other systems where a surface phase fraction is an important characteristic.

  1. Deduction of the chemical state and the electronic structure of Nd{sub 2}Fe{sub 14}B compound from X-ray photoelectron spectroscopy core-level and valence-band spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Liang, Le; Zhang, Lanting, E-mail: lantingzh@sjtu.edu.cn, E-mail: lmsun@sjtu.edu.cn

    2014-10-28

    Characterization of chemical state and electronic structure of the technologically important Nd{sub 2}Fe{sub 14}B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd{sub 2}Fe{sub 14}B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd{sub 2}Fe{sub 14}B compound can be clearlymore » determined to be 0 and −3, respectively. The Nd in Nd{sub 2}Fe{sub 14}B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd{sub 2}O{sub 3}. In addition, by comparing the valence-band spectrum of Nd{sub 2}Fe{sub 14}B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd{sub 2}Fe{sub 14}B compound is made more clear. The B 2p states and B 2s states are identified to be at ∼11.2 eV and ∼24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd{sub 2}Fe{sub 14}B compound.« less

  2. Spectroscopic evidence for temperature dependent relative movement of light and heavy hole valence bands of PbQ (Q=Te,Se,S)

    NASA Astrophysics Data System (ADS)

    Chatterjee, Utpal; Zhao, Junjing; Kanatzidis, Mercouri; Malliakas, Christos

    We have conducted temperature dependent Angle Resolved Photoemission Spectroscopy (ARPES) studies of the electronic structures of PbTe, PbSe and PbS. Our ARPES measurements provide direct evidences for the light hole upper valence bands (UVBs) and the so-called heavy hole lower valence bands (LVBs), and an unusual temperature dependent relative movement between their band maxima leading to a monotonic decrease in the energy separation between LVBs and UVBs with increase in temperature. This enables convergence of these valence bands and consequently an effective increase in the valley degeneracy in PbQ at higher temperatures, which has long been believed to be the driving factor behind their extraordinary thermoelectric performance.

  3. Finding the hidden valence band of N  =  7 armchair graphene nanoribbons with angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Senkovskiy, Boris V.; Usachov, Dmitry Yu; Fedorov, Alexander V.; Haberer, Danny; Ehlen, Niels; Fischer, Felix R.; Grüneis, Alexander

    2018-07-01

    To understand the optical and transport properties of graphene nanoribbons, an unambiguous determination of their electronic band structure is needed. In this work we demonstrate that the photoemission intensity of each valence sub-band, formed due to the quantum confinement in quasi-one-dimensional (1D) graphene nanoribbons, is a peaked function of the two-dimensional (2D) momentum. We resolve the long-standing discrepancy regarding the valence band effective mass () of armchair graphene nanoribbons with a width of N  =  7 carbon atoms (7-AGNRs). In particular, angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy report   ≈0.2 and  ≈0.4 of the free electron mass (m e ), respectively. ARPES mapping in the full 2D momentum space identifies the experimental conditions for obtaining a large intensity for each of the three highest valence 1D sub-bands. Our detail map reveals that previous ARPES experiments have incorrectly assigned the second sub-band as the frontier one. The correct frontier valence sub-band for 7-AGNRs is only visible in a narrow range of emission angles. For this band we obtain an ARPES derived effective mass of 0.4 m e , a charge carrier velocity in the linear part of the band of 0.63  ×  106 m s‑1 and an energy separation of only  ≈60 meV to the second sub-band. Our results are of importance not only for the growing research field of graphene nanoribbons but also for the community, which studies quantum confined systems.

  4. The valence and Rydberg states of difluoromethane: A combined experimental vacuum ultraviolet spectrum absorption and theoretical study by ab initio configuration interaction and density functional computations

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.; Vrønning Hoffmann, Søren; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare

    2018-06-01

    The vacuum ultraviolet (VUV) spectrum for CH2F2 from a new synchrotron study has been combined with earlier data and subjected to detailed scrutiny. The onset of absorption, band I and also band IV, is resolved into broad vibrational peaks, which contrast with the continuous absorption previously claimed. A new theoretical analysis, using a combination of time dependent density functional theory (TDDFT) calculations and complete active space self-consistent field, leads to a major new interpretation. Adiabatic excitation energies (AEEs) and vertical excitation energies, evaluated by these methods, are used to interpret the spectra in unprecedented detail using theoretical vibronic analysis. This includes both Franck-Condon (FC) and Herzberg-Teller (HT) effects on cold and hot bands. These results lead to the re-assignment of several known excited states and the identification of new ones. The lowest calculated AEE sequence for singlet states is 11B1 ˜ 11A2 < 21B1 < 11A1 < 21A1 < 11B2 < 31A1 < 31B1. These, together with calculated higher energy states, give a satisfactory account of the principal maxima observed in the VUV spectrum. Basis sets up to quadruple zeta valence with extensive polarization are used. The diffuse functions within this type of basis generate both valence and low-lying Rydberg excited states. The optimum position for the site of further diffuse functions in the calculations of Rydberg states is shown to lie on the H-atoms. The routine choice on the F-atoms is shown to be inadequate for both CHF3 and CH2F2. The lowest excitation energy region has mixed valence and Rydberg character. TDDFT calculations show that the unusual structure of the onset arises from the near degeneracy of 11B1 and 11A2 valence states, which mix in symmetric and antisymmetric combinations. The absence of fluorescence in the 10.8-11 eV region contrasts with strong absorption. This is interpreted by the 21B1 and 11A1 states where no fluorescence is calculated for these

  5. Spectroscopic evidence for temperature-dependent convergence of light- and heavy-hole valence bands of PbQ (Q = Te, Se, S)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J.; Malliakas, C. D.; Wijayaratne, K.

    2017-01-01

    We have conducted a temperature- dependent angle-resolved photoemission spectroscopy (ARPES) study of the electronic structures of PbTe, PbSe and PbS. Our ARPES data provide direct evidence for the light-hole upper valence bands (UVBs) and hitherto undetected heavy-hole lower valence bands (LVBs) in these materials. An unusual temperature-dependent relative movement between these bands leads to a monotonic decrease in the energy separation between their maxima with increasing temperature, which is known as band convergence and has long been believed to be the driving factor behind extraordinary thermoelectric performances of these compounds at elevated temperatures.

  6. Spectroscopic evidence for temperature-dependent convergence of light- and heavy-hole valence bands of PbQ (Q = Te, Se, S)

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Malliakas, C. D.; Wijayaratne, K.; Karlapati, V.; Appathurai, N.; Chung, D. Y.; Rosenkranz, S.; Kanatzidis, M. G.; Chatterjee, U.

    2017-01-01

    We have conducted a temperature-dependent angle-resolved photoemission spectroscopy (ARPES) study of the electronic structures of PbTe, PbSe and PbS. Our ARPES data provide direct evidence for the light-hole upper valence bands (UVBs) and hitherto undetected heavy-hole lower valence bands (LVBs) in these materials. An unusual temperature-dependent relative movement between these bands leads to a monotonic decrease in the energy separation between their maxima with increasing temperature, which is known as band convergence and has long been believed to be the driving factor behind extraordinary thermoelectric performances of these compounds at elevated temperatures.

  7. A low-temperature study of manganese-induced ferromagnetism and valence band convergence in tin telluride

    DOE PAGES

    Chi, Hang; Tan, Gangjian; Kanatzidis, Mercouri G.; ...

    2016-05-02

    In this study, SnTe is renowned for its promise in advancing energy-related technologies based on thermoelectricity and for its topological crystalline insulator character. Here, we demonstrate that each Mn atom introduces ~4 μ B (Bohr magneton) of magnetic moment to Sn 1–xMn xTe. The Curie temperatureTC reaches ~14K for x = 0.12, as observed in the field dependent hysteresis of magnetization and the anomalous Hall effect. In accordance with a modified two-band electronic Kane model, the light L-valence-band and the heavy Σ-valence-band gradually converge in energy with increasing Mn concentration, leading to a decreasing ordinary Hall coefficient R H andmore » a favorably enhanced Seebeck coefficient S at the same time. With the thermal conductivityκ lowered chiefly via point defects associated with the incorporation of Mn, the strategy of Mn doping also bodes well for efficient thermoelectric applications at elevated temperatures.« less

  8. Polarity determination of polar and semipolar (112¯2) InN and GaN layers by valence band photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Skuridina, D.; Dinh, D. V.; Lacroix, B.; Ruterana, P.; Hoffmann, M.; Sitar, Z.; Pristovsek, M.; Kneissl, M.; Vogt, P.

    2013-11-01

    We demonstrate that the polarity of polar (0001), (0001¯) and semipolar (112¯2) InN and GaN thin layers can be determined by valence band X-ray photoemission spectroscopy (XPS). The polarity of the layers has been confirmed by wet etching and convergent beam electron diffraction. Unlike these two techniques, XPS is a non-destructive method and unaffected by surface oxidation or roughness. Different intensities of the valence band states in spectra recorded by using AlKα X-ray radiation are observed for N-polar and group-III-polar layers. The highest intensity of the valence band state at ≈3.5 eV for InN and ≈5.2 eV for GaN correlates with the group-III polarity, while the highest intensity at ≈6.7 eV for InN and ≈9.5 eV for GaN correlates with the N-polarity. The difference between the peaks for the group-III- and N-polar orientations was found to be statistically significant at the 0.05 significance level. The polarity of semipolar (112¯2) InN and GaN layers can be determined by recording valence band photoelectrons emitted along the [000 ± 1] direction.

  9. Valence Scaling of Dynamic Facial Expressions Is Altered in High-Functioning Subjects with Autism Spectrum Disorders: An FMRI Study

    ERIC Educational Resources Information Center

    Rahko, Jukka S.; Paakki, Jyri-Johan; Starck, Tuomo H.; Nikkinen, Juha; Pauls, David L.; Katsyri, Jari V.; Jansson-Verkasalo, Eira M.; Carter, Alice S.; Hurtig, Tuula M.; Mattila, Marja-Leena; Jussila, Katja K.; Remes, Jukka J.; Kuusikko-Gauffin, Sanna A.; Sams, Mikko E.; Bolte, Sven; Ebeling, Hanna E.; Moilanen, Irma K.; Tervonen, Osmo; Kiviniemi, Vesa

    2012-01-01

    FMRI was performed with the dynamic facial expressions fear and happiness. This was done to detect differences in valence processing between 25 subjects with autism spectrum disorders (ASDs) and 27 typically developing controls. Valence scaling was abnormal in ASDs. Positive valence induces lower deactivation and abnormally strong activity in ASD…

  10. The Valence- and Conduction-Band Structure of the Sapphire (1102) Surface.

    DTIC Science & Technology

    1984-12-01

    surface. The pbotomission spectrum of the valece-baud region has boon adjusted to rmove croas-section effect s and comparod to the recent theoretical ...transitions in Al203. Several theoretical deteminations of the electron structure of various A1203 analoaues have bes performed. These calculations were...picture of the valence sad core density of states in sapphire. The rew, 31 velesee-bend data of Fit. I& and the theoretical 003 shows is Fig. 1.. which

  11. Valence-band offsets in strained SiGeSn/Si layers with different tin contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloshkin, A. A., E-mail: bloshkin@isp.nsc.ru; Yakimov, A. I.; Timofeev, V. A.

    Admittance spectroscopy is used to study hole states in Si{sub 0.7–y}Ge{sub 0.3}Sn{sub y}/Si quantum wells in the tin content range y = 0.04–0.1. It is found that the hole binding energy increases with tin content. The hole size-quantization energies in structures containing a pseudomorphic Si{sub 0.7–y}Ge{sub 0.3}Sn{sub y} layer in the Si matrix are determined using the 6-band kp method. The valence-band offset at the Si{sub 0.7–y}Ge{sub 0.3}Sn{sub y} heterointerface is determined by combining the numerical calculation results and experimental data. It is found that the dependence of the experimental values of the valence-band offsets between pseudomorphic Si{sub 0.7–y}Ge{sub 0.3}Sn{submore » y} layers and Si on the tin content is described by the expression ΔE{sub V}{sup exp} = (0.21 ± 0.01) + (3.35 ± 7.8 × 10{sup –4})y eV.« less

  12. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy.

    PubMed

    Wei, Wei; Qin, Zhixin; Fan, Shunfei; Li, Zhiwei; Shi, Kai; Zhu, Qinsheng; Zhang, Guoyi

    2012-10-10

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV.

  13. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy

    PubMed Central

    2012-01-01

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV. PMID:23046910

  14. Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

    PubMed

    Datas, A; López, E; Ramiro, I; Antolín, E; Martí, A; Luque, A; Tamaki, R; Shoji, Y; Sogabe, T; Okada, Y

    2015-04-17

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable.

  15. Vibronic Origin for the Diffuse Band Spectrum

    NASA Astrophysics Data System (ADS)

    Duley, W. W.

    1983-09-01

    The two arguments outlined by Nuth and Donn (1983) against an interpretation of the diffuse band spectrum between 677 and 536 nm as vibronic systems associated with forbidden origins at 14321, 15153, and 15343 cm-1 (Duley, 1982) are controverted. It is concluded that the vibronic analysis presented by Duley, 1983 for the diffuse band spectrum is in keeping with current spectroscopic practice. The identification of a forbidden origin for 19 of these bands at 14321 cm-1 strongly suggests the involvement of Cr3+ ions in MgO solids in the production of these features.

  16. First determination of the valence band dispersion of CH3NH3PbI3 hybrid organic-inorganic perovskite

    NASA Astrophysics Data System (ADS)

    Lee, Min-I.; Barragán, Ana; Nair, Maya N.; Jacques, Vincent L. R.; Le Bolloc'h, David; Fertey, Pierre; Jemli, Khaoula; Lédée, Ferdinand; Trippé-Allard, Gaëlle; Deleporte, Emmanuelle; Taleb-Ibrahimi, Amina; Tejeda, Antonio

    2017-07-01

    The family of hybrid organic-inorganic halide perovskites is in the limelight because of their recently discovered high photovoltaic efficiency. These materials combine photovoltaic energy conversion efficiencies exceeding 22% and low-temperature and low-cost processing in solution; a breakthrough in the panorama of renewable energy. Solar cell operation relies on the excitation of the valence band electrons to the conduction band by solar photons. One factor strongly impacting the absorption efficiency is the band dispersion. The band dispersion has been extensively studied theoretically, but no experimental information was available. Herein, we present the first experimental determination of the valence band dispersion of methylammonium lead halide in the tetragonal phase. Our results pave the way for contrasting the electronic hopping or the electron effective masses in different theories by comparing to our experimental bands. We also show a significant broadening of the electronic states, promoting relaxed conditions for photon absorption, and demonstrate that the tetragonal structure associated to the octahedra network distortion below 50 °C induces only a minor modification of the electronic bands, with respect to the cubic phase at high temperature, thus minimizing the impact of the cubic-tetragonal transition on solar cell efficiencies.

  17. Valence-band structure of organic radical p-CF3PNN investigated by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Anzai, Hiroaki; Takakura, Ryosuke; Ono, Yusuke; Ishihara, Suzuna; Sato, Hitoshi; Namatame, Hirofumi; Taniguchi, Masaki; Matsui, Toshiyuki; Noguchi, Satoru; Hosokoshi, Yuko

    2018-05-01

    We study the electronic structure of p-trifluoromethylphenyl nitronyl nitroxide (p-CF3PNN), which forms a one-dimensional alternating antiferromagnetic chain of molecules, using angle-resolved photoemission spectroscopy. A singly occupied molecular orbital (SOMO) is observed clearly at ∼ 2 eV in the valence-band spectra. The small band gap and the overlap between the SOMO orbitals in the NO groups are associated with the antiferromagnetic interaction between neighboring spins.

  18. Local Bonding Analysis of the Valence and Conduction Band Features of TiO2

    DTIC Science & Technology

    2007-01-01

    valence and conduction band features of TiO2 L. Fleming, C. C. Fulton, G. Lucovsky, J. E. Rowe, M. D. Ulrich, J. Luning W911NF-04-D-0003 Dept of...J. Luning , L. F. Edge, J. L. Whitten, R. J. Nemanich, H. Ade, D. G. Schlom, V. V. Afanase’v, A. Stesmans, S. Zollner, D. Triyoso, and B. R. Rogers

  19. Spectroscopic study of hafnium silicate alloys prepared by RPECVD: Comparisons between conduction/valence band offset energies and optical band gaps

    NASA Astrophysics Data System (ADS)

    Hong, Joon Goo

    Aggressive scaling of devices has continued to improve MOSFET transistor performance. As lateral device dimensions continue to decrease, gate oxide thickness must be scaled down. As one of the promising high k alternative gate oxide materials, HfO2 and its silicates were investigated to understand their direct tunneling behavior by studying band offset energies with spectroscopy and electrical characterization. Local bonding change of remote plasma deposited (HfO2)x(SiO 2)1-x alloys were characterized by Fourier transform infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) as a function of alloy composition, x. Two different precursors with Hf Nitrato and Hf-tert-butoxide were tested to have amorphous deposition. Film composition was determined off-line by Rutherford backscattering spectroscopy (RBS) and these results were calibrated with on-line AES. As deposited Hf-silicate alloys were characterized by off-line XPS and AES for their chemical shifts interpreting with a partial charge transfer model as well as coordination changes. Sigmoidal dependence of valence band offset energies was observed. Hf 5d* state is fixed at the bottom of the conduction band and located at 1.3 +/- 0.2 eV above the top of the Si conduction band as a conduction band offset by x-ray absorption spectroscopy (XAS). Optical band gap energy changes were observed with vacuum ultra violet spectroscopic ellipsometry (VUVSE) to verify compositional dependence of conduction and valence band offset energy changes. 1 nm EOT normalized tunneling current with Wentzel-Kramer-Brillouin (WKB) simulation based on the band offset study and Franz two band model showed the minimum at the intermediate composition matching with the experimental data. Non-linear trend in tunneling current was observed because the increases in physical thickness were mitigated by reductions in band offset energies and effective mass for tunneling. C-V curves were compared

  20. Experimental study of the valence band of Bi 2 Se 3

    DOE PAGES

    Gao, Yi-Bin; He, Bin; Parker, David; ...

    2014-09-26

    The valence band of Bi 2Se 3 is investigated with Shubnikov - de Haas measurements, galvanomagnetic and thermoelectric transport. At low hole concentration, the hole Fermi surface is closed and box-like, but at higher concentrations it develops tube-like extensions that are open. The experimentally determined density-of-states effective mass is lighter than density-functional theory calculations predict; while we cannot give a definitive explanation for this, we suspect that the theory may lack sufficient precision to compute room-temperature transport properties, such as the Seebeck coefficient, in solids in which there are Van der Waals interlayer bonds.

  1. Measurement of the background in Auger-Photoemission Spectra (APECS) associated with multi-electron and inelastic valence band photoemission processes

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Hulbert, Steven; Weiss, Alex

    2014-03-01

    Auger Photoelectron Coincidence Spectroscopy (APECS), in which the Auger spectra is measured in coincidence with the core level photoelectron, is capable of pulling difficult to observe low energy Auger peaks out of a large background due mostly to inelastically scattered valence band photoelectrons. However the APECS method alone cannot eliminate the background due to valence band VB photoemission processes in which the initial photon energy is shared by 2 or more electrons and one of the electrons is in the energy range of the core level photoemission peak. Here we describe an experimental method for estimating the contributions from these background processes in the case of an Ag N23VV Auger spectra obtained in coincidence with the 4p photoemission peak. A beam of 180eV photons was incident on a Ag sample and a series of coincidence measurements were made with one cylindrical mirror analyzer (CMA) set at a fixed energies between the core and the valence band and the other CMA scanned over a range corresponding to electrons leaving the surface between 0eV and the 70eV. The spectra obtained were then used to obtain an estimate of the background in the APECS spectra due to multi-electron and inelastic VB photoemission processes. NSF, Welch Foundation.

  2. Human Amygdala Represents the Complete Spectrum of Subjective Valence

    PubMed Central

    Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.

    2015-01-01

    Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the hedonic potency of odor stimuli and the amygdala's anatomical proximity to the peripheral olfactory system, we combined high-resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Representational similarity analyses showed that amygdala codes the entire dimension of valence, ranging from pleasantness to unpleasantness. This unidimensional representation significantly correlated with self-reported valence ratings but not with intensity ratings. Furthermore, within-trial valence representations evolved over time, prioritizing earlier differentiation of unpleasant stimuli. Together, these findings underscore the idea that both spatial and temporal features uniquely encode pleasant and unpleasant odor valence in the amygdala. The availability of a unidimensional valence code in the amygdala, distributed in both space and time, would create greater flexibility in determining the pleasantness or unpleasantness of stimuli, providing a mechanism by which expectation, context, attention, and learning could influence affective boundaries for guiding behavior. SIGNIFICANCE STATEMENT Our findings elucidate the mechanisms of affective processing in the amygdala by demonstrating that this brain region represents the entire valence dimension from pleasant to unpleasant. An important implication of this unidimensional valence code is that pleasant and unpleasant valence cannot coexist in the amygdale because overlap of fMRI ensemble patterns for these two valence extremes obscures their unique content. This functional architecture, whereby subjective valence maps onto a pattern continuum between pleasant and unpleasant poles, offers a robust mechanism by which context

  3. Direct observation of strain-induced orbital valence band splitting in HfSe2 by sodium intercalation

    NASA Astrophysics Data System (ADS)

    Eknapakul, T.; Fongkaew, I.; Siriroj, S.; Jindata, W.; Chaiyachad, S.; Mo, S.-K.; Thakur, S.; Petaccia, L.; Takagi, H.; Limpijumnong, S.; Meevasana, W.

    2018-05-01

    By using angle-resolved photoemission spectroscopy (ARPES), the variation of the electronic structure of HfSe2 has been studied as a function of sodium intercalation. We observe how this drives a band splitting of the p -orbital valence bands and a simultaneous reduction of the indirect band gap by values of up to 400 and 280 meV, respectively. Our calculations indicate that such behavior is driven by the band deformation potential, which is a result of our observed strain induced by sodium intercalation. The applied uniaxial strain calculations based on density functional theory agree strongly with the experimental ARPES data. These findings should assist in studying the physical relationship between intercalation and strain, as well as for large-scale two-dimensional straintronics.

  4. High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe2: Synergistic Effect of Resonance Level and Valence Band Convergence.

    PubMed

    Banik, Ananya; Shenoy, U Sandhya; Saha, Sujoy; Waghmare, Umesh V; Biswas, Kanishka

    2016-10-05

    Understanding the basis of electronic transport and developing ideas to improve thermoelectric power factor are essential for production of efficient thermoelectric materials. Here, we report a significantly large thermoelectric power factor of ∼31.4 μW/cm·K 2 at 856 K in Ag and In co-doped SnTe (i.e., SnAg x In x Te 1+2x ). This is the highest power factor so far reported for SnTe-based material, which arises from the synergistic effects of Ag and In on the electronic structure and the improved electrical transport properties of SnTe. In and Ag play different but complementary roles in modifying the valence band structure of SnTe. In-doping introduces resonance levels inside the valence bands, leading to a significant improvement in the Seebeck coefficient at room temperature. On the other hand, Ag-doping reduces the energy separation between light- and heavy-hole valence bands by widening the principal band gap, which also results in an improved Seebeck coefficient. Additionally, Ag-doping in SnTe enhances the p-type carrier mobility. Co-doping of In and Ag in SnTe yields synergistically enhanced Seebeck coefficient and power factor over a broad temperature range because of the synergy of the introduction of resonance states and convergence of valence bands, which have been confirmed by first-principles density functional theory-based electronic structure calculations. As a consequence, we have achieved an improved thermoelectric figure of merit, zT ≈ 1, in SnAg 0.025 In 0.025 Te 1.05 at 856 K.

  5. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  6. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE PAGES

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; ...

    2016-09-01

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  7. Intermediate Band Material of Titanium-Doped Tin Disulfide for Wide Spectrum Solar Absorption.

    PubMed

    Hu, Keyan; Wang, Dong; Zhao, Wei; Gu, Yuhao; Bu, Kejun; Pan, Jie; Qin, Peng; Zhang, Xian; Huang, Fuqiang

    2018-04-02

    Intermediate band (IB) materials are of great significance due to their superior solar absorption properties. Here, two IBs peaking at 0.88 and 1.33 eV are reported to be present in the forbidden gap of semiconducting SnS 2 ( E g = 2.21 eV) by doping titanium up to 6 atom % into the Sn site via a solid-state reaction at 923 K. The solid solution of Sn 1- x Ti x S 2 is able to be formed, which is attributed to the isostructural structure of SnS 2 and TiS 2 . These two IBs were detected in the UV-vis-NIR absorption spectra with the appearance of two additional absorption responses at the respective regions, which in good agreement with the conclusion of first-principles calculations. The valence band maximum (VBM) consists mostly of the S 3p state, and the conduction band minimum (CBM) is the hybrid state composing of Ti 3d (e g ), S 3p, and Sn 5s, and the IBs are mainly the nondegenerate t 2g states of Ti 3d orbitals. The electronic states of Ti 3d reveal a good ability to transfer electrons between metal and S atoms. These wide-spectrum absorption IBs bring about more solar energy utilization to enhance solar thermal collection and photocatalytic degradation of methyl orange.

  8. Site-specific intermolecular valence-band dispersion in α-phase crystalline films of cobalt phthalocyanine studied by angle-resolved photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamane, Hiroyuki; Kosugi, Nobuhiro; The Graduate University for Advanced Studies, Okazaki 444-8585

    2014-12-14

    The valence band structure of α-phase crystalline films of cobalt phthalocyanine (CoPc) grown on Au(111) is investigated by using angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. The photo-induced change in the ARPES peaks is noticed in shape and energy of the highest occupied molecular orbital (HOMO, C 2p) and HOMO-1 (Co 3d) of CoPc, and is misleading the interpretation of the electronic properties of CoPc films. From the damage-free normal-emission ARPES measurement, the clear valence-band dispersion has been first observed, showing that orbital-specific behaviors are attributable to the interplay of the intermolecular π-π and π-d interactions. The HOMO band dispersionmore » of 0.1 eV gives the lower limit of the hole mobility for α-CoPc of 28.9 cm{sup 2} V{sup −1} s{sup −1} at 15 K. The non-dispersive character of the split HOMO-1 bands indicates that the localization of the spin state is a possible origin of the antiferromagnetism.« less

  9. Nitrogen-Induced Perturbation of the Valence Band States in GaP1-xNx Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudiy, S. V.; Zunger, A.; Felici, M.

    2006-01-01

    The effects of diluted nitrogen impurities on the valence- and conduction-band states of GaP{sub 1-x}N{sub x} have been predicted and measured experimentally. The calculation uses state-of-the-art atomistic modeling: we use large supercells with screened pseudopotentials and consider several random realizations of the nitrogen configurations. These calculations agree with photoluminescence excitation (PLE) measurements performed for nitrogen concentrations x up to 0.035 and photon energies up to 1 eV above the GaP optical-absorption edge, as well as with published ellipsometry data. In particular, a predicted nitrogen-induced buildup of the L character near the valence- and conduction-band edges accounts for the surprising broad-absorptionmore » plateau observed in PLE between the X{sub 1c} and the {Lambda}{sub 1c} critical points of GaP. Moreover, theory accounts quantitatively for the downward bowing of the indirect conduction-band edge and for the upward bowing of the direct transition with increasing nitrogen concentration. We review some of the controversies in the literature regarding the shifts in the conduction band with composition, and conclude that measured results at ultralow N concentration cannot be used to judge behavior at a higher concentration. In particular, we find that at the high concentrations of nitrogen studied here ({approx}1%) the conduction-band edge (CBE) is a hybridized state made from the original GaP X{sub 1c} band-edge state plus all cluster states. In this limit, the CBE plunges down in energy as the N concentration increases, in quantitative agreement with the measurements reported here. However, at ultralow nitrogen concentrations (<0.1%), the CBE is the nearly unperturbed host X{sub 1c}, which does not sense the nitrogen cluster levels. Thus, this state does not move energetically as nitrogen is added and stays pinned in energy, in agreement with experimental results.« less

  10. Interplay of Coulomb interactions and disorder in three-dimensional quadratic band crossings without time-reversal symmetry and with unequal masses for conduction and valence bands

    NASA Astrophysics Data System (ADS)

    Mandal, Ipsita; Nandkishore, Rahul M.

    2018-03-01

    Coulomb interactions famously drive three-dimensional quadratic band crossing semimetals into a non-Fermi liquid phase of matter. In a previous work [Nandkishore and Parameswaran, Phys. Rev. B 95, 205106 (2017), 10.1103/PhysRevB.95.205106], the effect of disorder on this non-Fermi liquid phase was investigated, assuming that the band structure was isotropic, assuming that the conduction and valence bands had the same band mass, and assuming that the disorder preserved exact time-reversal symmetry and statistical isotropy. It was shown that the non-Fermi liquid fixed point is unstable to disorder and that a runaway flow to strong disorder occurs. In this paper, we extend that analysis by relaxing the assumption of time-reversal symmetry and allowing the electron and hole masses to differ (but continuing to assume isotropy of the low energy band structure). We first incorporate time-reversal symmetry breaking disorder and demonstrate that there do not appear any new fixed points. Moreover, while the system continues to flow to strong disorder, time-reversal-symmetry-breaking disorder grows asymptotically more slowly than time-reversal-symmetry-preserving disorder, which we therefore expect should dominate the strong-coupling phase. We then allow for unequal electron and hole masses. We show that whereas asymmetry in the two masses is irrelevant in the clean system, it is relevant in the presence of disorder, such that the `effective masses' of the conduction and valence bands should become sharply distinct in the low-energy limit. We calculate the RG flow equations for the disordered interacting system with unequal band masses and demonstrate that the problem exhibits a runaway flow to strong disorder. Along the runaway flow, time-reversal-symmetry-preserving disorder grows asymptotically more rapidly than both time-reversal-symmetry-breaking disorder and the Coulomb interaction.

  11. Electronic states and band lineups in c-Si(100)/a-Si1-xCx:H heterojunctions

    NASA Astrophysics Data System (ADS)

    Brown, T. M.; Bittencourt, C.; Sebastiani, M.; Evangelisti, F.

    1997-04-01

    Heterostructures formed by depositing in situ amorphous hydrogenated silicon-carbon alloys on Si(100) substrates were characterized by photoelectric-yield spectroscopy, UPS, and XPS. It is shown that both substrate and overlayer valence-band tops can be identified on the photoelectric-yield spectrum, thus allowing a direct and precise determination of the band lineup. We find a valence-band discontinuity varying from 0.44 eV to 1.00 eV for carbon content ranging from 0 to 50%. The present data can be used as a test for the lineup theories and strongly support the interface dipole models.

  12. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction

    NASA Astrophysics Data System (ADS)

    Sun, Haiding; Torres Castanedo, C. G.; Liu, Kaikai; Li, Kuang-Hui; Guo, Wenzhe; Lin, Ronghui; Liu, Xinwei; Li, Jingtao; Li, Xiaohang

    2017-10-01

    Both β-Ga2O3 and wurtzite AlN have wide bandgaps of 4.5-4.9 and 6.1 eV, respectively. We calculated the in-plane lattice mismatch between the (-201) plane of β-Ga2O3 and the (0002) plane of AlN, which was found to be 2.4%. This is the smallest mismatch between β-Ga2O3 and binary III-nitrides which is beneficial for the formation of a high quality β-Ga2O3/AlN heterojunction. However, the valence and conduction band offsets (VBO and CBO) at the β-Ga2O3/AlN heterojunction have not yet been identified. In this study, a very thin (less than 2 nm) β-Ga2O3 layer was deposited on an AlN/sapphire template to form the heterojunction by pulsed laser deposition. High-resolution X-ray photoelectron spectroscopy revealed the core-level (CL) binding energies of Ga 3d and Al 2p with respect to the valence band maximum in individual β-Ga2O3 and AlN layers, respectively. The separation between Ga 3d and Al 2p CLs at the β-Ga2O3/AlN interface was also measured. Eventually, the VBO was found to be -0.55 ± 0.05 eV. Consequently, a staggered-gap (type II) heterojunction with a CBO of -1.75 ± 0.05 eV was determined. The identification of the band alignment of the β-Ga2O3/AlN heterojunction could facilitate the design of optical and electronic devices based on these and related alloys.

  13. Use of valence band Auger electron spectroscopy to study thin film growth: oxide and diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Steffen, H. J.

    1994-12-01

    It is demonstrated how Auger line shape analysis with factor analysis (FA), least-squares fitting and even simple peak height measurements may provide detailed information about the composition, different chemical states and also defect concentration or crystal order. Advantage is taken of the capability of Auger electron spectroscopy to give valence band structure information with high surface sensitivity and the special aspect of FA to identify and discriminate quantitatively unknown chemical species. Valence band spectra obtained from Ni, Fe, Cr and NiFe40Cr20 during oxygen exposure at room temperature reveal the oxidation process in the initial stage of the thin layer formation. Furthermore, the carbon chemical states that were formed during low energy C(+) and Ne(+) ion irradiation of graphite are delineated and the evolution of an amorphous network with sp3 bonds is disclosed. The analysis represents a unique method to quantify the fraction of sp3-hybridized carbon in diamond-like materials.

  14. Valence-band structure of the ferromagnetic semiconductor GaMnAs studied by spin-dependent resonant tunneling spectroscopy.

    PubMed

    Ohya, Shinobu; Muneta, Iriya; Hai, Pham Nam; Tanaka, Masaaki

    2010-04-23

    The valence-band structure and the Fermi level (E(F)) position of ferromagnetic-semiconductor GaMnAs are quantitatively investigated by electrically detecting the resonant tunneling levels of a GaMnAs quantum well (QW) in double-barrier heterostructures. The resonant level from the heavy-hole first state is clearly observed in the metallic GaMnAs QW, indicating that holes have a high coherency and that E(F) exists in the band gap. Clear enhancement of tunnel magnetoresistance induced by resonant tunneling is demonstrated in these double-barrier heterostructures.

  15. Valence-band and core-level photoemission study of single-crystal Bi2CaSr2Cu2O8 superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1988-12-01

    High-quality single crystals of Bi2CaSr2Cu2O8 superconductors have been prepared and cleaved in ultrahigh vacuum. Low-energy electron diffraction measurements show that the surface structure is consistent with the bulk crystal structure. Ultraviolet photoemission and x-ray photoemission experiments were performed on these well-characterized sample surfaces. The valence-band and the core-level spectra obtained from the single-crystal surfaces are in agreement with spectra recorded from polycrystalline samples, justifying earlier results from polycrystalline samples. Cu satellites are observed both in the valence band and Cu 2p core level, signaling the strong correlation among the Cu 3d electrons. The O 1s core-level data exhibit a sharp, single peak at 529-eV binding energy without any clear satellite structures.

  16. Plasmon satellites in valence-band photoemission spectroscopy. Ab initio study of the photon-energy dependence in semiconductors

    NASA Astrophysics Data System (ADS)

    Guzzo, M.; Kas, J. J.; Sottile, F.; Silly, M. G.; Sirotti, F.; Rehr, J. J.; Reining, L.

    2012-09-01

    We present experimental data and theoretical results for valence-band satellites in semiconductors, using the prototypical example of bulk silicon. In a previous publication we introduced a new approach that allows us to describe satellites in valence photoemission spectroscopy, in good agreement with experiment. Here we give more details; we show how the the spectra change with photon energy, and how the theory explains this behaviour. We also describe how we include several effects which are important to obtain a correct comparison between theory and experiment, such as secondary electrons and photon cross sections. In particular the inclusion of extrinsic losses and their dependence on the photon energy are key to the description of the energy dependence of spectra.

  17. Conduction- and Valence-Band Energies in Bulk InAs(1-x)Sb(x) and Type II InAs(1-x) Sb(x)/InAs Strained-Layer Superlattices

    DTIC Science & Technology

    2013-03-08

    tions in the studied SLS structures . The fit of the dependence of the valence- band energy of unstrained InAs1!xSbx on the composition x with a... band . STRUCTURES Bulk InAsSb epilayers on metamorphic buffers and InAsSb/InAs strained-layer superlattices (SLS) were grown on GaSb substrates by solid...meV in InAs and Ev = 0 meV in InSb. For InAsSb with 22.5% Sb grown on GaSb , an unstrained valence- band energy of Ev = !457 meV was obtained. For the

  18. Valence Band Control of Metal Silicide Films via Stoichiometry.

    PubMed

    Streller, Frank; Qi, Yubo; Yang, Jing; Mangolini, Filippo; Rappe, Andrew M; Carpick, Robert W

    2016-07-07

    The unique electronic and mechanical properties of metal silicide films render them interesting for advanced materials in plasmonic devices, batteries, field-emitters, thermoelectric devices, transistors, and nanoelectromechanical switches. However, enabling their use requires precisely controlling their electronic structure. Using platinum silicide (PtxSi) as a model silicide, we demonstrate that the electronic structure of PtxSi thin films (1 ≤ x ≤ 3) can be tuned between metallic and semimetallic by changing the stoichiometry. Increasing the silicon content in PtxSi decreases the carrier density according to valence band X-ray photoelectron spectroscopy and theoretical density of states (DOS) calculations. Among all PtxSi phases, Pt3Si offers the highest DOS due to the modest shift of the Pt5d manifold away from the Fermi edge by only 0.5 eV compared to Pt, rendering it promising for applications. These results, demonstrating tunability of the electronic structure of thin metal silicide films, suggest that metal silicides can be designed to achieve application-specific electronic properties.

  19. Study of average valence and valence electron distribution of several oxides using X-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Ding, L. L.; Wu, L. Q.; Ge, X. S.; Du, Y. N.; Qian, J. J.; Tang, G. D.; Zhong, W.

    2018-06-01

    X-ray photoelectron spectra of the O 1s electrons of MnFe2O4, ZnFe2O4, ZnO, and CaO were used to estimate the average valence, ValO, of the oxygen anions in these samples. The absolute values of ValO for these samples were found to be distinctly lower than the traditional value of 2.0, suggesting that the total average valences of the cations are also lower than the conventionally accepted values owing to valence balance in the compounds. In addition, we analyzed the valence band spectra of the samples and investigated the distribution characteristics of the valence electrons.

  20. Valence-band offsets of CoTiSb/In0.53Ga0.47As and CoTiSb/In0.52Al0.48As heterojunctions

    NASA Astrophysics Data System (ADS)

    Harrington, S. D.; Sharan, A.; Rice, A. D.; Logan, J. A.; McFadden, A. P.; Pendharkar, M.; Pennachio, D. J.; Wilson, N. S.; Gui, Z.; Janotti, A.; Palmstrøm, C. J.

    2017-08-01

    The valence-band offsets, ΔEv, between semiconducting half-Heusler compound CoTiSb and lattice-matched III-V In0.53Ga0.47As and In0.52Al0.48As heterojunction interfaces have been measured using X-ray photoemission spectroscopy (XPS). These interfaces were formed using molecular beam epitaxy and transferred in situ for XPS measurements. Valence-band offsets of 0.30 eV and 0.58 eV were measured for CoTiSb/In0.53Ga0.47As and CoTiSb/In0.52Al0.48As, respectively. By combining these measurements with previously reported XPS ΔEv (In0.53Ga0.47As/In0.52Al0.48As) data, the results suggest that band offset transitivity is satisfied. In addition, the film growth order of the interface between CoTiSb and In0.53Ga0.47As is explored and does not seem to affect the band offsets. Finally, the band alignments of CoTiSb with GaAs, AlAs, and InAs are calculated using the density function theory with the HSE06 hybrid functional and applied to predict the band alignment of CoTiSb with In0.53Ga0.47As and In0.52Al0.48As. Good agreement is found between the calculated valence-band offsets and those determined from XPS.

  1. Valence-band offsets of CoTiSb/In 0.53Ga 0.47As and CoTiSb/In 0.52Al 0.48As heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, S. D.; Sharan, A.; Rice, A. D.

    2017-08-11

    The valence-band offsets, ΔE v, between semiconducting half-Heusler compound CoTiSb and lattice-matched III-V In 0.53Ga 0.47As and In 0.52Al 0.48As heterojunction interfaces have been measured using X-ray photoemission spectroscopy (XPS). These interfaces were formed using molecular beam epitaxy and transferred in situ for XPS measurements. Valence-band offsets of 0.30 eV and 0.58 eV were measured for CoTiSb/In 0.53Ga 0.47As and CoTiSb/In 0.52Al 0.48As, respectively. By combining these measurements with previously reported XPS ΔE v (In 0.53Ga 0.47As/In 0.52Al 0.48As) data, the results suggest that band offset transitivity is satisfied. In addition, the film growth order of the interface between CoTiSbmore » and In 0.53Ga 0.47As is explored and does not seem to affect the band offsets. Finally, the band alignments of CoTiSb with GaAs, AlAs, and InAs are calculated using the density function theory with the HSE06 hybrid functional and applied to predict the band alignment of CoTiSb with In 0.53Ga 0.47As and In 0.52Al 0.48As. As a result, good agreement is found between the calculated valence-band offsets and those determined from XPS.« less

  2. Valence band offsets of Sc x Ga1-x N/AlN and Sc x Ga1-x N/GaN heterojunctions

    NASA Astrophysics Data System (ADS)

    Tsui, H. C. L.; Goff, L. E.; Palgrave, R. G.; Beere, H. E.; Farrer, I.; Ritchie, D. A.; Moram, M. A.

    2016-07-01

    The valence band offsets of Sc x Ga1-x N/AlN heterojunctions were measured by x-ray photoelectron spectroscopy (XPS) and were found to increase from 0.42 eV to 0.95 eV as the Sc content x increased from 0 to 0.15. The increase in valence band offset with increasing x is attributed to the corresponding increase in spontaneous polarization of the wurtzite structure. The Sc x Ga1-x N/AlN heterojunction is type I, similar to other III-nitride-based heterojunctions. The data also indicate that a type II staggered heterojunction, which can enhance spatial charge separation, could be formed if Sc x Ga1-x N is grown on GaN.

  3. Low-Energy Yield Spectroscopy as a Novel Technique for Determining Band Offsets: Application to the c-Si\\(100\\)/a-Si:H Heterostructure

    NASA Astrophysics Data System (ADS)

    Sebastiani, M.; di Gaspare, L.; Capellini, G.; Bittencourt, C.; Evangelisti, F.

    1995-10-01

    We present a new experimental method for determining band lineups at the semiconductor heterojunctions and apply it to the c-Si100/a-Si:H heterostructure. This method uses a modern version of an old spectroscopy: the photoelectric yield spectroscopy excited with photons in the near UV range. It is shown that both substrate and overlayer valence-band tops can be identified in the yield spectrum due to the high escape depth and the high dynamical range of the technique, thus allowing a direct and precise determination of the band lineup. A value of ΔEV = 0.44+/-0.02 eV was found for the valence band discontinuity.

  4. An L Band Spectrum of the Coldest Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Skemer, Andrew J.; Allers, Katelyn N.; Marley, Mark. S.; Faherty, Jacqueline K.; Visscher, Channon; Beiler, Samuel A.; Miles, Brittany E.; Lupu, Roxana; Freedman, Richard S.; Fortney, Jonathan J.; Geballe, Thomas R.; Bjoraker, Gordon L.

    2018-05-01

    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. presented a spectrum of WISE 0855 from 4.5–5.1 μm (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in the L band, from 3.4–4.14 μm. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. The James Webb Space Telescope will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.

  5. V-doped SnS2: a new intermediate band material for a better use of the solar spectrum.

    PubMed

    Wahnón, Perla; Conesa, José C; Palacios, Pablo; Lucena, Raquel; Aguilera, Irene; Seminovski, Yohanna; Fresno, Fernando

    2011-12-07

    Intermediate band materials can boost photovoltaic efficiency through an increase in photocurrent without photovoltage degradation thanks to the use of two sub-bandgap photons to achieve a full electronic transition from the valence band to the conduction band of a semiconductor structure. After having reported in previous works several transition metal-substituted semiconductors as able to achieve the electronic structure needed for this scheme, we propose at present carrying out this substitution in sulfides that have bandgaps of around 2.0 eV and containing octahedrally coordinated cations such as In or Sn. Specifically, the electronic structure of layered SnS(2) with Sn partially substituted by vanadium is examined here with first principles quantum methods and seen to give favourable characteristics in this respect. The synthesis of this material in nanocrystalline powder form is then undertaken and achieved using solvothermal chemical methods. The insertion of vanadium in SnS(2) is found to produce an absorption spectrum in the UV-Vis-NIR range that displays a new sub-bandgap feature in agreement with the quantum calculations. A photocatalytic reaction-based test verifies that this sub-bandgap absorption produces highly mobile electrons and holes in the material that may be used for the solar energy conversion, giving experimental support to the quantum calculations predictions.

  6. Electronic properties and bonding in Zr Hx thin films investigated by valence-band x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Magnuson, Martin; Schmidt, Susann; Hultman, Lars; Högberg, Hans

    2017-11-01

    The electronic structure and chemical bonding in reactively magnetron sputtered Zr Hx (x =0.15 , 0.30, 1.16) thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level, and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity toward the H 1s-Zr 4d hybridization region at ˜6 eV below the Fermi level. For low hydrogen content (x =0.15 , 0.30), the films consist of a superposition of hexagonal closest-packed metal (α phase) and understoichiometric δ -Zr Hx (Ca F2 -type structure) phases, while for x =1.16 , the films form single-phase Zr Hx that largely resembles that of stoichiometric δ -Zr H2 phase. We show that the cubic δ -Zr Hx phase is metastable as thin film up to x =1.16 , while for higher H contents the structure is predicted to be tetragonally distorted. For the investigated Zr H1.16 film, we find chemical shifts of 0.68 and 0.51 eV toward higher binding energies for the Zr 4 p3 /2 and 3 d5 /2 peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifies a charge transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemical shifts as a function of hydrogen content is discussed in relation to the charge transfer from Zr to H that affects the conductivity by charge redistribution in the valence band.

  7. Spectrum Sharing in an ISM Band: Outage Performance of a Hybrid DS/FH Spread Spectrum System with Beamforming

    NASA Astrophysics Data System (ADS)

    Li, Hanyu; Syed, Mubashir; Yao, Yu-Dong; Kamakaris, Theodoros

    2009-12-01

    This paper investigates spectrum sharing issues in the unlicensed industrial, scientific, and medical (ISM) bands. It presents a radio frequency measurement setup and measurement results in 2.4 GHz. It then develops an analytical model to characterize the coexistence interference in the ISM bands, based on radio frequency measurement results in the 2.4 GHz. Outage performance using the interference model is examined for a hybrid direct-sequence frequency-hopping spread spectrum system. The utilization of beamforming techniques in the system is also investigated, and a simplified beamforming model is proposed to analyze the system performance using beamforming. Numerical results show that beamforming significantly improves the system outage performance. The work presented in this paper provides a quantitative evaluation of signal outages in a spectrum sharing environment. It can be used as a tool in the development process for future dynamic spectrum access models as well as engineering designs for applications in unlicensed bands.

  8. Differences in Neural Activity when Processing Emotional Arousal and Valence in Autism Spectrum Disorders

    PubMed Central

    Tseng, Angela; Wang, Zhishun; Huo, Yuankai; Goh, Suzanne; Russell, James A.; Peterson, Bradley S.

    2016-01-01

    Individuals with autism spectrum disorders (ASD) often have difficulty recognizing and interpreting facial expressions of emotion, which may impair their ability to navigate and communicate successfully in their social, interpersonal environments. Characterizing specific differences between individuals with ASD and their typically-developing (TD) counterparts in the neural activity subserving their experience of emotional faces may provide distinct targets for ASD interventions. Thus we used functional magnetic resonance imaging (fMRI) and a parametric experimental design to identify brain regions in which neural activity correlated with ratings of arousal and valence for a broad range of emotional faces. Participants (51 ASD, 84 TD) were group-matched by age, sex, IQ, race, and socioeconomic status. Using task-related change in blood-oxygen-level-dependent (BOLD) fMRI signal as a measure, and covarying for age, sex, FSIQ, and ADOS scores, we detected significant differences across diagnostic groups in the neural activity subserving the dimension of arousal but not valence. BOLD-signal in TD participants correlated inversely with ratings of arousal in regions associated primarily with attentional functions, whereas BOLD-signal in ASD participants correlated positively with arousal ratings in regions commonly associated with impulse control and default-mode activity. Only minor differences were detected between groups in the BOLD signal correlates of valence ratings. Our findings provide unique insight into the emotional experiences of individuals with ASD. Although behavioral responses to face-stimuli were comparable across diagnostic groups, the corresponding neural activity for our ASD and TD groups differed dramatically. The near absence of group differences for valence correlates and the presence of strong group differences for arousal correlates suggest that individuals with ASD are not atypical in all aspects of emotion-processing. Studying these similarities

  9. Effects of surface condition on the work function and valence-band position of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Shing, Amanda M.; Tolstova, Yulia; Lewis, Nathan S.; Atwater, Harry A.

    2017-12-01

    ZnSnN2 is an emerging wide band gap earth-abundant semiconductor with potential applications in photonic devices such as solar cells, LEDs, and optical sensors. We report the characterization by ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy of reactively radio-frequency sputtered II-IV-nitride ZnSnN2 thin films. For samples transferred in high vacuum, the ZnSnN2 surface work function was 4.0 ± 0.1 eV below the vacuum level, with a valence-band onset of 1.2 ± 0.1 eV below the Fermi level. The resulting band diagram indicates that the degenerate bulk Fermi level position in ZnSnN2 shifts to mid-gap at the surface due to band bending that results from equilibration with delocalized surface states within the gap. Brief (< 10 s) exposures to air, a nitrogen-plasma treatment, or argon-ion sputtering caused significant chemical changes at the surface, both in surface composition and interfacial energetics. The relative band positioning of the n-type semiconductor against standard redox potentials indicated that ZnSnN2 has an appropriate energy band alignment for use as a photoanode to effect the oxygen-evolution reaction.

  10. Energy shift and conduction-to-valence band transition mediated by a time-dependent potential barrier in graphene

    NASA Astrophysics Data System (ADS)

    Chaves, Andrey; da Costa, D. R.; de Sousa, G. O.; Pereira, J. M.; Farias, G. A.

    2015-09-01

    We investigate the scattering of a wave packet describing low-energy electrons in graphene by a time-dependent finite-step potential barrier. Our results demonstrate that, after Klein tunneling through the barrier, the electron acquires an extra energy which depends on the rate of change of the barrier height with time. If this rate is negative, the electron loses energy and ends up as a valence band state after leaving the barrier, which effectively behaves as a positively charged quasiparticle.

  11. Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond

    NASA Astrophysics Data System (ADS)

    Poklonski, N. A.; Vyrko, S. A.; Poklonskaya, O. N.; Kovalev, A. I.; Zabrodskii, A. G.

    2016-06-01

    A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator-metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atoms with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature Tj is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature Tj, the concentration of "free" holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3Tj/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to Tj hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (-1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the

  12. Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.

    2018-01-01

    We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.

  13. Electronic structure and optical properties of noncentrosymmetric LiGaSe2: Experimental measurements and DFT band structure calculations

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.

    2017-04-01

    We report on measurements of X-ray photoelectron (XP) spectra for pristine and Ar+ ion-irradiated surfaces of LiGaSe2 single crystal grown by Bridgman-Stockbarger method. Electronic structure of the LiGaSe2 compound is studied from a theoretical and experimental viewpoint. In particular, total and partial densities of states of LiGaSe2 are investigated by density functional theory (DFT) calculations employing the augmented plane wave + local orbitals (APW + lo) method and they are verified by data of X-ray spectroscopy measurements. The DFT calculations indicate that the main contributors to the valence band of LiGaSe2 are the Se 4p states, which contribute mainly at the top and in the upper portion of the valence band, with also essential contributions of these states in the lower portion of the band. Other substantial contributions to the valence band of LiGaSe2 emerge from the Ga 4s and Ga 4p states contributing mainly at the lower ant upper portions of the valence band, respectively. With respect to the conduction band, the calculations indicate that its bottom is composed mainly from contributions of the unoccupied Ga s and Se p states. The present calculations are confirmed experimentally when comparing the XP valence-band spectrum of the LiGaS2 single crystal on a common energy scale with the X-ray emission bands representing the energy distribution of the Ga 4p and Se 4p states. Measurements of the fundamental absorption edges at room temperature reveal that bandgap value, Eg, of LiGaSe2 is equal to 3.47 eV and the Eg value increases up to 3.66 eV when decreasing temperature to 80 K. The main optical characteristics of the LiGaSe2 compound are clarified by the DFT calculations.

  14. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dey, Anup; Maiti, Biswajit; Chanda Sarkar, Debasree

    2014-04-01

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k→) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg1-xCdxTe, and In1-xGaxAsyP1-y lattice matched to InP, as example of III-V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  15. Differences in neural activity when processing emotional arousal and valence in autism spectrum disorders.

    PubMed

    Tseng, Angela; Wang, Zhishun; Huo, Yuankai; Goh, Suzanne; Russell, James A; Peterson, Bradley S

    2016-02-01

    Individuals with autism spectrum disorders (ASD) often have difficulty recognizing and interpreting facial expressions of emotion, which may impair their ability to navigate and communicate successfully in their social, interpersonal environments. Characterizing specific differences between individuals with ASD and their typically developing (TD) counterparts in the neural activity subserving their experience of emotional faces may provide distinct targets for ASD interventions. Thus we used functional magnetic resonance imaging (fMRI) and a parametric experimental design to identify brain regions in which neural activity correlated with ratings of arousal and valence for a broad range of emotional faces. Participants (51 ASD, 84 TD) were group-matched by age, sex, IQ, race, and socioeconomic status. Using task-related change in blood-oxygen-level-dependent (BOLD) fMRI signal as a measure, and covarying for age, sex, FSIQ, and ADOS scores, we detected significant differences across diagnostic groups in the neural activity subserving the dimension of arousal but not valence. BOLD-signal in TD participants correlated inversely with ratings of arousal in regions associated primarily with attentional functions, whereas BOLD-signal in ASD participants correlated positively with arousal ratings in regions commonly associated with impulse control and default-mode activity. Only minor differences were detected between groups in the BOLD signal correlates of valence ratings. Our findings provide unique insight into the emotional experiences of individuals with ASD. Although behavioral responses to face-stimuli were comparable across diagnostic groups, the corresponding neural activity for our ASD and TD groups differed dramatically. The near absence of group differences for valence correlates and the presence of strong group differences for arousal correlates suggest that individuals with ASD are not atypical in all aspects of emotion-processing. Studying these similarities

  16. Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poklonski, N. A., E-mail: poklonski@bsu.by; Vyrko, S. A.; Poklonskaya, O. N.

    A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator–metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atomsmore » with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature T{sub j} is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature T{sub j}, the concentration of “free” holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3T{sub j}/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to T{sub j} hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (−1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p

  17. Band selection method based on spectrum difference in targets of interest in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohan; Yang, Guang; Yang, Yongbo; Huang, Junhua

    2016-10-01

    While hyperspectral data shares rich spectrum information, it has numbers of bands with high correlation coefficients, causing great data redundancy. A reasonable band selection is important for subsequent processing. Bands with large amount of information and low correlation should be selected. On this basis, according to the needs of target detection applications, the spectral characteristics of the objects of interest are taken into consideration in this paper, and a new method based on spectrum difference is proposed. Firstly, according to the spectrum differences of targets of interest, a difference matrix which represents the different spectral reflectance of different targets in different bands is structured. By setting a threshold, the bands satisfying the conditions would be left, constituting a subset of bands. Then, the correlation coefficients between bands are calculated and correlation matrix is given. According to the size of the correlation coefficient, the bands can be set into several groups. At last, the conception of normalized variance is used on behalf of the information content of each band. The bands are sorted by the value of its normalized variance. Set needing number of bands, and the optimum band combination solution can be get by these three steps. This method retains the greatest degree of difference between the target of interest and is easy to achieve by computer automatically. Besides, false color image synthesis experiment is carried out using the bands selected by this method as well as other 3 methods to show the performance of method in this paper.

  18. Gamma-band abnormalities as markers of autism spectrum disorders

    PubMed Central

    Rojas, Donald C.; Wilson, Lisa B.

    2014-01-01

    Summary Autism is a behaviorally diagnosed neurodevelopmental disorder with no current biomarkers with high specificity and sensitivity. Gamma-band abnormalities have been reported in many studies of autism spectrum disorders. Gamma-band activity is associated with perceptual and cognitive functions that are compromised in autism. Some gamma-band deficits have also been seen in unaffected first-degree relatives, suggesting heritability of these findings. This review covers the published literature on gamma abnormalities in autism, the proposed mechanisms underlying the deficits, and the potential for translation into new treatments. Although the utility of gamma-band metrics as diagnostic biomarkers is currently limited, such changes in autism are also useful as endophenotypes, for evaluating potential neural mechanisms, and for use as surrogate markers of treatment response to interventions. PMID:24712425

  19. Low-energy yield spectroscopy determination of band offsets: application to the epitaxial Ge/Si(100) heterostructure

    NASA Astrophysics Data System (ADS)

    Di Gaspare, L.; Capellini, G.; Chudoba, C.; Sebastiani, M.; Evangelisti, F.

    1996-09-01

    We apply a new experimental method for determining band lineups at the Ge/Si(100) heterostructure. This method uses a modern version of an old spectroscopy: the photoelectric yield spectroscopy excited with photons in the near UV range. It is shown that both substrate and overlayer valence-band tops can be identified in the yield spectrum, thus allowing a direct and precise determination of the band lineup. We find an offset of 0.36 ± 0.02 eV for heterojunctions whose overlayers were grown according to the Stranski-Krastanov mechanism.

  20. Chalcogen doping at anionic site: A scheme towards more dispersive valence band in CuAlO2

    NASA Astrophysics Data System (ADS)

    Mazumder, Nilesh; Sen, Dipayan; Chattopadhyay, Kalyan Kumar

    2013-02-01

    Using first-principles calculations, we propose to enhance the dispersion of the top of valence band at high-symmetry points by selective introduction of chalcogen (Ch) impurities at oxygen site. As ab-plane hole mobility of CuAlO2 is large enough to support a band-conduction model over a polaronic one at room temperature [M. S. Lee et al. Appl. Phys. Lett. 79, 2029, (2001); J. Tate et al. Phys. Rev. B 80, 165206, (2009)], we examine its electronic and optical properties normal to c-axis. Intrinsic indirectness of energy-gap at Γ-point can be effectively removed along with substantial increase in density of states near Fermi level (EF) upon Ch addition. This can be attributed to S 2p-Cu 3d interaction just at or below EF, which should result in significantly improved carrier mobility and conductivity profile for this important p-type TCO.

  1. FTIR Spectrum of the ν 4Band of DCOOD

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Goh, K. L.; Ong, P. P.; Teo, H. H.

    1999-06-01

    The FTIR spectrum of the ν4band of deuterated formic acid (DCOOD) has been measured with a resolution of 0.004 cm-1in the frequency range of 1120 to 1220 cm-1. A total of 1866 assigned transitions have been analyzed and fitted using a Watson'sA-reduced Hamiltonian in theIrrepresentation to derive rovibrational constants for the upper state (v4= 1) with a standard deviation of 0.00036 cm-1. In the course of the analysis, the constants for the ground state were improved by a simultaneous fit of microwave frequencies and combination differences from the infrared measurements. Due to the relatively unperturbed nature of the band, the constants can be used to accurately calculate the infrared line positions for the whole band. Although the band is a hybrid typeAandB, onlya-type transitions were strong enough to be observed. The band center is at 1170.79980 ± 0.00002 cm-1.

  2. Valency configuration of transition metal impurities in ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Leon; Schulthess, Thomas C; Svane, Axel

    2006-01-01

    We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to themore » valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.« less

  3. Opportunistic tri-band carrier aggregation in licensed spectrum for multi-operator 5G hetnet

    NASA Astrophysics Data System (ADS)

    Maksymuk, Taras; Kyryk, Maryan; Klymash, Mykhailo; Jo, Minho; Romaniuk, Ryszard; Kotyra, Andrzej; Zhanpeisova, Aizhan; Kozbekova, Ainur

    2017-08-01

    Increasing capacity of mobile networks is a real challenge due to rapid increasing of traffic demands and spectrum scarcity. Carrier aggregation technology is aimed to increase the user data rate by combining the throughput of few spectrum bands, even if they are not physically collocated. Utilization of unlicensed Wi-Fi 5 GHz band for mobile transmission opens new perspectives for carrier aggregation due to vast amount of spectrum range, which can be available for aggregation to supplement data rates for end users. There are many solutions proposed to enable mobile data transmission in unlicensed band without disturbing interference for the existing Wi-Fi users. The paper presents a new approach for opportunistic carrier aggregation in licensed and unlicensed band for multi-operator 5G network. It allows multiple network operators to utilize unlicensed spectrum opportunistically if it is not currently used by Wi-Fi or other mobile network operators. Performance of the proposed approach has been simulated in case of two competing operators. Simulation results reveal that applying the proposed method ensures achieving satisfactory performance of carrier aggregation for the case of two network operators.

  4. Inter-Layer Coupling Induced Valence Band Edge Shift in Mono- to Few-Layer MoS2

    PubMed Central

    Trainer, Daniel J.; Putilov, Aleksei V.; Di Giorgio, Cinzia; Saari, Timo; Wang, Baokai; Wolak, Mattheus; Chandrasena, Ravini U.; Lane, Christopher; Chang, Tay-Rong; Jeng, Horng-Tay; Lin, Hsin; Kronast, Florian; Gray, Alexander X.; Xi, Xiaoxing X.; Nieminen, Jouko; Bansil, Arun; Iavarone, Maria

    2017-01-01

    Recent progress in the synthesis of monolayer MoS2, a two-dimensional direct band-gap semiconductor, is paving new pathways toward atomically thin electronics. Despite the large amount of literature, fundamental gaps remain in understanding electronic properties at the nanoscale. Here, we report a study of highly crystalline islands of MoS2 grown via a refined chemical vapor deposition synthesis technique. Using high resolution scanning tunneling microscopy and spectroscopy (STM/STS), photoemission electron microscopy/spectroscopy (PEEM) and μ-ARPES we investigate the electronic properties of MoS2 as a function of the number of layers at the nanoscale and show in-depth how the band gap is affected by a shift of the valence band edge as a function of the layer number. Green’s function based electronic structure calculations were carried out in order to shed light on the mechanism underlying the observed bandgap reduction with increasing thickness, and the role of the interfacial Sulphur atoms is clarified. Our study, which gives new insight into the variation of electronic properties of MoS2 films with thickness bears directly on junction properties of MoS2, and thus impacts electronics application of MoS2. PMID:28084465

  5. Inter-layer coupling induced valence band edge shift in mono- to few-layer MoS 2

    DOE PAGES

    Trainer, Daniel J.; Putilov, Aleksei V.; Di Giorgio, Cinzia; ...

    2017-01-13

    In this study, recent progress in the synthesis of monolayer MoS 2, a two-dimensional direct band-gap semiconductor, is paving new pathways toward atomically thin electronics. Despite the large amount of literature, fundamental gaps remain in understanding electronic properties at the nanoscale. Here,we report a study of highly crystalline islands of MoS 2 grown via a refined chemical vapor deposition synthesis technique. Using high resolution scanning tunneling microscopy and spectroscopy (STM/STS), photoemission electron microscopy/spectroscopy (PEEM) and μ-ARPES we investigate the electronic properties of MoS 2 as a function of the number of layers at the nanoscale and show in-depth how themore » band gap is affected by a shift of the valence band edge as a function of the layer number. Green’s function based electronic structure calculations were carried out in order to shed light on the mechanism underlying the observed bandgap reduction with increasing thickness, and the role of the interfacial Sulphur atoms is clarified. Our study, which gives new insight into the variation of electronic properties of MoS 2 films with thickness bears directly on junction properties of MoS2, and thus impacts electronics application of MoS 2.« less

  6. Impact of Co-Site Interference on L/C-Band Spectrum for UAS Control and Non-Payload Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Bishop, William D.; Hoder, Douglas J.; Shalkhauser, Kurt A.; Wilson, Jeffrey D.

    2015-01-01

    In order to provide for the safe integration of unmanned aircraft systems into the National Airspace System, the control and non-payload communications (CNPC) link connecting the ground-based pilot with the unmanned aircraft must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. The 2012 World Radiocommunication Conference (WRC-12) provided a potentially suitable allocation for LOS CNPC spectrum in C-Band at 5030-5091 MHz band which, when combined with a previous allocation in L-Band (960-1164 MHz) may satisfy the LOS spectrum requirement and provide for high reliability through dual-band redundancy. However, the LBand spectrum hosts a number of aeronautical navigation systems which require high-power transmitters on-board the aircraft. These high-power transmitters co-located with sensitive CNPC receivers operating in the same frequency band have the potential to create co-site interference, reducing the performance of the CNPC receivers and ultimately reducing the usability of the L-Band for CNPC. This paper examines the potential for co-site interference, as highlighted in recent flight tests, and discusses the impact on the UAS CNPC spectrum availability and requirements for further testing and analysis.

  7. Using the Circumplex Model of Affect to Study Valence and Arousal Ratings of Emotional Faces by Children and Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Tseng, Angela; Bansal, Ravi; Liu, Jun; Gerber, Andrew J.; Goh, Suzanne; Posner, Jonathan; Colibazzi, Tiziano; Algermissen, Molly; Chiang, I-Chin; Russell, James A.; Peterson, Bradley S.

    2014-01-01

    The Affective Circumplex Model holds that emotions can be described as linear combinations of two underlying, independent neurophysiological systems (arousal, valence). Given research suggesting individuals with autism spectrum disorders (ASD) have difficulty processing emotions, we used the circumplex model to compare how individuals with ASD and…

  8. Extracting sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Wang, Fang; Shen, Luming; Liao, Guiping; Wang, Lin

    2017-03-01

    Spectrum technology has been widely used in crop non-destructive testing diagnosis for crop information acquisition. Since spectrum covers a wide range of bands, it is of critical importance to extract the sensitive bands. In this paper, we propose a methodology to extract the sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis. Our obtained sensitive bands are relatively robust in the range of 534 nm-574 nm. Further, by using the multifractal parameter (Hurst exponent) of the extracted sensitive bands, we propose a prediction model to forecast the Soil and plant analyzer development values ((SPAD), often used as a parameter to indicate the chlorophyll content) and an identification model to distinguish the different planting patterns. Three vegetation indices (VIs) based on previous work are used for comparison. Three evaluation indicators, namely, the root mean square error, the correlation coefficient, and the relative error employed in the SPAD values prediction model all demonstrate that our Hurst exponent has the best performance. Four rapeseed compound planting factors, namely, seeding method, planting density, fertilizer type, and weed control method are considered in the identification model. The Youden indices calculated by the random decision forest method and the K-nearest neighbor method show that our Hurst exponent is superior to other three Vis, and their combination for the factor of seeding method. In addition, there is no significant difference among the five features for other three planting factors. This interesting finding suggests that the transplanting and the direct seeding would make a big difference in the growth of rapeseed.

  9. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE PAGES

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina; ...

    2017-01-17

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  10. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  11. Multicolor emission from intermediate band semiconductor ZnO 1-xSe x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welna, M.; Baranowski, M.; Linhart, W. M.

    Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E - and upper E + valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model. The observation of the multiband emissionmore » is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.« less

  12. Multicolor emission from intermediate band semiconductor ZnO 1-xSe x

    DOE PAGES

    Welna, M.; Baranowski, M.; Linhart, W. M.; ...

    2017-03-13

    Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E - and upper E + valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model. The observation of the multiband emissionmore » is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.« less

  13. Valence Band Structure of Highly Efficient p-type Thermoelectric PbTe-PbS Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaworski, C. M.; Nielsen, Mechele; Wang, Hsin

    New experimental evidence is given relevant to the temperature-dependence of valence band structure of PbTe and PbTe1-xSx alloys (0.04 x 0.12), and its effect on the thermoelectric figure of merit zT. The x = 0.08 sample has zT ~ 1.55 at 773K. The magnetic field dependence of the high-temperature Hall resistivity of heavily p-type (> 1019 cm-3) Na-doped PbTe1-xSx reveals the presence of high-mobility electrons. This put in question prior analyses of the Hall coefficient and the conclusion that PbTe would be an indirect gap semiconductor at temperatures where its zT is optimal. Possible origins for these electrons are discussed:more » they can be induced by photoconductivity, or by the topology of the Fermi surface when the L and -bands merge. Negative values for the low-temperature thermopower are also observed. Our data show that PbTe continues to be a direct gap semiconductor at temperatures where the zT and S2 of p-type PbTe are optimal e.g. 700-900K. The previously suggested temperature induced rapid rise in energy of the heavy hole LVB relative to the light hole UVB is not supported by the experimental data.« less

  14. Orientation and temperature dependent adsorption of H 2S on GaAs: Valence band photoemission

    NASA Astrophysics Data System (ADS)

    Ranke, W.; Kuhr, H. J.; Finster, J.

    A cylindrically shaped GaAs single crystal was used to study the adsorption of H 2S on the six inequivalent orientations (001), (113), (111), (110), (111) and (113) by angle resolved valence band photoelectron spectroscopy and surface dipole measurements. Adsorption at 150 K on the surface prepared by molecular beam epitaxy (MBE) yields similar adsorbate induced emission on all orientations which were ascribed to SH radicals. On (110), where preferential adsorption occurs additional features from molecular H 2S are observed. The adsorbate spectra at 720 K are ascribed to atomic sulphur. On the surface prepared by ion bombardment and annealing, defect enhanced adsorption occurs in the range (111)-(113). The adsorbate spectra are very similar to those on the MBE surface at 720 K. Thus, no new species are adsorbed on defects but only sticking probability and penetration capability are increased.

  15. Decoding emotional valence from electroencephalographic rhythmic activity.

    PubMed

    Celikkanat, Hande; Moriya, Hiroki; Ogawa, Takeshi; Kauppi, Jukka-Pekka; Kawanabe, Motoaki; Hyvarinen, Aapo

    2017-07-01

    We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parietal sources being especially significant, and (2) even though the locations of the involved neuronal sources are consistent, subjects can display highly varying degrees of valence-related EEG activity in the sources.

  16. High-Resolution FTIR Spectrum of the ν 5Band of HCOOD

    NASA Astrophysics Data System (ADS)

    Goh, K. L.; Ong, P. P.; Tan, T. L.; Teo, H. H.; Wang, W. F.

    1998-10-01

    The high-resolution Fourier transform infrared spectrum of HCOOD has been measured in the ν5region between 1120 and 1220 cm-1with a resolution of 0.004 cm-1. As expected for an in-plane vibrational fundamental mode, the ν5band is a hybrid band consisting of botha-type andb-type transitions. Using the Watson'sA-reduced Hamiltonian in theIrrepresentation, 1943 infrared transitions have been assigned and fitted to give 12 rovibrational constants for thev5= 1 state. The ν5band is primarilyAtype with a band center at 1177.09378 ± 0.00002 cm-1. It is found that ν5is slightly perturbed by the nearby 2ν7. About 90 perturbed transitions were identified.

  17. What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study

    NASA Astrophysics Data System (ADS)

    Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.

    2016-08-01

    Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the

  18. Using the Circumplex Model of Affect to Study Valence and Arousal Ratings of Emotional Faces by Children and Adults with Autism Spectrum Disorders

    PubMed Central

    Bansal, Ravi; Liu, Jun; Gerber, Andrew J.; Goh, Suzanne; Posner, Jonathan; Colibazzi, Tiziano; Algermissen, Molly; Chiang, I-Chin; Russell, James A.; Peterson, Bradley S.

    2015-01-01

    The Affective Circumplex Model holds that emotions can be described as linear combinations of two underlying, independent neurophysiological systems (arousal, valence). Given research suggesting individuals with autism spectrum disorders (ASD) have difficulty processing emotions, we used the circumplex model to compare how individuals with ASD and typically-developing (TD) individuals respond to facial emotions. Participants (51 ASD, 80 TD) rated facial expressions along arousal and valence dimensions; we fitted closed, smooth, 2-dimensional curves to their ratings to examine overall circumplex contours. We modeled individual and group influences on parameters describing curve contours to identify differences in dimensional effects across groups. Significant main effects of diagnosis indicated the ASD-group’ s ratings were constricted for the entire circumplex, suggesting range constriction across all emotions. Findings did not change when covarying for overall intelligence. PMID:24234677

  19. The first H-band spectrum of the giant planet β Pictoris b

    DOE PAGES

    Chilcote, Jeffrey; Barman, Travis; Fitzgerald, Michael P.; ...

    2014-12-12

    Using the recently installed Gemini Planet Imager (GPI), we have obtained the first H-band spectrum of the planetary companion to the nearby young star β Pictoris. GPI is designed to image and provide low-resolution spectra of Jupiter-sized, self-luminous planetary companions around young nearby stars. These observations were taken covering the H band (1.65 μm). The spectrum has a resolving power of ~45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1600-1700 K and a surface gravity of log (g) = 3.5-4.5 (cgs units). Thesemore » values agree well with "hot-start" predictions from planetary evolution models for a gas giant with mass between 10 and 12 M Jup and age between 10 and 20 Myr.« less

  20. Type-II quantum wells with tensile-strained GaAsSb layers for interband cascade lasers with tailored valence band mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motyka, M.; Dyksik, M.; Ryczko, K.

    Optical properties of modified type II W-shaped quantum wells have been investigated with the aim to be utilized in interband cascade lasers. The results show that introducing a tensely strained GaAsSb layer, instead of a commonly used compressively strained GaInSb, allows employing the active transition involving valence band states with a significant admixture of the light holes. Theoretical predictions of multiband k·p theory have been experimentally verified by using photoluminescence and polarization dependent photoreflectance measurements. These results open a pathway for practical realization of mid-infrared lasing devices with uncommon polarization properties including, for instance, polarization-independent midinfrared light emitters.

  1. Valence holes observed in nanodiamonds dispersed in water

    NASA Astrophysics Data System (ADS)

    Petit, Tristan; Pflüger, Mika; Tolksdorf, Daniel; Xiao, Jie; Aziz, Emad F.

    2015-02-01

    Colloidal dispersion is essential for most nanodiamond applications, but its influence on nanodiamond electronic properties remains unknown. Here we have probed the electronic structure of oxidized detonation nanodiamonds dispersed in water by using soft X-ray absorption and emission spectroscopies at the carbon and oxygen K edges. Upon dispersion in water, the π* transitions from sp2-hybridized carbon disappear, and holes in the valence band are observed.Colloidal dispersion is essential for most nanodiamond applications, but its influence on nanodiamond electronic properties remains unknown. Here we have probed the electronic structure of oxidized detonation nanodiamonds dispersed in water by using soft X-ray absorption and emission spectroscopies at the carbon and oxygen K edges. Upon dispersion in water, the π* transitions from sp2-hybridized carbon disappear, and holes in the valence band are observed. Electronic supplementary information (ESI) available: Experimental methods, details on XAS/XES normalization and background correction procedures. See DOI: 10.1039/c4nr06639a

  2. Electronic and spin structure of the wide-band-gap topological insulator: Nearly stoichiometric Bi2Te2S

    NASA Astrophysics Data System (ADS)

    Annese, E.; Okuda, T.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Natamane, M.; Taniguchi, M.; Rusinov, I. P.; Eremeev, S. V.; Kokh, K. A.; Golyashov, V. A.; Tereshchenko, O. E.; Chulkov, E. V.; Kimura, A.

    2018-05-01

    We have grown the phase-homogeneous ternary compound with composition Bi2Te1.85S1.15 very close to the stoichiometric Bi2Te2S . The measurements performed with spin- and angle-resolved photoelectron spectroscopy as well as density functional theory and G W calculations revealed a wide-band-gap three-dimensional topological insulator phase. The surface electronic spectrum is characterized by the topological surface state (TSS) with Dirac point located above the valence band and Fermi level lying in the band gap. TSS band dispersion and constant energy contour manifest a weak warping effect near the Fermi level along with in-plane and out-of-plane spin polarization along the Γ ¯-K ¯ line. We identified four additional states at deeper binding energies with high in-plane spin polarization.

  3. Local band gap measurements by VEELS of thin film solar cells.

    PubMed

    Keller, Debora; Buecheler, Stephan; Reinhard, Patrick; Pianezzi, Fabian; Pohl, Darius; Surrey, Alexander; Rellinghaus, Bernd; Erni, Rolf; Tiwari, Ayodhya N

    2014-08-01

    This work presents a systematic study that evaluates the feasibility and reliability of local band gap measurements of Cu(In,Ga)Se2 thin films by valence electron energy-loss spectroscopy (VEELS). The compositional gradients across the Cu(In,Ga)Se2 layer cause variations in the band gap energy, which are experimentally determined using a monochromated scanning transmission electron microscope (STEM). The results reveal the expected band gap variation across the Cu(In,Ga)Se2 layer and therefore confirm the feasibility of local band gap measurements of Cu(In,Ga)Se2 by VEELS. The precision and accuracy of the results are discussed based on the analysis of individual error sources, which leads to the conclusion that the precision of our measurements is most limited by the acquisition reproducibility, if the signal-to-noise ratio of the spectrum is high enough. Furthermore, we simulate the impact of radiation losses on the measured band gap value and propose a thickness-dependent correction. In future work, localized band gap variations will be measured on a more localized length scale to investigate, e.g., the influence of chemical inhomogeneities and dopant accumulations at grain boundaries.

  4. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Ramdas, A.; Su, Ching-Hua; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(x)V(1-x), alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(x),V(1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(x)Te(l-x) and ZnSe(Y)Te(1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(y)Te(1-y) alloys in the entire composition range, 0 less than or equal to y less than or equal to 1. The samples used in this study are bulk ZnSe(y)Te(1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the interaction between

  5. Doping induced modifications in the electronic structure and magnetism of ZnO films: Valence band and conduction band studies

    NASA Astrophysics Data System (ADS)

    Katba, Savan; Jethva, Sadaf; Udeshi, Malay; Trivedi, Priyanka; Vagadia, Megha; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.; Kuberkar, D. G.

    2017-11-01

    The electronic structure of Pulsed Laser Deposited (PLD) ZnO, Zn0.95Fe0.05O (ZFO), Zn0.98Al0.02O (ZAO) and Zn0.93Fe0.05Al0.02O (ZFAO) films were investigated by Photoelectron spectroscopy and X-ray absorption spectroscopy. X-ray diffraction and ϕ-scan measurements show epitaxial c-directional growth of the films. Temperature dependent magnetization and M-H loop measurements show the presence of room temperature magnetic ordering in all the films. Fittings of Fe 2p XPS and Fe L3,2 -edge XAS of ZFO and ZFAO films show the presence of Fe, in both, Fe+2 and Fe+3 states in tetrahedral symmetry. Valence band spectra in resonance mode show resonance photon energy at 56 eV showing the presence of Fe2+ state (∼2 eV) near the Fermi level. A significant effect of Fe and Al doping on the spectral shape of O K-edge XAS was observed. Results of the Spectroscopic studies reveal that, ferromagnetism in the films is due to the contribution of oxygen deficiency which increases the number of charge carriers that take part in the exchange interaction. Al co-doping with Fe (in ZFAO) results in the enhancement of saturation magnetization by increase in the carrier-mediated ferromagnetic exchange interaction.

  6. Brønsted acidity of protic ionic liquids: a modern ab initio valence bond theory perspective.

    PubMed

    Patil, Amol Baliram; Mahadeo Bhanage, Bhalchandra

    2016-09-21

    Room temperature ionic liquids (ILs), especially protic ionic liquids (PILs), are used in many areas of the chemical sciences. Ionicity, the extent of proton transfer, is a key parameter which determines many physicochemical properties and in turn the suitability of PILs for various applications. The spectrum of computational chemistry techniques applied to investigate ionic liquids includes classical molecular dynamics, Monte Carlo simulations, ab initio molecular dynamics, Density Functional Theory (DFT), CCSD(t) etc. At the other end of the spectrum is another computational approach: modern ab initio Valence Bond Theory (VBT). VBT differs from molecular orbital theory based methods in the expression of the molecular wave function. The molecular wave function in the valence bond ansatz is expressed as a linear combination of valence bond structures. These structures include covalent and ionic structures explicitly. Modern ab initio valence bond theory calculations of representative primary and tertiary ammonium protic ionic liquids indicate that modern ab initio valence bond theory can be employed to assess the acidity and ionicity of protic ionic liquids a priori.

  7. Levels of Valence

    PubMed Central

    Shuman, Vera; Sander, David; Scherer, Klaus R.

    2013-01-01

    The distinction between the positive and the negative is fundamental in our emotional life. In appraisal theories, in particular in the component process model of emotion (Scherer, 1984, 2010), qualitatively different types of valence are proposed based on appraisals of (un)pleasantness, goal obstructiveness/conduciveness, low or high power, self-(in)congruence, and moral badness/goodness. This multifaceted conceptualization of valence is highly compatible with the frequent observation of mixed feelings in real life. However, it seems to contradict the one-dimensional conceptualization of valence often encountered in psychological theories, and the notion of valence as a common currency used to explain choice behavior. Here, we propose a framework to integrate the seemingly disparate conceptualizations of multifaceted valence and one-dimensional valence by suggesting that valence should be conceived at different levels, micro and macro. Micro-valences correspond to qualitatively different types of evaluations, potentially resulting in mixed feelings, whereas one-dimensional macro-valence corresponds to an integrative “common currency” to compare alternatives for choices. We propose that conceptualizing levels of valence may focus research attention on the mechanisms that relate valence at one level (micro) to valence at another level (macro), leading to new hypotheses, and addressing various concerns that have been raised about the valence concept, such as the valence-emotion relation. PMID:23717292

  8. Evidence of dithionite contribution to the low-frequency resonance Raman spectrum of reduced and mixed-valence cytochrome c oxidase.

    PubMed

    Centeno, J A

    1992-02-01

    The resonance Raman spectra of deoxygenated solutions of mixed-valence cyanide-bound and fully reduced cytochrome oxidase derivatives that have been reduced in the presence of aqueous or solid sodium dithionite exhibit two new low-frequency lines centered at 474 and 590 cm-1. These lines were not observed when the reductant system was changed to a solution containing ascorbate and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Under enzyme turnover conditions, the addition of dithionite to the reoxidized protein (the 428-nm or "oxygenated" form) increases the intensity of these lines, while reoxidation and rereduction of the enzyme in the presence of ascorbate/TMPD resulted in the absence of both lines. Our data suggest that both lines must have contributions from species formed from aqueous dithionite, presumably the SO2 species, since these two lines are also observed in the Raman spectrum of a solution of aqueous dithionite, but not in the spectrum of an ascorbate/TMPD solution. Since heme metal-ligand stretch vibrations are expected to appear in the low-frequency region from 215 to 670 cm-1, our results indicate that special care should be exercised during the interpretation of the cytochrome a3 resonance Raman spectrum.

  9. Electronic band structure and optical gain of GaN{sub x}Bi{sub y}As{sub 1−x−y}/GaAs pyramidal quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhi-Gang; State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083; Bose, Sumanta

    The electronic band structure and optical gain of GaN{sub x}Bi{sub y}As{sub 1−x−y}/GaAs pyramidal quantum dots (QDs) are investigated using the 16-band k ⋅ p model with constant strain. The optical gain is calculated taking both homogeneous and inhomogeneous broadenings into consideration. The effective band gap falls as we increase the composition of nitrogen (N) and bismuth (Bi) and with an appropriate choice of composition we can tune the emission wavelength to span within 1.3 μm–1.55 μm, for device application in fiber technology. The extent of this red shift is more profound in QDs compared with bulk material due to quantum confinement. Othermore » factors affecting the emission characteristics include virtual crystal, strain profile, band anticrossing (BAC), and valence band anticrossing (VBAC). The strain profile has a profound impact on the electronic structure, specially the valence band of QDs, which can be determined using the composition distribution of wave functions. All these factors eventually affect the optical gain spectrum. With an increase in QD size, we observe a red shift in the emission energy and emergence of secondary peaks owing to transitions or greater energy compared with the fundamental transition.« less

  10. The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevalov, T. V., E-mail: timson@isp.nsc.ru; Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk; Aliev, V. Sh.

    2014-02-17

    The origin of a blue luminescence band at 2.7 eV and a luminescence excitation band at 5.2 eV of hafnia has been studied in stoichiometric and non-stoichiometric hafnium oxide films. Experimental and calculated results from the first principles valence band spectra showed that the stoichiometry violation leads to the formation of the peak density of states in the band gap caused by oxygen vacancies. Cathodoluminescence in the non-stoichiometric film exhibits a band at 2.65 eV that is excited at the energy of 5.2 eV. The optical absorption spectrum calculated for the cubic phase of HfO{sub 2} with oxygen vacancies showsmore » a peak at 5.3 eV. Thus, it could be concluded that the blue luminescence band at 2.7 eV and HfO{sub x} excitation peak at 5.2 eV are due to oxygen vacancies. The thermal trap energy in hafnia was estimated.« less

  11. Photoelectron spectrum of valence anions of uracil and first-principles calculations of excess electron binding energies.

    PubMed

    Bachorz, Rafał A; Klopper, Wim; Gutowski, Maciej; Li, Xiang; Bowen, Kit H

    2008-08-07

    The photoelectron spectrum (PES) of the uracil anion is reported and discussed from the perspective of quantum chemical calculations of the vertical detachment energies (VDEs) of the anions of various tautomers of uracil. The PES peak maximum is found at an electron binding energy of 2.4 eV, and the width of the main feature suggests that the parent anions are in a valence rather than a dipole-bound state. The canonical tautomer as well as four tautomers that result from proton transfer from an NH group to a C atom were investigated computationally. At the Hartree-Fock and second-order Moller-Plesset perturbation theory levels, the adiabatic electron affinity (AEA) and the VDE have been converged to the limit of a complete basis set to within +/-1 meV. Post-MP2 electron-correlation effects have been determined at the coupled-cluster level of theory including single, double, and noniterative triple excitations. The quantum chemical calculations suggest that the most stable valence anion of uracil is the anion of a tautomer that results from a proton transfer from N1H to C5. It is characterized by an AEA of 135 meV and a VDE of 1.38 eV. The peak maximum is as much as 1 eV larger, however, and the photoelectron intensity is only very weak at 1.38 eV. The PES does not lend support either to the valence anion of the canonical tautomer, which is the second most stable anion, and whose VDE is computed at about 0.60 eV. Agreement between the peak maximum and the computed VDE is only found for the third most stable tautomer, which shows an AEA of approximately -0.1 eV and a VDE of 2.58 eV. This tautomer results from a proton transfer from N3H to C5. The results illustrate that the characteristics of biomolecular anions are highly dependent on their tautomeric form. If indeed the third most stable anion is observed in the experiment, then it remains an open question why and how this species is formed under the given conditions.

  12. Band Anticrossing in Highly Mismatched Compound Semiconductor Alloys

    NASA Technical Reports Server (NTRS)

    Yu, Kin Man; Wu, J.; Walukiewicz, W.; Ager, J. W.; Haller, E. E.; Miotkowski, I.; Su, Ching-Hua; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    Compound semiconductor alloys in which metallic anions are partially replaced with more electronegative isoelectronic atoms have recently attracted significant attention. Group IIIN(sub x)V(sub 1-x) alloys with a small amount of the electronegative N substituting more metallic column V elements has been the most extensively studied class of such Highly Mismatched Alloys (HMAs). We have shown that many of the unusual properties of the IIIN(sub x)V(sub 1-x) alloys can be well explained by the Band Anticrossing (BAC) model that describes the electronic structure in terms of an interaction between highly localized levels of substitutional N and the extended states of the host semiconductor matrix. Most recently the BAC model has been also used to explain similar modifications of the electronic band structure observed in Te-rich ZnS(sub x)Te(sub 1-x) and ZnSe(sub y)Te(sub 1-y) alloys. To date studies of HMAs have been limited to materials with relatively small concentrations of highly electronegative atoms. Here we report investigations of the electronic structure of ZnSe(sub y)Te(sub 1-y) alloys in the entire composition range, y between 0 and 1. The samples used in this study are bulk ZnSe(sub y)Te(sub 1-y) crystals grown by either a modified Bridgman method or by physical vapor transport. Photomodulated reflection (PR) spectroscopy was used to measure the composition dependence of optical transitions from the valence band edge and from the spin-orbit split off band to the conduction band. The pressure dependence of the band gap was measured using optical absorption in a diamond anvil cell. We find that the energy of the spin-orbit split off valence band edge does not depend on composition and is located at about 3 eV below the conduction band edge of ZnSe. On the Te-rich side the pressure and the composition dependence of the optical transitions are well explained by the BAC model which describes the downward shift of the conduction band edge in terms of the

  13. High resolution FTIR spectrum of the ν 6 band of deuterated formic acid (DCOOH)

    NASA Astrophysics Data System (ADS)

    Goh, K. L.; Ong, P. P.; Tan, T. L.; Teo, H. H.

    1999-07-01

    The high resolution FTIR spectrum of the ν 6 band of DCOOH has been measured with a resolution of 0.004 cm -1 in the spectral range of 920-1020 cm -1. The ν 6 band was found to be perturbed by the neighbouring ν 8 band situated at about 100 cm -1 lower. Using a Watson's A-reduced Hamiltonian in the Ir representation, and with the inclusion of a-, and b-Coriolis coupling constants, a simultaneous fit of ν 6 and ν 8 was performed, fitting a total of 1656 infrared transitions of ν 6 with an rms uncertainty of 0.00038 cm -1. A set of accurate rovibrational constants for ν 6 were obtained. The ν 6 band was analysed to be primarily A-typed with a band centre at 970.88931±0.00003 cm -1.

  14. High resolution FTIR spectrum of the nu1 band of DCOOD.

    PubMed

    Goh, K L; Ong, P P; Teo, H H; Tan, T L

    2000-04-01

    Accurate spectral information on formic acid has wide application to radioastronomy since it was the first organic acid found in interstellar space. In this work, the infrared absorption spectrum of the nu1 band of deuterated formic acid (DCOOD) has been measured on a Bomem DA3.002 Fourier transform spectrometer in the wavenumber region 2560-2690 cm(-1) with a resolution of 0.004 cm(-1). A total of 292 infrared transitions have been assigned in this hybrid type A and B band centred at 2631.8736 +/- 0.0004 cm(-1). The assigned transitions have been fitted to give a set of eight rovibrational constants for the nu1 = 1 state with a standard deviation of 0.00078 cm(-1).

  15. High resolution FTIR spectrum of the ν1 band of DCOOD

    NASA Astrophysics Data System (ADS)

    Goh, K. L.; Ong, P. P.; Teo, H. H.; Tan, T. L.

    2000-04-01

    Accurate spectral information on formic acid has wide application to radioastronomy since it was the first organic acid found in interstellar space. In this work, the infrared absorption spectrum of the ν1 band of deuterated formic acid (DCOOD) has been measured on a Bomem DA3.002 Fourier transform spectrometer in the wavenumber region 2560-2690 cm -1 with a resolution of 0.004 cm -1. A total of 292 infrared transitions have been assigned in this hybrid type A and B band centred at 2631.8736±0.0004 cm -1. The assigned transitions have been fitted to give a set of eight rovibrational constants for the v1=1 state with a standard deviation of 0.00078 cm -1.

  16. Enhancing the visibility of injuries with narrow-banded beams of light within the visible light spectrum.

    PubMed

    Limmen, Roxane M; Ceelen, Manon; Reijnders, Udo J L; Joris Stomp, S; de Keijzer, Koos C; Das, Kees

    2013-03-01

    The use of narrow-banded visible light sources in improving the visibility of injuries has been hardly investigated, and studies examining the extent of this improvement are lacking. In this study, narrow-banded beams of light within the visible light spectrum were used to explore their ability in improving the visibility of external injuries. The beams of light were induced by four crime-lites(®) providing narrow-banded beams of light between 400 and 550 nm. The visibility of the injuries was assessed through specific long-pass filters supplied with the set of crime-lites(®) . Forty-three percent of the examined injuries improved in visibility by using the narrow-banded visible light. In addition, injuries were visualized that were not visible or just barely visible to the naked eye. The improvements in visibility were particularly marked with the use of crime-lites(®) "violet" and "blue" covering the spectrum between 400-430 and 430-470 nm. The simple noninvasive method showed a great potential contribution in injury examination. © 2012 American Academy of Forensic Sciences.

  17. Valence and arousal-based affective evaluations of foods.

    PubMed

    Woodward, Halley E; Treat, Teresa A; Cameron, C Daryl; Yegorova, Vitaliya

    2017-01-01

    We investigated the nutrient-specific and individual-specific validity of dual-process models of valenced and arousal-based affective evaluations of foods across the disordered eating spectrum. 283 undergraduate women provided implicit and explicit valence and arousal-based evaluations of 120 food photos with known nutritional information on structurally similar indirect and direct affect misattribution procedures (AMP; Payne et al., 2005, 2008), and completed questionnaires assessing body mass index (BMI), hunger, restriction, and binge eating. Nomothetically, added fat and added sugar enhance evaluations of foods. Idiographically, hunger and binge eating enhance activation, whereas BMI and restriction enhance pleasantness. Added fat is salient for women who are heavier, hungrier, or who restrict; added sugar is influential for less hungry women. Restriction relates only to valence, whereas binge eating relates only to arousal. Findings are similar across implicit and explicit affective evaluations, albeit stronger for explicit, providing modest support for dual-process models of affective evaluation of foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Crossover from impurity to valence band in diluted magnetic semiconductors: Role of Coulomb attraction by acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Florentin; Sen, Cengiz; Dagotto, Elbio R

    2007-01-01

    The crossover between an impurity band (IB) and a valence band (VB) regime as a function of the magnetic impurity concentration in a model for diluted magnetic semiconductors (DMSs) is studied systematically by taking into consideration the Coulomb attraction between the carriers and the magnetic impurities. The density of states and the ferromagnetic transition temperature of a spin-fermion model applied to DMSs are evaluated using dynamical mean-field theory and Monte Carlo (MC) calculations. It is shown that the addition of a square-well-like attractive potential can generate an IB at small enough Mn doping x for values of the p-d exchangemore » J that are not strong enough to generate one by themselves. We observe that the IB merges with the VB when x>=xc where xc is a function of J and the Coulomb strength V. Using MC simulations, we demonstrate that the range of the Coulomb attraction plays an important role. While the on-site attraction, which has been used in previous numerical simulations, effectively renormalizes J for all values of x, an unphysical result, a nearest-neighbor range attraction renormalizes J only at very low dopings, i.e., until the bound holes wave functions start to overlap. Thus, our results indicate that the Coulomb attraction can be neglected to study Mn-doped GaSb, GaAs, and GaP in the relevant doping regimes, but it should be included in the case of Mn-doped GaN, which is expected to be in the IB regime.« less

  19. [Research on the emission spectrum of NO molecule's γ-band system by corona discharge].

    PubMed

    Zhai, Xiao-dong; Ding, Yan-jun; Peng, Zhi-min; Luo, Rui

    2012-05-01

    The optical emission spectrum of the gamma-band system of NO molecule, A2 sigma+ --> X2 pi(r), has been analyzed and calculated based on the energy structure of NO molecule' doublet states. By employing the theory of diatomic molecular Spectra, some key parameters of equations for the radiative transition intensity were evaluated theoretically, including the potentials of the doublet states of NO molecule's upper and lower energy levels, the electronic transition moments calculated by using r-centroid approximation method, and the Einstein coefficient of different vibrational and rotational levels. The simulated spectrum of the gamma-band system was calculated as a function of different vibrational and rotational temperature. Compared to the theoretical spectroscopy, the measured results were achieved from corona discharge experiments of NO and N2. The vibrational and rotational temperatures were determined approximately by fitting the measured spectral intensities with the calculated ones.

  20. Interacting quasi-band model for electronic states in compound semiconductor alloys: Zincblende structure

    NASA Astrophysics Data System (ADS)

    Shinozuka, Yuzo; Oda, Masato

    2015-09-01

    The interacting quasi-band model proposed for electronic states in simple alloys is extended for compound semiconductor alloys with general lattice structures containing several atoms per unit cell. Using a tight-binding model, a variational electronic wave function for quasi-Bloch states yields a non-Hermitian Hamiltonian matrix characterized by matrix elements of constituent crystals and concentration of constituents. Solving secular equations for each k-state yields the alloy’s energy spectrum for any type of randomness and arbitrary concentration. The theory is used to address III-V (II-VI) alloys with a zincblende lattice with crystal band structures well represented by the sp3s* model. Using the resulting 15 × 15 matrix, the concentration dependence of valence and conduction bands is calculated in a unified scheme for typical alloys: Al1-xGaxAs, GaAs1-xPx, and GaSb1-xPx. Results agree well with experiments and are discussed with respect to the concentration dependence, direct-indirect gap transition, and band-gap-bowing origin.

  1. Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies.

    PubMed

    Mahatha, S K; Patel, K D; Menon, Krishnakumar S R

    2012-11-28

    Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).

  2. HF band filter bank multi-carrier spread spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laraway, Stephen Andrew; Moradi, Hussein; Farhang-Boroujeny, Behrouz

    Abstract—This paper describes modifications to the filter bank multicarrier spread spectrum (FB-MC-SS) system, that was presented in [1] and [2], to enable transmission of this waveform in the HF skywave channel. FB-MC-SS is well suited for the HF channel because it performs well in channels with frequency selective fading and interference. This paper describes new algorithms for packet detection, timing recovery and equalization that are suitable for the HF channel. Also, an algorithm for optimizing the peak to average power ratio (PAPR) of the FBMC- SS waveform is presented. Application of this algorithm results in a waveform with low PAPR.more » Simulation results using a wide band HF channel model demonstrate the robustness of this system over a wide range of delay and Doppler spreads.« less

  3. Temperature-dependent internal photoemission probe for band parameters

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Perera, A. G. Unil

    2012-11-01

    The temperature-dependent characteristic of band offsets at the heterojunction interface was studied by an internal photoemission (IPE) method. In contrast to the traditional Fowler method independent of the temperature (T), this method takes into account carrier thermalization and carrier/dopant-induced band-renormalization and band-tailing effects, and thus measures the band-offset parameter at different temperatures. Despite intensive studies in the past few decades, the T dependence of this key band parameter is still not well understood. Re-examining a p-type doped GaAs emitter/undoped AlxGa1-xAs barrier heterojunction system disclosed its previously ignored T dependency in the valence-band offset, with a variation up to ˜-10-4 eV/K in order to accommodate the difference in the T-dependent band gaps between GaAs and AlGaAs. Through determining the Fermi energy level (Ef), IPE is able to distinguish the impurity (IB) and valence bands (VB) of extrinsic semiconductors. One important example is to determine Ef of dilute magnetic semiconductors such as GaMnAs, and to understand whether it is in the IB or VB.

  4. Micro-Valences: Perceiving Affective Valence in Everyday Objects

    PubMed Central

    Lebrecht, Sophie; Bar, Moshe; Barrett, Lisa Feldman; Tarr, Michael J.

    2012-01-01

    Perceiving the affective valence of objects influences how we think about and react to the world around us. Conversely, the speed and quality with which we visually recognize objects in a visual scene can vary dramatically depending on that scene’s affective content. Although typical visual scenes contain mostly “everyday” objects, the affect perception in visual objects has been studied using somewhat atypical stimuli with strong affective valences (e.g., guns or roses). Here we explore whether affective valence must be strong or overt to exert an effect on our visual perception. We conclude that everyday objects carry subtle affective valences – “micro-valences” – which are intrinsic to their perceptual representation. PMID:22529828

  5. The High-Resolution Infrared Spectrum of the ν 5Band of Deuterated Formic Acid (DCOOH)

    NASA Astrophysics Data System (ADS)

    Goh, K. L.; Ong, P. P.; Tan, T. L.; Wang, W. F.; Teo, H. H.

    1998-07-01

    The Fourier transform infrared spectrum of the ν5band of deuterated formic acid (DCOOH) has been measured with a resolution of 0.004 cm-1in the frequency range of 1090-1180 cm-1. Using a Watson'sA-reduced Hamiltonian in theIrrepresentation, a total of 1731 assigned unperturbed transitions have been analyzed to provide rovibrational constants for the upper state (v5= 1) with a standard deviation of 0.000363 cm-1. The band isAtype with an unperturbed band center at 1142.31075 ± 0.00002 cm-1. The band is expected to be perturbed by a nearby ν4band through a Fermi resonance term and possibly a Coriolis term. The resonance is particularly noticeable forKa= 10, and 11, at highJvalues. About 215 perturbed lines were identified but they were not included in the final fit.

  6. The high-resolution infrared spectrum of the ν3 +ν5 combination band of jet-cooled propyne

    NASA Astrophysics Data System (ADS)

    Doney, K. D.; Zhao, D.; Bouwman, J.; Linnartz, H.

    2017-09-01

    We present the first detection of the high-resolution ro-vibrational spectrum of the ν3 +ν5 combination band of propyne around 3070 cm-1. The fully resolved spectrum is recorded for supersonically jet-cooled propyne using continuous wave cavity ring-down spectroscopy (cw-CRDS). The assignments are supported with the help of accurate ab initio vibration-rotation interaction constants (αi) and anharmonic frequencies. A detailed analysis of the rotationally cold spectrum is given.

  7. Enhancing photovoltaic output power by 3-band spectrum-splitting and concentration using a diffractive micro-optic

    DOE PAGES

    Mohammad, Nabil; Wang, Peng; Friedman, Daniel J.; ...

    2014-09-17

    We report the enhancement of photovoltaic output power by separating the incident spectrum into 3 bands, and concentrating these bands onto 3 different photovoltaic cells. The spectrum-splitting and concentration is achieved via a thin, planar micro-optical element that demonstrates high optical efficiency over the entire spectrum of interest. The optic (which we call a polychromat) was designed using a modified version of the direct-binary-search algorithm. The polychromat was fabricated using grayscale lithography. Rigorous optical characterization demonstrates excellent agreement with simulation results. Electrical characterization of the solar cells made from GaInP, GaAs and Si indicate increase in the peak output powermore » density of 43.63%, 30.84% and 30.86%, respectively when compared to normal operation without the polychromat. This represents an overall increase of 35.52% in output power density. As a result, the potential for cost-effective large-area manufacturing and for high system efficiencies makes our approach a strong candidate for low cost solar power.« less

  8. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  9. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Śmiałek, M. A., E-mail: smialek@pg.gda.pl; Łabuda, M.; Guthmuller, J.

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). Newmore » vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)« less

  10. Satellite Communications for Unmanned Aircraft C2 Links: C-Band, Ku-Band and Ka-Band

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Wilson, Jeffrey D.; Bishop, William D.

    2016-01-01

    Unmanned aircraft (UA) that require access to controlled (or non-segregated) airspace require a highly reliable and robust command and control (C2) link, operating over protected aviation spectrum. While operating within radio line-of-sight (LOS) UA can make use of air-to-ground C2 links to terrestrial stations. When operating beyond LOS (BLOS) where a group of networked terrestrial stations does not exist to provide effective BLOS coverage, a satellite communications link is required. Protected aviation spectrum for satellite C2 links has only recently been allocated in bands where operational satellites exist. A previously existing C-Band allocation covers a bands where there are currently no operational satellites. The new allocations, within the Fixed Satellite Service bands at Ku and Ka-Bands will not be finalized until 2023 due to the need for the development of standards and technical decisions on the operation of UA satellite C2 links within these bands. This paper provides an overview of BLOS satellite C2 links, some of the conditions which will need to be met for the operation of such links, and a look at some aspects of spectrum sharing which may constrain these operations.

  11. Polarization Dependent Bulk-sensitive Valence Band Photoemission Spectroscopy and Density Functional Theory Calculations: Part I. 3d Transition Metals

    NASA Astrophysics Data System (ADS)

    Ueda, Shigenori; Hamada, Ikutaro

    2017-12-01

    The X-ray polarization dependent valence band HAXPES spectra of 3d transition metals (TMs) of Ti-Zn were measured to investigate the orbital resolved electronic structures by utilizing that the fact the photoionization cross-section of the atomic orbitals strongly depends on the experimental geometry. We have calculated the HAXPES spectra, which correspond to the cross-section weighted densities of states (CSW-DOSs), where the DOSs were obtained by the density functional theory calculations, and we have determined the relative photoionization cross-sections of the 4s and 4p orbitals to the 3d orbital in the 3d TMs. The experimentally obtained bulk-sensitive 3d and 4s DOSs were good agreement with the calculated DOSs in Ti, V, Cr, and Cu. In contrast, the deviations between the experimental and calculated 3d DOSs for Mn, Fe, Co, Ni were found, suggesting that the electron correlation plays an important role in the electronic structures for these materials.

  12. First Principles Study of Band Structure and Band Gap Engineering in Graphene for Device Applications

    DTIC Science & Technology

    2015-03-20

    In the bandstructure of graphene which is dominated by Dirac description, valence and conduction bands cross the Fermi level at a single point (K...of energy bands and appearance of Dirac cones near the ‘K’ point and Fermi level the electrons behave like massless Dirac fermions. For applications...results. Introduction Graphene, the super carbon , is now accepted as wonder material with new physics and it has caused major

  13. Valence evaluation with approaching or withdrawing cues: directly testing valence-arousal conflict theory.

    PubMed

    Wang, Yan Mei; Li, Ting; Li, Lin

    2017-07-19

    The valence-arousal conflict theory assumes that both valence and arousal will trigger approaching or withdrawing tendencies. It also predicts that the speed of processing emotional stimuli will depend on whether valence and arousal trigger conflicting or congruent motivational tendencies. However, most previous studies have provided evidence of the interaction between valence and arousal only, and have not provided direct proof of the interactive links between valence, arousal and motivational tendencies. The present study provides direct evidence for the relationship between approach-withdrawal tendencies and the valence-arousal conflict. In an empirical test, participants were instructed to judge the valence of emotional words after visual-spatial cues that appeared to be either approaching or withdrawing from participants. A three-way interaction (valence, arousal, and approach-withdrawal tendency) was observed such that the response time was shorter if participants responded to a negative high-arousal stimulus after a withdrawing cue, or to a positive low-arousal stimulus after an approaching cue. These findings suggest that the approach-withdrawal tendency indeed plays a crucial role in valence-arousal conflict, and that the effect depends on the congruency of valence, arousal and tendency at an early stage of processing.

  14. Electronic Structures of Purple Bronze KMo6O17 Studied by X-Ray Photoemission Spectra

    NASA Astrophysics Data System (ADS)

    Qin, Xiaokui; Wei, Junyin; Shi, Jing; Tian, Mingliang; Chen, Hong; Tian, Decheng

    X-ray photoemission spectroscopy study has been performed for the purple bronze KMo6O17. The structures of conduction band and valence band are analogous to the results of ultraviolet photoemission spectra and are also consistent with the model of Travaglini et al., but the gap between conduction and valence band is insignificant. The shape of asymmetric and broadening line of O-1s is due to unresolved contributions from the many inequivalent oxygen sites in this crystal structure. Mo 3d core-level spectrum reveals that there are two kinds of valence states of Molybdenum (Mo+5 and Mo+6). The calculated average valence state is about +5.6, which is consistent with the expectation value from the composition of this material. The tail of Mo-3d spectrum toward higher binding energy is the consequence of the excitation of electron-hole pairs with singularity index of 0.21.

  15. Madelung and Hubbard interactions in polaron band model of doped organic semiconductors

    PubMed Central

    Png, Rui-Qi; Ang, Mervin C.Y.; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K.H.

    2016-01-01

    The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π–π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine–fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355

  16. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.

    PubMed

    Zhang, Nanlin; Neo, Darren C J; Tazawa, Yujiro; Li, Xiuting; Assender, Hazel E; Compton, Richard G; Watt, Andrew A R

    2016-08-24

    The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 ± 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.

  17. Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si

    NASA Astrophysics Data System (ADS)

    Persson, C.; Lindefelt, U.; Sernelius, B. E.

    1999-10-01

    Doping-induced energy shifts of the conduction band minimum and the valence band maximum have been calculated for n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. The narrowing of the fundamental band gap and of the optical band gap are presented as functions of ionized impurity concentration. The calculations go beyond the common parabolic treatments of the ground state energy dispersion by using energy dispersion and overlap integrals from band structure calculations. The nonparabolic valence band curvatures influence strongly the energy shifts especially in p-type materials. The utilized method is based on a zero-temperature Green's function formalism within the random phase approximation with local field correction according to Hubbard. We have parametrized the shifts of the conduction and the valence bands and made comparisons with recently published results from a semi-empirical model.

  18. Widely tunable band gap in a multivalley semiconductor SnSe by potassium doping

    NASA Astrophysics Data System (ADS)

    Zhang, Kenan; Deng, Ke; Li, Jiaheng; Zhang, Haoxiong; Yao, Wei; Denlinger, Jonathan; Wu, Yang; Duan, Wenhui; Zhou, Shuyun

    2018-05-01

    SnSe, a group IV-VI monochalcogenide with layered crystal structure similar to black phosphorus, has recently attracted extensive interest due to its excellent thermoelectric properties and potential device applications. Experimental electronic structure of both the valence and conduction bands is critical for understanding the effects of hole versus electron doping on the thermoelectric properties, and to further reveal possible change of the band gap upon doping. Here, we report the multivalley valence bands with a large effective mass on semiconducting SnSe crystals and reveal single-valley conduction bands through electron doping to provide a complete picture of the thermoelectric physics. Moreover, by electron doping through potassium deposition, the band gap of SnSe can be widely tuned from 1.2 eV to 0.4 eV, providing new opportunities for tunable electronic and optoelectronic devices.

  19. Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell.

    PubMed

    Martí, A; Antolín, E; Stanley, C R; Farmer, C D; López, N; Díaz, P; Cánovas, E; Linares, P G; Luque, A

    2006-12-15

    We present intermediate-band solar cells manufactured using quantum dot technology that show for the first time the production of photocurrent when two sub-band-gap energy photons are absorbed simultaneously. One photon produces an optical transition from the intermediate-band to the conduction band while the second pumps an electron from the valence band to the intermediate-band. The detection of this two-photon absorption process is essential to verify the principles of operation of the intermediate-band solar cell. The phenomenon is the cornerstone physical principle that ultimately allows the production of photocurrent in a solar cell by below band gap photon absorption, without degradation of its output voltage.

  20. Local Bonding Influence on the Band Edge and Band Gap Formation in Quaternary Chalcopyrites.

    PubMed

    Miglio, Anna; Heinrich, Christophe P; Tremel, Wolfgang; Hautier, Geoffroy; Zeier, Wolfgang G

    2017-09-01

    Quaternary chalcopyrites have shown to exhibit tunable band gaps with changing anion composition. Inspired by these observations, the underlying structural and electronic considerations are investigated using a combination of experimentally obtained structural data, molecular orbital considerations, and density functional theory. Within the solid solution Cu 2 ZnGeS 4- x Se x , the anion bond alteration parameter changes, showing larger bond lengths for metal-selenium than for metal-sulfur bonds. The changing bonding interaction directly influences the valence and conduction band edges, which result from antibonding Cu-anion and Ge-anion interactions, respectively. The knowledge of the underlying bonding interactions at the band edges can help design properties of these quaternary chalcopyrites for photovoltaic and thermoelectric applications.

  1. Thickness-dependent transition of the valence band shape from parabolic to Mexican-hat-like in the MBE grown InSe ultrathin films

    NASA Astrophysics Data System (ADS)

    Kibirev, I. A.; Matetskiy, A. V.; Zotov, A. V.; Saranin, A. A.

    2018-05-01

    Using molecular beam epitaxy, InSe films of thicknesses from one to six quadruple layers were grown on Si(111). The surface morphology and structure of the InSe films were monitored using reflection high-energy electron diffraction and scanning tunneling microscopy observations. Angle resolved photoemission experiments revealed that the bulk-like parabolic shape of the valence band of InSe/Si(111) changes for the so-called "Mexican hat" shape when the thickness of the InSe film reduces to one and two quadruple layers. The observed effect is in a qualitative agreement with the reported calculation results on the free-standing InSe films. However, in the InSe/Si(111) system, the features used to characterize the Mexican hat dispersion appear to be more pronounced, which makes the one- and two-quadruple InSe layers on Si(111) promising candidates as thermoelectric materials.

  2. Tunable terahertz reflection spectrum based on band gaps of GaP materials excited by ultrasonic

    NASA Astrophysics Data System (ADS)

    Cui, H.; Zhang, X. B.; Wang, X. F.; Wang, G. Q.

    2018-02-01

    Tunable terahertz (THz) reflection spectrum, ranged from 0.2 to 8 THz, in band gaps of gallium phosphide (GaP) materials excited by ultrasonic is investigated in the present paper, in which tunable ultrasonic and terahertz wave collinear transmission in the same direction is postulated. Numerical simulation results show that, under the acousto-optic interaction, band gaps of transverse optical phonon polariton dispersion curves are turned on, this leads to a dis-propagation of polariton in GaP bulk. On the other side, GaP material has less absorption to THz wave according to experimental studies, as indicates that THz wave could be reflected by the band gaps spontaneously. The band gaps width and acousto-optic coupling strength are proportional with ultrasonic frequency and its intensity in ultrasonic frequency range of 0-250 MHz, in which low-frequency branch of transverse optical phonon polariton dispersion curves demonstrate periodicity and folding as well as. With the increase of ultrasonic frequency, frequency of band gap is blue-shifted, and total reflectivity decreased with -1-order and -2-order reflectivity decrease. The band gaps converge to the restrahlen band infinitely with frequency of ultrasonic exceeding over 250 MHz, total reflectivity of which is attenuated. As is show above, reflection of THz wave can be accommodated by regulating the frequency and its intensity of ultrasonic frequency. Relevant technology may be available in tunable THz frequency selection and filtering.

  3. Band offsets in ITO/Ga2O3 heterostructures

    NASA Astrophysics Data System (ADS)

    Carey, Patrick H.; Ren, F.; Hays, David C.; Gila, B. P.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito

    2017-11-01

    The valence band offsets in rf-sputtered Indium Tin Oxide (ITO)/single crystal β-Ga2O3 (ITO/Ga2O3) heterostructures were measured with X-Ray Photoelectron Spectroscopy using the Kraut method. The bandgaps of the component materials in the heterostructure were determined by Reflection Electron Energy Loss Spectroscopy as 4.6 eV for Ga2O3 and 3.5 eV for ITO. The valence band offset was determined to be -0.78 ± 0.30 eV, while the conduction band offset was determined to be -0.32 ± 0.13 eV. The ITO/Ga2O3 system has a nested gap (type I) alignment. The use of a thin layer of ITO between a metal and the Ga2O3 is an attractive approach for reducing contact resistance on Ga2O3-based power electronic devices and solar-blind photodetectors.

  4. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  5. Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)

    PubMed Central

    2017-01-01

    We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon’s band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate’s band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate. PMID:29049879

  6. Evaluation of band alignment of α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterostructures by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Uchida, Takayuki; Jinno, Riena; Takemoto, Shu; Kaneko, Kentaro; Fujita, Shizuo

    2018-04-01

    The band alignment at an α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterointerface, with different Al compositions (x), grown on a c-plane sapphire substrate was evaluated by X-ray photoelectron spectroscopy. The experimental results show that the heterointerface has the type-I band discontinuity with the valence band offsets of 0.090, 0.12, and 0.14 eV, and the conduction band offsets of 0.34, 0.79, and 1.87 eV, for x values of 0.1, 0.4, and 0.8, respectively. The small band offset for the valence band is attributed to the fact that the valence band of oxides is constituted by the localized O 2p level, which is dominated by the nature of oxygen atoms. The type-I band discontinuity is desirable for a variety of heterostructure devices.

  7. Exploring possibilities of band gap measurement with off-axis EELS in TEM.

    PubMed

    Korneychuk, Svetlana; Partoens, Bart; Guzzinati, Giulio; Ramaneti, Rajesh; Derluyn, Joff; Haenen, Ken; Verbeeck, Jo

    2018-06-01

    A technique to measure the band gap of dielectric materials with high refractive index by means of energy electron loss spectroscopy (EELS) is presented. The technique relies on the use of a circular (Bessel) aperture and suppresses Cherenkov losses and surface-guided light modes by enforcing a momentum transfer selection. The technique also strongly suppresses the elastic zero loss peak, making the acquisition, interpretation and signal to noise ratio of low loss spectra considerably better, especially for excitations in the first few eV of the EELS spectrum. Simulations of the low loss inelastic electron scattering probabilities demonstrate the beneficial influence of the Bessel aperture in this setup even for high accelerating voltages. The importance of selecting the optimal experimental convergence and collection angles is highlighted. The effect of the created off-axis acquisition conditions on the selection of the transitions from valence to conduction bands is discussed in detail on a simplified isotropic two band model. This opens the opportunity for deliberately selecting certain transitions by carefully tuning the microscope parameters. The suggested approach is experimentally demonstrated and provides good signal to noise ratio and interpretable band gap signals on reference samples of diamond, GaN and AlN while offering spatial resolution in the nm range. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Band gap engineering of NaTaO3 using density functional theory: a charge compensated codoping strategy.

    PubMed

    Modak, Brindaban; Srinivasu, K; Ghosh, Swapan K

    2014-08-28

    In this theoretical study, we employ a codoping strategy to reduce the band gap of NaTaO3 aimed at improving the photocatalytic activity under visible light. The systematic study includes the effects of metal (W) and nonmetal (N) codoping on the electronic structure of NaTaO3 in comparison to the effect of individual dopants. The feasibility of the introduction of N into the NaTaO3 crystal structure is found to be enhanced in the presence of W, as indicated by the calculated formation energy. This codoping leads to formation of a charge compensated system, beneficial for the minimization of vacancy related defect formation. The electronic structure calculations have been carried out using a hybrid density functional for an accurate description of the proposed system. The introduction of W in place of Ta leads to the appearance of donor states below the conduction band, while N doping in place of oxygen introduces isolated acceptor states above the valence band. The codoping of N and W also passivates undesirable discrete midgap states. This feature is not observed in the case of (Cr, N) codoped NaTaO3 in spite of its charge compensated nature. We have also studied charge non-compensated codoping using several dopant pairs, including anion-anion and cation-anion pairs. However, this non-compensated codoping introduces localized states in between the valence band and the conduction band, and hence may not be effective in enhancing the photocatalytic properties of NaTaO3. The optical spectrum shows that the absorption curve for the (W, N)-codoped NaTaO3 is extended to the visible region due to narrowing of the band gap to 2.67 eV. Moreover, its activity for the photo decomposition of water to produce both H2 and O2 remains intact. Hence, based on the present investigation we can propose (W, N) codoped NaTaO3 as a promising photocatalyst for visible light driven water splitting.

  9. Electronic structure of rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) by X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crerar, Shane J.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca; Grosvenor, Andrew P.

    The electronic structure of the ternary rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) has been examined by high-resolution X-ray photoelectron spectroscopy (XPS) for the first time. The RE 3d or 4d core-line spectra are substantially complicated by the presence of satellite peaks but their general resemblance to those of RE{sub 2}O{sub 3} tends to support the presence of trivalent RE atoms in RECrSb{sub 3}. However, the Yb 4d spectrum of YbCrSb{sub 3} also shows peaks that are characteristic of divalent ytterbium. The Cr 2p core-line spectra exhibit asymmetric lineshapes and little change in binding energy (BE) relative tomore » Cr metal, providing strong evidence for electronic delocalization. The Sb 3d core-line spectra reveal slightly negative BE shifts relative to elemental antimony, supporting the presence of anionic Sb species in RECrSb{sub 3}. The experimental valence band spectrum of LaCrSb{sub 3} matches well with the calculated density of states, and it can be fitted to component peaks belonging to individual atoms to yield an average formulation that agrees well with expectations ('La{sup 3+}Cr{sup 3+}(Sb{sup 2-}){sub 3}'). On progressing from LaCrSb{sub 3} to NdCrSb{sub 3}, the 4f-band in the valence band spectra grows in intensity and shifts to higher BE. The valence band spectrum for YbCrSb{sub 3} also supports the presence of divalent ytterbium. - Graphical Abstract: In their valence band spectra, the 4f-band intensifies and shifts to higher BE on progressing from LaCrSb{sub 3} to NdCrSb{sub 3}. Highlights: Black-Right-Pointing-Pointer High-resolution core-line and valence band XPS spectra were measured for RECrSb{sub 3}. Black-Right-Pointing-Pointer Divalent Yb is present in YbCrSb{sub 3}, in contrast to trivalent RE in other members. Black-Right-Pointing-Pointer Asymmetric Cr 2p spectral lineshape confirms delocalization of Cr valence electrons. Black-Right-Pointing-Pointer Small negative Sb 3d BE shifts support

  10. Band Offsets at the Interface between Crystalline and Amorphous Silicon from First Principles

    NASA Astrophysics Data System (ADS)

    Jarolimek, K.; Hazrati, E.; de Groot, R. A.; de Wijs, G. A.

    2017-07-01

    The band offsets between crystalline and hydrogenated amorphous silicon (a -Si ∶H ) are key parameters governing the charge transport in modern silicon heterojunction solar cells. They are an important input for macroscopic simulators that are used to further optimize the solar cell. Past experimental studies, using x-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here, we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction-band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.29 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence-band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015), 10.1063/1.4906195].

  11. Wave-function-based approach to quasiparticle bands: Insight into the electronic structure of c-ZnS

    NASA Astrophysics Data System (ADS)

    Stoyanova, A.; Hozoi, L.; Fulde, P.; Stoll, H.

    2011-05-01

    Ab initio wave-function-based methods are employed for the study of quasiparticle energy bands of zinc-blende ZnS, with focus on the Zn 3d “semicore” states. The relative energies of these states with respect to the top of the S 3p valence bands appear to be poorly described as compared to experimental values not only within the local density approximation (LDA), but also when many-body corrections within the GW approximation are applied to the LDA or LDA + U mean-field solutions [T. Miyake, P. Zhang, M. L. Cohen, and S. G. Louie, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.74.245213 74, 245213 (2006)]. In the present study, we show that for the accurate description of the Zn 3d states a correlation treatment based on wave-function methods is needed. Our study rests on a local Hamiltonian approach which rigorously describes the short-range polarization and charge redistribution effects around an extra hole or electron placed into the valence respective conduction bands of semiconductors and insulators. The method also facilitates the computation of electron correlation effects beyond relaxation and polarization. The electron correlation treatment is performed on finite clusters cut off the infinite system. The formalism makes use of localized Wannier functions and embedding potentials derived explicitly from prior periodic Hartree-Fock calculations. The on-site and nearest-neighbor charge relaxation lead to corrections of several eV to the Hartree-Fock band energies and gap. Corrections due to long-range polarization are of the order of 1.0 eV. The dispersion of the Hartree-Fock bands is only slightly affected by electron correlations. We find the Zn 3d “semicore” states to lie ~9.0 eV below the top of the S 3p valence bands, in very good agreement with values from valence-band x-ray photoemission.

  12. Interacting quasi-band theory for electronic states in compound semiconductor alloys: Wurtzite structure

    NASA Astrophysics Data System (ADS)

    Kishi, Ayaka; Oda, Masato; Shinozuka, Yuzo

    2016-05-01

    This paper reports on the electronic states of compound semiconductor alloys of wurtzite structure calculated by the recently proposed interacting quasi-band (IQB) theory combined with empirical sp3 tight-binding models. Solving derived quasi-Hamiltonian 24 × 24 matrix that is characterized by the crystal parameters of the constituents facilitates the calculation of the conduction and valence bands of wurtzite alloys for arbitrary concentrations under a unified scheme. The theory is applied to III-V and II-VI wurtzite alloys: cation-substituted Al1- x Ga x N and Ga1- x In x N and anion-substituted CdS1- x Se x and ZnO1- x S x . The obtained results agree well with the experimental data, and are discussed in terms of mutual mixing between the quasi-localized states (QLS) and quasi-average bands (QAB): the latter bands are approximately given by the virtual crystal approximation (VCA). The changes in the valence and conduction bands, and the origin of the band gap bowing are discussed on the basis of mixing character.

  13. On the optical band gap of zinc oxide

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Clarke, D. R.

    1998-05-01

    Three different values (3.1, 3.2, and 3.3 eV) have been reported for the optical band gap of zinc oxide single crystals at room temperature. By comparing the optical properties of ZnO crystals using a variety of optical techniques it is concluded that the room temperature band gap is 3.3 eV and that the other values are attributable to a valence band-donor transition at ˜3.15 eV that can dominate the optical absorption when the bulk of a single crystal is probed.

  14. Programming interfacial energetic offsets and charge transfer in β-Pb 0.33V 2O 5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states

    DOE PAGES

    Pelcher, Kate E.; Milleville, Christopher C.; Wangoh, Linda; ...

    2016-12-06

    Here, semiconductor heterostructures for solar energy conversion interface light-harvesting semiconductor nanoparticles with wide-band-gap semiconductors that serve as charge acceptors. In such heterostructures, the kinetics of charge separation depend on the thermodynamic driving force, which is dictated by energetic offsets across the interface. A recently developed promising platform interfaces semiconductor quantum dots (QDs) with ternary vanadium oxides that have characteristic midgap states situated between the valence and conduction bands. In this work, we have prepared CdS/β-Pb 0.33V 2O 5 heterostructures by both linker-assisted assembly and surface precipitation and contrasted these materials with CdSe/β-Pb 0.33V 2O 5 heterostructures prepared by the samemore » methods. Increased valence-band (VB) edge onsets in X-ray photoelectron spectra for CdS/β-Pb 0.33V 2O 5 heterostructures relative to CdSe/β-Pb 0.33V 2O 5 heterostructures suggest a positive shift in the VB edge potential and, therefore, an increased driving force for the photoinduced transfer of holes to the midgap state of β-Pb 0.33V 2O 5. This approach facilitates a ca. 0.40 eV decrease in the thermodynamic barrier for hole injection from the VB edge of QDs suggesting an important design parameter. Transient absorption spectroscopy experiments provide direct evidence of hole transfer from photoexcited CdS QDs to the midgap states of β-Pb 0.33V 2O 5 NWs, along with electron transfer into the conduction band of the β-Pb 0.33V 2O 5 NWs. Hole transfer is substantially faster and occurs at <1-ps time scales, whereas completion of electron transfer requires 5—30 ps depending on the nature of the interface. The differentiated time scales of electron and hole transfer, which are furthermore tunable as a function of the mode of attachment of QDs to NWs, provide a vital design tool for designing architectures for solar energy conversion. More generally, the approach developed here suggests that

  15. Programming interfacial energetic offsets and charge transfer in β-Pb 0.33V 2O 5/quantum-dot heterostructures: Tuning valence-band edges to overlap with midgap states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelcher, Kate E.; Milleville, Christopher C.; Wangoh, Linda

    Here, semiconductor heterostructures for solar energy conversion interface light-harvesting semiconductor nanoparticles with wide-band-gap semiconductors that serve as charge acceptors. In such heterostructures, the kinetics of charge separation depend on the thermodynamic driving force, which is dictated by energetic offsets across the interface. A recently developed promising platform interfaces semiconductor quantum dots (QDs) with ternary vanadium oxides that have characteristic midgap states situated between the valence and conduction bands. In this work, we have prepared CdS/β-Pb 0.33V 2O 5 heterostructures by both linker-assisted assembly and surface precipitation and contrasted these materials with CdSe/β-Pb 0.33V 2O 5 heterostructures prepared by the samemore » methods. Increased valence-band (VB) edge onsets in X-ray photoelectron spectra for CdS/β-Pb 0.33V 2O 5 heterostructures relative to CdSe/β-Pb 0.33V 2O 5 heterostructures suggest a positive shift in the VB edge potential and, therefore, an increased driving force for the photoinduced transfer of holes to the midgap state of β-Pb 0.33V 2O 5. This approach facilitates a ca. 0.40 eV decrease in the thermodynamic barrier for hole injection from the VB edge of QDs suggesting an important design parameter. Transient absorption spectroscopy experiments provide direct evidence of hole transfer from photoexcited CdS QDs to the midgap states of β-Pb 0.33V 2O 5 NWs, along with electron transfer into the conduction band of the β-Pb 0.33V 2O 5 NWs. Hole transfer is substantially faster and occurs at <1-ps time scales, whereas completion of electron transfer requires 5—30 ps depending on the nature of the interface. The differentiated time scales of electron and hole transfer, which are furthermore tunable as a function of the mode of attachment of QDs to NWs, provide a vital design tool for designing architectures for solar energy conversion. More generally, the approach developed here suggests that

  16. Change in optimum genetic algorithm solution with changing band discontinuities and band widths of electrically conducting copolymers

    NASA Astrophysics Data System (ADS)

    Kaur, Avneet; Bakhshi, A. K.

    2010-04-01

    The interest in copolymers stems from the fact that they present interesting electronic and optical properties leading to a variety of technological applications. In order to get a suitable copolymer for a specific application, genetic algorithm (GA) along with negative factor counting (NFC) method has recently been used. In this paper, we study the effect of change in the ratio of conduction band discontinuity to valence band discontinuity (Δ Ec/Δ Ev) on the optimum solution obtained from GA for model binary copolymers. The effect of varying bandwidths on the optimum GA solution is also investigated. The obtained results show that the optimum solution changes with varying parameters like band discontinuity and band width of constituent homopolymers. As the ratio Δ Ec/Δ Ev increases, band gap of optimum solution decreases. With increasing band widths of constituent homopolymers, the optimum solution tends to be dependent on the component with higher band gap.

  17. The electronic characterization of biphenylene—Experimental and theoretical insights from core and valence level spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüder, Johann; Sanyal, Biplab; Eriksson, Olle

    In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction withmore » hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.« less

  18. Computational Design of Flat-Band Material.

    PubMed

    Hase, I; Yanagisawa, T; Kawashima, K

    2018-02-26

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  19. Computational Design of Flat-Band Material

    NASA Astrophysics Data System (ADS)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  20. A Cognitive Agent for Spectrum Monitoring and Informed Spectrum Access

    DTIC Science & Technology

    2017-06-01

    electromagnetic environments (EMEs) to understand what spectrum bands are accessed, when those bands are accessed, and how much energy is...recall. The cognitive agent in this report uses the second approach. The knowledge domain of the cognitive agent is the electromagnetic spectrum. The...Knowledge DTV digital television EME electromagnetic environments FM frequency modulated RF radio frequency VHF very high frequency

  1. A Multidimensional Measure of Work Valences

    ERIC Educational Resources Information Center

    Porfeli, Erik J.; Lee, Bora; Weigold, Ingrid K.

    2012-01-01

    Work valence is derived from expectancy-valence theory and the literature on children's vocational development and is presumed to be a general appraisal of work that emerges during the childhood period. Work valence serves to promote and inhibit the motivation and tasks associated with vocational development. A measure of work valence, composed of…

  2. High-Resolution Fourier Transform Infrared Spectrum of the ν 12 Fundamental Band of Ethylene (C 2H 4)

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Lau, S. Y.; Ong, P. P.; Goh, K. L.; Teo, H. H.

    2000-10-01

    The infrared spectrum of the ν12 fundamental band of ethylene (C2H4) has been measured with an unapodized resolution of 0.004 cm-1 in the frequency range of 1380-1500 cm-1 using the Fourier transform technique. By assigning and fitting a total of 1387 infrared transitions using a Watson's A-reduced Hamiltonian in the Ir representation, rovibrational constants for the upper state (v12 = 1) up to five quartic and three sextic centrifugal distortions terms were derived. They represent the most accurate constants for the band so far. The rms deviation of the fit was 0.00033 cm-1. The A-type ν12 band with a band center at 1442.44299 ± 0.00003 cm-1 was found to be relatively free from local frequency perturbations. The inertial defect Δ12 was found to be 0.24201 ± 0.00002 u Å2.

  3. Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.

    PubMed

    Guzel Aydin, Seda; Kaya, Turgay; Guler, Hasan

    2016-06-01

    This paper illustrates the wavelet-based feature extraction for emotion assessment using electroencephalogram (EEG) signal through graphical coding design. Two-dimensional (valence-arousal) emotion model was studied. Different emotions (happy, joy, melancholy, and disgust) were studied for assessment. These emotions were stimulated by video clips. EEG signals obtained from four subjects were decomposed into five frequency bands (gamma, beta, alpha, theta, and delta) using "db5" wavelet function. Relative features were calculated to obtain further information. Impact of the emotions according to valence value was observed to be optimal on power spectral density of gamma band. The main objective of this work is not only to investigate the influence of the emotions on different frequency bands but also to overcome the difficulties in the text-based program. This work offers an alternative approach for emotion evaluation through EEG processing. There are a number of methods for emotion recognition such as wavelet transform-based, Fourier transform-based, and Hilbert-Huang transform-based methods. However, the majority of these methods have been applied with the text-based programming languages. In this study, we proposed and implemented an experimental feature extraction with graphics-based language, which provides great convenience in bioelectrical signal processing.

  4. Electronic structure and thermoelectric properties of half-Heusler compounds with eight electron valence count—KScX (X = C and Ge)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciftci, Yasemin O.; Mahanti, Subhendra D.

    Electronic band structure and structural properties of two representative half-Heusler (HH) compounds with 8 electron valence count (VC), KScC and KScGe, have been studied using first principles methods within density functional theory and generalized gradient approximation. These systems differ from the well studied class of HH compounds like ZrNiSn and ZrCoSb which have VC = 18 because of the absence of d electrons of the transition metal atoms Ni and Co. Electronic transport properties such as Seebeck coefficient (S), electrical conductivity (σ), electronic thermal conductivity (κ{sub e}) (the latter two scaled by electronic relaxation time), and the power factor (S{sup 2}σ) havemore » been calculated using semi-classical Boltzmann transport theory within constant relaxation time approximation. Both the compounds are direct band gap semiconductors with band extrema at the X point. Their electronic structures show a mixture of heavy and light bands near the valance band maximum and highly anisotropic conduction and valence bands near the band extrema, desirable features of good thermoelectric. Optimal p- or n-type doping concentrations have been estimated based on thermopower and maximum power factors. The optimum room temperature values of S are ∼1.5 times larger than that of the best room temperature thermoelectric Bi{sub 2}Te{sub 3}. We also discuss the impact of the band structure on deviations from Weidemann-Franz law as one tunes the chemical potential across the band gap.« less

  5. Identification of Cr valence states in Cr and Nd co-doped Lu3Al5O12 laser ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Pande; Jiang, Benxue; Fan, Jintai; Mao, Xiaojian; Zhang, Long

    2017-09-01

    Cr and Nd co-doped laser ceramics, as the potential gain materials in inertial confinement fusion (ICF), have been widely investigated. And the study on valence states of chromium ions is important. The effects of sintering additives and annealing atmosphere on the valence state of chromium were studied in detail, and the results shown that the Cr valence states were demonstrated to be Cr2+ and Cr3+ ions in HIP-sintered Cr(0.2 at.%), Nd(0.8 at.%): LuAG laser ceramics. And the intensity of the near-infrared absorption band caused by Cr2+ ions was attenuated with the decreasing SiO2 concentration and increasing MgO amount. The near-infrared absorption could be eliminated by annealing in air. And the transformation of valence states of Cr ions in the Cr,Nd:LuAG ceramics were also confirmed by electron paramagnetic resonance and X-ray photoelectron spectroscopy.

  6. High-Resolution FTIR Spectrum of the ν 9 Band of Ethylene- D4 (C 2D 4)

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Goh, K. L.; Ong, P. P.; Teo, H. H.

    2000-08-01

    The spectrum of the ν9 fundamental band of ethylene-d4 (C2D4) has been measured with an unapodized resolution of 0.004 cm-1 in the frequency range of 2300-2400 cm-1 using a Fourier transform infrared spectrometer. A total of 549 transitions have been assigned and fitted using a Watson's A-reduced Hamiltonian in the Ir representation to derive rovibrational constants for the upper state (v9 = 1) up to five quartic terms with a standard deviation of 0.00087 cm-1. They represent the most accurate rovibrational constants for the ν9 band so far. About 30 transitions of Ka‧ = 0, one transition of ν9 which were identified to be perturbed possibly by the nearby ν11 and ν2 + ν12 transitions, were not included in the final fit. The ν9 band of C2D4 was found to be basically B-type with an unperturbed band center at 2341.836 94 ± 0.000 13 cm-1.

  7. Synthesis, characterization, and photophysical properties of a series of supramolecular mixed-valence compounds.

    PubMed

    Pfennig, B W; Fritchman, V A; Hayman, K A

    2001-01-15

    The synthesis and characterization of 10 cyano-bridged trinuclear mixed-valence compounds of the form [(NH3)5M-NC-FeII(CN)4-CN-M'(NH3)5]n+ (M = RuIII, OsIII, CrIII, or PtIV; n = 2, 3, or 4) is reported. The electronic spectra of these supramolecular compounds exhibit a single intervalent (IT) absorption band for each nondegenerate Fe-->M/M' transition. The redox potential of the Fe(II) center is shifted more positive with the addition of each coordinated metal complex, while the redox potentials of the pendant metals vary only slightly from their dinuclear counterparts. As a result, the Fe-->M IT bands are blue-shifted from those in the corresponding dinuclear mixed-valence compounds. The energies of these IT bands show a linear correlation with the ground-state thermodynamic driving force, as predicted by classical electron transfer theory. Estimates of the degree of electronic coupling (Hab) between the metal centers using a theoretical analysis of the IT band shapes indicate that most of these values are similar to those for the corresponding dinuclear species. Notable exceptions occur for the Fe-->M IT transitions in Os-Fe-M (M = Cr or Pt). The enhanced electronic coupling in these two species can be explained as a result of excited state mixing between electron transfer and/or ligand-based charge transfer states and an intensity-borrowing mechanism. Additionally, the possibility of electronic coupling between the remote metal centers in the Ru-Fe-Ru species is discussed in order to explain the observation of two closely spaced redox waves for the degenerate Ru(III) acceptors.

  8. Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Gangjian; Shi, Fengyuan; Hao, Shiqiang

    2015-04-22

    We report a significant enhancement of the thermoelectric performance of p-type SnTe over a broad temperature plateau with a peak ZT value of similar to 1.4 at 923 K through In/Cd codoping and a CdS nanostructuring approach. Indium and cadmium play different but complementary roles in modifying the valence band structure of SnTe. Specifically, In-doping introduces resonant levels inside the valence bands, leading to a considerably improved Seebeck coefficient at low temperature. Cd-doping, however, increases the Seebeck coefficient of SnTe remarkably in the mid- to high-temperature region via a convergence of the light and heavy hole bands and an enlargementmore » of the band gap. Combining the two dopants in SnTe yields enhanced Seebeck coefficient and power factor over a wide temperature range due to the synergy of resonance levels and valence band convergence, as demonstrated by the Pisarenko plot and supported by first-principles band structure calculations. Moreover, these codoped samples can be hierarchically structured on all scales (atomic point defects by doping, nanoscale precipitations by CdS nanostructuring, and mesoscale grains by SPS treatment) to achieve highly effective phonon scattering leading to strongly reduced thermal conductivities. In addition to the high maximum ZT the resultant large average ZT of similar to 0.8 between 300 and 923 K makes SnTe an attractive p-type material for high-temperature thermoelectric power generation.« less

  9. Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Hongliang; Du, Mao-Hua

    Bulk semiconductors and insulators typically have continuous valence and conduction bands. In this paper, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs 2NaInBr 6, Cs 2NaBiCl 6, and Tl 2NaBiCl 6. The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs 2NaInBr 6 as an example tomore » show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. Finally, these characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.« less

  10. Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators

    DOE PAGES

    Shi, Hongliang; Du, Mao-Hua

    2015-05-12

    Bulk semiconductors and insulators typically have continuous valence and conduction bands. In this paper, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs 2NaInBr 6, Cs 2NaBiCl 6, and Tl 2NaBiCl 6. The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs 2NaInBr 6 as an example tomore » show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. Finally, these characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.« less

  11. Band-like transport in highly crystalline graphene films from defective graphene oxides.

    PubMed

    Negishi, R; Akabori, M; Ito, T; Watanabe, Y; Kobayashi, Y

    2016-07-01

    The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm(2)/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO.

  12. Band-like transport in highly crystalline graphene films from defective graphene oxides

    NASA Astrophysics Data System (ADS)

    Negishi, R.; Akabori, M.; Ito, T.; Watanabe, Y.; Kobayashi, Y.

    2016-07-01

    The electrical transport property of the reduced graphene oxide (rGO) thin-films synthesized from defective GO through thermal treatment in a reactive ethanol environment at high temperature above 1000 °C shows a band-like transport with small thermal activation energy (Ea~10 meV) that occurs during high carrier mobility (~210 cm2/Vs). Electrical and structural analysis using X-ray absorption fine structure, the valence band photo-electron, Raman spectra and transmission electron microscopy indicate that a high temperature process above 1000 °C in the ethanol environment leads to an extraordinary expansion of the conjugated π-electron system in rGO due to the efficient restoration of the graphitic structure. We reveal that Ea decreases with the increasing density of states near the Fermi level due to the expansion of the conjugated π-electron system in the rGO. This means that Ea corresponds to the energy gap between the top of the valence band and the bottom of the conduction band. The origin of the band-like transport can be explained by the carriers, which are more easily excited into the conduction band due to the decreasing energy gap with the expansion of the conjugated π-electron system in the rGO.

  13. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  14. Band crossing in isovalent semiconductor alloys with large size mismatch

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Wei, Su-Huai

    2012-02-01

    Mixing isovalent compounds AC with BC to form alloys A1-xBxC has been an effective way in band structure engineering to enhance the availability of material properties. In most cases, the mixed isovalent atoms A and B, such as Al and Ga in Al1-xGaxAs or As and Sb in GaAs1-xSbx are similar in their atomic sizes and chemical potentials; therefore, the physical properties of A1-xBxC change smoothly from AC to BC. However, in some cases when the chemical and size differences between the isovalent atoms A and B are large, adding a small amount of B to AC or vice versa can lead to a discontinuous change in the electronic band structure. These large size- and chemicalmismatched (LSCM) systems often show unusual and abrupt changes in the alloys' material properties, which provide great potential in material design for novel device applications. In this report, based on first-principles band-structure calculations we show that for LSCM GaAs1-xNx and GaAs1-xBix alloys at the impurity limit the N (Bi)-induced impurity level is above (below) the conduction-(valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.

  15. Laser-excited luminescence and absorption study of mixed valence for K 2Pt(CN) 4—K 2Pt(CN) 6 crystals

    NASA Astrophysics Data System (ADS)

    Kasi Viswanath, A.; Smith, Wayne L.; Patterson, H.

    1982-04-01

    Crystals of K 2Pt(CN) 6 doped with Pt(CN) 2-4 show an absorption band at 337 nm which is assigned as a mixed-valence (MV) transition from Pt (II) to Pt(IV). From a Hush model analysis, the absorption band is interpreted to be class II in the Day—Robin scheme. When the MV band is laser excited at 337 nm, emmision is observed from Pt(CN) 2-4 clusters.

  16. The valence bond glass phase

    NASA Astrophysics Data System (ADS)

    Tarzia, M.; Biroli, G.

    2008-06-01

    We show that a new glassy phase can emerge in the presence of strong magnetic frustration and quantum fluctuations. It is a valence bond glass (VBG). We study its properties solving the Hubbard-Heisenberg model on a Bethe lattice within the large-N limit introduced by Affleck and Marston. We work out the phase diagram that contains Fermi liquid, dimer and valence bond glass phases. This new glassy phase has no electronic or spin gap (although a pseudo-gap is observed), it is characterized by long-range critical valence bond correlations and is not related to any magnetic ordering. As a consequence, it is quite different from both valence bond crystals and spin glasses.

  17. Priming Facial Gender and Emotional Valence: The Influence of Spatial Frequency on Face Perception in ASD

    ERIC Educational Resources Information Center

    Vanmarcke, Steven; Wagemans, Johan

    2017-01-01

    Adolescents with and without autism spectrum disorder (ASD) performed two priming experiments in which they implicitly processed a prime stimulus, containing high and/or low spatial frequency information, and then explicitly categorized a target face either as male/female (gender task) or as positive/negative (Valence task). Adolescents with ASD…

  18. Experimental studies of fundamental aspects of Auger emission process in Cu(100) and Ag(100)

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad Vivek

    Auger spectra at the low energies are accompanied by large contributions unrelated to the Auger transition. The Auger unrelated contributions can obscure the Auger peak and affect the quantitative analysis of the materials under investigation. In this dissertation we present a methodology to measure experimentally the Auger unrelated contributions and eliminate it from the Auger spectrum for obtaining an Auger spectrum inherent to the Auger transition. We used Auger Photoelectron Coincidence Spectroscopy (APECS) to obtain the Auger spectrum. APECS measures the Auger spectrum in coincidence with the core energy level and thus discriminating the contributions arising from secondary electrons and electrons arising from the non-Auger transition. Although APECS removes most of the Auger unrelated contributions, it cannot distinguish the contribution which is measured in coincidence with the inelastically scattered valence band electrons emitted at the core energy. To measure this inelastically scattered valence band contribution we did a series of measurements on Ag(100) to study NVV Auger spectrum in coincidence with 4p energy level and Cu(100) to study MVV Auger spectrum in coincidence with 3p energy level. The coincidence detection of the core and Auger-valence electrons was achieved by the two cylindrical mirror analyzers (CMAs). One CMA was fixed over a range of energies in between VB and core energy level while other CMA scanned corresponding low energy electrons from 0 to70eV. The spectrums measured were fit to a parameterized function which was extrapolated to get an estimate of inelastically scattered valence band electrons. The estimated contribution was subtracted for the Ag and Cu APECS spectrum to obtain a spectrum solely due to Auger transition with inelastically scattered Auger electron and multi Auger decay contributions associated with the transition. In the latter part of this dissertation, we propose a theoretical model based on the spectral intensity

  19. Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices

    NASA Astrophysics Data System (ADS)

    Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A.

    2015-06-01

    A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the "CVBs interaction" that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.

  20. Relationship Between Iron Valence States of Serpentine in CM Chondrites and Their Aqueous Alteration Degrees

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Zolensky, M.; Satake, W.; Le, L.

    2012-01-01

    The 0.6-0.7 micron absorption band observed for C-type asteroids is caused by the presence of Fe(3+) in phyllosilicates . Because Fe-bearing phyllosilicates, especially serpentine, are the most dominant product of aqueous alteration in the most abundant carbonaceous chondrites, CM chondrites, it is important to understand the crystal chemistry of serpentine in CM chondrites to better understand spectral features of C-type asteroids. CM chondrites show variable degrees of aqueous alteration, which should be related to iron valences in serpentine. It is predicted that the Fe(3+)/Sum of (Fe) ratios of serpentine in CM chondrites decrease as alteration proceeds by Si and Fe(3+) substitutions from end-member cronstedtite to serpentine, which should be apparent in the absorption intensity of the 0.6-0.7 micron band from C-type asteroids. In fact, the JAXA Hayabusa 2 target (C-type asteroid: 1993 JU3) exhibits heterogeneous spectral features (0.7 micron absorption band disappears by rotation). From these points of view, we have analyzed iron valences of matrix serpentine in several CM chondrites which span the entire observed range of aqueous alteration using Synchrotron Radiation X-ray Absorption Near-Edge Structure (SR-XANES). In this abstract we discuss the relationship between obtained Fe(3+)/Sum of (Fe) ratios and alteration degrees by adding new data to our previous studies

  1. Subliminal Affect Valence Words Change Conscious Mood Potency but Not Valence: Is This Evidence for Unconscious Valence Affect?

    PubMed Central

    Shevrin, Howard; Panksepp, Jaak; Brakel, Linda A. W.; Snodgrass, Michael

    2012-01-01

    Whether or not affect can be unconscious remains controversial. Research claiming to demonstrate unconscious affect fails to establish clearly unconscious stimulus conditions. The few investigations that have established unconscious conditions fail to rule out conscious affect changes. We report two studies in which unconscious stimulus conditions were met and conscious mood changes measured. The subliminal stimuli were positive and negative affect words presented at the objective detection threshold; conscious mood changes were measured with standard manikin valence, potency, and arousal scales. We found and replicated that unconscious emotional stimuli produced conscious mood changes on the potency scale but not on the valence scale. Were positive and negative affects aroused unconsciously, but reflected consciously in potency changes? Or were the valence words unconscious cognitive causes of conscious mood changes being activated without unconscious affect? A thought experiment is offered as a way to resolve this dilemma. PMID:24961258

  2. Energy band offsets of dielectrics on InGaZnO4

    NASA Astrophysics Data System (ADS)

    Hays, David C.; Gila, B. P.; Pearton, S. J.; Ren, F.

    2017-06-01

    Thin-film transistors (TFTs) with channels made of hydrogenated amorphous silicon (a-Si:H) and polycrystalline silicon (poly-Si) are used extensively in the display industry. Amorphous silicon continues to dominate large-format display technology, but a-Si:H has a low electron mobility, μ ˜ 1 cm2/V s. Transparent, conducting metal-oxide materials such as Indium-Gallium-Zinc Oxide (IGZO) have demonstrated electron mobilities of 10-50 cm2/V s and are candidates to replace a-Si:H for TFT backplane technologies. The device performance depends strongly on the type of band alignment of the gate dielectric with the semiconductor channel material and on the band offsets. The factors that determine the conduction and valence band offsets for a given material system are not well understood. Predictions based on various models have historically been unreliable and band offset values must be determined experimentally. This paper provides experimental band offset values for a number of gate dielectrics on IGZO for next generation TFTs. The relationship between band offset and interface quality, as demonstrated experimentally and by previously reported results, is also explained. The literature shows significant variations in reported band offsets and the reasons for these differences are evaluated. The biggest contributor to conduction band offsets is the variation in the bandgap of the dielectrics due to differences in measurement protocols and stoichiometry resulting from different deposition methods, chemistry, and contamination. We have investigated the influence of valence band offset values of strain, defects/vacancies, stoichiometry, chemical bonding, and contamination on IGZO/dielectric heterojunctions. These measurements provide data needed to further develop a predictive theory of band offsets.

  3. Conduction-band valley spin splitting in single-layer H-T l2O

    NASA Astrophysics Data System (ADS)

    Ma, Yandong; Kou, Liangzhi; Du, Aijun; Huang, Baibiao; Dai, Ying; Heine, Thomas

    2018-02-01

    Despite numerous studies, coupled spin and valley physics is currently limited to two-dimensional (2D) transition-metal dichalcogenides (TMDCs). Here, we predict an exceptional 2D valleytronic material associated with the spin-valley coupling phenomena beyond 2D TMDCs—single-layer (SL) H-T l2O . It displays large valley spin splitting (VSS), significantly larger than that of 2D TMDCs, and a finite band gap, which are both critically attractive for the integration of valleytronics and spintronics. More importantly, in sharp contrast to all the experimentally confirmed 2D valleytronic materials, where the strong valence-band VSS (0.15-0.46 eV) supports the spin-valley coupling, the VSS in SL H-T l2O is pronounced in its conduction band (0.61 eV), but negligibly small in its valence band (21 meV), thus opening a way for manipulating the coupled spin and valley physics. Moreover, SL H-T l2O possesses extremely high carrier mobility, as large as 9.8 ×103c m2V-1s-1 .

  4. Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871; Zhang, Qin

    2014-11-24

    We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al{sub 2}O{sub 3}/InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al{sub 2}O{sub 3} conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al{sub 2}O{sub 3} valence band to the bottom ofmore » the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance.« less

  5. Spectroscopic and Redox Studies of Valence-Delocalized [Fe2S2]+ Centers in Thioredoxin-Like Ferredoxins

    PubMed Central

    Subramanian, Sowmya; Duin, Evert C.; Fawcett, Sarah E. J.; Armstrong, Fraser A.; Meyer, Jacques; Johnson, Michael K.

    2015-01-01

    Reduced forms of the C56S and C60S variants of the thioredoxin-like Clostridium pasteurianum [Fe2S2] ferredoxin (CpFd) provide the only known examples of valence-delocalized [Fe2S2]+ clusters, which constitute a fundamental building block of all higher nuclearity Fe-S clusters. In this work, we have revisited earlier work on the CpFd variants and carried out redox and spectroscopic studies on the [Fe2S2]2+,+ centers in wild-type and equivalent variants of the highly homologous and structurally characterized Aquifex aeolicus ferredoxin 4 (AaeFd4) using EPR, UV-visible-NIR absorption, CD and variable-temperature MCD, and protein-film electrochemistry. The results indicate that the [Fe2S2]+ centers in the equivalent AaeFd4 and CpFd variants reversibly interconvert between similar valence-localized S = 1/2 and valence-delocalized S = 9/2 forms as a function of pH, with pKa values in the range 8.3-9.0, due to protonation of the coordinated serinate residue. However, freezing high-pH samples results in partial or full conversion from valence-delocalized S = 9/2 to valence-localized S = 1/2 [Fe2S2]+ clusters. MCD saturation magnetization data for valence-delocalized S = 9/2 [Fe2S2]+ centers facilitated determination of transition polarizations and thereby assignments of low-energy MCD bands associated with the Fe−Fe interaction. The assignments provide experimental assessment of the double exchange parameter, B, for valence-delocalized [Fe2S2]+ centers and demonstrate that variable-temperature MCD spectroscopy provides a means of detecting and investigating the properties of valence-delocalized S = 9/2 [Fe2S2]+ fragments in higher nuclearity Fe-S clusters. The origin of valence delocalization in thioredoxin-like ferredoxin Cys-to-Ser variants and Fe-S clusters in general is discussed in light of these results. PMID:25790339

  6. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β -Ga2O3

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa; Korlacki, Rafał; Briley, Chad; Darakchieva, Vanya; Monemar, Bo; Kumagai, Yoshinao; Goto, Ken; Higashiwaki, Masataka; Schubert, Mathias

    2017-12-01

    We employ an eigenpolarization model including the description of direction dependent excitonic effects for rendering critical point structures within the dielectric function tensor of monoclinic β -Ga2O3 yielding a comprehensive analysis of generalized ellipsometry data obtained from 0.75-9 eV. The eigenpolarization model permits complete description of the dielectric response. We obtain, for single-electron and excitonic band-to-band transitions, anisotropic critical point model parameters including their polarization vectors within the monoclinic lattice. We compare our experimental analysis with results from density functional theory calculations performed using the Gaussian-attenuation-Perdew-Burke-Ernzerhof hybrid density functional. We present and discuss the order of the fundamental direct band-to-band transitions and their polarization selection rules, the electron and hole effective mass parameters for the three lowest band-to-band transitions, and their excitonic contributions. We find that the effective masses for holes are highly anisotropic and correlate with the selection rules for the fundamental band-to-band transitions. The observed transitions are polarized close to the direction of the lowest hole effective mass for the valence band participating in the transition.

  7. Broad spectrum solar cell

    DOEpatents

    Walukiewicz, Wladyslaw [Kensington, CA; Yu, Kin Man [Lafayette, CA; Wu, Junqiao [Richmond, CA; Schaff, William J [Ithaca, NY

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  8. Band structures of TiO2 doped with N, C and B*

    PubMed Central

    Xu, Tian-Hua; Song, Chen-Lu; Liu, Yong; Han, Gao-Rong

    2006-01-01

    This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. PMID:16532532

  9. Crystal structure, stability, and optoelectronic properties of the organic-inorganic wide-band-gap perovskite CH3NH3BaI3 : Candidate for transparent conductor applications

    NASA Astrophysics Data System (ADS)

    Kumar, Akash; Balasubramaniam, K. R.; Kangsabanik, Jiban; Vikram, Alam, Aftab

    2016-11-01

    Structural stability, electronic structure, and optical properties of CH3NH3BaI3 hybrid perovskite are examined from theory as well as experiment. Solution-processed thin films of CH3NH3BaI3 exhibited a high transparency in the wavelength range of 400-825 nm (1.5-3.1 eV for which the photon current density is highest in the solar spectrum) which essentially justifies a high band gap of 4 eV obtained by theoretical estimation. Also, the x-ray diffraction patterns of the thin films match well with the {00 l } peaks of the simulated pattern obtained from the relaxed unit cell of CH3NH3BaI3 , crystallizing in the I 4 /m c m space group, with lattice parameters, a =9.30 Å, c =13.94 Å. Atom projected density of state and band structure calculations reveal the conduction and valence band edges to be comprised primarily of barium d orbitals and iodine p orbitals, respectively. The larger band gap of CH3NH3BaI3 compared to CH3NH3PbI3 can be attributed to the lower electronegativity coupled with the lack of d orbitals in the valence band of Ba2 +. A more detailed analysis reveals the excellent chemical and mechanical stability of CH3NH3BaI3 against humidity, unlike its lead halide counterpart, which degrades under such conditions. We propose La to be a suitable dopant to make this compound a promising candidate for transparent conductor applications, especially for all perovskite solar cells. This claim is supported by our calculated results on charge concentration, effective mass, and vacancy formation energies.

  10. Sizable band gap in organometallic topological insulator

    NASA Astrophysics Data System (ADS)

    Derakhshan, V.; Ketabi, S. A.

    2017-01-01

    Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.

  11. Simultaneous conditioning of valence and arousal.

    PubMed

    Gawronski, Bertram; Mitchell, Derek G V

    2014-01-01

    Evaluative conditioning (EC) refers to the change in the valence of a conditioned stimulus (CS) due to its pairing with a positive or negative unconditioned stimulus (US). To the extent that core affect can be characterised by the two dimensions of valence and arousal, EC has important implications for the origin of affective responses. However, the distinction between valence and arousal is rarely considered in research on EC or conditioned responses more generally. Measuring the subjective feelings elicited by a CS, the results from two experiments showed that (1) repeated pairings of a CS with a positive or negative US of either high or low arousal led to corresponding changes in both CS valence and CS arousal, (2) changes in CS arousal, but not changes in CS valence, were significantly related to recollective memory for CS-US pairings, (3) subsequent presentations of the CS without the US reduced the conditioned valence of the CS, with conditioned arousal being less susceptible to extinction and (4) EC effects were stronger for high arousal than low arousal USs. The results indicate that the conditioning of affective responses can occur simultaneously along two independent dimensions, supporting evidence in related areas that calls for a consideration of both valence and arousal. Implications for research on EC and the acquisition of emotional dispositions are discussed.

  12. W/V-Band RF Propagation Experiment Design

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Nessel, James A.; Simons, Rainee N.; Zemba, Michael J.; Morse, Jacquelynne Rose; Budinger, James M.

    2012-01-01

    The utilization of frequency spectrum for space-to-ground communications applications has generally progressed from the lowest available bands capable of supporting transmission through the atmosphere to the higher bands, which have required research and technological advancement to implement. As communications needs increase and the available spectrum in the microwave frequency bands (3 30 GHz) becomes congested globally, future systems will move into the millimeter wave (mm-wave) range (30 300 GHz). While current systems are operating in the Ka-band (20 30 GHz), systems planned for the coming decades will initiate operations in the Q-Band (33 50 GHz), V-Band (50 75 GHz) and W Band (75 110 GHz) of the spectrum. These bands offer extremely broadband capabilities (contiguous allocations of 500 MHz to 1GHz or more) and an uncluttered spectrum for a wide range of applications. NASA, DoD and commercial missions that can benefit from moving into the mm-wave bands include data relay and near-Earth data communications, unmanned aircraft communications, NASA science missions, and commercial broadcast/internet services, all able to be implemented via very small terminals. NASA Glenn Research Center has a long history of performing the inherently governmental function of opening new frequency spectrum by characterizing atmospheric effects on electromagnetic propagation and collaborating with the satellite communication industry to develop specific communications technologies for use by NASA and the nation. Along these lines, there are critical issues related to W/V-band propagation that need to be thoroughly understood before design of any operational system can commence. These issues arise primarily due to the limitations imposed on W/V-band signal propagation by the Earth s atmosphere, and to the fundamental lack of understanding of these effects with regards to proper system design and fade mitigation. In this paper, The GRC RF propagation team recommends measurements

  13. Infrared band intensities of saturated hydrocarbons

    NASA Technical Reports Server (NTRS)

    Pinkley, L. W.; Sethna, P. P.; Williams, D.

    1978-01-01

    Kramers-Kronig analysis is applied to measured values of spectral reflectance at near-normal incidence to determine the real and the imaginary parts of the complex index of refraction for methane, ethane, propane, n-butane, n-hexane, n-heptane, and n-decane in the liquid state. The results indicate that the strengths of the characteristic bands as measured by the integral of the imaginary part are roughly constant for all the liquid alkanes except for methane. The intensity of the CH valence vibration bands in the spectra of the alkanes except methane is directly proportional to the number of CH groups per unit volume. The relations for the intensity of the bands due to CH2 and CH3 deformations are examined. Characteristic band intensities of the type established for NH4(+) and SO4(2-) groups in solutions and crystals cannot be extended to the more closely coupled CH2 and CH3 groups in alkane molecules.

  14. Tin monochalcogenide heterostructures as mechanically rigid infrared band gap semiconductors

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Fathi, Mohammad; Azadani, Javad G.; Low, Tony

    2018-05-01

    Based on first-principles density functional calculations, we show that SnS and SnSe layers can form mechanically rigid heterostructures with the constituent puckered or buckled monolayers. Due to the strong interlayer coupling, the electronic wave functions of the conduction and valence band edges are delocalized across the heterostructure. The resultant band gaps of the heterostructures reside in the infrared region. With strain engineering, the heterostructure band gap undergoes a transition from indirect to direct in the puckered phase. Our results show that there is a direct correlation between the electronic wave function and the mechanical rigidity of the layered heterostructure.

  15. Experimental and theoretical study of the electronic spectrum of the BAr2 complex: Transition to the excited valence B(2s2p2 2D) state

    NASA Astrophysics Data System (ADS)

    Krumrine, Jennifer R.; Alexander, Millard H.; Yang, Xin; Dagdigian, Paul J.

    2000-03-01

    The 2s2p22D←2s22p 2P valence transition in the BAr2 cluster is investigated in a collaborative experimental and theoretical study. Laser fluorescence excitation spectra of a supersonic expansion of B atoms entrained in Ar at high source backing pressures display several features not assignable to the BAr complex. Resonance fluorescence is not observed, but instead emission from the lower 3s state. Size-selected fluorescence depletion spectra show that these features in the excitation spectrum are primarily due to the BAr2 complex. This electronic transition within BAr2 is modeled theoretically, similarly to our earlier study of the 3s←2p transition [M. H. Alexander et al., J. Chem. Phys. 106, 6320 (1997)]. The excited potential energy surfaces of the fivefold degenerate B(2s2p22D) state within the ternary complex are computed in a pairwise-additive model employing diatomic BAr potential energy curves which reproduce our previous experimental observations on the electronic states emanating from the B(2D)+Ar asymptote. The simulated absorption spectrum reproduces reasonably well the observed fluorescence depletion spectrum. The theoretical model lends insight into the energetics of the approach of B to multiple Ar atoms, and how the orientation of B p-orbitals governs the stability of the complex.

  16. Dayglow emissions of the O2 Herzberg bands and the Rayleigh backscattered spectrum of the earth

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Abrams, R. B.

    1982-01-01

    It is pointed out that numerous fluorescent emissions from the Herzberg bands of molecular oxygen lie in the spectral region 242-300 nm. This coincides with the wavelength range used by orbiting spectrometers that observe the Rayleigh backscattered spectrum of the earth for the purpose of monitoring the vertical distribution of stratospheric ozone. Model calculations suggest that Herzberg band emissions in the dayglow could provide significant contamination of the ozone measurements if the quenching rate of O2(A3Sigma) is sufficiently small. It is noted that this is especially true near 255 nm, where the most intense fluorescent emissions relative to the Rayleigh scattered signal are located and where past satellite measurements have shown a persistent excess radiance above that expected for a pure ozone absorbing and molecular scattering atmosphere. Very small quenching rates, however, are adequate to reduce the dayglow emission to negligible levels. Noting that available laboratory data have not definitely established the quenching on the rate of O2(A3Sigma) as a function of vibration level, it is emphasized that such information is required before the Herzberg band contributions can be evaluated with confidence.

  17. Observation of a novel stapler band in 75As

    NASA Astrophysics Data System (ADS)

    Li, C. G.; Chen, Q. B.; Zhang, S. Q.; Xu, C.; Hua, H.; Li, X. Q.; Wu, X. G.; Hu, S. P.; Meng, J.; Xu, F. R.; Liang, W. Y.; Li, Z. H.; Ye, Y. L.; Jiang, D. X.; Sun, J. J.; Han, R.; Niu, C. Y.; Chen, X. C.; Li, P. J.; Wang, C. G.; Wu, H. Y.; Li, G. S.; He, C. Y.; Zheng, Y.; Li, C. B.; Chen, Q. M.; Zhong, J.; Zhou, W. K.

    2017-03-01

    The heavy ion fusion-evaporation reaction study for the high-spin spectroscopy of 75As has been performed via the reaction channel 70Zn(9Be, 1p3n)75As at a beam energy of 42 MeV. The collective structure especially a dipole band in 75As is established for the first time. The properties of this dipole band are investigated in terms of the self-consistent tilted axis cranking covariant density functional theory. Based on the theoretical description and the examination of the angular momentum components, this dipole band can be interpreted as a novel stapler band, where the valence neutrons in (1g9/2) orbital rather than the collective core are responsible for the closing of the stapler of angular momentum.

  18. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    PubMed Central

    Wang, Yao; Sokhadze, Estate M.; El-Baz, Ayman S.; Li, Xiaoli; Sears, Lonnie; Casanova, Manuel F.; Tasman, Allan

    2016-01-01

    Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism. PMID:26834615

  19. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family

    NASA Astrophysics Data System (ADS)

    Kaufman, I.; Luchinsky, D. G.; Tindjong, R.; McClintock, P. V. E.; Eisenberg, R. S.

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Qf at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Qf=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Qf for the sodium-calcium channels family. An increase of Qf leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Qf(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca2+/Na+ valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  20. The frequency spectrum crisis - Issues and answers

    NASA Astrophysics Data System (ADS)

    Armes, G. L.

    The frequency spectrum represents a unique resource which can be overtaxed. In the present investigation, it is attempted to evalute the demand for satellite and microwave services. Dimensions of increased demand are discussed, taking into account developments related to the introduction of the personal computer, the activities of the computer and communications industries in preparation for the office of the future, and electronic publishing. Attention is given to common carrier spectrum congestion, common carrier microwave, satellite communications, teleports, international implications, satellite frequency bands, satellite spectrum implications, alternatives regarding the utilization of microwave frequency bands, U.S. Government spectrum utilization, and the impact at C-band.

  1. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predictingmore » acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.« less

  2. Towards band structure and band offset engineering of monolayer Mo(1-x)W(x)S2 via Strain

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Seok; Ahmad, Rafia; Pandey, Tribhuwan; Rai, Amritesh; Feng, Simin; Yang, Jing; Lin, Zhong; Terrones, Mauricio; Banerjee, Sanjay K.; Singh, Abhishek K.; Akinwande, Deji; Lin, Jung-Fu

    2018-01-01

    Semiconducting transition metal dichalcogenides (TMDs) demonstrate a wide range of optoelectronic properties due to their diverse elemental compositions, and are promising candidates for next-generation optoelectronics and energy harvesting devices. However, effective band offset engineering is required to implement practical structures with desirable functionalities. Here, we explore the pressure-induced band structure evolution of monolayer WS2 and Mo0.5W0.5S2 using hydrostatic compressive strain applied in a diamond anvil cell (DAC) apparatus and theoretical calculations, in order to study the modulation of band structure and explore the possibility of band alignment engineering through different compositions. Higher W composition in Mo(1-x)W(x)S2 contributes to a greater pressure-sensitivity of direct band gap opening, with a maximum value of 54 meV GPa-1 in WS2. Interestingly, while the conduction band minima (CBMs) remains largely unchanged after the rapid gap increase, valence band maxima (VBMs) significantly rise above the initial values. It is suggested that the pressure- and composition-engineering could introduce a wide variety of band alignments including type I, type II, and type III heterojunctions, and allow to construct precise structures with desirable functionalities. No structural transition is observed during the pressure experiments, implying the pressure could provide selective modulation of band offset.

  3. Photoionization bands of rubidium molecule

    NASA Astrophysics Data System (ADS)

    Rakić, M.; Pichler, G.

    2018-03-01

    We studied the absorption spectrum of dense rubidium vapor generated in a T-type sapphire cell with a special emphasis on the structured photoionization continuum observed in the 200-300 nm spectral region. The photoionization spectrum has a continuous atomic contribution with a pronounced Seaton-Cooper minimum at about 250 nm and a molecular photoionization contribution with many broad bands. We discuss the possible origin of the photoionization bands as stemming from the absorption from the ground state of the Rb2 molecule to excited states of Rb2+* and to doubly excited autoionizing states of Rb2** molecule. All these photoionization bands are located above the Rb+ and Rb2+ ionization limits.

  4. Energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O3

    NASA Astrophysics Data System (ADS)

    Klein, Andreas; Lohaus, Christian; Reiser, Patrick; Dimesso, Lucangelo; Wang, Xiucai; Yang, Tongqing

    2017-06-01

    The energy band alignment of antiferroelectric (Pb,La)(Zr,Sn,Ti)O3 is studied with photoelectron spectroscopy using interfaces with high work function RuO2 and low work function Sn-doped In2O3 (ITO). It is demonstrated how spectral deconvolution can be used to determine absolute Schottky barrier heights for insulating materials with a high accuracy. Using this approach it is found that the valence band maximum energy of (Pb,La)(Zr,Sn,Ti)O3 is found to be comparable to that of Pb- and Bi-containing ferroelectric materials, which is ∼1 eV higher than that of BaTiO3. The results provide additional evidence for the occupation of the 6s orbitals as origin of the higher valence band maximum, which is directly related to the electrical properties of such compounds. The results also verify that the energy band alignment determined by photoelectron spectroscopy of as-deposited electrodes is not influenced by polarisation. The electronic structure of (Pb,La)(Zr,Sn,Ti)O3 should enable doping of the material without strongly modifying its insulating properties, which is crucial for high energy density capacitors. Moreover, the position of the energy bands should result in a great freedom of selecting electrode materials in terms of avoiding charge injection.

  5. Electronic structure and optical properties of defect chalcopyrite HgGa2Se4

    NASA Astrophysics Data System (ADS)

    Gabrelian, B. V.; Lavrentyev, A. A.; Vu, Tuan V.; Parasyuk, O. V.; Khyzhun, O. Y.

    2018-01-01

    We report on studies from an experimental and theoretical viewpoint of the electronic structure of mercury digallium selenide, HgGa2Se4, a very promising optoelectronic material. In particular, the method of X-ray photoelectron spectroscopy (XPS) was used to evaluate binding energies of the constituent element core electrons and the shape of the valence band for pristine and Ar+-ion bombarded surfaces of HgGa2Se4 single crystal. First principles band-structure calculations were performed in the present work using the augmented plane wave + local orbitals (APW+lo). These calculations indicate that the Se 4p states are the main contributors at the top and in the upper portion of the valence band with slightly smaller contributions of the Ga 4p states in the upper portion of the band as well. Further, the central portion of the valence band is determined mainly by contributions of the Ga 4s states, and the Hg 5d states are the principal contributors to the bottom of the valence band. These theoretical data are in fair agreement when matching on a common energy scale of the X-ray emission bands giving information on the energy distribution of the Se 4p and Ga 4p states and the XPS valence-band spectrum of the HgGa2Se4 crystal. The principal optical constants are elucidated from the DFT calculations.

  6. Band-to-band tunneling distance analysis in the heterogate electron–hole bilayer tunnel field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada; Palomares, A.

    In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron–hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinementmore » holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.« less

  7. The influence of Si in Ni on the interface modification and the band alignment between Ni and alumina

    NASA Astrophysics Data System (ADS)

    Yoshitake, Michiko; Nemšák, Slavomír; Skála, Tomáš; Tsud, Nataliya; Matolín, Vladimír; Prince, Kevin C.

    2018-06-01

    The influence of a small amount of Si in a Ni single crystal on the interface formation between aluminum oxide and Ni has been investigated. The interface was formed by in-situ growth of the oxide by simultaneous supply of Al and oxygen onto Ni(1 1 1) in an ultrahigh vacuum chamber equipped with XPS apparatus. The oxide growth and the interface formation were compared between Si-containing Ni(1 1 1) and pure Ni(1 1 1). It was revealed that Si segregated on the surface of Ni and oxidized, forming an epitaxial thin alumino-silicate film. Valence band spectra demonstrated that the band offset between the oxide and Ni (energy level difference between the valence band top and the Fermi level) is different due to the oxidized Si segregation at the interface.

  8. Flat bands in fractal-like geometry

    NASA Astrophysics Data System (ADS)

    Pal, Biplab; Saha, Kush

    2018-05-01

    We report the presence of multiple flat bands in a class of two-dimensional lattices formed by Sierpinski gasket (SPG) fractal geometries as the basic unit cells. Solving the tight-binding Hamiltonian for such lattices with different generations of a SPG network, we find multiple degenerate and nondegenerate completely flat bands, depending on the configuration of parameters of the Hamiltonian. Moreover, we establish a generic formula to determine the number of such bands as a function of the generation index ℓ of the fractal geometry. We show that the flat bands and their neighboring dispersive bands have remarkable features, the most interesting one being the spin-1 conical-type spectrum at the band center without any staggered magnetic flux, in contrast to the kagome lattice. We furthermore investigate the effect of magnetic flux in these lattice settings and show that different combinations of fluxes through such fractal unit cells lead to a richer spectrum with a single isolated flat band or gapless electron- or holelike flat bands. Finally, we discuss a possible experimental setup to engineer such a fractal flat-band network using single-mode laser-induced photonic waveguides.

  9. Bands dispersion and charge transfer in β-BeH2

    NASA Astrophysics Data System (ADS)

    Trivedi, D. K.; Galav, K. L.; Joshi, K. B.

    2018-04-01

    Predictive capabilities of ab-initio method are utilised to explore bands dispersion and charge transfer in β-BeH2. Investigations are carried out using the linear combination of atomic orbitals method at the level of density functional theory. The crystal structure and related parameters are settled by coupling total energy calculations with the Murnaghan equation of state. Electronic bands dispersion from PBE-GGA is reported. The PBE-GGA, and PBE0 hybrid functional, show that β-BeH2 is a direct gap semiconductor with 1.18 and 2.40 eV band gap. The band gap slowly decreases with pressure and beyond l00 GPa overlap of conduction and valence bands at the r point is observed. Charge transfer is studied by means of Mullikan population analysis.

  10. Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandieri, K., E-mail: kakhaber.jandieri@physik.uni-marburg.de; Ludewig, P.; Wegele, T.

    We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.

  11. Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles

    NASA Astrophysics Data System (ADS)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-01

    Complex doping schemes in R3 Al5 O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu3 B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5 O12 , where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. This approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.

  12. Quantitative analysis of valence photoemission spectra and quasiparticle excitations at chromophore-semiconductor interfaces.

    PubMed

    Patrick, Christopher E; Giustino, Feliciano

    2012-09-14

    Investigating quasiparticle excitations of molecules on surfaces through photoemission spectroscopy forms a major part of nanotechnology research. Resolving spectral features at these interfaces requires a comprehensive theory of electron removal and addition processes in molecules and solids which captures the complex interplay of image charges, thermal effects, and configurational disorder. Here, we develop such a theory and calculate the quasiparticle energy-level alignment and the valence photoemission spectrum for the prototype biomimetic solar cell interface between anatase TiO(2) and the N3 chromophore. By directly matching our calculated photoemission spectrum to experimental data, we clarify the atomistic origin of the chromophore peak at low binding energy. This case study sets a new standard in the interpretation of photoemission spectroscopy at complex chromophore-semiconductor interfaces.

  13. Raman spectrum of natural and synthetic stishovite

    USGS Publications Warehouse

    Hemley, R.J.; Mao, Ho-kwang; Chao, E.C.T.

    1986-01-01

    Raman spectra of natural and synthetic samples of stishovite have been measured with a micro-optical spectrometer system. These spectra have a pattern that is characteristic of rutile-structured oxides. The spectrum of synthetic stishovite is characterized by well-resolved bands at 231, 589, 753, and 967 cm-1, which are assigned as the B1g, Eg, A1g, and B2g fundamentals, respectively, of the first-order Raman spectrum of the ideal, ordered structure. Natural stishovite obtained from Meteor Crater, Arizona has a first-order Raman spectrum that is fully consistent with that of the synthetic material. The observed spectrum of the natural sample, however, is weaker and has bands in addition to those identified as fundamentals in the spectrum of the synthetic material. A broad band at ???475 cm-1 may be indicative of glass or contaminants derived from the extraction procedure. Alternatively, this band may arise from multiphonon scattering that is enhanced by poor crystallinity or structural disorder in the natural shocked sample. ?? 1986 Springer-Verlag.

  14. Temperature-dependent optical band gap of the metastable zinc-blende structure [beta]-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez-Flores, G.; Navarro-Contreras, H.; Lastras-Martinez, A.

    1994-09-15

    The temperature-dependent (10--300 K) optical band gap [ital E][sub 0]([ital T]) of the epitaxial metastable zinc-blende-structure [beta]-GaN(001)4[times]1 has been determined by modulated photoreflectance and used to interpret low-temperature photoluminescence spectra. [ital E][sub 0] in [beta]-GaN was found to vary from 3.302[plus minus]0.004 eV at 10 K to 3.231[plus minus]0.008 eV at 300 K with a temperature dependence given by [ital E][sub 0]([ital T]) =3.302--6.697[times]10[sup [minus]4][ital T][sup 2]/([ital T]+600) eV. The spin-orbit splitting [Delta][sub 0] in the valence band was determined to be 17[plus minus]1 meV. The oscillations in the photoreflectance spectra were very sharp with a broadening parameter [Gamma] ofmore » only 10 meV at 10 K. The dominant transition observed in temperature-dependent photoluminescence was attributed to radiative recombination between a shallow donor, at [congruent]11 meV below the conduction-band edge and the valence band.« less

  15. Solvent dynamical control of ultrafast ground state electron transfer: implications for Class II-III mixed valency.

    PubMed

    Lear, Benjamin J; Glover, Starla D; Salsman, J Catherine; Londergan, Casey H; Kubiak, Clifford P

    2007-10-24

    We relate the solvent and temperature dependence of the rates of intramolecular electron transfer (ET) of mixed valence complexes of the type {[Ru3O(OAc)6(CO)(L)]2-BL}-1, where L = pyridyl ligand and BL = pyrazine. Complexes were reduced chemically or electrochemically to obtain the mixed valence anions in seven solvents: acetonitrile, methylene chloride, dimethylformamide, tetrahydrofuran, dimethylsulfoxide, chloroform, and hexamethylphosphoramide. Rate constants for intramolecular ET were estimated by simulating the observed degree of nu(CO) IR band shape coalescence in the mixed valence state. Correlations between rate constants for ET and solvent properties including static dielectric constant, optical dielectric constant, the quantity 1/epsilonop - 1/epsilonS, microscopic solvent polarity, viscosity, cardinal rotational moments of inertia, and solvent relaxation times were examined. In the temperature study, the complexes displayed a sharp increase in the ket as the freezing points of the solvents methylene chloride and acetonitrile were approached. The solvent phase transition causes a localized-to-delocalized transition in the mixed valence ions and an acceleration in the rate of ET. This is explained in terms of decoupling the slower solvent motions involved in the frequency factor nuN which increases the value of nuN. The observed solvent and temperature dependence of the ket for these complexes is used in order to formulate a new definition for Robin-Day class II-III mixed valence compounds. Specifically, it is proposed that class II-III compounds are those for which thermodynamic properties of the solvent exert no control over ket, but the dynamic properties of the solvent still influence ket.

  16. Dramatic change of photoexcited quasiparticle relaxation dynamics across Yb valence state transition in YbInCu4

    NASA Astrophysics Data System (ADS)

    Zhang, M. Y.; Chen, R. Y.; Dong, T.; Wang, N. L.

    2017-04-01

    YbInCu4 undergoes a first-order structural phase transition near Tv=40 K associated with an abrupt change of Yb valence state. We perform an ultrafast pump-probe measurement on YbInCu4 and find that the expected heavy-fermion properties arising from the c -f hybridization exist only in a limited temperature range above Tv. Below Tv, the compound behaves as a normal metal though a prominent hybridization energy gap is still present in the infrared measurement. We elaborate that those seemingly controversial phenomena could be well explained by assuming that the Fermi level suddenly shifts up and moves away from the flat f -electron band as well as the indirect hybridization energy gap in the intermediate valence state below Tv.

  17. Kohn-Sham Band Structure Benchmark Including Spin-Orbit Coupling for 2D and 3D Solids

    NASA Astrophysics Data System (ADS)

    Huhn, William; Blum, Volker

    2015-03-01

    Accurate electronic band structures serve as a primary indicator of the suitability of a material for a given application, e.g., as electronic or catalytic materials. Computed band structures, however, are subject to a host of approximations, some of which are more obvious (e.g., the treatment of the exchange-correlation of self-energy) and others less obvious (e.g., the treatment of core, semicore, or valence electrons, handling of relativistic effects, or the accuracy of the underlying basis set used). We here provide a set of accurate Kohn-Sham band structure benchmarks, using the numeric atom-centered all-electron electronic structure code FHI-aims combined with the ``traditional'' PBE functional and the hybrid HSE functional, to calculate core, valence, and low-lying conduction bands of a set of 2D and 3D materials. Benchmarks are provided with and without effects of spin-orbit coupling, using quasi-degenerate perturbation theory to predict spin-orbit splittings. This work is funded by Fritz-Haber-Institut der Max-Planck-Gesellschaft.

  18. Study on the energy band structure and photoelectrochemical performances of spinel Li{sub 4}Ti{sub 5}O{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Hao; Tian, Hui; Song, Hua

    2015-01-15

    Highlights: • Spinel Li{sub 4}Ti{sub 5}O{sub 12} possesses more positive potential of valence band and wider band gap than TiO{sub 2}. • Spinel Li{sub 4}Ti{sub 5}O{sub 12} displays typical n-type semiconductor characteristic and excellent UV-excitateded photocatalysis activity. • Our preliminary study will open new perspectives in investigation of other lithium-based compounds for new photocatalysts. - Abstract: Energy band structure, photoelectrochemical performances and photocatalysis activity of spinel Li{sub 4}Ti{sub 5}O{sub 12} are investigated for the first time in this paper. Li{sub 4}Ti{sub 5}O{sub 12} possesses more positive valence band potential and wider band gap than TiO{sub 2} due to its valencemore » band consisting of Li{sub 1s} and Ti{sub 3d} orbitals mixed with O{sub 2p}. Li{sub 4}Ti{sub 5}O{sub 12} shows typical photocatalysis material characteristics and excellent photocatlytic activity under UV irradiation.« less

  19. Mulliken-Hush analysis of a bis(triarylamine) mixed-valence system with a N...N distance of 28.7 A.

    PubMed

    Heckmann, Alexander; Amthor, Stephan; Lambert, Christoph

    2006-07-28

    An organic mixed valence compound with a spacer length of 25 unsaturated bonds separating two amine redox centres was synthesised and the electron transfer behaviour was investigated in the context of a Mulliken-Hush analysis in order to estimate the longest redox centre separation for which an intervalence charge transfer band can be observed.

  20. Flat band in disorder-driven non-Hermitian Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Zyuzin, A. A.; Zyuzin, A. Yu.

    2018-01-01

    We study the interplay of disorder and band-structure topology in a Weyl semimetal with a tilted conical spectrum around the Weyl points. The spectrum of particles is given by the eigenvalues of a non-Hermitian matrix, which contains contributions from a Weyl Hamiltonian and complex self-energy due to electron elastic scattering on disorder. We find that the tilt-induced matrix structure of the self-energy gives rise to either a flat band or a nodal line segment at the interface of the electron and hole pockets in the bulk band structure of type-II Weyl semimetals depending on the Weyl cone inclination. For the tilt in a single direction in momentum space, each Weyl point expands into a flat band lying on the plane, which is transverse to the direction of the tilt. The spectrum of the flat band is fully imaginary and is separated from the in-plane dispersive part of the spectrum by the "exceptional nodal ring" where the matrix of the Green's function in momentum-frequency space is defective. The tilt in two directions might shrink a flat band into a nodal line segment with "exceptional edge points." We discuss the connection to the non-Hermitian topological theory.

  1. Valence and magnitude ambiguity in feedback processing.

    PubMed

    Gu, Ruolei; Feng, Xue; Broster, Lucas S; Yuan, Lu; Xu, Pengfei; Luo, Yue-Jia

    2017-05-01

    Outcome feedback which indicates behavioral consequences are crucial for reinforcement learning and environmental adaptation. Nevertheless, outcome information in daily life is often totally or partially ambiguous. Studying how people interpret this kind of information would provide important knowledge about the human evaluative system. This study concentrates on the neural processing of partially ambiguous feedback, that is, either its valence or magnitude is unknown to participants. To address this topic, we sequentially presented valence and magnitude information; electroencephalography (EEG) response to each kind of presentation was recorded and analyzed. The event-related potential components feedback-related negativity (FRN) and P3 were used as indices of neural activity. Consistent with previous literature, the FRN elicited by ambiguous valence was not significantly different from that elicited by negative valence. On the other hand, the FRN elicited by ambiguous magnitude was larger than both the large and small magnitude, indicating the motivation to seek unambiguous magnitude information. The P3 elicited by ambiguous valence and ambiguous magnitude was not significantly different from that elicited by negative valence and small magnitude, respectively, indicating the emotional significance of feedback ambiguity. Finally, the aforementioned effects also manifested in the stage of information integration. These findings indicate both similarities and discrepancies between the processing of valence ambiguity and that of magnitude ambiguity, which may help understand the mechanisms of ambiguous information processing.

  2. Thickness-dependent change in the valence band offset of the SiO{sub 2}/Si interface studied using synchrotron-radiation photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyoda, S., E-mail: toyoda.satoshi.4w@kyoto-u.ac.jp; Oshima, M.

    2016-08-28

    We have studied the thickness-dependent change in the valence band offset (VBO) of the SiO{sub 2}/Si(001) interface using synchrotron-radiation photoemission spectroscopy with soft and hard X-rays. The SiO{sub 2}-film thickness (T{sub ox}) and X-ray irradiation time (t{sub irrad}) were systematically parameterized to distinguish between the “intrinsic” T{sub ox} effects in the VBOs and the “extrinsic” differential charging phenomena in SiO{sub 2} films on Si substrates. The results revealed that at a spontaneous time (t{sub irrad} ≈ 5 s) that suppresses the differential charging phenomena as much as possible, the experimental VBO abruptly increases as a function of T{sub ox} and graduallymore » saturates to the traditional VBO value range determined by the internal photoemission and photoconduction measurements. This effect is not attributed to the differential charging phenomena, but rather it is attributed to the “intrinsic” T{sub ox}-dependent change in the VBO. The two possible physical behaviors include electronic polarization and image charge. We have derived the electronic polarization contribution from experimental data by carefully describing the effects of the long-range image charges based on the classical dielectric-screening model.« less

  3. Band Structure of the IV-VI Black Phosphorus Analog and Thermoelectric SnSe

    NASA Astrophysics Data System (ADS)

    Pletikosić, I.; von Rohr, F.; Pervan, P.; Das, P. K.; Vobornik, I.; Cava, R. J.; Valla, T.

    2018-04-01

    The success of black phosphorus in fast electronic and photonic devices is hindered by its rapid degradation in the presence of oxygen. Orthorhombic tin selenide is a representative of group IV-VI binary compounds that are robust and isoelectronic and share the same structure with black phosphorus. We measure the band structure of SnSe and find highly anisotropic valence bands that form several valleys having fast dispersion within the layers and negligible dispersion across. This is exactly the band structure desired for efficient thermoelectric generation where SnSe has shown great promise.

  4. Band Structure of the IV-VI Black Phosphorus Analog and Thermoelectric SnSe

    DOE PAGES

    Pletikosic, Ivo; von Rohr, F.; Pervan, P.; ...

    2018-04-10

    Here, the success of black phosphorus in fast electronic and photonic devices is hindered by its rapid degradation in the presence of oxygen. Orthorhombic tin selenide is a representative of group IV-VI binary compounds that are robust and isoelectronic and share the same structure with black phosphorus. We measure the band structure of SnSe and find highly anisotropic valence bands that form several valleys having fast dispersion within the layers and negligible dispersion across. This is exactly the band structure desired for efficient thermoelectric generation where SnSe has shown great promise.

  5. Band Structure of the IV-VI Black Phosphorus Analog and Thermoelectric SnSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pletikosic, Ivo; von Rohr, F.; Pervan, P.

    Here, the success of black phosphorus in fast electronic and photonic devices is hindered by its rapid degradation in the presence of oxygen. Orthorhombic tin selenide is a representative of group IV-VI binary compounds that are robust and isoelectronic and share the same structure with black phosphorus. We measure the band structure of SnSe and find highly anisotropic valence bands that form several valleys having fast dispersion within the layers and negligible dispersion across. This is exactly the band structure desired for efficient thermoelectric generation where SnSe has shown great promise.

  6. Emotional valence and physical space: limits of interaction.

    PubMed

    de la Vega, Irmgard; de Filippis, Mónica; Lachmair, Martin; Dudschig, Carolin; Kaup, Barbara

    2012-04-01

    According to the body-specificity hypothesis, people associate positive things with the side of space that corresponds to their dominant hand and negative things with the side corresponding to their nondominant hand. Our aim was to find out whether this association holds also true for a response time study using linguistic stimuli, and whether such an association is activated automatically. Four experiments explored this association using positive and negative words. In Exp. 1, right-handers made a lexical judgment by pressing a left or right key. Attention was not explicitly drawn to the valence of the stimuli. No valence-by-side interaction emerged. In Exp. 2 and 3, right-handers and left-handers made a valence judgment by pressing a left or a right key. A valence-by-side interaction emerged: For positive words, responses were faster when participants responded with their dominant hand, whereas for negative words, responses were faster for the nondominant hand. Exp. 4 required a valence judgment without stating an explicit mapping of valence and side. No valence-by-side interaction emerged. The experiments provide evidence for an association between response side and valence, which, however, does not seem to be activated automatically but rather requires a task with an explicit response mapping to occur.

  7. One Way to Design a Valence-Skip Compound.

    PubMed

    Hase, I; Yanagisawa, T; Kawashima, K

    2017-12-01

    Valence-skip compound is a good candidate with high T c and low anisotropy because it has a large attractive interaction at the site of valence-skip atom. However, it is not easy to synthesize such compound because of (i) the instability of the skipping valence state, (ii) the competing charge order, and (iii) that formal valence may not be true in some compounds. In the present study, we show several examples of the valence-skip compounds and discuss how we can design them by first principles calculations. Furthermore, we calculated the electronic structure of a promising candidate of valence skipping compound RbTlCl 3 from first principles. We confirmed that the charge-density wave (CDW) is formed in this compound, and the Tl atoms in two crystallographic different sites take the valence Tl 1+ and Tl 3+ . Structure optimization study reveals that this CDW is stable at the ambient pressure, while this CDW gap can be collapsed when we apply pressure with several gigapascals. In this metallic phase, we can expect a large charge fluctuation and a large electron-phonon interaction.

  8. Detection of the 2165 Inverse Centimeter (4.619 Micron) XCN Band in the Spectrum of L1551 IRS 5

    NASA Technical Reports Server (NTRS)

    Tegler, Stephen C.; Weintraub, David A.; Allamandola, Louis J.; Sandford, Scott A.; Rettig, Terrence W.; Campins, Humberto

    1993-01-01

    We report the detection of a broad absorption band at 2165 cm (4.619 microns) in the spectrum of L1551 IRS 5. New laboratory results over the 2200-2100 /cm wavenumber interval (4.55-4.76 microns), performed with realistic interstellar ice analogs, suggest that this feature is due to a CN-containing compound. We will refer to this compound as XCN. We also confirm the presence of frozen CO (both in nonpolar and polar matrices) through absorption bands at 2140 /cm (4.67 microns) and 2135 /cm (4.68 microns). The relative abundance of solid-state CO to frozen H2O is approx. 0.13 while the abundance of XCN seems comparable to that of frozen CO.

  9. A direct evidence of allocating yellow luminescence band in undoped GaN by two-wavelength excited photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julkarnain, M., E-mail: s13ds053@mail.saitama-u.ac.jp, E-mail: jnain.apee@ru.ac.bd; Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi 6205; Fukuda, T.

    2015-11-23

    The behavior of below-gap luminescence of undoped GaN grown by MOCVD has been studied by the scheme of two-wavelength-excited photoluminescence. The emission intensity of shallow donor to valence band transition (I{sub OX}) increased while intensities of donor-acceptor pair transition and the Yellow Luminescence band (YLB) decreased after the irradiation of a below-gap excitation source of 1.17 eV. The conventional energy schemes and recombination models have been considered to explain our experimental result but only one model in which YLB is the transition of a shallow donor to a deep state placed at ∼1 eV above the valence band maximum satisfies our result.more » The defect related parameters that give a qualitative insight in the samples have been evaluated by systematically solving the rate equations and fitting the result with the experiment.« less

  10. Bulk electronic structure of non-centrosymmetric EuTGe 3 (T=Co, Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    DOE PAGES

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemys?aw; ...

    2018-03-15

    Non-centrosymmetric EuTGe 3 ( T = Co, Ni, Rh, and Ir) possesses magnetic Eu 2+ ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge 3 ( T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core-level spectrum confirms the robust Eu 2+ valence state against the transition-metal substitutionmore » with a small contribution from Eu 3+ . The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon cha nging the transition metal from 3d to 4d to 5d elements, hinting at a change in the Ge- T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.« less

  11. Bulk electronic structure of non-centrosymmetric EuTGe 3 (T=Co, Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemys?aw

    Non-centrosymmetric EuTGe 3 ( T = Co, Ni, Rh, and Ir) possesses magnetic Eu 2+ ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge 3 ( T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core-level spectrum confirms the robust Eu 2+ valence state against the transition-metal substitutionmore » with a small contribution from Eu 3+ . The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon cha nging the transition metal from 3d to 4d to 5d elements, hinting at a change in the Ge- T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.« less

  12. Bulk electronic structure of non-centrosymmetric Eu T Ge3 (T =Co , Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemysław; Bednarchuk, Oleksandr; Kaczorowski, Dariusz; Ablett, James M.; Rueff, Jean-Pascal

    2018-03-01

    Non-centrosymmetric Eu T Ge3 (T = Co, Ni, Rh, and Ir) possesses magnetic Eu2 + ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge3 (T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3 d core-level spectrum confirms the robust Eu2 + valence state against the transition-metal substitution with a small contribution from Eu3 +. The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2 p spectrum shifts to higher binding energy upon changing the transition metal from 3 d to 4 d to 5 d elements, hinting at a change in the Ge-T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.

  13. Absence of paired crossing in the positive parity bands of 124Cs

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Basu, A.; Nag, Somnath; Hübel, H.; Domscheit, J.; Ragnarsson, I.; Al-Khatib, A.; Hagemann, G. B.; Herskind, B.; Elema, D. R.; Wilson, J. N.; Clark, R. M.; Cromaz, M.; Fallon, P.; Görgen, A.; Lee, I.-Y.; Ward, D.; Ma, W. C.

    2018-02-01

    High-spin states in 124Cs were populated in the 64Ni(64Ni,p 3 n ) reaction and the Gammasphere detector array was used to measure γ -ray coincidences. Both positive- and negative-parity bands, including bands with chiral configurations, have been extended to higher spin, where a shape change has been observed. The configurations of the bands before and after the alignment are discussed within the framework of the cranked Nilsson-Strutinsky model. The calculations suggest that the nucleus undergoes a shape transition from triaxial to prolate around spin I ≃22 of the positive-parity states. The alignment gain of 8 ℏ , observed in the positive-parity bands, is due to partial alignment of several valence nucleons. This indicates the absence of band crossing due to paired nucleons in the bands.

  14. Emotional Valence and the Free-Energy Principle

    PubMed Central

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world. PMID:23785269

  15. Emotional valence and the free-energy principle.

    PubMed

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world.

  16. Fine structure of the red luminescence band in undoped GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshchikov, M. A., E-mail: mreshchi@vcu.edu; Usikov, A.; Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverkskiy Ave., 197101 Saint Petersburg

    2014-01-20

    Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RLmore » band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band.« less

  17. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations.

    PubMed

    Tan, Chih-Shan; Huang, Michael H

    2017-09-04

    Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Compositional bowing of band energies and their deformation potentials in strained InGaAs ternary alloys: A first-principles study

    NASA Astrophysics Data System (ADS)

    Khomyakov, Petr A.; Luisier, Mathieu; Schenk, Andreas

    2015-08-01

    Using first-principles calculations, we show that the conduction and valence band energies and their deformation potentials exhibit a non-negligible compositional bowing in strained ternary semiconductor alloys such as InGaAs. The electronic structure of these compounds has been calculated within the framework of local density approximation and hybrid functional approach for large cubic supercells and special quasi-random structures, which represent two kinds of model structures for random alloys. We find that the predicted bowing effect for the band energy deformation potentials is rather insensitive to the choice of the functional and alloy structural model. The direction of bowing is determined by In cations that give a stronger contribution to the formation of the InxGa1-xAs valence band states with x ≳ 0.5, compared to Ga cations.

  19. HIGH-RESOLUTION FOURIER TRANSFORM INFRARED SPECTRUM OF THE ν2 + ν12 BAND OF ETHYLENE (12C2H4)

    NASA Astrophysics Data System (ADS)

    Lebron, G. B.; Tan, T. L.

    2013-09-01

    The high-resolution Fourier transform infrared absorption spectrum of the ν2 + ν12 combination band of normal ethylene (12C2H4) in the 3050-3105 cm-1 region was recorded at a resolution of 0.0063 cm-1 and at an ambient temperature of 296 K. Upper state rovibrational analysis was carried out using a standard Watson's Hamiltonian in asymmetric reduction in Ir representation. The band center, rotational constants and centrifugal distortion constants up to quartic terms of the upper ν2 + ν12 = 1 state were determined from the final fit that included 102 infrared transitions. The root-mean-square deviation of the fit was 0.000729 cm-1.

  20. [Emotional valence of words in schizophrenia].

    PubMed

    Jalenques, I; Enjolras, J; Izaute, M

    2013-06-01

    Emotion recognition is a domain in which deficits have been reported in schizophrenia. A number of emotion classification studies have indicated that emotion processing deficits in schizophrenia are more pronounced for negative affects. Given the difficulty of developing material suitable for the study of these emotional deficits, it would be interesting to examine whether patients suffering from schizophrenia are responsive to positively and negatively charged emotion-related words that could be used within the context of remediation strategies. The emotional perception of words was examined in a clinical experiment involving schizophrenia patients. This emotional perception was expressed by the patients in terms of the valence associated with the words. In the present study, we investigated whether schizophrenia patients would assign the same negative and positive valences to words as healthy individuals. Twenty volunteer, clinically stable, outpatients from the Psychiatric Service of the University Hospital of Clermont-Ferrand were recruited. Diagnoses were based on DSM-IV criteria. Global psychiatric symptoms were assessed using the Positive and Negative Symptoms Scale (PANSS). The patients had to evaluate the emotional valence of a set of 300 words on a 5-point scale ranging from "very unpleasant" to "very pleasant". . The collected results were compared with those obtained by Bonin et al. (2003) [13] from 97 University students. Correlational analyses of the two studies revealed that the emotional valences were highly correlated, i.e. the schizophrenia patients estimated very similar emotional valences. More precisely, it was possible to examine three separate sets of 100 words each (positive words, neutral words and negative words). The positive words that were evaluated were the more positive words from the norms collected by Bonin et al. (2003) [13], and the negative words were the more negative examples taken from these norms. The neutral words

  1. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    PubMed

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  2. Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-Band Downlink

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wheelon, A.

    2004-01-01

    Dynamic signal fluctuations due to atmospheric scintillations may impair the Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network (DSN) receiving system. The ranges of frequency and power of the fast fluctuating signals (time scale less than 1 min) are theoretically investigated using the spatial covariance and turbulence theory. Scintillation power spectrum solutions are derived for both a point receiver and a finite-aperture receiver. The aperture-smoothing frequency ((omega(sub s)), corner frequency ((omega(sub c)), and damping rate are introduced to define the shape of the spectrum for a finite-aperture antenna. The emphasis is put on quantitatively describing the aperture-smoothing effects and graphically estimating the corner frequency for a large aperture receiver. Power spectral shapes are analyzed parametrically in detail through both low- and high-frequency approximations. It is found that aperture-averaging effects become significant when the transverse correlation length of the scintillation is smaller than the antenna radius. The upper frequency or corner frequency for a finite-aperture receiver is controlled by both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-smoothing frequency, the spectrum rolls off at a much faster rate of exp (-omega(sup 2)/omega(sup 2, sub s), rather than omega(sup -8/3), which is customary for a point receiver. However, a relatively higher receiver noise level can mask the fast falling-off shape and make it hard to be identified. We also predict that when the effective antenna radius a(sub r) less than or = 6 m, the corner frequency of its power spectrum becomes the same as that for a point receiver. The aperture-smoothing effects are not obvious. We have applied these solutions to the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power spectrum shape for the receiving station. The maximum corner frequency for the receiver (with omega(sub s) = 0

  3. Investigations of the valence-shell excitations of molecular ethane by high-energy electron scattering

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-04-01

    The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.

  4. Nondestructive detection of pork quality based on dual-band VIS/NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Wenxiu; Peng, Yankun; Li, Yongyu; Tang, Xiuying; Liu, Yuanyuan

    2015-05-01

    With the continuous development of living standards and the relative change of dietary structure, consumers' rising and persistent demand for better quality of meat is emphasized. Colour, pH value, and cooking loss are important quality attributes when evaluating meat. To realize nondestructive detection of multi-parameter of meat quality simultaneously is popular in production and processing of meat and meat products. The objectives of this research were to compare the effectiveness of two bands for rapid nondestructive and simultaneous detection of pork quality attributes. Reflectance spectra of 60 chilled pork samples were collected from a dual-band visible/near-infrared spectroscopy system which covered 350-1100 nm and 1000-2600 nm. Then colour, pH value and cooking loss were determined by standard methods as reference values. Standard normal variables transform (SNVT) was employed to eliminate the spectral noise. A spectrum connection method was put forward for effective integration of the dual-band spectrum to make full use of the whole efficient information. Partial least squares regression (PLSR) and Principal component analysis (PCA) were applied to establish prediction models using based on single-band spectrum and dual-band spectrum, respectively. The experimental results showed that the PLSR model based on dual-band spectral information was superior to the models based on single band spectral information with lower root means quare error (RMSE) and higher accuracy. The PLSR model based on dual-band (use the overlapping part of first band) yielded the best prediction result with correlation coefficient of validation (Rv) of 0.9469, 0.9495, 0.9180, 0.9054 and 0.8789 for L*, a*, b*, pH value and cooking loss, respectively. This mainly because dual-band spectrum can provide sufficient and comprehensive information which reflected the quality attributes. Data fusion from dual-band spectrum could significantly improve pork quality parameters prediction

  5. Calculation of the X-Ray emission K and L 2,3 bands of metallic magnesium and aluminum with allowance for multielectron effects

    NASA Astrophysics Data System (ADS)

    Ovcharenko, R. E.; Tupitsyn, I. I.; Savinov, E. P.; Voloshina, E. N.; Dedkov, Yu. S.; Shulakov, A. S.

    2014-01-01

    A procedure is proposed to calculate the shape of the characteristic X-ray emission bands of metals with allowance for multielectron effects. The effects of the dynamic screening of a core vacancy by conduction electrons and the Auger effect in the valence band are taken into account. The dynamic screening of a core vacancy, which is known to be called the MND (Mahan-Nozeieres-De Dominics) effect, is taken into account by an ab initio band calculation of crystals using the PAW (projected augmented waves) method. The Auger effect is taken into account by a semiempirical method using the approximation of a quadratic dependence of the level width in the valence band on the difference between the level energy and the Fermi energy. The proposed calculation procedure is used to describe the X-ray emission K and L 2,3 bands of metallic magnesium and aluminum crystals. The calculated spectra agree well with the experimental bands both near the Fermi level and in the low-energy part of the spectra in all cases.

  6. High-resolution F T spectrum of A 2 Π r - X 2 Σ + band system of MgCl

    NASA Astrophysics Data System (ADS)

    Saksena, M. D.; Deo, M. N.; Sunanda, K.; Behere, S. H.; Jadhav, Ashok

    2011-03-01

    The emission spectrum of the A 2 Π r - X 2 Σ + band system of MgCl molecule (360-380 nm) has been recorded on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.035 cm-1. The spectra have been excited under flowing conditions in a demountable stainless steel hollow cathode lamp (400 V, 250 mA) containing anhydrous MgCl2 and Ar. The resulting spectra are very intense and the 0-0, 1-1, 1-0 bands of A 2 Π 1/2- X 2 Σ + sub-transition and the 0-0 band of A 2 Π 3/2- X 2 Σ + sub-transition have been rotationally analyzed. Improved molecular constants have been derived using a least-squares fit program in which optical data of earlier analyzed 0-1 and 0-2 bands ( A 2 Π 1/2- X 2 Σ +) was also included. The Λ-doubling constants in the v' = 0, 1 levels of the A 2 Π 1/2 sub-state are as expected, i.e. p 1 > p 0, where as it is found that the spin-doubling constants of the v″ = 0, 1 and 2 levels of the ground state X 2 Σ +, decrease with the increase in v, i.e. γ 0 > γ 1 > γ 2. This is indicative of the presence of some nearby state, influencing the spin-doubling.

  7. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  8. Interface band alignment in high-k gate stacks

    NASA Astrophysics Data System (ADS)

    Eric, Bersch; Hartlieb, P.

    2005-03-01

    In order to successfully implement alternate high-K dielectric materials into MOS structures, the interface properties of MOS gate stacks must be better understood. Dipoles that may form at the metal/dielectric and dielectric/semiconductor interfaces make the band offsets difficult to predict. We have measured the conduction and valence band densities of states for a variety MOS stacks using in situ using inverse photoemission (IPE) and photoemission spectroscopy (PES), respectively. Results obtained from clean and metallized (with Ru or Al) HfO2/Si, SiO2/Si and mixed silicate films will be presented. IPE indicates a shift of the conduction band minimum (CBM) to higher energy (i.e. away from EF) with increasing SiO2. The effect of metallization on the location of band edges depends upon the metal species. The addition of N to the dielectrics shifts the CBM in a way that is thickness dependent. Possible mechanisms for these observed effects will be discussed.

  9. Theory of Valence Transition

    NASA Astrophysics Data System (ADS)

    Misawa, S.; Takano, F.

    1981-01-01

    The valence transition phenomena occurring in rare-earth compounds are studied by using the periodic Anderson model with the electron-phonon coupling. This electron-phonon interaction G is treated in the Hartree-Fock approximation. The Coulomb repulsion U between f-electrons on the same site is taken to be ∞, and the decoupling method of Roth is used for the higher order Green function considering the mixing interaction to be small. We put the condition that the total number of electrons is a constant, and calculate the numbers of f- and d-electrons as functions of the original energy of f-electron by using the Green functions. The first order transition is shown to occur if G ≳ (1/2)W, where W is the width of the original d-band. The energy of f-electron at which the insulator and the metallic phase have the same ground state energy is calculated asɛc ≃ (1/2)(G-(1/2)W) + (2V^2/W) log |(G-W/2)/(G+W/2)|- (V^2/8W) log | (G-W/2)(G-(3/2)W) |. The magnetic susceptibilities of both phases are also calculated, but the result is not good, showing the decoupling method used here is not appropriate for the calculation of magnetic properties.

  10. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M.; McGrath, R.; Sharma, H. R.

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized bymore » x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe{sub 3}O{sub 4} rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.« less

  11. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    DOE PAGES

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; ...

    2015-11-24

    Complex doping schemes in R 3Al 5O 12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimummore » (CBM) or valence-band maximum (VBM). We consider two sets of compositions based on Lu 3B 5O 12 where B is Al, Ga, In, As, and Sb, and R 3Al 5O 12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less

  12. Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering

    NASA Astrophysics Data System (ADS)

    Yan, Danhua; Zhang, Wenrui; Cen, Jiajie; Stavitski, Eli; Sadowski, Jerzy T.; Vescovo, Elio; Walter, Andrew; Attenkofer, Klaus; Stacchiola, Darío J.; Liu, Mingzhao

    2017-12-01

    Zinc oxide (ZnO) nanowire arrays have potential applications for various devices such as ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of the reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.

  13. Low-lying energy spectrum of the cerium dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaev, A. V.; Skobeltsyn Institute of Nuclear Physics, Moscow State University, Vorob'evy Gory 1/2, 119991, Moscow

    2011-07-15

    The electronic structure of Ce{sub 2} is studied in a valence bond model with two 4f electrons localized at two cerium sites. It is shown that the low-lying energy spectrum of the simplest cerium chemical bond is determined by peculiarities of the occupied 4f states. The model allows for an analytical solution, which is discussed along with the numerical analysis. The energy spectrum is a result of the interplay between the 4f valence bond exchange, the 4f Coulomb repulsion, and the spin-orbit coupling. The calculated ground state is the even {Omega}={Lambda}={Sigma}=0 level, the lowest excitations situated at {approx}30 K aremore » the odd {Omega}={Lambda}={Sigma}=0 state and the {sup 3}6{sub 5} doublet ({Omega}={+-}5,{Lambda}={+-}6,{Sigma}={+-}1). The calculated magnetic susceptibility displays different behavior at high and low temperatures. In the absence of the spin-orbit coupling the ground state is the {sup 3}{Sigma}{sub g}{sup -} triplet. The results are compared with other many-electron calculations and experimental data.« less

  14. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2015-08-01

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  15. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus.

    PubMed

    Jiang, Jin-Wu

    2015-08-07

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  16. Electronic structure and optical properties of Cs2HgI4: Experimental study and band-structure DFT calculations

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.

    2015-04-01

    High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.

  17. Branch-point energies and the band-structure lineup at Schottky contacts and heterostrucures

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    2011-06-01

    Empirical branch-point energies of Si, the group-III nitrides AlN, GaN, and InN, and the group-II and group-III oxides MgO, ZnO, Al2O3 and In2O3 are determined from experimental valance-band offsets of their heterostructures. For Si, GaN, and MgO, these values agree with the branch-point energies obtained from the barrier heights of their Schottky contacts. The empirical branch-point energies of Si and the group-III nitrides are in very good agreement with results of previously published calculations using quite different approaches such as the empirical tight-binding approximation and modern electronic-structure theory. In contrast, the empirical branch-point energies of the group-II and group-III oxides do not confirm the respective theoretical results. As at Schottky contacts, the band-structure lineup at heterostructures is also made up of a zero-charge-transfer term and an intrinsic electric-dipole contribution. Hence, valence-band offsets are not equal to the difference of the branch-point energies of the two semiconductors forming the heterostructure. The electric-dipole term may be described by the electronegativity difference of the two solids in contact. A detailed analysis of experimental Si Schottky barrier heights and heterostructure valence-band offsets explains and proves these conclusions.

  18. Norbornane: An investigation into its valence electronic structure using electron momentum spectroscopy, and density functional and Green's function theories

    NASA Astrophysics Data System (ADS)

    Knippenberg, S.; Nixon, K. L.; Brunger, M. J.; Maddern, T.; Campbell, L.; Trout, N.; Wang, F.; Newell, W. R.; Deleuze, M. S.; Francois, J.-P.; Winkler, D. A.

    2004-12-01

    We report on the results of an exhaustive study of the valence electronic structure of norbornane (C7H12), up to binding energies of 29 eV. Experimental electron momentum spectroscopy and theoretical Green's function and density functional theory approaches were all utilized in this investigation. A stringent comparison between the electron momentum spectroscopy and theoretical orbital momentum distributions found that, among all the tested models, the combination of the Becke-Perdew functional and a polarized valence basis set of triple-ζ quality provides the best representation of the electron momentum distributions for all of the 20 valence orbitals of norbornane. This experimentally validated quantum chemistry model was then used to extract some chemically important properties of norbornane. When these calculated properties are compared to corresponding results from other independent measurements, generally good agreement is found. Green's function calculations with the aid of the third-order algebraic diagrammatic construction scheme indicate that the orbital picture of ionization breaks down at binding energies larger than 22.5 eV. Despite this complication, they enable insights within 0.2 eV accuracy into the available ultraviolet photoemission and newly presented (e,2e) ionization spectra, except for the band associated with the 1a2-1 one-hole state, which is probably subject to rather significant vibronic coupling effects, and a band at ˜25 eV characterized by a momentum distribution of "s-type" symmetry, which Green's function calculations fail to reproduce. We note the vicinity of the vertical double ionization threshold at ˜26 eV.

  19. Positive valence music restores executive control over sustained attention

    PubMed Central

    Lewis, Bridget A.

    2017-01-01

    Music sometimes improves performance in sustained attention tasks. But the type of music employed in previous investigations has varied considerably, which can account for equivocal results. Progress has been hampered by lack of a systematic database of music varying in key characteristics like tempo and valence. The aims of this study were to establish a database of popular music varying along the dimensions of tempo and valence and to examine the impact of music varying along these dimensions on restoring attentional resources following performance of a sustained attention to response task (SART) vigil. Sixty-nine participants rated popular musical selections that varied in valence and tempo to establish a database of four musical types: fast tempo positive valence, fast tempo negative valence, slow tempo positive valence, and slow tempo negative valence. A second group of 89 participants performed two blocks of the SART task interspersed with either no break or a rest break consisting of 1 of the 4 types of music or silence. Presenting positive valence music (particularly of slow tempo) during an intermission between two successive blocks of the SART significantly decreased miss rates relative to negative valence music or silence. Results support an attentional restoration theory of the impact of music on sustained attention, rather than arousal theory and demonstrate a means of restoring sustained attention. Further, the results establish the validity of a music database that will facilitate further investigations of the impact of music on performance. PMID:29145395

  20. Positive valence music restores executive control over sustained attention.

    PubMed

    Baldwin, Carryl L; Lewis, Bridget A

    2017-01-01

    Music sometimes improves performance in sustained attention tasks. But the type of music employed in previous investigations has varied considerably, which can account for equivocal results. Progress has been hampered by lack of a systematic database of music varying in key characteristics like tempo and valence. The aims of this study were to establish a database of popular music varying along the dimensions of tempo and valence and to examine the impact of music varying along these dimensions on restoring attentional resources following performance of a sustained attention to response task (SART) vigil. Sixty-nine participants rated popular musical selections that varied in valence and tempo to establish a database of four musical types: fast tempo positive valence, fast tempo negative valence, slow tempo positive valence, and slow tempo negative valence. A second group of 89 participants performed two blocks of the SART task interspersed with either no break or a rest break consisting of 1 of the 4 types of music or silence. Presenting positive valence music (particularly of slow tempo) during an intermission between two successive blocks of the SART significantly decreased miss rates relative to negative valence music or silence. Results support an attentional restoration theory of the impact of music on sustained attention, rather than arousal theory and demonstrate a means of restoring sustained attention. Further, the results establish the validity of a music database that will facilitate further investigations of the impact of music on performance.

  1. Mobility spectrum analytical approach for intrinsic band picture of Ba(FeAs)2

    NASA Astrophysics Data System (ADS)

    Huynh, K. K.; Tanabe, Y.; Urata, T.; Heguri, S.; Tanigaki, K.; Kida, T.; Hagiwara, M.

    2014-09-01

    Unconventional high temperature superconductivity as well as three-dimensional bulk Dirac cone quantum states arising from the unique d-orbital topology have comprised an intriguing research area in physics. Here we apply a special analytical approach using a mobility spectrum, in which the carrier number is conveniently described as a function of mobility without any hypothesis, both on the types and the numbers of carriers, for the interpretations of longitudinal and transverse electric transport of high quality single crystal Ba(FeAs)2 in a wide range of magnetic fields. We show that the majority carriers are accommodated in large parabolic hole and electron pockets with very different topology as well as remarkably different mobility spectra, whereas the minority carriers reside in Dirac quantum states with the largest mobility as high as 70,000 cm2(Vs)-1. The deduced mobility spectra are discussed and compared to the reported sophisticated first principle band calculations.

  2. Quasiparticle band gap in the topological insulator Bi2Te3

    NASA Astrophysics Data System (ADS)

    Nechaev, I. A.; Chulkov, E. V.

    2013-10-01

    We present a theoretical study of dispersion of states that form the bulk band-gap edges in the three-dimensional topological insulator Bi2Te3. Within density functional theory, we analyze the effect of atomic positions varied within the error range of the available experimental data and approximation chosen for the exchange-correlation functional on the bulk band gap and k-space location of valence- and conduction-band extrema. For each set of the positions with different exchange-correlation functionals, we show how many-body corrections calculated within a one-shot GW approach affect the mentioned characteristics of electronic structure of Bi2Te3. We thus also illustrate to what degree the one-shot GW results are sensitive to the reference one-particle band structure in the case of bismuth telluride. We found that for this topological insulator the GW corrections enlarge the fundamental band gap and for certain atomic positions and reference band structure bring its value in close agreement with experiment.

  3. Promoting SnTe as an Eco-Friendly Solution for p-PbTe Thermoelectric via Band Convergence and Interstitial Defects.

    PubMed

    Li, Wen; Zheng, Linglang; Ge, Binghui; Lin, Siqi; Zhang, Xinyue; Chen, Zhiwei; Chang, Yunjie; Pei, Yanzhong

    2017-05-01

    Compared to commercially available p-type PbTe thermoelectrics, SnTe has a much bigger band offset between its two valence bands and a much higher lattice thermal conductivity, both of which limit its peak thermoelectric figure of merit, zT of only 0.4. Converging its valence bands or introducing resonant states is found to enhance the electronic properties, while nanostructuring or more recently introducing interstitial defects is found to reduce the lattice thermal conductivity. Even with an integration of some of the strategies above, existing efforts do not enable a peak zT exceeding 1.4 and usually involve Cd or Hg. In this work, a combination of band convergence and interstitial defects, each of which enables a ≈150% increase in the peak zT, successfully accumulates the zT enhancements to be ≈300% (zT up to 1.6) without involving any toxic elements. This opens new possibilities for further improvements and promotes SnTe as an environment-friendly solution for conventional p-PbTe thermoelectrics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Protected Fe valence in quasi-two-dimensional α-FeSi2.

    PubMed

    Miiller, W; Tomczak, J M; Simonson, J W; Smith, G; Kotliar, G; Aronson, M C

    2015-05-08

    We report the first comprehensive study of the high temperature form (α-phase) of iron disilicide. Measurements of the magnetic susceptibility, magnetization, heat capacity and resistivity were performed on well characterized single crystals. With a nominal iron d(6) configuration and a quasi-two-dimensional crystal structure that strongly resembles that of LiFeAs, α-FeSi2 is a potential candidate for unconventional superconductivity. Akin to LiFeAs, α-FeSi2 does not develop any magnetic order and we confirm its metallic state down to the lowest temperatures (T = 1.8 K). However, our experiments reveal that paramagnetism and electronic correlation effects in α-FeSi2 are considerably weaker than in the pnictides. Band theory calculations yield small Sommerfeld coefficients of the electronic specific heat γ = Ce/T that are in excellent agreement with experiment. Additionally, realistic many-body calculations further corroborate that quasi-particle mass enhancements are only modest in α-FeSi2. Remarkably, we find that the natural tendency to vacancy formation in the iron sublattice has little influence on the iron valence and the density of states at the Fermi level. Moreover, Mn doping does not significantly change the electronic state of the Fe ion. This suggests that the iron valence is protected against hole doping and indeed the substitution of Co for Fe causes a rigid-band like response of the electronic properties. As a key difference from the pnictides, we identify the smaller inter-iron layer spacing, which causes the active orbitals near the Fermi level to be of a different symmetry in α-FeSi2. This change in orbital character might be responsible for the lack of superconductivity in this system, providing constraints on pairing theories in the iron based pnictides and chalcogenides.

  5. Hazard Monitoring in a Spectrum-Challenged Future: US Department of Transportation Adjacent Band Compatibility Assessment of Interference on High-Precision GNSS Receivers

    NASA Astrophysics Data System (ADS)

    Blume, F.; Berglund, H. T.

    2016-12-01

    In 2012 the Federal Communications Commission (FCC) reversed its decision to allow communications company LightSquared to use GPS-adjacent spectrum for a ground based network after testing demonstrated harmful interference to GPS receivers. Now rebranded as Ligado, they have submitted modified application to use a smaller portion of the L-band spectrum at much lower power. Many GPS community stakeholders, including the hazard monitoring and EEW communities remain concerned that Ligado's proposed use could still cause harmful interference, causing signal degradation, real-time positioning errors, and total failure of GNSS hardware in widespread use in hazard monitoring networks. The Department of Transportation (DoT) has conducted hardware tests to determine adjacent-band transmitter power limit criteria that would prevent harmful interference from Ligado's operations. We present preliminary results produced from the data collected by the three UNAVCO receiver types tested: Trimble NetRS, Trimble NetR9, and Septentrio PolaRx5. In the first round of testing, simulated GNSS signals were broadcast in an anechoic chamber (pictured below) while interfering signals are broadcast simultaneously with varying amplitude and frequency. The older GPS-only NetRS receiver showed smaller reductions in SNR at frequencies adjacent to GPS L1 as compared to the other receivers, suggesting narrower L1 filter bandwidth in the RF frontend. The NetR9 showed greater decreases in observed SNR in the 1615 to 1625 MHz range when compared to the other two receivers. This suggests that the NetR9's L1 filter bandwidth has been increased to accommodate GNSS signals. Linearity tests were conducted to better relate SNR measurements between receiver types. The PolaRx5 receiver showed less SNR variation between tracking channels than both Trimble receivers. Our results show the power levels at which adjacent-band interference begins degrading receiver performance and eventually disables tracking. As

  6. Resonant photoemission spectroscopic studies of SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Chauhan, R. S.; Panchal, Gyanendra; Singh, C. P.; Dar, Tanveer A.; Phase, D. M.; Choudhary, R. J.

    2017-09-01

    We report the structural and electronic properties of single phase, polycrystalline rutile tetragonal SnO2 thin film grown on Si (100) substrate by pulsed laser deposition technique. X-ray photoelectron and resonant photoemission spectroscopic (RPES) studies divulge that Sn is present in 4+ (˜91%) valence state with a very small involvement of 2+ (˜9%) valence state at the surface. Valence band spectrum of the film shows prominent contribution due to the Sn4+ valence state. RPES measurements were performed in the Sn 4d→5p photo absorption region. This study shows that O-2p, Sn-5s, and Sn-5p partial density of states are the main contributions to the valence band of this material. The resonance behavior of these three contributions has been analyzed. Constant initial state versus photon energy plots suggest that the low binding energy feature at ˜2.8 eV results from the hybridization of the O-2p and mixed valence states of Sn, while remaining features at higher binding energies are due to the hybridization between O-2p (bonding) orbitals and Sn4+ valence state.

  7. Architectural Representation of Valence in the Limbic System

    PubMed Central

    Namburi, Praneeth; Al-Hasani, Ream; Calhoon, Gwendolyn G; Bruchas, Michael R; Tye, Kay M

    2016-01-01

    In order to thrive, animals must be able to recognize aversive and appetitive stimuli within the environment and subsequently initiate appropriate behavioral responses. This assignment of positive or negative valence to a stimulus is a key feature of emotional processing, the neural substrates of which have been a topic of study for several decades. Until recently, the result of this work has been the identification of specific brain regions, such as the basolateral amygdala (BLA) and nucleus accumbens (NAc), as important to valence encoding. The advent of modern tools in neuroscience has allowed further dissection of these regions to identify specific populations of neurons signaling the valence of environmental stimuli. In this review, we focus upon recent work examining the mechanisms of valence encoding, and provide a model for the systematic investigation of valence within anatomically-, genetically-, and functionally defined populations of neurons. PMID:26647973

  8. Role of random magnetic anisotropy on the valence, magnetocaloric and resistivity properties in a hexagonal Sm2Ni0.87Si2.87 compound

    NASA Astrophysics Data System (ADS)

    Pakhira, Santanu; Kundu, Asish K.; Mazumdar, Chandan; Ranganathan, R.

    2018-05-01

    In this work, we report the effect of random magnetic anisotropy (RMA) on the valence, magnetocaloric and resistivity properties in a glassy intermetallic material Sm2Ni0.87Si2.87. On the basis of detailed studies on the valence band and core level electronic structure, we have established that both the Sm3+ and Sm2+ ions are present in the system, suggesting the compound to be of mixed valence in nature. The significant observation of positive magnetic entropy change in zero-field cooled measurement has been argued due to the presence of RMA that develops due to local electronic environmental variations between the rare-earth ions in the system. The quantum interference effect caused by the elastic electron–electron interaction is responsible for the resistivity upturn at low-temperature for this disordered metallic conductor.

  9. Concept and properties of an infrared hybrid single-beam spectrum and its application to eliminate solvent bands and other background interferences.

    PubMed

    Chen, Yujing; Wang, Hai-Shui; Morisawa, Yusuke; Ozaki, Yukihiro

    2014-02-01

    For infrared (IR) spectral measurements, if a quality single-beam background spectrum with desired intensity could be obtained, the contributions from solvent and other background components could be completely suppressed and their bands would not appear in a final transmittance/absorbance spectrum. In order to achieve this ideal but difficult goal, the concept of hybrid single-beam spectrum is introduced in this paper. The hybrid single-beam spectrum (φ h) is defined as a mixture of two single-beam spectra (φ b1 and φ b2) of the same sample but with different pathlengths (b1 and b2), namely, φ h = αφ b1+(1-α)φ b2, where α (0 ≤ α ≤ 1) is the component factor. The properties of the hybrid spectrum have been investigated. Under conditions of b2 > b1 ≥ 0.7 b2 and A max ≤ 0.60 (Amax is the maximum absorbance of b2 sample in the spectral range of interest), all the synthesized hybrid spectra are free from significant distortion regardless of the component factor. Therefore, the hybrid single-beam spectrum with desired intensity can be easily obtained simply by choosing an appropriate component factor. The proposed methodology has been demonstrated experimentally by the complete removal of the interference from the atmospheric water vapor and solvent. © 2013 Elsevier B.V. All rights reserved.

  10. Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy.

    PubMed

    Sang, Ling; Zhu, Qin Sheng; Yang, Shao Yan; Liu, Gui Peng; Li, Hui Jie; Wei, Hong Yuan; Jiao, Chun Mei; Liu, Shu Man; Wang, Zhan Guo; Zhou, Xiao Wei; Mao, Wei; Hao, Yue; Shen, Bo

    2014-01-01

    The band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are measured by X-ray photoemission spectroscopy. A large forward-backward asymmetry is observed in the non-polar GaN/AlN and AlN/GaN heterojunctions. The valence-band offsets in the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are determined to be 1.33 ± 0.16 and 0.73 ± 0.16 eV, respectively. The large valence-band offset difference of 0.6 eV between the non-polar GaN/AlN and AlN/GaN heterojunctions is considered to be due to piezoelectric strain effect in the non-polar heterojunction overlayers.

  11. Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Danhua; Zhang, Wenrui; Cen, Jiajie

    Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less

  12. Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering

    DOE PAGES

    Yan, Danhua; Zhang, Wenrui; Cen, Jiajie; ...

    2017-12-04

    Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less

  13. Temperature-induced band shift in bulk γ-InSe by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Huanfeng; Wang, Wei; Zhao, Yafei; Zhang, Xiaoqian; Feng, Yue; Tu, Jian; Gu, Chenyi; Sun, Yizhe; Liu, Chang; Nie, Yuefeng; Edmond Turcu, Ion C.; Xu, Yongbing; He, Liang

    2018-05-01

    Indium selenide (InSe) has recently become popular research topics because of its unique layered crystal structure, direct band gap and high electron mobilities. In this work, we have acquired the electronic structure of bulk γ-InSe at various temperatures using angle-resolved photoemission spectroscopy (ARPES). We have also found that as the temperature decreases, the valence bands of γ-InSe exhibit a monotonic shift to lower binding energies. This band shift is attributed to the change of lattice parameters and has been validated by variable temperature X-ray diffraction measurements and theoretical calculations.

  14. Valence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kindsmüller, A.; Schmitz, C.; Wiemann, C.; Skaja, K.; Wouters, D. J.; Waser, R.; Schneider, C. M.; Dittmann, R.

    2018-04-01

    The switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum.

  15. Pressure dependence of Ce valence in CeRhIn 5

    DOE PAGES

    Brubaker, Z. E.; Stillwell, R. L.; Chow, P.; ...

    2017-12-14

    We have studied the Ce valence as a function of pressure in CeRhIn5 at 300 K and at 22 K using x-ray absorption spectroscopy in partial fluorescent yield mode. At room temperature, we found no detectable change in Ce valence greater than 0.01 up to a pressure of 5.5 GPa. At 22 K, the valence remains robust against pressure below 6 GPa, in contrast to the predicted valence crossover at P = 2.35 GPa. In conclusion, this work yields an upper limit for the change in Ce-valence and suggests that the critical valence fluctuation scenario, in its current form, ismore » unlikely.« less

  16. Automated detection of heart ailments from 12-lead ECG using complex wavelet sub-band bi-spectrum features.

    PubMed

    Tripathy, Rajesh Kumar; Dandapat, Samarendra

    2017-04-01

    The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques.

  17. Automated detection of heart ailments from 12-lead ECG using complex wavelet sub-band bi-spectrum features

    PubMed Central

    Dandapat, Samarendra

    2017-01-01

    The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques. PMID:28894589

  18. Social learning modulates the lateralization of emotional valence.

    PubMed

    Shamay-Tsoory, Simone G; Lavidor, Michal; Aharon-Peretz, Judith

    2008-08-01

    Although neuropsychological studies of lateralization of emotion have emphasized valence (positive vs. negative) or type (basic vs. complex) dimensions, the interaction between the two dimensions has yet to be elucidated. The purpose of the current study was to test the hypothesis that recognition of basic emotions is processed preferentially by the right prefrontal cortex (PFC), whereas recognition of complex social emotions is processed preferentially by the left PFC. Experiment 1 assessed the ability of healthy controls and patients with right and left PFC lesions to recognize basic and complex emotions. Experiment 2 modeled the patient's data of Experiment 1 on healthy participants under lateralized displays of the emotional stimuli. Both experiments support the Type as well as the Valence Hypotheses. However, our findings indicate that the Valence Hypothesis holds for basic but less so for complex emotions. It is suggested that, since social learning overrules the basic preference of valence in the hemispheres, the processing of complex emotions in the hemispheres is less affected by valence.

  19. Affective valence signals agency within and between individuals.

    PubMed

    Chang, Yen-Ping; Algoe, Sara B; Chen, Lung Hung

    2017-03-01

    Affective valence is a core component of all emotional experiences. Building on recent evidence and theory, we reason that valence informs individuals about their agency-the mental capability of doing and intending. Expressed affect may also lead to perceptions of agency by others. Supporting the hypothesis that valence influences self- and other-perception of agency, across 5 studies, we showed that participants perceived more agency in themselves in positive versus neutral and negative personal (Study 1) and interpersonal (Study 2) events. Participants also perceived more agency in fictional characters showing positive versus negative affect, regardless of how acceptable the characters' behavior was (Studies 3 and 4). Finally, we had participants personify 24 specific emotions across the valence dimension, and found that the more positive and less negative an emotion was, the more agency participants ascribed to the "person" (Study 5). We discuss the results in terms of how valence may help with human self- and social regulation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations.

    PubMed

    Zhang, Ning; Chen, Chen; Mei, Zongwei; Liu, Xiaohe; Qu, Xiaolei; Li, Yunxiang; Li, Siqi; Qi, Weihong; Zhang, Yuanjian; Ye, Jinhua; Roy, Vellaisamy A L; Ma, Renzhi

    2016-04-27

    Exploring surface-exposed highly active crystal facets for photocatalytic oxidations is promising in utilizing monoclinic WO3 semiconductor. However, the previously reported highly active facets for monoclinic WO3 were mainly toward enhancing photocatalytic reductions. Here we report that the WO3 with {100} facet orientation and tuned surface electronic band structure can effectively enhance photocatalytic oxidation properties. The {100} faceted WO3 single crystals are synthesized via a facile hydrothermal method. The UV-visible diffuse reflectance, X-ray photoelectron spectroscopy valence band spectra, and photoelectrochemical measurements suggest that the {100} faceted WO3 has a much higher energy level of valence band maximum compared with the normal WO3 crystals without preferred orientation of the crystal face. The density functional theory calculations reveal that the shift of O 2p and W 5d states in {100} face induce a unique band structure. In comparison with the normal WO3, the {100} faceted WO3 exhibits an O2 evolution rate about 5.1 times in water splitting, and also shows an acetone evolution rate of 4.2 times as well as CO2 evolution rate of 3.8 times in gaseous degradation of 2-propanol. This study demonstrates an efficient crystal face engineering route to tune the surface electronic band structure for enhanced photocatalytic oxidations.

  1. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    PubMed

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  2. Electromagnetic spectrum survey of the environment in a locality in Kuala Lumpur, Malaysia

    NASA Astrophysics Data System (ADS)

    Abood, Wafa Ali; Din, Norashidah Md; Ismail, Aiman; Mohamad, Hafizal

    2013-06-01

    The electromagnetic spectrum in the environment is becoming a scarce resource with the emergence of a high number of wireless communications services Cognitive radio (CR) is viewed as a possible solution to the spectrum bottleneck which work in a premise that at an any given time and spatial region there are frequency bands that has no signal occupancy. The CR technique utilizes a temporarily unoccupied licensed band by allowing secondary users to exploit opportunistically the underutilized spectrum licensed to primary users without any harmful interference. Before investigating the technical and political implications of CR, it is necessary to know to what extent the licensed bands are temporally unoccupied. In this paper a spectrum occupancy measurements is conducted to study the utilization of RF spectrum in an environment. The measurements are performed on UHF TV, GSM900 and GSM1800 frequency bands in an urban area in Kuala Lumpur, Malaysia. The evaluation made is based on the power detection principle. From the measurements, the spectrum holes are identified. The obtained results show that the spectral usage is 7.37% for UHF TV band, 12.8% for GSM900 and 5.3% for GSM1800 band leading to the conclusion that a significant amount of spectrum is available for deployment of cognitive radio.

  3. Structural, optical and electronic properties of K2Ba(NO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Isaenko, L. I.; Korzhneva, K. E.; Goryainov, S. V.; Goloshumova, A. A.; Sheludyakova, L. A.; Bekenev, V. L.; Khyzhun, O. Y.

    2018-02-01

    Nitrate crystals reveal nonlinear optical properties and could be considered as converters of laser radiation in the short-wave region. The conditions for obtaining and basic properties of K2Ba(NO3)4 double nitrate crystals were investigated. Crystal growth was implemented by slow cooling in the temperature range of 72-49 °C and low rate evaporation. The structural analysis of K2Ba(NO3)4 formation on the basis of two mixed simple nitrate structures is discussed. The main groups of oscillations in K2Ba(NO3)4 crystal were revealed using Raman and IR spectroscopy, and the table of vibrations for this compound was compiled. The electronic structure of K2Ba(NO3)4 was elucidated in the present work from both experimental and theoretical viewpoints. In particular, X-ray photoelectron spectroscopy (XPS) was employed in the present work to measure binding energies of the atoms constituting the titled compound and its XPS valence-band spectrum for both pristine and Ar+ ion-bombarded surfaces. Further, total and partial densities of states of constituent atoms of K2Ba(NO3)4 have been calculated. The calculations reveal that the O 2p states dominate in the total valence-band region of K2Ba(NO3)4 except of its bottom, where K 3p and Ba 5p states are the principal contributors, while the bottom of the conduction band is composed mainly of the unoccupied O 2p states, with somewhat smaller contributions of the N 2p∗ states as well. With respect to the occupation of the valence band by the O 2p states, the present band-structure calculations are confirmed by comparison on a common energy scale of the XPS valence-band spectrum and the X-ray emission O Kα band for the K2Ba(NO3)4 crystal under study. Furthermore, the present calculations indicate that the K2Ba(NO3)4 compound is a direct-gap material.

  4. Taboo, emotionally valenced, and emotionally neutral word norms.

    PubMed

    Janschewitz, Kristin

    2008-11-01

    Although taboo words are used to study emotional memory and attention, no easily accessible normative data are available that compare taboo, emotionally valenced, and emotionally neutral words on the same scales. Frequency, inappropriateness, valence, arousal, and imageability ratings for taboo, emotionally valenced, and emotionally neutral words were made by 78 native-English-speaking college students from a large metropolitan university. The valenced set comprised both positive and negative words, and the emotionally neutral set comprised category-related and category-unrelated words. To account for influences of demand characteristics and personality factors on the ratings, frequency and inappropriateness measures were decomposed into raters' personal reactions to the words versus raters' perceptions of societal reactions to the words (personal use vs. familiarity and offensiveness vs. tabooness, respectively). Although all word sets were rated higher in familiarity and tabooness than in personal use and offensiveness, these differences were most pronounced for the taboo set. In terms of valence, the taboo set was most similar to the negative set, although it yielded higher arousal ratings than did either valenced set. Imageability for the taboo set was comparable to that of both valenced sets. The ratings of each word are presented for all participants as well as for single-sex groups. The inadequacies of the application of normative data to research that uses emotional words and the conceptualization of taboo words as a coherent category are discussed. Materials associated with this article may be accessed at the Psychonomic Society's Archive of Norms, Stimuli, and Data, www.psychonomic.org/archive.

  5. Affective experience and motivated behavior in schizophrenia spectrum disorders: Evidence from clinical and nonclinical samples.

    PubMed

    Lui, Simon S Y; Shi, Yan-Fang; Au, Angie C W; Li, Zhi; Tsui, Chi F; Chan, Constance K Y; Leung, Meranda M W; Wong, Peony T Y; Wang, Yi; Yan, Chao; Heerey, Erin A; Cheung, Eric F C; Chan, Raymond C K

    2016-09-01

    Individuals with schizophrenia have been found to exhibit emotion-behavior decoupling, particularly with respect to anticipated, rather than experienced events. However, previous research has focused on how emotion valence translates into motivated behavior, ignoring the fact that emotion arousal should also modulate emotion-behavior coupling. Few studies have examined emotion-behavior coupling in prepsychotic conditions. This investigation aimed to examine the nature and extent of emotion valence- and arousal-behavior coupling across the schizophrenia spectrum. We examine how emotional valence and arousal couple with behavior in 3 groups of individuals (25 individuals with chronic schizophrenia; 27 individuals early in the disease course, and 31 individuals reporting negative schizotypal symptoms). Participants completed a task using slides to elicit emotion and evoke motivated behavior. We compared participants with their respective matched control groups to determine differences in the correspondence between self-reported emotion valence/arousal and motivated behavior. Both groups with schizophrenia reported similar affective experiences as their controls, whereas individuals reporting negative schizotypal symptoms showed "in-the-moment" anhedonia but not emotion-behavior decoupling. In addition, the schizophrenia groups' affective experiences corresponded less well to their behavior relative to controls. Our findings suggest emotion-behavior decoupling along both valence and arousal dimensions in schizophrenia but not in participants with high levels of schizotypal symptoms. Findings appear to support the idea that emotion-behavior decoupling differs in nature and extent across the schizophrenia spectrum. Interventions to recouple emotion and behavior may be particularly helpful in allowing people with schizophrenia to gain functional independence. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Electronic structure and optical properties of noncentrosymmetric LiGaGe2Se6, a promising nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Ananchenko, L. N.; Isaenko, L. I.; Yelisseyev, A.; Krinitsin, P. G.; Khyzhun, O. Y.

    2016-11-01

    X-ray photoelectron core-level and valence-band spectra are measured for pristine and Ar+ ion-bombarded surfaces of LiGaGe2Se6 single crystal grown by Bridgman-Stockbarger technique. Further, electronic structure of LiGaGe2Se6 is elucidated from both theoretical and experimental viewpoints. Density functional theory (DFT) calculations are made using the augmented plane wave +local orbitals (APW+lo) method to study total and partial densities of states in the LiGaGe2Se6 compound. The present calculations indicate that the principal contributors to the valence band are the Se 4p states: they contribute mainly at the top and in the central portion of the valence band of LiGaGe2Se6, with also their significant contributions in its lower portion. The Ge 4s and Ge 4p states are among other significant contributors to the valence band of LiGaGe2Se6, contributing mainly at the bottom and in the central portion, respectively. In addition, the calculations indicate that the bottom of the conduction band is composed mainly from the unoccupied Ge s and Se p states. The present DFT calculations are supported experimentally by comparison on a common energy scale of the X-ray emission bands representing the energy distribution of the 4p states associated with Ga, Ge and Se and the XPS valence-band spectrum of the LiGaGe2Se6 single crystal. The main optical characteristics of the LiGaGe2Se6 compound are elucidated by the first-principles calculations.

  7. Band alignment at the Cu2ZnSn(SxSe1-x)4/CdS interface

    NASA Astrophysics Data System (ADS)

    Haight, Richard; Barkhouse, Aaron; Gunawan, Oki; Shin, Byungha; Copel, Matt; Hopstaken, Marinus; Mitzi, David B.

    2011-06-01

    Energy band alignments between CdS and Cu2ZnSn(SxSe1-x)4 (CZTSSe) grown via solution-based and vacuum-based deposition routes were studied as a function of the [S]/[S+Se] ratio with femtosecond laser ultraviolet photoelectron spectroscopy, photoluminescence, medium energy ion scattering, and secondary ion mass spectrometry. Band bending in the underlying CZTSSe layer was measured via pump/probe photovoltage shifts of the photoelectron spectra and offsets were determined with photoemission under flat band conditions. Increasing the S content of the CZTSSe films produces a valence edge shift to higher binding energy and increases the CZTSSe band gap. In all cases, the CdS conduction band offsets were spikes.

  8. Temperature-driven band inversion in Pb 0.77 Sn 0.23 Se : Optical and Hall effect studies

    DOE PAGES

    Anand, Naween; Buvaev, Sanal; Hebard, A. F.; ...

    2014-12-23

    Optical and Hall-effect measurements have been performed on single crystals of Pb₀.₇₇Sn₀.₂₃Se, a IV-VI mixed chalcogenide. The temperature dependent (10–300 K) reflectance was measured over 40–7000 cm⁻¹ (5–870 meV) with an extension to 15,500 cm⁻¹ (1.92 eV) at room temperature. The reflectance was fit to the Drude-Lorentz model using a single Drude component and several Lorentz oscillators. The optical properties at the measured temperatures were estimated via Kramers-Kronig analysis as well as by the Drude-Lorentz fit. The carriers were p-type with the carrier density determined by Hall measurements. A signature of valence intraband transition is found in the low-energy opticalmore » spectra. It is found that the valence-conduction band transition energy as well as the free carrier effective mass reach minimum values at 100 K, suggesting temperature-driven band inversion in the material. Thus, density function theory calculation for the electronic band structure also make similar predictions.« less

  9. Control of Ge1-x-ySixSny layer lattice constant for energy band alignment in Ge1-xSnx/Ge1-x-ySixSny heterostructures

    NASA Astrophysics Data System (ADS)

    Fukuda, Masahiro; Watanabe, Kazuhiro; Sakashita, Mitsuo; Kurosawa, Masashi; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-10-01

    The energy band alignment of Ge1-xSnx/Ge1-x-ySixSny heterostructures was investigated, and control of the valence band offset at the Ge1-xSnx/Ge1-x-ySixSny heterointerface was achieved by controlling the Si and Sn contents in the Ge1-x-ySixSny layer. The valence band offset in the Ge0.902Sn0.098/Ge0.41Si0.50Sn0.09 heterostructure was evaluated to be as high as 330 meV, and its conduction band offset was estimated to be 150 meV by considering the energy bandgap calculated from the theoretical prediction. In addition, the formation of the strain-relaxed Ge1-x-ySixSny layer was examined and the crystalline structure was characterized. The epitaxial growth of a strain-relaxed Ge0.64Si0.21Sn0.15 layer with the degree of strain relaxation of 55% was examined using a virtual Ge substrate. Moreover, enhancement of the strain relaxation was demonstrated by post-deposition annealing, where a degree of strain relaxation of 70% was achieved after annealing at 400 °C. These results indicate the possibility for enhancing the indirect-direct crossover with a strained and high-Sn-content Ge1-xSnx layer on a strain-relaxed Ge1-x-ySixSny layer, realizing preferable carrier confinement by type-I energy band alignment with high conduction and valence band offsets.

  10. Electronic structure study of wide band gap magnetic semiconductor (La0.6Pr0.4)0.65Ca0.35MnO3 nanocrystals in paramagnetic and ferromagnetic phases

    NASA Astrophysics Data System (ADS)

    Dwivedi, G. D.; Joshi, Amish G.; Kumar, Shiv; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L.; Ghosh, A. K.; Chatterjee, Sandip

    2016-04-01

    X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La0.6Pr0.4)0.65Ca0.35MnO3 near Fermi-level. XMCD results indicate that Mn3+ and Mn4+ spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La0.6Pr0.4)0.65Ca0.35MnO3 system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below TC. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.

  11. Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment

    NASA Astrophysics Data System (ADS)

    Pistor, P.; Greiner, D.; Kaufmann, C. A.; Brunken, S.; Gorgoi, M.; Steigert, A.; Calvet, W.; Lauermann, I.; Klenk, R.; Unold, T.; Lux-Steiner, M.-C.

    2014-08-01

    The implementation of potassium fluoride treatments as a doping and surface modification procedure in chalcopyrite absorber preparation has recently gained much interest since it led to new record efficiencies for this kind of solar cells. In the present work, Cu(In,Ga)Se2 absorbers have been evaporated on alkali containing Mo/soda-lime glass substrates. We report on compositional and electronic changes of the Cu(In,Ga)Se2 absorber surface as a result of a post deposition treatment with KF (KF PDT). In particular, by comparing standard X-ray photoelectron spectroscopy and synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES), we are able to confirm a strong Cu depletion in the absorbers after the KF PDT which is limited to the very near surface region. As a result of the Cu depletion, we find a change of the valence band structure and a shift of the valence band onset by approximately 0.4 eV to lower binding energies which is tentatively explained by a band gap widening as expected for Cu deficient compounds. The KF PDT increased the open circuit voltage by 60-70 mV compared to the untreated absorbers, while the fill factor deteriorated.

  12. Electronic Band Structure Tuning of Highly-Mismatched-Alloys for Energy Conversion Applications

    NASA Astrophysics Data System (ADS)

    Ting, Min

    Highly-mismatched alloys: ZnO1-xTe x and GaN1-xSb x are discussed within the context of finding the suitable material for a cost-effective Si-based tandem solar cell (SBTSC). SBTSC is an attractive concept for breaking through the energy conversion efficiency theoretical limit of a single junction solar cell. Combining with a material of 1.8 eV band gap, SBTSC can theoretically achieve energy conversion efficiency > 45%. ZnO and GaN are wide band gap semiconductors. Alloying Te in ZnO and alloying Sb in GaN result in large band gap reduction to < 2 eV from 3.3 eV and 3.4 eV respectively. The band gap reduction is majorly achieved by the upward shift of valence band (VB). Incorporating Te in ZnO modifies the VB of ZnO through the valence-band anticrossing (VBAC) interaction between localized Te states and ZnO VB delocalized states, which forms a Te-derived VB at 1 eV above the host VB. Similar band structure modification is resulted from alloying Sb in GaN. Zn1-xTex and GaN 1-xSbx thin films are synthesized across the whole composition range by pulsed laser deposition (PLD) and low temperature molecular beam epitaxy (LT-MBE) respectively. The electronic band edges of these alloys are measured by synchrotron X-ray absorption, emission, and the X-ray photoelectron spectroscopies. Modeling the optical absorption coefficient with the band anticrossing (BAC) model revealed that the Te and Sb defect levels to be at 0.99 eV and 1.2 eV above the VB of ZnO and GaN respectively. Electrically, Zn1-xTex is readily n-type conductive and GaN1-xSbx is strongly p-type conductive. A heterojunction device of p-type GaN 0.93Sb0.07 with n-type ZnO0.77Te0.93 upper cell (band gap at 1.8 eV) on Si bottom cell is proposed as a promising SBTSC device.

  13. The Electronic Structure of the Cs/ n-GaN(0001) Nano-Interface

    NASA Astrophysics Data System (ADS)

    Benemanskaya, G. V.; Lapushkin, M. N.; Marchenko, D. E.; Timoshnev, S. N.

    2018-03-01

    Electronic structures of the n-GaN(0001) surface and Cs/ n-GaN(0001) interface with submonolayer Cs coverages were studied for the first time in situ by the photoelectron spectroscopy (PES) method. The spectra of photoemission from the valence band, surface electron states, and core levels (Ga 3 d, Cs 4 d, Cs 5 p) under synchrotron excitation were measured in a range of photon energies within 50-150 eV. Evolution of the spectrum of surface states near the valence-band maximum was revealed by PES during the adsorption of Cs atoms. A metallic character of the Cs/ n-GaN(0001) nano-interface is demonstrated.

  14. High-resolution far-infrared synchrotron FTIR spectrum of the ν12 band of formamide-d1 (DCONH2)

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Wu, Q. Y.; Ng, L. L.; Appadoo, Dominique R. T.; McNaughton, Don

    2018-05-01

    The spectrum of the ν12 band of formamide-d1 (DCONH2) was recorded using a synchrotron Fourier transform infrared (FTIR) spectrometer coupled to the Australian Synchrotron THz/Far-IR beamline, with an unapodized resolution of 0.00096 cm-1 in the 350-210 cm-1 region. For the first time, rovibrational constants up to five quartic and two sextic terms were derived for the v12 = 1 state through the fitting of a total of 2072 far-infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation with a root-mean-square (rms) deviation of 0.000073 cm-1. The band centre of the ν12 band of DCONH2 was found to be 289.3327553(47) cm-1 although the experimental uncertainty was limited to ±0.0002 cm-1. Ground state rovibrational constants of DCONH2 up to five quartic and two sextic constants were derived from a fit of 847 ground state combination differences (GSCDs) obtained from the infrared transitions of the ν12 band, together with 6 previously reported microwave transitions, with a rms deviation of 0.000108 cm-1. The ground state rotational constants (A, B, and C) of DCONH2 were improved while the ground state centrifugal distortion constants were accurately obtained for the first time. The uncertainty of the measured infrared lines was estimated to be ±0.0002 cm-1. From the ground state rotational constants, the inertial defect of DCONH2 was calculated to be 0.0169412(11) uÅ2.

  15. Digital FMCW for ultrawideband spectrum sensing

    NASA Astrophysics Data System (ADS)

    Cheema, A. A.; Salous, S.

    2016-08-01

    An ultrawideband digital frequency-modulated continuous wave sensing engine is proposed as an alternative technique for cognitive radio applications. A dual-band demonstrator capable of sensing 750 MHz bandwidth in 204.8 µs is presented. Its performance is illustrated from both bench tests and from real-time measurements of the GSM 900 band and the 2.4 GHz wireless local area network (WLAN) band. The measured sensitivity and noise figure values are -90 dBm for a signal-to-noise ratio margin of at least 10 dB and ~13-14 dB, respectively. Data were collected over 24 h and were analyzed by using the energy detection method. The obtained results show the time variability of occupancy, and considerable sections of the spectrum are unoccupied. In addition, unlike the cyclic temporal variations of spectrum occupancy in the GSM 900 band, the detected variations in the 2.4 GHz WLAN band have an impulsive nature.

  16. Observations of silicate reststrahlen bands in lunar infrared spectra

    NASA Technical Reports Server (NTRS)

    Potter, A. E., Jr.; Morgan, T. H.

    1982-01-01

    Thermal emission spectra of three lunar sites (Apollo 11, Descartes Formation, and Tycho central peak) are measured in the 8-14 micron spectral range. Transmission and instrument effects are accounted for by forming ratios of the Descartes and Tycho spectra to the Apollo 11 spectrum. The ratio spectra are compared with ratios of published laboratory spectra of returned lunar samples and also with ratio spectra calculated using the Aronson-Emslie (1975) model. The comparisons show pyroxene bands in the Descartes ratio spectrum and plagioclase bands in the Tycho ratio spectrum. The Tycho spectrum is found to be consistent with the existence of fine plagioclase dust (approximately 1 micron) at the rock surface and a higher-than-usual sodium content of the plagioclase.

  17. Effects of Emotional Valence and Arousal on Time Perception

    PubMed Central

    Van Volkinburg, Heather; Balsam, Peter

    2016-01-01

    We examined the influence of emotional arousal and valence on estimating time intervals. A reproduction task was used in which images from the International Affective Picture System served as the stimuli to be timed. Experiment 1 assessed the effects of positive and negative valence at a moderate arousal level and Experiment 2 replicated Experiment 1 with the addition of a high arousal condition. Overestimation increased as a function of arousal during encoding of times regardless of valence. For images presented during reproduction, overestimation occurred at the moderate arousal level for positive and negative valence but underestimation occurred in the negative valence high arousal condition. The overestimation of time intervals produced by emotional arousal during encoding and during reproduction suggests that emotional stimuli affect temporal information processing in a qualitatively different way during different phases of temporal information processing. PMID:27110491

  18. SF_6: the Forbidden Band Unveiled

    NASA Astrophysics Data System (ADS)

    Boudon, V.; Manceron, L.; Kwabia-Tchana, F.; Roy, P.

    2013-06-01

    Sulfur hexafluoride (SF_6) is a greenhouse gas of anthropogenic origin, whose strong infrared absorption in the ν_3 S-F stretching region near 948 cm^{-1} induces a global warming potential 23900 times bigger than CO_2. This heavy species features many hot bands at room temperature (at which the ground state population is only 30 %), especially those originating from the v_6=1 state. Unfortunately, the ν_6 band itself (near 347 cm^{-1}) being, in first approximation, both infrared and Raman inactive, no reliable information could be obtained about it up to now. A long time ago, some authors suggested that this band may be slightly activated through Coriolis interaction and may appear as a very faint band, with an integrated intensity about 2 millionths of that of ν_3. Using a new cryogenic multipass cell with 93 m optical path length and regulated at 165± 2 K temperature, we recorded a spectrum of the ν_6 far-infrared region thanks to the performances of the AILES Beamline at the SOLEIL french synchrotron facility. Low temperature was used to avoid the presence of the 2ν_6-ν_6 hot band and to reduce the neighboring, stronger ν_4-ν_2 difference band. We are thus able to confirm that the small feature in this region, previously viewed at low-resolution is indeed ν_6. We present its fully resolved spectrum. It appears to be activated thanks to unidentified faint interactions resulting in the presence of a first-order dipole moment term that induces unusual selection rules. This spectrum was analyzed thanks to the XTDS software package, leading to accurate molecular spectroscopic parameters that should be useful to model the hot bands of SF_6. W. B. Person, B. J. Krohn, J. Mol. Spectrosc. {98}, 229-257 (1983), C. Chappados, G. Birnbaum, J. Mol. Spectrosc. {105}, 206-214 (1984). Ch. Wenger, V. Boudon, M. Rotger, M. Sanzharov and J.-P. Champion, J. Mol. Spectrosc., {251} 102-113 (2008).

  19. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers

    NASA Astrophysics Data System (ADS)

    Mehrabian, M.; Esteki, Z.; Shokrvash, H.; Kavei, G.

    2016-10-01

    Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.

  20. Theory of Band Warping and its Effects on Thermoelectronic Transport Properties

    NASA Astrophysics Data System (ADS)

    Mecholsky, Nicholas; Resca, Lorenzo; Pegg, Ian; Fornari, Marco

    2015-03-01

    Transport properties of materials depend upon features of band structures near extrema in the BZ. Such features are generally described in terms of quadratic expansions and effective masses. Such expansions, however, are permissible only under strict conditions that are sometimes violated by materials. Suggestive terms such as ``band warping'' have been used to refer to such situations and ad hoc methods have been developed to treat them. We develop a generally applicable theory, based on radial expansions, and a corresponding definition of angular effective mass which also accounts for effects of band non-parabolicity and anisotropy. Further, we develop precise procedures to evaluate band warping quantitatively and as an example we analyze the warping features of valence bands in silicon using first-principles calculations and we compare those with semi-empirical models. We use our theory to generalize derivations of transport coefficients for cases of either single or multiple electronic bands, with either quadratically expansible or warped energy surfaces. We introduce the transport-equivalent ellipsoid and illustrate the drastic effects that band warping can induce on thermoelectric properties using multi-band models. Vitreous State Laboratory and Samsung's GRO program.

  1. High-order harmonic generation from a two-dimensional band structure

    NASA Astrophysics Data System (ADS)

    Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You

    2018-04-01

    In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.

  2. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks.

    PubMed

    Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing

    2017-05-25

    With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.

  3. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks

    PubMed Central

    Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing

    2017-01-01

    With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems. PMID:28587085

  4. The allocation of valenced concepts onto 3D space.

    PubMed

    Marmolejo-Ramos, Fernando; Tirado, Carlos; Arshamian, Edward; Vélez, Jorge Iván; Arshamian, Artin

    2018-06-01

    The valence-space metaphor research area investigates the metaphorical mapping of valenced concepts onto space. Research findings from this area indicate that positive, neutral, and negative concepts are associated with upward, midward, and downward locations, respectively, in the vertical plane. The same research area has also indicated that such concepts seem to have no preferential location on the horizontal plane. The approach-avoidance effect consists in decreasing the distance between positive stimuli and the body (i.e. approach) and increasing the distance between negative stimuli and the body (i.e. avoid). Thus, the valence-space metaphor accounts for the mapping of valenced concepts onto the vertical and horizontal planes, and the approach-avoidance effect accounts for the mapping of valenced concepts onto the "depth" plane. By using a cube conceived for the study of allocation of valenced concepts onto 3D space, we show in three studies that positive concepts are placed in upward locations and near the participants' body, negative concepts are placed in downward locations and far from the participants' body, and neutral concepts are placed in between these concepts in both planes.

  5. Quasiparticle band structures and interface physics of SnS and GeS

    NASA Astrophysics Data System (ADS)

    Malone, Brad; Kaxiras, Efthimios

    2013-03-01

    Orthorhombic SnS and GeS are layered materials made of earth-abundant elements which have the potential to play a useful role in the massive scale up of renewable power necessary by 2050 to avoid unmanageable levels of climate change. We report on first principles calculations of the quasiparticle spectra of these two materials, predicting the type and magnitude of the fundamental band gap, a quantity which shows a strong degree of scatter in the experimental literature. Additionally, in order to evaluate the possible role of GeS as an electron-blocking layer in a SnS-based photovoltaic device, we investigate the band offsets of the interfaces between these materials along the three principle crystallographic directions. We find that while the valence-band offsets are similar along the three principle directions, the conduction-band offsets display a substantial amount of anisotropy.

  6. Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5

    PubMed Central

    Chen, Zhi-Guo; Chen, R. Y.; Zhong, R. D.; Schneeloch, John; Zhang, C.; Huang, Y.; Qu, Fanming; Yu, Rui; Gu, G. D.; Wang, N. L.

    2017-01-01

    Three-dimensional topological insulators (3D TIs) represent states of quantum matters in which surface states are protected by time-reversal symmetry and an inversion occurs between bulk conduction and valence bands. However, the bulk-band inversion, which is intimately tied to the topologically nontrivial nature of 3D Tis, has rarely been investigated by experiments. Besides, 3D massive Dirac fermions with nearly linear band dispersions were seldom observed in TIs. Recently, a van der Waals crystal, ZrTe5, was theoretically predicted to be a TI. Here, we report an infrared transmission study of a high-mobility [∼33,000 cm2/(V ⋅ s)] multilayer ZrTe5 flake at magnetic fields (B) up to 35 T. Our observation of a linear relationship between the zero-magnetic-field optical absorption and the photon energy, a bandgap of ∼10 meV and a B dependence of the Landau level (LL) transition energies at low magnetic fields demonstrates 3D massive Dirac fermions with nearly linear band dispersions in this system. More importantly, the reemergence of the intra-LL transitions at magnetic fields higher than 17 T reveals the energy cross between the two zeroth LLs, which reflects the inversion between the bulk conduction and valence bands. Our results not only provide spectroscopic evidence for the TI state in ZrTe5 but also open up a new avenue for fundamental studies of Dirac fermions in van der Waals materials. PMID:28096330

  7. Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe 5

    DOE PAGES

    Chen, Zhi -Guo; Chen, R. Y.; Zhong, R. D.; ...

    2017-01-17

    Three-dimensional topological insulators (3D TIs) represent states of quantum matters in which surface states are protected by time-reversal symmetry and an inversion occurs between bulk conduction and valence bands. However, the bulk-band inversion, which is intimately tied to the topologically nontrivial nature of 3D Tis, has rarely been investigated by experiments. Besides, 3D massive Dirac fermions with nearly linear band dispersions were seldom observed in TIs. Recently, a van der Waals crystal, ZrTe 5, was theoretically predicted to be a TI. Here, we report an infrared transmission study of a high-mobility [~33,000 cm 2/(V • s)] multilayer ZrTe 5 flakemore » at magnetic fields (B) up to 35 T. Our observation of a linear relationship between the zero-magnetic-field optical absorption and the photon energy, a bandgap of ~10 meV and a √B dependence of the Landau level (LL) transition energies at low magnetic fields demonstrates 3D massive Dirac fermions with nearly linear band dispersions in this system. More importantly, the reemergence of the intra-LL transitions at magnetic fields higher than 17 T reveals the energy cross between the two zeroth LLs, which reflects the inversion between the bulk conduction and valence bands. Finally, our results not only provide spectroscopic evidence for the TI state in ZrTe 5 but also open up a new avenue for fundamental studies of Dirac fermions in van der Waals materials.« less

  8. 77 FR 45558 - 4.9 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ...The Commission allocated the 4940-4990 MHz (4.9 GHz) band in 2002 for fixed and mobile use and dedicated the band for public safety broadband communications. In the ten years since, the band has gone underutilized. The purpose of these proposed rules is to invigorate and maximize use of the 4.9 GHz band and attract more users while improving spectrum efficiency. The Commission seeks comment on formal coordination requirements, expanded eligibility, how the band can complement the 700 MHz public safety broadband network, technical rule changes, aeronautical mobile operations, interoperability standards, and deployment reporting.

  9. Optical band gap of thermally deposited Ge-S-Ga thin films

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Heera, Pawan; Singh, Bhanu Pratap; Sharma, Raman

    2018-05-01

    Thin films of Ge20S80-xGax glassy alloy, obtained from melt quenching technique, were deposited on the glass substrate by thermal evaporation technique under a high vacuum conditions (˜ 10-5 Torr). Absorption spectrum fitting method (ASF) is employed to obtain the optical band gap from absorption spectra. This method requires only the measurement of the absorption spectrum of the sample. The width of the band tail was also determined. Optical band gap computed from absorption spectra is found to decrease with an increase in Ga content. The evaluated optical band gap (Eg) is in well agreement with the theoretically predicted Eg and obtained from transmission spectra.

  10. Universality class of non-Fermi-liquid behavior in mixed-valence systems

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu

    1996-01-01

    A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper oxides. Using the Abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong-coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed-valence quantum critical point separating two different Fermi-liquid phases, i.e., the Kondo phase and the empty orbital phase. In the mixed-valence quantum critical regime, the local moment is only partially quenched and x-ray edge singularities are generated. Around the quantum critical point, a type of non-Fermi-liquid behavior is predicted with an extra specific heat Cimp~T1/4 and a singular spin susceptibility χimp~T-3/4. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5-x (x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.

  11. Valence-Dependent Belief Updating: Computational Validation.

    PubMed

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement

  12. Valence-Dependent Belief Updating: Computational Validation

    PubMed Central

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement

  13. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1) Parties... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition their...

  14. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1) Parties... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition their...

  15. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1) Parties... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition their...

  16. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1) Parties... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition their...

  17. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1) Parties... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition their...

  18. Emotion and language: Valence and arousal affect word recognition

    PubMed Central

    Brysbaert, Marc; Warriner, Amy Beth

    2014-01-01

    Emotion influences most aspects of cognition and behavior, but emotional factors are conspicuously absent from current models of word recognition. The influence of emotion on word recognition has mostly been reported in prior studies on the automatic vigilance for negative stimuli, but the precise nature of this relationship is unclear. Various models of automatic vigilance have claimed that the effect of valence on response times is categorical, an inverted-U, or interactive with arousal. The present study used a sample of 12,658 words, and included many lexical and semantic control factors, to determine the precise nature of the effects of arousal and valence on word recognition. Converging empirical patterns observed in word-level and trial-level data from lexical decision and naming indicate that valence and arousal exert independent monotonic effects: Negative words are recognized more slowly than positive words, and arousing words are recognized more slowly than calming words. Valence explained about 2% of the variance in word recognition latencies, whereas the effect of arousal was smaller. Valence and arousal do not interact, but both interact with word frequency, such that valence and arousal exert larger effects among low-frequency words than among high-frequency words. These results necessitate a new model of affective word processing whereby the degree of negativity monotonically and independently predicts the speed of responding. This research also demonstrates that incorporating emotional factors, especially valence, improves the performance of models of word recognition. PMID:24490848

  19. Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Webb, James L.; Hart, Lewis S.; Wolverson, Daniel; Chen, Chaoyu; Avila, Jose; Asensio, Maria C.

    2017-09-01

    The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two-dimensional heterostructure devices. The nature of the band gap (direct or indirect) for bulk, few-, and single-layer forms of ReS2 is of particular interest, due to its comparatively weak interplanar interaction. However, the degree of interlayer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS2 using high-resolution angle-resolved photoemission spectroscopy. We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 me ) than along them (1.6 me ). An appreciable interplane interaction results in an experimentally measured difference of ≈100 -200 meV between the valence band maxima at the Z point (0,0,1/2 ) and the Γ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at Γ , implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the nature of the band gap in this material.

  20. Observation of Dirac-like energy band and ring-torus Fermi surface associated with the nodal line in topological insulator CaAgAs

    NASA Astrophysics Data System (ADS)

    Takane, Daichi; Nakayama, Kosuke; Souma, Seigo; Wada, Taichi; Okamoto, Yoshihiko; Takenaka, Koshi; Yamakawa, Youichi; Yamakage, Ai; Mitsuhashi, Taichi; Horiba, Koji; Kumigashira, Hiroshi; Takahashi, Takashi; Sato, Takafumi

    2018-01-01

    One of key challenges in current material research is to search for new topological materials with inverted bulk-band structure. In topological insulators, the band inversion caused by strong spin-orbit coupling leads to opening of a band gap in the entire Brillouin zone, whereas an additional crystal symmetry such as point-group and nonsymmorphic symmetries sometimes prohibits the gap opening at/on specific points or line in momentum space, giving rise to topological semimetals. Despite many theoretical predictions of topological insulators/semimetals associated with such crystal symmetries, the experimental realization is still relatively scarce. Here, using angle-resolved photoemission spectroscopy with bulk-sensitive soft-x-ray photons, we experimentally demonstrate that hexagonal pnictide CaAgAs belongs to a new family of topological insulators characterized by the inverted band structure and the mirror reflection symmetry of crystal. We have established the bulk valence-band structure in three-dimensional Brillouin zone, and observed the Dirac-like energy band and ring-torus Fermi surface associated with the line node, where bulk valence and conducting bands cross on a line in the momentum space under negligible spin-orbit coupling. Intriguingly, we found that no other bands cross the Fermi level and therefore the low-energy excitations are solely characterized by the Dirac-like band. CaAgAs provides an excellent platform to study the interplay among low-energy electron dynamics, crystal symmetry, and exotic topological properties.

  1. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  2. Shuttle spectrum despreader

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of the spread spectrum despreader project are reported and three principal products are designed and tested. The products are, (1) a spread spectrum despreader breadboard, (2) associated test equipment consisting of a spectrum spreader and bit reconstruction/error counter and (3) paper design of a Ku-band receiver which would incorporate the despreader as a principal subsystem. The despreader and test set are designed for maximum flexibility. A choice of unbalanced quadriphase or biphase shift keyed data modulation is available. Selectable integration time and threshold voltages on the despreader further lend true usefulness as laboratory test equipment to the delivered hardware.

  3. The Gamow-state description of the decay energy spectrum of neutron-unbound 25O

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; de la Madrid, R.

    2018-02-01

    We show the feasibility of calculating the decay energy spectrum of neutron emitting nuclei within the Gamow-state description of resonances by obtaining the decay energy spectrum of 25O. We model this nucleus as a valence neutron interacting with an 24O inert core, and we obtain the resulting resonant energies, widths and decay energy spectra for the ground and first excited states. We also discuss the similarities and differences between the decay energy spectrum of a Gamow state and the Breit-Wigner distribution with energy-dependent width.

  4. Valenced cues and contexts have different effects on event-based prospective memory.

    PubMed

    Graf, Peter; Yu, Martin

    2015-01-01

    This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants' task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement.

  5. Valenced Cues and Contexts Have Different Effects on Event-Based Prospective Memory

    PubMed Central

    Graf, Peter; Yu, Martin

    2015-01-01

    This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants’ task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement. PMID:25647484

  6. Influence of calcium on transport properties, band spectrum and superconductivity of YBa2Cu3O(y) and YBa(1.5)La(0.5)Cu3O(y)

    NASA Technical Reports Server (NTRS)

    Gasumyants, V. E.; Vladimirskaya, E. V.; Patrina, I. B.

    1995-01-01

    The comparative investigation of transport phenomena in Y(1-x)Ca(x)Ba2Cu3O(y) (0 is less than x is less than 0.25; 6.96 is greater than y is greater than 6.87 and 6.73 is less than x is less than 6.53); Y(1-x)Ca(x)Ba(1.5)La(0.5)Cu3O(y) (0 is less than x is less than 0.5; 7.12 is greater than y is greater than 6.96) and YBa(2-x)La(x)Cu3O(y) (0 is less than x is less than 0.5; 6.95 is less than y is less than 7.21) systems have been carried out. The temperature dependencies of resistivity and thermopower have been measured. It was found that the S(T) dependencies take some additional features with Ca content increase. The results obtained have been analyzed on the basis of the phenomenological theory of electron transport in the case of the narrow conductive band. The main parameters of the band spectrum (the band filling with electrons degree and the total effective band width) have been determined. The dependencies of these from contents of substituting elements are discussed. Analyzing the results obtained simultaneously with the tendencies in oxygen content and critical temperature change we have confirmed the conclusion that the oxygen sublattice disordering has a determinant effect on band structure parameters and superconductive properties of YBa2Cu3O(y). The results obtained suggest that Ca gives rise to some peculiarities in band spectrum of this compound.

  7. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement under...

  8. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement under...

  9. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement under...

  10. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement under...

  11. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement under...

  12. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement under...

  13. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement under...

  14. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement under...

  15. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement under...

  16. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement under...

  17. Perceptual Integration Deficits in Autism Spectrum Disorders Are Associated with Reduced Interhemispheric Gamma-Band Coherence.

    PubMed

    Peiker, Ina; David, Nicole; Schneider, Till R; Nolte, Guido; Schöttle, Daniel; Engel, Andreas K

    2015-12-16

    The integration of visual details into a holistic percept is essential for object recognition. This integration has been reported as a key deficit in patients with autism spectrum disorders (ASDs). The weak central coherence account posits an altered disposition to integrate features into a coherent whole in ASD. Here, we test the hypothesis that such weak perceptual coherence may be reflected in weak neural coherence across different cortical sites. We recorded magnetoencephalography from 20 adult human participants with ASD and 20 matched controls, who performed a slit-viewing paradigm, in which objects gradually passed behind a vertical or horizontal slit so that only fragments of the object were visible at any given moment. Object recognition thus required perceptual integration over time and, in case of the horizontal slit, also across visual hemifields. ASD participants were selectively impaired in the horizontal slit condition, indicating specific difficulties in long-range synchronization between the hemispheres. Specifically, the ASD group failed to show condition-related enhancement of imaginary coherence between the posterior superior temporal sulci in both hemispheres during horizontal slit-viewing in contrast to controls. Moreover, local synchronization reflected in occipitocerebellar beta-band power was selectively reduced for horizontal compared with vertical slit-viewing in ASD. Furthermore, we found disturbed connectivity between right posterior superior temporal sulcus and left cerebellum. Together, our results suggest that perceptual integration deficits co-occur with specific patterns of abnormal global and local synchronization in ASD. The weak central coherence account proposes a tendency of individuals with autism spectrum disorders (ASDs) to focus on details at the cost of an integrated coherent whole. Here, we provide evidence, at the behavioral and the neural level, that visual integration in object recognition is impaired in ASD, when

  18. Europium mixed-valence, long-range magnetic order, and dynamic magnetic response in EuCu 2 ( Si x Ge 1 - x ) 2

    DOE PAGES

    Nemkovski, Krill S.; Kozlenko, D. P.; Alekseev, Pavel A.; ...

    2016-11-01

    In mixed-valence or heavy-fermion systems, the hybridization between local f orbitals and conduction band states can cause the suppression of long-range magnetic order, which competes with strong spin uctuations. Ce- and Yb-based systems have been found to exhibit fascinating physical properties (heavy-fermion superconductivity, non-Fermi-liquid states, etc.) when tuned to the vicinity of magnetic quantum critical points by use of various external control parameters (temperature, magnetic eld, chemical composition). Recently, similar effects (mixed-valence, Kondo uctuations, heavy Fermi liquid) have been reported to exist in some Eu-based compounds. Unlike Ce (Yb), Eu has a multiple electron (hole) occupancy of its 4f shell,more » and the magnetic Eu 2+ state (4f 7) has no orbital component in the usual LS coupling scheme, which can lead to a quite different and interesting physics. In the EuCu 2(Si xGe 1-x) 2 series, where the valence can be tuned by varying the Si/Ge ratio, it has been reported that a significant valence uctuation can exist even in the magnetic order regime. This paper presents a detailed study of the latter material using different microscopic probes (XANES, Mossbauer spectroscopy, elastic and inelastic neutron scattering), in which the composition dependence of the magnetic order and dynamics across the series is traced back to the change in the Eu valence state. In particular, the results support the persistence of valence uctuations into the antiferromagnetic state over a sizable composition range below the critical Si concentration x c ≈ 0:65. In conclusion, the sequence of magnetic ground states in the series is shown to re ect the evolution of the magnetic spectral response.« less

  19. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires

    NASA Astrophysics Data System (ADS)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-04-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  20. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In 2 O 3 nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor–liquid–solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy (VO) defects as confirmed using Raman spectroscopy. A combination of highmore » resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of VO defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.« less

  1. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires.

    PubMed

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P; Schaller, Richard D; Gosztola, David J; Stroscio, Michael A; Dutta, Mitra

    2018-04-27

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In 2 O 3 ) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In 2 O 3 nanostructure based device characteristics for potential optoelectronic applications. In 2 O 3 nanowires with cubic crystal structure (c-In 2 O 3 ) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy [Formula: see text] defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of [Formula: see text] defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  2. Determination of optical band gap of powder-form nanomaterials with improved accuracy

    NASA Astrophysics Data System (ADS)

    Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul

    2017-10-01

    Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.

  3. Differential conductance (dI/dV) imaging of a heterojunction-nanorod

    NASA Astrophysics Data System (ADS)

    Kundu, Biswajit; Bera, Abhijit; Pal, Amlan J.

    2017-03-01

    Through scanning tunneling spectroscopy, we envisage imaging a heterostructure, namely a junction formed in a single nanorod. While the differential conductance spectrum provides location of conduction and valence band edges, dI/dV images record energy levels of materials. Such dI/dV images at different voltages allowed us to view p- and n-sections of heterojunction nanorods and more importantly the depletion region in such a junction that has a type-II band alignment. Viewing of selective sections in a heterojunction occurred due to band-bending in the junction and is correlated to the density of states spectrum of the individual semiconductors. The dI/dV images recorded at different voltages could be used to generate a band diagram of a pn junction.

  4. EELS Valence Mapping in Electron Beam Sensitive FeFx/C Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosandey, F.; Al-Sharab, J.F.; Amatucci, Glenn G.

    A new type of positive electrodes for Li-Ion batteries has been synthesized based on FeF{sub 2}/C and FeF3/C nanocomposites with particle size in the 8-12 nm range [1]. The measured high capacities rely on a complete reduction of Fe to its metallic state according to the following reaction: xLi{sup +}+xe{sup -} +Fe{sup x+}Fx = xLiF + Fe{sup 0}, where x=3 and x=2 for FeF3/C and FeF2/C respectively. This electrochemical reaction involves a change in valence state of Fe from 3+ or 2+ to 0 that can be determined uniquely by EELS from the peak energy of the L{sub 3} linemore » and from the L{sub 3}/L{sub 2} line intensity ratio. In this paper, we report EELS mapping results on the electrochemical conversion processes and in particular the mapping of the Fe valence state before and after discharge. This work was performed with a Hitachi HF2000 equipped with a Gatan PEELS and with a FEI CM200 FEG TEM equipped with a Gatan GIF. Both instruments were operated in STEM mode at 200kV with an EELS collection half angle of {beta}=5 mrad and spectrum imaging software.« less

  5. Accurate Valence Ionization Energies from Kohn-Sham Eigenvalues with the Help of Potential Adjustors.

    PubMed

    Thierbach, Adrian; Neiss, Christian; Gallandi, Lukas; Marom, Noa; Körzdörfer, Thomas; Görling, Andreas

    2017-10-10

    An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G 0 W 0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in

  6. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  7. Evidence of mixed valence states in U M2Al 3 ( M = Ni, Pd) studied by X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Saito, Yasuharu; Sato, Noriaki; Komatsubara, Takemi; Suzuki, Shoji; Sato, Shigeru; Ishii, Takehiko

    1998-01-01

    We have measured the XPS valence band and core-level spectra of U M2Al 3 ( M = Ni and Pd). The results are compared with those of reference materials, dilute alloy U 0.1La 0.9Pd 2Al 3 and itinerant 5 f compound URh 3. The similarity of the core-level spectra between UPd 2Al 3 and U 0.1La 0.9Pd 2Al 3 suggests that their core-level spectra are governed by the interaction between U 5 f and ligand states of neighboring palladium and aluminum sites, with negligible contributions from neighboring uranium states. A complex satellite structure, observed in the core-level spectra of U M2Al 3, suggests that the uranium atoms are in the strong mixed valence states with 5 f2(U 4+) and 5 f3(U 3+).

  8. Space-valence priming with subliminal and supraliminal words.

    PubMed

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime "up" before the target "happy") than with an incongruent prime (e.g., the prime "up" before the target "sad"). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments.

  9. Space-Valence Priming with Subliminal and Supraliminal Words

    PubMed Central

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime “up” before the target “happy”) than with an incongruent prime (e.g., the prime “up” before the target “sad”). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments. PMID:23439863

  10. Experimental indication for band gap widening of chalcopyrite solar cell absorbers after potassium fluoride treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistor, P., E-mail: paul.pistor@physik.uni-halle.de; Greiner, D.; Kaufmann, C. A.

    2014-08-11

    The implementation of potassium fluoride treatments as a doping and surface modification procedure in chalcopyrite absorber preparation has recently gained much interest since it led to new record efficiencies for this kind of solar cells. In the present work, Cu(In,Ga)Se{sub 2} absorbers have been evaporated on alkali containing Mo/soda-lime glass substrates. We report on compositional and electronic changes of the Cu(In,Ga)Se{sub 2} absorber surface as a result of a post deposition treatment with KF (KF PDT). In particular, by comparing standard X-ray photoelectron spectroscopy and synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES), we are able to confirm a strong Cu depletionmore » in the absorbers after the KF PDT which is limited to the very near surface region. As a result of the Cu depletion, we find a change of the valence band structure and a shift of the valence band onset by approximately 0.4 eV to lower binding energies which is tentatively explained by a band gap widening as expected for Cu deficient compounds. The KF PDT increased the open circuit voltage by 60–70 mV compared to the untreated absorbers, while the fill factor deteriorated.« less

  11. The Spectrum Analysis Solution (SAS) System: Theoretical Analysis, Hardware Design and Implementation.

    PubMed

    Narayanan, Ram M; Pooler, Richard K; Martone, Anthony F; Gallagher, Kyle A; Sherbondy, Kelly D

    2018-02-22

    This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE).

  12. The Spectrum Analysis Solution (SAS) System: Theoretical Analysis, Hardware Design and Implementation

    PubMed Central

    Pooler, Richard K.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.

    2018-01-01

    This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE). PMID:29470448

  13. A wide-band, high-resolution spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Wilck, H. C.; Quirk, M. P.; Grimm, M. J.

    1985-01-01

    A million-channel, 20 MHz-bandwidth, digital spectrum analyzer under evelopment for use in the SETI Sky Survey and other applications in the Deep Space Network is described. The analyzer digitizes an analog input, performs a 2(20)-point Radix-2, Fast Fourier Transform, accumulates the output power, and normalizes the output to remove frequency-dependent gain. The effective speed of the real-time hardware is 2.2 GigaFLOPS.

  14. Developmental reversals in false memory: Effects of emotional valence and arousal.

    PubMed

    Brainerd, C J; Holliday, R E; Reyna, V F; Yang, Y; Toglia, M P

    2010-10-01

    Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can be manipulated factorially. False memories increased with age for unpresented semantic associates of word lists, and net accuracy (the ratio of true memory to total memory) decreased with age. These surprising developmental trends were more pronounced for negatively valenced materials than for positively valenced materials, they were more pronounced for high-arousal materials than for low-arousal materials, and developmental increases in the effects of arousal were small in comparison with developmental increases in the effects of valence. These findings have ramifications for legal applications of false memory research; materials that share the emotional hallmark of crimes (events that are negatively valenced and arousing) produced the largest age increases in false memory and the largest age declines in net accuracy. Copyright 2010 Elsevier Inc. All rights reserved.

  15. The effect of density-of-state tails on band-to-band tunneling: Theory and application to tunnel field effect transistors

    NASA Astrophysics Data System (ADS)

    Sant, S.; Schenk, A.

    2017-10-01

    It is demonstrated how band tail states in the semiconductor influence the performance of a Tunnel Field Effect Transistor (TFET). As a consequence of the smoothened density of states (DOS) around the band edges, the energetic overlap of conduction and valence band states occurs gradually at the onset of band-to-band tunneling (BTBT), thus degrading the sub-threshold swing (SS) of the TFET. The effect of the band tail states on the current-voltage characteristics is modelled quantum-mechanically based on the idea of zero-phonon trap-assisted tunneling between band and tail states. The latter are assumed to arise from a 3-dimensional pseudo-delta potential proposed by Vinogradov [1]. This model potential allows the derivation of analytical expressions for the generation rate covering the whole range from very strong to very weak localization of the tail states. Comparison with direct BTBT in the one-band effective mass approximation reveals the essential features of tail-to-band tunneling. Furthermore, an analytical solution for the problem of tunneling from continuum states of the disturbed DOS to states in the opposite band is found, and the differences to direct BTBT are worked out. Based on the analytical expressions, a semi-classical model is implemented in a commercial device simulator which involves numerical integration along the tunnel paths. The impact of the tail states on the device performance is analyzed for a nanowire Gate-All-Around TFET. The simulations show that tail states notably impact the transfer characteristics of a TFET. It is found that exponentially decaying band tails result in a stronger degradation of the SS than tail states with a Gaussian decay of their density. The developed model allows more realistic simulations of TFETs including their non-idealities.

  16. The acoustic correlates of valence depend on emotion family.

    PubMed

    Belyk, Michel; Brown, Steven

    2014-07-01

    The voice expresses a wide range of emotions through modulations of acoustic parameters such as frequency and amplitude. Although the acoustics of individual emotions are well understood, attempts to describe the acoustic correlates of broad emotional categories such as valence have yielded mixed results. In the present study, we analyzed the acoustics of emotional valence for different families of emotion. We divided emotional vocalizations into "motivational," "moral," and "aesthetic" families as defined by the OCC (Ortony, Clore, and Collins) model of emotion. Subjects viewed emotional scenarios and were cued to vocalize congruent exclamations in response to them, for example, "Yay!" and "Damn!". Positive valence was weakly associated with high-pitched and loud vocalizations. However, valence interacted with emotion family for both pitch and amplitude. A general acoustic code for valence does not hold across families of emotion, whereas family-specific codes provide a more accurate description of vocal emotions. These findings are consolidated into a set of "rules of expression" relating vocal dimensions to emotion dimensions. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  17. Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes.

    PubMed

    Suram, Santosh K; Zhou, Lan; Shinde, Aniketa; Yan, Qimin; Yu, Jie; Umehara, Mitsutaro; Stein, Helge S; Neaton, Jeffrey B; Gregoire, John M

    2018-05-01

    Combinatorial (photo)electrochemical studies of the (Ni-Mn)Ox system reveal a range of promising materials for oxygen evolution photoanodes. X-ray diffraction, quantum efficiency, and optical spectroscopy mapping reveal stable photoactivity of NiMnO3 in alkaline conditions with photocurrent onset commensurate with its 1.9 eV direct band gap. The photoactivity increases upon mixture with 10-60% Ni6MnO8 providing an example of enhanced charge separation via heterojunction formation in mixed-phase thin film photoelectrodes. Density functional theory-based hybrid functional calculations of the band edge energies in this oxide reveal that a somewhat smaller than typical fraction of exact exchange is required to explain the favorable valence band alignment for water oxidation.

  18. Quasiparticle band offset at the (001) interface and band gaps in ultrathin superlattices of GaAs-AlAs heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.B.; Cohen, M.L.; Louie, S.G.

    1990-05-15

    A newly developed first-principles quasiparticle theory is used to calculate the band offset at the (001) interface and band gaps in 1{times}1 and 2{times}2 superlattices of GaAs-AlAs heterojunctions. We find a sizable many-body contribution to the valence-band offset which is dominated by the many-body corrections to bulk GaAs and AlAs quasiparticle energies. The resultant offset {Delta}{ital E}{sub {ital v}}=0.53{plus minus}0.05 eV is in good agreement with the recent experimental values of 0.50--0.56 eV. Our calculated direct band gaps for ultrathin superlattices are also in good agreement with experiment. The {ital X}{sub 1{ital c}}-derived state at point {bar {Gamma}}, is however,more » above the {Gamma}{sub 1{ital c}}-derived state for both the 1{times}1 and 2{times}2 lattices, contrary to results obtained under the virtual-crystal approximation (a limiting case for the Kronig-Penny model) and some previous local-density-approximation (corrected) calculations. The differences are explained in terms of atomic-scale localizations and many-body effects. Oscillator strengths and the effects of disorder on the spectra are discussed.« less

  19. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacherjee, Aditi, E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Attar, Andrew R., E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH{sub 2} =CHCH{sub 2}I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground ({sup 2}P{sub 3/2}, I) and spin-orbit excited ({sup 2}P{sub 1/2}, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N{sub 4/5} edge (45–60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region ofmore » the repulsive n{sub I}σ{sup ∗}{sub C—I} excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ{sup ∗} states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ{sup ∗}(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs–65 fs and decay completely by 145 fs–185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence

  20. Temperature and pressure dependences of Sm valence in intermediate valence compound SmB6

    NASA Astrophysics Data System (ADS)

    Emi, N.; Mito, T.; Kawamura, N.; Mizumaki, M.; Ishimatsu, N.; Pristáš, G.; Kagayama, T.; Shimizu, K.; Osanai, Y.; Iga, F.

    2018-05-01

    We report the results of the X-ray absorption spectroscopy (XAS) on the intermediate valence compound SmB6. The XAS measurements were performed near the nonmagnetic-magnetic phase boundary. Mean Sm valence vSm was estimated from absorption spectra, and we found that vSm near the boundary (P ≥ 10 GPa and T ∼ 12 K) is far below a trivalent state with magnetic characteristics. Although the result is markedly different from the cases of pressure induced magnetic orders in Yb and Ce compounds, it is likely that the large deviation from the trivalent state seems to be common in some Sm compounds which possess electronic configuration between 4f5 and 4f6 with multi 4 f electrons.

  1. Band-edge positions in G W : Effects of starting point and self-consistency

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Pasquarello, Alfredo

    2014-10-01

    We study the effect of starting point and self-consistency within G W on the band-edge positions of semiconductors and insulators. Compared to calculations based on a semilocal starting point, the use of a hybrid-functional starting point shows a larger quasiparticle correction for both band-edge states. When the self-consistent treatment is employed, the band-gap opening is found to result mostly from a shift of the valence-band edge. Within the non-self-consistent methods, we analyse the performance of empirical and nonempirical schemes in which the starting point is optimally tuned. We further assess the accuracy of the band-edge positions through the calculation of ionization potentials of surfaces. The ionization potentials for most systems are reasonably well described by one-shot calculations. However, in the case of TiO2, we find that the use of self-consistency is critical to obtain a good agreement with experiment.

  2. A note on anomalous band-gap variations in semiconductors with temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, P. K.; Mondal, B. N.

    2018-03-01

    An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.

  3. Processing negative valence of word pairs that include a positive word.

    PubMed

    Itkes, Oksana; Mashal, Nira

    2016-09-01

    Previous research has suggested that cognitive performance is interrupted by negative relative to neutral or positive stimuli. We examined whether negative valence affects performance at the word or phrase level. Participants performed a semantic decision task on word pairs that included either a negative or a positive target word. In Experiment 1, the valence of the target word was congruent with the overall valence conveyed by the word pair (e.g., fat kid). As expected, response times were slower in the negative condition relative to the positive condition. Experiment 2 included target words that were incongruent with the overall valence of the word pair (e.g., fat salary). Response times were longer for word pairs whose overall valence was negative relative to positive, even though these word pairs included a positive word. Our findings support the Cognitive Primacy Hypothesis, according to which emotional valence is extracted after conceptual processing is complete.

  4. X-ray photoelectron spectroscopy investigations of band offsets in Ga0.02Zn0.98O/ZnO heterojunction for UV photodetectors

    NASA Astrophysics Data System (ADS)

    Singh, Karmvir; Rawal, Ishpal; Punia, Rajesh; Dhar, Rakesh

    2017-10-01

    Here, we report the valence and conduction band offset measurements in pure ZnO and the Ga0.02Zn0.98O/ZnO heterojunction by X-Ray photoelectron spectroscopy studies for UV photodetector applications. For detailed investigations on the band offsets and UV photodetection behavior of Ga0.02Zn0.98O/ZnO heterostructures, thin films of pristine ZnO, Ga-doped ZnO (Ga0.02Zn0.98O), and heterostructures of Ga-doped ZnO with ZnO (Ga0.02Zn0.98O/ZnO) were deposited using a pulsed laser deposition technique. The deposited thin films were characterized by X-ray diffraction, atomic force microscopy, and UV-Vis spectroscopy. X-ray photoelectron spectroscopy studies were carried out on all the thin films for the investigation of valence and conduction band offsets. The valence band was found to be shifted by 0.28 eV, while the conduction band has a shifting of -0.272 eV in the Ga0.02Zn0.98O/ZnO heterojunction as compared to pristine ZnO thin films. All the three samples were analyzed for photoconduction behavior under UVA light of the intensity of 3.3 mW/cm2, and it was observed that the photoresponse of pristine ZnO (19.75%) was found to increase with 2 wt. % doping of Ga (22.62%) and heterostructured thin films (29.10%). The mechanism of UV photodetection in the deposited samples has been discussed in detail, and the interaction of chemisorbed oxygen on the ZnO surface with holes generated by UV light exposure has been the observed mechanism for the change in electrical conductivity responsible for UV photoresponse on the present deposited ZnO films.

  5. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study.

    PubMed

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-28

    The propensity of four representative conformations of 2(')-deoxyadenosine-5(')-monophosphate (5(')-dAMPH) to bind an excess electron has been studied at the B3LYP6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5(')-dAMPH form adiabatically stable anions. The type of an anionic 5(')-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4(')-C5(') bond. The adiabatic electron affinity of the a_south-syn anion is 1.19 eV, while its vertical detachment energy is 1.89 eV. Our results are compared with the photoelectron spectrum (PES) of 5(')-dAMPH(-) measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  6. Band structure of the quasi two-dimensional purple molybdenum bronze

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Balaska, H.; Perrier, P.; Marcus, J.

    2006-09-01

    The molybdenum purple bronze KMo 6O 17 is quasi two-dimensional (2D) metallic oxide that shows a Peierls transition towards a metallic charge density wave state. Since this specific transition is directly related to the electron properties of the normal state, we have investigated the electronic structure of this bronze at room temperature. The shape of the Mo K1s absorption edge reveals the presence of distorted MoO 6 octahedra in the crystallographic structure. Photoemission experiments evidence a large conduction band, with a bandwidth of 800 meV and confirm the metallic character of this bronze. A wide depleted zone separates the conduction band from the valence band that exhibits a fourfold structure, directly connected to the octahedral symmetry of the Mo sites. The band structure is determined by ARUPS in two main directions of the (0 0 1) Brillouin zone. It exhibits some unpredicted features but corroborates the earlier theoretical band structure and Fermi surface. It confirms the hidden one-dimensionality of KMo 6O 17 that has been proposed to explain the origin of the Peierls transition in this 2D compound.

  7. Selective optical contacting for solar spectrum management

    NASA Astrophysics Data System (ADS)

    Yang, Jianfeng; Chen, Weijian; Wang, Bo; Zhang, Zhilong; Huang, Shujuan; Shrestha, Santosh; Wen, Xiaoming; Patterson, Robert; Conibeer, Gavin

    2017-02-01

    Solar spectrum management using up/down conversion is an important method to improve the photovoltaic energy conversion efficiency. It asks for a monochromatic luminescence absorption at the band edge of the photovoltaic device to reduce both the sub-band-gap and over-band-gap energy losses. Here, we demonstrate an energy selective optical contacting concept to improve the luminescence transfer efficiency for spectrum management. By increasing both the luminescence emission and re-absorption ability through photonic resonance, an efficient photon transfer channel could be established between the luminescence emitter and the photovoltaic component in a near-field region. This concept is not only able to compensate the insufficient band edge absorption ability of the photovoltaic device, but also to break the far-field limitation of luminescence radiation. The energy selection on the optical spectrum naturally imposed by the mode resonance is also helpful to improve the monochromaticity of the luminescence yield. In this paper, a photonic crystal cavity is used to realize the optical contacting concept between a thin silicon film and spectrum converter. The optical power and photon flux transferred between different components are calculated analytically using the electromagnetic Green's function. The corresponding radiative dipole moment is estimated by the fluctuation-dissipation theorem. The example shows an over 80 times enhancement in the luminescence absorbance by the silicon layer, illustrating the great potential of this concept to be applied on nano-structured photovoltaic devices.

  8. Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gap semiconductor alloys: a first-principles study

    NASA Astrophysics Data System (ADS)

    Shi, H.-L.; Duan, Y.

    2008-12-01

    Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p- d repulsion. The NO acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

  9. Real-time observation of valence electron motion.

    PubMed

    Goulielmakis, Eleftherios; Loh, Zhi-Heng; Wirth, Adrian; Santra, Robin; Rohringer, Nina; Yakovlev, Vladislav S; Zherebtsov, Sergey; Pfeifer, Thomas; Azzeer, Abdallah M; Kling, Matthias F; Leone, Stephen R; Krausz, Ferenc

    2010-08-05

    The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.

  10. Black Phosphorus Transistors with Near Band Edge Contact Schottky Barrier.

    PubMed

    Ling, Zhi-Peng; Sakar, Soumya; Mathew, Sinu; Zhu, Jun-Tao; Gopinadhan, K; Venkatesan, T; Ang, Kah-Wee

    2015-12-15

    Black phosphorus (BP) is a new class of 2D material which holds promise for next generation transistor applications owing to its intrinsically superior carrier mobility properties. Among other issues, achieving good ohmic contacts with low source-drain parasitic resistance in BP field-effect transistors (FET) remains a challenge. For the first time, we report a new contact technology that employs the use of high work function nickel (Ni) and thermal anneal to produce a metal alloy that effectively reduces the contact Schottky barrier height (ΦB) in a BP FET. When annealed at 300 °C, the Ni electrode was found to react with the underlying BP crystal and resulted in the formation of nickel-phosphide (Ni2P) alloy. This serves to de-pin the metal Fermi level close to the valence band edge and realizes a record low hole ΦB of merely ~12 meV. The ΦB at the valence band has also been shown to be thickness-dependent, wherein increasing BP multi-layers results in a smaller ΦB due to bandgap energy shrinkage. The integration of hafnium-dioxide high-k gate dielectric additionally enables a significantly improved subthreshold swing (SS ~ 200 mV/dec), surpassing previously reported BP FETs with conventional SiO2 gate dielectric (SS > 1 V/dec).

  11. Composition dependent band offsets of ZnO and its ternary alloys

    NASA Astrophysics Data System (ADS)

    Yin, Haitao; Chen, Junli; Wang, Yin; Wang, Jian; Guo, Hong

    2017-01-01

    We report the calculated fundamental band gaps of wurtzite ternary alloys Zn1-xMxO (M = Mg, Cd) and the band offsets of the ZnO/Zn1-xMxO heterojunctions, these II-VI materials are important for electronics and optoelectronics. Our calculation is based on density functional theory within the linear muffin-tin orbital (LMTO) approach where the modified Becke-Johnson (MBJ) semi-local exchange is used to accurately produce the band gaps, and the coherent potential approximation (CPA) is applied to deal with configurational average for the ternary alloys. The combined LMTO-MBJ-CPA approach allows one to simultaneously determine both the conduction band and valence band offsets of the heterojunctions. The calculated band gap data of the ZnO alloys scale as Eg = 3.35 + 2.33x and Eg = 3.36 - 2.33x + 1.77x2 for Zn1-xMgxO and Zn1-xCdxO, respectively, where x being the impurity concentration. These scaling as well as the composition dependent band offsets are quantitatively compared to the available experimental data. The capability of predicting the band parameters and band alignments of ZnO and its ternary alloys with the LMTO-CPA-MBJ approach indicate the promising application of this method in the design of emerging electronics and optoelectronics.

  12. Explaining the effect of event valence on unrealistic optimism.

    PubMed

    Gold, Ron S; Brown, Mark G

    2009-05-01

    People typically exhibit 'unrealistic optimism' (UO): they believe they have a lower chance of experiencing negative events and a higher chance of experiencing positive events than does the average person. UO has been found to be greater for negative than positive events. This 'valence effect' has been explained in terms of motivational processes. An alternative explanation is provided by the 'numerosity model', which views the valence effect simply as a by-product of a tendency for likelihood estimates pertaining to the average member of a group to increase with the size of the group. Predictions made by the numerosity model were tested in two studies. In each, UO for a single event was assessed. In Study 1 (n = 115 students), valence was manipulated by framing the event either negatively or positively, and participants estimated their own likelihood and that of the average student at their university. In Study 2 (n = 139 students), valence was again manipulated and participants again estimated their own likelihood; additionally, group size was manipulated by having participants estimate the likelihood of the average student in a small, medium-sized, or large group. In each study, the valence effect was found, but was due to an effect on estimates of own likelihood, not the average person's likelihood. In Study 2, valence did not interact with group size. The findings contradict the numerosity model, but are in accord with the motivational explanation. Implications for health education are discussed.

  13. The energy spectrum and the optical absorption spectrum of C{sub 60} fullerene within the Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silant’ev, A. V., E-mail: kvvant@rambler.ru

    2015-10-15

    Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.

  14. Control of valence and conduction band energies in layered transition metal phosphates via surface functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, Levi C.; Kolb, Brian; Kolpak, Alexie M.

    Layered transition metal phosphates and phosphites (TMPs) are a class of 2D materials bound togetherviavan der Waals interactions. Through simple functionalization, band energies can be systematically controlled.

  15. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladysiewicz, M.; Wartak, M. S.; Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be usedmore » to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.« less

  16. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    NASA Astrophysics Data System (ADS)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  17. A New Transition in the Spectrum of YCl: Rotational Analysis of the K1Π- X1Σ +UV Band System

    NASA Astrophysics Data System (ADS)

    Xin, Ju; Klynning, Lennart

    1996-02-01

    The absorption spectrum of the yttrium monochloride molecule (YCl) produced in a King-type furnace has been recorded at high resolution using a 5-m Fastie spectrograph. A new band system in the UV region (centered at 3291 Å) has been found and rotationally analyzed. The transition has been assigned toK1Π-X1Σ+, in accordance with the labeling of the YCl electronic states by Langhoffet al.(J. Chem. Phys.89,396-407, 1988) in their theoretical work. Molecular constants for the new state are presented.

  18. Significance of fibrotic bands in utero--Amniotic band sequence with limb body wall complex: A rare case of fetal autopsy.

    PubMed

    Devi, P Lekshmi; Cicy, P J; Thambi, Renu; Poothiode, Usha

    2015-01-01

    Amniotic band sequence (ABS) includes a wide spectrum of abnormalities resulting from entrapment of various fetal parts from a disrupted amnion, ranging from a mere constriction ring affecting a finger to a fatal form called limb body wall complex (LBWC). Reported cases of ABS with LBWC are very few. The spectrum of anomalies depends on which part gets entrapped and at what point of gestation. Hence, the clinical presentation can be extremely variable. Early detection of such cases using sonology is really challenging due to the small size of the fibrotic bands. Here, we present a case of amniotic band syndrome with LBWC in a fetus at 24 weeks of gestation, which was referred for an autopsy. The fetus also showed scoliosis, gastroschisis, lumbosacral meningocele, congenital talipes equinovarus, and cleft palate, thus having features of placenta cranial and placenta abdominal phenotype which is very rare.

  19. Teaching Valence Shell Electron Pair Repulsion (VSEPR) Theory

    ERIC Educational Resources Information Center

    Talbot, Christopher; Neo, Choo Tong

    2013-01-01

    This "Science Note" looks at the way that the shapes of simple molecules can be explained in terms of the number of electron pairs in the valence shell of the central atom. This theory is formally known as valence shell electron pair repulsion (VSEPR) theory. The article explains the preferred shape of chlorine trifluoride (ClF3),…

  20. Achieving Efficient Spectrum Usage in Passive and Active Sensing

    NASA Astrophysics Data System (ADS)

    Wang, Huaiyi

    Increasing demand for supporting more wireless services with higher performance and reliability within the frequency bands that are most conducive to operating cost-effective cellular and mobile broadband is aggravating current electromagnetic spectrum congestion. This situation motivates technology and management innovation to increase the efficiency of spectral use. If primary-secondary spectrum sharing can be shown possible without compromising (or while even improving) performance in an existing application, opportunities for efficiency may be realizable by making the freed spectrum available for commercial use. While both active and passive sensing systems are vitally important for many public good applications, opportunities for increasing the efficiency of spectrum use can be shown to exist for both systems. This dissertation explores methods and technologies for remote sensing systems that enhance spectral efficiency and enable dynamic spectrum access both within and outside traditionally allocated bands.

  1. Lying about the valence of affective pictures: an fMRI study.

    PubMed

    Lee, Tatia M C; Lee, Tiffany M Y; Raine, Adrian; Chan, Chetwyn C H

    2010-08-25

    The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception.

  2. Developmental Reversals in False Memory: Effects of Emotional Valence and Arousal

    ERIC Educational Resources Information Center

    Brainerd, C. J.; Holliday, R. E.; Reyna, V. F.; Yang, Y.; Toglia, M. P.

    2010-01-01

    Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can…

  3. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending.

    PubMed

    Zhang, Chendong; Johnson, Amber; Hsu, Chang-Lung; Li, Lain-Jong; Shih, Chih-Kang

    2014-05-14

    Using scanning tunneling microscopy and spectroscopy, we probe the electronic structures of single layer MoS2 on graphite. The apparent quasiparticle energy gap of single layer MoS2 is measured to be 2.15 ± 0.06 eV at 77 K, albeit a higher second conduction band threshold at 0.2 eV above the apparent conduction band minimum is also observed. Combining it with photoluminescence studies, we deduce an exciton binding energy of 0.22 ± 0.1 eV (or 0.42 eV if the second threshold is use), a value that is lower than current theoretical predictions. Consistent with theoretical predictions, we directly observe metallic edge states of single layer MoS2. In the bulk region of MoS2, the Fermi level is located at 1.8 eV above the valence band maximum, possibly due to the formation of a graphite/MoS2 heterojunction. At the edge, however, we observe an upward band bending of 0.6 eV within a short depletion length of about 5 nm, analogous to the phenomena of Fermi level pinning of a 3D semiconductor by metallic surface states.

  4. Two-color infrared detector

    DOEpatents

    Klem, John F; Kim, Jin K

    2014-05-13

    A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.

  5. Band alignment of SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) determined by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Zhaoqing; Feng, Qian; Zhang, Jincheng; Li, Xiang; Li, Fuguo; Huang, Lu; Chen, Hong-Yan; Lu, Hong-Liang; Hao, Yue

    2018-03-01

    In this work, we report the investigation of the band alignment of SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) utilizing the high resolution X-ray photoelectron spectroscopy (XPS) measurements. The single crystallinity and orientation of β-(AlxGa1-x)2O3 films grown on sapphire by pulsed laser deposition were studied with the high resolution X-ray diffraction. The Ga 2p3/2 and Si 2p core-level spectra as well as valence band spectra were used in the analysis of band alignment. As the mole fraction x of Al increases from 0 to 0.49, the bandgap and conduction band offset values of SiO2/(AlxGa1-x)2O3 increases from 4.9 to 5.6 eV and from 1.5 to 2.1 eV, respectively, while that of valence band offset decreases from 2.2 to 0.9 eV. From the results obtained, the energy band diagram of the studied SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) interfaces is found to be of type I. Energy band lineups of SiO2/(AlxGa1-x)2O3 were thus determined which can be used as for Ga2O3 based power device technology.

  6. Composition dependence of band alignments in GaxIn1-xAsySb1-y heterojunctions lattice matched to GaSb and InAs

    NASA Astrophysics Data System (ADS)

    Shim, Kyurhee

    2013-11-01

    A theoretical model utilizing a universal tight binding method and a correlated function expansion technique is presented to calculate the valence band maximum (VBM) and the conduction band minimum (CBM) of the binary (GaAs, InAS, GaSb, and InSb) and quaternary alloy GaxIn1-xAsySb1-y systems. By organizing the relative positions of the VBM and CBM between semiconductors, the band alignments and band types in the heterojunctions are determined. A straddling (type-I) band alignment in InAs/GaAs, InSb/GaAs, and GaSb/InSb, staggered (type-II) band alignment in GaSb/GaAs, and broken (type-III) band alignment in InSb/InAs and InAs/GaSb are found respectively. In addition, the compositional variations of VBM, CBM, valence band offset, conduction band offset, and band type for the alloy GaxIn1-xAsySb1-y lattice matched on GaSb and InAs are obtained as increasing the composition x. A pronounced upward bowing for the VBM and a very slight upward bowing (almost linear) for CBM are found, respectively. By controlling the compositions (x, y), band type transitions occur. The GaxIn1-xAsySb1-y heterojunctions lattice matched to GaSb changes their band types from type-III at x ˜0→ to type-II at x = 0.07, and → to type-I at x = 0.38. In contrast, the GaxIn1-xAsySb1-y heterojunctions lattice matched to InAs changes their band types from type-II x ˜0→ to type-III at x = 0.32. Reasonable agreement is obtained between our theoretical results and existing experimental data.

  7. Character Disposition and Behavior Type: Influences of Valence on Preschool Children's Social Judgments

    ERIC Educational Resources Information Center

    Jones, Elaine F.; Tobias, Marvin; Pauley, Danielle; Thomson, Nicole Renick; Johnson, Shawana Lewis

    2009-01-01

    The authors studied the influences of valence information on preschool children's (n = 47) moral (good or bad), liking (liked or disliked by a friend), and consequence-of-behavior (reward or punishment) judgments. The authors presented 8 scenarios describing the behavior valence, positive valence (help, share), negative valence (verbal insult,…

  8. Pressure-induced valence change and moderate heavy fermion state in Eu-compounds

    NASA Astrophysics Data System (ADS)

    Honda, Fuminori; Okauchi, Keigo; Sato, Yoshiki; Nakamura, Ai; Akamine, Hiromu; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Takeuchi, Tetsuya; Valenta, Jaroslav; Prchal, Jiri; Sechovský, Vladimir; Aoki, Dai; Ōnuki, Yoshichika

    2018-05-01

    A pressure-induced valence transition has attracted much attention in Eu-compounds. Among them, EuRh2Si2, EuNi2Ge2, and EuCo2Ge2 reveal the valence transition around 1, 2, and 3 GPa, respectively. We have succeeded in growing single crystals of EuT2X2 (T: transition metal, X: Si, Ge) and studied electronic properties under pressure. EuRh2Si2 indicates a first-order valence transition between 1 and 2 GPa, with a large and prominent hysteresis in the electrical resistivity. At higher pressures, the first-order valence transition changes to a cross-over regime with an intermediate valence state. Tuning of the valence state with pressure is reflected in a drastic change of the temperature dependence of the electrical resistivity in EuRh2Si2 single crystals. Effect of pressure on the valence states on EuRh2Si2, EuIr2Si2, EuNi2Ge2, and EuCo2Ge2, as well as an isostructural related compound EuGa4, are reviewed.

  9. Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity.

    PubMed

    Deng, Yaling; Li, Shijia; Zhou, Renlai; Walter, Martin

    2018-04-01

    Neuroticism has been found to specifically modulate amygdala activations during differential processing of valence and motivation while other brain networks yet are unexplored for associated effects. The main purpose of this study was to investigate whether neural mechanisms processing valence or motivation are prone to neuroticism in the salience network (SN), a network that is anchored in the anterior cingulate cortex (ACC) and the anterior insula. This study used functional magnetic resonance imaging (fMRI) and an approach/avoid emotional pictures task to investigate brain activations modulated by pictures' valence or motivational status between high and low neurotic individuals. We found that neuroticism-dependent SN and the parahippocampal-fusiform area activations were modulated by motivation but not valence. Valence in contrast interacted with neuroticism in the lateral orbitofrontal cortex. We suggested that neuroticism modulated valence and motivation processing, however, under the influence of the two distinct networks. Neuroticism modulated the motivation through the SN while it modulated the valence through the orbitofrontal networks. © 2018 Wiley Periodicals, Inc.

  10. Startle modulation and explicit valence evaluations dissociate during backward fear conditioning.

    PubMed

    Luck, Camilla C; Lipp, Ottmar V

    2017-05-01

    Blink startle magnitude is linearly modulated by affect such that, relative to neutral stimuli, startle magnitude is inhibited during pleasant stimuli and potentiated during unpleasant stimuli. Andreatta, Mühlberger, Yarali, Gerber, and Pauli (2010), however, report a dissociation between startle modulation and explicit valence evaluations during backward conditioning, a procedure in which the unconditional stimulus precedes the conditional stimulus (CS). Relative to controls, startles elicited during the CS were inhibited, suggesting that the CS had acquired positive valence, but participants still evaluated the CS as unpleasant after the experiment. In Experiment 1, we aimed to replicate this dissociation using a trial-by-trial measure of CS valence to measure startle modulation and CS valence simultaneously during forward and backward differential fear conditioning. In Experiment 2, we examined whether early and late portions of the CS could acquire differential valence by presenting startle probes at early and late probe positions during the CS. In both experiments, the dissociation between startle modulation and explicit valence evaluations in backward conditioning replicated, with CS+ evaluated as less pleasant than CS-, but startles elicited during CS+ inhibited relative to CS-. In Experiment 2, we provide preliminary evidence that this inhibition was present early, but not late, during the CS+. The results replicate the dissociation between implicit and explicit CS valence reported by Andreatta et al. (2010) using a trial-by-trial measure of valence. We also provide preliminary evidence that this dissociation may occur because the implicit and explicit measures are recorded at different times during the CS presentation. © 2017 Society for Psychophysiological Research.

  11. Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.

    1994-12-31

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  12. Josephson Junction spectrum analyzer for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Larkin, S. Y.; Anischenko, S. E.; Khabayev, P. V.

    1995-01-01

    A prototype of the Josephson-effect spectrum analyzer developed for the millimeter wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.

  13. The quasiparticle band structure of zincblende and rocksalt ZnO.

    PubMed

    Dixit, H; Saniz, R; Lamoen, D; Partoens, B

    2010-03-31

    We present the quasiparticle band structure of ZnO in its zincblende (ZB) and rocksalt (RS) phases at the Γ point, calculated within the GW approximation. The effect of the p-d hybridization on the quasiparticle corrections to the band gap is discussed. We compare three systems, ZB-ZnO which shows strong p-d hybridization and has a direct band gap, RS-ZnO which is also hybridized but includes inversion symmetry and therefore has an indirect band gap, and ZB-ZnS which shows a weaker hybridization due to a change of the chemical species from oxygen to sulfur. The quasiparticle corrections are calculated with different numbers of valence electrons in the Zn pseudopotential. We find that the Zn(20+) pseudopotential is essential for the adequate treatment of the exchange interaction in the self-energy. The calculated GW band gaps are 2.47 eV and 4.27 eV respectively, for the ZB and RS phases. The ZB-ZnO band gap is underestimated compared to the experimental value of 3.27 by ∼ 0.8 eV. The RS-ZnO band gap compares well with the experimental value of 4.5 eV. The underestimation for ZB-ZnO is correlated with the strong p-d hybridization. The GW band gap for ZnS is 3.57 eV, compared to the experimental value of 3.8 eV.

  14. Modulating the band gap of a boron nitride bilayer with an external electric field for photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Y. R.; Cao, J. X., E-mail: jxcao@xtu.edu.cn; Zhang, Y.

    2016-05-21

    By virtue of first principle calculations, we propose an approach to reduce the band gap of layered semiconductors through the application of external electric fields for photocatalysis. As a typical example, the band gap of a boron nitride (BN) bilayer was reduced in the range from 4.45 eV to 0.3 eV by varying the external electric field strength. More interestingly, it is found that the uppermost valence band and the lowest conduction band are dominated by the N-p{sub z} and B-p{sub z} from different layers of the BN sheet, which suggests a wonderful photoexcited electron and hole separation system for photocatalysis. Ourmore » results imply that the strong external electric field can present an abrupt polarized surface.« less

  15. Effects of Emotion on Associative Recognition: Valence and Retention Interval Matter

    PubMed Central

    Pierce, Benton H.; Kensinger, Elizabeth A.

    2011-01-01

    In two experiments, we examined the effects of emotional valence and arousal on associative binding. Participants studied negative, positive, and neutral word pairs, followed by an associative recognition test. In Experiment 1, with a short-delayed test, accuracy for intact pairs was equivalent across valences, whereas accuracy for rearranged pairs was lower for negative than for positive and neutral pairs. In Experiment 2, we tested participants after a one-week delay and found that accuracy was greater for intact negative than for intact neutral pairs, whereas rearranged pair accuracy was equivalent across valences. These results suggest that, although negative emotional valence impairs associative binding after a short delay, it may improve binding after a longer delay. The results also suggest that valence, as well as arousal, needs to be considered when examining the effects of emotion on associative memory. PMID:21401233

  16. Strong coupling diagram technique for the three-band Hubbard model

    NASA Astrophysics Data System (ADS)

    Sherman, A.

    2016-03-01

    Strong coupling diagram technique equations are derived for hole Green’s functions of the three-band Hubbard model, which describes Cu-O planes of high-Tc cuprates. The equations are self-consistently solved in the approximation, in which the series for the irreducible part in powers of the oxygen-copper hopping constant is truncated to two lowest-order terms. For parameters used for hole-doped cuprates, the calculated energy spectrum consists of lower and upper Hubbard subbands of predominantly copper nature, oxygen bands with a small admixture of copper states and the Zhang-Rice states of mixed nature, which are located between the lower Hubbard subband and oxygen bands. The spectrum contains also pseudogaps near transition frequencies of Hubbard atoms on copper sites.

  17. First-principle study of effect of variation of `x' on the band alignment in CZTS1-xSex

    NASA Astrophysics Data System (ADS)

    Ghemud, Vipul; Kshirsagar, Anjali

    2018-04-01

    The present work concentrates on the electronic structure study of CZTS1-xSex alloy with x ranging from 0 to 1. For the alloy study, we have carried out first-principles calculations employing generalized gradient approximation for structural optimization and further hybrid functional approach to compare the optical band gap with that obtained from the experiments. A systematic increase in the lattice parameters with lowering of band gap from 1.52eV to 1.04eV is seen with increasing Se concentration from 0 to 100%, however the lowering of valence band edge and conduction band edge is not linear with the concentration variation. Our results indicate that the lowering of band gap is a result increased Cu:d and Se:p hybridization with increasing `x'.

  18. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    NASA Astrophysics Data System (ADS)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-01

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO2), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  19. Valence electronic properties of porphyrin derivatives.

    PubMed

    Stenuit, G; Castellarin-Cudia, C; Plekan, O; Feyer, V; Prince, K C; Goldoni, A; Umari, P

    2010-09-28

    We present a combined experimental and theoretical investigation of the valence electronic structure of porphyrin-derived molecules. The valence photoemission spectra of the free-base tetraphenylporphyrin and of the octaethylporphyrin molecule were measured using synchrotron radiation and compared with theoretical spectra calculated using the GW method and the density-functional method within the generalized gradient approximation. Only the GW results could reproduce the experimental data. We found that the contribution to the orbital energies due to electronic correlations has the same linear behavior in both molecules, with larger deviations in the vicinity of the HOMO level. This shows the importance of adequate treatment of electronic correlations in these organic systems.

  20. Examples L-Band Interference will be Presented and Discussed, as well as the Importance of L-Band Soil Moisture Observations

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2010-01-01

    Examples of L-band interference will be presented and discussed, as well as the importance of L-band soil moisture observations, as part of this one-day GEOSS workshop XXXVII on "Data Quality and Radio Spectrum Allocation Impact on Earth Observations" will address the broad challenges of data quality and the impact of generating reliable information for decision makers who are Earth data users but not necessarily experts in the Earth observation field. GEO has initiated a data quality assessment task (DA-09-01a) and workshop users will review and debate the directions and challenges of this effort. Radio spectrum allocation is an element of data availability and data quality, and is also associated with a GEO task (AR-06-11). A recent U.S. National Research Council report on spectrum management will be addressed as part of the workshop. Key representatives from industry, academia, and government will provide invited talks on these and related issues that impact GEOSS implementation.

  1. 47 CFR 90.1407 - Spectrum use in the network.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Spectrum use in the network. 90.1407 Section 90... network. (a) Spectrum use. The Shared Wireless Broadband Network will operate using spectrum associated... from the primary public safety operations in the 763-768 MHz and 793-798 MHz bands. The network...

  2. 47 CFR 90.1407 - Spectrum use in the network.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spectrum use in the network. 90.1407 Section 90... network. (a) Spectrum use. The Shared Wireless Broadband Network will operate using spectrum associated... from the primary public safety operations in the 763-768 MHz and 793-798 MHz bands. The network...

  3. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, P. T.; Riordan, N. A.; Liu, S.

    2015-12-28

    The structural and optical properties of lattice-matched InAs{sub 0.911}Sb{sub 0.089} bulk layers and strain-balanced InAs/InAs{sub 1−x}Sb{sub x} (x ∼ 0.1–0.4) superlattices grown on (100)-oriented GaSb substrates by molecular beam epitaxy are examined using X-ray diffraction, spectroscopic ellipsometry, and temperature dependent photoluminescence spectroscopy. The photoluminescence and ellipsometry measurements determine the ground state bandgap energy and the X-ray diffraction measurements determine the layer thickness and mole fraction of the structures studied. Detailed modeling of the X-ray diffraction data is employed to quantify unintentional incorporation of approximately 1% Sb into the InAs layers of the superlattices. A Kronig-Penney model of the superlattice miniband structure ismore » used to analyze the valence band offset between InAs and InAsSb, and hence the InAsSb band edge positions at each mole fraction. The resulting composition dependence of the bandgap energy and band edge positions of InAsSb are described using the bandgap bowing model; the respective low and room temperature bowing parameters for bulk InAsSb are 938 and 750 meV for the bandgap, 558 and 383 meV for the conduction band, and −380 and −367 meV for the valence band.« less

  4. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study

    NASA Astrophysics Data System (ADS)

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-01

    The propensity of four representative conformations of 2'-deoxyadenosine-5'-monophosphate (5'-dAMPH) to bind an excess electron has been studied at the B3LYP /6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5'-dAMPH form adiabatically stable anions. The type of an anionic 5'-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4'-C5' bond. The adiabatic electron affinity of the a&barbelow;south-syn anion is 1.19eV, while its vertical detachment energy is 1.89eV. Our results are compared with the photoelectron spectrum (PES) of 5'-dAMPH- measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  5. Influence of Fröhlich polaron coupling on renormalized electron bands in polar semiconductors: Results for zinc-blende GaN

    NASA Astrophysics Data System (ADS)

    Nery, Jean Paul; Allen, Philip B.

    2016-09-01

    We develop a simple method to study the zero-point and thermally renormalized electron energy ɛk n(T ) for k n the conduction band minimum or valence maximum in polar semiconductors. We use the adiabatic approximation, including an imaginary broadening parameter i δ to suppress noise in the density-functional integrations. The finite δ also eliminates the polar divergence which is an artifact of the adiabatic approximation. Nonadiabatic Fröhlich polaron methods then provide analytic expressions for the missing part of the contribution of the problematic optical phonon mode. We use this to correct the renormalization obtained from the adiabatic approximation. Test calculations are done for zinc-blende GaN for an 18 ×18 ×18 integration grid. The Fröhlich correction is of order -0.02 eV for the zero-point energy shift of the conduction band minimum, and +0.03 eV for the valence band maximum; the correction to renormalization of the 3.28 eV gap is -0.05 eV, a significant fraction of the total zero point renormalization of -0.15 eV.

  6. Band alignments at Ga2O3 heterojunction interfaces with Si and Ge

    NASA Astrophysics Data System (ADS)

    Gibbon, J. T.; Jones, L.; Roberts, J. W.; Althobaiti, M.; Chalker, P. R.; Mitrovic, Ivona Z.; Dhanak, V. R.

    2018-06-01

    Amorphous Ga2O3 thin films were deposited on p-type (111) and (100) surfaces of silicon and (100) germanium by atomic layer deposition (ALD). X-ray photoelectron spectroscopy (XPS) was used to investigate the band alignments at the interfaces using the Kraut Method. The valence band offsets were determined to be 3.49± 0.08 eV and 3.47± 0.08 eV with Si(111) and Si(100) respectively and 3.51eV± 0.08 eV with Ge(100). Inverse photoemission spectroscopy (IPES) was used to investigate the conduction band of a thick Ga2O3 film and the band gap of the film was determined to be 4.63±0.14 eV. The conduction band offsets were found to be 0.03 eV and 0.05eV with Si(111) and Si(100) respectively, and 0.45eV with Ge(100). The results indicate that the heterojunctions of Ga2O3 with Si(100), Si(111) and Ge(100) are all type I heterojunctions.

  7. Work Valence as a Predictor of Academic Achievement in the Family Context

    ERIC Educational Resources Information Center

    Porfeli, Erik; Ferrari, Lea; Nota, Laura

    2013-01-01

    This study asserts a theoretical model of academic and work socialization within the family setting. The presumed associations between parents' work valences, children's work valences and valence perceptions, and children's academic interest and achievement are tested. The results suggest that children's perceptions of parents mediate the…

  8. Metal-insulator transition of valence-controlled VO2 thin film prepared by RF magnetron sputtering using oxygen radical

    NASA Astrophysics Data System (ADS)

    Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.

  9. Band alignment of atomic layer deposited SiO2 and HfSiO4 with (\\bar{2}01) β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Carey, Patrick H., IV; Ren, Fan; Hays, David C.; Gila, Brent P.; Pearton, Stephen J.; Jang, Soohwan; Kuramata, Akito

    2017-07-01

    The valence band offset at both SiO2/β-Ga2O3 and HfSiO4/β-Ga2O3 heterointerfaces was measured using X-ray photoelectron spectroscopy. Both dielectrics were deposited by atomic layer deposition (ALD) onto single-crystal β-Ga2O3. The bandgaps of the materials were determined by reflection electron energy loss spectroscopy as 4.6 eV for Ga2O3, 8.7 eV for Al2O3 and 7.0 eV for HfSiO4. The valence band offset was determined to be 1.23 ± 0.20 eV (straddling gap, type I alignment) for ALD SiO2 on β-Ga2O3 and 0.02 ± 0.003 eV (also type I alignment) for HfSiO4. The respective conduction band offsets were 2.87 ± 0.70 eV for ALD SiO2 and 2.38 ± 0.50 eV for HfSiO4, respectively.

  10. Direct observation of a surface resonance state and surface band inversion control in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ehlen, N.; Sanna, A.; Senkovskiy, B. V.; Petaccia, L.; Fedorov, A. V.; Profeta, G.; Grüneis, A.

    2018-01-01

    We report a Cs-doping-induced band inversion and the direct observation of a surface resonance state with an elliptical Fermi surface in black phosphorus (BP) using angle-resolved photoemission spectroscopy. By selectively inducing a higher electron concentration (1.7 ×1014cm-2 ) in the topmost layer, the changes in the Coulomb potential are sufficiently large to cause surface band inversion between the parabolic valence band of BP and a parabolic surface state around the Γ point of the BP Brillouin zone. Tight-binding calculations reveal that band gap openings at the crossing points in the two high-symmetry directions of the Brillouin zone require out-of-plane hopping and breaking of the glide mirror symmetry. Ab initio calculations are in very good agreement with the experiment if a stacking fault on the BP surface is taken into account. The demonstrated level of control over the band structure suggests the potential application of few-layer phosphorene in topological field-effect transistors.

  11. Study of the High Resolution Spectrum of the S18O16O Molecule in the Hot 2ν2 + ν3 - ν2 Band

    NASA Astrophysics Data System (ADS)

    Ziatkova, A. G.; Gromova, O. V.; Ulenikov, O. N.

    2018-05-01

    The hot 2ν2 + ν3 - ν2 hybrid band of the S18O16O molecule is assigned in the range 1800-1900 cm-1 for the first time. The spectrum is analyzed based on the method of combination differences. 56 energy levels (Jmax = 15, {K}a^{max}=12 ) are determined based on the experimental data obtained. Rotational parameters of the (021) vibrational state are determined.

  12. Deimos: A featureless asteroid-like spectrum

    NASA Technical Reports Server (NTRS)

    Grundy, W. M.; Fink, Uwe

    1991-01-01

    High quality CCD spectra were obtained of Deimos from 0.5 to 1.0 micron at a spectral resolution of 15A at the time of the 1988 Mars opposition. The data acquisition and reduction methods allowed the quantitative prevention of scattered light from Mars contaminating the spectra. Solar analog stars BS560, BS2007, and BS8931 were observed the same night to allow removal of telluric absorptions. The ratio spectrum of Deimos has a red slope, increasing in reflectance by a factor of approx. 50 pct. over the one octave wavelength interval observed. Other than this slope, the spectrum is remarkably featureless. The absence of absorption bands in the spectrum of Deimos is in marked contrast with the spectra of Martian surface materials. No trace of the Fe(2+) charge transfer absorption band around 1 micron is observed, which rules out the presence of significant quantities of minerals such as the pyroxenes or olivine at the surface of Deimos. The featureless red spectrum of Deimos appears to be consistent with a surface composition of fine grained carbonaceous chondrite type material. An analysis is presented of the spectrum of Deimos which makes use of the Hapke scattering surface model.

  13. Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna.

    PubMed

    Zhao, Huaqiao; Gao, Huotao; Cao, Ting; Li, Boya

    2018-01-22

    In this work, the collection of solar energy by a broad-band nanospiral antenna is investigated in order to solve the low efficiency of the solar rectenna based on conventional nanoantennas. The antenna impedance, radiation, polarization and effective area are all considered in the efficiency calculation using the finite integral technique. The wavelength range investigated is 300-3000 nm, which corresponds to more than 98% of the solar radiation energy. It's found that the nanospiral has stronger field enhancement in the gap than a nanodipole counterpart. And a maximum harvesting efficiency about 80% is possible in principle for the nanospiral coupled to a rectifier resistance of 200 Ω, while about 10% for the nanodipole under the same conditions. Moreover, the nanospiral could be coupled to a rectifier diode of high resistance more easily than the nanodipole. These results indicate that the efficient full-spectrum utilization, reception and conversion of solar energy can be achieved by the nanospiral antenna, which is expected to promote the solar rectenna to be a promising technology in the clean, renewable energy application.

  14. Interfacial band alignment and structural properties of nanoscale TiO2 thin films for integration with epitaxial crystallographic oriented germanium

    NASA Astrophysics Data System (ADS)

    Jain, N.; Zhu, Y.; Maurya, D.; Varghese, R.; Priya, S.; Hudait, M. K.

    2014-01-01

    We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO2) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO2 thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO2 thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO2/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33 ± 0.02 eV was determined for the amorphous TiO2 thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2 eV was obtained at the TiO2/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO2/Ge system were found to be smaller than 1 eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ΔEV(100) > ΔEV(111) > ΔEV(110) and a conduction band-offset relation of ΔEC(110) > ΔEC(111) > ΔEC(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO2 for potential high-κ dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.

  15. Identification of New Hot Bands in the Blue and Green Band Systems of FeH

    NASA Astrophysics Data System (ADS)

    Wilson, Catherine; Brown, John M.

    1999-10-01

    A particularly rich region of the electronic spectrum of FeH from 525 to 545 nm was investigated using the techniques of dispersed and undispersed laser-induced fluorescence. Analysis has led to the discovery that several different electronic transitions are embedded in this region; the (0, 0) and (1, 1) bands of the e6Π-a6Δ (green) system, the (0, 2) band of the g6Φ-X4Δ (intercombination) system, the (0, 1) band of the g6Φ-a6Δ (blue) system, and the (0, 0) band of the g6Φ-b6Π system. Seventy-five lines were assigned in the (0, 1) band of the g6Φ-a6Δ transition. These, with the assignment of an additional 14 lines in the 583 nm region to the (0, 1) band of the e6Π-a6Δ transition, led to the extension of the known term values to higher J values for the Ω = 9/2, 7/2, and 5/2 spin components of the v = 1 level of the a6Δ state and the novel characterization of the a6Δ3/2 (v = 1) and g6Φ5/2 (v = 0) components. A further 73 lines were assigned to the first four subbands of the (1, 1) band of the e6Π-a6Δ transition and term values for the lowest four spin components of the v = 1 level of the e6Π state were determined. This provides the first experimental measurement of a vibrational interval in one of the higher lying electronic states of FeH. The interval does not appear to vary strongly between the spin components (ΔG1/2 = 1717, 1713, 1710 cm-1 for Ω = 7/2, 5/2, 3/2, respectively). Remarkably few of the hot-band transitions assigned in this work could be identified in the complex, high-temperature spectrum of FeH recorded by P. McCormack and S. O'Connor [Astron. Astrophys. Suppl. 26, 373-380 (1976)].

  16. Energy spectrum analysis - A model of echolocation processing. [in animals

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Titlebaum, E. L.

    1976-01-01

    The paper proposes a frequency domain approach based on energy spectrum analysis of the combination of a signal and its echoes as the processing mechanism for the echolocation process used by bats and other animals. The mechanism is a generalized wide-band one and can account for the large diversity of wide-band signals used for orientation. The coherency in the spectrum of the signal-echo combination is shown to be equivalent to correlation.

  17. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.

    PubMed

    Cheung, W M; Chan, K S

    2017-06-01

    We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index  =  -1 and the valence band with Floquet index  =  +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.

  18. Emotions and false memories: valence or arousal?

    PubMed

    Corson, Yves; Verrier, Nadège

    2007-03-01

    The effects of mood on false memories have not been studied systematically until recently. Some results seem to indicate that negative mood may reduce false recall and thus suggest an influence of emotional valence on false memory. The present research tested the effects of both valence and arousal on recall and recognition and indicates that the effect is actually due to arousal. In fact, whether participants' mood is positive, negative, or neutral, false memories are significantly more frequent under conditions of high arousal than under conditions of low arousal.

  19. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplicka-Oryńczak, N.; Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków; Fornal, B.

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility ofmore » testing the calculations involving the core excitations.« less

  20. Excitation spectrum and staggering transformations in lattice quantum models.

    PubMed

    Faria da Veiga, Paulo A; O'Carroll, Michael; Schor, Ricardo

    2002-08-01

    We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the generator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamiltonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or repulsive character of the interaction between the particles of the system, there is, respectively, a bound state below or above the two-particle band. We show how the existence or nonexistence of these bound states can be understood in terms of a nonrelativistic single-particle lattice Schrödinger Hamiltonian with a delta potential. A staggering transformation relates the spectra of the attractive and the repulsive cases.

  1. A complete active space valence bond method with nonorthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Hirao, Kimihiko; Nakano, Haruyuki; Nakayama, Kenichi

    1997-12-01

    A complete active space self-consistent field (SCF) wave function is transformed into a valence bond type representation built from nonorthogonal orbitals, each strongly localized on a single atom. Nonorthogonal complete active space SCF orbitals are constructed by Ruedenberg's projected localization procedure so that they have maximal overlaps with the corresponding minimum basis set of atomic orbitals of the free-atoms. The valence bond structures which are composed of such nonorthogonal quasiatomic orbitals constitute the wave function closest to the concept of the oldest and most simple valence bond method. The method is applied to benzene, butadiene, hydrogen, and methane molecules and compared to the previously proposed complete active space valence bond approach with orthogonal orbitals. The results demonstrate the validity of the method as a powerful tool for describing the electronic structure of various molecules.

  2. 76 FR 6789 - Unlicensed Operation in the TV Broadcast Bands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ...., Spectrum Bridge Inc., Telcordia Technologies, and WSdb LLC--as TV bands device database administrators. The TV bands databases will be used by fixed and personal portable unlicensed devices to identify unused... administrators to develop the databases that are necessary to enable the introduction of this new class of...

  3. A wide-band high-resolution spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Quirk, Maureen P.; Garyantes, Michael F.; Wilck, Helmut C.; Grimm, Michael J.

    1988-01-01

    A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.

  4. A wide-band high-resolution spectrum analyzer.

    PubMed

    Quirk, M P; Garyantes, M F; Wilck, H C; Grimm, M J

    1988-12-01

    This paper describes a two-million-channel 40-MHz-bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2(21)-point, Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis and detection.

  5. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.

    PubMed

    Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter

    2009-06-21

    Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.

  6. On a direct connection of the transition metal impurity levels to the band edge discontinuities in semiconductor heterojunctions

    NASA Astrophysics Data System (ADS)

    Langer, Jerzy M.; Heinrich, Helmut

    1985-11-01

    Our recent proposal of using the transition metal impurity levels to predict the isovalent heterojunction (HJ) band-edge discontinuities is further discussed. It is shown that for Ga 1-xAl xAs/GaAs heterojunctions most of the recent discontinuity data follow within experimental error the prediction of the ΔE cb: ΔE vb= 0.64:0.36 discontinuity ratio derived from the Fe 2+ level position in Ga 1-xAl xAs compound. Predictions of valence-band discontinuities for the other III-V and II-VI HJ systems are also given.

  7. Relative contributions of specific frequency bands to the loudness of broadband sounds.

    PubMed

    Jesteadt, Walt; Walker, Sara M; Ogun, Oluwaseye A; Ohlrich, Brenda; Brunette, Katyarina E; Wróblewski, Marcin; Schmid, Kendra K

    2017-09-01

    Listeners with normal hearing (NH) and sensorineural hearing loss (SNHL) were asked to compare pairs of noise stimuli and choose the louder noise in each pair. Each noise was made up of 15, two-ERB N (equivalent rectangular bandwidth) wide frequency bands that varied independently over a 12-dB range from one presentation to the next. Mean levels of the bands followed the long-term average speech spectrum (LTASS) or were set to 43, 51, or 59 dB sound pressure level (SPL). The relative contribution of each band to the total loudness of the noise was determined by computing the correlation between the difference in levels for a given band on every trial and the listener's decision on that trial. Weights for SNHL listeners were governed by audibility and the spectrum of the noise stimuli, with bands near the spectral peak of the LTASS noise receiving greatest weight. NH listeners assigned greater weight to the lowest and highest bands, an effect that increased with overall level, but did not assign greater weight to bands near the LTASS peak. Additional loudness-matching and paired-comparison studies using stimuli missing one of the 15 bands showed a significant contribution by the highest band, but properties other than loudness may have contributed to the decisions.

  8. Orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications

    DOE PAGES

    Qiao, L.; Zhang, S.; Xiao, H. Y.; ...

    2018-01-01

    Bismuth ferrite BiFeO 3 (BFO) is an important ferroelectric material for thin-film optoelectronic sensing and potential photovoltaic applications. Its relatively large band gap, however, limits the conversion efficiency of BFO absorber-based PV devices. In this study, based on density functional theory calculations we demonstrate that with well-designed Fe-site elemental substitution, tetragonal BFO can exhibit a much lower fundamental band gap than conventional rhombohedral BFO without forming in-gap electronic states and unravel the underlying mechanisms. Cation atomic size, electronegativity, and crystallographic symmetry are evidenced as critical parameters to tailor the metal 3d – oxygen 2p orbital interactions and thus intrinsically modifymore » electronic structure, particularly, the shape and character of the valence and conduction band edges. With reduced band gap, improved mobility, and uncompromised ferroelectric and magnetic ground states, the present results provide a new strategy of designing high symmetry BFO for efficient optoelectronic applications.« less

  9. Orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, L.; Zhang, S.; Xiao, H. Y.

    Bismuth ferrite BiFeO 3 (BFO) is an important ferroelectric material for thin-film optoelectronic sensing and potential photovoltaic applications. Its relatively large band gap, however, limits the conversion efficiency of BFO absorber-based PV devices. In this study, based on density functional theory calculations we demonstrate that with well-designed Fe-site elemental substitution, tetragonal BFO can exhibit a much lower fundamental band gap than conventional rhombohedral BFO without forming in-gap electronic states and unravel the underlying mechanisms. Cation atomic size, electronegativity, and crystallographic symmetry are evidenced as critical parameters to tailor the metal 3d – oxygen 2p orbital interactions and thus intrinsically modifymore » electronic structure, particularly, the shape and character of the valence and conduction band edges. With reduced band gap, improved mobility, and uncompromised ferroelectric and magnetic ground states, the present results provide a new strategy of designing high symmetry BFO for efficient optoelectronic applications.« less

  10. NEVER forget: negative emotional valence enhances recapitulation.

    PubMed

    Bowen, Holly J; Kark, Sarah M; Kensinger, Elizabeth A

    2018-06-01

    A hallmark feature of episodic memory is that of "mental time travel," whereby an individual feels they have returned to a prior moment in time. Cognitive and behavioral neuroscience methods have revealed a neurobiological counterpart: Successful retrieval often is associated with reactivation of a prior brain state. We review the emerging literature on memory reactivation and recapitulation, and we describe evidence for the effects of emotion on these processes. Based on this review, we propose a new model: Negative Emotional Valence Enhances Recapitulation (NEVER). This model diverges from existing models of emotional memory in three key ways. First, it underscores the effects of emotion during retrieval. Second, it stresses the importance of sensory processing to emotional memory. Third, it emphasizes how emotional valence - whether an event is negative or positive - affects the way that information is remembered. The model specifically proposes that, as compared to positive events, negative events both trigger increased encoding of sensory detail and elicit a closer resemblance between the sensory encoding signature and the sensory retrieval signature. The model also proposes that negative valence enhances the reactivation and storage of sensory details over offline periods, leading to a greater divergence between the sensory recapitulation of negative and positive memories over time. Importantly, the model proposes that these valence-based differences occur even when events are equated for arousal, thus rendering an exclusively arousal-based theory of emotional memory insufficient. We conclude by discussing implications of the model and suggesting directions for future research to test the tenets of the model.

  11. Effect of band gap engineering in anionic-doped TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee

    2017-01-01

    A simple yet promising strategy to modify TiO2 band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO2 was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti3+ impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti3+ ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO2 shows better optical properties relative to single N and F doped TiO2 with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO2 uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO2. This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  12. Aesthetic valence of visual illusions

    PubMed Central

    Stevanov, Jasmina; Marković, Slobodan; Kitaoka, Akiyoshi

    2012-01-01

    Visual illusions constitute an interesting perceptual phenomenon, but they also have an aesthetic and affective dimension. We hypothesized that the illusive nature itself causes the increased aesthetic and affective valence of illusions compared with their non-illusory counterparts. We created pairs of stimuli. One qualified as a standard visual illusion whereas the other one did not, although they were matched in as many perceptual dimensions as possible. The phenomenal quality of being an illusion had significant effects on “Aesthetic Experience” (fascinating, irresistible, exceptional, etc), “Evaluation” (pleasant, cheerful, clear, bright, etc), “Arousal” (interesting, imaginative, complex, diverse, etc), and “Regularity” (balanced, coherent, clear, realistic, etc). A subsequent multiple regression analysis suggested that Arousal was a better predictor of Aesthetic Experience than Evaluation. The findings of this study demonstrate that illusion is a phenomenal quality of the percept which has measurable aesthetic and affective valence. PMID:23145272

  13. Molecular mechanism of gelation upon the addition of water to a solution of poly(acrylonitrile) in dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Kulik, V. B.; Savitskii, A. V.; Fetisov, O. I.; Usov, V. V.

    2010-05-01

    The solidification of a solution of poly(acrylonitrile) (PAN) in dimethylsulfoxide (DMSO) upon introduction of water into the solution is studied by Raman spectroscopy. In the absence of water, DMSO molecules are found to produce dipole-dipole bonds with PAN molecules. Upon the introduction of water, DMSO molecules produce hydrogen bonds with it and bands at 1005 and 1015 cm-1 appear in the Raman spectrum, which are assigned to the valence vibrations of S=O bonds involved in the hydrogen bonds. Simultaneously, water molecules produce hydrogen bonds with PAN molecules: R-C≡N...H-O-H...N≡C-R, where R is the carbon skeleton of a PAN molecule. Accordingly, a band at 2250 cm-1 arises in the Raman spectrum, which is assigned to the valence vibrations of C≡N bonds producing hydrogen bonds with a water molecule. When the water content is low and the DMSO concentration is high, the length of the hydrogen bonds varies in wide limits and the band at 2250 cm-1 is wide. As the water content rises, DMSO molecules come out of PAN, the variation of the hydrogen bond length in it decreases (the band at 2250 cm-1 narrows), and a high-viscosity system (gel) arises that consists of PAN molecules bonded to water molecules via “equally strong” hydrogen bonds.

  14. Motivation and attention: Incongruent effects of feedback on the processing of valence.

    PubMed

    Rothermund, Klaus

    2003-09-01

    Four experiments investigated the relation between outcome-related motivational states and processes of automatic attention allocation. Experiments 1-3 analyzed influences of feedback on evaluative decisions. Words of opposite valence to the feedback were processed faster, indicating that it is easier to allocate attention to the valence of an affectively incongruent word. Experiment 4 replicated the incongruent effect with interference effects of word valence in a grammatical-categorization task, indicating that the effect reflects automatic attentional capture. In all experiments, incongruent effects of feedback emerged only in a situation involving an attentional shift between words that differed in valence.

  15. Trait valence and the better-than-average effect.

    PubMed

    Gold, Ron S; Brown, Mark G

    2011-12-01

    People tend to regard themselves as having superior personality traits compared to their average peer. To test whether this "better-than-average effect" varies with trait valence, participants (N = 154 students) rated both themselves and the average student on traits constituting either positive or negative poles of five trait dimensions. In each case, the better-than-average effect was found, but trait valence had no effect. Results were discussed in terms of Kahneman and Tversky's prospect theory.

  16. The ν 3 band of DCOOH

    NASA Astrophysics Data System (ADS)

    Goh, K. L.; Ong, P. P.; Tan, T. L.

    1999-11-01

    The high resolution Fourier transform infrared (FTIR) spectrum of the ν 3 band of DCOOH has been measured with a resolution of 0.004 cm -1 in the spectral range 1670-1810 cm -1. Using the Watson's A-reduced Hamiltonian in the Ir representation, 713 infrared transitions have been assigned and fitted to provide rovibrational constants for the ν 3=1 state with a standard deviation of 0.000439 cm -1. The ν 3 band centre was found at 1725.87497±0.00003 cm -1. The band is perturbed by the 2ν 8 band, situated at 1762.9 cm -1, through Fermi resonance and possibly a Coriolis term. Perturbations of ν 3 by ν 5+ν 7 and ν 5+ν 9 are also expected. About 280 perturbed ν 3 lines were identified and excluded in the final fit.

  17. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction.

  18. Human Amygdala Tracks a Feature-Based Valence Signal Embedded within the Facial Expression of Surprise.

    PubMed

    Kim, M Justin; Mattek, Alison M; Bennett, Randi H; Solomon, Kimberly M; Shin, Jin; Whalen, Paul J

    2017-09-27

    Human amygdala function has been traditionally associated with processing the affective valence (negative vs positive) of an emotionally charged event, especially those that signal fear or threat. However, this account of human amygdala function can be explained by alternative views, which posit that the amygdala might be tuned to either (1) general emotional arousal (activation vs deactivation) or (2) specific emotion categories (fear vs happy). Delineating the pure effects of valence independent of arousal or emotion category is a challenging task, given that these variables naturally covary under many circumstances. To circumvent this issue and test the sensitivity of the human amygdala to valence values specifically, we measured the dimension of valence within the single facial expression category of surprise. Given the inherent valence ambiguity of this category, we show that surprised expression exemplars are attributed valence and arousal values that are uniquely and naturally uncorrelated. We then present fMRI data from both sexes, showing that the amygdala tracks these consensus valence values. Finally, we provide evidence that these valence values are linked to specific visual features of the mouth region, isolating the signal by which the amygdala detects this valence information. SIGNIFICANCE STATEMENT There is an open question as to whether human amygdala function tracks the valence value of cues in the environment, as opposed to either a more general emotional arousal value or a more specific emotion category distinction. Here, we demonstrate the utility of surprised facial expressions because exemplars within this emotion category take on valence values spanning the dimension of bipolar valence (positive to negative) at a consistent level of emotional arousal. Functional neuroimaging data showed that amygdala responses tracked the valence of surprised facial expressions, unconfounded by arousal. Furthermore, a machine learning classifier identified

  19. Effects of valence and divided attention on cognitive reappraisal processes

    PubMed Central

    Leclerc, Christina M.; Kensinger, Elizabeth A.

    2014-01-01

    Numerous studies have investigated the neural substrates supporting cognitive reappraisal, identifying the importance of cognitive control processes implemented by prefrontal cortex (PFC). This study examined how valence and attention affect the processes used for cognitive reappraisal by asking participants to passively view or to cognitively reappraise positive and negative images with full or divided attention. When participants simply viewed these images, results revealed few effects of valence or attention. However, when participants engaged in reappraisal, there was a robust effect of valence, with the reappraisal of negative relative to positive images associated with more widespread activation, including within regions of medial and lateral PFC. There also was an effect of attention, with more lateral PFC recruitment when regulating with full attention and more medial PFC recruitment when regulating with divided attention. Within two regions of medial PFC and one region of ventrolateral PFC, there was an interaction between valence and attention: in these regions, divided attention reduced activity during reappraisal of positive but not negative images. Critically, participants continued to report reappraisal success even during the Divided Attention condition. These results suggest multiple routes to successful cognitive reappraisal, depending upon image valence and the availability of attentional resources. PMID:24493837

  20. Effects of valence and divided attention on cognitive reappraisal processes.

    PubMed

    Morris, John A; Leclerc, Christina M; Kensinger, Elizabeth A

    2014-12-01

    Numerous studies have investigated the neural substrates supporting cognitive reappraisal, identifying the importance of cognitive control processes implemented by prefrontal cortex (PFC). This study examined how valence and attention affect the processes used for cognitive reappraisal by asking participants to passively view or to cognitively reappraise positive and negative images with full or divided attention. When participants simply viewed these images, results revealed few effects of valence or attention. However, when participants engaged in reappraisal, there was a robust effect of valence, with the reappraisal of negative relative to positive images associated with more widespread activation, including within regions of medial and lateral PFC. There also was an effect of attention, with more lateral PFC recruitment when regulating with full attention and more medial PFC recruitment when regulating with divided attention. Within two regions of medial PFC and one region of ventrolateral PFC, there was an interaction between valence and attention: in these regions, divided attention reduced activity during reappraisal of positive but not negative images. Critically, participants continued to report reappraisal success even during the Divided Attention condition. These results suggest multiple routes to successful cognitive reappraisal, depending upon image valence and the availability of attentional resources. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.

    PubMed

    Inamdar, Shaukatali N; Ingole, Pravin P; Haram, Santosh K

    2008-12-01

    Band structure parameters such as the conduction band edge, the valence band edge and the quasi-particle gap of diffusing CdSe quantum dots (Q-dots) of various sizes were determined using cyclic voltammetry. These parameters are strongly dependent on the size of the Q-dots. The results obtained from voltammetric measurements are compared to spectroscopic and theoretical data. The fit obtained to the reported calculations based on the semi-empirical pseudopotential method (SEPM)-especially in the strong size-confinement region, is the best reported so far, according to our knowledge. For the smallest CdSe Q-dots, the difference between the quasi-particle gap and the optical band gap gives the electron-hole Coulombic interaction energy (J(e1,h1)). Interband states seen in the photoluminescence spectra were verified with cyclic voltammetry measurements.

  2. The Far Infrared Spectrum of Thiophosgene: Analysis of the νb{2} Fundamental Band at 500 wn

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.; Billinghurst, B. E.

    2009-06-01

    Thiophosgene (Cl_2CS) is a model system for studies of vibrational dynamics. Many hundreds of vibrational levels in the ground electronic state have been experimentally observed, allowing a detailed anharmonic force field to be developed including all six vibrational modes. But there have been no previous high resolution studies of this molecule in the infrared, presumably because its mass and multiple isotopic species result in very congested spectra. Here we report a detailed study of the strong νb{2} fundamental band (symmetric C - Cl stretch) based on a spectrum obtained using synchrotron radiation with the Bruker IFS125 FT spectrometer at the Canadian Light Source far infrared beamline. Thiophosgene is an interesting example of an accidentally near-symmetric oblate rotor. Indeed, its inertial axes switch with isotopic substitution: for ^{35}Cl_2CS, the C_{2v} symmetry axis coincides with the a inertial axis, but for ^{37}Cl_2CS, this changes to the b axis. Fortunately for us, the ground state microwave spectrum has been well studied. Even so, it has required the full spectral resolution of the present results, with observed line widths of about 0.0008 wn, to achieve a true line-by-line analysis. [1] For example: P.D. Chowdary, B. Strickler, S. Lee, and M. Gruebele, Chem. Phys. Letters 434, 182 (2007). [2] J.H. Carpenter, D.F. Rimmer, J.G. Smith, and D.H. Whiffen, J. Chem. Soc. Faraday Trans. 2 71, 1752 (1971).

  3. Electronic structure of LiGaS 2

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Lobanov, S.; Huang, H.; Lin, Z. S.

    2009-04-01

    X-ray photoelectron spectroscopy (XPS) measurement has been performed to determine the valence band structure of LiGaS 2 crystals. The experimental measurement is compared with the electronic structure obtained from the density functional calculations. It is found that the Ga 3d states in the XPS spectrum are much higher than the calculated results. In order to eliminate this discrepancy, the LDA+ U method is employed and reasonable agreement is achieved. Further calculations show that the difference of the linear and nonlinear optical coefficients between LDA and LDA+ U calculations is negligibly small, indicating that the Ga 3d states are actually independent of the excited properties of LiGaS 2 crystals since they are located at a very deep position in the valence bands.

  4. Band alignment and p -type doping of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Wang, Tianshi; Ni, Chaoying; Janotti, Anderson

    2017-05-01

    Composed of earth-abundant elements, ZnSnN2 is a promising semiconductor for photovoltaic and photoelectrochemical applications. However, basic properties such as the precise value of the band gap and the band alignment to other semiconductors are still unresolved. For instance, reported values for the band gap vary from 1.4 to 2.0 eV. In addition, doping in ZnSnN2 remains largely unexplored. Using density functional theory with the Heyd-Scuseria-Ernzerhof hybrid functional, we investigate the electronic structure of ZnSnN2, its band alignment to GaN and ZnO, and the possibility of p -type doping. We find that the position of the valence-band maximum of ZnSnN2 is 0.39 eV higher than that in GaN, yet the conduction-band minimum is close to that in ZnO, which suggests that achieving p -type conductivity is likely as in GaN, yet it may be difficult to control unintentional n -type conductivity as in ZnO. Among possible p -type dopants, we explore Li, Na, and K substituting on the Zn site. We show that while LiZn is a shallow acceptor, NaZn and KZn are deep acceptors, which we trace back to large local relaxations around the Na and K impurities due to the atomic size mismatches.

  5. Memory effects of sleep, emotional valence, arousal and novelty in children.

    PubMed

    Vermeulen, Marije C M; van der Heijden, Kristiaan B; Benjamins, Jeroen S; Swaab, Hanna; van Someren, Eus J W

    2017-06-01

    Effectiveness of memory consolidation is determined by multiple factors, including sleep after learning, emotional valence, arousal and novelty. Few studies investigated how the effect of sleep compares with (and interacts with) these other factors, of which virtually none are in children. The present study did so by repeated assessment of declarative memory in 386 children (45% boys) aged 9-11 years through an online word-pair task. Children were randomly assigned to either a morning or evening learning session of 30 unrelated word-pairs with positive, neutral or negative valenced cues and neutral targets. After immediately assessing baseline recognition, delayed recognition was recorded either 12 or 24 h later, resulting in four different assessment schedules. One week later, the procedure was repeated with exactly the same word-pairs to evaluate whether effects differed for relearning versus original novel learning. Mixed-effect logistic regression models were used to evaluate how the probability of correct recognition was affected by sleep, valence, arousal, novelty and their interactions. Both immediate and delayed recognition were worse for pairs with negatively valenced or less arousing cue words. Relearning improved immediate and delayed word-pair recognition. In contrast to these effects, sleep did not affect recognition, nor did sleep moderate the effects of arousal, valence and novelty. The findings suggest a robust inclination of children to specifically forget the pairing of words to negatively valenced cue words. In agreement with a recent meta-analysis, children seem to depend less on sleep for the consolidation of information than has been reported for adults, irrespective of the emotional valence, arousal and novelty of word-pairs. © 2017 European Sleep Research Society.

  6. Three-dimensional nature of the band structure of ZrTe 5 measured by high-momentum-resolution photoemission spectroscopy [3D nature ZrTe 5 band structure measured by high-momentum-resolution photoemission spectroscopy

    DOE PAGES

    Xiong, H.; Sobota, J. A.; Yang, S. -L.; ...

    2017-05-10

    Here, we have performed a systematic high-momentum-resolution photoemission study on ZrTe 5 using 6-eV photon energy. We have measured the band structure near the Γ point, and quantified the gap between the conduction and valence band as 18 ≤ Δ ≤ 29 meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the three-dimensional (3D) nature of the material's band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe 5 is not a 3D strong topologicalmore » insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe 5 being a 3D weak topological insulator.« less

  7. Three-dimensional nature of the band structure of ZrTe 5 measured by high-momentum-resolution photoemission spectroscopy [3D nature ZrTe 5 band structure measured by high-momentum-resolution photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, H.; Sobota, J. A.; Yang, S. -L.

    Here, we have performed a systematic high-momentum-resolution photoemission study on ZrTe 5 using 6-eV photon energy. We have measured the band structure near the Γ point, and quantified the gap between the conduction and valence band as 18 ≤ Δ ≤ 29 meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the three-dimensional (3D) nature of the material's band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe 5 is not a 3D strong topologicalmore » insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe 5 being a 3D weak topological insulator.« less

  8. On pleasure and thrill: the interplay between arousal and valence during visual word recognition.

    PubMed

    Recio, Guillermo; Conrad, Markus; Hansen, Laura B; Jacobs, Arthur M

    2014-07-01

    We investigated the interplay between arousal and valence in the early processing of affective words. Event-related potentials (ERPs) were recorded while participants read words organized in an orthogonal design with the factors valence (positive, negative, neutral) and arousal (low, medium, high) in a lexical decision task. We observed faster reaction times for words of positive valence and for those of high arousal. Data from ERPs showed increased early posterior negativity (EPN) suggesting improved visual processing of these conditions. Valence effects appeared for medium and low arousal and were absent for high arousal. Arousal effects were obtained for neutral and negative words but were absent for positive words. These results suggest independent contributions of arousal and valence at early attentional stages of processing. Arousal effects preceded valence effects in the ERP data suggesting that arousal serves as an early alert system preparing a subsequent evaluation in terms of valence. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Processing of emotional stimuli is reflected by modulations of beta band activity in the subgenual anterior cingulate cortex in patients with treatment resistant depression

    PubMed Central

    Huebl, Julius; Brücke, Christof; Merkl, Angela; Bajbouj, Malek; Schneider, Gerd-Helge

    2016-01-01

    Deep brain stimulation (DBS) of the subgenual anterior cingulate cortex (sgACC) has emerged as a new therapeutic option in patients with treatment resistant depression (TRD). At the same time, DBS offers a unique opportunity as an innovative research tool to study brain function in vivo. Indirect measures of brain function such as positron-emission-tomography imaging findings have revealed a hypermetabolism in the sgACC area in patients with TRD that normalizes in parallel with treatment response to DBS. We used direct intracranial recordings via implanted DBS electrodes to study the neuronal oscillatory activity in the sgACC area during a picture viewing task including emotional and neutral stimuli in eight patients with TRD who underwent DBS. We found a stimulus-induced decrease in beta-band and increase in gamma-band activity, with a main effect of valence for event-related desynchronisation in the beta-frequency range (14–30 Hz). Unpleasant stimuli induced the strongest and most sustained beta-power decrease. The degree of beta-band modulation upon emotional stimuli correlated with the patients’ rating of stimulus valence. Our findings confirm the involvement of the sgACC area in emotional processing that was more enhanced for unpleasant stimuli. Moreover, stimulus evaluation may be encoded by modulations of beta-band activity. PMID:27013105

  10. Investigating Valence and Autonomy in Children's Relationships with Imaginary Companions

    ERIC Educational Resources Information Center

    McInnis, Melissa A.; Pierucci, Jillian M.; Gilpin, Ansley Tullos

    2013-01-01

    Little research has explored valence and autonomy in children's imaginary relationships. In the present study, a new interview (modeled after an existing measure for real relationships) was designed to elicit descriptions of both positive and negative interactions with imaginary companions and to provide a measure of relationship valence and…

  11. Correlation effects and electronic properties of Cr-substituted SZn with an intermediate band.

    PubMed

    Tablero, C

    2005-09-15

    A study using first principles of the electronic properties of S32Zn31Cr, a material derived from the SZn host semiconductor where a Cr atom has been substituted for each of the 32 Zn atoms, is presented. This material has an intermediate band sandwiched between the valence and conduction bands of the host semiconductor, which in a formal band-theoretic picture is metallic because the Fermi energy is located within the impurity band. The potential technological application of these materials is that when they are used to absorb photons in solar cells, the efficiency increases significantly with respect to the host semiconductor. An analysis of the gaps, bandwidths, density of states, total and orbital charges, and electronic density is carried out. The main effects of the local-density approximation with a Hubbard term corrections are an increase in the bandwidth, a modification of the relative composition of the five d and p transition-metal orbitals, and a splitting of the intermediate band. The results demonstrate that the main contribution to the intermediate band is the Cr atom. For values of U greater than 6 eV, where U is the empirical Hubbard term U parameter, this band is unfolded, thus creating two bands, a full one below the Fermi energy and an empty one above it, i.e., a metal-insulator transition.

  12. High temperature and low pressure chemical vapor deposition of silicon nitride on AlGaN: Band offsets and passivation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Pramod; Washiyama, Shun; Kaess, Felix

    2016-04-14

    In this work, we employed X-ray photoelectron spectroscopy to determine the band offsets and interface Fermi level at the heterojunction formed by stoichiometric silicon nitride deposited on Al{sub x}Ga{sub 1-x}N (of varying Al composition “x”) via low pressure chemical vapor deposition. Silicon nitride is found to form a type II staggered band alignment with AlGaN for all Al compositions (0 ≤ x ≤ 1) and present an electron barrier into AlGaN even at higher Al compositions, where E{sub g}(AlGaN) > E{sub g}(Si{sub 3}N{sub 4}). Further, no band bending is observed in AlGaN for x ≤ 0.6 and a reduced band bending (by ∼1 eV in comparison to that atmore » free surface) is observed for x > 0.6. The Fermi level in silicon nitride is found to be at 3 eV with respect to its valence band, which is likely due to silicon (≡Si{sup 0/−1}) dangling bonds. The presence of band bending for x > 0.6 is seen as a likely consequence of Fermi level alignment at Si{sub 3}N{sub 4}/AlGaN hetero-interface and not due to interface states. Photoelectron spectroscopy results are corroborated by current-voltage-temperature and capacitance-voltage measurements. A shift in the interface Fermi level (before band bending at equilibrium) from the conduction band in Si{sub 3}N{sub 4}/n-GaN to the valence band in Si{sub 3}N{sub 4}/p-GaN is observed, which strongly indicates a reduction in mid-gap interface states. Hence, stoichiometric silicon nitride is found to be a feasible passivation and dielectric insulation material for AlGaN at any composition.« less

  13. Synthesis, structural, electronic and linear electro-optical features of new quaternary Ag2Ga2SiS6 compound

    NASA Astrophysics Data System (ADS)

    Piasecki, M.; Myronchuk, G. L.; Parasyuk, O. V.; Khyzhun, O. Y.; Fedorchuk, A. O.; Pavlyuk, V. V.; Kozer, V. R.; Sachanyuk, V. P.; El-Naggar, A. M.; Albassam, A. A.; Jedryka, J.; Kityk, I. V.

    2017-02-01

    For the first time phase equilibria and phase diagram of the AgGaS2-SiS2 system were successfully explored by differential thermal and X-ray phase analysis methods. Crystal structure of low-temperature (LT) modification of Ag2Ga2SiS6 (LT- Ag2Ga2SiS6) was studied by X-ray powder method and it belongs to tetragonal space group I-42d, with unit cell parameters a=5.7164(4) Å, c=9.8023(7) Å, V=320.32(7) Å3. Additional details regarding the crystal structure exploration are available at the web page Fachinformationszentrum Karlsruhe. X-ray photoelectron core-level and valence-band spectra were measured for pristine LT- Ag2Ga2SiS6 crystal surface. In addition, the X-ray photoelectron valence-band spectrum of LT-Ag2Ga2SiS6 was matched on a common energy scale with the X-ray emission S Kβ1,3 and Ga Kβ2 bands, which give information on the energy distribution of the S 3p and Ga 4p states, respectively. The presented X-ray spectroscopy results indicate that the valence S p and Ga p atomic states contribute mainly to the upper and central parts of the valence band of LT-Ag2Ga2SiS6, respectively, with a less significant contribution also to other valence-band regions. Band gap energy was estimated by measuring the quantum energy in the spectral range of the fundamental absorption. We have found that energy gap Eg is equal to 2.35 eV at 300 K. LT-Ag2Ga2SiS6 is a photosensitive material and reveals two spectral maxima on the curve of spectral photoconductivity spectra at λmax1 =590 nm and λmax2 =860 nm. Additionally, linear electro-optical effect of LT-Ag2Ga2SiS6 for the wavelengths of a cw He-Ne laser at 1150 nm was explored.

  14. Band alignment of TiO{sub 2}/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Haibo, E-mail: hbfan@nwu.edu.cn, E-mail: liusz@snnu.edu.cn; School of Physics, Northwest University, Xi’an 710069; Yang, Zhou

    2016-01-15

    The energy band alignment between pulsed-laser-deposited TiO{sub 2} and FTO was firstly characterized using high-resolution X-ray photoelectron spectroscopy. A valence band offset (VBO) of 0.61 eV and a conduction band offset (CBO) of 0.29 eV were obtained across the TiO{sub 2}/FTO heterointerface. With annealing process, the VBO and CBO across the heterointerface were found to be -0.16 eV and 1.06 eV, respectively, with the alignment transforming from type-I to type-II. The difference in the band alignment is believed to be dominated by the core level down-shift of the FTO substrate, which is a result of the oxidation of Sn. Current-voltagemore » test has verified that the band alignment has a significant effect on the current transport of the heterojunction.« less

  15. Examination of U valence states in the brannerite structure by near-infrared diffuse reflectance and X-ray photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Finnie, Kim S.; Zhang, Zhaoming; Vance, Eric R.; Carter, Melody L.

    2003-04-01

    The valence state of uranium doped into a f 0 thorium analog of brannerite (i.e., thorutite) has been examined using near-infrared (NIR) diffuse reflectance (DRS) and X-ray photoelectron (XPS) spectroscopies. NIR transitions of U 4+, which are not observed in spectra of brannerite, have been detected in the samples of U xTh 1- xTi 2O 6, and we propose that strong specular reflectance is responsible for the lack of U 4+ features in UTi 2O 6. Characteristic U 5+ bands have been identified in samples in which sufficient Ca 2+ has been added to nominally effect complete oxidation to U 5+. XPS results support the assignments of U 4+ and U 5+ by DRS. The presence of residual U 4+ bands in the spectra of the Ca-doped samples is consistent with segregation of Ca 2+ to the grain boundaries during high temperature sintering.

  16. Bulk and surface electronic structures of MgO

    NASA Astrophysics Data System (ADS)

    Schönberger, U.; Aryasetiawan, F.

    1995-09-01

    The bulk electronic structure of MgO is calculated from first principles including correlation effects within the GW approximation. The band gap, the position of the 2s O band, and the valence band width are in good agreement with experiment. From the quasiparticle band structure, optical transitions corresponding to the main optical absorption peaks are identified. The energy-loss spectrum is also calculated and compared with experiment. The surface electronic structure of MgO(100) is calculated self-consistently within the local-density approximation. It is found that states observed in a recent photoemission experiment outside the bulk allowed states are close to surface states.

  17. Frequency-comb referenced spectroscopy of v₄₋ and v₅₋excited hot bands in the 1.5 and μm spectrum of C₂H₂

    DOE PAGES

    Twagirayezu, Sylvestre; Cich, Matthew J.; Sears, Trevor J.; ...

    2015-07-14

    Doppler-free transition frequencies for v₄₋ and v₅₋excited hot bands have been measured in the v₁ + v₃ band region of the spectrum of acetylene using saturation dip spectroscopy with an extended cavity diode laser referenced to a frequency comb. The frequency accuracy of the measured transitions, as judged from line shape model fits and comparison to known frequencies in the v₁ + v₃ band itself, is between 3 and 22 kHz. This is some three orders of magnitude improvement on the accuracy and precision of previous line position estimates that were derived from the analysis of high-resolution Fourier transform infraredmore » absorption spectra. Comparison to transition frequencies computed from constants derived from published Fourier transform infrared spectra shows that some upper rotational energy levels suffer specific perturbations causing energy level shifts of up to several hundred MHz. These perturbations are due to energy levels of the same rotational quantum number derived from nearby vibrational levels that become degenerate at specific energies. Future identification of the perturbing levels will provide accurate relative energies of excited vibrational levels of acetylene in the 7100–7600 cm⁻¹ energy region.« less

  18. Arousal (but not valence) amplifies the impact of salience.

    PubMed

    Sutherland, Matthew R; Mather, Mara

    2018-05-01

    Previous findings indicate that negative arousal enhances bottom-up attention biases favouring perceptual salient stimuli over less salient stimuli. The current study tests whether those effects were driven by emotional arousal or by negative valence by comparing how well participants could identify visually presented letters after hearing either a negative arousing, positive arousing or neutral sound. On each trial, some letters were presented in a high contrast font and some in a low contrast font, creating a set of targets that differed in perceptual salience. Sounds rated as more emotionally arousing led to more identification of highly salient letters but not of less salient letters, whereas sounds' valence ratings did not impact salience biases. Thus, arousal, rather than valence, is a key factor enhancing visual processing of perceptually salient targets.

  19. The range and valence of a real Smirnov function

    NASA Astrophysics Data System (ADS)

    Ferguson, Timothy; Ross, William T.

    2018-02-01

    We give a complete description of the possible ranges of real Smirnov functions (quotients of two bounded analytic functions on the open unit disk where the denominator is outer and such that the radial boundary values are real almost everywhere on the unit circle). Our techniques use the theory of unbounded symmetric Toeplitz operators, some general theory of unbounded symmetric operators, classical Hardy spaces, and an application of the uniformization theorem. In addition, we completely characterize the possible valences for these real Smirnov functions when the valence is finite. To do so we construct Riemann surfaces we call disk trees by welding together copies of the unit disk and its complement in the Riemann sphere. We also make use of certain trees we call valence trees that mirror the structure of disk trees.

  20. 47 CFR 27.1176 - Cost-sharing requirements for AWS in the 2150-2160/62 MHz band.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... from this spectrum, including BRS incumbents occupying the 2150-2162 MHz band on a primary basis, must... § 27.1190. If an AWS licensee enters into a spectrum leasing arrangement and the spectrum lessee...

  1. Chromium valences in ureilite olivine and implications for ureilite petrogenesis

    NASA Astrophysics Data System (ADS)

    Goodrich, C. A.; Sutton, S. R.; Wirick, S.; Jercinovic, M. J.

    2013-12-01

    Ureilites are a group of ultramafic achondrites commonly thought to be residues of partial melting on a carbon-rich asteroid. They show a large variation in FeO content (olivine Fo values ranging from ∼74 to 95) that cannot be due to igneous fractionation and suggests instead variation in oxidation state. The presence of chromite in only a few of the most ferroan (Fo 75-76) samples appears to support such a model. MicroXANES analyses were used in this study to determine the valence states of Cr (previously unknown) in olivine cores of 11 main group ureilites. The goal of this work was to use a method that is independent of Fo to determine the oxidation conditions under which ureilites formed, in order to evaluate whether the ureilite FeO-variation is correlated with oxidation state, and whether it is nebular or planetary in origin. Two of the analyzed samples, LEW 88774 (Fo 74.2) and NWA 766 (Fo 76.7) contain primary chromite; two others, LAP 03587 (Fo 74.4) and CMS 04048 (Fo 76.2) contain sub-micrometer-sized exsolutions of chromite + Ca-rich pyroxene in olivine; and one, EET 96328 (Fo 85.2) contains an unusual chromite grain of uncertain origin. No chromite has been observed in the remaining six samples (Fo 77.4-92.3). Chromium in olivine in all eleven samples was found to be dominated by the divalent species, with valences ranging from 2.10 ± 0.02 (1σ) to 2.46 ± 0.04. The non-chromite-bearing ureilites have the most reduced Cr, with a weighted mean valence of 2.12 ± 0.01, i.e., Cr2+/Cr3+ = 7.33. All low-Fo chromite-bearing ureilites have more oxidized Cr, with valences ranging from 2.22 ± 0.03 to 2.46 ± 0.04. EET 96328, whose chromite grain we interpret as a late-crystallizing phase, yielded a reduced Cr valence of 2.15 ± 0.07, similar to the non-chromite-bearing samples. Based on the measured Cr valences, magmatic (1200-1300 °C) oxygen fugacities (fO2) of the non-chromite-bearing samples were estimated to be in the range IW-1.9 to IW-2.8 (assuming

  2. Spin orbit and tetragonal crystalline field interaction in the valence band of CuInSe2-related ordered vacancy compound CuIn7Se12

    NASA Astrophysics Data System (ADS)

    Reena Philip, Rachel; Pradeep, B.; Shripathi, T.

    2005-04-01

    Thin films of the off-tie-line ordered vacancy compound CuIn7Se12 were deposited on optically flat glass substrates by multi-source co-evaporation method. The preliminary structural, compositional and morphological characterizations were done using X-ray diffraction, energy dispersive X-ray analysis and atomic force microscopy. The X-ray diffraction data were further analysed applying the Nelson-Riley method and CTB plus = experiment rule, respectively, for lattice constants (a = 5.746 Å and c = 11.78 Å) and bond length estimations (RCu-Se = 2.465 Å and RIn-Se = 2.554 Å). A detailed analysis of the optical absorption spectra of the compound, which exhibited a three-fold optical absorption structure in the fundamental gap region, yielded three characteristic direct energy gaps at 1.37, 1.48(7) and 1.72(8) eV indicative of valence band splitting, which were evaluated using Hopfield's quasi-cubic model. The 0.04 eV increase in spin-orbit splitting parameter of the compound (0.27 eV) compared to that of CuInSe2 (0.23 eV) is found to be suggestive of the smaller contribution of Cu d orbitals to hybridization (determined by the linear hybridization model) in this Cu-deficient compound. Spectral response spectra exhibit, in addition to a maximum around 1.34 ± 0.03 eV, two other defect transition peaks near 1.07 and 0.85 eV. The binding energies of Cu, In and Se in the compound were determined using X-ray photoelectron spectroscopy.

  3. Ferromagnetism and the electronic band structure in (Ga,Mn)(Bi,As) epitaxial layers

    NASA Astrophysics Data System (ADS)

    Yastrubchak, O.; Sadowski, J.; Gluba, L.; Domagala, J. Z.; Rawski, M.; Żuk, J.; Kulik, M.; Andrearczyk, T.; Wosinski, T.

    2014-08-01

    Impact of Bi incorporation into (Ga,Mn)As layers on their electronic- and band-structures as well as their magnetic and structural properties has been studied. Homogenous (Ga,Mn)(Bi,As) layers of high structural perfection have been grown by the low-temperature molecular-beam epitaxy technique. Post-growth annealing treatment of the layers results in an improvement of their structural and magnetic properties and an increase in the hole concentration in the layers. The modulation photoreflectance spectroscopy results are consistent with the valence-band model of hole-mediated ferromagnetism in the layers. This material combines the properties of (Ga,Mn)As and Ga(Bi,As) ternary compounds and offers the possibility of tuning its electrical and magnetic properties by controlling the alloy composition.

  4. 78 FR 51559 - Commercial Operations in the 1695-1710 MHz, 1755-1780 MHz, and 2155-2180 MHz Bands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... 2020-2025 MHz band for uplink/ mobile operations. Both of these bands are currently allocated for non... Federal/non-Federal spectrum sharing. NTIA anticipates receiving final reports from CSMAC working groups... the scope of this NPRM, i.e., spectrum for which we seek comment regarding service rules for non...

  5. NASA's Evolution to Ka-Band Space Communications for Near-Earth Spacecraft

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin; Stocklin, Frank; Geldzahler, Barry; Friedman, Daniel; Celeste, Peter

    2010-01-01

    This slide presentation reviews the exploration of NASA using a Ka-band system for spacecraft communications in Near-Earth orbits. The reasons for changing to Ka-band are the higher data rates, and the current (X-band spectrum) is becoming crowded. This will require some modification to the current ground station antennas systems. The results of a Request for Information (RFI) are discussed, and the recommended solution is reviewed.

  6. The librational band of water ice in AFGL 961: revisited

    NASA Astrophysics Data System (ADS)

    Smith, R. G.; Wright, C. M.

    2011-07-01

    Of all the water ice absorption bands seen in the laboratory, the librational band near 12-13 μ m has proven the most difficult to conclusively identify in observational spectra. Cox reported the detection of this band in the IRAS spectrum of the massive protostar AFGL 961 near 13.6 μ m; however, the details of the structure of the band were limited by the quality of the IRAS spectrum and the accuracy of the subtracted silicate absorption. AFGL 961 is also a double system comprising two point-like components separated by ˜6 arcsec (AFGL 961E and AFGL 961W) so the IRAS aperture included both components - it is unclear how the combination of the intrinsic spectra of these two sources may have affected the resultant IRAS spectrum. In this paper we report Spitzer and European Southern Observatory (ESO) 3.6-m mid-infrared spectroscopic observations of each component of AFGL 961. We find a broad absorption feature near 13.1 μ m common to both AFGL 961E and W. The profile and peak wavelength of this feature are well matched by the laboratory spectrum of the librational band of amorphous H2O ice in the temperature range 10-30 K, in agreement with the Cox result. Both AFGL 961E and W also have strong CO2 ice absorption near 15.2 μ m, indistinguishable in profile between the two. However, AFGL 961E shows silicates in absorption near 9.7 μ m, while AFGL 961W shows polycyclic aromatic hydrocarbons in emission and, in a small aperture, also silicates in emission. Uncertainty in where the true continuum lies in the 8-13 μ m spectral region for both AFGL 961E and W means we cannot rule out the possibility that a combination of silicate emission and absorption could be responsible for at least some of the features we see in this region. In this case, a much weaker librational band could still be present, but not as a distinct feature. In either case, the ice must be located in a cool, outer envelope surrounding both stars or a cool foreground cloud, far enough away that the

  7. Distinct Brain Systems Underlie the Processing of Valence and Arousal of Affective Pictures

    ERIC Educational Resources Information Center

    Nielen, M. M. A.; Heslenfeld, D. J.; Heinen, K.; Van Strien, J. W.; Witter, M. P.; Jonker, C.; Veltman, D. J.

    2009-01-01

    Valence and arousal are thought to be the primary dimensions of human emotion. However, the degree to which valence and arousal interact in determining brain responses to emotional pictures is still elusive. This functional MRI study aimed to delineate neural systems responding to valence and arousal, and their interaction. We measured neural…

  8. On the Relationship between Value Orientation, Valences, and Academic Achievement

    ERIC Educational Resources Information Center

    Fries, Stefan; Schmid, Sebastian; Hofer, Manfred

    2007-01-01

    Value orientations are believed to influence learning in school. We assume that this influence is mediated by the valences attached to specific school subjects. In a questionnaire study (704 students from 36 classes) achievement and well-being value orientations were measured. Students also rated valence scales for the school subjects German and…

  9. A narrow band pattern-matching model of vowel perception

    NASA Astrophysics Data System (ADS)

    Hillenbrand, James M.; Houde, Robert A.

    2003-02-01

    The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a ``flooring'' procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes. Templates for each vowel category are created simply by averaging the narrow band spectra of like vowels spoken by a panel of talkers. In the present implementation, separate templates are used for men, women, and children. The pattern matching is implemented with a simple city-block distance measure given by the sum of the channel-by-channel differences between the narrow band input spectrum (level-equalized and floored) and each vowel template. Spectral movement is taken into account by computing the distance measure at several points throughout the course of the vowel. The input spectrum is assigned to the vowel template that results in the smallest difference accumulated over the sequence of spectral slices. The model was evaluated using a large database consisting of 12 vowels in /hVd/ context spoken by 45 men, 48 women, and 46 children. The narrow band model classified vowels in this database with a degree of accuracy (91.4%) approaching that of human listeners.

  10. Band line-up determination at p- and n-type Al/4H-SiC Schottky interfaces using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kohlscheen, J.; Emirov, Y. N.; Beerbom, M. M.; Wolan, J. T.; Saddow, S. E.; Chung, G.; MacMillan, M. F.; Schlaf, R.

    2003-09-01

    The band lineup of p- and n-type 4H-SiC/Al interfaces was determined using x-ray photoemission spectroscopy (XPS). Al was deposited in situ on ex situ cleaned SiC substrates in several steps starting at 1.2 Å up to 238 Å nominal film thickness. Before growth and after each growth step, the sample surface was characterized in situ by XPS. The analysis of the spectral shifts indicated that during the initial deposition stages the Al films react with the ambient surface contamination layer present on the samples after insertion into vacuum. At higher coverage metallic Al clusters are formed. The band lineups were determined from the analysis of the core level peak shifts and the positions of the valence bands maxima (VBM) depending on the Al overlayer thickness. Shifts of the Si 2p and C 1s XPS core levels occurred to higher (lower) binding energy for the p-(n-)type substrates, which was attributed to the occurrence of band bending due to Fermi-level equilibration at the interface. The hole injection barrier at the p-type interface was determined to be 1.83±0.1 eV, while the n-type interface revealed an electron injection barrier of 0.98±0.1 eV. Due to the weak features in the SiC valence bands measured by XPS, the VBM positions were determined using the Si 2p peak positions. This procedure required the determination of the Si 2p-to-VBM binding energy difference (99.34 eV), which was obtained from additional measurements.

  11. Misinterpretation of facial expressions of emotion in verbal adults with autism spectrum disorder.

    PubMed

    Eack, Shaun M; Mazefsky, Carla A; Minshew, Nancy J

    2015-04-01

    Facial emotion perception is significantly affected in autism spectrum disorder, yet little is known about how individuals with autism spectrum disorder misinterpret facial expressions that result in their difficulty in accurately recognizing emotion in faces. This study examined facial emotion perception in 45 verbal adults with autism spectrum disorder and 30 age- and gender-matched volunteers without autism spectrum disorder to identify patterns of emotion misinterpretation during face processing that contribute to emotion recognition impairments in autism. Results revealed that difficulty distinguishing emotional from neutral facial expressions characterized much of the emotion perception impairments exhibited by participants with autism spectrum disorder. In particular, adults with autism spectrum disorder uniquely misinterpreted happy faces as neutral, and were significantly more likely than typical volunteers to attribute negative valence to nonemotional faces. The over-attribution of emotions to neutral faces was significantly related to greater communication and emotional intelligence impairments in individuals with autism spectrum disorder. These findings suggest a potential negative bias toward the interpretation of facial expressions and may have implications for interventions designed to remediate emotion perception in autism spectrum disorder. © The Author(s) 2014.

  12. Itsy bitsy spider?: Valence and self-relevance predict size estimation.

    PubMed

    Leibovich, Tali; Cohen, Noga; Henik, Avishai

    2016-12-01

    The current study explored the role of valence and self-relevance in size estimation of neutral and aversive animals. In Experiment 1, participants who were highly fearful of spiders and participants with low fear of spiders rated the size and unpleasantness of spiders and other neutral animals (birds and butterflies). We found that although individuals with both high and low fear of spiders rated spiders as highly unpleasant, only the highly fearful participants rated spiders as larger than butterflies. Experiment 2 included additional pictures of wasps (not self-relevant, but unpleasant) and beetles. The results of this experiment replicated those of Experiment 1 and showed a similar bias in size estimation for beetles, but not for wasps. Mediation analysis revealed that in the high-fear group both relevance and valence influenced perceived size, whereas in the low-fear group only valence affected perceived size. These findings suggest that the effect of highly relevant stimuli on size perception is both direct and mediated by valence. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Channel characterisation for future Ka-band Mobile Satellite Systems and preliminary results

    NASA Technical Reports Server (NTRS)

    Sforza, Mario; Buonomo, Sergio; Arbesser-Rastburg, Bertram

    1994-01-01

    Mobile satellite systems (MSS) are presently designed or planned to operate, with the exception of OMNITRACKS, in the lower part of the frequency spectrum (UHF to S-bands). The decisions taken at the last World Administrative Radio Conference in 1992 to increase the allocated L- and S-bands for MSS services will only partly alleviate the problem of system capacity. In addition the use of L-and S-band frequencies generally requires large antenna apertures on board the satellite terminal side. The idea of exploiting the large spectrum resources available at higher frequencies (20-30 GHz) and the perspective of reducing user terminal size (and possibly price too) have spurred the interest of systems designers and planners. On the other hand, Ka-band frequencies suffer from increased slant path losses due to atmospheric attenuation phenomena. The European Space Agency (ESA) has recently embarked on a number of activities aimed at studying the effect of the typical mobile propagation impairments at Ka-band. This paper briefly summarizes ESA efforts in this field of research and presents preliminary experimental results.

  14. Energetic band structure of Zn3P2 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Dorogan, A. V.

    2013-01-01

    Optical functions n, k, ε1, ε2 and d2ε2/dE2 have been determined from experimental reflection spectra in the region of 1-10 eV. The revealed electronic transitions are localized in the Brillouin zone. The magnitude of valence band splitting caused by the spin-orbital interaction ΔSO is lower than the splitting caused by the crystal field ΔCR in the center of Brillouin zone and L and X points. The switching effects are investigated in Zn3P2 crystals. The characteristics of experimental samples with electric switching, adjustable resistors, and time relays based on Zn3P2 are presented.

  15. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  16. Band excitation method applicable to scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  17. Inelastic collisions of positrons with one-valence-electron targets

    NASA Technical Reports Server (NTRS)

    Abdel-Raouf, Mohamed Assad

    1990-01-01

    The total elastic and positronium formation cross sections of the inelastic collisions between positrons and various one-valence-electron atoms, (namely hydrogen, lithium, sodium, potassium and rubidium), and one-valence-electron ions, (namely hydrogen-like, lithium-like and alkaline-earth positive ions) are determined using an elaborate modified coupled-static approximation. Special attention is devoted to the behavior of the Ps cross sections at the energy regions lying above the Ps formation thresholds.

  18. Negatively valenced expectancy violation predicts emotionality: A longitudinal analysis.

    PubMed

    Bettencourt, B Ann; Manning, Mark

    2016-09-01

    We hypothesized that negatively valenced expectancy violations about the quality of 1's life would predict negative emotionality. We tested this hypothesis in a 4-wave longitudinal study of breast cancer survivors. The findings showed that higher levels of negatively valenced expectancy violation, at earlier time points, were associated with greater negative emotionality, at later time points. Implications of the findings are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Ka-band (32 GHz) allocations for deep space

    NASA Technical Reports Server (NTRS)

    Degroot, N. F.

    1987-01-01

    At the 1979 World Administrative Conference, two new bands were allocated for deep space telecommunications: 31.8 to 32.3 GHz, space-to-Earth, and 34.2 to 34.7 GHz, Earth-to-space. These bands provide opportunity for further development of the Deep Space Network and its support of deep space research. The history of the process by which JPL/NASA developed the rationale, technical background, and statement of requirement for the bands are discussed. Based on this work, United States proposals to the conference included the bands, and subsequent U.S. and NASA participation in the conference led to successful allocations for deep space telecommunications in the 30 GHz region of the spectrum. A detailed description of the allocations is included.

  20. Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2

    NASA Astrophysics Data System (ADS)

    Lv, Xianshun; Wei, Lei; Wang, Xuping; Xu, Jianhua; Yu, Huajian; Hu, Yanyan; Zhang, Huadi; Zhang, Cong; Wang, Jiyang; Li, Qinggang

    2018-02-01

    Single crystals of Sr2Mg(BO3)2 (SMBO) were grown by Kyropoulos method. X-ray powder diffraction (XRD) analysis, transmission spectrum, thermal properties, band structure, density of states and charge distribution as well as Raman spectra of SMBO were described. The as-grown SMBO crystals show wide transparency range with UV cut-off below 180 nm. A direct band gap of 4.66 eV was obtained from the calculated electronic structure results. The calculated band structure and density of states results indicated the top valence band is determined by O 2p states whereas the low conduction band mainly consists of Sr 5s states. Twelve Raman peaks were observed in the experimental spectrum, fewer than the number predicted by the site group analysis. Raman peaks of SMBO were assigned combining first-principle calculation and site group analysis results. The strongest peak at 917 cm-1 in the experimental spectrum is assigned to symmetric stretching mode A1‧(ν1) of free BO3 units. SMBO is a potential Raman crystal which can be used in deep UV laser frequency conversion.

  1. One-electron oxidation of electronically diverse manganese(III) and nickel(II) salen complexes: transition from localized to delocalized mixed-valence ligand radicals.

    PubMed

    Kurahashi, Takuya; Fujii, Hiroshi

    2011-06-01

    Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers. © 2011 American Chemical Society

  2. Banded whistlers observed on OGO-4

    NASA Technical Reports Server (NTRS)

    Paymar, E. M.

    1972-01-01

    Inspection of broadband VLF records from OGO-4 shows that some whistlers exhibit a banded structure in which one or more bands of frequencies are missing from the whistler's spectrum. The phenomenon is commonly observed by satellites on midlatitude field lines at all local times and at various longitudes around the world. The dispersion of banded whistlers (BW) is of several tens of sec to the 1/2 power, indicating that they originated in the opposite hemisphere and are propagating downward at the satellite. BW are generally spread in time (tenths of seconds) rather than sharply defined and tend to occur at random. The frequency spacing of the bands may be either uniform or irregular, and may vary radically between successive events. Several possible explanations for BW are considered. In particular, an analysis of the interaction of plane electromagnetic waves traveling in an anisotropic plasma with a field aligned slab of enhanced ionization is presented with promising results.

  3. Quasiparticle semiconductor band structures including spin-orbit interactions.

    PubMed

    Malone, Brad D; Cohen, Marvin L

    2013-03-13

    We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.

  4. Electronic band structures and excitonic properties of delafossites: A GW-BSE study

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Meng, Weiwei; Yan, Yanfa

    2017-08-01

    We report the band structures and excitonic properties of delafossites CuMO2 (M=Al, Ga, In, Sc, Y, Cr) calculated using the state-of-the-art GW-BSE approach. We evaluate different levels of self-consistency of the GW approximations, namely G0W0, GW0, GW, and QSGW, on the band structures and find that GW0, in general, predicts the band gaps in better agreement with experiments considering the electron-hole effect. For CuCrO2, the HSE wave function is used as the starting point for the perturbative GW0 calculations, since it corrects the band orders wrongly predicted by PBE. The discrepancy about the valence band characters of CuCrO2 is classified based on both HSE and QSGW calculations. The PBE wave functions, already good, are used for other delafossites. All the delafossites are shown to be indirect band gap semiconductors with large exciton binding energies, varying from 0.24 to 0.44 eV, in consistent with experimental findings. The excitation mechanisms are explained by examining the exciton amplitude projections on the band structures. Discrepancies compared with experiments are also addressed. The lowest and strongest exciton, mainly contributed from either Cu 3d → Cu 3p (Al, Ga, In) or Cu 3d → M 3d (M = Sc, Y, Cr) transitions, is always located at the L point of the rhombohedral Brillouin zone.

  5. Valence-Specific Laterality Effects in Vocal Emotion: Interactions with Stimulus Type, Blocking and Sex

    ERIC Educational Resources Information Center

    Schepman, Astrid; Rodway, Paul; Geddes, Pauline

    2012-01-01

    Valence-specific laterality effects have been frequently obtained in facial emotion perception but not in vocal emotion perception. We report a dichotic listening study further examining whether valence-specific laterality effects generalise to vocal emotions. Based on previous literature, we tested whether valence-specific laterality effects were…

  6. The power of emotional valence-from cognitive to affective processes in reading.

    PubMed

    Altmann, Ulrike; Bohrn, Isabel C; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M

    2012-01-01

    The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.

  7. Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires

    DOE PAGES

    Vasseur, Guillaume; Fagot-Revurat, Yannick; Sicot, Muriel; ...

    2016-01-04

    We study the electronic structure of an ordered array of poly(para-phenylene) chains produced by surface-catalyzed dehalogenative polymerization of 1,4-dibromobenzene on copper (110). The quantization of unoccupied molecular states is measured as a function of oligomer length by scanning tunnelling spectroscopy, with Fermi level crossings observed for chains longer than ten phenyl rings. Angle-resolved photoelectron spectroscopy reveals a quasi-one-dimensional valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the organic band-structure, includingmore » the k-dispersion, the gap size and electron charge transfer mechanisms, highlighting a strong substrate-molecule interaction that drives the system into a metallic behaviour. In summary, we have fully characterized the band structure of a carbon-based conducting wire. This model system may be considered as a fingerprint of -conjugation of surface organic frameworks.« less

  8. Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect.

    PubMed

    Qiao, Peng-Fei; Mou, Shin; Chuang, Shun Lien

    2012-01-30

    The electronic band structures and optical properties of type-II superlattice (T2SL) photodetectors in the mid-infrared (IR) range are investigated. We formulate a rigorous band structure model using the 8-band k · p method to include the conduction and valence band mixing. After solving the 8 × 8 Hamiltonian and deriving explicitly the new momentum matrix elements in terms of envelope functions, optical transition rates are obtained through the Fermi's golden rule under various doping and injection conditions. Optical measurements on T2SL photodetectors are compared with our model and show good agreement. Our modeling results of quantum structures connect directly to the device-level design and simulation. The predicted doping effect is readily applicable to the optimization of photodetectors. We further include interfacial (IF) layers to study the significance of their effect. Optical properties of T2SLs are expected to have a large tunable range by controlling the thickness and material composition of the IF layers. Our model provides an efficient tool for the designs of novel photodetectors.

  9. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Keyan; Kang, Congying; Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1−x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1−x}O and Cd{sub x}Zn{sub 1−x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1−x}O and Ca{sub x}Zn{sub 1−x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereasmore » the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.« less

  10. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites

    PubMed Central

    Kim, Minsung; Im, Jino; Freeman, Arthur J.; Ihm, Jisoon; Jin, Hosub

    2014-01-01

    The Rashba effect is spin degeneracy lift originated from spin–orbit coupling under inversion symmetry breaking and has been intensively studied for spintronics applications. However, easily implementable methods and corresponding materials for directional controls of Rashba splitting are still lacking. Here, we propose organic–inorganic hybrid metal halide perovskites as 3D Rashba systems driven by bulk ferroelectricity. In these materials, it is shown that the helical direction of the angular momentum texture in the Rashba band can be controlled by external electric fields via ferroelectric switching. Our tight-binding analysis and first-principles calculations indicate that and Rashba bands directly coupled to ferroelectric polarization emerge at the valence and conduction band edges, respectively. The coexistence of two contrasting Rashba bands having different compositions of the spin and orbital angular momentum is a distinctive feature of these materials. With recent experimental evidence for the ferroelectric response, the halide perovskites will be, to our knowledge, the first practical realization of the ferroelectric-coupled Rashba effect, suggesting novel applications to spintronic devices. PMID:24785294

  11. Influence of emotional valence and arousal on the spread of activation in memory.

    PubMed

    Jhean-Larose, Sandra; Leveau, Nicolas; Denhière, Guy

    2014-11-01

    Controversy still persists on whether emotional valence and arousal influence cognitive activities. Our study sought to compare how these two factors foster the spread of activation within the semantic network. In a lexical decision task, prime words were varied depending on the valence (pleasant or unpleasant) or on the level of emotional arousal (high or low). Target words were carefully selected to avoid semantic priming effects, as well as to avoid arousing specific emotions (neutral). Three SOA durations (220, 420 and 720 ms) were applied across three independent groups. Results indicate that at 220 ms, the effect of arousal is significantly higher than the effect of valence in facilitating spreading activation while at 420 ms, the effect of valence is significantly higher than the effect of arousal in facilitating spreading activation. These findings suggest that affect is a sequential process involving the successive intervention of arousal and valence.

  12. Effects of Emotional Valence and Arousal on Recollective and Nonrecollective Recall

    ERIC Educational Resources Information Center

    Gomes, Carlos F. A.; Brainerd, Charles J.; Stein, Lilian M.

    2013-01-01

    The authors investigated the effects of valence and arousal on memory using a dual-process model that quantifies recollective and nonrecollective components of recall without relying on metacognitive judgments to separate them. The results showed that valenced words increased reconstruction (a component of nonrecollective retrieval) relative to…

  13. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.

    PubMed

    Wu, Zhi-Feng; Gao, Peng-Fei; Guo, Lei; Kang, Jun; Fang, Dang-Qi; Zhang, Yang; Xia, Ming-Gang; Zhang, Sheng-Li; Wen, Yu-Hua

    2017-12-06

    A traditional doping technique plays an important role in the band structure engineering of two-dimensional nanostructures. Since electron interaction is changed by doping, the optical and electrochemical properties could also be significantly tuned. In this study, density functional theory calculations have been employed to explore the structural stability, and electronic and optical properties of B-doped phosphorene. The results show that all B-doped phosphorenes are stable with a relatively low binding energy. Of particular interest is that these B-doped systems exhibit an indirect band gap, which is distinct from the direct one of pure phosphorene. Despite the different concentrations and configurations of B dopants, such indirect band gaps are robust. The screened hybrid density functional HSE06 predicts that the band gap of B-doped phosphorene is slightly smaller than that of pure phosphorene. Spatial charge distributions at the valence band maximum (VBM) and the conduction band minimum (CBM) are analyzed to understand the features of an indirect band gap. By comparison with pure phosphorene, B-doped phosphorenes exhibit strong anisotropy and intensity of optical absorption. Moreover, B dopants could enhance the stability of Li adsorption on phosphorene with less sacrifice of the Li diffusion rate. Our results suggest that B-doping is an effective way of tuning the band gap, enhancing the intensity of optical absorption and improving the performances of Li adsorption, which could promote potential applications in novel optical devices and lithium-ion batteries.

  14. Intermediate-phase method for computing the natural band offset between two materials with dissimilar structures

    NASA Astrophysics Data System (ADS)

    Gu, Hui-Jun; Zhang, Yue-Yu; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao

    2018-06-01

    The band offset between different semiconductors is an important physical quantity determining carrier transport properties near the interface in heterostructure devices. Computation of the natural band offset is a longstanding challenge. We propose an intermediate-phase method to predict the natural band offset between two structures with different symmetry, for which the superlattice model cannot be directly constructed. With this method and the intermediate phases obtained by our searching algorithm, we successfully calculate the natural band offsets for two representative systems: (i) zinc-blende CdTe and wurtzite CdS and (ii) diamond and graphite. The calculation shows that the valence band maximum (VBM) of zinc-blende CdTe lies 0.71 eV above that of wurtzite CdS, close to the result 0.76 eV obtained by the three-step method. For the natural band offset between diamond and graphite which could not be computed reliably with any superlattice methods, our calculation shows that the Fermi level of graphite lies 1.51 eV above the VBM of diamond using an intermediate phase. This method, under the assumption that the transitivity rule is valid, can be used to calculate the band offsets between any semiconductors with different symmetry on condition that the intermediate phase is reasonably designed.

  15. Direct determination of exciton wavefunction amplitudes by the momentum-resolved photo-electron emission experiment

    NASA Astrophysics Data System (ADS)

    Ohnishi, Hiromasa; Tomita, Norikazu; Nasu, Keiichiro

    2018-03-01

    We study conceptional problems of a photo-electron emission (PEE) process from a free exciton in insulating crystals. In this PEE process, only the electron constituting the exciton is suddenly emitted out of the crystal, while the hole constituting the exciton is still left inside and forced to be recoiled back to its original valence band. This recoil on the hole is surely reflected in the spectrum of the PEE with a statistical distribution along the momentum-energy curve of the valence band. This distribution is nothing but the square of the exciton wavefunction amplitude, since it shows how the electron and the hole are originally bound together. Thus, the momentum-resolved PEE can directly determine the exciton wavefunction. These problems are clarified, taking the Γ and the saddle point excitons in GaAs, as typical examples. New PEE experiments are also suggested.

  16. A synthetic method of solar spectrum based on LED

    NASA Astrophysics Data System (ADS)

    Wang, Ji-qiang; Su, Shi; Zhang, Guo-yu; Zhang, Jian

    2017-10-01

    A synthetic method of solar spectrum which based on the spectral characteristics of the solar spectrum and LED, and the principle of arbitrary spectral synthesis was studied by using 14 kinds of LED with different central wavelengths.The LED and solar spectrum data were selected by Origin Software firstly, then calculated the total number of LED for each center band by the transformation relation between brightness and illumination and Least Squares Curve Fit in Matlab.Finally, the spectrum curve of AM1.5 standard solar spectrum was obtained. The results met the technical indexes of the solar spectrum matching with ±20% and the solar constant with >0.5.

  17. How much does emotional valence of action outcomes affect temporal binding?

    PubMed

    Moreton, Joshua; Callan, Mitchell J; Hughes, Gethin

    2017-03-01

    Temporal binding refers to the compression of the perceived time interval between voluntary actions and their sensory consequences. Research suggests that the emotional content of an action outcome can modulate the effects of temporal binding. We attempted to conceptually replicate these findings using a time interval estimation task and different emotionally-valenced action outcomes (Experiments 1 and 2) than used in previous research. Contrary to previous findings, we found no evidence that temporal binding was affected by the emotional valence of action outcomes. After validating our stimuli for equivalence of perceived emotional valence and arousal (Experiment 3), in Experiment 4 we directly replicated Yoshie and Haggard's (2013) original experiment using sound vocalizations as action outcomes and failed to detect a significant effect of emotion on temporal binding. These studies suggest that the emotional valence of action outcomes exerts little influence on temporal binding. The potential implications of these findings are discussed. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Molybdenum Valence in Basaltic Silicate Melts: Effects of Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Choi, Y.; Pando, K.

    2011-01-01

    The metal-silicate partitioning behavior of molybdenum has been used as a test for equilibrium core formation hypotheses [for example, 1-6]. However, current models that apply experimental data to equilibrium core-mantle differentiation infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Molybdenum, a multi-valent element with a valence transition near the fO2 of interest for core formation (approx.IW-2) will be sensitive to changes in fO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo(6+) can be either octahedrally or tetrahedrally coordinated. Here we present X-ray absorption near edge structure (XANES) measurements of Mo valence in basaltic run products at a range of P, T, and fO2 and further quantify the valence transition of Mo.

  19. Values, Valences, and Course Enrollment: Testing the Role of Personal Values within an Expectancy-Valence Framework.

    ERIC Educational Resources Information Center

    Feather, N. T.

    1988-01-01

    The enrollment decisions of 444 (183 male, 260 female, and 1 unspecified) university students at Flinders University (South Australia) were investigated. Results shed light on gender differences in achievement patterns in mathematics and English and in relation to assumptions about relations between expectations and valences. (TJH)

  20. Determination of band offsets at GaN/single-layer MoS{sub 2} heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangi, Malleswararao; Mishra, Pawan; Ng, Tien Khee

    2016-07-18

    We report the band alignment parameters of the GaN/single-layer (SL) MoS{sub 2} heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS{sub 2}/c-sapphire. We confirm that the MoS{sub 2} is an SL by measuring the separation and position of room temperature micro-Raman E{sup 1}{sub 2g} and A{sup 1}{sub g} modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS{sub 2} heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS{sub 2} and GaN. Themore » valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.« less