Sample records for valence photoelectron spectra

  1. Study of average valence and valence electron distribution of several oxides using X-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Ding, L. L.; Wu, L. Q.; Ge, X. S.; Du, Y. N.; Qian, J. J.; Tang, G. D.; Zhong, W.

    2018-06-01

    X-ray photoelectron spectra of the O 1s electrons of MnFe2O4, ZnFe2O4, ZnO, and CaO were used to estimate the average valence, ValO, of the oxygen anions in these samples. The absolute values of ValO for these samples were found to be distinctly lower than the traditional value of 2.0, suggesting that the total average valences of the cations are also lower than the conventionally accepted values owing to valence balance in the compounds. In addition, we analyzed the valence band spectra of the samples and investigated the distribution characteristics of the valence electrons.

  2. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine

    NASA Astrophysics Data System (ADS)

    Holland, D. M. P.; Powis, I.; Trofimov, A. B.; Menzies, R. C.; Potts, A. W.; Karlsson, L.; Badsyuk, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J.

    2017-10-01

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the

  3. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine.

    PubMed

    Holland, D M P; Powis, I; Trofimov, A B; Menzies, R C; Potts, A W; Karlsson, L; Badsyuk, I L; Moskovskaya, T E; Gromov, E V; Schirmer, J

    2017-10-28

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σ N LP ) has been found to be different to that for the corresponding chlorine lone-pair (σ Cl LP ). For the σ N LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine π Cl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σ Cl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the

  4. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling.

    PubMed

    Grell, Gilbert; Bokarev, Sergey I; Winter, Bernd; Seidel, Robert; Aziz, Emad F; Aziz, Saadullah G; Kühn, Oliver

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H2O)6](2+) complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  5. Photoelectron Diffraction from Valence States of Oriented Molecules

    NASA Astrophysics Data System (ADS)

    Krüger, Peter

    2018-06-01

    The angular distribution of photoelectrons emitted from valence states of oriented molecules is investigated. The principles underlying the angular pattern formation are explained in terms of photoelectron wave interference, caused by initial state delocalization and final state photoelectron scattering. Computational approaches to photoelectron spectroscopy from molecules are briefly reviewed. Here a combination of molecular orbital calculations for the initial state and multiple scattering theory for the photoelectron final state is used and applied to the 3σ and 4σ orbitals of nitrogen and the highest occupied molecular orbital of pentacene. Appreciable perpendicular emission and circular dichroism in angular distributions is found, two effects that cannot be described by the popular plane wave approximation to the photoelectron final state.

  6. Measurement of the background in Auger-Photoemission Spectra (APECS) associated with multi-electron and inelastic valence band photoemission processes

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Hulbert, Steven; Weiss, Alex

    2014-03-01

    Auger Photoelectron Coincidence Spectroscopy (APECS), in which the Auger spectra is measured in coincidence with the core level photoelectron, is capable of pulling difficult to observe low energy Auger peaks out of a large background due mostly to inelastically scattered valence band photoelectrons. However the APECS method alone cannot eliminate the background due to valence band VB photoemission processes in which the initial photon energy is shared by 2 or more electrons and one of the electrons is in the energy range of the core level photoemission peak. Here we describe an experimental method for estimating the contributions from these background processes in the case of an Ag N23VV Auger spectra obtained in coincidence with the 4p photoemission peak. A beam of 180eV photons was incident on a Ag sample and a series of coincidence measurements were made with one cylindrical mirror analyzer (CMA) set at a fixed energies between the core and the valence band and the other CMA scanned over a range corresponding to electrons leaving the surface between 0eV and the 70eV. The spectra obtained were then used to obtain an estimate of the background in the APECS spectra due to multi-electron and inelastic VB photoemission processes. NSF, Welch Foundation.

  7. Photoelectron spectra of some antibiotic building blocks: 2-azetidinone and thiazolidine-carboxylic acid.

    PubMed

    Ahmed, Marawan; Ganesan, Aravindhan; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C

    2012-08-23

    X-ray photoelectron spectra of the core and valence levels of the fundamental building blocks of β-lactam antibiotics have been investigated and compared with theoretical calculations. The spectra of the compounds 2-azetidinone and the 2- and 4-isomers of thiazolidine-carboxylic acid are interpreted in the light of theoretical calculations. The spectra of the two isomers of thiazolidine-carboxylic acid are rather similar, as expected, but show clear effects due to isomerization. Both isomers are analogues of proline, which is well-known to populate several low energy conformers in the gas phase. We have investigated the low energy conformers of thiazolidine-4-carboxylic acid theoretically in more detail and find some spectroscopic evidence that multiple conformers may be present. The measured valence levels are assigned for all three compounds, and the character of the frontier orbitals is identified and analyzed.

  8. Chiral signatures in angle-resolved valence photoelectron spectroscopy of pure glycidol enantiomers.

    PubMed

    Garcia, Gustavo A; Nahon, Laurent; Harding, Chris J; Powis, Ivan

    2008-03-28

    Photoionization of the chiral molecule glycidol has been investigated in the valence region. Photoelectron circular dichroism (PECD) curves have been obtained at various photon energies by using circularly polarized VUV synchrotron radiation and a velocity map imaging technique to record angle-resolved photoelectron spectra (PES). The measured chiral asymmetries vary dramatically with the photon energy as well as with the ionized orbital, improving the effective orbital resolution of the PECD spectrum with respect to the PES. Typical asymmetry factors of 5% are observed, but the peak values measured range up to 15%. The experimental results are interpreted by continuum multiple scattering (CMS-Xalpha) calculations for several thermally accessible glycidol conformers. We find that a nearly quantitative agreement between theory and experiments can be achieved for the ionization of several molecular orbitals. Owing to the sensitivity of PECD to molecular conformation this allows us to identify the dominant conformer. The influence of intramolecular hydrogen bond orbital polarization is found to play a small yet significant role in determining the chiral asymmetry in the electron angular distributions.

  9. Valence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kindsmüller, A.; Schmitz, C.; Wiemann, C.; Skaja, K.; Wouters, D. J.; Waser, R.; Schneider, C. M.; Dittmann, R.

    2018-04-01

    The switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum.

  10. Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography

    NASA Astrophysics Data System (ADS)

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang

    2018-03-01

    Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H2+ , the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.

  11. Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography.

    PubMed

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang

    2018-03-30

    Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H_{2}^{+}, the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.

  12. Deduction of the chemical state and the electronic structure of Nd{sub 2}Fe{sub 14}B compound from X-ray photoelectron spectroscopy core-level and valence-band spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Liang, Le; Zhang, Lanting, E-mail: lantingzh@sjtu.edu.cn, E-mail: lmsun@sjtu.edu.cn

    2014-10-28

    Characterization of chemical state and electronic structure of the technologically important Nd{sub 2}Fe{sub 14}B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd{sub 2}Fe{sub 14}B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd{sub 2}Fe{sub 14}B compound can be clearlymore » determined to be 0 and −3, respectively. The Nd in Nd{sub 2}Fe{sub 14}B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd{sub 2}O{sub 3}. In addition, by comparing the valence-band spectrum of Nd{sub 2}Fe{sub 14}B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd{sub 2}Fe{sub 14}B compound is made more clear. The B 2p states and B 2s states are identified to be at ∼11.2 eV and ∼24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd{sub 2}Fe{sub 14}B compound.« less

  13. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules.

    PubMed

    Ganesan, Aravindhan; Wang, Feng; Falzon, Chantal

    2011-02-01

    Intramolecular interactions between fragments of L-phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L-phenylalanine, benzene and L-alanine are studied using density functional theory methods. While fully resolved experimental PES of L-phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e(1g) and 1a(2u) orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L-phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14-20 eV, rather than outside of this region. This study presents a competent orbital based fragments-in-molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D-PDF technique. Copyright © 2010 Wiley Periodicals, Inc.

  14. Examination of U valence states in the brannerite structure by near-infrared diffuse reflectance and X-ray photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Finnie, Kim S.; Zhang, Zhaoming; Vance, Eric R.; Carter, Melody L.

    2003-04-01

    The valence state of uranium doped into a f 0 thorium analog of brannerite (i.e., thorutite) has been examined using near-infrared (NIR) diffuse reflectance (DRS) and X-ray photoelectron (XPS) spectroscopies. NIR transitions of U 4+, which are not observed in spectra of brannerite, have been detected in the samples of U xTh 1- xTi 2O 6, and we propose that strong specular reflectance is responsible for the lack of U 4+ features in UTi 2O 6. Characteristic U 5+ bands have been identified in samples in which sufficient Ca 2+ has been added to nominally effect complete oxidation to U 5+. XPS results support the assignments of U 4+ and U 5+ by DRS. The presence of residual U 4+ bands in the spectra of the Ca-doped samples is consistent with segregation of Ca 2+ to the grain boundaries during high temperature sintering.

  15. Renner-Teller effects in the photoelectron spectra of CNC, CCN, and HCCN.

    PubMed

    Coudert, Laurent H; Gans, Bérenger; Garcia, Gustavo A; Loison, Jean-Christophe

    2018-02-07

    The line intensity of photoelectron spectra when either the neutral or cationic species display a Renner-Teller coupling is derived and applied to the modeling of the photoelectron spectra of CNC, CCN, and HCCN. The rovibronic energy levels of these three radicals and of their cations are investigated starting from ab initio results. A model treating simultaneously the bending mode and the overall rotation is developed to deal with the quasilinearity problem in CNC + , CCN + , and HCCN and accounts for the large amplitude nature of their bending mode. This model is extended to treat the Renner-Teller coupling in CNC, CCN, and HCCN + . Based on the derived photoelectron line intensity, the photoelectron spectra of all three molecules are calculated and compared to the experimental ones.

  16. Photoelectron spectra of carbonyls. Propellenes and propellanones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, D.; Bloomfield, J.J.; Newkome, G.R.

    1976-09-23

    The HeI photoelectron spectra (UPS) of a number of unsaturated (4.4.2)propellanes and (4.4.2)propellane-dione derivatives are presented. The interpretation of the UPS data is based on through-space and through-bond interaction models and on CNDO/s computations. An analysis of the photoelectron spectra of (4.4.2)propella-3,8-diene-11,12-dione (1), (4.4.2)propell-3-ene-11,12-dione (2), (4.4.2)propellane-11,12-dione (3), (4.4.2)propella-3,8-dien-11-one (4), and (4.4.2) propella-3,8-diene (5) involves the assignment of n/sub +/, n/sub -/, ..pi../sub +/, ..pi../sub -/, and sigma/sub square/ (i.e., cyclobutane sigma) ionization events. The analysis of the data for 5, (4.4.2)propella-3,8,11-triene (6), (4.4.2)propella-3,11-diene (7), and (4.4.2)propell-11-ene (8) leads to the conclusion that the photoelectron spectrum of 6 should be reassigned.more » The /sup 1/GAMMA/sub n..pi..*/ reverse arrow /sup 1/GAMMA/sub 1/ absorption spectra of 1,2, and 3 have been investigated as a function of temperature. The low energy of this transition in 1 is attributed to a high degree of CO/CO coplanarity, the high energy of this transition in 3 is attributed to CO/CO noncoplanarity, and the isomerism evident in 2 is attributed to multiple minima of the potential energy along the CO/CO dihedral angle coordinate of the ground state.« less

  17. Calculation of photoelectron spectra of molybdenum and tungsten complexes using Green's functions methods.

    PubMed

    Bayse, Craig A; Ortwine, Kristine N

    2007-08-16

    Green's functions calculations are presented for several complexes of molybdenum and tungsten, two metals that are similar structurally but display subtle, but significant, differences in electronic structure. Outer valence Green's functions IPs for M(CO)6, M(Me)6, MH6, [MCl4O](-), and [MO4](-) (M = Mo, W) are generally within +/-0.2 eV of available experimental photoelectron spectra. The calculations show that electrons in M-L bonding orbitals are ejected at lower energies for Mo while the detachment energy for electrons in d orbitals varies with metal and complex. For the metal carbonyls, the quasiparticle picture assumed in OVGF breaks down for the inner valence pi CO molecular orbitals due to the coupling of two-hole-one-particle charge transfer states to the one-hole states. Incorporation of the 2h1p states through a Tamm-Dancoff approximation calculation accurately represents the band due to detachment from these molecular orbitals. Though the ordering of IPs for Green's functions methods and DFT Koopmans' theorem IPs is similar for the highest IPs for most compounds considered, the breakdown of the quasiparticle picture for the metal carbonyls suggests that scaling of the latter values may result in a fortuitous or incorrect assignment of experimental VDEs.

  18. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephansen, Anne B.; King, Sarah B.; Li, Wei-Li

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison withmore » calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.« less

  19. X-ray photoelectron study of Si+ ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Tsvetkova, T.; Balabanov, S.; Bischoff, L.; Krastev, V.; Stefanov, P.; Avramova, I.

    2010-11-01

    X-ray photoelectron spectroscopy was used to characterize different polymer materials implanted with low energy Si+ ions (E=30 keV, D= 1.1017 cm-2). Two kinds of polymers were studied - ultra-high-molecular-weight poly-ethylene (UHMWPE), and poly-methyl-methacrylate (PMMA). The non-implanted polymer materials show the expected variety of chemical bonds: carbon-carbon, carbon being three- and fourfold coordinated, and carbon-oxygen in the case of PMMA samples. The X-ray photoelectron and Raman spectra show that Si+ ion implantation leads to the introduction of additional disorder in the polymer material. The X-ray photoelectron spectra of the implanted polymers show that, in addition to already mentioned bonds, silicon creates new bonds with the host elements - Si-C and Si-O, together with additional Si dangling bonds as revealed by the valence band study of the implanted polymer materials.

  20. Breakdown of ionic character of molecular alkali bromides in inner-valence photoionization

    NASA Astrophysics Data System (ADS)

    Karpenko, A.; Iablonskyi, D.; Urpelainen, S.; Kettunen, J. A.; Cao, W.; Huttula, M.; Aksela, H.

    2014-05-01

    The inner-valence region of alkali bromide XBr (X=Li, Na, K, Rb) vapours has been studied experimentally by means of synchrotron radiation excited photoelectron spectroscopy. Experimental spectra were analyzed by comparing them with available theoretical results and previous experiments. Ionic character of alkali bromides is seen to change in the inner-valence region with increasing atomic number of the alkali atom. A mechanism involving mixing between Br 4s and Rb 4p orbitals has been suggested to account for the fine structure observed in inner-valence ionization region of RbBr.

  1. Symmetry adapted cluster-configuration interaction calculation of the photoelectron spectra of famous biological active steroids

    NASA Astrophysics Data System (ADS)

    Abyar, Fatemeh; Farrokhpour, Hossein

    2014-11-01

    The photoelectron spectra of some famous steroids, important in biology, were calculated in the gas phase. The selected steroids were 5α-androstane-3,11,17-trione, 4-androstane-3,11,17-trione, cortisol, cortisone, corticosterone, dexamethasone, estradiol and cholesterol. The calculations were performed employing symmetry-adapted cluster/configuration interaction (SAC-CI) method using the 6-311++G(2df,pd) basis set. The population ratios of conformers of each steroid were calculated and used for simulating the photoelectron spectrum of steroid. It was found that more than one conformer contribute to the photoelectron spectra of some steroids. To confirm the calculated photoelectron spectra, they compared with their corresponding experimental spectra. There were no experimental gas phase Hesbnd I photoelectron spectra for some of the steroids of this work in the literature and their calculated spectra can show a part of intrinsic characteristics of this molecules in the gas phase. The canonical molecular orbitals involved in the ionization of each steroid were calculated at the HF/6-311++g(d,p) level of theory. The spectral bands of each steroid were assigned by natural bonding orbital (NBO) calculations. Knowing the electronic structures of steroids helps us to understand their biological activities and find which sites of steroid become active when a modification is performing under a biological pathway.

  2. Quantum chemical study of conformational fingerprints in the photoelectron spectra and (e, 2e) electron momentum distributions of n-hexane.

    PubMed

    Morini, F; Knippenberg, S; Deleuze, M S; Hajgató, B

    2010-04-01

    The main purpose of the present work is to simulate from many-body quantum mechanical calculations the results of experimental studies of the valence electronic structure of n-hexane employing photoelectron spectroscopy (PES) and electron momentum spectroscopy (EMS). This study is based on calculations of the valence ionization spectra and spherically averaged (e, 2e) electron momentum distributions for each known conformer by means of one-particle Green's function [1p-GF] theory along with the third-order algebraic diagrammatic construction [ADC(3)] scheme and using Kohn-Sham orbitals derived from DFT calculations employing the Becke 3-parameters Lee-Yang-Parr (B3LYP) functional as approximations to Dyson orbitals. A first thermostatistical analysis of these spectra and momentum distributions employs recent estimations at the W1h level of conformational energy differences, by Gruzman et al. [J. Phys. Chem. A 2009, 113, 11974], and of correspondingly obtained conformer weights using MP2 geometrical, vibrational, and rotational data in thermostatistical calculations of partition functions beyond the level of the rigid rotor-harmonic oscillator approximation. Comparison is made with the results of a focal point analysis of these energy differences using this time B3LYP geometries and the corresponding vibrational and rotational partition functions in the thermostatistical analysis. Large differences are observed between these two thermochemical models, especially because of strong variations in the contributions of hindered rotations to relative entropies. In contrast, the individual ionization spectra or momentum profiles are almost insensitive to the employed geometry. This study confirms the great sensitivity of valence ionization bands and (e, 2e) momentum distributions on the molecular conformation and sheds further light on spectral fingerprints of through-space methylenic hyperconjugation, in both PES and EMS experiments.

  3. Photoelectron energy-loss study of the Bi2CaSr2Cu2O8 superconductor

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Bozovic, I.; Kapitulnik, A.

    1989-03-01

    Using energy-loss spectroscopy of photoelectrons from a single crystal of Bi2CaSr2Cu2O8, we show that the electronic structure of the near-surface region is the same as that of the bulk. Utilizing the fact that photoelectrons of different elements are excited at different locations in the unit cell, we identify the energy-loss features as due to valence plasmon excitations, and one-electron excitations by comparing the photoelectron energy-loss spectra of the different elements.

  4. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patanen, M.; Benkoula, S.; Nicolas, C.

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  5. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    NASA Astrophysics Data System (ADS)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  6. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy.

    PubMed

    Wei, Wei; Qin, Zhixin; Fan, Shunfei; Li, Zhiwei; Shi, Kai; Zhu, Qinsheng; Zhang, Guoyi

    2012-10-10

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV.

  7. On the analysis of photo-electron spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, C.-Z., E-mail: gao@irsamc.ups-tlse.fr; CNRS, LPT; Dinh, P.M.

    2015-09-15

    We analyze Photo-Electron Spectra (PES) for a variety of excitation mechanisms from a simple mono-frequency laser pulse to involved combination of pulses as used, e.g., in attosecond experiments. In the case of simple pulses, the peaks in PES reflect the occupied single-particle levels in combination with the given laser frequency. This usual, simple rule may badly fail in the case of excitation pulses with mixed frequencies and if resonant modes of the system are significantly excited. We thus develop an extension of the usual rule to cover all possible excitation scenarios, including mixed frequencies in the attosecond regime. We find thatmore » the spectral distributions of dipole, monopole and quadrupole power for the given excitation taken together and properly shifted by the single-particle energies provide a pertinent picture of the PES in all situations. This leads to the derivation of a generalized relation allowing to understand photo-electron yields even in complex experimental setups.« less

  8. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy

    PubMed Central

    2012-01-01

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV. PMID:23046910

  9. Phase quantification by X-ray photoemission valence band analysis applied to mixed phase TiO2 powders

    NASA Astrophysics Data System (ADS)

    Breeson, Andrew C.; Sankar, Gopinathan; Goh, Gregory K. L.; Palgrave, Robert G.

    2017-11-01

    A method of quantitative phase analysis using valence band X-ray photoelectron spectra is presented and applied to the analysis of TiO2 anatase-rutile mixtures. The valence band spectra of pure TiO2 polymorphs were measured, and these spectral shapes used to fit valence band spectra from mixed phase samples. Given the surface sensitive nature of the technique, this yields a surface phase fraction. Mixed phase samples were prepared from high and low surface area anatase and rutile powders. In the samples studied here, the surface phase fraction of anatase was found to be linearly correlated with photocatalytic activity of the mixed phase samples, even for samples with very different anatase and rutile surface areas. We apply this method to determine the surface phase fraction of P25 powder. This method may be applied to other systems where a surface phase fraction is an important characteristic.

  10. Photoelectron spectra and biological activity of cinnamic acid derivatives revisited

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Klasinc, Leo; McGlynn, Sean P.

    2018-01-01

    The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR).

  11. Assessment of electron propagator methods for the simulation of vibrationally-resolved valence and core photoionization spectra

    PubMed Central

    Baiardi, A.; Paoloni, L.; Barone, V.; Zakrzewski, V.G.; Ortiz, J.V.

    2017-01-01

    The analysis of photoelectron spectra is usually facilitated by quantum mechanical simulations. Due to the recent improvement of experimental techniques, the resolution of experimental spectra is rapidly increasing, and the inclusion of vibrational effects is usually mandatory to obtain a reliable reproduction of the spectra. With the aim of defining a robust computational protocol, a general time-independent formulation to compute different kinds of vibrationally-resolved electronic spectra has been generalized to support also photoelectron spectroscopy. The electronic structure data underlying the simulation are computed using different electron propagator approaches. In addition to the more standard approaches, a new and robust implementation of the second-order self-energy approximation of the electron propagator based on a transition operator reference (TOEP2) is presented. To validate our implementation, a series of molecules has been used as test cases. The result of the simulations shows that, for ultraviolet photoionization spectra, the more accurate non-diagonal approaches are needed to obtain a reliable reproduction of vertical ionization energies, but diagonal approaches are sufficient for energy gradients and pole strengths. For X-ray photoelectron spectroscopy, the TOEP2 approach, besides being more efficient, is also the most accurate in the reproduction of both vertical ionization energies and vibrationally-resolved bandshapes. PMID:28521087

  12. Photoelectron spectra and biological activity of cinnamic acid derivatives revisited.

    PubMed

    Novak, Igor; Klasinc, Leo; McGlynn, Sean P

    2018-01-15

    The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Valence and inner-valence shell dissociative photoionization of CO in the 26-33 eV range. II. Molecular-frame and recoil-frame photoelectron angular distributions.

    PubMed

    Lebech, M; Houver, J C; Raseev, G; dos Santos, A S; Dowek, D; Lucchese, Robert R

    2012-03-07

    Experimental and theoretical results for molecular-frame photoemission are presented for inner-valence shell photoionization of the CO molecule induced by linearly and circularly polarized light. The experimental recoil frame photoelectron angular distributions (RFPADs) obtained from dissociative photoionization measurements where the velocities of the ionic fragment and photoelectron were detected in coincidence, are compared to RFPADs computed using the multichannel Schwinger configuration interaction method. The formalism for including a finite lifetime of the predissociative ion state is presented for the case of general elliptically polarized light, to obtain the RFPAD rather than the molecular frame photoelectron angular distribution (MFPAD), which would be obtained with the assumption of instantaneous dissociation. We have considered photoionization of CO for the photon energies of 26.0 eV, 29.5 eV, and 32.5 eV. A comparison of experimental and theoretical RFPADs allows us to identify the ionic states detected in the experimental studies. In addition to previously identified states, we found evidence for the 2 (2)Δ state with an ionization potential of 25.3 eV and (2)Σ(+) states with ionization potentials near 32.5 eV. A comparison of the experimental and theoretical RFPADs permits us to estimate predissociative lifetimes of 0.25-1 ps for some of the ion states. Consideration of the MFPADs of a series of (2)Π ion states indicates the importance of inter-channel coupling at low photoelectron kinetic energy and the limitations of a single-channel analysis based on the corresponding Dyson orbitals. © 2012 American Institute of Physics

  14. Photoelectron spectrum of valence anions of uracil and first-principles calculations of excess electron binding energies.

    PubMed

    Bachorz, Rafał A; Klopper, Wim; Gutowski, Maciej; Li, Xiang; Bowen, Kit H

    2008-08-07

    The photoelectron spectrum (PES) of the uracil anion is reported and discussed from the perspective of quantum chemical calculations of the vertical detachment energies (VDEs) of the anions of various tautomers of uracil. The PES peak maximum is found at an electron binding energy of 2.4 eV, and the width of the main feature suggests that the parent anions are in a valence rather than a dipole-bound state. The canonical tautomer as well as four tautomers that result from proton transfer from an NH group to a C atom were investigated computationally. At the Hartree-Fock and second-order Moller-Plesset perturbation theory levels, the adiabatic electron affinity (AEA) and the VDE have been converged to the limit of a complete basis set to within +/-1 meV. Post-MP2 electron-correlation effects have been determined at the coupled-cluster level of theory including single, double, and noniterative triple excitations. The quantum chemical calculations suggest that the most stable valence anion of uracil is the anion of a tautomer that results from a proton transfer from N1H to C5. It is characterized by an AEA of 135 meV and a VDE of 1.38 eV. The peak maximum is as much as 1 eV larger, however, and the photoelectron intensity is only very weak at 1.38 eV. The PES does not lend support either to the valence anion of the canonical tautomer, which is the second most stable anion, and whose VDE is computed at about 0.60 eV. Agreement between the peak maximum and the computed VDE is only found for the third most stable tautomer, which shows an AEA of approximately -0.1 eV and a VDE of 2.58 eV. This tautomer results from a proton transfer from N3H to C5. The results illustrate that the characteristics of biomolecular anions are highly dependent on their tautomeric form. If indeed the third most stable anion is observed in the experiment, then it remains an open question why and how this species is formed under the given conditions.

  15. Vibrationally resolved photoelectron spectra of lower diamondoids: A time-dependent approach

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Włodarczyk, Radosław; Gallandi, Lukas; Körzdörfer, Thomas; Saalfrank, Peter

    2018-01-01

    Vibrationally resolved lowest-energy bands of the photoelectron spectra (PES) of adamantane, diamantane, and urotropine were simulated by a time-dependent correlation function approach within the harmonic approximation. Geometries and normal modes for neutral and cationic molecules were obtained from B3LYP hybrid density functional theory (DFT). It is shown that the simulated spectra reproduce the experimentally observed vibrational finestructure (or its absence) quite well. Origins of the finestructure are discussed and related to recurrences of autocorrelation functions and dominant vibrations. Remaining quantitative and qualitative errors of the DFT-derived PES spectra refer to (i) an overall redshift by ˜0.5 eV and (ii) the absence of satellites in the high-energy region of the spectra. The former error is shown to be due to the neglect of many-body corrections to ordinary Kohn-Sham methods, while the latter has been argued to be due to electron-nuclear couplings beyond the Born-Oppenheimer approximation [Gali et al., Nat. Commun. 7, 11327 (2016)].

  16. The electronic characterization of biphenylene—Experimental and theoretical insights from core and valence level spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüder, Johann; Sanyal, Biplab; Eriksson, Olle

    In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction withmore » hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.« less

  17. Accurate determination of the valence band edge in hard x-ray photoemission spectra using GW theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lischner, Johannes, E-mail: jlischner597@gmail.com; Department of Physics and Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ; Nemšák, Slavomír

    We introduce a new method for determining accurate values of the valence-band maximum in x-ray photoemission spectra. Specifically, we align the sharpest peak in the valence-band region of the experimental spectrum with the corresponding feature of a theoretical valence-band density of states curve from ab initio GW theory calculations. This method is particularly useful for soft and hard x-ray photoemission studies of materials with a mixture of valence-band characters, where strong matrix element effects can render standard methods for extracting the valence-band maximum unreliable. We apply our method to hydrogen-terminated boron-doped diamond, which is a promising substrate material for novelmore » solar cell devices. By carrying out photoemission experiments with variable light polarizations, we verify the accuracy of our analysis and the general validity of the method.« less

  18. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    NASA Astrophysics Data System (ADS)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  19. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation.

    PubMed

    Chirayath, V A; Callewaert, V; Fairchild, A J; Chrysler, M D; Gladen, R W; Mcdonald, A D; Imam, S K; Shastry, K; Koymen, A R; Saniz, R; Barbiellini, B; Rajeshwar, K; Partoens, B; Weiss, A H

    2017-07-13

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.

  20. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation

    PubMed Central

    Chirayath, V. A.; Callewaert, V.; Fairchild, A. J.; Chrysler, M. D.; Gladen, R. W.; Mcdonald, A. D.; Imam, S. K.; Shastry, K.; Koymen, A. R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A. H.

    2017-01-01

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition. PMID:28703225

  1. Accurate quasiparticle calculation of x-ray photoelectron spectra of solids

    NASA Astrophysics Data System (ADS)

    Aoki, Tsubasa; Ohno, Kaoru

    2018-05-01

    It has been highly desired to provide an accurate and reliable method to calculate core electron binding energies (CEBEs) of crystals and to understand the final state screening effect on a core hole in high resolution x-ray photoelectron spectroscopy (XPS), because the ΔSCF method cannot be simply used for bulk systems. We propose to use the quasiparticle calculation based on many-body perturbation theory for this problem. In this study, CEBEs of band-gapped crystals, silicon, diamond, β-SiC, BN, and AlP, are investigated by means of the GW approximation (GWA) using the full ω integration and compared with the preexisting XPS data. The screening effect on a deep core hole is also investigated in detail by evaluating the relaxation energy (RE) from the core and valence contributions separately. Calculated results show that not only the valence electrons but also the core electrons have an important contribution to the RE, and the GWA have a tendency to underestimate CEBEs due to the excess RE. This underestimation can be improved by introducing the self-screening correction to the GWA. The resulting C1s, B1s, N1s, Si2p, and Al2p CEBEs are in excellent agreement with the experiments within 1 eV absolute error range. The present self-screening corrected GW approach has the capability to achieve the highly accurate prediction of CEBEs without any empirical parameter for band-gapped crystals, and provide a more reliable theoretical approach than the conventional ΔSCF-DFT method.

  2. Accurate quasiparticle calculation of x-ray photoelectron spectra of solids.

    PubMed

    Aoki, Tsubasa; Ohno, Kaoru

    2018-05-31

    It has been highly desired to provide an accurate and reliable method to calculate core electron binding energies (CEBEs) of crystals and to understand the final state screening effect on a core hole in high resolution x-ray photoelectron spectroscopy (XPS), because the ΔSCF method cannot be simply used for bulk systems. We propose to use the quasiparticle calculation based on many-body perturbation theory for this problem. In this study, CEBEs of band-gapped crystals, silicon, diamond, β-SiC, BN, and AlP, are investigated by means of the GW approximation (GWA) using the full ω integration and compared with the preexisting XPS data. The screening effect on a deep core hole is also investigated in detail by evaluating the relaxation energy (RE) from the core and valence contributions separately. Calculated results show that not only the valence electrons but also the core electrons have an important contribution to the RE, and the GWA have a tendency to underestimate CEBEs due to the excess RE. This underestimation can be improved by introducing the self-screening correction to the GWA. The resulting C1s, B1s, N1s, Si2p, and Al2p CEBEs are in excellent agreement with the experiments within 1 eV absolute error range. The present self-screening corrected GW approach has the capability to achieve the highly accurate prediction of CEBEs without any empirical parameter for band-gapped crystals, and provide a more reliable theoretical approach than the conventional ΔSCF-DFT method.

  3. Valence-Band Electronic Structures of High-Pressure-Phase PdF2-type Platinum-Group Metal Dioxides MO2 (M = Ru, Rh, Ir, and Pt)

    NASA Astrophysics Data System (ADS)

    Soda, Kazuo; Kobayashi, Daichi; Mizui, Tatsuya; Kato, Masahiko; Shirako, Yuichi; Niwa, Ken; Hasegawa, Masashi; Akaogi, Masaki; Kojitani, Hiroshi; Ikenaga, Eiji; Muro, Takayuki

    2018-04-01

    The valence-band electronic structures of high-pressure-phase PdF2-type (HP-PdF2-type) platinum-group metal dioxides MO2 (M = Ru, Rh, Ir, and Pt) were studied by synchrotron radiation photoelectron spectroscopy and first-principles calculations. The obtained photoelectron spectra for HP-PdF2-type RuO2, RhO2, and IrO2 agree well with the calculated valence-band densities of states (DOSs) for these compounds, indicating their metallic properties, whereas the DOS of HP-PdF2-type PtO2 (calculated in the presence and absence of spin-orbit interactions) predicts that this material may be metallic or semimetallic, which is inconsistent with the electric conductivity reported to date and the charging effect observed in current photoelectron measurements. Compared with the calculated results, the valence-band spectrum of PtO2 appears to have shifted toward the high-binding-energy side and reveals a gradual intensity decrease toward the Fermi energy EF, implying a semiconductor-like electronic structure. Spin-dependent calculations predict a ferromagnetic ground state with a magnetization of 0.475 μB per formula unit for HP-PdF2-type RhO2.

  4. Vibrationally high-resolved electronic spectra of MCl2 (M=C, Si, Ge, Sn, Pb) and photoelectron spectra of MCl2(.).

    PubMed

    Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing

    2016-10-05

    We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M=C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. X-ray photoelectron spectroscopy study of chemically-etched Nd-Ce-Cu-O surfaces

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Gupta, A.; Kussmaul, A.

    1991-01-01

    Acetic acid, Br2, and HCl solutions are investigated for removing insulating species from Nd(1.85)Ce(0.15)CuO(4-delta) (NCCO) thin film surfaces. X-ray photoelectron spectroscopy (XPS) shows that the HCl etch is most effective, yielding O 1s spectra comparable to those obtained from samples cleaned in vacuum and a clear Fermi edge in the valence band region. Reduction and oxidation reversibly induces and eliminates, respectively, Fermi level states for undoped samples, but has no clearly observable effect on the XPS spectra for doped samples. Reactivity to air is much less for NCCO compared to hole superconductors, which is attributed to the lack of reactive alkaline earth elements in NCCO.

  6. Theoretical study on the anion photoelectron spectra of Ln(COT)2- including the spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Nakajo, Erika; Yabushita, Satoshi

    2017-06-01

    The multiplet level splittings for both anion and neutral sandwich complexes Ln(COT)2 (Ln = Ce-Yb, COT = 1,3,5,7-cyclooctatetraene) were calculated with spin-orbit interactions to analyze their anion photoelectron spectra. The theoretically simulated spectra obtained with these energies and the pole strengths are generally consistent with the experimental spectra for the X peak. The magnitudes of the energy splittings, relative peak intensities, and their Ln dependence are reproduced. In comparison to our previous calculations, the inclusion of spin-orbit interactions with the SO-MCQDPT2 method makes the simulated spectra more consistent with the results of the experiment.

  7. Selectivity in Ketenimine Cycloadditions. Photoelectron Hel Spectra of Ketenimines

    NASA Astrophysics Data System (ADS)

    Bernardi, Fernando; Bottoni, Andrea; Ballaglia, Arturo; Distefano, Giuseppe; Dondoni, Alessandro

    1980-05-01

    The first few bands in the photoelectron (Hel) spectra of ketenimines R1R2C-C=NR3(R1,R2=H, CH3, C5H6, CH2=CH; R3=alkyl or aryl group) are assigned to the corresponding molecular orbitals. The assignment is based on SCF-MO calculations made at three different levels (CNDO/2, ab-initio STO-3C and 4-31G) coupled with perturbational molecular orbital analyses. The π-orbitals of the unsaturated substituents are found to interact with one of the two perpendicular π-electron systems of the>C=C=N- residue, the critical factor being the position of attack of the substituent. The relevance of these results on the site selectivity observed in cycloaddition reactions of these species is discussed.

  8. Structures of cycloserine and 2-oxazolidinone probed by X-ray photoelectron spectroscopy: theory and experiment.

    PubMed

    Ahmed, Marawan; Wang, Feng; Acres, Robert G; Prince, Kevin C

    2014-05-22

    The electronic structures and properties of 2-oxazolidinone and the related compound cycloserine (CS) have been investigated using theoretical calculations and core and valence photoelectron spectroscopy. Isomerization of the central oxazolidine heterocycle and the addition of an amino group yield cycloserine. Theory correctly predicts the C, N, and O 1s core spectra, and additionally, we report theoretical natural bond orbital (NBO) charges. The valence ionization energies are also in agreement with theory and previous measurements. Although the lowest binding energy part of the spectra of the two compounds shows superficial similarities, further analysis of the charge densities of the frontier orbitals indicates substantial reorganization of the wave functions as a result of isomerization. The highest occupied molecular orbital (HOMO) of CS shows leading carbonyl π character with contributions from other heavy (non-H) atoms in the molecule, while the HOMO of 2-oxazolidinone (OX2) has leading nitrogen, carbon, and oxygen pπ characters. The present study further theoretically predicts bond resonance effects of the compounds, evidence for which is provided by our experimental measurements and published crystallographic data.

  9. Valence shell threshold photoelectron spectroscopy of the CHxCN (x = 0-2) and CNC radicals.

    PubMed

    Garcia, Gustavo A; Krüger, Julia; Gans, Bérenger; Falvo, Cyril; Coudert, Laurent H; Loison, Jean-Christophe

    2017-07-07

    We present the photoelectron spectroscopy of four radical species, CH x CN (x = 0-2) and CNC, formed in a microwave discharge flow-tube reactor by consecutive H abstractions from CH 3 CN (CH x CN + F → CH x-1 CN + HF (x = 1-3)). The spectra were obtained combining tunable vacuum ultraviolet synchrotron radiation with double imaging electron/ion coincidence techniques, which yielded mass-selected threshold photoelectron spectra. The results obtained for H 2 CCN complement existing ones while for the other radicals the data represent the first observation of their (single-photon) ionizing transitions. In the case of H 2 CCN, Franck-Condon calculations have been performed in order to assign the vibrational structure of the X + 1 A 1 ←X 2 B 1 ionizing transition. A similar treatment for the HCCN, CCN, and CNC radicals appeared to be more complicated mainly because a Renner-Teller effect strongly affects the vibrational levels of the ground electronic state of the HCCN + , CCN, and CNC species. Nevertheless, the first adiabatic ionization energies of these radicals are reported and compared to our ab initio calculated values, leading to new values for enthalpies of formation (Δ f H 298 0 (HCCN + (X 2 A ' ))=1517±12kJmol -1 ,Δ f H 298 0 (CCN(X 2 Π))=682±13kJmol -1 , and Δ f H 298 0 (CNC(X 2 Πg))=676±12kJmol -1 ), which are of fundamental importance for astrochemistry.

  10. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  11. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  12. Ab Initio Determinations of Photoelectron Spectra Including Vibronic Features: An Upper-Level Undergraduate Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lord, Richard L.; Davis, Lisa; Millam, Evan L.; Brown, Eric; Offerman, Chad; Wray, Paul; Green, Susan M. E.

    2008-01-01

    We present a first-principles determination of the photoelectron spectra of water and hypochlorous acid as a laboratory exercise accessible to students in an undergraduate physical chemistry course. This paper demonstrates the robustness and user-friendliness of software developed for the Franck-Condon factor calculation. While the calculator is…

  13. Electronic properties and bonding in Zr Hx thin films investigated by valence-band x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Magnuson, Martin; Schmidt, Susann; Hultman, Lars; Högberg, Hans

    2017-11-01

    The electronic structure and chemical bonding in reactively magnetron sputtered Zr Hx (x =0.15 , 0.30, 1.16) thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level, and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity toward the H 1s-Zr 4d hybridization region at ˜6 eV below the Fermi level. For low hydrogen content (x =0.15 , 0.30), the films consist of a superposition of hexagonal closest-packed metal (α phase) and understoichiometric δ -Zr Hx (Ca F2 -type structure) phases, while for x =1.16 , the films form single-phase Zr Hx that largely resembles that of stoichiometric δ -Zr H2 phase. We show that the cubic δ -Zr Hx phase is metastable as thin film up to x =1.16 , while for higher H contents the structure is predicted to be tetragonally distorted. For the investigated Zr H1.16 film, we find chemical shifts of 0.68 and 0.51 eV toward higher binding energies for the Zr 4 p3 /2 and 3 d5 /2 peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifies a charge transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemical shifts as a function of hydrogen content is discussed in relation to the charge transfer from Zr to H that affects the conductivity by charge redistribution in the valence band.

  14. Electronic structure of β-Ga2O3 single crystals investigated by hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Guo-Ling; Zhang, Fabi; Cui, Yi-Tao; Oji, Hiroshi; Son, Jin-Young; Guo, Qixin

    2015-07-01

    By combination of hard X-ray photoelectron spectroscopy (HAXPES) and first-principles band structure calculations, the electronic states of β-Ga2O3 were investigated to deepen the understanding of bulk information for this compound. The valence band spectra of HAXPES presented the main contribution from Ga 4sp, which are well represented by photoionization cross section weighted partial density of states. The experimental data complemented with the theoretical study yield a realistic picture of the electronic structure for β-Ga2O3.

  15. Determination of the absolute carrier-envelope phase by angle-resolved photoelectron spectra of Ar by intense circularly polarized few-cycle pulses

    NASA Astrophysics Data System (ADS)

    Fukahori, Shinichi; Ando, Toshiaki; Miura, Shun; Kanya, Reika; Yamanouchi, Kaoru; Rathje, Tim; Paulus, Gerhard G.

    2017-05-01

    The angle-resolved photoelectron spectra of Ar are recorded using intense circularly polarized near-infrared few-cycle laser pulses, and the effect of the depletion of Ar atoms by the ionization and the effect of the Coulombic potential are examined by the classical trajectory Monte Carlo simulations. On the basis of the comparison between the experimental and theoretical photoelectron spectra, a procedure for estimating the absolute carrier-envelope phase (CEP) of the few-cycle laser pulses interacting with atoms and molecules is proposed. It is confirmed that the absolute CEP can securely be estimated without any numerical calculations once the angular distribution of the yield of photoelectrons having the kinetic energy larger than 30 eV is measured with the peak laser intensity in the range between 1 ×1014 and 5 ×1014W /c m2 .

  16. Photoelectron Spectroscopy of Substituted Phenylnitrenes

    NASA Astrophysics Data System (ADS)

    Wijeratne, Neloni R.; Da Fonte, Maria; Wenthold, Paul G.

    2009-06-01

    Nitrenes are unusual molecular structures with unfilled electronic valences that are isoelectronic with carbenes. Although, both can be generated by either thermal or photochemical decomposition of appropriate precursors they usually exhibit different reactivities. In this work, we carry out spectroscopic studies of substituted phenylnitrene to determine how the introduction of substituents will affect the reactivity and its thermochemical properties. All studies were carried out by using the newly constructed time-of-flight negative ion photoelectron spectrometer (NIPES) at Purdue University. The 355 nm photoelectron spectra of the o-, m-, and p-chlorophenyl nitrene anions are fairly similar to that measured for phenylnitrene anion. All spectra show low energy triplet state and a high energy singlet state. The singlet state for the meta isomer is well-resolved, with a well defined origin and observable vibrational structure. Whereas the singlet states for the ortho and para isomers have lower energy onsets and no resolved structure. The isomeric dependence suggests that the geometry differences result from the resonance interaction between the nitrogen and the substituent. Quinoidal resonance structures are possible for the open-shell singlet states of the o- and p-chlorinated phenyl nitrenes. The advantages of this type of electronic structures for the open-shell singlet states is that the unpaired electrons can be more localized on separate atoms in the molecules, minimizing the repulsion between. Because the meta position is not in resonance with the nitrenes, substitution at that position should not affect the structure of the open-shell singlet state. The measured electron affinities (EA) of the triplet phenylnitrenes are in excellent agreement with the values predicted by electronic structure calculations. The largest EA, 1.82 eV is found for the meta isomer, with para being the smallest, 1.70 eV.

  17. Effects of the carrier concentration on polarity determination in Ga-doped ZnO films by hard x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Huaping; Makino, Hisao; Kobata, Masaaki; Nomoto, Junichi; Kobayashi, Keisuke; Yamamoto, Tetsuya

    2018-03-01

    Core level (CL) and valence band (VB) spectra of heavily Ga-doped ZnO (GZO) films with carrier concentrations (Ne) ranging from 1.8 × 1020 to 1.0 × 1021 cm-3 were measured by high-resolution Al Kα (hν = 1486.6 eV) x-ray photoelectron spectroscopy (XPS) and Cr Kα (hν = 5414.7 eV) hard x-ray photoelectron spectroscopy (HAXPES). The CL spectra of the GZO films measured by XPS had little dependence on Ne. In contrast, clear differences in asymmetric broadening were observed in the HAXPES spectra owing to the large probing depth. The asymmetry in the Zn 2p3/2 and O 1s HAXPES spectra is mainly attributed to the energy loss of the conduction electron plasmon caused by the high Ne of the GZO films. Similar asymmetry was also observed in the VB spectra of these GZO films. It was found that such asymmetry plays a crucial role in the determination of crystal polarity. With increasing Ne, the intensity of the sub-peak at a binding energy Eb of about 5 eV in the VB spectrum decreased and the sub-peak became indistinguishable. We clarified the limitation of the criterion using the sub-peak and proposed an alternative method for polarity determination.

  18. X-ray spectra and electronic structure of the Ca3Ga2Ge3О12 compound

    NASA Astrophysics Data System (ADS)

    Shcherba, I. D.; Kostyk, L. V.; Noga, H.; Bekenov, L. V.; Uskokovich, D.; Jatsyk, B. M.

    2017-09-01

    The band structure of Ca3Ga2Ge3О12 with the garnet structure has been determined for the first time by X-ray emission and photoelectron spectroscopy. It has been established that the bottom of the valence band is formed by Ge d states, which are not dominant in the chemical bonding. Strong hybridization of oxygen 2s states with 4p states of Ga and Ge revealed by the presence of an extra structure in the X-ray emission spectra has been found. The middle of the valence band has been demonstrated to be occupied by d states of Ga, while Ga and Ge 4рstates with a considerable admixture of oxygen 2p states form the top of the valence band.

  19. Electronic Properties and Dissociative Photoionization of Thiocyanates, Part III. The Effect of the Group's Electronegativity in the Valence and Shallow-Core (Sulfur and Chlorine 2p) Regions of CCl3SCN and CCl2FSCN.

    PubMed

    Rodríguez Pirani, Lucas S; Della Védova, Carlos O; Geronés, Mariana; Romano, Rosana M; Cavasso-Filho, Reinaldo; Ge, Maofa; Ma, Chunping; Erben, Mauricio F

    2017-12-07

    Both photoelectron spectroscopy (PES) data and PhotoElectron-PhotoIon-Coincidence (PEPICO) spectra obtained from a synchrotron facility have been used to examine the electronic structure and the dissociative ionization of halomethyl thiocyantes in the valence and shallow-core S 2p and Cl 2p regions. Two simple and closely related molecules, namely, CCl 3 SCN and CCl 2 FSCN, have been analyzed to assess the role of halogen substitution in the electronic properties of thiocyanates. The assignment of the He(I) photoelectron spectra has been achieved with the help of quantum chemical calculations at the outer-valence Green's function (OVGF) level of approximation. The first ionization energies observed at 10.55 and 10.78 eV for CCl 3 SCN and CCl 2 FSCN, respectively, are assigned to ionization processes from the sulfur lone pair orbital [n(S)]. When these molecules are compared with CX 3 SCN (X = H, Cl, F) species, a linear relationship between the vertical first ionization energy and electronegativity of CX 3 group is observed. Irradiation of CCl 3 SCN and CCl 2 FSCN with photons in the valence energy regions leads to the formation of CCl 2 X + and CClXSCN + ions (X = Cl or F). Additionally, the achievement of the fragmentation patterns and the total ion yield spectra obtained from the PEPICO data in the S 2p and Cl 2p regions and several dissociation channels can be inferred for the core-excited species by using the triple coincidence PEPIPICO (PhotoElectron-PhotoIon-PhotoIon-Coincidence) spectra.

  20. Electronic structure of rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) by X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crerar, Shane J.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca; Grosvenor, Andrew P.

    The electronic structure of the ternary rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) has been examined by high-resolution X-ray photoelectron spectroscopy (XPS) for the first time. The RE 3d or 4d core-line spectra are substantially complicated by the presence of satellite peaks but their general resemblance to those of RE{sub 2}O{sub 3} tends to support the presence of trivalent RE atoms in RECrSb{sub 3}. However, the Yb 4d spectrum of YbCrSb{sub 3} also shows peaks that are characteristic of divalent ytterbium. The Cr 2p core-line spectra exhibit asymmetric lineshapes and little change in binding energy (BE) relative tomore » Cr metal, providing strong evidence for electronic delocalization. The Sb 3d core-line spectra reveal slightly negative BE shifts relative to elemental antimony, supporting the presence of anionic Sb species in RECrSb{sub 3}. The experimental valence band spectrum of LaCrSb{sub 3} matches well with the calculated density of states, and it can be fitted to component peaks belonging to individual atoms to yield an average formulation that agrees well with expectations ('La{sup 3+}Cr{sup 3+}(Sb{sup 2-}){sub 3}'). On progressing from LaCrSb{sub 3} to NdCrSb{sub 3}, the 4f-band in the valence band spectra grows in intensity and shifts to higher BE. The valence band spectrum for YbCrSb{sub 3} also supports the presence of divalent ytterbium. - Graphical Abstract: In their valence band spectra, the 4f-band intensifies and shifts to higher BE on progressing from LaCrSb{sub 3} to NdCrSb{sub 3}. Highlights: Black-Right-Pointing-Pointer High-resolution core-line and valence band XPS spectra were measured for RECrSb{sub 3}. Black-Right-Pointing-Pointer Divalent Yb is present in YbCrSb{sub 3}, in contrast to trivalent RE in other members. Black-Right-Pointing-Pointer Asymmetric Cr 2p spectral lineshape confirms delocalization of Cr valence electrons. Black-Right-Pointing-Pointer Small negative Sb 3d BE shifts support

  1. The cyclopropene radical cation: Rovibrational level structure at low energies from high-resolution photoelectron spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasilatou, K.; Michaud, J. M.; Baykusheva, D.

    2014-08-14

    The cyclopropene radical cation (c-C{sub 3}H{sub 4}{sup +}) is an important but poorly characterized three-membered-ring hydrocarbon. We report on a measurement of the high-resolution photoelectron and photoionization spectra of cyclopropene and several deuterated isotopomers, from which we have determined the rovibrational energy level structure of the X{sup ~+} {sup 2}B{sub 2} ground electronic state of c-C{sub 3}H{sub 4}{sup +} at low energies for the first time. The synthesis of the partially deuterated isotopomers always resulted in mixtures of several isotopomers, differing in their number of D atoms and in the location of these atoms, so that the photoelectron spectra ofmore » deuterated samples are superpositions of the spectra of several isotopomers. The rotationally resolved spectra indicate a C{sub 2v}-symmetric R{sub 0} structure for the ground electronic state of c-C{sub 3}H{sub 4}{sup +}. Two vibrational modes of c-C{sub 3}H{sub 4}{sup +} are found to have vibrational wave numbers below 300 cm{sup −1}, which is surprising for such a small cyclic hydrocarbon. The analysis of the isotopic shifts of the vibrational levels enabled the assignment of the lowest-frequency mode (fundamental wave number of ≈110 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to the CH{sub 2} torsional mode (ν{sub 8}{sup +}, A{sub 2} symmetry) and of the second-lowest-frequency mode (≈210 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to a mode combining a CH out-of-plane with a CH{sub 2} rocking motion (ν{sub 15}{sup +}, B{sub 2} symmetry). The potential energy along the CH{sub 2} torsional coordinate is flat near the equilibrium structure and leads to a pronounced anharmonicity.« less

  2. Outer-valence Electron Spectra of Prototypical Aromatic Heterocycles from an Optimally Tuned Range-Separated Hybrid Functional

    PubMed Central

    2014-01-01

    Density functional theory with optimally tuned range-separated hybrid (OT-RSH) functionals has been recently suggested [Refaely-Abramson et al. Phys. Rev. Lett.2012, 109, 226405] as a nonempirical approach to predict the outer-valence electronic structure of molecules with the same accuracy as many-body perturbation theory. Here, we provide a quantitative evaluation of the OT-RSH approach by examining its performance in predicting the outer-valence electron spectra of several prototypical gas-phase molecules, from aromatic rings (benzene, pyridine, and pyrimidine) to more complex organic systems (terpyrimidinethiol and copper phthalocyanine). For a range up to several electronvolts away from the frontier orbital energies, we find that the outer-valence electronic structure obtained from the OT-RSH method agrees very well (typically within ∼0.1–0.2 eV) with both experimental photoemission and theoretical many-body perturbation theory data in the GW approximation. In particular, we find that with new strategies for an optimal choice of the short-range fraction of Fock exchange, the OT-RSH approach offers a balanced description of localized and delocalized states. We discuss in detail the sole exception found—a high-symmetry orbital, particular to small aromatic rings, which is relatively deep inside the valence state manifold. Overall, the OT-RSH method is an accurate DFT-based method for outer-valence electronic structure prediction for such systems and is of essentially the same level of accuracy as contemporary GW approaches, at a reduced computational cost. PMID:24839410

  3. Interpretation of the photoelectron spectra of FeS(2)(-) by a multiconfiguration computational approach.

    PubMed

    Clima, Sergiu; Hendrickx, Marc F A

    2007-11-01

    The ground states of FeS(2) and FeS(2)(-), and several low-lying excited electronic states of FeS(2) that are responsible for the FeS(2)(-) photoelectron spectrum, are calculated. At the B3LYP level an open, quasi-linear [SFeS](-) conformation is found as the most stable structure, which is confirmed at the ab initio CASPT2 computational level. Both the neutral and the anionic unsaturated complexes possess high-spin electronic ground states. For the first time a complete assignment of the photoelectron spectrum of FeS(2)(-) is proposed. The lowest energy band in this spectrum is ascribed to an electron detachment from the two highest-lying 3dpi antibonding orbitals (with respect to the iron-sulfur bonding) of iron. The next-lowest experimental band corresponds to an electron removal from nonbonding, nearly pure sulfur orbitals. The two highest bands in the spectra are assigned as electron detachments from pi and sigma bonding mainly sulfur orbitals.

  4. Evolution of Eu valence and superconductivity in layered Eu0.5La0.5FBiS2 -xSex system

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Y.; Paris, E.; Wakita, T.; Jinno, G.; Puri, A.; Terashima, K.; Joseph, B.; Miura, O.; Yokoya, T.; Saini, N. L.

    2017-02-01

    We have studied the effect of Se substitution on Eu valence in a layered Eu0.5La0.5FBiS2 -xSex superconductor using a combined analysis of x-ray absorption near-edge structure (XANES) and x-ray photoelectron spectroscopy (XPS) measurements. Eu L3-edge XANES spectra reveal that Eu is in the mixed valence state with coexisting Eu2 + and Eu3 +. The average Eu valence decreases sharply from ˜2.3 for x =0.0 to ˜2.1 for x =0.4 . Consistently, Eu 3 d XPS shows a clear decrease in the average valence by Se substitution. Bi 4 f XPS indicates that effective charge carriers in the BiCh2 (Ch = S, Se) layers are slightly increased by Se substitution. On the basis of the present results it has been discussed that the metallic character induced by Se substitution in Eu0.5La0.5FBiS2 -xSex is likely to be due to increased in-plane orbital overlap driven by reduced in-plane disorder that affects the carrier mobility.

  5. Orientation and temperature dependent adsorption of H 2S on GaAs: Valence band photoemission

    NASA Astrophysics Data System (ADS)

    Ranke, W.; Kuhr, H. J.; Finster, J.

    A cylindrically shaped GaAs single crystal was used to study the adsorption of H 2S on the six inequivalent orientations (001), (113), (111), (110), (111) and (113) by angle resolved valence band photoelectron spectroscopy and surface dipole measurements. Adsorption at 150 K on the surface prepared by molecular beam epitaxy (MBE) yields similar adsorbate induced emission on all orientations which were ascribed to SH radicals. On (110), where preferential adsorption occurs additional features from molecular H 2S are observed. The adsorbate spectra at 720 K are ascribed to atomic sulphur. On the surface prepared by ion bombardment and annealing, defect enhanced adsorption occurs in the range (111)-(113). The adsorbate spectra are very similar to those on the MBE surface at 720 K. Thus, no new species are adsorbed on defects but only sticking probability and penetration capability are increased.

  6. Identification of metal s states in Sn-doped anatase by polarisation dependent hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Regoutz, A.; Oropeza, F. E.; Poll, C. G.; Payne, D. J.; Palgrave, R. G.; Panaccione, G.; Borgatti, F.; Agrestini, S.; Utsumi, Y.; Tsuei, K. D.; Liao, Y. F.; Watson, G. W.; Egdell, R. G.

    2016-03-01

    The contributions of Sn 5s and Ti 4s states to the valence band electronic structure of Sn-doped anatase have been identified by hard X-ray photoelectron spectroscopy. The metal s state intensity is strongly enhanced relative to that of O 2p states at high photon energies due to matrix element effects when electrons are detected parallel to the direction of the polarisation vector of the synchrotron beam, but becomes negligible in the perpendicular direction. The experimental spectra in both polarisations are in good agreement with cross section and asymmetry parameter weighted partial densities of states derived from density functional theory calculations.

  7. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Śmiałek, M. A., E-mail: smialek@pg.gda.pl; Łabuda, M.; Guthmuller, J.

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). Newmore » vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)« less

  8. Electronic structure of the dilute magnetic semiconductor G a1 -xM nxP from hard x-ray photoelectron spectroscopy and angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Keqi, A.; Gehlmann, M.; Conti, G.; Nemšák, S.; Rattanachata, A.; Minár, J.; Plucinski, L.; Rault, J. E.; Rueff, J. P.; Scarpulla, M.; Hategan, M.; Pálsson, G. K.; Conlon, C.; Eiteneer, D.; Saw, A. Y.; Gray, A. X.; Kobayashi, K.; Ueda, S.; Dubon, O. D.; Schneider, C. M.; Fadley, C. S.

    2018-04-01

    We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) G a0.98M n0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimental data, as well as theoretical calculations, to understand the role of the Mn dopant in the emergence of ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between G a0.98M n0.02P and GaP in both angle-resolved and angle-integrated valence spectra. The G a0.98M n0.02P bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host GaP crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations and a prior HARPES study of G a0.97M n0.03As and GaAs [Gray et al., Nat. Mater. 11, 957 (2012), 10.1038/nmat3450], demonstrating the strong similarity between these two materials. The Mn 2 p and 3 s core-level spectra also reveal an essentially identical state in doping both GaAs and GaP.

  9. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Radu, T.; Iacovita, C.; Benea, D.; Turcu, R.

    2017-05-01

    We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe3O4) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe2O3 (by oxygen dissociation) which in turn was transformed into α-Fe2O3. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  10. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Kamada, M.; Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K.

    2016-04-01

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4, m ≥ 3) orbitals. Resonant photoelectron spectra at S-L23 and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  11. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamada, M., E-mail: kamada@cc.saga-u.ac.jp; Hideshima, T.; Azuma, J.

    2016-04-15

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4,  m ≥ 3) orbitals. Resonant photoelectron spectra at S-L{sub 23} and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimesmore » of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.« less

  12. Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: an ab initio study of time-resolved photoelectron spectra.

    PubMed

    do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent

    2007-02-07

    The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.

  13. Polarity determination of polar and semipolar (112¯2) InN and GaN layers by valence band photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Skuridina, D.; Dinh, D. V.; Lacroix, B.; Ruterana, P.; Hoffmann, M.; Sitar, Z.; Pristovsek, M.; Kneissl, M.; Vogt, P.

    2013-11-01

    We demonstrate that the polarity of polar (0001), (0001¯) and semipolar (112¯2) InN and GaN thin layers can be determined by valence band X-ray photoemission spectroscopy (XPS). The polarity of the layers has been confirmed by wet etching and convergent beam electron diffraction. Unlike these two techniques, XPS is a non-destructive method and unaffected by surface oxidation or roughness. Different intensities of the valence band states in spectra recorded by using AlKα X-ray radiation are observed for N-polar and group-III-polar layers. The highest intensity of the valence band state at ≈3.5 eV for InN and ≈5.2 eV for GaN correlates with the group-III polarity, while the highest intensity at ≈6.7 eV for InN and ≈9.5 eV for GaN correlates with the N-polarity. The difference between the peaks for the group-III- and N-polar orientations was found to be statistically significant at the 0.05 significance level. The polarity of semipolar (112¯2) InN and GaN layers can be determined by recording valence band photoelectrons emitted along the [000 ± 1] direction.

  14. Valence electronic properties of porphyrin derivatives.

    PubMed

    Stenuit, G; Castellarin-Cudia, C; Plekan, O; Feyer, V; Prince, K C; Goldoni, A; Umari, P

    2010-09-28

    We present a combined experimental and theoretical investigation of the valence electronic structure of porphyrin-derived molecules. The valence photoemission spectra of the free-base tetraphenylporphyrin and of the octaethylporphyrin molecule were measured using synchrotron radiation and compared with theoretical spectra calculated using the GW method and the density-functional method within the generalized gradient approximation. Only the GW results could reproduce the experimental data. We found that the contribution to the orbital energies due to electronic correlations has the same linear behavior in both molecules, with larger deviations in the vicinity of the HOMO level. This shows the importance of adequate treatment of electronic correlations in these organic systems.

  15. Theoretical Analysis of Photoelectron Spectra of Pure and Mixed Metal Clusters: Disentangling Size, Structure, and Composition Effects

    DOE PAGES

    Acioli, Paulo H.; Jellinek, Julius

    2017-07-14

    A theoretical/computational description and analysis of the spectra of electron binding energies of Al 12 -, Al 13 - and Al 12Ni- clusters, which differ in size and/or composition by a single atom yet possess strikingly different measured photoelectron spectra, is presented. It is shown that the measured spectra can not only be reproduced computationally with quantitative fidelity – this is achieved through a combination of state-of-the-art density functional theory with a highly accurate scheme for conversion of the Kohn-Sham eigenenergies into electron binding energies – but also explained in terms of the effects of size, structure/symmetry and composition. Furthermore,more » a new methodology is developed and applied that provides for disentanglement and differential assignment of the separate roles played by size, structure/symmetry and composition in defining the observed differences in the measured spectra. The methodology is general and applicable to any finite system, homogeneous or heterogeneous. Finally, we project that in combination with advances in synthesis techniques this methodology will become an indispensable computation-based aid in the design of controlled synthesis protocols for manufacture of nanosystems and nanodevices with precisely desired electronic and other characteristics.« less

  16. Theoretical Analysis of Photoelectron Spectra of Pure and Mixed Metal Clusters: Disentangling Size, Structure, and Composition Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acioli, Paulo H.; Jellinek, Julius

    A theoretical/computational description and analysis of the spectra of electron binding energies of Al 12 -, Al 13 - and Al 12Ni- clusters, which differ in size and/or composition by a single atom yet possess strikingly different measured photoelectron spectra, is presented. It is shown that the measured spectra can not only be reproduced computationally with quantitative fidelity – this is achieved through a combination of state-of-the-art density functional theory with a highly accurate scheme for conversion of the Kohn-Sham eigenenergies into electron binding energies – but also explained in terms of the effects of size, structure/symmetry and composition. Furthermore,more » a new methodology is developed and applied that provides for disentanglement and differential assignment of the separate roles played by size, structure/symmetry and composition in defining the observed differences in the measured spectra. The methodology is general and applicable to any finite system, homogeneous or heterogeneous. Finally, we project that in combination with advances in synthesis techniques this methodology will become an indispensable computation-based aid in the design of controlled synthesis protocols for manufacture of nanosystems and nanodevices with precisely desired electronic and other characteristics.« less

  17. Ab initio based study of the ArO- photoelectron spectra: Selectivity of spin-orbit transitions

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. A.; Jakowski, Jacek; Chałasiński, Grzegorz; Szczȩśniak, M. M.; Cybulski, S. M.

    2000-04-01

    A combined ab initio atoms-in-molecule approach was implemented to model the photoelectron spectra of the ArO- anion. The lowest adiabatic states of Σ and Π symmetry of ArO and ArO- were investigated using the fourth-order Møller-Plessett perturbation theory including bond functions. The total energies were dissected into electrostatic, exchange, induction, and dispersion components. The complex of Ar with atomic oxygen is only weakly bound, primarily by dispersion interaction. The Π state possesses a deeper minimum (Re=3.4Å,De=380μEh) than the Σ state (Re=3.8Å,De=220μEh). In contrast, the anion complex is fairly strongly bound, primarily by ion-induced dipole induction forces, and the Σ state possesses a deeper minimum at shorter interatomic distances (Re=3.02Å,De=3600μEh) than the Π state (Re=3.35Å,De=2400μEh). The Σ-Π splittings in both systems are mainly due to differences in the exchange repulsion terms. Atoms-in-molecule models were used to account for the spin-orbit interaction, and to generate adiabatic relativistic potentials and wave functions. Collisional properties, diffusion, and mobility coefficients of O and O- in Ar, and absolute total Ar+O scattering cross sections, were calculated and found to agree well with the available experimental data. The photoelectron spectra were simulated within vibronic model, and were found in excellent agreement with the experimental measurements. The bimodal electron kinetic energy distribution was shown to stem from the strong selectivity of spin-orbit transitions, which split into two dense groups, depending on the initial electronic state of the anion. The latter feature cannot be described without explicit consideration of electronic intensity factor.

  18. Extracting the differential inverse inelastic mean free path and differential surface excitation probability of Tungsten from X-ray photoelectron spectra and electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Afanas'ev, V. P.; Gryazev, A. S.; Efremenko, D. S.; Kaplya, P. S.; Kuznetcova, A. V.

    2017-12-01

    Precise knowledge of the differential inverse inelastic mean free path (DIIMFP) and differential surface excitation probability (DSEP) of Tungsten is essential for many fields of material science. In this paper, a fitting algorithm is applied for extracting DIIMFP and DSEP from X-ray photoelectron spectra and electron energy loss spectra. The algorithm uses the partial intensity approach as a forward model, in which a spectrum is given as a weighted sum of cross-convolved DIIMFPs and DSEPs. The weights are obtained as solutions of the Riccati and Lyapunov equations derived from the invariant imbedding principle. The inversion algorithm utilizes the parametrization of DIIMFPs and DSEPs on the base of a classical Lorentz oscillator. Unknown parameters of the model are found by using the fitting procedure, which minimizes the residual between measured spectra and forward simulations. It is found that the surface layer of Tungsten contains several sublayers with corresponding Langmuir resonances. The thicknesses of these sublayers are proportional to the periods of corresponding Langmuir oscillations, as predicted by the theory of R.H. Ritchie.

  19. Photoelectron spectroscopy study on Li substituted NiO using PES beamline installed on Indus-1

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Chaudhari, S. M.; Phase, D. M.; Dasannacharya, B. A.

    2003-01-01

    Photoelectron spectroscopy beamline based on a toroidal grating monochromator (TGM) is recently commissioned on Indus-1 storage ring. It has been used to carry out valence band photoemission study of Li substituted NiO. In this paper initially a brief description of the beamline components and the experimental station for angle integrated photoemission experiment is presented. The later part of this paper is devoted to studies carried out on Li xNi 1- xO with x=0.0, 0.35 and 0.5 samples. Thin pellets of polycrystalline samples were used for the measurements reported here. Valence band spectra recorded on polycrystalline Li xNi 1- xO samples show drastic changes in various features as compared to that of pure NiO. The prominent changes are: (i) change in the relative contributions of Ni-3d and O-2p emissions, (ii) change in the peak position of Ni-3d from the top of the valance band of NiO and (iii) no noticeable change in the Ni satellite peak. These results are evaluated in terms of earlier findings in pure and low Li doped NiO.

  20. Photoelectron imaging of doped helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Neumark, Daniel

    2008-03-01

    Photoelectron images of helium nanodroplets doped with Kr and Ne atoms are reported. The images and resulting photoelectron spectra were obtained using tunable synchrotron radiation to ionize the droplets. Droplets were excited at 21.6 eV, corresponding to a strong droplet electronic excitation. The rare gas dopant is then ionized via a Penning excitation transfer process. The electron kinetic energy distributions reflect complex ionization and electron escape dynamics.

  1. Site-specific recoil-induced effects on inner-shell photoionization of linear triatomic molecules: N 1 s photoelectron spectra of N2 O

    NASA Astrophysics Data System (ADS)

    Krivosenko, Yu. S.; Pavlychev, A. A.

    2016-11-01

    We investigate hard X-ray ionization of linear triatomic molecules accenting recoil-induced effects on the dynamics of molecular frame. This dynamics is studied within the two-springs and harmonic approximations. The mode-channel relationship connecting the excitations of vibrational, rotational and translational degrees of freedom with the Σ → Σ and Σ → Π photoionization channels is applied to compute the N 1s-1 photoelectron spectra of molecular N2 O for various photon energies. The distinct ionized-site- and molecular-orientation-specific changes in the vibration structure of the 1 s photoelectron lines of terminal and central nitrogen atoms are revealed and discussed.

  2. Angle-resolved photoelectron spectroscopy of formaldehyde and methanol

    NASA Astrophysics Data System (ADS)

    Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, Thomas A.

    1984-10-01

    Angle-resolved photoelectron spectroscopy was employed to obtain the angular distribution parameter, β, for the valence orbitals (IP < 21.1 eV) of formaldehyde and methanol over the 10-30 eV photon energy range using dispersed polarized synchrotron radiation as the excitation source. It was found that the energy dependence of β in the photoelectron energy range between 2 and 10 eV can be related to the molecular-orbital type from which ionization occurs. This generalized energy behavior is discussed with regard to earlier energy-dependence studies on molecules of different orbital character. Evidence is presented for the presence of resonance photoionization phenomena in formaldehyde in agreement with theoretical cross-section calculations.

  3. Slow Photoelectron Velocity-Map Imaging of Cryogenically Cooled Anions

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; Neumark, Daniel M.

    2018-04-01

    Slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of neutral radicals, clusters, and reaction transition states. SEVI is a high-resolution variant of anion photoelectron spectroscopy based on photoelectron imaging that yields spectra with energy resolution as high as 1-2 cm‑1. The preparation of cryogenically cold anions largely eliminates hot bands and dramatically narrows the rotational envelopes of spectral features, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species. We review the basis and history of the SEVI method, including recent experimental developments that have improved its resolution and versatility. We then survey recent SEVI studies to demonstrate the utility of this technique in the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadiabatic interactions between excited states of small molecules, and transition states of benchmark bimolecular reactions.

  4. Electronic structure of lanthanide scandates

    NASA Astrophysics Data System (ADS)

    Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.

    2018-02-01

    X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.

  5. Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H

    2011-01-28

    Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.

  6. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradforth, Stephen Edmund

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN -, NCO - and NCS -. Transition state photoelectron spectra are presented for the following systems Br + HI, Clmore » + HI, F + HI, F + CH 30H,F + C 2H 5OH,F + OH and F + H 2. A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O( 3P, 1D) + HF and F + H 2. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H 2 system, comparisons with three-dimensional quantum calculations are made.« less

  7. An electron momentum spectroscopy and density functional theory study of the outer valence electronic structure of stella-2,6-dione

    NASA Astrophysics Data System (ADS)

    Nixon, K. L.; Wang, F.; Campbell, L.; Maddern, T.; Winkler, D.; Gleiter, R.; Loeb, P.; Weigold, E.; Brunger, M. J.

    2003-07-01

    We report on the first electron momentum spectroscopy (EMS) study into the outer valence electronic structure of the ground electronic state for the organic molecule stella-2,6-dione (C8H8O2). Experimentally measured binding-energy spectra are compared against a He(Ialpha) photoelectron spectroscopy result, while our derived momentum distributions (MDs) are compared against corresponding results from the plane wave impulse approximation (PWIA) level calculations. These computations employed density functional theory (DFT) basis states at the triple zeta valence polarization (TZVP) level, with a range of exchange-correlation (XC) functionals. A detailed comparison between the experimental and PWIA DFT-XC/TZVP calculated MDs enabled us to evaluate the accuracy of the various functionals, the Becke-Perdew (BP) XC functional being found to provide the most accurate description here. The importance of the through-bond interaction to the molecular orbitals (MOs) of stella-2,6-dione is demonstrated using the orbital imaging capability of EMS. Finally we show that the molecular geometry of this molecule, as derived from BP/TZVP, is in quite good agreement with corresponding independent experimental data.

  8. X-ray Photoelectron Spectroscopy of High-κ Dielectrics

    NASA Astrophysics Data System (ADS)

    Mathew, A.; Demirkan, K.; Wang, C.-G.; Wilk, G. D.; Watson, D. G.; Opila, R. L.

    2005-09-01

    Photoelectron spectroscopy is a powerful technique for the analysis of gate dielectrics because it can determine the elemental composition, the chemical states, and the compositional depth profiles non-destructively. The sampling depth, determined by the escape depth of the photoelectrons, is comparable to the thickness of current gate oxides. A maximum entropy algorithm was used to convert photoelectron collection angle dependence of the spectra to compositional depth profiles. A nitrided hafnium silicate film is used to demonstrate the utility of the technique. The algorithm balances deviations from a simple assumed depth profile against a calculated depth profile that best fits the angular dependence of the photoelectron spectra. A flow chart of the program is included in this paper. The development of the profile is also shown as the program is iterated. Limitations of the technique include the electron escape depths and elemental sensitivity factors used to calculate the profile. The technique is also limited to profiles that extend to the depth of approximately twice the escape depth. These limitations restrict conclusions to comparison among a family of similar samples. Absolute conclusions about depths and concentrations must be used cautiously. Current work to improve the algorithm is also described.

  9. A four-component Fock-space coupled cluster investigation of the HM(CO)5, (M = Mn, Re) photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Nikoobakht, Behnam; Siebert, Max; Pernpointner, Markus

    2015-11-01

    In this work, we readdress the photoelectron spectra of the HM(CO)5, (M=Mn, Re) carbonyl complexes by applying four-component Fock-space coupled cluster (FSCC) methods for their calculation in order to extend earlier studies based on less demanding approaches. The final-state characterisation was based on group theoretical considerations of the contributing orbitals and allowed for an unambiguous assignment. Energy level diagrams show the effect of spin-orbit (SO) coupling starting from scalar relativistic results and for the heavy representative HRe(CO)5 nonadditivity effects of SO and electron correlation can be observed requiring a consistent treatment of both contributions.

  10. Insight into ethylene interactions with molybdenum suboxide cluster anions from photoelectron spectra of chemifragments

    NASA Astrophysics Data System (ADS)

    Schaugaard, Richard N.; Topolski, Josey E.; Ray, Manisha; Raghavachari, Krishnan; Jarrold, Caroline Chick

    2018-02-01

    Recent studies on reactions between MoxOy- cluster anions and H2O/C2H4 mixtures revealed a complex web of addition, hydrogen evolution, and chemifragmentation reactions, with chemifragments unambiguously connected to cluster reactions with C2H4. To gain insight into the molecular-scale interactions along the chemifragmentation pathways, the anion photoelectron (PE) spectra of MoC2H2-, MoC4H4-, MoOC2H2-, and MoO2C2H2- formed directly in MoxOy- + C2H4 (x > 1; y ≥ x) reactions, along with supporting CCSD(T) and density functional theory calculations, are presented and analyzed. The complexes have spectra that are all consistent with η2-acetylene complexes, though for all but MoC4H4-, the possibility that vinylidene complexes are also present cannot be definitively ruled out. Structures that are consistent with the PE spectrum of MoC2H2- differ from the lowest energy structure, suggesting that the fragment formation is under kinetic control. The PE spectrum of MoO2C2H2- additionally exhibits evidence that photodissociation to MoO2- + C2H2 may be occurring. The results suggest that oxidative dehydrogenation of ethylene is initiated by Lewis acid/base interactions between the Mo centers in larger clusters and the π orbitals in ethylene.

  11. Intrinsic electrophilic properties of nucleosides: Photoelectron spectroscopy of their parent anions

    NASA Astrophysics Data System (ADS)

    Stokes, Sarah T.; Li, Xiang; Grubisic, Andrej; Ko, Yeon Jae; Bowen, Kit H.

    2007-08-01

    The nucleoside parent anions 2'-deoxythymidine-, 2'-deoxycytidine-, 2'-deoxyadenosine-, uridine-, cytidine-, adenosine-, and guanosine- were generated in a novel source, employing a combination of infrared desorption, electron photoemission, and a gas jet expansion. Once mass selected, the anion photoelectron spectrum of each of these was recorded. In the three cases in which comparisons were possible, the vertical detachment energies and likely adiabatic electron affinities extracted from these spectra agreed well with the values calculated both by Richardson et al. [J. Am. Chem. Soc. 126, 4404 (2004)] and by Li et al. [Radiat. Res. 165, 721 (2006)]. Through the combination of our experimental results and their theoretical calculations, several implications emerge. (1) With the possible exception of dG-, the parent anions of nucleosides exist, and they are stable. (2) These nucleoside anions are valence anions, and in most cases the negative charge is closely associated with the nucleobase moiety. (3) The nucleoside parent anions we have generated and studied are the negative ions of canonical, neutral nucleosides, similar to those found in DNA.

  12. Intrinsic electrophilic properties of nucleosides: photoelectron spectroscopy of their parent anions.

    PubMed

    Stokes, Sarah T; Li, Xiang; Grubisic, Andrej; Ko, Yeon Jae; Bowen, Kit H

    2007-08-28

    The nucleoside parent anions 2(')-deoxythymidine(-), 2(')-deoxycytidine(-), 2(')-deoxyadenosine(-), uridine(-), cytidine(-), adenosine(-), and guanosine(-) were generated in a novel source, employing a combination of infrared desorption, electron photoemission, and a gas jet expansion. Once mass selected, the anion photoelectron spectrum of each of these was recorded. In the three cases in which comparisons were possible, the vertical detachment energies and likely adiabatic electron affinities extracted from these spectra agreed well with the values calculated both by Richardson et al. [J. Am. Chem. Soc. 126, 4404 (2004)] and by Li et al. [Radiat. Res. 165, 721 (2006)]. Through the combination of our experimental results and their theoretical calculations, several implications emerge. (1) With the possible exception of dG(-), the parent anions of nucleosides exist, and they are stable. (2) These nucleoside anions are valence anions, and in most cases the negative charge is closely associated with the nucleobase moiety. (3) The nucleoside parent anions we have generated and studied are the negative ions of canonical, neutral nucleosides, similar to those found in DNA.

  13. Auroral and photoelectron fluxes in cometary ionospheres

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Haider, S. A.; Spinghal, R. P.

    1990-05-01

    The analytical yield spectrum method has been used to ascertain photoelectron and auroral electron fluxes in cometary ionospheres, with a view to determining the effects of cometocentric distances, solar zenith angle, and solar minimum and maximum conditions. Auroral electron fluxes are thus calculated for monoenergetic and observed primary electron spectra; auroral electrons are found to make a larger contribution to the observed electron spectrum than EUV-generated photoelectrons. Good agreement is established with extant theoretical works.

  14. Theoretical Study on the Photoelectron Spectra of Ln(COT)2-: Lanthanide Dependence of the Metal-Ligand Interaction.

    PubMed

    Nakajo, Erika; Masuda, Tomohide; Yabushita, Satoshi

    2016-12-08

    We have performed a theoretical analysis of the recently reported photoelectron (PE) spectra of the series of sandwich complex anions Ln(COT) 2 - (Ln = La-Lu, COT = 1,3,5,7-cyclooctatetraene), focusing on the Ln dependence of the vertical detachment energies. For most Ln, the π molecular orbitals, largely localized on the COT ligands, have the energy order of e 1g < e 1u < e 2g < e 2u as in the actinide analogues, reflecting the substantial orbital interaction with the Ln 5d and 5p orbitals. Thus, it would be expected that the lanthanide contraction would increase the orbital interaction so that the overlaps between the COT π and Ln atomic orbitals tend to increase across the series. However, the PE spectra and theoretical calculations were not consistent with this expectation, and the details have been clarified in this study. Furthermore, the energy level splitting patterns of the anion and neutral complexes have been studied by multireference ab initio methods, and the X peak splittings observed in the PE spectra only for the middle-range Ln complexes were found to be due to the specific interaction between the Ln 4f and ligand π orbitals of the neutral complexes in e 2u symmetry. Because the magnitude of this 4f-ligand interaction depends critically on the final state 4f electron configuration and the spin state, a significant Ln dependence in the PE spectra is explained.

  15. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  16. Modeling of LMM-MVV Auger-Auger Coincidence Spectra From Solids

    NASA Astrophysics Data System (ADS)

    Sundaramoorthy, R.; Weiss, A. H.; Hulbert, S. L.; Bartynski, R. A.

    2006-03-01

    Atoms that are highly excited due to the presence of a hole in an inner shell often relax via an Auger transition. This auto-ionizing process results in a final state with two or more holes from an Auger cascade. We present results of the direct measurements of the second and third Auger decays in this sequence. We have measured the Mn MVV Auger spectra from a single-crystal sample of MnO in time coincidence with Auger electrons emitted from prior Mn LMM Auger decays and find these to be much wider than the MVV spectrum measured in time coincidence with M core photoelectron emission. We present a model which attributes the increased energy width of the MVV transitions that follow LMM decays to the rearrangement of ``not so innocent'' bystander hole(s) in the valence band. The energetics of the Auger cascade process are modeled mathematically in terms of correlation integral(s) and convolution integral(s) over the valence band density of states. Comparisons with recent Auger-Auger coincidence studies of Ag and Pd will be made. Acknowledgements: Welch Foundation, NSF DMR98-12628, NSF DMR98-01681, and DOE DE-AC02-98CH10886.

  17. Modeling, Analysis, and Interpretation of Photoelectron Energy Spectra at Enceladus Observed by Cassini

    NASA Astrophysics Data System (ADS)

    Taylor, S. A.; Coates, A. J.; Jones, G. H.; Wellbrock, A.; Fazakerley, A. N.; Desai, R. T.; Caro-Carretero, R.; Michiko, M. W.; Schippers, P.; Waite, J. H.

    2018-01-01

    The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are observed during Enceladus encounters in the energetic particle shadow where the spacecraft is largely shielded from penetrating radiation by the moon. We present a complex electron spectrum at Enceladus including evidence of two previously unidentified electron populations at 6-10 eV and 10-16 eV. We estimate that the proportion of "hot" (>15 eV) to "cold" (<15 eV) electrons during the Enceladus flybys is ≈ 0.1-0.5%. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data by scaling and energy shifting according to spacecraft potential. We suggest that the complex structure of the electron spectrum observed can be explained entirely by photoelectron production in the plume ionosphere.

  18. X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Bavand, R.; Yelon, A.; Sacher, E.

    2015-11-01

    Ruthenium nanoparticles (Ru NPs) function as effective catalysts in specific reactions, such as methanation and Fischer-Tropsch syntheses. It is our purpose to physicochemically characterize their surfaces, at which catalysis occurs, by surface-sensitive X-ray photoelectron spectroscopy (XPS), using the symmetric peak component anaylsis technique developed in our laboratory to reveal previously hidden components. Ru NPs were deposited by evaporation (0.25-1.5 nm nominal deposition range) onto highly oriented pyrolytic graphite (HOPG). In addition to their surfaces being characterized by XPS, an indication of morphology was obtained from transmission electron microscopy (TEM). Our use of symmetric peak component XPS analysis has revealed detailed information on a previously unidentified surface oxide initially formed, as well as on the valence electronic structure and its variation with NP size, information that is of potential importance in the use of these NPs in catalysis. Each of the several Ru core XPS spectra characterized (3d, 3p and 3s) was found to be composed of three symmetric components. Together with two metal oxide O1s components, these give evidence of a rather complex, previously unidentified oxide that is initially formed. The Ru valence band (4d and 5s) spectra clearly demonstrate a loss of metallicity, a simultaneous increase of the Kubo gap, and an abrupt transfer in valence electron density from the 4d to the 5s orbitals (known as electron spill-over), as the NP size decreases below 0.5 nm. TEM photomicrographs, as a function of deposition rate, show that, at a rate that gives insufficient time for the NP condensation energy to dissipate, the initially well-separated NPs are capable of diffusing laterally and aggregating. This indicates weak NP bonding to the HOPG substrate. Carbide is formed, at both high and low deposition rates, at Ru deposition thicknesses greater than 0.25 nm, its formation explained by Ru NPs reacting with residual

  19. Band alignment of 2D WS2/HfO2 interfaces from x-ray photoelectron spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhu, H. L.; Zhou, C. J.; Tang, B. S.; Yang, W. F.; Chai, J. W.; Tay, W. L.; Gong, H.; Pan, J. S.; Zou, W. D.; Wang, S. J.; Chi, D. Z.

    2018-04-01

    We report on the growth of two-dimensional (2D) WS2 on high-k HfO2/Si substrates by reactive sputtering deposition. Raman, x-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy characterizations indicate that the 2D WS2 layers exhibit high-quality crystallinity and exact stoichiometry. Through high-resolution XPS valence spectra, we find a type I alignment at the interface of monolayer WS2/HfO2 with a valence band offset (VBO) of 1.95 eV and a conduction band offset (CBO) of 1.57 eV. The VBO and CBO are also found to increase up to 2.24 eV and 2.09 eV, respectively, with increasing WS2 layers. This is consistent with the results obtained from our first-principles calculations. Our theoretical calculations reveal that the remarkable splitting and shift of the W 5 d z 2 orbital originating from interlayer orbital coupling in thicker WS2 films induce a reduction of its bandgap, leading to an increase in both the VBO and CBO. This observation can be attributed to the asymmetric splitting at different high symmetric k-points caused by the interlayer orbital coupling.

  20. A photoelectron spectroscopic investigation of vinyl fluoride (C2H3F): the HeI, threshold and CIS photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Locht, R.; Leyh, B.; Dehareng, D.; Hottmann, K.; Baumgärtel, H.

    2010-01-01

    The threshold photoelectron spectrum (TPES) and the constant ion state (CIS) spectra of the individual ionic states of C2H3F have been recorded using synchrotron radiation. For comparison a well-resolved HeI photoelectron spectrum (HeI-PES) has also been measured and analysed in detail. The TPES has been measured between 9.5 eV and 35 eV photon energy. Numerous vibrational structures, reported for the first time, observed in the ground state and the six excited states of the cation are analysed. Quantum chemical calculations have been performed and provide strong support to the assignments. State-selected CIS spectra highlighted the major importance of autoionization for the production of almost all ionized states of C2H3F observed in this work.

  1. Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2018-06-01

    The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.

  2. Electronic and Photoelectron Spectroscopy of Toluene

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Green, Alistair M.; Tame-Reyes, Victor; Wright, Timothy G.

    2012-06-01

    Electronic and photoelectron spectra of toluene are presented and discussed. The utilization of a recently reported scheme for assigning the normal vibrations of substituted benzenes allows these spectra to be compared to those of other molecules with unprecedented clarity. Changes in vibrational activity within a series of substituted benzene molecules will be discussed, specifically the increased rate of intramolecular vibrational energy redistribution observed in molecules where the substituent is a methyl group. A. M. Gardner and T. G. Wright, J. Chem. Phys., 135, 114305 (2011)

  3. Temperature and pressure dependences of Sm valence in intermediate valence compound SmB6

    NASA Astrophysics Data System (ADS)

    Emi, N.; Mito, T.; Kawamura, N.; Mizumaki, M.; Ishimatsu, N.; Pristáš, G.; Kagayama, T.; Shimizu, K.; Osanai, Y.; Iga, F.

    2018-05-01

    We report the results of the X-ray absorption spectroscopy (XAS) on the intermediate valence compound SmB6. The XAS measurements were performed near the nonmagnetic-magnetic phase boundary. Mean Sm valence vSm was estimated from absorption spectra, and we found that vSm near the boundary (P ≥ 10 GPa and T ∼ 12 K) is far below a trivalent state with magnetic characteristics. Although the result is markedly different from the cases of pressure induced magnetic orders in Yb and Ce compounds, it is likely that the large deviation from the trivalent state seems to be common in some Sm compounds which possess electronic configuration between 4f5 and 4f6 with multi 4 f electrons.

  4. The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds

    NASA Astrophysics Data System (ADS)

    Pantelouris, A.; Modrow, H.; Pantelouris, M.; Hormes, J.; Reinen, D.

    2004-05-01

    X-ray absorption spectra at the chromium K-edge are reported for a number of selected chromium compounds of known chemical structure. The spectra were obtained with use of synchrotron radiation available at the ELectron Stretcher Accelerator ELSA in Bonn. The compounds studied include the tetrahedrally coordinated compounds Ca 2Ge 0.8Cr 0.2O 4, Ba 2Ge 0.1Cr 0.9O 4, Sr 2CrO 4, Ca 2(PO 4) x(CrO 4) 1- xCl ( x=0.25,0.5), Ca 5(CrO 4) 3Cl, CrO 3, the octahedrally coordinated compounds Cr(II)-acetate, CrCl 3, CrF 3, Cr 2O 3, KCr(SO 4) 2 · 12H 2O, CrO 2 and cubic coordinated metallic chromium. In these compounds chromium exhibits a wide range of formal oxidation states (0 to VI). The absorption features in the near edge region are shown to be characteristic of the spatial environment of the absorbing atom. The occurrence of a single pre-edge line easily allows one to distinguish between tetrahedral and octahedral coordination geometry, whereas the energy position of the absorption edge is found to be very sensitive to the valency of the excited chromium atom. Calculations of the ionisation potential of Cr in different oxidation states using the non-relativistic Hartree-Fock method (Froese-Fischer) confirm that the ionisation limit shifts to higher energy with increasing Cr valency. More detailed information on the electronic structure of the different compounds is gained by real-space full multiple scattering calculations using the FEFF8 code.

  5. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectramore » for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.« less

  6. Band alignment of SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) determined by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Zhaoqing; Feng, Qian; Zhang, Jincheng; Li, Xiang; Li, Fuguo; Huang, Lu; Chen, Hong-Yan; Lu, Hong-Liang; Hao, Yue

    2018-03-01

    In this work, we report the investigation of the band alignment of SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) utilizing the high resolution X-ray photoelectron spectroscopy (XPS) measurements. The single crystallinity and orientation of β-(AlxGa1-x)2O3 films grown on sapphire by pulsed laser deposition were studied with the high resolution X-ray diffraction. The Ga 2p3/2 and Si 2p core-level spectra as well as valence band spectra were used in the analysis of band alignment. As the mole fraction x of Al increases from 0 to 0.49, the bandgap and conduction band offset values of SiO2/(AlxGa1-x)2O3 increases from 4.9 to 5.6 eV and from 1.5 to 2.1 eV, respectively, while that of valence band offset decreases from 2.2 to 0.9 eV. From the results obtained, the energy band diagram of the studied SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) interfaces is found to be of type I. Energy band lineups of SiO2/(AlxGa1-x)2O3 were thus determined which can be used as for Ga2O3 based power device technology.

  7. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  8. Photoelectron angular distributions from rotationally resolved autoionizing states of N 2

    DOE PAGES

    Chartrand, A. M.; McCormack, E. F.; Jacovella, U.; ...

    2017-12-08

    The single-photon, photoelectron-photoion coincidence spectrum of N 2 has been recorded at high (~1.5 cm -1) resolution in the region between the N 2 + X 2Σ g +, v + = 0 and 1 ionization thresholds by using a double imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N 2 + X 2Σ g +more » ground state, and electronically autoionizing states converging to the N 2 + A 2Π and B 2Σ u + states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. Here, a simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment.« less

  9. Increased photoelectron transmission in High-pressure photoelectron spectrometers using "swift acceleration"

    NASA Astrophysics Data System (ADS)

    Edwards, Mårten O. M.; Karlsson, Patrik G.; Eriksson, Susanna K.; Hahlin, Maria; Siegbahn, Hans; Rensmo, Håkan; Kahk, Juhan M.; Villar-Garcia, Ignacio J.; Payne, David J.; Åhlund, John

    2015-06-01

    A new operation mode of a HPXPS (high-pressure X-ray photoelectron spectroscopy) analyzer is evaluated on a HPXPS system fitted with an Al Kα X-ray source. A variety of metal foil samples (gold, silver and copper) were measured in different sample gas environments (N2 and H2O), and a front aperture diameter of 0.8 mm. The new design concept is based upon "swiftly" accelerating the photoelectrons to kinetic energies of several keV after they pass the analyzer front aperture. Compared to the standard mode, in which the front section between the two first apertures is field-free, this gives a wider angular collection and a lower tendency for electron losses in collisions with gas molecules within the analyzer. With the swift-acceleration mode we attain, depending on the experimental conditions, up to about 3 times higher peak intensities in vacuum and about 10 to 20 times higher peak intensities in the 6-9 mbar regime, depending on kinetic energy. These experimental findings agree well with simulated transmission functions for the analyzer. The new mode of operation enables faster data acquisition than the standard mode of operation, particularly valuable in a home laboratory environment. Further demonstrations of performance are highlighted by measurements of the valence band structure in dye-sensitized solar cell photoelectrodes under a 2 mbar H2O atmosphere, a molecularly modified surface of interest in photoelectrochemical devices.

  10. Oxidation and deprotonation of synthetic Fe{sup II}-Fe{sup III} (oxy)hydroxycarbonate Green Rust: An X-ray photoelectron study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullet, M.; Guillemin, Y.; Ruby, C.

    X-ray photoelectron spectroscopy (XPS) was used to investigate chemical bonding and distribution of iron and oxygen species at the surface of Green Rusts (GRs). GRs with variable composition, i.e. Fe{sup II}{sub 6(1-x)}Fe{sup III}{sub 6x}O{sub 12}H{sub 2(7-3x)} CO{sub 3}.3H{sub 2}O where the Fe{sup III} molar fraction of the positively charged hydroxide sheets, x=[Fe(III)]/[Fe(total)] belongs to [1/3, 1], were synthesised under an inert atmosphere. The broadened Fe(2p{sub 3/2}) spectra were fitted using Gupta and Sen multiplets peaks and additional satellite and surface features. The [Fe(III)]/[Fe(total)] surface atomic ratios closely agree with the x ratios expected from the bulk composition, which gives amore » high degree of confidence on the validity of the proposed fitting procedure. The valence band spectra are also reported and show dependencies on iron speciation. The O(1s) spectra revealed the presence of O{sup 2-}, OH{sup -} species and adsorbed water. The hydroxyl component decreases with increasing x values, i.e. with the amount of ferric iron, while the oxide component increases. This study provides direct spectroscopic evidence of the deprotonation of hydroxyl groups that occurs simultaneously with the oxidation of ferrous iron within the GR structure. - Graphical abstract: X-ray photoelectron spectroscopy (XPS) is used to investigate chemical bonding and distribution of iron and oxygen species at the surface of Green Rust (GR) compounds. First spectroscopic evidence of the deprotonation of hydroxyls groups occurring simultaneously to the oxidation of Fe(II) into Fe(III) species is provided.« less

  11. Energetic (above 60 eV) atmospheric photoelectrons

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Decker, D. T.; Kozyra, J. U.; Nagy, A. F.; Jasperse, J. R.

    1989-01-01

    Data from low altitude plasma instrument (LAPI) on Dynamics Explorer 2 document a population of high-energy (up to 800 eV) atmospheric photoelectrons that has not been reported in the published literature. The source of these photoelectrons is postulated to be the soft X-ray portion of the whole sun spectrum. This conclusion is supported by sunrise-sunset characteristics that track those of the classical (below 60 eV) EUV-produced photoelectrons, and theoretical results from two models that incorporate the soft X-ray portion of the solar spectrum. The models include K-shell ionization effects and predict peaks in the photoelectron spectrum due to Auger electrons emitted from oxygen and nitrogen. The peak for nitrogen is observed as predicted, but the peak for oxygen is barely observable. Excellent quantitative agreement is achieved between theory and experiment by using reasonable adjustments to the few published soft X-ray spectra based on solar activity. The upflowing energetic photoelectrons provide a heretofore unknown source of electrons to the magnetosphere. They occur whenever and wherever the sun is up, that is, at all invariant latitudes. Their density is low, but they are steady and ubiquitous. If scattering and trapping occur on closed field lines, then photoelectrons could contribute as a significant particle source and thus represent a new facet of magnetosphere-ionosphere coupling.

  12. Synchrotron-based valence shell photoionization of CH radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gans, B., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr; Falvo, C.; Holzmeier, F.

    2016-05-28

    We report the first experimental observations of X{sup +} {sup 1}Σ{sup +}←X {sup 2}Π and a{sup +} {sup 3}Π←X {sup 2}Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg statesmore » of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.« less

  13. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study.

    PubMed

    Schneider, M; Soshnikov, D Yu; Holland, D M P; Powis, I; Antonsson, E; Patanen, M; Nicolas, C; Miron, C; Wormit, M; Dreuw, A; Trofimov, A B

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n(5) with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

  14. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, M.; Wormit, M.; Dreuw, A.

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n{sup 5} with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZmore » basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.« less

  15. Modeling Photoelectron Spectra of CuO, Cu2O, and CuO2 Anions with Equation-of-Motion Coupled-Cluster Methods: An Adventure in Fock Space.

    PubMed

    Orms, Natalie; Krylov, Anna I

    2018-04-12

    The experimental photoelectron spectra of di- and triatomic copper oxide anions have been reported previously. We present an analysis of the experimental spectra of the CuO - , Cu 2 O - , and CuO 2 - anions using equation-of-motion coupled-cluster (EOM-CC) methods. The open-shell electronic structure of each molecule demands a unique combination of EOM-CC methods to achieve an accurate and balanced representation of the multiconfigurational anionic- and neutral-state manifolds. Analysis of the Dyson orbitals associated with photodetachment from CuO - reveals the strong non-Koopmans character of the CuO states. For the lowest detachment energy, a good agreement between theoretical and experimental values is obtained with CCSD(T) (coupled-cluster with single and double excitations and perturbative account of triple excitations). The (T) correction is particularly important for Cu 2 O - . Use of a relativistic pseudopotential and matching basis set improves the quality of results in most cases. EOM-DIP-CCSD analysis of the low-lying states of CuO 2 - reveals multiple singlet and triplet anionic states near the triplet ground state, adding an extra layer of complexity to the interpretation of the experimental CuO 2 - photoelectron spectrum.

  16. Anion Photoelectron Spectroscopic Studies of NbCr(CO)_n- (n = 2,3) Heterobimetallic Carbonyl Complexes

    NASA Astrophysics Data System (ADS)

    Baudhuin, Melissa A.; Boopalachandran, Praveenkumar; Leopold, Doreen

    2015-06-01

    Anion photoelectron spectra and density functional calculations are reported for NbCr(CO)2- and NbCr(CO)3- complexes prepared by addition of Cr(CO)6 vapor to a flow tube equipped with a niobium cathode discharge source. Electron affinities (± 0.007 eV) are measured to be 1.668 eV for NbCr(CO)2 and 1.162 eV for NbCr(CO)3, values which exceed the 0.793 eV electron affinity previously measured for ligand-free NbCr. The vibrationally-resolved 488 nm photoelectron spectra are compared with Franck-Condon spectra predicted for various possible isomers and spin states of the anionic and neutral metal carbonyl complexes. Results are also compared with photoelectron spectra of the corresponding chromium carbonyl complexes and of NbCr and NbCr-, which have formal bond orders of 5.5 (2Δ) and 6 (1σ+), respectively. These comparisons help to elucidate the effects of sequential carbonylation on this multiple metal-metal bond, and of the formation of this bond on the chromium-carbonyl interactions.

  17. Anion photoelectron spectroscopy of radicals and clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis, Taylor R.

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C 2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C 2H and C 4H. Other radicals studied include NCN and I 3. The author was able to observe the low-lying singlet and triplet states of NCNmore » for the first time. Measurement of the electron affinity of I 3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.« less

  18. Angle-resolved photoelectron spectroscopy of the chloro-substituted methanes

    NASA Astrophysics Data System (ADS)

    Keller, P. R.; Taylor, J. W.; Carlson, Thomas A.; Grimm, F. A.

    1983-09-01

    The angular distribution parameter, β, was determined for the valence orbitals (IP ' 21.2 eV) of CCl 4, CHCl 3, CH 2Cl 2, and CH 3Cl in the 10-30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β in the photoelectron energy range of 2 to 10 eV for the non-bonding chlorine n(Cl) orbitals of these molecules was found to be similar for all n(Cl) orbitals investigated. The energy dependence of β for the σ orbitals in these molecules was similar to that observed previously for other σ orbitals. The experimental CCl 4 results were compared with theoretical CCl 4 results obtained using the Xα multiple scattering formalism. Theory predicts the existence of two strong shape resonances in each of the valence orbitals of CCl 4. The overall agreement between experiment and theory is evaluated along with the experimental evidence concerning the verification of the predicted shape resonances.

  19. Electronic structure of ZrX2 (X = Se, Te)

    NASA Astrophysics Data System (ADS)

    Shkvarin, A. S.; Merentsov, A. I.; Shkvarina, E. G.; Yarmoshenko, Yu. M.; Píš, I.; Nappini, S.; Titov, A. N.

    2018-03-01

    The electronic structure of the ZrX2 (X = Se, Te) compounds has been studied using photoelectron, resonant photoelectron and X-ray absorption spectroscopy, theoretical calculations of the X-ray absorption spectra, and density of electronic states. It was found that the absorption spectra and valence band spectra are influenced by the chalcogen type. The results of the multiplet calculation of the Zr4+ atom show that the change in the splitting in the crystal field, which is described by the 10Dq parameter, is due to the change in the ratio of covalent and ionic contributions to the chemical bond. The resonance band near the Fermi level in the valence band spectra is observed for ZrTe2 in the Zr 3p-4d resonant excitation mode. The extent of photon energy indicates the charge localization on the Zr atom. Similar resonance band for ZrSe2 is absent; it indicates the presence of a gap at the Fermi level.

  20. Communication: Direct evidence for sequential dissociation of gas-phase Fe(CO)5 via a singlet pathway upon excitation at 266 nm

    PubMed Central

    Leitner, T.; Mazza, T.; Schröder, H.; Kunnus, K.; Schreck, S.; Radcliffe, P.; Düsterer, S.; Meyer, M.; Föhlisch, A.

    2017-01-01

    We prove the hitherto hypothesized sequential dissociation of Fe(CO)5 in the gas phase upon photoexcitation at 266 nm via a singlet pathway with time-resolved valence and core-level photoelectron spectroscopy with an x-ray free-electron laser. Valence photoelectron spectra are used to identify free CO molecules and to determine the time constants of stepwise dissociation to Fe(CO)4 within the temporal resolution of the experiment and further to Fe(CO)3 within 3 ps. Fe 3p core-level photoelectron spectra directly reflect the singlet spin state of the Fe center in Fe(CO)5, Fe(CO)4, and Fe(CO)3 showing that the dissociation exclusively occurs along a singlet pathway without triplet-state contribution. Our results are important for assessing intra- and intermolecular relaxation processes in the photodissociation dynamics of the prototypical Fe(CO)5 complex in the gas phase and in solution, and they establish time-resolved core-level photoelectron spectroscopy as a powerful tool for determining the multiplicity of transition metals in photochemical reactions of coordination complexes. PMID:28595420

  1. The production and photoelectron spectrum of thiazyl iodide. NSI

    NASA Astrophysics Data System (ADS)

    Allaf, A. W.; Matti, G. Y.; Suffolk, R. J.; Watts, J. D.

    1989-02-01

    The previously unknown molecule thiazyl iodide, NSI, has been prepared and studied by HeI photoelectron and low-resolution infrared spectroscopy. It has been produced by an on-line process using thiazyl chloride, NSCl, as precursor. The observed photoelectron spectrum has been rationalised using ab initio molecular-orbital calculations. The first ionisation energy is 10.06±0.05 eV, assigned to a largely non-bonding orbital with major components on nitrogen and iodine. Gas-phase infrared spectra yield a value for ν 1 of 1295 cm -1.

  2. Photoelectron spectroscopy study of the electronic structures at CoPc/Bi(111) interface

    NASA Astrophysics Data System (ADS)

    Sun, Haoliang; Liang, Zhaofeng; Shen, Kongchao; Hu, Jinbang; Ji, Gengwu; Li, Zheshen; Li, Haiyang; Zhu, Zhiyuan; Li, Jiong; Gao, Xingyu; Han, Huang; Jiang, Zheng; Song, Fei

    2017-07-01

    Self-assembly of functional molecules on solid substrate has been recognized as an appealing approach for the fabrication of diverse nanostructures for nanoelectronics. Herein, we investigate the growth of cobalt phthalocyanine (CoPc) on a Bi(111) surface with focus on the interface electronic structures utilizing photoelectron spectroscopy. While charge transfer from bismuth substrate to the molecule results in the emergence of an interface component in the Co 3p core level at lower binding energy, core-levels associated to the molecular ligand (C 1s and N 1s) are less influenced by the adsorption. In addition, density functional theory (DFT) calculations also support the empirical inference that the molecule-substrate interaction mainly involves the out-of-plane empty Co 3d orbital and bismuth states. Finally, valence band spectra demonstrate the molecule-substrate interaction is induced by interface charge transfer, agreeing well with core level measurements. Charge transfer is shown to be mainly from the underlying bismuth substrate to the empty states located at the central Co atom in the CoPc molecules. This report may provide a fundamental basis to the on-surface engineering of interfaces for molecular devices and spintronics.

  3. Computational and photoelectron spectroscopic study of the dipole-bound anions, indole(H2O)1,2 (.).

    PubMed

    Buytendyk, A M; Buonaugurio, A M; Xu, S-J; Nilles, J M; Bowen, K H; Kirnosov, N; Adamowicz, L

    2016-07-14

    We report our joint computational and anion photoelectron spectroscopic study of indole-water cluster anions, indole(H2O)1,2 (-). The photoelectron spectra of both cluster anions show the characteristics of dipole-bound anions, and this is confirmed by our theoretical computations. The experimentally determined vertical electron detachment (VDE) energies for indole(H2O)1 (-) and indole(H2O)2 (-) are 144 meV and 251 meV, respectively. The corresponding theoretically determined VDE values for indole(H2O)1 (-) and indole(H2O)2 (-) are 124 meV and 255 meV, respectively. The vibrational features in the photoelectron spectra of these cluster anions are assigned as the vibrations of the water molecule.

  4. Computational and photoelectron spectroscopic study of the dipole-bound anions, indole(H2O)1,2-

    NASA Astrophysics Data System (ADS)

    Buytendyk, A. M.; Buonaugurio, A. M.; Xu, S.-J.; Nilles, J. M.; Bowen, K. H.; Kirnosov, N.; Adamowicz, L.

    2016-07-01

    We report our joint computational and anion photoelectron spectroscopic study of indole-water cluster anions, indole(H2O)1,2-. The photoelectron spectra of both cluster anions show the characteristics of dipole-bound anions, and this is confirmed by our theoretical computations. The experimentally determined vertical electron detachment (VDE) energies for indole(H2O)1- and indole(H2O)2- are 144 meV and 251 meV, respectively. The corresponding theoretically determined VDE values for indole(H2O)1- and indole(H2O)2- are 124 meV and 255 meV, respectively. The vibrational features in the photoelectron spectra of these cluster anions are assigned as the vibrations of the water molecule.

  5. Photoelectron energy loss and spectral features deduced by the plasma line technique. [in topside F region

    NASA Technical Reports Server (NTRS)

    Abreu, V. J.; Carlson, H. C.

    1977-01-01

    Plasma line data gathered at the Arecibo Observatory are used to examine relative variations in topside F region differential photoelectron fluxes in the 5- to 20-eV range. A spectral feature not found in present theoretically calculated spectra is noted near 15 eV. A new approach to the interpretation of the measured spectra is taken, which allows a qualitative estimate of the relative importance of different energy loss mechanisms. The altitude variation of the observed photoelectron flux energy spectra at the higher altitudes (above 350 km) and the lower energies (less than 10 eV) agrees quantitatively with the expected variation of the spectrum.

  6. Sample-morphology effects on x-ray photoelectron peak intensities. III. Simulated spectra of model core–shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Cedric J., E-mail: cedric.powell@nist.gov; Chudzicki, Maksymilian; Werner, Wolfgang S. M.

    2015-09-15

    The National Institute of Standards and Technology database for the simulation of electron spectra for surface analysis has been used to simulate Cu 2p photoelectron spectra for four types of spherical copper–gold nanoparticles (NPs). These simulations were made to extend the work of Tougaard [J. Vac. Sci. Technol. A 14, 1415 (1996)] and of Powell et al. [J. Vac. Sci. Technol. A 31, 021402 (2013)] who performed similar simulations for four types of planar copper–gold films. The Cu 2p spectra for the NPs were compared and contrasted with analogous results for the planar films and the effects of elastic scatteringmore » were investigated. The new simulations were made for a monolayer of three types of Cu/Au core–shell NPs on a Si substrate: (1) an Au shell of variable thickness on a Cu core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; (2) a Cu shell of variable thickness on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; and (3) an Au shell of variable thickness on a 1 nm Cu shell on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. For these three morphologies, the outer-shell thickness was varied until the Cu 2p{sub 3/2} peak intensity was the same (within 2%) as that found in our previous work with planar Cu/Au morphologies. The authors also performed similar simulations for a monolayer of spherical NPs consisting of a CuAu{sub x} alloy (also on a Si substrate) with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. In the latter simulations, the relative Au concentration (x) was varied to give the same Cu 2p{sub 3/2} peak intensity (within 2%) as that found previously. For each morphology, the authors performed simulations with elastic scattering switched on and off. The authors found that elastic-scattering effects were generally strong for the Cu-core/Au-shell and weak for the Au-core/Cu-shell NPs; intermediate elastic-scattering effects were found for the Au-core/Cu-shell/Au-shell NPs. The shell thicknesses required

  7. Study of Nb2O(y) (y = 2-5) anion and neutral clusters using anion photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Mann, Jennifer E; Waller, Sarah E; Rothgeb, David W; Jarrold, Caroline Chick

    2011-09-14

    A study combining anion photoelectron spectroscopy and density functional theory calculations on the transition metal suboxide series, Nb(2)O(y)(-) (y = 2-5), is described. Photoelectron spectra of the clusters are obtained, and Franck-Condon simulations using calculated anion and neutral structures and frequencies are used to evaluate the calculations and assign transitions observed in the spectra. The spectra, several of which exhibit partially resolved vibrational structure, show an increase in electron affinity with increasing cluster oxidation state. Hole-burning experiments suggest that the photoelectron spectra of both Nb(2)O(2)(-) and Nb(2)O(3)(-) have contributions from more than one structural isomer. Reasonable agreement between experiment and computational results is found among all oxides. © 2011 American Institute of Physics

  8. Valence structures of aromatic bioactive compounds: a combined theoretical and experimental study.

    PubMed

    Wickrama Arachchilage, Anoja Pushpamali; Feyer, Vitaliy; Plekan, Oksana; Iakhnenko, Marianna; Prince, Kevin C; Wang, Feng

    2012-09-01

    Valence electronic structures of three recently isolated aryl bioactive compounds, namely 2-phenylethanol (2PE), p-hydroxyphenylethanol (HPE) and 4-hydroxybenzaldehyde (HBA), are studied using a combined theoretical and experimental method. Density functional theory-based calculations indicate that the side chains cause electron charge redistribution and therefore influence the aromaticity of the benzene derivatives. The simulated IR spectra further reveal features induced by the side chains. Solvent effects on the IR spectra are simulated using the polarizable continuum model, which exhibits enhancement of the O-H stretch vibrations with significant red-shift of 464 cm(-1) in 2PE. A significant spectral peak splitting of 94 cm(-1) between O(4)-H and O(8)-H of HPE is revealed in an aqueous environment. Experimental measurements for valence binding energy spectra for 2PE, HPE and HBA are presented and analyzed using outer-valence Green function calculations. The experimental (predicted) first ionization energies are measured as 9.19 (8.79), 8.47 (8.27) and 8.97 (8.82) eV for 2PE, HPE and HBA, respectively. The frontier orbitals (highest occupied molecular orbitals, HOMOs, and lowest unoccupied molecular orbitals, LUMOs) have similar atomic orbital characters although the HOMO-LUMO energy gaps are quite different.

  9. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation.

    PubMed

    Gartmann, Thomas E; Hartweg, Sebastian; Ban, Loren; Chasovskikh, Egor; Yoder, Bruce L; Signorell, Ruth

    2018-06-06

    Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter β as a function of cluster size. A remarkably steep decrease of β with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

  10. Pressure and magnetic field effects on the valence transition of EuRh2Si2

    NASA Astrophysics Data System (ADS)

    Mitsuda, Akihiro; Kishaba, Eigo; Fujimoto, Takumi; Oyama, Kohei; Wada, Hirofumi; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki

    2018-05-01

    We have measured the X-ray absorption spectra (XAS), electrical resistivity and magnetic susceptibility of EuRh2Si2, which undergoes a valence transition under high pressures. A sharp decrease in the Eu valence determined from the XAS was observed at around 70 K in the temperature dependence at P = 1.2-1.9 GPa. In the temperature dependence of electrical resistivity and magnetic susceptibility, we observed jumps associated with the temperature-induced valence transition under high pressures. The magnetoresistance detected a field-induced valence transition. The results are discussed from the thermodynamic point of view.

  11. Effects of ultrashort laser pulses on angular distributions of photoionization spectra.

    PubMed

    Ooi, C H Raymond; Ho, W L; Bandrauk, A D

    2017-07-27

    We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while  odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.

  12. Rebonding of Se to As and Ge in Ge33As12Se55 films upon thermal annealing: Evidence from x-ray photoelectron spectra investigations

    NASA Astrophysics Data System (ADS)

    Wang, R. P.; Choi, D. Y.; Rode, A. V.; Madden, S. J.; Luther-Davies, B.

    2007-06-01

    We have measured and analyzed x-ray photoelectron spectra (XPS) of as-grown and annealed Ge33As12Se55 films compared with bulk material. We found that the as-grown film contains a large number of separated Se clusters which can coalesce with As and Ge after annealing at high temperatures. In addition, both the Ge and As 3d spectra show the presence of oxides. While the Ge oxidation increases with an increasing annealing temperature, As oxidation is almost unaffected by annealing. The difference could be due to their different electro-negativities. Our results suggest that, while thermal annealing is effective to move the film toward the bond structure of bulk glass, the simultaneous surface oxidation must be suppressed in order to achieve high quality films.

  13. Application of Koopmans' theorem for density functional theory to full valence-band photoemission spectroscopy modeling.

    PubMed

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-10-05

    In this work, Koopmans' theorem for Kohn-Sham density functional theory (KS-DFT) is applied to the photoemission spectra (PES) modeling over the entire valence-band. To examine the validity of this application, a PES modeling scheme is developed to facilitate a full valence-band comparison of theoretical PES spectra with experiments. The PES model incorporates the variations of electron ionization cross-sections over atomic orbitals and a linear dispersion of spectral broadening widths. KS-DFT simulations of pristine rubrene (5,6,11,12-tetraphenyltetracene) and potassium-rubrene complex are performed, and the simulation results are used as the input to the PES models. Two conclusions are reached. First, decompositions of the theoretical total spectra show that the dissociated electron of the potassium mainly remains on the backbone and has little effect on the electronic structures of phenyl side groups. This and other electronic-structure results deduced from the spectral decompositions have been qualitatively obtained with the anionic approximation to potassium-rubrene complexes. The qualitative validity of the anionic approximation is thus verified. Second, comparison of the theoretical PES with the experiments shows that the full-scale simulations combined with the PES modeling methods greatly enhance the agreement on spectral shapes over the anionic approximation. This agreement of the theoretical PES spectra with the experiments over the full valence-band can be regarded, to some extent, as a collective validation of the application of Koopmans' theorem for KS-DFT to valence-band PES, at least, for this hydrocarbon and its alkali-adsorbed complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Identification of Cr valence states in Cr and Nd co-doped Lu3Al5O12 laser ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Pande; Jiang, Benxue; Fan, Jintai; Mao, Xiaojian; Zhang, Long

    2017-09-01

    Cr and Nd co-doped laser ceramics, as the potential gain materials in inertial confinement fusion (ICF), have been widely investigated. And the study on valence states of chromium ions is important. The effects of sintering additives and annealing atmosphere on the valence state of chromium were studied in detail, and the results shown that the Cr valence states were demonstrated to be Cr2+ and Cr3+ ions in HIP-sintered Cr(0.2 at.%), Nd(0.8 at.%): LuAG laser ceramics. And the intensity of the near-infrared absorption band caused by Cr2+ ions was attenuated with the decreasing SiO2 concentration and increasing MgO amount. The near-infrared absorption could be eliminated by annealing in air. And the transformation of valence states of Cr ions in the Cr,Nd:LuAG ceramics were also confirmed by electron paramagnetic resonance and X-ray photoelectron spectroscopy.

  15. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Lohani, H.; Kundu, A. K.; Patel, R.; Solanki, G. K.; Menon, Krishnakumar S. R.; Sekhar, B. R.

    2015-07-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ-Z, Γ-Y and Γ-T symmetry directions. The valence band maximum occurs nearly midway along the Γ-Z direction, at a binding energy of -0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ-T direction. Detailed electronic structure analysis reveals the significance of the cation-anion 4p orbitals hybridization in the valence band dispersion of IV-VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis.

  16. Levels of Valence

    PubMed Central

    Shuman, Vera; Sander, David; Scherer, Klaus R.

    2013-01-01

    The distinction between the positive and the negative is fundamental in our emotional life. In appraisal theories, in particular in the component process model of emotion (Scherer, 1984, 2010), qualitatively different types of valence are proposed based on appraisals of (un)pleasantness, goal obstructiveness/conduciveness, low or high power, self-(in)congruence, and moral badness/goodness. This multifaceted conceptualization of valence is highly compatible with the frequent observation of mixed feelings in real life. However, it seems to contradict the one-dimensional conceptualization of valence often encountered in psychological theories, and the notion of valence as a common currency used to explain choice behavior. Here, we propose a framework to integrate the seemingly disparate conceptualizations of multifaceted valence and one-dimensional valence by suggesting that valence should be conceived at different levels, micro and macro. Micro-valences correspond to qualitatively different types of evaluations, potentially resulting in mixed feelings, whereas one-dimensional macro-valence corresponds to an integrative “common currency” to compare alternatives for choices. We propose that conceptualizing levels of valence may focus research attention on the mechanisms that relate valence at one level (micro) to valence at another level (macro), leading to new hypotheses, and addressing various concerns that have been raised about the valence concept, such as the valence-emotion relation. PMID:23717292

  17. Photoelectron interference fringes by super intense x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2009-09-01

    The photoelectron spectra of H- produced by circularly polarized strong high-frequency laser pulses are theoretically studied. An oscillating substructure in the above-threshold ionization (ATI) peaks is observed, which extends the validity of the earlier findings in the 1D calculations [K. Toyota et al., Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. Its origin is due to an interference between a pair of photoelectron wave packets created in the rising and falling part of the pulse, which appears clearly in the stabilization regime.

  18. Pressure and temperature dependence of the Ce valence and c -f hybridization gap in Ce T2In5(T =Co ,Rh ,Ir ) heavy-fermion superconductors

    NASA Astrophysics Data System (ADS)

    Yamaoka, H.; Yamamoto, Y.; Schwier, E. F.; Honda, F.; Zekko, Y.; Ohta, Y.; Lin, J.-F.; Nakatake, M.; Iwasawa, H.; Arita, M.; Shimada, K.; Hiraoka, N.; Ishii, H.; Tsuei, K.-D.; Mizuki, J.

    2015-12-01

    Pressure- and temperature-induced changes in the Ce valence and c -f hybridization of the Ce115 superconductors have been studied systematically. Resonant x-ray-emission spectroscopy indicated that the increase of the Ce valence with pressure was significant for CeCoIn5, and moderate for CeIr (In0.925Cd0.075)5 . We found no abrupt change of the Ce valence in the Kondo regime for CeIr (In0.925Cd0.075)5 , which suggests that valence fluctuations are unlikely to mediate the superconductivity in this material. X-ray-diffraction results were consistent with the pressure-induced change in the Ce valence. High-resolution photoelectron spectroscopy revealed a temperature-dependent reduction of the spectral intensity at the Fermi level, indicating enhanced c -f hybridization on cooling.

  19. Effect of relativity on the ionization spectra of the xenon fluorides XeFn (n=2, 4, 6).

    PubMed

    Pernpointner, Markus; Cederbaum, Lorenz S

    2005-06-01

    Noble gas compounds exhibit special chemical bonding situations and have been investigated by various spectroscopic and theoretical techniques. In this work we calculate the ionization spectra of the xenon fluorides (XeF2,XeF4, and XeF6) in the valence and subvalence (down to Xe 4d) areas by application of the recently developed Dirac-Hartree-Fock one-particle propagator technique. In this technique, the relativistic (four-component) and electron correlation effects are computed simultaneously. The xenon compounds show considerable spin-orbit splitting strongly influencing the photoelectron spectrum not reproducible in prior calculations. Comparison to one-component methods is made and the occurring satellite structures are interpreted. The satellite structures can be attributed either to the breakdown of the one-particle picture or to a reflection of intra-atomic and interatomic Auger decay processes within the molecule.

  20. Impact of Coulomb potential on peak structures arising in momentum and low-energy photoelectron spectra produced in strong-field ionization of laser-irradiated atoms

    NASA Astrophysics Data System (ADS)

    Pyak, P. E.; Usachenko, V. I.

    2018-03-01

    The phenomenon of pronounced peak structure(s) of longitudinal momentum distributions as well as a spike-like structure of low-energy spectra of photoelectrons emitted from laser-irradiated Ar and Ne atoms in a single ionization process is theoretically studied in the tunneling and multiphoton regimes of ionization. The problem is addressed assuming only the direct above-threshold ionization (ATI) as a physical mechanism underlying the phenomenon under consideration (viz. solely contributing to observed photoelectron momentum distributions (PMD)) and using the Coulomb-Volkov (CV) ansatz within the frame of conventional strong-field approximation (SFA) applied in the length-gauge formulation. The developed CV-SFA approach also incorporates the density functional theory essentially exploited for numerical composition of initial (laser-free) atomic state(s) constructed from atomic orbitals of Gaussian type. Our presented CV-SFA based (and laser focal-volume averaged) calculation results proved to be well reproducing both the pronounced double-peak and/or ATI-like multi-peak structure(s) experimentally observed in longitudinal PMD under conditions of tunneling and/or multiphoton regime, respectively. In addition, our CV-SFA results presented for tunneling regime also suggest and remarkably reproduce a pronounced structure observed in relevant experiments as a ‘spike-like’ enhanced maximum arising in low-energy region (around the value of about 1 eV) of photoelectron spectra. The latter consistency allows to identify and interpret these results as the so-called low-energy structure (LES) since the phenomenon proved to appear as the most prominent if the influence of Coulomb potential on photoelectron continuum states is maximally taken into account under calculations (viz. if the parameter Z in CV’s functions is put equal to 1). Moreover, the calculated LES proved to correspond (viz., established as closely related) to the mentioned double-peak structure arising

  1. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection.

    PubMed

    Lehmann, C Stefan; Ram, N Bhargava; Powis, Ivan; Janssen, Maurice H M

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  2. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M., E-mail: m.h.m.janssen@vu.nl

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flightmore » mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  3. A New NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA): Application to Angle-Resolved X-ray Photoelectron Spectroscopy of HfO2, ZrO2, HfSiO4, and ZrSiO4 Films on Silicon

    NASA Astrophysics Data System (ADS)

    Powell, C. J.; Smekal, W.; Werner, W. S. M.

    2005-09-01

    We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. We report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.

  4. Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom

    NASA Astrophysics Data System (ADS)

    Brauße, Felix; Goldsztejn, Gildas; Amini, Kasra; Boll, Rebecca; Bari, Sadia; Bomme, Cédric; Brouard, Mark; Burt, Michael; de Miranda, Barbara Cunha; Düsterer, Stefan; Erk, Benjamin; Géléoc, Marie; Geneaux, Romain; Gentleman, Alexander S.; Guillemin, Renaud; Ismail, Iyas; Johnsson, Per; Journel, Loïc; Kierspel, Thomas; Köckert, Hansjochen; Küpper, Jochen; Lablanquie, Pascal; Lahl, Jan; Lee, Jason W. L.; Mackenzie, Stuart R.; Maclot, Sylvain; Manschwetus, Bastian; Mereshchenko, Andrey S.; Mullins, Terence; Olshin, Pavel K.; Palaudoux, Jérôme; Patchkovskii, Serguei; Penent, Francis; Piancastelli, Maria Novella; Rompotis, Dimitrios; Ruchon, Thierry; Rudenko, Artem; Savelyev, Evgeny; Schirmel, Nora; Techert, Simone; Travnikova, Oksana; Trippel, Sebastian; Underwood, Jonathan G.; Vallance, Claire; Wiese, Joss; Simon, Marc; Holland, David M. P.; Marchenko, Tatiana; Rouzée, Arnaud; Rolles, Daniel

    2018-04-01

    Due to its element and site specificity, inner-shell photoelectron spectroscopy is a widely used technique to probe the chemical structure of matter. Here, we show that time-resolved inner-shell photoelectron spectroscopy can be employed to observe ultrafast chemical reactions and the electronic response to the nuclear motion with high sensitivity. The ultraviolet dissociation of iodomethane (CH3I ) is investigated by ionization above the iodine 4 d edge, using time-resolved inner-shell photoelectron and photoion spectroscopy. The dynamics observed in the photoelectron spectra appear earlier and are faster than those seen in the iodine fragments. The experimental results are interpreted using crystal-field and spin-orbit configuration interaction calculations, and demonstrate that time-resolved inner-shell photoelectron spectroscopy is a powerful tool to directly track ultrafast structural and electronic transformations in gas-phase molecules.

  5. X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals

    NASA Astrophysics Data System (ADS)

    Knipe, S. W.; Mycroft, J. R.; Pratt, A. R.; Nesbitt, H. W.; Bancroff, G. M.

    1995-03-01

    Samples of natural pyrrhotite and pyrite were fractured within the analytical chamber of an X-ray photoelectron spectrometer. The pristine mineral surfaces were then exposed, in the absence of oxygen, to total doses of 100, 200, 400, 800, 1400, 28,000, and 300,000 Langmuirs (L) of D2O. X-ray photoelectron spectroscopic (XPS) analyses were performed between each water dose, to investigate the interaction of these iron sulphide surfaces with water vapour. Recorded Fe and S photoelectron spectra showed no evidence of oxidation products on either mineral, even at highest D2O doses, nor could an oxide oxygen signal be fitted in the spectra for either mineral. On pyrrhotite, the O 1s spectra are composed of contributions from dominantly hydroxyl (at 532.0 ± 0.2 eV ) and subordinate chemisorbed water (at 533.5 ± 0.2 eV) signals. The main O is peak on pyrite is also formed from hydroxyl (531.0 ± 0.3 eV) and adsorbed water/hydroxyl (at 532.3 eV) signals. However, some O is spectra recorded on pyrite have peaks at anomalously high binding energies (>535 eV ). The anomalous high binding energy species are attributed to electrically-isolated OH/H2O, as reported elsewhere, and to liquid-like water, which has not previously been described in the literature. Pyrrhotite and pyrite interact with water via fundamentally different processes. Pyrrhotite reaction involves the donation of electron charge through Fe vacancies, whereas the water species detected on pyrite interact with the Fe 3d (eg) molecular orbital, and it is suggested that hydrogen bonding with the disulphide moiety may be important.

  6. Electronic structures of U X3 (X =Al , Ga, and In) studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2017-09-01

    The electronic structures of U X3 (X =Al , Ga , and In ) were studied by photoelectron spectroscopy to understand the relationship between their electronic structures and magnetic properties. The band structures and Fermi surfaces of UAl3 and UGa3 were revealed experimentally by angle-resolved photoelectron spectroscopy (ARPES), and they were compared with the result of band-structure calculations. The topologies of the Fermi surfaces and the band structures of UAl3 and UGa3 were explained reasonably well by the calculation, although bands near the Fermi level (EF) were renormalized owing to the finite electron correlation effect. The topologies of the Fermi surfaces of UAl3 and UGa3 are very similar to each other, except for some minor differences. Such minor differences in their Fermi surface or electron correlation effect might take an essential role in their different magnetic properties. No significant changes were observed between the ARPES spectra of UGa3 in the paramagnetic and antiferromagnetic phases, suggesting that UGa3 is an itinerant weak antiferromagnet. The effect of chemical pressure on the electronic structures of U X3 compounds was also studied by utilizing the smaller lattice constants of UAl3 and UGa3 than that of UIn3. The valence band spectrum of UIn3 is accompanied by a satellitelike structure on the high-binding-energy side. The core-level spectrum of UIn3 is also qualitatively different from those of UAl3 and UGa3. These findings suggest that the U 5 f states in UIn3 are more localized than those in UAl3 and UGa3.

  7. Quantitative x-ray photoelectron spectroscopy: Quadrupole effects, shake-up, Shirley background, and relative sensitivity factors from a database of true x-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Seah, M. P.; Gilmore, I. S.

    2006-05-01

    An analysis is provided of the x-ray photoelectron spectroscopy (XPS) intensities measured in the National Physical Laboratory (NPL) XPS database for 46 solid elements. This present analysis does not change our previous conclusions concerning the excellent correlation between experimental intensities, following deconvolving the spectra with angle-averaged reflection electron energy loss data, and the theoretical intensities involving the dipole approximation using Scofield’s cross sections. Here, more recent calculations for cross sections by Trzhaskovskaya involving quadrupole terms are evaluated and it is shown that their cross sections diverge from the experimental database results by up to a factor of 5. The quadrupole angular terms lead to small corrections that are close to our measurement limit but do appear to be supported in the present analysis. Measurements of the extent of shake-up for the 46 elements broadly agree with the calculations of Yarzhemsky but not in detail. The predicted constancy in the shake-up contribution by Yarzhemsky implies that the use of the Shirley background will lead to a peak area that is a constant fraction of the true peak area including the shake-up intensities. However, the measured variability of the shake-up contribution makes the Shirley background invalid for quantification except for situations where the sensitivity factors are from reference samples similar to those being analyzed.

  8. Direct determination of exciton wavefunction amplitudes by the momentum-resolved photo-electron emission experiment

    NASA Astrophysics Data System (ADS)

    Ohnishi, Hiromasa; Tomita, Norikazu; Nasu, Keiichiro

    2018-03-01

    We study conceptional problems of a photo-electron emission (PEE) process from a free exciton in insulating crystals. In this PEE process, only the electron constituting the exciton is suddenly emitted out of the crystal, while the hole constituting the exciton is still left inside and forced to be recoiled back to its original valence band. This recoil on the hole is surely reflected in the spectrum of the PEE with a statistical distribution along the momentum-energy curve of the valence band. This distribution is nothing but the square of the exciton wavefunction amplitude, since it shows how the electron and the hole are originally bound together. Thus, the momentum-resolved PEE can directly determine the exciton wavefunction. These problems are clarified, taking the Γ and the saddle point excitons in GaAs, as typical examples. New PEE experiments are also suggested.

  9. Measurement of magnetic field aligned potential differences using high resolution conjugate photoelectron energy spectra

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Doering, J. P.; Potemra, T. A.; Bostrom, C. O.; Brace, L. H.; Heelis, R. A.; Hanson, W. B.

    1977-01-01

    Simultaneous high-resolution observations of a distinctive feature in the energy spectrum of conjugate photoelectrons and spacecraft potential relative to the local ionosphere have allowed the net potential difference between magnetic conjugate points at latitudes below the region of low-energy (i.e., lower than 100 eV) auroral electron precipitation to be determined. Measurements made at 300 km from Atmosphere Explorer C show that there is normally no net potential difference between hemispheres in this region, which extended up to invariant latitudes as high as 74 deg. Two types of apparently related anomalous behavior were infrequently observed at high latitudes. During these periods the incident flux of conjugate photoelectrons was either decelerated by about 3 eV or was not detected.

  10. Cs(2)K(UO)(2)Si(4)O(12): a mixed-valence uranium(IV,V) silicate.

    PubMed

    Lee, Cheng-Shiuan; Wang, Sue-Lein; Lii, Kwang-Hwa

    2009-10-28

    The first mixed-valence uranium(IV,V) silicate is synthesized under high-temperature, high-pressure hydrothermal conditions. The structure contains chains of corner-sharing U(IV,V)O(6) octahedra which are interconnected by Si(4)O(12) four-membered rings to form a 3-D framework. XPS and XANES spectra were measured to identify the valence state of uranium.

  11. Photoelectron spectroscopy of the 6-azauracil anion.

    PubMed

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  12. A New NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA): Application to Angle-Resolved X-ray Photoelectron Spectroscopy of HfO2, ZrO2, HfSiO4, and ZrSiO4 Films on Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, C.J.; Smekal, W.; Werner, W.S.M.

    2005-09-09

    We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. Wemore » report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.« less

  13. Hard X-ray photoelectron spectroscopy of Li{sub x}Ni{sub 1−x}O epitaxial thin films with a high lithium content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumara, L. S. R., E-mail: KUMARA.Rosantha@nims.go.jp; Yang, Anli; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp

    2014-07-28

    The core-level and valence-band electronic structures of Li{sub x}Ni{sub 1−x}O epitaxial thin films with x = 0, 0.27, and 0.48 were studied by hard X-ray photoelectron spectroscopy. A double peak structure, consisting of a main peak and a shoulder peak, and a satellite structure were observed in the Ni 2p{sub 3/2} core-level spectra. The intensity ratio of the shoulder to main peak in this double peak structure increased with increasing lithium content in Li{sub x}Ni{sub 1−x}O. This lithium doping dependence of the Ni 2p{sub 3/2} core-level spectra was investigated using an extended cluster model, which included the Zhang–Rice (ZR) doubletmore » bound states arising from a competition between O 2p – Ni 3d hybridization and the Ni on-site Coulomb interaction. The results indicated that the change in the intensity ratio in the main peak is because of a reduction in the ZR doublet bound states from lithium substitutions. This strongly suggests that holes compensating Li doping in Li{sub x}Ni{sub 1−x}O are of primarily ZR character.« less

  14. Unambiguous observation of F-atom core-hole localization in CF 4 through body-frame photoelectron angular distributions

    DOE PAGES

    McCurdy, C. W.; Rescigno, T. N.; Trevisan, C. S.; ...

    2017-01-17

    A dramatic symmetry breaking in K-shell photoionization of the CF 4 molecule in which a core-hole vacancy is created in one of four equivalent fluorine atoms is displayed in the molecular frame angular distribution of the photoelectrons. In observing the photoejected electron in coincidence with an F + atomic ion after Auger decay we see how selecting the dissociation path where the core hole was localized was almost exclusively on that atom. A combination of measurements and ab initio calculations of the photoelectron angular distribution in the frame of the recoiling CF 3 + and F + atoms elucidates themore » underlying physics that derives from the Ne-like valence structure of the F(1s -1) core-excited atom.« less

  15. Micro-Valences: Perceiving Affective Valence in Everyday Objects

    PubMed Central

    Lebrecht, Sophie; Bar, Moshe; Barrett, Lisa Feldman; Tarr, Michael J.

    2012-01-01

    Perceiving the affective valence of objects influences how we think about and react to the world around us. Conversely, the speed and quality with which we visually recognize objects in a visual scene can vary dramatically depending on that scene’s affective content. Although typical visual scenes contain mostly “everyday” objects, the affect perception in visual objects has been studied using somewhat atypical stimuli with strong affective valences (e.g., guns or roses). Here we explore whether affective valence must be strong or overt to exert an effect on our visual perception. We conclude that everyday objects carry subtle affective valences – “micro-valences” – which are intrinsic to their perceptual representation. PMID:22529828

  16. Role of surface energy on the morphology and optical properties of GaP micro & nano structures grown on polar and non-polar substrates

    NASA Astrophysics Data System (ADS)

    Roychowdhury, R.; Kumar, Shailendra; Wadikar, A.; Mukherjee, C.; Rajiv, K.; Sharma, T. K.; Dixit, V. K.

    2017-10-01

    Role of surface energy on the morphology, crystalline quality, electronic structure and optical properties of GaP layer grown on Si (001), Si (111), Ge (111) and GaAs (001) is investigated. GaP layers are grown on four different substrates under identical growth kinetics by metal organic vapour phase epitaxy. The atomic force microscopy images show that GaP layer completely covers the surface of GaAs substrate. On the other hand, the surfaces of Si (001), Si (111), Ge (111) substrates are partially covered with crystallographically morphed GaP island type micro and nano-structures. Origin of these crystallographically morphed GaP island is explained by the theoretical calculation of surface energy of the layer and corresponding substrates respectively. The nature of GaP island type micro and nano-structures and layers are single crystalline with existence of rotational twins on Si and Ge (111) substrates which is confirmed by the phi, omega and omega/2theta scans of high resolution x-ray diffraction. The electronic valence band offsets between the GaP and substrates have been determined from the valence band spectra of ultraviolet photoelectron spectroscopy. The valence electron plasmon of GaP are investigated by studying the energy values of Ga (3d) core level along with loss peaks in the energy dependent photoelectron spectra. The peak observed within the range of 3-6 eV from the Ga (3d) core level in the photoelectron spectra are associated to inter band transitions as their energy values are estimated from the pseudo dielectric function by the spectroscopic ellipsometry.

  17. Angle-resolved photoelectron spectroscopy of cyclopropane

    NASA Astrophysics Data System (ADS)

    Keller, P. R.; Taylor, J. W.; Carlson, Thomas A.; Whitley, T. A.; Grimm, F. A.

    1985-10-01

    The angular distribution parameter, β, determined for the valence orbitals (IP < 18 eV) of cyclopropane in the 10-30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β for photoelectron energies between, 2 and 10 eV above threshold was found to be similar to those found previously for other σ orbitals. The effects of Jahn-Teller splitting on β for the 3e' orbital were found to be small but definitely present. The overall shape and magnitude of the β( hv) curve are, however, sufficiently for the different Jahn-Teller components that, for purposes of orbital assignments using β( hv) curves the shape and magnitude of the curves can be considered associated only with the initial state. Resonance photoionization features at a photon ener of ≈ 18 eV were observed in the 3e' and 3a' 1 orbitals and tentatively assigned to autoionization.

  18. Electronic structure and optical properties of Cs2HgCl4: DFT calculations and X-ray photoelectron spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Parasyuk, O. V.; Fedorchuk, A. O.; Khyzhun, O. Y.

    2016-10-01

    A high-quality single crystal of cesium mercury tetrabromide, Cs2HgCl4, was synthesized by using the vertical Bridgman-Stockbarger method and its electronic structure was studied from both experimental and theoretical viewpoints. In particular, X-ray photoelectron spectra were measured for both pristine and Ar+ ion-bombarded Cs2HgCl4 single crystal surfaces. The present XPS measurements indicate that the Cs2HgCl4 single crystal surface is sensitive with respect to Ar+ ion-bombardment: such a treatment changes substantially its elemental stoichiometry. With the aim of exploring total and partial densities of states within the valence band and conduction band regions of the Cs2HgCl4 compound, band-structure calculations based on density functional theory (DFT) using the augmented plane wave + local orbitals (APW + lo) method as incorporated within the WIEN2k package are performed. The calculations indicate that the Cl 3p states are the principal contributors in the upper portion of the valence band, while the Hg 5d and Cs 5p states dominate in its lower portion. In addition, the calculations allow for concluding that the unoccupied Cl p and Hg s states are the main contributors to the bottom of the conduction band. Furthermore, main optical characteristics of Cs2HgCl4, namely dispersion of the absorption coefficient, real and imaginary parts of dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient and optical reflectivity, are elucidated based on the DFT calculations.

  19. Electronic absorption and MCD spectra of M sub 2 (TMB) sub 4 sup 2+ , M = Rh and Ir. A valence-bond description of the upper electronic excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.C.; Miskowski, V.M.; Gray, H.B.

    1990-05-09

    Electronic absorption and magnetic circular dichroism (MCD) spectra of Rh{sub 2}(TMB){sub 4}{sup 2+} and Ir{sub 2}(TMB){sub 4}{sup 2+} are reported along with polarized single-crystal absorption spectra of (Ir{sub 2}(TMB){sub 4})(B(C{sub 6}H{sub 5}){sub 4}){sub 2} {times} CH{sub 3}C{sub 6}H{sub 5} (TMB = 2,5-diisocyano-2,5-dimethylhexane). Interpretation of the spectra is based on a valence-bond model that accommodates highly perturbed dimer transitions as well as monomer-like dimer excitations. In this model, half of the dimer electronic excited states possess ionic character; these states involve metal-to-metal charge transfer (MMCT). The most prominent of the weak features ({approximately} 430 nm) is assigned to the transition tomore » {sup 1}A{sub 1g} (a single-center d{sub z{sup 2}} {yields} p{sub z} excitation). High-energy features ({lambda} < 300 nm) in the spectra of Rh{sub 2}(TMB){sub 4}{sup 2+} and Ir{sub 2}(TMB){sub 4}{sup 2+} are assigned to MMCT arising from d{sub xzyz} {yields} p{sub z} excitations.« less

  20. Statistical observations of martian 20-30 eV photoelectrons by MAVEN/SWEA

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Steckiewicz, M.; Andre, N.; Mazelle, C. X.; Sauvaud, J. A.; Sakai, S.; Cravens, T.; Mitchell, D. L.; Lillis, R. J.; Espley, J. R.; Brain, D.; Andersson, L.; Jakosky, B. M.

    2016-12-01

    Photoelectron peaks in the 20-30 eV energy range are commonly observed in planetary atmospheres, produced by intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons are known to escape the planet down its tail (Frahm et al., 2006). Assuming overall charge neutrality, the number of corresponding electrons must be identical to the number of ion charges escaping the planet. Studying the photoelectrons is thus important to understand and quantify the erosion of the martian atmosphere. Moreover, the photoelectrons also play a significant role for the heating and ionization of the atmosphere. The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft has provided detailed observations of the Martian environment for the last two years thanks to its unique orbital coverage and comprehensive plasma instrument suite. The low periapsis altitudes (down to 125 km altitude) and combined presence of an electron spectrometer (Solar Wind Electron Analyzer, SWEA) and of a magnetometer (MAG) provide a unique opportunity to investigate the source region of the photoelectrons and their transport and escape down the tail. We will present statistical results of an automatic detection of 20-30 eV photoelectrons at Mars, based on a simple algorithm using three levels of confidence. More than 150,000 spectra (each averaged over 30s) revealed clear photoelectron peaks from October 2014 to May 2016. The analysis reveals several interesting features such as: the evolution of the peak shape from their source region to higher altitudes, the influence of the magnetic field topology on photoelectron transport, a clear dusk-dawn asymmetry in agreement with the recently-discovered neutral density asymmetry, the statistical influence of the EUV and solar wind parameters and the location of the photoelectron boundary. These results will also be compared with an electron transport code (Sakai et al., 2015, 2016) to better constrain the photoelectron production and transport.

  1. Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state

    NASA Astrophysics Data System (ADS)

    Rogers, Joshua P.; Anstöter, Cate S.; Verlet, Jan R. R.

    2018-03-01

    The primary electron-attachment process in electron-driven chemistry represents one of the most fundamental chemical transformations with wide-ranging importance in science and technology. However, the mechanistic detail of the seemingly simple reaction of an electron and a neutral molecule to form an anion remains poorly understood, particularly at very low electron energies. Here, time-resolved photoelectron imaging was used to probe the electron-attachment process to a non-polar molecule using time-resolved methods. An initially populated diffuse non-valence state of the anion that is bound by correlation forces evolves coherently in ∼30 fs into a valence state of the anion. The extreme efficiency with which the correlation-bound state serves as a doorway state for low-energy electron attachment explains a number of electron-driven processes, such as anion formation in the interstellar medium and electron attachment to fullerenes.

  2. X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki

    2018-04-01

    An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.

  3. Electronic structure of stoichiometric and oxygen-deficient ferroelectric Hf0.5Zr0.5O2.

    PubMed

    Perevalov, T V; Islamov, D R; Gritsenko, V A; Prosvirin, I P

    2018-05-11

    The electronic structure of oxygen-deficient Hf 0.5 Zr 0.5 O 2 in the non-centrosymmetric orthorhombic (ferroelectric) phase was investigated by means of x-ray photoelectron spectroscopy and first-principle density functional theory calculations. It was established that a peak in the photoelectron spectra observed at an energy above the valence band top of ferroelectric Hf 0.5 Zr 0.5 O 2 in ion-etched samples was due to oxygen vacancies. A method for evaluating the oxygen vacancies concentration in the material from the comparison of experimental and theoretical photoelectron spectra of the valence band is proposed. It is found that oxygen polyvacancies are not formed in ferroelectric Hf 0.5 Zr 0.5 O 2 : an energy-favorable spatial arrangement of several oxygen vacancies in the crystal corresponds to the configuration formed by noninteracting vacancies distant from each other. The oxygen vacancies in five charged states were simulated. The electron levels in the bandgap caused by charged oxygen vacancies indicate that any type of oxygen vacancies in ferroelectric Hf 0.5 Zr 0.5 O 2 can capture both electrons and holes, i.e. can act as an amphoteric localization center for charge carriers.

  4. Electronic structure of stoichiometric and oxygen-deficient ferroelectric Hf0.5Zr0.5O2

    NASA Astrophysics Data System (ADS)

    Perevalov, T. V.; Islamov, D. R.; Gritsenko, V. A.; Prosvirin, I. P.

    2018-05-01

    The electronic structure of oxygen-deficient Hf0.5Zr0.5O2 in the non-centrosymmetric orthorhombic (ferroelectric) phase was investigated by means of x-ray photoelectron spectroscopy and first-principle density functional theory calculations. It was established that a peak in the photoelectron spectra observed at an energy above the valence band top of ferroelectric Hf0.5Zr0.5O2 in ion-etched samples was due to oxygen vacancies. A method for evaluating the oxygen vacancies concentration in the material from the comparison of experimental and theoretical photoelectron spectra of the valence band is proposed. It is found that oxygen polyvacancies are not formed in ferroelectric Hf0.5Zr0.5O2: an energy-favorable spatial arrangement of several oxygen vacancies in the crystal corresponds to the configuration formed by noninteracting vacancies distant from each other. The oxygen vacancies in five charged states were simulated. The electron levels in the bandgap caused by charged oxygen vacancies indicate that any type of oxygen vacancies in ferroelectric Hf0.5Zr0.5O2 can capture both electrons and holes, i.e. can act as an amphoteric localization center for charge carriers.

  5. Electronic structure of the La 1 + xBa 2 - xCu 3O 7 + δ system studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Hwang, J.; Shih, C. K.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1989-01-01

    Photoemission experiments utilizing synchrotron radiation have been carried out on the high temperature superconductor La 1.075Ba 1.925Cu 3O 7.0. The valence band spectra show similar spectral features as those of YBa 2Cu 3O 6.9, even though large differences in relative peak intensities are observed. Oxygen-related states are identified by scanning the photon energy through the O2 s → O2 p absorption edge. The stability of the sample surface, and changes in the valence band spectra after annealing in ultrahigh vacuum are also briefly discussed.

  6. Evidence of mixed valence states in U M2Al 3 ( M = Ni, Pd) studied by X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Saito, Yasuharu; Sato, Noriaki; Komatsubara, Takemi; Suzuki, Shoji; Sato, Shigeru; Ishii, Takehiko

    1998-01-01

    We have measured the XPS valence band and core-level spectra of U M2Al 3 ( M = Ni and Pd). The results are compared with those of reference materials, dilute alloy U 0.1La 0.9Pd 2Al 3 and itinerant 5 f compound URh 3. The similarity of the core-level spectra between UPd 2Al 3 and U 0.1La 0.9Pd 2Al 3 suggests that their core-level spectra are governed by the interaction between U 5 f and ligand states of neighboring palladium and aluminum sites, with negligible contributions from neighboring uranium states. A complex satellite structure, observed in the core-level spectra of U M2Al 3, suggests that the uranium atoms are in the strong mixed valence states with 5 f2(U 4+) and 5 f3(U 3+).

  7. Plasmon satellites in valence-band photoemission spectroscopy. Ab initio study of the photon-energy dependence in semiconductors

    NASA Astrophysics Data System (ADS)

    Guzzo, M.; Kas, J. J.; Sottile, F.; Silly, M. G.; Sirotti, F.; Rehr, J. J.; Reining, L.

    2012-09-01

    We present experimental data and theoretical results for valence-band satellites in semiconductors, using the prototypical example of bulk silicon. In a previous publication we introduced a new approach that allows us to describe satellites in valence photoemission spectroscopy, in good agreement with experiment. Here we give more details; we show how the the spectra change with photon energy, and how the theory explains this behaviour. We also describe how we include several effects which are important to obtain a correct comparison between theory and experiment, such as secondary electrons and photon cross sections. In particular the inclusion of extrinsic losses and their dependence on the photon energy are key to the description of the energy dependence of spectra.

  8. Analysis of Ti and TiO2 nanolayers by total reflection X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Banaś, D.; Stabrawa, I.; Szary, K.; Sobota, D.; Majewska, U.; Wudarczyk-Moćko, J.; Braziewicz, J.; Pajek, M.

    2018-07-01

    Total reflection X-ray photoelectron spectroscopy (TRXPS) is applied in the analysis of Ti and TiO2 nanolayers deposited on silicon and silicon dioxide substrates. The idea of application of total-reflection phenomenon for exciting X-ray used in the XPS technique is briefly discussed. The experimental setup and measurement conditions for the studied Ti and TiO2 layers are presented. The XPS spectra were registered both for the non-total and total reflection regimes. The survey spectra and C1s, N1s, Ti2p and O1s photoelectron peaks are shown. For energy calibration, the position of C1s photoelectron peak was applied (C-C component, binding energy 284.8 eV). The peak to background ratios are discussed as regards the dependence of the excitation angle. An increase of this ratio for the glancing angle 1°, being below critical angle of the X-ray beam and sample material, results in an improvement of XPS detection limit by factor up to 2. In the case of the Ti nanolayer, additionally, the thickness of the overlayer TiO2 is determined. As an example of applying the TRXPS technique, the analysis of Ti nanolayers implanted by highly charged Xe35+ ions of 280 keV energy is discussed. The Xe3d and O1s photoelectron peaks are presented and discussed.

  9. Valence evaluation with approaching or withdrawing cues: directly testing valence-arousal conflict theory.

    PubMed

    Wang, Yan Mei; Li, Ting; Li, Lin

    2017-07-19

    The valence-arousal conflict theory assumes that both valence and arousal will trigger approaching or withdrawing tendencies. It also predicts that the speed of processing emotional stimuli will depend on whether valence and arousal trigger conflicting or congruent motivational tendencies. However, most previous studies have provided evidence of the interaction between valence and arousal only, and have not provided direct proof of the interactive links between valence, arousal and motivational tendencies. The present study provides direct evidence for the relationship between approach-withdrawal tendencies and the valence-arousal conflict. In an empirical test, participants were instructed to judge the valence of emotional words after visual-spatial cues that appeared to be either approaching or withdrawing from participants. A three-way interaction (valence, arousal, and approach-withdrawal tendency) was observed such that the response time was shorter if participants responded to a negative high-arousal stimulus after a withdrawing cue, or to a positive low-arousal stimulus after an approaching cue. These findings suggest that the approach-withdrawal tendency indeed plays a crucial role in valence-arousal conflict, and that the effect depends on the congruency of valence, arousal and tendency at an early stage of processing.

  10. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy.

    PubMed

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2010-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze valence states at nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO(x) micro-patterns prepared by O(2)(+) ion implantation in Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample was topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of the PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale.

  11. Calculation of density of states of transition metals: From bulk sample to nanocluster

    NASA Astrophysics Data System (ADS)

    Krasavin, Andrey V.; Borisyuk, Petr V.; Vasiliev, Oleg S.; Zhumagulov, Yaroslav V.; Kashurnikov, Vladimir A.; Kurelchuk, Uliana N.; Lebedinskii, Yuriy Yu.

    2018-03-01

    A technique is presented of restoring the electronic density of states of the valence band from data of X-ray photoelectron spectroscopy (XPS). The originality of the technique consists in using a stochastic procedure to solve an integral equation relating the density of states and the experimental X-ray photoelectron spectra via the broadening function. To obtain the broadening function, only the XPS spectra of the core levels are needed. The results are presented for bulk sample of gold and tungsten and nanoclusters of tantalum; the possibility of using the results to determine the density of states of low-dimensional structures, including ensembles of metal nanoclusters, is demonstrated.

  12. Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties

    PubMed Central

    Chen, Chun-Chi; Wu, Hsin-Hsien; Huang, Hsin-Yi; Liu, Chen-Wei; Chen, Yi-Ning

    2016-01-01

    A simple chemical method was developed for preparing high valence silver (Ag)-loaded mesoporous silica (Ag-ethylenediaminetetraacetic acid (EDTA)-SBA-15), which showed strong antibacterial activity. Ag-EDTA-SBA-15 exhibited stronger and more effective antibacterial activity than commercial Ag nanoparticles did, and it offered high stability of high valence silver in the porous matrix and long-lasting antibacterial activity. The synthesized materials were characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) analysis, and transmission electron microscopy (TEM). Ag existed in both surface complexation and Ag particles. EDTA anchored within a porous structure chelated Ag ions in higher oxidation states and prevented their agglomeration and oxidation reduction. The XRD results showed that most Ag in the Ag-EDTA-SBA-15 existed in higher oxidation states such as Ag(II) and Ag(III). However, the XPS and TEM results showed that Ag easily reduced in lower oxidation states and agglomerated as Ag particles on the exterior layer of the SBA-15. PMID:26742050

  13. Surface studies of novel oxide-free biocompatible coatings on metals

    NASA Astrophysics Data System (ADS)

    GAO, FENG

    The valence band and core-level X-ray Photoelectron Spectroscopy (XPS) was used to probe biocompatible films formed on the surface of metals. The key to the successful adhesion of these biocompatible films is shown to be the initial formation of a thin, oxide free, etidronate film on the metal. It was not found possible to prepare the biocompatible films directly on the metal surfaces. These films formed on metals may find application in medical implants. The biocompatible films were exposed to air, water and sodium chloride for corrosion studies. The thin hydroxyapatite and etidronate film on the metal show differential charging effects that caused a doubling of the peaks in some core level spectra. This shows the coating has some electric properties such as dielectric or piezoelectric characters. This coating may have application in the insulating materials of electronic circuits or dielectric/ piezoelectric layer in bio-sensors. Experiment and calculation method of X-ray Photoelectron Spectroscopy is one powerful technology in surface and interface analysis. The valence band spectra proved especially valuable in the identification of the surface chemistry of the films, and these spectra were interpreted by comparing the experimental spectra with spectra calculated using band structure calculations which showed good agreement with experiment. The calculated spectrum could also be used to compare with the difference of experiment spectra for the investigation of the interface layers.

  14. Experimental Retrieval of Target Structure Information from Laser-Induced Rescattered Photoelectron Momentum Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okunishi, M.; Pruemper, G.; Shimada, K.

    We have measured two-dimensional photoelectron momentum spectra of Ne, Ar, and Xe generated by 800-nm, 100-fs laser pulses and succeeded in identifying the spectral ridge region (back-rescattered ridges) which marks the location of the returning electrons that have been backscattered at their maximum kinetic energies. We demonstrate that the structural information, in particular the differential elastic scattering cross sections of the target ion by free electrons, can be accurately extracted from the intensity distributions of photoelectrons on the ridges, thus effecting a first step toward laser-induced self-imaging of the target, with unprecedented spatial and temporal resolutions.

  15. Charge and Spin-State Characterization of Cobalt Bis( o-dioxolene) Valence Tautomers Using Co Kβ X-ray Emission and L-Edge X-ray Absorption Spectroscopies

    DOE PAGES

    Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis; ...

    2016-12-30

    The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less

  16. Charge and Spin-State Characterization of Cobalt Bis( o-dioxolene) Valence Tautomers Using Co Kβ X-ray Emission and L-Edge X-ray Absorption Spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis

    The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less

  17. A Restricted Open Configuration Interaction with Singles Method To Calculate Valence-to-Core Resonant X-ray Emission Spectra: A Case Study

    PubMed Central

    2017-01-01

    In this work, a new protocol for the calculation of valence-to-core resonant X-ray emission (VtC RXES) spectra is introduced. The approach is based on the previously developed restricted open configuration interaction with singles (ROCIS) method and its parametrized version, based on a ground-state Kohn–Sham determinant (DFT/ROCIS) method. The ROCIS approach has the following features: (1) In the first step approximation, many-particle eigenstates are calculated in which the total spin is retained as a good quantum number. (2) The ground state with total spin S and excited states with spin S′ = S, S ± 1, are obtained. (3) These states have a qualitatively correct multiplet structure. (4) Quasi-degenerate perturbation theory is used to treat the spin–orbit coupling operator variationally at the many-particle level. (5) Transition moments are obtained between the relativistic many-particle states. The method has shown great potential in the field of X-ray spectroscopy, in particular in the field of transition-metal L-edge, which cannot be described correctly with particle–hole theories. In this work, the method is extended to the calculation of resonant VtC RXES [alternatively referred to as 1s-VtC resonant inelastic X-ray scattering (RIXS)] spectra. The complete Kramers–Dirac–Heisenerg equation is taken into account. Thus, state interference effects are treated naturally within this protocol. As a first application of this protocol, a computational study on the previously reported VtC RXES plane on a molecular managanese(V) complex is performed. Starting from conventional X-ray absorption spectra (XAS), we present a systematic study that involves calculations and electronic structure analysis of both the XAS and non-resonant and resonant VtC XES spectra. The very good agreement between theory and experiment, observed in all cases, allows us to unravel the complicated intensity mechanism of these spectroscopic techniques as a synergic function of state

  18. Valence electronic structure of cobalt phthalocyanine from an optimally tuned range-separated hybrid functional.

    PubMed

    Brumboiu, Iulia Emilia; Prokopiou, Georgia; Kronik, Leeor; Brena, Barbara

    2017-07-28

    We analyse the valence electronic structure of cobalt phthalocyanine (CoPc) by means of optimally tuning a range-separated hybrid functional. The tuning is performed by modifying both the amount of short-range exact exchange (α) included in the hybrid functional and the range-separation parameter (γ), with two strategies employed for finding the optimal γ for each α. The influence of these two parameters on the structural, electronic, and magnetic properties of CoPc is thoroughly investigated. The electronic structure is found to be very sensitive to the amount and range in which the exact exchange is included. The electronic structure obtained using the optimal parameters is compared to gas-phase photo-electron data and GW calculations, with the unoccupied states additionally compared with inverse photo-electron spectroscopy measurements. The calculated spectrum with tuned γ, determined for the optimal value of α = 0.1, yields a very good agreement with both experimental results and with GW calculations that well-reproduce the experimental data.

  19. Predominance of multielectron processes contributing to the intrinsic spectra of low-energy Auger transitions in copper and gold

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. F.; Shastry, K.; Weiss, A. H.

    2011-10-01

    Positron-annihilation-induced Auger electron spectroscopy (PAES) was used to obtain Cu and Au Auger spectra that are free of primary-beam-induced backgrounds by impinging the positrons at an energy below the secondary-electron-emission threshold. The removal of the core electron via annihilation in the PAES process resulted in the elimination of postcollision effects. The spectra indicate that there is an intense low-energy tail (LET) associated with the Auger peak that extends all the way to 0 eV. The LET is interpreted as indicative of processes in which filling of the core hole by a valence electron results in the ejection of two or more valence electrons which share the energy of the conventional core-valence-valence Auger electron.

  20. Naval Surface Warfare Center Dahlgren Division Technical Digest. Advanced Materials Technology

    DTIC Science & Technology

    1993-09-01

    of Prins1 2’h3 ated TL glow curve plus a contribution from and Novakov ,12 these peaks are interpreted to the phototransfer process. arise from the... Novakov , T., "X-ray Photoelectron Spectra cist in the Radiation and Molecular Orbital Interpretation of the Valence Dosimetry Group. Since Band

  1. Photoelectron spectrometer for liquid and gas-phase attosecond spectroscopy with field-free and magnetic bottle operation modes

    NASA Astrophysics Data System (ADS)

    Jordan, Inga; Jain, Arohi; Gaumnitz, Thomas; Ma, Jun; Wörner, Hans Jakob

    2018-05-01

    A compact time-of-flight spectrometer for applications in attosecond spectroscopy in the liquid and gas phases is presented. It allows for altering the collection efficiency by transitioning between field-free and magnetic-bottle operation modes. High energy resolution (ΔE/E = 0.03 for kinetic energies >20 eV) is achieved despite the short flight-tube length through a homogeneous deceleration potential at the beginning of the flight tube. A closing mechanism allows isolating the vacuum system of the flight tube from the interaction region in order to efficiently perform liquid-microjet experiments. The capabilities of the instrument are demonstrated through photoelectron spectra from multiphoton ionization of argon and xenon, as well as photoelectron spectra of liquid and gaseous water generated by an attosecond pulse train.

  2. Polarization-dependent X-ray photoemission spectroscopy for High-Tc cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Yamagami, Kohei; Kanai, Yuina; Naimen, Sho; Fujiwara, Hidenori; Kiss, Takayuki; Tanaka, Arata; Higashiya, Atsushi; Imada, Shin; Kadono, Toshiharu; Tamasaku, Kenji; Muro, Takayuki; Yabashi, Makina; Ishikawa, Tetsuya; Eisaki, Hiroshi; Miyasaka, Shigeki; Tajima, Setsuko; Sekiyama, Akira

    2018-05-01

    We have performed photon energy (hν) and linear polarization dependent X-ray photoemission for optimal doped Pb-Bi2Sr2CaCu2O8+δ (Bi2212) to investigate the ground Cu 3d orbital symmetry. We identified that the bulk Cu 3d components in valence-band spectra develop with decreasing hν from 7900 eV to 460 eV. Moreover, the photoelectron intensity ratio of the valence-band spectra measured at hν = 460 eV has shown that the Cu 3dx2-y2 orbital contributions are dominant near the Fermi level (EF). Meanwhile, we revealed that the bulk Cu 2p3/2 core-level spectra without the Bi 4s component is detected at hν = 1550 eV compared with hν and linear-polarization-dependent spectra.

  3. Bulk electronic structure of non-centrosymmetric EuTGe 3 (T=Co, Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    DOE PAGES

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemys?aw; ...

    2018-03-15

    Non-centrosymmetric EuTGe 3 ( T = Co, Ni, Rh, and Ir) possesses magnetic Eu 2+ ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge 3 ( T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core-level spectrum confirms the robust Eu 2+ valence state against the transition-metal substitutionmore » with a small contribution from Eu 3+ . The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon cha nging the transition metal from 3d to 4d to 5d elements, hinting at a change in the Ge- T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.« less

  4. Bulk electronic structure of non-centrosymmetric EuTGe 3 (T=Co, Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemys?aw

    Non-centrosymmetric EuTGe 3 ( T = Co, Ni, Rh, and Ir) possesses magnetic Eu 2+ ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge 3 ( T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core-level spectrum confirms the robust Eu 2+ valence state against the transition-metal substitutionmore » with a small contribution from Eu 3+ . The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon cha nging the transition metal from 3d to 4d to 5d elements, hinting at a change in the Ge- T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.« less

  5. Studies of Copper, Silver, and Gold Cluster Anions: Evidence of Electronic Shell Structure.

    NASA Astrophysics Data System (ADS)

    Pettiette, Claire Lynn

    A new Ultraviolet Magnetic Time-of-Flight Photoelectron Spectrometer (MTOFPES) has been developed for the study of the electronic structure of clusters produced in a pulsed supersonic molecular beam. This is the first technique which has been successful in probing the valence electronic states of metal clusters. The ultraviolet photoelectron spectra of negative cluster ions of the noble metals have been taken at several different photon energies. These are presented along with the electron affinity and HOMO-LUMO gap measurements for Cu_6^- to Cu_ {41}^-, using 4.66 eV and 6.42 eV detachment energies; Ag_3^- to Ag_{21}^-, using 6.42 eV detachment energy; and Au_3^ - to Au_{21}^-, using 6.42 eV and 7.89 eV detachment energies. The spectra provide the first detailed probes of the s valence electrons of the noble metal clusters. In addition, the 6.42 eV and 7.89 eV spectra probe the first one to two electron volts of the molecular orbitals of the d valence electrons of copper and gold clusters. The electron affinity and HOMO-LUMO gap measurements of the noble metal clusters agree with the predictions of the ellipsoidal shell model for mono-valent metal clusters. In particular, cluster numbers 8, 20, and 40--which correspond to the spherical shell closings of this model--have low electron affinities and large HOMO-LUMO gaps. The spectra of the gold cluster ions indicate that the molecular orbital energies of the cluster valence electrons are more widely spaced for gold than for copper or silver. This is to be expected for the heavy atom clusters when relativistic effects are taken into account.

  6. Electronic structure of the heavy-fermion caged compound Ce 3 Pd 20 X 6 ( X = Si, Ge ) studied by density functional theory and photoelectron spectroscopy

    DOE PAGES

    Yamaoka, Hitoshi; Schwier, Eike F.; Arita, Masashi; ...

    2015-03-30

    The electronic structure of Ce₃Pd₂₀X₆ (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong f⁰ (Ce⁴⁺) component with a small fraction of f¹more » (Ce³⁺) component. The spectral weight of f¹ component near the Fermi level Ce₃Pd₂₀Si₆ is stronger than that for Ce₃Pd₂₀Ge₆ at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of Ce₃Pd₂₀Si₆ compared to Ce₃Pd₂₀Ge₆.« less

  7. Investigations on surface chemical analysis using X-ray photoelectron spectroscopy and optical properties of Dy3+-doped LiNa3P2O7 phosphor

    NASA Astrophysics Data System (ADS)

    Munirathnam, K.; Dillip, G. R.; Chaurasia, Shivanand; Joo, S. W.; Deva Prasad Raju, B.; John Sushma, N.

    2016-08-01

    Near white-light emitting LiNa3P2O7:Dy3+ phosphors were prepared by a conventional solid-state reaction method. The orthorhombic crystal structure of the phosphors was confirmed using X-ray diffraction (XRD), and the valence states of the surface elements were determined from the binding energies of Li 1s, O 1s, Na 1s, P 2p, and Dy 3d by X-ray photoelectron spectroscopy (XPS). Attenuated total reflectance (ATR) - Fourier transform infrared (FT-IR) spectroscopy was employed to identify the pyrophosphate groups in the phosphors. Diffuse reflectance spectra (DRS) show the absorption bands of the Dy3+ ions in the host material. Intense blue (481 nm) and yellow (575 nm) emissions were obtained at an excitation wavelength of 351 nm and are attributed to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The combination of these two intense bands generates light emission in the near-white region of the chromaticity diagram.

  8. Predominance of multielectron processes contributing to the intrinsic spectra of low-energy Auger transitions in copper and gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S. F.; Shastry, K.; Weiss, A. H.

    2011-10-15

    Positron-annihilation-induced Auger electron spectroscopy (PAES) was used to obtain Cu and Au Auger spectra that are free of primary-beam-induced backgrounds by impinging the positrons at an energy below the secondary-electron-emission threshold. The removal of the core electron via annihilation in the PAES process resulted in the elimination of postcollision effects. The spectra indicate that there is an intense low-energy tail (LET) associated with the Auger peak that extends all the way to 0 eV. The LET is interpreted as indicative of processes in which filling of the core hole by a valence electron results in the ejection of two ormore » more valence electrons which share the energy of the conventional core-valence-valence Auger electron.« less

  9. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L.

    2017-02-01

    We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN's) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N2 atmosphere. For XPS measurements, layers are either (i) Ar+ ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy values. These spectra-modifying effects of Ar+ ion bombardment increase with increasing the metal atom mass due to an increasing nitrogen-to-metal sputter yield ratio. The superior quality of the XPS spectra obtained in a non-destructive way from capped TMN films is evident from that numerous metal peaks, including Ti 2p, V 2p, Zr 3d, and Hf 4f, exhibit pronounced satellite features, in agreement with previously published spectra from layers grown and analyzed in situ. In addition, the N/metal concentration ratios are found to be 25-90% higher than those obtained from the corresponding ion-etched surfaces, and in most cases agree very well with the RBS and ToF-E ERDA values. The N 1 s BE:s extracted from

  10. Retrieving plasmonic field information from metallic nanospheres using attosecond photoelectron streaking spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2017-04-01

    Streaked photoemission by attosecond extreme ultraviolet (XUV) pulses into an infrared (IR) or visible streaking pulse, holds promise for imaging with sub-fs time resolution the dielectric plasmonic response of metallic nanoparticles to the IR or visible streaking pulse. We calculated the plasmonic field induced by streaking pulses for 10 to 200 nm diameter Au, Ag, and Cu nanospheres and obtained streaked photoelectron spectra by employing our quantum-mechanical model. Our simulated spectra show significant oscillation-amplitude enhancements and phase shifts for all three metals (relative to spectra that are calculated without including the induced plasmonic field) and allow the reconstruction of the plasmonic field enhancements and phase shifts for each material. Supported by the US NSD-EPSCoR program, NSF, and DoE.

  11. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  12. Bulk electronic structure of non-centrosymmetric Eu T Ge3 (T =Co , Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemysław; Bednarchuk, Oleksandr; Kaczorowski, Dariusz; Ablett, James M.; Rueff, Jean-Pascal

    2018-03-01

    Non-centrosymmetric Eu T Ge3 (T = Co, Ni, Rh, and Ir) possesses magnetic Eu2 + ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge3 (T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3 d core-level spectrum confirms the robust Eu2 + valence state against the transition-metal substitution with a small contribution from Eu3 +. The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2 p spectrum shifts to higher binding energy upon changing the transition metal from 3 d to 4 d to 5 d elements, hinting at a change in the Ge-T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.

  13. Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles.

    PubMed

    Axnanda, Stephanus; Scheele, Marcus; Crumlin, Ethan; Mao, Baohua; Chang, Rui; Rani, Sana; Faiz, Mohamed; Wang, Suidong; Alivisatos, A Paul; Liu, Zhi

    2013-01-01

    Work function is a fundamental property of a material's surface. It is playing an ever more important role in engineering new energy materials and efficient energy devices, especially in the field of photovoltaic devices, catalysis, semiconductor heterojunctions, nanotechnology, and electrochemistry. Using ambient pressure X-ray photoelectron spectroscopy (APXPS), we have measured the binding energies of core level photoelectrons of Ar gas in the vicinity of several reference materials with known work functions (Au(111), Pt(111), graphite) and PbS nanoparticles. We demonstrate an unambiguously negative correlation between the work functions of reference samples and the binding energies of Ar 2p core level photoelectrons detected from the Ar gas near the sample surface region. Using this experimentally determined linear relationship between the surface work function and Ar gas core level photoelectron binding energy, we can measure the surface work function of different materials under different gas environments. To demonstrate the potential applications of this ambient pressure XPS technique in nanotechnology and solar energy research, we investigate the work functions of PbS nanoparticles with various capping ligands: methoxide, mercaptopropionic acid, and ethanedithiol. Significant Fermi level position changes are observed for PbS nanoparticles when the nanoparticle size and capping ligands are varied. The corresponding changes in the valence band maximum illustrate that an efficient quantum dot solar cell design has to take into account the electrochemical effect of the capping ligand as well.

  14. Accurate Valence Ionization Energies from Kohn-Sham Eigenvalues with the Help of Potential Adjustors.

    PubMed

    Thierbach, Adrian; Neiss, Christian; Gallandi, Lukas; Marom, Noa; Körzdörfer, Thomas; Görling, Andreas

    2017-10-10

    An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G 0 W 0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in

  15. Time-resolved photoelectron spectroscopy of IR-driven electron dynamics in a charge transfer model system.

    PubMed

    Falge, Mirjam; Fröbel, Friedrich Georg; Engel, Volker; Gräfe, Stefanie

    2017-08-02

    If the adiabatic approximation is valid, electrons smoothly adapt to molecular geometry changes. In contrast, as a characteristic of diabatic dynamics, the electron density does not follow the nuclear motion. Recently, we have shown that the asymmetry in time-resolved photoelectron spectra serves as a tool to distinguish between these dynamics [Falge et al., J. Phys. Chem. Lett., 2012, 3, 2617]. Here, we investigate the influence of an additional, moderately intense infrared (IR) laser field, as often applied in attosecond time-resolved experiments, on such asymmetries. This is done using a simple model for coupled electronic-nuclear motion. We calculate time-resolved photoelectron spectra and their asymmetries and demonstrate that the spectra directly map the bound electron-nuclear dynamics. From the asymmetries, we can trace the IR field-induced population transfer and both the field-driven and intrinsic (non-)adiabatic dynamics. This holds true when considering superposition states accompanied by electronic coherences. The latter are observable in the asymmetries for sufficiently short XUV pulses to coherently probe the coupled states. It is thus documented that the asymmetry is a measure for phases in bound electron wave packets and non-adiabatic dynamics.

  16. The valence and Rydberg states of difluoromethane: A combined experimental vacuum ultraviolet spectrum absorption and theoretical study by ab initio configuration interaction and density functional computations

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.; Vrønning Hoffmann, Søren; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare

    2018-06-01

    two states, which are only active in absorption. The nature of the two states, 11B1 and 21B1, is fundamentally different, but both are complex owing to the presence of FC and HT effects occurring in different ways. The two most intense bands, close to 12.5 and 15.5 eV, contain valence states as expected; the onset of the 15.5 eV band shows a set of vibrational peaks, but the vibration frequency does not correspond to any of the photoelectron spectral (PES) structure and is clearly valence in nature. The routine use of PES footprints to detect Rydberg states in VUV spectra is shown to be inadequate. The combined effects of FC and HT in the VUV spectral bands lead to additional vibrations when compared with the PES.

  17. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  18. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  19. XPS Spectra Analysis of Ti2+, Ti3+ Ions and Dye Photodegradation Evaluation of Titania-Silica Mixed Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chinh, Vu Duc; Broggi, Alessandra; Di Palma, Luca; Scarsella, Marco; Speranza, Giorgio; Vilardi, Giorgio; Thang, Pham Nam

    2018-04-01

    TiO2-SiO2 mixed oxides have been prepared by the sol-gel technique from tetrabutyl orthotitanate and tetraethyl orthosilicate. The prepared materials were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, nitrogen physisorption, Fourier-transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS). The results indicate that the TiO2-SiO2 mixed oxides have a large surface area and a nanoscale size. FT-IR spectra show that Ti atoms are bonded to silica by oxygen bridging atoms in Ti-O-Si bonds. The titanium valence states in TiO2-SiO2 mixed oxides were investigated by XPS, and their spectra report the presence of Ti2+ and Ti3+ cations for high silica concentration, suggesting the formation of oxygen vacancies. The photocatalytic activity of the prepared materials has been evaluated for the photodegradation of methylene blue (MB). The mixed oxides were activated by means of a UV light source, and the concentration of MB was monitored by UV-Vis spectroscopy. The synthesized TiO2-SiO2 shows significantly higher MB removal efficiency in comparison with that of the commercial TiO2 Degussa, P25.

  20. Synthesis and spectral characterization of trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes with Schiff bases.

    PubMed

    Singh, Atresh Kumar; Singh, Alok Kumar

    2012-10-01

    Some novel trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes of the general formula [Fe(3)O(OOCR)(3)(SB)(3)L(3)] (where R=C(13)H(27), C(15)H(31) or C(17)H(35,) HSB=Schiff bases and L=Ethanol) have been synthesized by the stepwise substitutions of acetate ions from μ(3)-oxo-hexa(acetato)tri(aqua)iron(II)diiron(III), first with straight chain carboxylic acids and then with Schiff bases. The complexes were characterized by elemental analyses, molecular weight determinations and spectral (electronic, infrared, FAB mass, Mössbauer and powder XRD) studies. Molar conductance measurements indicated the complexes to be non-electrolytes in nitrobenzene. Bridging nature of carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Mössbauer spectroscopic studies indicated two quadrupole-split doublets due to Fe(II) and Fe(III) ions at 80, 200 and 295K, confirming the complexes are mixed-valence species. This was also supported by the observed electronic spectra of the complexes. Magnetic susceptibility measurements displayed octahedral geometry around iron in mixed-valence state and a net antiferromagnetic exchange coupling via μ-oxo atom. Trinuclear nature of the complexes was confirmed by their molecular weight determination and FAB mass spectra. A plausible structure for these complexes has been established on the basis of spectral and magnetic moment data. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA)

    National Institute of Standards and Technology Data Gateway

    SRD 100 Database for Simulation of Electron Spectra for Surface Analysis (SESSA)Database for Simulation of Electron Spectra for Surface Analysis (SESSA) (PC database for purchase)   This database has been designed to facilitate quantitative interpretation of Auger-electron and X-ray photoelectron spectra and to improve the accuracy of quantitation in routine analysis. The database contains all physical data needed to perform quantitative interpretation of an electron spectrum for a thin-film specimen of given composition. A simulation module provides an estimate of peak intensities as well as the energy and angular distributions of the emitted electron flux.

  2. Valence band offsets of Sc x Ga1-x N/AlN and Sc x Ga1-x N/GaN heterojunctions

    NASA Astrophysics Data System (ADS)

    Tsui, H. C. L.; Goff, L. E.; Palgrave, R. G.; Beere, H. E.; Farrer, I.; Ritchie, D. A.; Moram, M. A.

    2016-07-01

    The valence band offsets of Sc x Ga1-x N/AlN heterojunctions were measured by x-ray photoelectron spectroscopy (XPS) and were found to increase from 0.42 eV to 0.95 eV as the Sc content x increased from 0 to 0.15. The increase in valence band offset with increasing x is attributed to the corresponding increase in spontaneous polarization of the wurtzite structure. The Sc x Ga1-x N/AlN heterojunction is type I, similar to other III-nitride-based heterojunctions. The data also indicate that a type II staggered heterojunction, which can enhance spatial charge separation, could be formed if Sc x Ga1-x N is grown on GaN.

  3. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface

    PubMed Central

    Matsui, Fumihiko; Eguchi, Ritsuko; Nishiyama, Saki; Izumi, Masanari; Uesugi, Eri; Goto, Hidenori; Matsushita, Tomohiro; Sugita, Kenji; Daimon, Hiroshi; Hamamoto, Yuji; Hamada, Ikutaro; Morikawa, Yoshitada; Kubozono, Yoshihiro

    2016-01-01

    From the C 1s and K 2p photoelectron holograms, we directly reconstructed atomic images of the cleaved surface of a bimetal-intercalated graphite superconductor, (Ca, K)C8, which differed substantially from the expected bulk crystal structure based on x-ray diffraction (XRD) measurements. Graphene atomic images were collected in the in-plane cross sections of the layers 3.3 Å and 5.7 Å above the photoelectron emitter C atom and the stacking structures were determined as AB- and AA-type, respectively. The intercalant metal atom layer was found between two AA-stacked graphenes. The K atomic image revealing 2 × 2 periodicity, occupying every second centre site of C hexagonal columns, was reconstructed, and the Ca 2p peak intensity in the photoelectron spectra of (Ca, K)C8 from the cleaved surface was less than a few hundredths of the K 2p peak intensity. These observations indicated that cleavage preferentially occurs at the KC8 layers containing no Ca atoms. PMID:27811975

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisti, F.; Stroppa, A.; Picozzi, S.

    The electronic structure of Croconic Acid in the condensed phase has been studied by comparing core level and valence band x-ray photoelectron spectroscopy experiments and first principles density functional theory calculations using the Heyd-Scuseria-Ernzerhof screened hybrid functional and the GW approximation. By exploring the photoemission spectra for different deposition thicknesses, we show how the formation of the hydrogen bond network modifies the O 1s core level lineshape. Moreover, the valence band can be explained only if the intermolecular interactions are taken into account in the theoretical approach.

  5. Evaluation of band alignment of α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterostructures by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Uchida, Takayuki; Jinno, Riena; Takemoto, Shu; Kaneko, Kentaro; Fujita, Shizuo

    2018-04-01

    The band alignment at an α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterointerface, with different Al compositions (x), grown on a c-plane sapphire substrate was evaluated by X-ray photoelectron spectroscopy. The experimental results show that the heterointerface has the type-I band discontinuity with the valence band offsets of 0.090, 0.12, and 0.14 eV, and the conduction band offsets of 0.34, 0.79, and 1.87 eV, for x values of 0.1, 0.4, and 0.8, respectively. The small band offset for the valence band is attributed to the fact that the valence band of oxides is constituted by the localized O 2p level, which is dominated by the nature of oxygen atoms. The type-I band discontinuity is desirable for a variety of heterostructure devices.

  6. Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations of ethyl acetate

    NASA Astrophysics Data System (ADS)

    Śmialek, Malgorzata A.; Łabuda, Marta; Guthmuller, Julien; Hubin-Franskin, Marie-Jeanne; Delwiche, Jacques; Hoffmann, Søren Vrønning; Jones, Nykola C.; Mason, Nigel J.; Limão-Vieira, Paulo

    2016-06-01

    The high-resolution vacuum ultraviolet photoabsorption spectrum of ethyl acetate, C4H8O2, is presented over the energy range 4.5-10.7 eV (275.5-116.0 nm). Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Also, the photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the upper stratosphere (20-50 km). Calculations have also been carried out to determine the ionisation energies and fine structure of the lowest ionic state of ethyl acetate and are compared with a newly recorded photoelectron spectrum (from 9.5 to 16.7 eV). Vibrational structure is observed in the first photoelectron band of this molecule for the first time.

  7. Synchrotron-based ambient pressure X-ray photoelectron spectroscopy of hydrogen and helium

    NASA Astrophysics Data System (ADS)

    Zhong, Jian-Qiang; Wang, Mengen; Hoffmann, William H.; van Spronsen, Matthijs A.; Lu, Deyu; Boscoboinik, J. Anibal

    2018-02-01

    Contrary to popular belief, it is possible to obtain X-ray photoelectron spectra for elements lighter than lithium, namely hydrogen and helium. The literature is plagued with claims of this impossibility, which holds true for lab-based X-ray sources. However, this limitation is merely technical and is related mostly to the low X-ray photoionization cross-sections of the 1s orbitals of hydrogen and helium. In this letter, we show that, using ambient pressure X-ray photoelectron spectroscopy (XPS), a bright-enough X-ray source allows the study of these elusive elements. This has important implications in the understanding of the limitations of one of the most useful techniques in materials science, and moreover, it potentially opens the possibility of using XPS to directly study the most abundant element in the universe.

  8. Characterization of Lithium Ion Battery Materials with Valence Electron Energy-Loss Spectroscopy.

    PubMed

    Castro, Fernando C; Dravid, Vinayak P

    2018-06-01

    Cutting-edge research on materials for lithium ion batteries regularly focuses on nanoscale and atomic-scale phenomena. Electron energy-loss spectroscopy (EELS) is one of the most powerful ways of characterizing composition and aspects of the electronic structure of battery materials, particularly lithium and the transition metal mixed oxides found in the electrodes. However, the characteristic EELS signal from battery materials is challenging to analyze when there is strong overlap of spectral features, poor signal-to-background ratios, or thicker and uneven sample areas. A potential alternative or complementary approach comes from utilizing the valence EELS features (<20 eV loss) of battery materials. For example, the valence EELS features in LiCoO2 maintain higher jump ratios than the Li-K edge, most notably when spectra are collected with minimal acquisition times or from thick sample regions. EELS maps of these valence features give comparable results to the Li-K edge EELS maps of LiCoO2. With some spectral processing, the valence EELS maps more accurately highlight the morphology and distribution of LiCoO2 than the Li-K edge maps, especially in thicker sample regions. This approach is beneficial for cases where sample thickness or beam sensitivity limit EELS analysis, and could be used to minimize electron dosage and sample damage or contamination.

  9. Computational study on the molecular structures and photoelectron spectra of bimetallic oxide clusters MW2O9(-/0) (M=V, Nb, Ta).

    PubMed

    Chen, Wen-Jie; Zhang, Chang-Fu; Zhang, Xian-Hui; Zhang, Yong-Fan; Huang, Xin

    2013-05-15

    Density functional theory (DFT) and coupled cluster theory (CCSD(T)) calculations are carried out to investigate the electronic and structural properties of a series of bimetallic oxide clusters MW2O9(-/0) (M=V, Nb, Ta). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES). Theoretical calculations at the B3LYP level yield singlet and doublet ground states for the bimetallic anionic and neutral clusters, respectively. All the clusters present the six-membered ring structures with different symmetries, except that the TaW2O9(-) cluster shows a chained style with a penta-coordinated tantalum atom. Spin density analyses reveal oxygen radical species in all neutral clusters, consistent with their structural characteristics. Moreover, additional calculations are performed to study the oxidation reaction of CO molecule with the W3O9(+) cation and the isoelectronic VW2O9 cluster, and results indicate that the introduction of vanadium at tungsten site can efficiently improve the oxidation reactivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Retrieving plasmonic near-field information: A quantum-mechanical model for streaking photoelectron spectroscopy of gold nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2016-11-01

    Streaked photoemission from nanostructures is characterized by size- and material-dependent nanometer-scale variations of the induced nanoplasmonic response to the electronic field of the streaking pulse and thus holds promise of allowing photoelectron imaging with both subfemtosecond temporal and nanometer spatial resolution. In order to scrutinize the driven collective electronic dynamics in 10-200-nm-diameter gold nanospheres, we calculated the plasmonic field induced by streaking pulses in the infrared and visible spectral range and developed a quantum-mechanical model for streaked photoemission by extreme ultraviolet pulses. Our simulated photoelectron spectra reveal a significant amplitude enhancement and phase shift of the photoelectron streaking trace relative to calculations that exclude the induced plasmonic field. Both are most pronounced for streaking pulses tuned to the plasmon frequency and retrace the plasmonic electromagnetic field enhancement and phase shift near the nanosphere surface.

  11. Intense Vibronic Modulation of the Chiral Photoelectron Angular Distribution Generated by Photoionization of Limonene Enantiomers with Circularly Polarized Synchrotron Radiation.

    PubMed

    Rafiee Fanood, Mohammad M; Ganjitabar, Hassan; Garcia, Gustavo A; Nahon, Laurent; Turchini, Stefano; Powis, Ivan

    2018-04-17

    Photoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV. A rich vibrational structure is seen in the threshold photoelectron spectrum and is interpreted using a variety of computational methods. The corresponding photoelectron circular dichroism-measured in the photoelectron angular distribution as a forward-backward asymmetry with respect to the photon direction-was found to be strongly dependent on the vibronic structure appearing in the photoelectron spectra, with the observed asymmetry even switching direction in between the major vibrational peaks. This effect can be ultimately attributed to the sensitivity of this dichroism to small phase shifts between adjacent partial waves of the outgoing photoelectron. These observations have implications for potential applications of this chiroptical technique, where the enantioselective analysis of monoterpene components is of particular interest. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The time-resolved photoelectron spectrum of toluene using a perturbation theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richings, Gareth W.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk

    A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includesmore » only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S{sub 1} excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.« less

  13. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  14. Valence-band and core-level photoemission study of single-crystal Bi2CaSr2Cu2O8 superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1988-12-01

    High-quality single crystals of Bi2CaSr2Cu2O8 superconductors have been prepared and cleaved in ultrahigh vacuum. Low-energy electron diffraction measurements show that the surface structure is consistent with the bulk crystal structure. Ultraviolet photoemission and x-ray photoemission experiments were performed on these well-characterized sample surfaces. The valence-band and the core-level spectra obtained from the single-crystal surfaces are in agreement with spectra recorded from polycrystalline samples, justifying earlier results from polycrystalline samples. Cu satellites are observed both in the valence band and Cu 2p core level, signaling the strong correlation among the Cu 3d electrons. The O 1s core-level data exhibit a sharp, single peak at 529-eV binding energy without any clear satellite structures.

  15. Intrinsic transmission magnetic circular dichroism spectra of GaMnAs

    NASA Astrophysics Data System (ADS)

    Terada, Hiroshi; Ohya, Shinobu; Tanaka, Masaaki

    2018-03-01

    Transmission magnetic circular dichroism (MCD) spectroscopy has been widely used to reveal the spin-dependent band structure of ferromagnetic semiconductors. In these previous studies, some band pictures have been proposed from the spectral shapes observed in transmission MCD; however, extrinsic signals originating from optical interference have not been appropriately considered. In this study, we calculate the MCD spectra taking into account the optical interference of the layered structure of samples and show that the spectral shape of MCD is strongly influenced by optical interference. To correctly understand the transmission MCD, we also calculate the intrinsic MCD spectra of GaMnAs that are not influenced by the optical interference. The spectral shape of the intrinsic MCD can be explained by the characteristic band structure of GaMnAs, that is, the spin-polarized valence band and the impurity band existing above the valence band top.

  16. Photoelectron wave function in photoionization: Plane wave or Coulomb wave? [Does photoionization of neutral targets produce Coulomb or plane waves?

    DOE PAGES

    Gozem, Samer; Gunina, Anastasia O.; Ichino, Takatoshi; ...

    2015-10-28

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectronmore » wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. Finally, the results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.« less

  17. XPEEM valence state imaging of mineral micro-intergrowths with a spatial resolution of 100nm

    NASA Astrophysics Data System (ADS)

    Smith, A. D.; Schofield, P. F.; Scholl, A.; Pattrick, R. A. D.; Bridges, J. C.

    2003-03-01

    The crystal chemistry and textural relationships of minerals hold a vast amount of information relating to the formation, history and stability of natural materials. The application of soft X-ray spectroscopy to mineralogical material has revealed that 2p (L{2,3}) spectra provide a sensitive fingerprint of the electronic states of 3d metals. In bulk powdered samples much of the textural and microstructural information is lost, but the area-selectivity capability of X-ray Photo-Emission Electron Microscopy (XPEEM) provides the ability to obtain valence state information from mineral intergrowths with a submicron spatial resolution. Using the state-of-the-art PEEM2 facility on beamline 7.3.1.1 at the Advanced Light Source, Berkeley, USA, a range of minerals, mineral intergrowths and mineralogical textures have been studied for a broad suite of geological, planetary and environmental science materials. High-quality, multi-element valence images have been obtained showing the distribution/variation of the metal valence states across single grains or mineral intergrowths/textures at the l00 nm scale and quantitative valence state ratios can be obtained from areas of 0.01 μ m^2.

  18. X-ray photoelectron spectroscopy investigations of band offsets in Ga0.02Zn0.98O/ZnO heterojunction for UV photodetectors

    NASA Astrophysics Data System (ADS)

    Singh, Karmvir; Rawal, Ishpal; Punia, Rajesh; Dhar, Rakesh

    2017-10-01

    Here, we report the valence and conduction band offset measurements in pure ZnO and the Ga0.02Zn0.98O/ZnO heterojunction by X-Ray photoelectron spectroscopy studies for UV photodetector applications. For detailed investigations on the band offsets and UV photodetection behavior of Ga0.02Zn0.98O/ZnO heterostructures, thin films of pristine ZnO, Ga-doped ZnO (Ga0.02Zn0.98O), and heterostructures of Ga-doped ZnO with ZnO (Ga0.02Zn0.98O/ZnO) were deposited using a pulsed laser deposition technique. The deposited thin films were characterized by X-ray diffraction, atomic force microscopy, and UV-Vis spectroscopy. X-ray photoelectron spectroscopy studies were carried out on all the thin films for the investigation of valence and conduction band offsets. The valence band was found to be shifted by 0.28 eV, while the conduction band has a shifting of -0.272 eV in the Ga0.02Zn0.98O/ZnO heterojunction as compared to pristine ZnO thin films. All the three samples were analyzed for photoconduction behavior under UVA light of the intensity of 3.3 mW/cm2, and it was observed that the photoresponse of pristine ZnO (19.75%) was found to increase with 2 wt. % doping of Ga (22.62%) and heterostructured thin films (29.10%). The mechanism of UV photodetection in the deposited samples has been discussed in detail, and the interaction of chemisorbed oxygen on the ZnO surface with holes generated by UV light exposure has been the observed mechanism for the change in electrical conductivity responsible for UV photoresponse on the present deposited ZnO films.

  19. Measurements of the ambient photoelectron spectrum from Atmosphere Explorer. I - AE-E measurements below 300 km during solar minimum conditions. II - AE-E measurements from 300 to 1000 km during solar minimum conditions

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Doering, J. P.; Potemra, T. A.; Brace, L. H.

    1980-01-01

    A study is presented of the ambient photoelectron spectrum below 300 km which includes 500 AE-E orbits observed from Dec. 13, 1975 to Feb. 24, 1976. The daytime photoelectron spectrum from 1 to 100 eV was illustrated by several spectra; high resolution 10-32 eV spectra show the widths of the photoelectron lines and the variation of the linewidth and intensity with altitude. The photoelectron flux below 300 km is constant over a period of several months; the photoelectron lines between 20 and 30 eV are very sharp when the total plasma density is low, but broaden at high altitudes as the plasma density builds up during the day. The photo-electron flux above 300 km had an intensity and energy spectrum characteristic of the 250-300 km region only in the presence of low plasma density at the satellite altitude. The flux at high altitudes was extremely variable 3 h after sunrise as a result of attenuation and energy loss to thermal plasma along the path of escaping electrons.

  20. A Multidimensional Measure of Work Valences

    ERIC Educational Resources Information Center

    Porfeli, Erik J.; Lee, Bora; Weigold, Ingrid K.

    2012-01-01

    Work valence is derived from expectancy-valence theory and the literature on children's vocational development and is presumed to be a general appraisal of work that emerges during the childhood period. Work valence serves to promote and inhibit the motivation and tasks associated with vocational development. A measure of work valence, composed of…

  1. Synchrotron-based ambient pressure X-ray photoelectron spectroscopy of hydrogen and helium

    DOE PAGES

    Zhong, Jian-Qiang; Wang, Mengen; Hoffmann, William H.; ...

    2018-03-01

    Contrary to popular belief, it is possible to obtain X-ray photoelectron spectra for elements lighter than lithium, namely hydrogen and helium. The literature is plagued with claims of this impossibility, which holds true for lab-based X-ray sources. However, this limitation is merely technical and is related mostly to the low X-ray photoionization cross-sections of the 1s orbitals of hydrogen and helium. Here, we show that, using ambient pressure X-ray photoelectron spectroscopy (XPS), a bright-enough X-ray source allows the study of these elusive elements. This has important implications in the understanding of the limitations of one of the most useful techniquesmore » in materials science, and moreover, it potentially opens the possibility of using XPS to directly study the most abundant element in the universe.« less

  2. Synchrotron-based ambient pressure X-ray photoelectron spectroscopy of hydrogen and helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Jian-Qiang; Wang, Mengen; Hoffmann, William H.

    Contrary to popular belief, it is possible to obtain X-ray photoelectron spectra for elements lighter than lithium, namely hydrogen and helium. The literature is plagued with claims of this impossibility, which holds true for lab-based X-ray sources. However, this limitation is merely technical and is related mostly to the low X-ray photoionization cross-sections of the 1s orbitals of hydrogen and helium. Here, we show that, using ambient pressure X-ray photoelectron spectroscopy (XPS), a bright-enough X-ray source allows the study of these elusive elements. This has important implications in the understanding of the limitations of one of the most useful techniquesmore » in materials science, and moreover, it potentially opens the possibility of using XPS to directly study the most abundant element in the universe.« less

  3. Isobutyl acetate: electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Śmiałek, Malgorzata A.; Łabuda, Marta; Hubin-Franskin, Marie-Jeanne; Delwiche, Jacques; Hoffmann, Søren Vrønning; Jones, Nykola C.; Mason, Nigel J.; Limão-Vieira, Paulo

    2017-05-01

    The high-resolution vacuum ultraviolet photoabsorption spectrum of isobutyl acetate, C6H12O2, is presented here and was measured over the energy range 4.3-10.8 eV (290-115 nm). Valence and Rydberg transitions with their associated vibronic series have been observed in the photoabsorption spectrum and are assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. The measured photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the Earth's upper atmosphere (20-50 km). Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl acetate and are compared with a photoelectron spectrum (from 9.5 to 16.7 eV), recorded for the first time. Vibrational structure is observed in the first photoelectron band of this molecule. Contribution to the Topical Issue: "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  4. X-ray photoelectron spectrum and electronic properties of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4): LDA, GGA, and EV-GGA.

    PubMed

    Reshak, Ali Hussain; Khenata, R; Kityk, I V; Plucinski, K J; Auluck, S

    2009-04-30

    An all electron full potential linearized augmented plane wave method has been applied for a theoretical study of the band structure, density of states, and electron charge density of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4) using three different approximations for the exchange correlation potential. Our calculations show that the valence band maximum (VBM) and conduction band minimum (CBM) are located at Gamma resulting in a direct energy gap of about 2.0, 2.2, and 2.8 eV for local density approximation (LDA), generalized gradient approximation (GGA), and Engel-Vosko (EVGGA) compared to the experimental value of 2.84 eV. We notice that EVGGA shows excellent agreement with the experimental data. This agreement is attributed to the fact that the Engel-Vosko GGA formalism optimizes the corresponding potential for band structure calculations. We make a detailed comparison of the density of states deduced from the X-ray photoelectron spectra with our calculations. We find that there is a strong covalent bond between the Hg and S atoms and Ga and S atoms. The Hg-Hg, Ga-Ga, and S-S bonds are found to be weaker than the Hg-S and Ga-S bonds showing that a covalent bond exists between Hg and S atoms and Ga and S atoms.

  5. Examining the structural evolution of bicarbonate–water clusters: insights from photoelectron spectroscopy, basin-hopping structural search, and comparison with available IR spectral studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Hui; Hou, Gao-Lei; Liu, Yi-Rong

    2016-05-31

    Bicarbonate serves a crucial biochemical role in the physiological pH buffering system and also has important atmospheric implications. In the current study, HCO 3 $-$(H 2O) n (n = 0-13) clusters were successfully produced via electrospray ionization of corresponding bulk salt solution, and were characterized by combining negative ion photoelectron spectroscopy and theoretical calculations. The photoelectron spectra reveal that the electron binding energy monotonically increases with the cluster size up to n = 10 and remains largely the same after n > 10. The photo-detaching feature of the solute HCO3$-$itself, which dominates in the small clusters, diminishes with increase ofmore » water coverage. Based on the charge distribution and molecular orbital analyses, the universal high electron binding energy tail that dominates in the larger clusters can be attributed to ionization of water. Thus, the transition of ionization from solute to solvent at the size larger than n=10 has been observed. Extensive theoretical structural search based on the Basin-Hopping unbiased method was carried out, and a plethora of low energy isomers have been obtained for each medium and large size. By comparing the simulated photoelectron spectra and calculated electron binding energies with the experiments, as well as by comparing the simulated infrared spectra with previously reported IR spectra, the probable global minima and the structural evolutionary routes are presented. The nature of bicarbonate-water interactions are mainly electrostatic as implied by the electron localization function (ELF) analysis.« less

  6. Spectroscopy of the simplest Criegee intermediate CH2OO: simulation of the first bands in its electronic and photoelectron spectra.

    PubMed

    Lee, Edmond P F; Mok, Daniel K W; Shallcross, Dudley E; Percival, Carl J; Osborn, David L; Taatjes, Craig A; Dyke, John M

    2012-09-24

    CH(2)OO, the simplest Criegee intermediate, and ozone are isoelectronic. They both play very important roles in atmospheric chemistry. Whilst extensive experimental studies have been made on ozone, there were no direct gas-phase studies on CH(2)OO until very recently when its photoionization spectrum was recorded and kinetics studies were made of some reactions of CH(2)OO with a number of molecules of atmospheric importance, using photoionization mass spectrometry to monitor CH(2)OO. In order to encourage more direct studies on CH(2)OO and other Criegee intermediates, the electronic and photoelectron spectra of CH(2)OO have been simulated using high level electronic structure calculations and Franck-Condon factor calculations, and the results are presented here. Adiabatic and vertical excitation energies of CH(2)OO were calculated with TDDFT, EOM-CCSD, and CASSCF methods. Also, DFT, QCISD and CASSCF calculations were performed on neutral and low-lying ionic states, with single energy calculations being carried out at higher levels to obtain more reliable ionization energies. The results show that the most intense band in the electronic spectrum of CH(2) OO corresponds to the B(1)A' ← X(1)A' absorption. It is a broad band in the region 250-450 nm showing extensive structure in vibrational modes involving O-O stretching and C-O-O bending. Evidence is presented to show that the electronic absorption spectrum of CH(2)OO has probably been recorded in earlier work, albeit at low resolution. We suggest that CH(2)OO was prepared in this earlier work from the reaction of CH(2)I with O(2) and that the assignment of the observed spectrum solely to CH(2)IOO is incorrect. The low ionization energy region of the photoelectron spectrum of CH(2)OO consists of two overlapping vibrationally structured bands corresponding to one-electron ionizations from the highest two occupied molecular orbitals of the neutral molecule. In each case, the adiabatic component is the most intense

  7. Rovibronically Selected and Resolved Laser Photoionization and Photoelectron Studies of Transition Metal Carbides, Nitrides, and Oxides.

    NASA Astrophysics Data System (ADS)

    Luo, Zhihong; Chang, Yih-Chung; Huang, Huang; Ng, Cheuk-Yiu

    2014-06-01

    Transition metal (M) carbides, nitrides, and oxides (MX, X = C, N, and O) are important molecules in astrophysics, catalysis, and organometallic chemistry. The measurements of the ionization energies (IEs), bond energies, and spectroscopic constants for MX/MX+ in the gas phase by high-resolution photoelectron methods represent challenging but profitable approaches to gain fundamental understandings of the electronic structures and bonding properties of these compounds and their cations. We have developed a two-color laser excitation scheme for high-resolution pulse field ionization photoelectron (PFI-PE) measurements of MX species. By exciting the neutral MX species to a single rovibronic state using a visible laser prior to photoionization by a UV laser, we have obtained fully rotational resolved PFI-PE spectra for TiC+, TiO+, VCH+, VN+, CoC+, ZrO+, and NbC+. The unambiguous rotational assignments of these spectra have provided highly accurate IE values for TiC, TiO, VCH, VN, CoC, ZrO, and NbC, and spectroscopic constants for their cations.

  8. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study.

    PubMed

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-28

    The propensity of four representative conformations of 2(')-deoxyadenosine-5(')-monophosphate (5(')-dAMPH) to bind an excess electron has been studied at the B3LYP6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5(')-dAMPH form adiabatically stable anions. The type of an anionic 5(')-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4(')-C5(') bond. The adiabatic electron affinity of the a_south-syn anion is 1.19 eV, while its vertical detachment energy is 1.89 eV. Our results are compared with the photoelectron spectrum (PES) of 5(')-dAMPH(-) measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  9. Doping induced modifications in the electronic structure and magnetism of ZnO films: Valence band and conduction band studies

    NASA Astrophysics Data System (ADS)

    Katba, Savan; Jethva, Sadaf; Udeshi, Malay; Trivedi, Priyanka; Vagadia, Megha; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.; Kuberkar, D. G.

    2017-11-01

    The electronic structure of Pulsed Laser Deposited (PLD) ZnO, Zn0.95Fe0.05O (ZFO), Zn0.98Al0.02O (ZAO) and Zn0.93Fe0.05Al0.02O (ZFAO) films were investigated by Photoelectron spectroscopy and X-ray absorption spectroscopy. X-ray diffraction and ϕ-scan measurements show epitaxial c-directional growth of the films. Temperature dependent magnetization and M-H loop measurements show the presence of room temperature magnetic ordering in all the films. Fittings of Fe 2p XPS and Fe L3,2 -edge XAS of ZFO and ZFAO films show the presence of Fe, in both, Fe+2 and Fe+3 states in tetrahedral symmetry. Valence band spectra in resonance mode show resonance photon energy at 56 eV showing the presence of Fe2+ state (∼2 eV) near the Fermi level. A significant effect of Fe and Al doping on the spectral shape of O K-edge XAS was observed. Results of the Spectroscopic studies reveal that, ferromagnetism in the films is due to the contribution of oxygen deficiency which increases the number of charge carriers that take part in the exchange interaction. Al co-doping with Fe (in ZFAO) results in the enhancement of saturation magnetization by increase in the carrier-mediated ferromagnetic exchange interaction.

  10. Probing electronic binding potentials with attosecond photoelectron wavepackets

    NASA Astrophysics Data System (ADS)

    Kiesewetter, D.; Jones, R. R.; Camper, A.; Schoun, S. B.; Agostini, P.; Dimauro, L. F.

    2018-01-01

    The central goal of attosecond science is to visualize, understand and ultimately control electron dynamics in matter over the fastest relevant timescales. To date, numerous schemes have demonstrated exquisite temporal resolution, on the order of ten attoseconds, in measurements of the response of photo-excited electrons to time-delayed probes. However, attributing this response to specific dynamical mechanisms is difficult, requiring guidance from advanced calculations. Here we show that energy transfer between an oscillating field and low-energy attosecond photoelectron wavepackets directly provides coarse-grained information on the effective binding potential from which the electrons are liberated. We employ a dense extreme ultraviolet (XUV) harmonic comb to photoionize He, Ne and Ar atoms and record the electron spectra as a function of the phase of a mid-infrared dressing field. The amplitude and phase of the resulting interference modulations in the electron spectra reveal the average momentum and change in momentum of the electron wavepackets during the first quarter-period of the dressing field after their creation, reflecting the corresponding coarse characteristics of the binding potential.

  11. Investigation on the neutral and anionic BxAlyH2 (x + y = 7, 8, 9) clusters using density functional theory combined with photoelectron spectroscopy.

    PubMed

    Ding, Li-Ping; Shao, Peng; Lu, Cheng; Zhang, Fang-Hui; Ding, Lei; Yuan, Tao Li

    2016-08-17

    The structure and bonding nature of neutral and negatively charged BxAlyH2 (x + y = 7, 8, 9) clusters are investigated with the aid of previously published experimental photoelectron spectra combined with the present density functional theory calculations. The comparison between the experimental photoelectron spectra and theoretical simulated spectra helps to identify the ground state structures. The accuracy of the obtained ground state structures is further verified by calculating their adiabatic electron affinities and vertical detachment energies and comparing them against available experimental data. The results show that the structures of BxAlyH2 transform from three-dimensional to planar structures as the number of boron atoms increases. Moreover, boron atoms tend to bind together forming Bn units. The hydrogen atoms prefer to bind with boron atoms rather than aluminum atoms. The analyses of the molecular orbital on the ground state structures further support the abovementioned results.

  12. Quantitative analysis of valence photoemission spectra and quasiparticle excitations at chromophore-semiconductor interfaces.

    PubMed

    Patrick, Christopher E; Giustino, Feliciano

    2012-09-14

    Investigating quasiparticle excitations of molecules on surfaces through photoemission spectroscopy forms a major part of nanotechnology research. Resolving spectral features at these interfaces requires a comprehensive theory of electron removal and addition processes in molecules and solids which captures the complex interplay of image charges, thermal effects, and configurational disorder. Here, we develop such a theory and calculate the quasiparticle energy-level alignment and the valence photoemission spectrum for the prototype biomimetic solar cell interface between anatase TiO(2) and the N3 chromophore. By directly matching our calculated photoemission spectrum to experimental data, we clarify the atomistic origin of the chromophore peak at low binding energy. This case study sets a new standard in the interpretation of photoemission spectroscopy at complex chromophore-semiconductor interfaces.

  13. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lai-Sheng, E-mail: Lai-Sheng-Wang@brown.edu

    2015-07-28

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent developmentmore » in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.« less

  14. The valence bond glass phase

    NASA Astrophysics Data System (ADS)

    Tarzia, M.; Biroli, G.

    2008-06-01

    We show that a new glassy phase can emerge in the presence of strong magnetic frustration and quantum fluctuations. It is a valence bond glass (VBG). We study its properties solving the Hubbard-Heisenberg model on a Bethe lattice within the large-N limit introduced by Affleck and Marston. We work out the phase diagram that contains Fermi liquid, dimer and valence bond glass phases. This new glassy phase has no electronic or spin gap (although a pseudo-gap is observed), it is characterized by long-range critical valence bond correlations and is not related to any magnetic ordering. As a consequence, it is quite different from both valence bond crystals and spin glasses.

  15. Distinguishability of N Composition Profiles In SiON Films On Si By Angle-Resolved X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Powell, C. J.; Werner, W. S. M.; Smekal, W.

    2007-09-01

    We report on the use of the NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to determine N 1s, O 1s, and Si 2p3/2 photoelectron intensities for a 25 Å SiON film on a Si substrate with different distributions of N in the film. These simulations were made to assess the distinguishability of angle-resolved x-ray photoelectron spectroscopy (ARXPS) signals for each N distribution. Our approach differs from conventional simulations of ARXPS data in that we do not neglect elastic scattering of the photoelectrons and the finite solid angle of the analyzer. Appreciable dispersion of the photoelectron intensities was found only for the N 1s intensities at an emission angle of 75° (with respect to the surface normal). Conventional analyses of ARXPS data that include such large emission angles are unlikely to be valid due to angle-dependent changes of the attenuation length. We demonstrate the magnitude of elastic-scattering and analyzer solid-angle effects on the calculated angular distributions.

  16. Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy

    DOE PAGES

    Reinecke, Benjamin N.; Kuhl, Kendra P.; Ogasawara, Hirohito; ...

    2015-12-31

    We report on the electronic structure of Au (gold) nanoparticles supported onto TiO 2 with a goal of elucidating the most important effects that contribute to their high catalytic activity. We synthesize and characterize with high resolution transmission electron microscopy (HRTEM) 3.4, 5.3, and 9.5 nm diameter TiO 2-supported Au nanoparticles with nearly spherical shape and measure their valence band using Au 5d subshell sensitive hard X-ray photoelectron spectroscopy (HAXPES) conducted at Spring-8. Based on density functional theory (DFT) calculations of various Au surface structures, we interpret the observed changes in the Au 5d valence band structure as a functionmore » of size in terms of an increasing percentage of Au atoms at corners/edges for decreasing particle size. Finally, this work elucidates how Au coordination number impacts the electronic structure of Au nanoparticles, ultimately giving rise to their well-known catalytic activity.« less

  17. Subliminal Affect Valence Words Change Conscious Mood Potency but Not Valence: Is This Evidence for Unconscious Valence Affect?

    PubMed Central

    Shevrin, Howard; Panksepp, Jaak; Brakel, Linda A. W.; Snodgrass, Michael

    2012-01-01

    Whether or not affect can be unconscious remains controversial. Research claiming to demonstrate unconscious affect fails to establish clearly unconscious stimulus conditions. The few investigations that have established unconscious conditions fail to rule out conscious affect changes. We report two studies in which unconscious stimulus conditions were met and conscious mood changes measured. The subliminal stimuli were positive and negative affect words presented at the objective detection threshold; conscious mood changes were measured with standard manikin valence, potency, and arousal scales. We found and replicated that unconscious emotional stimuli produced conscious mood changes on the potency scale but not on the valence scale. Were positive and negative affects aroused unconsciously, but reflected consciously in potency changes? Or were the valence words unconscious cognitive causes of conscious mood changes being activated without unconscious affect? A thought experiment is offered as a way to resolve this dilemma. PMID:24961258

  18. Valence Band Control of Metal Silicide Films via Stoichiometry.

    PubMed

    Streller, Frank; Qi, Yubo; Yang, Jing; Mangolini, Filippo; Rappe, Andrew M; Carpick, Robert W

    2016-07-07

    The unique electronic and mechanical properties of metal silicide films render them interesting for advanced materials in plasmonic devices, batteries, field-emitters, thermoelectric devices, transistors, and nanoelectromechanical switches. However, enabling their use requires precisely controlling their electronic structure. Using platinum silicide (PtxSi) as a model silicide, we demonstrate that the electronic structure of PtxSi thin films (1 ≤ x ≤ 3) can be tuned between metallic and semimetallic by changing the stoichiometry. Increasing the silicon content in PtxSi decreases the carrier density according to valence band X-ray photoelectron spectroscopy and theoretical density of states (DOS) calculations. Among all PtxSi phases, Pt3Si offers the highest DOS due to the modest shift of the Pt5d manifold away from the Fermi edge by only 0.5 eV compared to Pt, rendering it promising for applications. These results, demonstrating tunability of the electronic structure of thin metal silicide films, suggest that metal silicides can be designed to achieve application-specific electronic properties.

  19. Study of space charge layer in silver bromide microcrystals by means of ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Inami, Yoshiyasu

    2000-09-01

    Ultraviolet photoelectron spectroscopy has been successfully used to measure the heights of the tops of the valence bands of the surfaces of AgBr layers on Ag substrates for the verification of the space charge layer model. According to this model, the positive space charge layer (composed of negative charges with excess negative kink sites on the surface and corresponding positive charges with interstitial silver ions in the interior) is formed in silver halides, causing the difference in the electronic energy levels between their surface and interior. The depression of the positive space charge layer of AgBr caused by such adsorbates as photographic stabilizers and antifoggants was estimated from the decrease in the ionic conductivity of cubic AgBr microcrystals by the adsorbates. It was confirmed by the decrease in the heights of the tops of the valence bands of the surfaces of AgBr layers caused by the adsorbates in the presence of thin gelatin membranes on their surfaces. This result provided the explanation for the fact that the adsorbates increased the number of the microcrystals which formed latent image centers on the surface and decreased the number of the microcrystals, which formed latent image centers in the interior.

  20. Femtosecond Photoelectron Imaging of Dissociating and Autoionizing States in Oxygen

    NASA Astrophysics Data System (ADS)

    Plunkett, Alexander; Sandhu, Arvinder

    2017-04-01

    Time-resolved photoelectron spectra from molecular oxygen have been recorded with high energy and time resolution using a velocity map imaging (VMI) spectrometer. High harmonics were used to prepare neutral Rydberg states converging to the c4Σu- ionic state. These states display both autoionization and predissociation. A femtosecond laser pulse centered at 780 nm was used to probe the system, ionizing both the excited molecular states and the predissociated neutral atomic fragments. Electrons were collected in the 0-3 eV range using a VMI spectrometer and their spectra were reconstructed using a Fast Onion-peeling algorithm. By looking at IR modification to the electron spectrum, new features are observed which could originate from long-range columbic interactions or previously unobserved molecular decay channels. Ongoing studies extend this technique to other systems exhibiting non-adiabatic dynamics. This work was supported by the U. S. Army Research Laboratory and the U. S. Army Research Office under Grant No. W911NF-14-1-0383.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, L. Q.; Li, Z. Z.; Tang, G. D., E-mail: tanggd@mail.hebtu.edu.cn

    The average valence, V{sub alO}, of the oxygen anions in the perovskite oxide BaTiO{sub 3}, was found using O1s photoelectron spectra to be −1.55. This experimental result is close to the theoretical value for BaTiO{sub 3} (−1.63) calculated by Cohen [Nature 358, 136 (1992)] using density functional theory. Using the same approach, we obtained values of V{sub alO} for several monoxides, and investigated the dependence of V{sub alO} and the ionicity on the second ionization energy, V(M{sup 2+}), of the metal cation. We found that the dependence of the ionicity on V(M{sup 2+}) in this work is close to thatmore » reported by Phillips [Rev. Mod. Phys. 42, 317 (1970)]. We therefore suggest that O1s photoelectron spectrum measurements should be accepted as a general experimental method for estimating the ionicity and average valence of oxygen anions.« less

  2. Spin orbit and tetragonal crystalline field interaction in the valence band of CuInSe2-related ordered vacancy compound CuIn7Se12

    NASA Astrophysics Data System (ADS)

    Reena Philip, Rachel; Pradeep, B.; Shripathi, T.

    2005-04-01

    Thin films of the off-tie-line ordered vacancy compound CuIn7Se12 were deposited on optically flat glass substrates by multi-source co-evaporation method. The preliminary structural, compositional and morphological characterizations were done using X-ray diffraction, energy dispersive X-ray analysis and atomic force microscopy. The X-ray diffraction data were further analysed applying the Nelson-Riley method and CTB plus = experiment rule, respectively, for lattice constants (a = 5.746 Å and c = 11.78 Å) and bond length estimations (RCu-Se = 2.465 Å and RIn-Se = 2.554 Å). A detailed analysis of the optical absorption spectra of the compound, which exhibited a three-fold optical absorption structure in the fundamental gap region, yielded three characteristic direct energy gaps at 1.37, 1.48(7) and 1.72(8) eV indicative of valence band splitting, which were evaluated using Hopfield's quasi-cubic model. The 0.04 eV increase in spin-orbit splitting parameter of the compound (0.27 eV) compared to that of CuInSe2 (0.23 eV) is found to be suggestive of the smaller contribution of Cu d orbitals to hybridization (determined by the linear hybridization model) in this Cu-deficient compound. Spectral response spectra exhibit, in addition to a maximum around 1.34 ± 0.03 eV, two other defect transition peaks near 1.07 and 0.85 eV. The binding energies of Cu, In and Se in the compound were determined using X-ray photoelectron spectroscopy.

  3. The Electronic Structure of the Cs/ n-GaN(0001) Nano-Interface

    NASA Astrophysics Data System (ADS)

    Benemanskaya, G. V.; Lapushkin, M. N.; Marchenko, D. E.; Timoshnev, S. N.

    2018-03-01

    Electronic structures of the n-GaN(0001) surface and Cs/ n-GaN(0001) interface with submonolayer Cs coverages were studied for the first time in situ by the photoelectron spectroscopy (PES) method. The spectra of photoemission from the valence band, surface electron states, and core levels (Ga 3 d, Cs 4 d, Cs 5 p) under synchrotron excitation were measured in a range of photon energies within 50-150 eV. Evolution of the spectrum of surface states near the valence-band maximum was revealed by PES during the adsorption of Cs atoms. A metallic character of the Cs/ n-GaN(0001) nano-interface is demonstrated.

  4. Photoelectron spectroscopy and density functional calculations of CunBO2(OH)- (n = 1,2) clusters

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Hou, Gao-Lei; Xu, Hong-Guang; Zhang, Zeng-Guang; Zheng, Wei-Jun

    2012-08-01

    CunBO2(OH)- (n = 1, 2) clusters were studied by anion photoelectron spectroscopy and density functional calculations. From the experimental photoelectron spectra, the adiabatic detachment energy (ADE) and vertical detachment energy (VDE) of CuBO2(OH)- are determined to be 4.00 ± 0.08 and 4.26 ± 0.08 eV, and those of Cu2BO2(OH)- to be 2.30 ± 0.08 and 2.58 ± 0.08 eV. The structures of CunBO2(OH)- and their corresponding neutrals are assigned by comparison between theoretical calculations and experimental measurements. Both experiment and theory show that CuBO2(OH) can be viewed as a superhalogen, thus, confirmed that OH can behave like a halogen atom to participate in superhalogen formation.

  5. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study

    NASA Astrophysics Data System (ADS)

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-01

    The propensity of four representative conformations of 2'-deoxyadenosine-5'-monophosphate (5'-dAMPH) to bind an excess electron has been studied at the B3LYP /6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5'-dAMPH form adiabatically stable anions. The type of an anionic 5'-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4'-C5' bond. The adiabatic electron affinity of the a&barbelow;south-syn anion is 1.19eV, while its vertical detachment energy is 1.89eV. Our results are compared with the photoelectron spectrum (PES) of 5'-dAMPH- measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  6. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Olivieri, Giorgia; Parry, Krista M.; Powell, Cedric J.; Tobias, Douglas J.; Brown, Matthew A.

    2016-04-01

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy (XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyte interface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquid interface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer description of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (<300 eV) where the ad hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquid interfaces are discussed.

  7. Simultaneous conditioning of valence and arousal.

    PubMed

    Gawronski, Bertram; Mitchell, Derek G V

    2014-01-01

    Evaluative conditioning (EC) refers to the change in the valence of a conditioned stimulus (CS) due to its pairing with a positive or negative unconditioned stimulus (US). To the extent that core affect can be characterised by the two dimensions of valence and arousal, EC has important implications for the origin of affective responses. However, the distinction between valence and arousal is rarely considered in research on EC or conditioned responses more generally. Measuring the subjective feelings elicited by a CS, the results from two experiments showed that (1) repeated pairings of a CS with a positive or negative US of either high or low arousal led to corresponding changes in both CS valence and CS arousal, (2) changes in CS arousal, but not changes in CS valence, were significantly related to recollective memory for CS-US pairings, (3) subsequent presentations of the CS without the US reduced the conditioned valence of the CS, with conditioned arousal being less susceptible to extinction and (4) EC effects were stronger for high arousal than low arousal USs. The results indicate that the conditioning of affective responses can occur simultaneously along two independent dimensions, supporting evidence in related areas that calls for a consideration of both valence and arousal. Implications for research on EC and the acquisition of emotional dispositions are discussed.

  8. Growth of Bi2Se3 topological insulator thin film on Ge(1 1 1) substrate

    NASA Astrophysics Data System (ADS)

    Kim, Seungyeon; Lee, Sangsoo; Woo, Jeongseok; Lee, Geunseop

    2018-02-01

    Atomically smooth, single crystalline Bi2Se3 thin films were grown on a Ge(1 1 1) substrate using molecular beam epitaxy. Crystallinities of both the surface and the bulk as well as the stoichiometry of the grown film were characterized by using low-energy electron diffraction, scanning tunneling microscopy, X-ray diffraction, and photoelectron spectroscopies. Hexagonal atomic structures, quintuple layer steps observed in STM images confirmed that the Bi2Se3 film with a (0 0 0 1) surface was grown. Diffraction peak positions as well as the chemical composition determined from the core-level photoelectron spectra coincide well with those expected for the Bi2Se3 crystal. The surface state with a Dirac cone was observed in the valence photoelectron spectra, which also support that a high-quality Bi2Se3 film was grown on the Ge(1 1 1) substrate. The interface between Ge(1 1 1) and Bi2Se3(0 0 0 1) is expected to be abrupt due to the small lattice between them.

  9. Photoelectron imaging spectroscopy of MoC{sup −} and NbN{sup −} diatomic anions: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qing-Yu; Li, Zi-Yu; He, Sheng-Gui, E-mail: shengguihe@iccas.ac.cn, E-mail: chenh@iccas.ac.cn

    2015-04-28

    The isoeletronic diatomic MoC{sup −} and NbN{sup −} anions have been prepared by laser ablation and studied by photoelectron imaging spectroscopy combined with quantum chemistry calculations. The photoelectron spectra of NbN{sup −} can be very well assigned on the basis of literature reported optical spectroscopy of NbN. In contrast, the photoelectron spectra of MoC{sup −} are rather complex and the assignments suffered from the presence of many electronically hot bands and limited information from the reported optical spectroscopy of MoC. The electron affinities of NbN and MoC have been determined to be 1.450 ± 0.003 eV and 1.360  ±  0.003more » eV, respectively. The good resolution of the imaging spectroscopy provided a chance to resolve the Ω splittings of the X{sup 3}Σ{sup −} (Ω = 0 and 1) state of MoC and the X{sup 4}Σ{sup −} (Ω = 1/2 and 3/2) state of MoC{sup −} for the first time. The spin-orbit splittings of the X{sup 2}Δ state of NbN{sup −} and the a{sup 2}Δ state of MoC{sup −} were also determined. The similarities and differences between the electronic structures of the NbN and MoC systems were discussed.« less

  10. Photodetachment spectroscopy and resonant photoelectron imaging of cryogenically-cooled deprotonated 2-hydroxypyrimidine anions

    NASA Astrophysics Data System (ADS)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Liu, Yuan; Wang, Lai-Sheng

    2017-02-01

    We report a photodetachment and high-resolution photoelectron imaging study of cold deprotonated 2-hydroxypyrimidine anions, C4H3N2O-. Photodetachment spectroscopy reveals an excited dipole-bound state (DBS) of C4H3N2O- with a binding energy of 598 ± 5 cm-1 below the detachment threshold of 26,010 ± 5 cm-1. Twenty vibrational levels of the DBS are observed as resonances in the photodetachment spectrum, with three below the detachment threshold and seventeen above the threshold. By tuning the detachment laser to the above-threshold vibrational resonances, highly non-Franck-Condon photoelectron spectra are obtained. Nine fundamental vibrational frequencies are resolved, including six symmetry-forbidden modes. The 598 cm-1 binding energy for the DBS is quite high due to the large dipole moment of the C4H3N2Orad (>6 D). However, no evidence of a second DBS is observed below the detachment threshold.

  11. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predictingmore » acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.« less

  12. Electronic Structures of Purple Bronze KMo6O17 Studied by X-Ray Photoemission Spectra

    NASA Astrophysics Data System (ADS)

    Qin, Xiaokui; Wei, Junyin; Shi, Jing; Tian, Mingliang; Chen, Hong; Tian, Decheng

    X-ray photoemission spectroscopy study has been performed for the purple bronze KMo6O17. The structures of conduction band and valence band are analogous to the results of ultraviolet photoemission spectra and are also consistent with the model of Travaglini et al., but the gap between conduction and valence band is insignificant. The shape of asymmetric and broadening line of O-1s is due to unresolved contributions from the many inequivalent oxygen sites in this crystal structure. Mo 3d core-level spectrum reveals that there are two kinds of valence states of Molybdenum (Mo+5 and Mo+6). The calculated average valence state is about +5.6, which is consistent with the expectation value from the composition of this material. The tail of Mo-3d spectrum toward higher binding energy is the consequence of the excitation of electron-hole pairs with singularity index of 0.21.

  13. Analysis of Ti valence states in resistive switching regions of a rutile TiO2‑ x four-terminal memristive device

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kengo; Takeuchi, Shotaro; Tohei, Tetsuya; Ikarashi, Nobuyuki; Sakai, Akira

    2018-06-01

    We have performed Ti valence state analysis of our four-terminal rutile TiO2‑ x single-crystal memristors using scanning transmission electron microscopy–electron energy loss spectroscopy (STEM–EELS). Analysis of Ti-L2,3 edge EELS spectra revealed that the electrocolored region formed by the application of voltage includes a valence state reflecting highly reduced TiO2‑ x due to the accumulation of oxygen vacancies. Such a valence state mainly exists within ∼50 nm from the crystal surface and extends along specific crystal directions. These electrically reduced surface layers are considered to directly contribute to the resistive switching (RS) in the four-terminal device. The present results add new insights into the microscopic mechanisms of the RS phenomena and should contribute to further development and improvements of TiO2‑ x based memristive devices.

  14. Intermediate-valence state of the Sm and Eu in SmB6 and EuCu2Si2: neutron spectroscopy data and analysis

    NASA Astrophysics Data System (ADS)

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.; Kolesnikov, A. I.; Nemkovski, K. S.

    2018-02-01

    Magnetic neutron scattering data for Sm (SmB6, Sm(Y)S) and Eu (EuCu2Si2-x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion’s valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle of the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.

  15. Intermediate-valence state of the Sm and Eu in SmB 6 and EuCu 2 Si 2 : neutron spectroscopy data and analysis

    DOE PAGES

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.; ...

    2018-01-11

    For this study, magnetic neutron scattering data for Sm (SmB 6, Sm(Y)S) and Eu (EuCu 2Si 2- x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion's valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle ofmore » the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.« less

  16. Intermediate-valence state of the Sm and Eu in SmB 6 and EuCu 2 Si 2 : neutron spectroscopy data and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.

    For this study, magnetic neutron scattering data for Sm (SmB 6, Sm(Y)S) and Eu (EuCu 2Si 2- x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion's valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle ofmore » the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.« less

  17. Ethene adsorption and dehydrogenation on clean and oxygen precovered Ni(111) studied by high resolution x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lorenz, M. P. A.; Fuhrmann, T.; Streber, R.; Bayer, A.; Bebensee, F.; Gotterbarm, K.; Kinne, M.; Tränkenschuh, B.; Zhu, J. F.; Papp, C.; Denecke, R.; Steinrück, H.-P.

    2010-07-01

    The adsorption and thermal evolution of ethene (ethylene) on clean and oxygen precovered Ni(111) was investigated with high resolution x-ray photoelectron spectroscopy using synchrotron radiation at BESSY II. The high resolution spectra allow to unequivocally identify the local environment of individual carbon atoms. Upon adsorption at 110 K, ethene adsorbs in a geometry, where the two carbon atoms within the intact ethene molecule occupy nonequivalent sites, most likely hollow and on top; this new result unambiguously solves an old puzzle concerning the adsorption geometry of ethene on Ni(111). On the oxygen precovered surface a different adsorption geometry is found with both carbon atoms occupying equivalent hollow sites. Upon heating ethene on the clean surface, we can confirm the dehydrogenation to ethine (acetylene), which adsorbs in a geometry, where both carbon atoms occupy equivalent sites. On the oxygen precovered surface dehydrogenation of ethene is completely suppressed. For the identification of the adsorbed species and the quantitative analysis the vibrational fine structure of the x-ray photoelectron spectra was analyzed in detail.

  18. Combined photoelectron, collision-induced dissociation, and computational studies of parent and fragment anions of N-paranitrophenylsulfonylalanine and N-paranitrophenylalanine

    NASA Astrophysics Data System (ADS)

    Lambert, Jason; Chen, Jing; Buonaugurio, Angela; Bowen, Kit H.; Do-Thanh, Chi-Linh; Wang, Yilin; Best, Michael D.; Compton, R. N.; Sommerfeld, Thomas

    2013-12-01

    After synthesizing the compounds N-paranitrophenylsulfonylalanine (NPNPSA) and N-paranitrophenylalanine (NPNPA), the photoelectron spectrum of the valence anion of N-paranitrophenylsulfonylalanine (NPNPSA)-, was measured and the collision-induced dissociation (CID) pathways of deprotonated N-paranitrophenylsulfonylalanine (NPNPSA-H)- and deprotonated N-paranitrophenylalanine (NPNPA-H)- were determined. Pertinent calculations were conducted to analyze both sets of experimental data. From the valence anion photoelectron spectrum of (NPNPSA)-, the adiabatic electron affinity (AEA) of NPNPSA was determined to be 1.7 ± 0.1 eV, while the vertical detachment energy (VDE) of (NPNPSA)- was found to be 2.3 ± 0.1 eV. Calculations for four low lying conformers of (NPNPSA)- gave AEA values in the range of 1.6-2.1 eV and VDE values in the range of 2.0-2.4 eV. These calculations are in very good agreement with the experimental values. While the NPNPA anion (NPNPSA)- was not observed experimentally it was studied computationally. The six low lying (NPNPSA)- conformers were identified and calculated to have AEA values in the range of 0.7-1.2 eV and VDE values in the range of 0.9-1.6 eV. CID was used to study the fragmentation patterns of deprotonated NPNPA and deprotonated NPNPSA. Based on the CID data and calculations, the excess charge was located on the delocalized π-orbitals of the nitrobenzene moiety. This is made evident by the fact that the dominant fragments all contained the nitrobenzene moiety even though the parent anions used for the CID study were formed via deprotonation of the carboxylic acid. The dipole-bound anions of both molecules are studied theoretically using the results of previous studies on nitrobenzene as a reference.

  19. Combined photoelectron, collision-induced dissociation, and computational studies of parent and fragment anions of N-paranitrophenylsulfonylalanine and N-paranitrophenylalanine.

    PubMed

    Lambert, Jason; Chen, Jing; Buonaugurio, Angela; Bowen, Kit H; Do-Thanh, Chi-Linh; Wang, Yilin; Best, Michael D; Compton, R N; Sommerfeld, Thomas

    2013-12-14

    After synthesizing the compounds N-paranitrophenylsulfonylalanine (NPNPSA) and N-paranitrophenylalanine (NPNPA), the photoelectron spectrum of the valence anion of N-paranitrophenylsulfonylalanine (NPNPSA)(-), was measured and the collision-induced dissociation (CID) pathways of deprotonated N-paranitrophenylsulfonylalanine (NPNPSA-H)(-) and deprotonated N-paranitrophenylalanine (NPNPA-H)(-) were determined. Pertinent calculations were conducted to analyze both sets of experimental data. From the valence anion photoelectron spectrum of (NPNPSA)(-), the adiabatic electron affinity (AEA) of NPNPSA was determined to be 1.7 ± 0.1 eV, while the vertical detachment energy (VDE) of (NPNPSA)(-) was found to be 2.3 ± 0.1 eV. Calculations for four low lying conformers of (NPNPSA)(-) gave AEA values in the range of 1.6-2.1 eV and VDE values in the range of 2.0-2.4 eV. These calculations are in very good agreement with the experimental values. While the NPNPA anion (NPNPSA)(-) was not observed experimentally it was studied computationally. The six low lying (NPNPSA)(-) conformers were identified and calculated to have AEA values in the range of 0.7-1.2 eV and VDE values in the range of 0.9-1.6 eV. CID was used to study the fragmentation patterns of deprotonated NPNPA and deprotonated NPNPSA. Based on the CID data and calculations, the excess charge was located on the delocalized π-orbitals of the nitrobenzene moiety. This is made evident by the fact that the dominant fragments all contained the nitrobenzene moiety even though the parent anions used for the CID study were formed via deprotonation of the carboxylic acid. The dipole-bound anions of both molecules are studied theoretically using the results of previous studies on nitrobenzene as a reference.

  20. Anion photoelectron spectroscopy of deprotonated ortho-, meta-, and para-methylphenol

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel J.; Gichuhi, Wilson K.; Miller, Elisa M.; Lehman, Julia H.; Lineberger, W. Carl

    2017-02-01

    The anion photoelectron spectra of ortho-, meta-, and para-methylphenoxide, as well as methyl deprotonated meta-methylphenol, were measured. Using the Slow Electron Velocity Map Imaging technique, the Electron Affinities (EAs) of the o-, m-, and p-methylphenoxyl radicals were measured as follows: 2.1991±0.0014, 2.2177±0.0014, and 2.1199±0.0014 eV, respectively. The EA of m-methylenephenol was also obtained, 1.024±0.008 eV. In all four cases, the dominant vibrational progressions observed are due to several ring distortion vibrational normal modes that were activated upon photodetachment, leading to vibrational progressions spaced by ˜500 cm-1. Using the methylphenol O-H bond dissociation energies reported by King et al. and revised by Karsili et al., a thermodynamic cycle was constructed and the acidities of the methylphenol isomers were determined as follows: Δa c i dH298K 0=348.39 ±0.25 , 348.82±0.25, 350.08±0.25, and 349.60±0.25 kcal/mol for cis-ortho-, trans-ortho-, m-, and p-methylphenol, respectively. The excitation energies for the ground doublet state to the lowest excited doublet state electronic transition in o-, m-, and p-methylphenoxyl were also measured as follows: 1.029±0.009, 0.962±0.002, and 1.029±0.009 eV, respectively. In the photoelectron spectra of the neutral excited states, C-O stretching modes were excited in addition to ring distortion modes. Electron autodetachment was observed in the cases of both m- and p-methylphenoxide, with the para isomer showing a lower photon energy onset for this phenomenon.

  1. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    PubMed

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  2. Measurement of the low energy spectral contribution in coincidence with valence band (VB) energy levels of Ag(100) using VB-VB coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gladen, R. W.; Joglekar, P. V.; Lim, Z. H.; Shastry, K.; Hulbert, S. L.; Weiss, A. H.

    A set of coincidence measurements were obtained for the study and measurement of the electron contribution arising from the inter-valence band (VB) transitions along with the inelastically scattered VB electron contribution. These Auger-unrelated contributions arise in the Auger spectrum (Ag 4p NVV) obtained using Auger Photoelectron Coincidence Spectroscopy (APECS). The measured Auger-unrelated contribution can be eliminated from Auger spectrum to obtain the spectrum related to Auger. In our VB-VB coincidence measurement, a photon beam of energy 180eV was used to probe the Ag(100) sample. The coincidence spectrum was obtained using two Cylindrical Mirror Analyzers (CMA's). The scan CMA measured the low energy electron contribution in the energy range 0-70eV in coincidence with VB electrons measured by the fixed CMA. In this talk, we present the data obtained for VB-VB coincidence at the valence band energy of 171eV along with the coincidence measurements in the energy range of 4p core and valence band. NSF DMR 0907679, NSF Award Number: 1213727. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-98CH10886.

  3. Measurement of the low energy spectral contribution in coincidence with valence band (VB) energy levels of Ag(100) using VB-VB coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Joglekar, P. V.; Gladen, R.; Lim, Z. H.; Shastry, K.; Hulbert, S. L.; Weiss, A. H.

    2015-03-01

    A set of coincidence measurements were obtained for the study and measurement of the electron contribution arising from the inter-valence band (VB) transitions along with the inelastically scattered VB electron contribution. These Auger-unrelated contributions arise in the Auger spectrum (Ag 4p NVV) obtained using Auger Photoelectron Coincidence Spectroscopy (APECS). The measured Auger-unrelated contribution can be eliminated from Auger spectrum to obtain the spectrum related to Auger. In our VB-VB coincidence measurement, a photon beam of energy 180eV was used to probe the Ag(100) sample. The coincidence spectrum was obtained using two Cylindrical Mirror Analyzers (CMA's). The scan CMA measured the low energy electron contribution in the energy range 0-70eV in coincidence with VB electrons measured by the fixed CMA. In this talk, we present the data obtained for VB-VB coincidence at the valence band energy of 171eV along with the coincidence measurements in the energy range of 4p core and valence band. NSF DMR 0907679, NSF Award Number: 1213727. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  4. Time-resolved photoelectron imaging of iodide-nitromethane (I-·CH3NO2) photodissociation dynamics.

    PubMed

    Kunin, Alice; Li, Wei-Li; Neumark, Daniel M

    2016-12-07

    Femtosecond time-resolved photoelectron spectroscopy is used to probe the decay channels of iodide-nitromethane (I - ·CH 3 NO 2 ) binary clusters photoexcited at 3.56 eV, near the vertical detachment energy (VDE) of the cluster. The production of I - is observed, and its photoelectron signal exhibits a mono-exponential rise time of 21 ± 1 ps. Previous work has shown that excitation near the VDE of the I - ·CH 3 NO 2 complex transfers an electron from iodide to form a dipole-bound state of CH 3 NO 2 - that rapidly converts to a valence bound (VB) anion. The long appearance time for the I - fragment suggests that the VB anion decays by back transfer of the excess electron to iodide, reforming the I - ·CH 3 NO 2 anion and resulting in evaporation of iodide. Comparison of the measured lifetime to that predicted by RRKM theory suggests that the dissociation rate is limited by intramolecular vibrational energy redistribution in the re-formed anion between the high frequency CH 3 NO 2 vibrational modes and the much lower frequency intermolecular I - ·CH 3 NO 2 stretch and bends, the predominant modes involved in cluster dissociation to form I - . Evidence for a weak channel identified as HI + CH 2 NO 2 - is also observed.

  5. Human Amygdala Represents the Complete Spectrum of Subjective Valence

    PubMed Central

    Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.

    2015-01-01

    Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the hedonic potency of odor stimuli and the amygdala's anatomical proximity to the peripheral olfactory system, we combined high-resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Representational similarity analyses showed that amygdala codes the entire dimension of valence, ranging from pleasantness to unpleasantness. This unidimensional representation significantly correlated with self-reported valence ratings but not with intensity ratings. Furthermore, within-trial valence representations evolved over time, prioritizing earlier differentiation of unpleasant stimuli. Together, these findings underscore the idea that both spatial and temporal features uniquely encode pleasant and unpleasant odor valence in the amygdala. The availability of a unidimensional valence code in the amygdala, distributed in both space and time, would create greater flexibility in determining the pleasantness or unpleasantness of stimuli, providing a mechanism by which expectation, context, attention, and learning could influence affective boundaries for guiding behavior. SIGNIFICANCE STATEMENT Our findings elucidate the mechanisms of affective processing in the amygdala by demonstrating that this brain region represents the entire valence dimension from pleasant to unpleasant. An important implication of this unidimensional valence code is that pleasant and unpleasant valence cannot coexist in the amygdale because overlap of fMRI ensemble patterns for these two valence extremes obscures their unique content. This functional architecture, whereby subjective valence maps onto a pattern continuum between pleasant and unpleasant poles, offers a robust mechanism by which context

  6. High resolution photoelectron imaging of UO(-) and UO2(-) and the low-lying electronic states and vibrational frequencies of UO and UO2.

    PubMed

    Czekner, Joseph; Lopez, Gary V; Wang, Lai-Sheng

    2014-12-28

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO(-) and UO2(-). The spectra for UO2(-) are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO2 as 1.1688(6) eV. The symmetric stretching modes for the neutral and anionic ground states, and two neutral excited states for UO2 are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO2 are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species.

  7. Angularly resolved X-ray photoelectron spectroscopy investigation of PTFE after prolonged space exposure

    NASA Technical Reports Server (NTRS)

    Dalins, I.; Karimi, M.

    1992-01-01

    Monochromatized angularly resolved X-ray photoelectron spectroscopy (ARXPS) was used to study PTFE (Teflon) that had been exposed to an earth orbital environment for approximately six years. The primary interest of the research is on a very reactive component of this environment (atomic oxygen) which, because of the typical orbital velocities of a spacecraft, impinge on exposed surfaces with 5 eV energy. This presentation deals with the method of analysis, the findings as they pertain to a rather complex carbon, oxygen, and fluorine XPS peak analysis, and the character of the valence bands. An improved bias referencing method, based on ARXPS, is also demonstrated for evaluating specimen charging effects. It was found that the polymer molecule tends to resist the atomic oxygen attack by reorienting itself, so that the most electronegative CF3 groups are facing the incoming hyperthermal oxygen atoms. The implications of these findings to ground-based laboratory studies are discussed.

  8. Valence and magnitude ambiguity in feedback processing.

    PubMed

    Gu, Ruolei; Feng, Xue; Broster, Lucas S; Yuan, Lu; Xu, Pengfei; Luo, Yue-Jia

    2017-05-01

    Outcome feedback which indicates behavioral consequences are crucial for reinforcement learning and environmental adaptation. Nevertheless, outcome information in daily life is often totally or partially ambiguous. Studying how people interpret this kind of information would provide important knowledge about the human evaluative system. This study concentrates on the neural processing of partially ambiguous feedback, that is, either its valence or magnitude is unknown to participants. To address this topic, we sequentially presented valence and magnitude information; electroencephalography (EEG) response to each kind of presentation was recorded and analyzed. The event-related potential components feedback-related negativity (FRN) and P3 were used as indices of neural activity. Consistent with previous literature, the FRN elicited by ambiguous valence was not significantly different from that elicited by negative valence. On the other hand, the FRN elicited by ambiguous magnitude was larger than both the large and small magnitude, indicating the motivation to seek unambiguous magnitude information. The P3 elicited by ambiguous valence and ambiguous magnitude was not significantly different from that elicited by negative valence and small magnitude, respectively, indicating the emotional significance of feedback ambiguity. Finally, the aforementioned effects also manifested in the stage of information integration. These findings indicate both similarities and discrepancies between the processing of valence ambiguity and that of magnitude ambiguity, which may help understand the mechanisms of ambiguous information processing.

  9. Experimental Constraints on the Partitioning and Valence of V and Cr in Garnet and Coexisting Glass

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S.; Berthet, S.; Newville, M.

    2008-01-01

    A series of experiments with garnet and coexisting melt have been carried out across a range of oxygen fugacities (near hematite-magnetite (HM) to below the iron-wustite (IW) buffers) at 1.7 GPa to study the partitioning and valence of Cr and V in both phases. Experiments were carried out in a non end loaded piston cylinder apparatus, and the run products were analyzed with electron microprobe and xray absorption near edge structure (XANES) analysis at beamline 13-ID at the Advanced Photon Source of Argonne National Lab. The valence of vanadium and chromium were determined using the position and intensity of the Ka pre-edge peaks, calibrated on a series of Cr and Vbearing standard glasses. This technique has been applied to V and Cr in glasses and V in spinels previously, and in these isotropic phases there are no orientational effects on the XANES spectra (Righter et al., 2006, Amer. Mineral. 91, 1643-1656). We also now demonstrate this to be true for V and Cr in garnet. Also, previous work has shown that V has a higher valence in the glass (or melt) than in the coexisting spinel. This is also true for V in garnet-glass pairs in this study. Vanadium valence in garnets varies from 2.7 below the IW buffer to 3.7 near HM, and for coexisting glass it varies from 3.2 to 4.3. Vanadium valence measured in some natural garnets from mantle localities indicates V in the more reduced range at 2.5. Comparisons will be made between fO2 estimated from V valence and other methods for garnet-bearing mantle samples. In contrast, Cr valence measured in garnet and coexisting glass for all experimental and natural samples is 2.9- 3.0, suggesting that the valence of Cr does not vary within either phase across a large fO2 range. These results demonstrate that while V varies from 2+ to 3+ to 4+ in garnet-melt systems, Cr does not, and this will ultimately affect the partitioning behavior of these two elements in natural systems. Garnet/melt D(Cr) are between 12 and 17 across this range

  10. Band alignment at the Cu2ZnSn(SxSe1-x)4/CdS interface

    NASA Astrophysics Data System (ADS)

    Haight, Richard; Barkhouse, Aaron; Gunawan, Oki; Shin, Byungha; Copel, Matt; Hopstaken, Marinus; Mitzi, David B.

    2011-06-01

    Energy band alignments between CdS and Cu2ZnSn(SxSe1-x)4 (CZTSSe) grown via solution-based and vacuum-based deposition routes were studied as a function of the [S]/[S+Se] ratio with femtosecond laser ultraviolet photoelectron spectroscopy, photoluminescence, medium energy ion scattering, and secondary ion mass spectrometry. Band bending in the underlying CZTSSe layer was measured via pump/probe photovoltage shifts of the photoelectron spectra and offsets were determined with photoemission under flat band conditions. Increasing the S content of the CZTSSe films produces a valence edge shift to higher binding energy and increases the CZTSSe band gap. In all cases, the CdS conduction band offsets were spikes.

  11. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    PubMed

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  12. Slow photoelectron imaging spectroscopy of CCO- and CCS-.

    PubMed

    Garand, Etienne; Yacovitch, Tara I; Neumark, Daniel M

    2008-08-21

    High-resolution photodetachment spectra of CCO(-) and CCS(-) using slow photoelectron velocity-map imaging spectroscopy are reported. Well-resolved transitions to the neutral X (3)Sigma(-), a (1)Delta, b (1)Sigma(+), and A (3)Pi states are seen for both species. The electron affinities of CCO and CCS are determined to be 2.3107+/-0.0006 and 2.7475+/-0.0006 eV, respectively, and precise term energies for the a (1)Delta, b (1)Sigma(+), and A (3)Pi excited states are also determined. The two low-lying singlet states of CCS are observed for the first time, as are several vibronic transitions within the four bands. Analysis of hot bands finds the spin-orbit orbit splitting in the X (2)Pi ground state of CCO(-) and CCS(-) to be 61 and 195 cm(-1), respectively.

  13. Valence-band structure of organic radical p-CF3PNN investigated by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Anzai, Hiroaki; Takakura, Ryosuke; Ono, Yusuke; Ishihara, Suzuna; Sato, Hitoshi; Namatame, Hirofumi; Taniguchi, Masaki; Matsui, Toshiyuki; Noguchi, Satoru; Hosokoshi, Yuko

    2018-05-01

    We study the electronic structure of p-trifluoromethylphenyl nitronyl nitroxide (p-CF3PNN), which forms a one-dimensional alternating antiferromagnetic chain of molecules, using angle-resolved photoemission spectroscopy. A singly occupied molecular orbital (SOMO) is observed clearly at ∼ 2 eV in the valence-band spectra. The small band gap and the overlap between the SOMO orbitals in the NO groups are associated with the antiferromagnetic interaction between neighboring spins.

  14. Emotional valence and physical space: limits of interaction.

    PubMed

    de la Vega, Irmgard; de Filippis, Mónica; Lachmair, Martin; Dudschig, Carolin; Kaup, Barbara

    2012-04-01

    According to the body-specificity hypothesis, people associate positive things with the side of space that corresponds to their dominant hand and negative things with the side corresponding to their nondominant hand. Our aim was to find out whether this association holds also true for a response time study using linguistic stimuli, and whether such an association is activated automatically. Four experiments explored this association using positive and negative words. In Exp. 1, right-handers made a lexical judgment by pressing a left or right key. Attention was not explicitly drawn to the valence of the stimuli. No valence-by-side interaction emerged. In Exp. 2 and 3, right-handers and left-handers made a valence judgment by pressing a left or a right key. A valence-by-side interaction emerged: For positive words, responses were faster when participants responded with their dominant hand, whereas for negative words, responses were faster for the nondominant hand. Exp. 4 required a valence judgment without stating an explicit mapping of valence and side. No valence-by-side interaction emerged. The experiments provide evidence for an association between response side and valence, which, however, does not seem to be activated automatically but rather requires a task with an explicit response mapping to occur.

  15. One Way to Design a Valence-Skip Compound.

    PubMed

    Hase, I; Yanagisawa, T; Kawashima, K

    2017-12-01

    Valence-skip compound is a good candidate with high T c and low anisotropy because it has a large attractive interaction at the site of valence-skip atom. However, it is not easy to synthesize such compound because of (i) the instability of the skipping valence state, (ii) the competing charge order, and (iii) that formal valence may not be true in some compounds. In the present study, we show several examples of the valence-skip compounds and discuss how we can design them by first principles calculations. Furthermore, we calculated the electronic structure of a promising candidate of valence skipping compound RbTlCl 3 from first principles. We confirmed that the charge-density wave (CDW) is formed in this compound, and the Tl atoms in two crystallographic different sites take the valence Tl 1+ and Tl 3+ . Structure optimization study reveals that this CDW is stable at the ambient pressure, while this CDW gap can be collapsed when we apply pressure with several gigapascals. In this metallic phase, we can expect a large charge fluctuation and a large electron-phonon interaction.

  16. Synthesis, structural, electronic and linear electro-optical features of new quaternary Ag2Ga2SiS6 compound

    NASA Astrophysics Data System (ADS)

    Piasecki, M.; Myronchuk, G. L.; Parasyuk, O. V.; Khyzhun, O. Y.; Fedorchuk, A. O.; Pavlyuk, V. V.; Kozer, V. R.; Sachanyuk, V. P.; El-Naggar, A. M.; Albassam, A. A.; Jedryka, J.; Kityk, I. V.

    2017-02-01

    For the first time phase equilibria and phase diagram of the AgGaS2-SiS2 system were successfully explored by differential thermal and X-ray phase analysis methods. Crystal structure of low-temperature (LT) modification of Ag2Ga2SiS6 (LT- Ag2Ga2SiS6) was studied by X-ray powder method and it belongs to tetragonal space group I-42d, with unit cell parameters a=5.7164(4) Å, c=9.8023(7) Å, V=320.32(7) Å3. Additional details regarding the crystal structure exploration are available at the web page Fachinformationszentrum Karlsruhe. X-ray photoelectron core-level and valence-band spectra were measured for pristine LT- Ag2Ga2SiS6 crystal surface. In addition, the X-ray photoelectron valence-band spectrum of LT-Ag2Ga2SiS6 was matched on a common energy scale with the X-ray emission S Kβ1,3 and Ga Kβ2 bands, which give information on the energy distribution of the S 3p and Ga 4p states, respectively. The presented X-ray spectroscopy results indicate that the valence S p and Ga p atomic states contribute mainly to the upper and central parts of the valence band of LT-Ag2Ga2SiS6, respectively, with a less significant contribution also to other valence-band regions. Band gap energy was estimated by measuring the quantum energy in the spectral range of the fundamental absorption. We have found that energy gap Eg is equal to 2.35 eV at 300 K. LT-Ag2Ga2SiS6 is a photosensitive material and reveals two spectral maxima on the curve of spectral photoconductivity spectra at λmax1 =590 nm and λmax2 =860 nm. Additionally, linear electro-optical effect of LT-Ag2Ga2SiS6 for the wavelengths of a cw He-Ne laser at 1150 nm was explored.

  17. From photoelectron detachment spectra of BrHBr{sup −}, BrDBr{sup −} and IHI{sup −}, IDI{sup −} to vibrational bonding of BrMuBr and IMuI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manz, Jörn; Freie Universität Berlin, Institut für Chemie und Biochemie, 14195 Berlin; Sato, Kazuma

    2015-04-28

    Photoelectron detachment XLX{sup −}(00{sup 0}0) + hν → XLX(vib) + e{sup −} + KER (X = Br or I, L = H or D) at sufficiently low temperatures photoionizes linear dihalogen anions XLX{sup −} in the vibrational ground state (v{sub 1}v{sub 2}{sup l}v{sub 3} = 00{sup 0}0) and prepares the neutral radicals XLX(vib) in vibrational states (vib). At the same time, part of the photon energy (hν) is converted into kinetic energy release (KER) of the electron [R. B. Metz, S. E. Bradforth, and D. M. Neumark, Adv. Chem. Phys. 81, 1 (1992)]. The process may be described approximately inmore » terms of a Franck-Condon type transfer of the vibrational wavefunction representing XLX{sup −}(00{sup 0}0) from the domain close to the minimum of its potential energy surface (PES) to the domain close to the linear transition state of the PES of the neutral XLX. As a consequence, prominent peaks of the photoelectron detachment spectra (pds) correlate with the vibrational energies E{sub XLX,vib} of states XLX(vib) which are centered at linear transition state. The corresponding vibrational quantum numbers may be labeled vib = (v{sub 1}v{sub 2}{sup l}v{sub 3}) = (00{sup 0}v{sub 3}). Accordingly, the related most prominent peaks in the pds are labeled v{sub 3}. We construct a model PES which mimics the “true” PES in the domain of transition state such that it supports vibrational states with energies E{sub XLX,pds,00{sup 0}v{sub 3}} close to the peaks of the pds labeled v{sub 3} = 0, 2, and 4. Subsequently, the same model PES is also used to calculate approximate values of the energies E{sub XMuX,00{sup 0}0} of the isotopomers XMuX(00{sup 0}0). For the heavy isotopomers XHX and XDX, it turns out that all energies E{sub XLX,00{sup 0}v{sub 3}} are above the threshold for dissociation, which means that all heavy XLX(00{sup 0}v{sub 3}) with wavefunctions centered at the transition state are unstable resonances with finite lifetimes. Turning the table, bound states of the heavy XLX

  18. Total photoelectron yield spectroscopy of energy distribution of electronic states density at GaN surface and SiO2/GaN interface

    NASA Astrophysics Data System (ADS)

    Ohta, Akio; Truyen, Nguyen Xuan; Fujimura, Nobuyuki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    The energy distribution of the electronic state density of wet-cleaned epitaxial GaN surfaces and SiO2/GaN structures has been studied by total photoelectron yield spectroscopy (PYS). By X-ray photoelectron spectroscopy (XPS) analysis, the energy band diagram for a wet-cleaned epitaxial GaN surface such as the energy level of the valence band top and electron affinity has been determined to obtain a better understanding of the measured PYS signals. The electronic state density of GaN surface with different carrier concentrations in the energy region corresponding to the GaN bandgap has been evaluated. Also, the interface defect state density of SiO2/GaN structures was also estimated by not only PYS analysis but also capacitance–voltage (C–V) characteristics. We have demonstrated that PYS analysis enables the evaluation of defect state density filled with electrons at the SiO2/GaN interface in the energy region corresponding to the GaN midgap, which is difficult to estimate by C–V measurement of MOS capacitors.

  19. Emotional Valence and the Free-Energy Principle

    PubMed Central

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world. PMID:23785269

  20. Emotional valence and the free-energy principle.

    PubMed

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world.

  1. Synthesis, Structural, Thermal, and Electronic Properties of Palmierite-Related Double Molybdate α-Cs2Pb(MoO4)2.

    PubMed

    Solodovnikov, Sergey F; Atuchin, Victor V; Solodovnikova, Zoya A; Khyzhun, Oleg Y; Danylenko, Mykola I; Pishchur, Denis P; Plyusnin, Pavel E; Pugachev, Alexey M; Gavrilova, Tatiana A; Yelisseyev, Alexander P; Reshak, Ali H; Alahmed, Zeyad A; Habubi, Nadir F

    2017-03-20

    Cs 2 Pb(MoO 4 ) 2 crystals were prepared by crystallization from their own melt, and the crystal structure has been studied in detail. At 296 K, the molybdate crystallizes in the low-temperature α-form and has a monoclinic palmierite-related superstructure (space group C2/m, a = 2.13755(13) nm, b = 1.23123(8) nm, c = 1.68024(10) nm, β = 115.037(2)°, Z = 16) possessing the largest unit cell volume, 4.0066(4) nm 3 , among lead-containing palmierites. The compound undergoes a distortive phase transition at 635 K and incongruently melts at 943 K. The electronic structure of α-Cs 2 Pb(MoO 4 ) 2 was explored by using X-ray emission spectroscopy (XES) and X-ray photoelectron spectroscopy methods. For α-Cs 2 Pb(MoO 4 ) 2 , the photoelectron core-level and valence-band spectra and the XES band representing the energy distribution of Mo 4d and O 2p states were recorded. Our results allow one to conclude that the Mo 4d and O 2p states contribute mainly to the central part and at the top of the valence band, respectively, with also significant contributions throughout the whole valence-band region of the molybdate under consideration.

  2. Resonant inelastic x-ray scattering and photoemission measurement of O2: Direct evidence for dependence of Rydberg-valence mixing on vibrational states in O 1s → Rydberg states

    NASA Astrophysics Data System (ADS)

    Gejo, T.; Oura, M.; Tokushima, T.; Horikawa, Y.; Arai, H.; Shin, S.; Kimberg, V.; Kosugi, N.

    2017-07-01

    High-resolution resonant inelastic x-ray scattering (RIXS) and low-energy photoemission spectra of oxygen molecules have been measured for investigating the electronic structure of Rydberg states in the O 1s → σ* energy region. The electronic characteristics of each Rydberg state have been successfully observed, and new assignments are made for several states. The RIXS spectra clearly show that vibrational excitation is very sensitive to the electronic characteristics because of Rydberg-valence mixing and vibronic coupling in O2. This observation constitutes direct experimental evidence that the Rydberg-valence mixing characteristic depends on the vibrational excitation near the avoided crossing of potential surfaces. We also measured the photoemission spectra of metastable oxygen atoms (O*) from O2 excited to 1s → Rydberg states. The broadening of the 4p Rydberg states of O* has been found with isotropic behavior, implying that excited oxygen molecules undergo dissociation with a lifetime of the order of 10 fs in 1s → Rydberg states.

  3. Dynamics in higher lying excited states: Valence to Rydberg transitions in the relaxation paths of pyrrole and methylated derivatives

    NASA Astrophysics Data System (ADS)

    Geng, Ting; Schalk, Oliver; Neville, Simon P.; Hansson, Tony; Thomas, Richard D.

    2017-04-01

    The involvement of intermediate Rydberg states in the relaxation dynamics of small organic molecules which, after excitation to the valence manifold, also return to the valence manifold is rarely observed. We report here that such a transiently populated Rydberg state may offer the possibility to modify the outcome of a photochemical reaction. In a time resolved photoelectron study on pyrrole and its methylated derivatives, N-methyl pyrrole and 2,5-dimethyl pyrrole, 6.2 eV photons (200 nm) are used to excite these molecules into a bright ππ* state. In each case, a π3p-Rydberg state, either the B1(π3py) or the A2(π3pz) state, is populated within 20-50 fs after excitation. The wavepacket then proceeds to the lower lying A2(πσ*) state within a further 20 fs, at which point two competing reaction channels can be accessed: prompt N-H (N-CH3) bond cleavage or return to the ground state via a conical intersection accessed after ring puckering, the latter of which is predicted to require an additional 100-160 fs depending on the molecule.

  4. [Emotional valence of words in schizophrenia].

    PubMed

    Jalenques, I; Enjolras, J; Izaute, M

    2013-06-01

    Emotion recognition is a domain in which deficits have been reported in schizophrenia. A number of emotion classification studies have indicated that emotion processing deficits in schizophrenia are more pronounced for negative affects. Given the difficulty of developing material suitable for the study of these emotional deficits, it would be interesting to examine whether patients suffering from schizophrenia are responsive to positively and negatively charged emotion-related words that could be used within the context of remediation strategies. The emotional perception of words was examined in a clinical experiment involving schizophrenia patients. This emotional perception was expressed by the patients in terms of the valence associated with the words. In the present study, we investigated whether schizophrenia patients would assign the same negative and positive valences to words as healthy individuals. Twenty volunteer, clinically stable, outpatients from the Psychiatric Service of the University Hospital of Clermont-Ferrand were recruited. Diagnoses were based on DSM-IV criteria. Global psychiatric symptoms were assessed using the Positive and Negative Symptoms Scale (PANSS). The patients had to evaluate the emotional valence of a set of 300 words on a 5-point scale ranging from "very unpleasant" to "very pleasant". . The collected results were compared with those obtained by Bonin et al. (2003) [13] from 97 University students. Correlational analyses of the two studies revealed that the emotional valences were highly correlated, i.e. the schizophrenia patients estimated very similar emotional valences. More precisely, it was possible to examine three separate sets of 100 words each (positive words, neutral words and negative words). The positive words that were evaluated were the more positive words from the norms collected by Bonin et al. (2003) [13], and the negative words were the more negative examples taken from these norms. The neutral words

  5. Structure and Magnetic Properties of a Mixed-Valence Heptanuclear Manganese Cluster.

    PubMed

    Abbati, Gian Luca; Cornia, Andrea; Fabretti, Antonio C.; Caneschi, Andrea; Gatteschi, Dante

    1998-07-27

    Two novel polynuclear manganese(II,III) complexes have been synthesized by exploiting controlled methanolysis. A one-pot reaction of MnCl(2), NaOMe, dibenzoylmethane (Hdbm), and O(2) in anhydrous methanol, followed by recrystallization from MeOH/CHCl(3) mixtures, afforded the alkoxomanganese complexes [Mn(7)(OMe)(12)(dbm)(6)].CHCl(3).14MeOH (2) and [Mn(2)(OMe)(2)(dbm)(4)] (3). Complex 2 crystallizes in trigonal space group R&thremacr; with a = 14.439(2) Å, alpha = 86.34(1) degrees, and Z = 1. Complex 3 crystallizes in triclinic space group P&onemacr; with a = 9.612(1) Å, b = 10.740(1) Å, c = 13.168(1) Å, alpha = 80.39(1) degrees, beta = 87.66(1) degrees, gamma = 83.57(1) degrees, and Z = 1. The solid-state structure of 2 comprises a [Mn(6)(OMe)(12)(dbm)(6)] "crown" with crystallographically imposed 6-fold symmetry plus a central manganese ion. The layered Mn/O core mimics a fragment of the manganese oxide mineral lithiophorite. Conductivity measurements confirmed the nonionic character of 2 and suggested a mixed-valence Mn(II)(3)Mn(III)(4) formulation. The metrical parameters of the core were analyzed with the aid of bond-valence sum calculations. The central ion is essentially a valence-trapped Mn(II) ion, whereas the average Mn-O distances for the manganese ions of the "crown" are consistent with the presence of two Mn(II) and four Mn(III) ions. However, (1)H NMR spectra in solution strongly support valence localization and suggest that the observed solid-state structure may be a result of static disorder effects. Magnetic susceptibility vs T and magnetization vs field data at low temperature are consistent with an S = (17)/(2) ground state. Complex 3 is a symmetric alkoxo-bridged dimer. The two high-spin Mn(III) ions are antiferromagnetically coupled with J = 0.28(4) cm(-)(1), g = 1.983(2), and D = -2.5(4) cm(-)(1).

  6. Application of the Lucy–Richardson Deconvolution Procedure to High Resolution Photoemission Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rameau, J.; Yang, H.-B.; Johnson, P.D.

    2010-07-01

    Angle-resolved photoemission has developed into one of the leading probes of the electronic structure and associated dynamics of condensed matter systems. As with any experimental technique the ability to resolve features in the spectra is ultimately limited by the resolution of the instrumentation used in the measurement. Previously developed for sharpening astronomical images, the Lucy-Richardson deconvolution technique proves to be a useful tool for improving the photoemission spectra obtained in modern hemispherical electron spectrometers where the photoelectron spectrum is displayed as a 2D image in energy and momentum space.

  7. Characterization of thin films on the nanometer scale by Auger electron spectroscopy and X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Powell, C. J.; Jablonski, A.; Werner, W. S. M.; Smekal, W.

    2005-01-01

    We describe two NIST databases that can be used to characterize thin films from Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) measurements. First, the NIST Electron Effective-Attenuation-Length Database provides values of effective attenuation lengths (EALs) for user-specified materials and measurement conditions. The EALs differ from the corresponding inelastic mean free paths on account of elastic-scattering of the signal electrons. The database supplies "practical" EALs that can be used to determine overlayer-film thicknesses. Practical EALs are plotted as a function of film thickness, and an average value is shown for a user-selected thickness. The average practical EAL can be utilized as the "lambda parameter" to obtain film thicknesses from simple equations in which the effects of elastic-scattering are neglected. A single average practical EAL can generally be employed for a useful range of film thicknesses and for electron emission angles of up to about 60°. For larger emission angles, the practical EAL should be found for the particular conditions. Second, we describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to be released in 2004. This database provides data for many parameters needed in quantitative AES and XPS (e.g., excitation cross-sections, electron-scattering cross-sections, lineshapes, fluorescence yields, and backscattering factors). Relevant data for a user-specified experiment are automatically retrieved by a small expert system. In addition, Auger electron and photoelectron spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra, and thus, provide more detailed characterizations of multilayer thin-film materials. SESSA can also

  8. Effects of surface condition on the work function and valence-band position of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Shing, Amanda M.; Tolstova, Yulia; Lewis, Nathan S.; Atwater, Harry A.

    2017-12-01

    ZnSnN2 is an emerging wide band gap earth-abundant semiconductor with potential applications in photonic devices such as solar cells, LEDs, and optical sensors. We report the characterization by ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy of reactively radio-frequency sputtered II-IV-nitride ZnSnN2 thin films. For samples transferred in high vacuum, the ZnSnN2 surface work function was 4.0 ± 0.1 eV below the vacuum level, with a valence-band onset of 1.2 ± 0.1 eV below the Fermi level. The resulting band diagram indicates that the degenerate bulk Fermi level position in ZnSnN2 shifts to mid-gap at the surface due to band bending that results from equilibration with delocalized surface states within the gap. Brief (< 10 s) exposures to air, a nitrogen-plasma treatment, or argon-ion sputtering caused significant chemical changes at the surface, both in surface composition and interfacial energetics. The relative band positioning of the n-type semiconductor against standard redox potentials indicated that ZnSnN2 has an appropriate energy band alignment for use as a photoanode to effect the oxygen-evolution reaction.

  9. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexesmore » in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.« less

  10. Lifetimes and energetics of the first electronically excited states of NaH2O from time-resolved photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Gartmann, Thomas E.; Yoder, Bruce L.; Chasovskikh, Egor; Signorell, Ruth

    2017-09-01

    The energetics and lifetimes of the first electronically excited states (;3p-states;) of NaH2O and NaD2O have been measured by pump-probe (740/780 and 400 nm) photoelectron imaging. The photoelectron spectra of NaH2O show two bands at an electron kinetic energy of 0.14 and 0.38 eV, respectively. We assign the former to excitation via the two energetically close lying ;pπ-states; with flat potential curves in the intermolecular degrees of freedom, and the latter to the excitation via the ;pσ-state; characterized by significantly steeper potential curves. The relaxation of all ;p-states; follows a double exponential decay with a lifetime around 110 ps for the dominant fast component.

  11. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  12. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE PAGES

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; ...

    2016-09-01

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  13. Revisiting the origin of satellites in core-level photoemission of transparent conducting oxides: The case of n -doped SnO2

    NASA Astrophysics Data System (ADS)

    Borgatti, Francesco; Berger, J. A.; Céolin, Denis; Zhou, Jianqiang Sky; Kas, Joshua J.; Guzzo, Matteo; McConville, C. F.; Offi, Francesco; Panaccione, Giancarlo; Regoutz, Anna; Payne, David J.; Rueff, Jean-Pascal; Bierwagen, Oliver; White, Mark E.; Speck, James S.; Gatti, Matteo; Egdell, Russell G.

    2018-04-01

    The longstanding problem of interpretation of satellite structures in core-level photoemission spectra of metallic systems with a low density of conduction electrons is addressed using the specific example of Sb-doped SnO2. Comparison of ab initio many-body calculations with experimental hard x-ray photoemission spectra of the Sn 4 d states shows that strong satellites are produced by coupling of the Sn core hole to the plasma oscillations of the free electrons introduced by doping. Within the same theoretical framework, spectral changes of the valence band spectra are also related to dynamical screening effects. These results demonstrate that, for the interpretation of electron correlation features in the core-level photoelectron spectra of such narrow-band materials, going beyond the homogeneous electron gas electron-plasmon coupling model is essential.

  14. Investigation of low-Z Coster-Kronig transitions by means of Auger and photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Tsang, T.; Adler, I.

    1972-01-01

    Experimental intensity ratios of Auger transitions for Co, Ni, Cu, and Zn as well as the relative L sub 2 and L sub 3 level widths of Cu and Zn, derived from their photoelectron spectra, are presented. Evidence is presented that a great deal of vacancy reorganization took place following photoionization and prior to Auger emission. These reorganizations are assumed to be due to Coster-Kronig transitions f sub 23. These results are compared with theoretical calculations and agree with predicted discontinuity at Z = 30 where f sub 23 transitions become energetically impossible.

  15. Investigation of the spectral properties and magnetism of BiFeO3 by dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Paul, Souvik; Iuşan, Diana; Thunström, Patrik; Kvashnin, Yaroslav O.; Hellsvik, Johan; Pereiro, Manuel; Delin, Anna; Knut, Ronny; Phuyal, Dibya; Lindblad, Andreas; Karis, Olof; Sanyal, Biplab; Eriksson, Olle

    2018-03-01

    Using the local density approximation plus dynamical mean-field theory (LDA+DMFT), we have computed the valence-band photoelectron spectra and magnetic excitation spectra of BiFeO3, one of the most studied multiferroics. Within the DMFT approach, the local impurity problem is tackled by the exact diagonalization solver. The solution of the impurity problem within the LDA+DMFT method for the paramagnetic and magnetically ordered phases produces result in agreement with the experimental data on electronic and magnetic structures. For comparison, we also present results obtained by the LDA +U approach which is commonly used to compute the physical properties of this compound. Our LDA+DMFT derived electronic spectra match adequately with the experimental hard x-ray photoelectron spectroscopy and resonant photoelectron spectroscopy for Fe 3 d states, whereas the LDA +U method fails to capture the general features of the measured spectra. This indicates the importance of accurately incorporating the dynamical aspect of electronic correlation among Fe 3 d orbitals to reproduce the experimental excitation spectra. Specifically, the LDA+DMFT derived density of states exhibits a significant amount of Fe 3 d states at the position of Bi lone pairs, implying that the latter are not alone in the spectral scenario. This fact might modify our interpretation about the origin of ferroelectric polarization in this material. Our study demonstrates that the combination of orbital cross sections for the constituent elements and broadening schemes for the spectral functions are crucial to explain the detailed structures of the experimental electronic spectra. Our magnetic excitation spectra computed from the LDA+DMFT result conform well with the inelastic neutron scattering data.

  16. X-ray emission spectroscopy to study ligand valence orbitals in Mn coordination complexes

    PubMed Central

    Smolentsev, Grigory; Soldatov, Alexander V; Messinger, Johannes; Merz, Kathrin; Weyhermüller, Thomas; Bergmann, Uwe; Pushkar, Yulia; Yano, Junko; Yachandra, Vittal K.; Glatzel, Pieter

    2009-01-01

    We discuss a spectroscopic method to determine the character of chemical bonding and for the identification of metal ligands in coordination and bioinorganic chemistry. It is based on the analysis of satellite lines in x-ray emission spectra that arise from transitions between valence orbitals and the metal ion 1s level (valence-to-core XES). The spectra, in connection with calculations based on density functional theory (DFT), provide information that is complementary to other spectroscopic techniques, in particular x-ray absorption (XANES and EXAFS). The spectral shape is sensitive to protonation of ligands and allows ligands, which differ only slightly in atomic number (e.g. C, N, O...), to be distinguished . A theoretical discussion of the main spectral features is presented in terms of molecular orbitals for a series of Mn model systems: [Mn(H2O)6]2+, [Mn(H2O)5OH]+, [Mn(H2O)5NH2]+ and [Mn(H2O)5NH3]2+. An application of the method, with comparison between theory and experiment, is presented for solvated Mn2+ ion in water and three Mn coordination complexes, namely [LMn(acac)N3]BPh4, [LMn(B2O3Ph2)(ClO4)] and [LMn(acac)N]BPh4 where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane, acac stands for the 2,4-pentanedionate anion and B2O3Ph2 represents the 1,3-diphenyl-1,3-dibora-2-oxapropane-1,3-diolato dianion. PMID:19663435

  17. Tetraphenylporphyrin electronic properties: a combined theoretical and experimental study of thin films deposited by SuMBD.

    PubMed

    Nardi, Marco; Verucchi, Roberto; Corradi, Claudio; Pola, Marco; Casarin, Maurizio; Vittadini, Andrea; Iannotta, Salvatore

    2010-01-28

    Porphyrins and their metal complexes are particularly well suitable for applications in photoelectronics, sensing, energy production, because of their chemical, electronic and optical properties. The understanding of the electronic properties of the pristine molecule is of great relevance for the study and application of the wide class of these compounds. This is notably important for the recently achieved in-vacuo synthesis of organo-metallic thin films directly from the pure free base organic-inorganic precursors in the vapor phase, and its interpretation by means of surface electron spectroscopies. We report on a combined experimental and theoretical study of the physical/chemical properties of tetraphenylporphyrin, H(2)TPP, deposited on the SiO(2)/Si(100) native oxide surface by supersonic molecular beam deposition (SuMBD). Valence states and 1s core level emissions of carbon and nitrogen have been investigated with surface photoelectron spectroscopies by using synchrotron radiation light. The interpretation of the spectra has been guided by density functional numerical experiments on the gas-phase molecule. Non-relativistic calculations were carried out for the valence states, whereas a two component relativistic approach in the zeroth-order regular approximation was used to investigate the core levels. The good agreement between theoretical and experimental analysis results in a comprehensive overview of the chemical properties of the H(2)TPP molecule, highly improving reliability in the interpretation of experimental photoemission spectra.

  18. Surface and bulk electronic structures of unintentionally and Mg-doped In0.7Ga0.3N epilayer by hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Imura, Masataka; Tsuda, Shunsuke; Takeda, Hiroyuki; Nagata, Takahiro; Banal, Ryan G.; Yoshikawa, Hideki; Yang, AnLi; Yamashita, Yoshiyuki; Kobayashi, Keisuke; Koide, Yasuo; Yamaguchi, Tomohiro; Kaneko, Masamitsu; Uematsu, Nao; Wang, Ke; Araki, Tsutomu; Nanishi, Yasushi

    2018-03-01

    The surface and bulk electronic structures of In0.7Ga0.3N epilayers are investigated by angle-resolved hard X-ray photoelectron spectroscopy (HX-PES) combined with soft X-PES. The unintentionally and Mg-doped In0.7Ga0.3N (u-In0.7Ga0.3N and In0.7Ga0.3N:Mg, respectively) epilayers are grown by radio-frequency plasma-assisted molecular beam epitaxy. Here three samples with different Mg concentrations ([Mg] = 0, 7 × 1019, and 4 × 1020 cm-3) are chosen for comparison. It is found that a large downward energy band bending exists in all samples due to the formation of a surface electron accumulation (SEA) layer. For u-In0.7Ga0.3N epilayer, band bending as large as 0.8 ± 0.05 eV occurs from bulk to surface. Judged from the valence band spectral edge and numerical analysis of energy band with a surface quantum well, the valence band maximum (VBM) with respect to Fermi energy (EF) level in the bulk is determined to be 1.22 ± 0.05 eV. In contrast, for In0.7Ga0.3N:Mg epilayers, the band bending increases and the VBM only in the bulk tends to shift toward the EF level owing to the Mg acceptor doping. Hence, the energy band is considered to exhibit a downward bending structure due to the coexistence of the n+ SEA layer and Mg-doped p layer formed in the bulk. When [Mg] changes from 7 × 1019 to 4 × 1020 cm-3, the peak split occurs in HX-PES spectra under the bulk sensitive condition. This result indicates that the energy band forms an anomalous downward bending structure with a singular point due to the generation of a thin depleted region at the n+ p interface. For In0.7Ga0.3N:Mg epilayers, the VBM in the bulk is assumed to be slightly lower than EF level within 0.1 eV.

  19. An X-ray photoelectron spectroscopy study of the thermal nitridation of SiO2/Si

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Madhukar, A.; Grunthaner, F. J.; Naiman, M. L.

    1986-01-01

    The dependence of the nitrogen distribution in thermally nitrided SiO2 films on the nitridation time and temperature has been studied by means of X-ray photoelectron spectroscopy (XPS). The photoelectron peak intensities were measured by fitting Voigt profiles to the XPS spectra and were used to calculate the film composition as a function of film depth, applying an analytical method described in detail. The times of appearance of the maxima in interfacial nitrogen concentration are shown for 800, 1000, and 1150 C, and the data are related to a kinetic model of Vasquez and Madhukar (1985), which considers the effect of interfacial strain on the nitridation kinetics. In addition, the intensity of a fluorine marker (from the HF used in the etching step) was found to correlate with the nitrogen concentration. It is postulated that the F bonds preferentially to defects. This hypothesis and the measured F intensities are consistent with the proposed strain-dependent energy of defect formation.

  20. Emission and reflection spectra from AlxGa1-xN/GaN single heterostructures

    NASA Astrophysics Data System (ADS)

    Reynolds, D. C.; Hoelscher, J.; Litton, C. W.; Collins, T. C.; Fitch, R.; Via, G. D.; Gillespie, J.; Crespo, A.; Jenkins, T. J.; Saxler, A.

    2003-10-01

    Emission and reflection spectra from AlGaN/GaN single heterostructures grown on SiC substrates were investigated. Two-dimensional electron gas (2DEG) transitions were observed in both emission and reflection. The transitions are sharp, associated with the excited state of the 2DEG, reflect the conservation of the K-selection rule, and are excitonlike. The transitions are also associated with both the A- and B-valence bands. To verify the origin of the reflection and emission spectra, the top AlGaN layer was removed by reactive ion etching. After etching, only the excitonic reflection and emission spectra associated with GaN were observed.

  1. Conformation-selective resonant photoelectron imaging from dipole-bound states of cold 3-hydroxyphenoxide

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Huang, Dao-Ling; Wang, Lai-Sheng

    2017-07-01

    We report a photoelectron imaging and photodetachment study of cryogenically cooled 3-hydroxyphenoxide (3HOP) anions, m-HO(C6H4)O-. In a previous preliminary study, two conformations of the cold 3HOP anions with different dipole bound states were observed [D. L. Huang et al., J. Phys. Chem. Lett. 6, 2153 (2015)]. Five near-threshold vibrational resonances were revealed in the photodetachment spectrum from the dipole-bound excited states of the two conformations. Here, we report a more extensive investigation of the two conformers with observation of thirty above-threshold vibrational resonances in a wide spectral range between 18 850 and 19 920 cm-1 (˜1000 cm-1 above the detachment thresholds). By tuning the detachment laser to the vibrational resonances in the photodetachment spectrum, high-resolution conformation-selective resonant photoelectron images are obtained. Using information of the autodetachment channels and theoretical vibrational frequencies, we are able to assign the resonant peaks in the photodetachment spectrum: seventeen are assigned to vibrational levels of anti-3HOP, eight to syn-3HOP, and five to overlapping vibrational levels of both conformers. From the photodetachment spectrum and the conformation-selective resonant photoelectron spectra, we have obtained fourteen fundamental vibrational frequencies for the neutral syn- and anti-m-HO(C6H4)Oṡ radicals. The possibility to produce conformation-selected neutral beams using resonant photodetachment via dipole-bound excited states of anions is discussed.

  2. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  3. Photoelectron Spectroscopy Study of Quinonimides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Ekram; Deng, Shihu M.; Gozem, Samer

    Structures and energetics of o-, m- and p-quinonimide anions (OC6H4N) and quinoniminyl radicals have been investigated by using negative ion photoelectron spectroscopy. Modeling of the photoelectron spectrum of the ortho isomer shows that the ground state of the anion is a triplet, while the quinoniminyl radical has a doublet ground state with a doublet-quartet splitting of 35.5 kcal/mol. The para radical has doublet ground state, but a band for a quartet state is missing from the photoelectron spectrum indicating that the anion has a singlet ground state, in contrast to previously reported calculations. The theoretical modeling is revisited here, andmore » it is shown that accurate predictions for the electronic structure of the para quinonimide anion require both an accurate account of electron correlation and a sufficiently diffuse basis set. Electron affinities of o- and p-quinoniminyl radicals are measured to be 1.715 ± 0.010 and 1.675 ± 0.010 eV, respectively. The photoelectron spectrum of the m-quinonimide anion shows that the ion undergoes several different rearrangements, including a rearrangement to the energetically favorable para isomer. Such rearrangements preclude a meaningful analysis of the experimental spectrum.« less

  4. Nonresonant valence-to-core x-ray emission spectroscopy of niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravel, Bruce; Kropf, A. Jeremy; Yang, Dali

    The valence-to-core (V2C) portion of x-ray emission spectroscopy (XES) measures the electron states close to the Fermi level. These states are involved in bonding, thus providing a measure of the chemistry of the material. For this paper, we show the V2C XES spectra for several niobium compounds. The Kβ" peak in the V2C XES results from the transition of a ligand 2s electron into the 1s core-hole of the niobium, a transition allowed by hybridization with the niobium 4p . This location in energy of this weak peak shows a strong ligand dependence, thus providing a sensitive probe of themore » ligand environment about the niobium.« less

  5. Nonresonant valence-to-core x-ray emission spectroscopy of niobium

    DOE PAGES

    Ravel, Bruce; Kropf, A. Jeremy; Yang, Dali; ...

    2018-03-23

    The valence-to-core (V2C) portion of x-ray emission spectroscopy (XES) measures the electron states close to the Fermi level. These states are involved in bonding, thus providing a measure of the chemistry of the material. For this paper, we show the V2C XES spectra for several niobium compounds. The Kβ" peak in the V2C XES results from the transition of a ligand 2s electron into the 1s core-hole of the niobium, a transition allowed by hybridization with the niobium 4p . This location in energy of this weak peak shows a strong ligand dependence, thus providing a sensitive probe of themore » ligand environment about the niobium.« less

  6. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    National Institute of Standards and Technology Data Gateway

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  7. Born in weak fields: below-threshold photoelectron dynamics

    NASA Astrophysics Data System (ADS)

    Williams, J. B.; Saalmann, U.; Trinter, F.; Schöffler, M. S.; Weller, M.; Burzynski, P.; Goihl, C.; Henrichs, K.; Janke, C.; Griffin, B.; Kastirke, G.; Neff, J.; Pitzer, M.; Waitz, M.; Yang, Y.; Schiwietz, G.; Zeller, S.; Jahnke, T.; Dörner, R.

    2017-02-01

    We investigate the dynamics of ultra-low kinetic energy photoelectrons. Many experimental techniques employed for the detection of photoelectrons require the presence of (more or less) weak electric extraction fields in order to perform the measurement. Our studies show that ultra-low energy photoelectrons exhibit a characteristic shift in their apparent measured momentum when the target system is exposed to such static electric fields. Already fields as weak as 1 V cm-1 have an observable influence on the detected electron momentum. This apparent shift is demonstrated by an experiment on zero energy photoelectrons emitted from He and explained through theoretical model calculations.

  8. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE PAGES

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina; ...

    2017-01-17

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  9. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  10. Rotationally resolved photoelectron spectroscopy of n-H/sub 2/, p-H/sub 2/, HD, and D/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, J.E.; Trevor, D.J.; Reutt, J.E.

    1982-07-01

    The 584 A photoelectron spectra of n-H/sub 2/, p-H/sub 2/, HD, and D/sub 2/ were recorded at a resolution of 11 meV FWHM using a supersonic molecular beam source. Spectra were taken at several stagnation temperatures and pressures in order to vary the rotational population distribution in the beam with a corresponding variation in the relative intensities of the rotational transitions. Many of the Q-branch components were resolved for the first time. ..delta..G(v+1/2) and B/sub v/ values were measured for all observed vibrational states of H/sup +//sub 2/, HD/sup +/, and D/sup +//sub 2/ and were used to determined themore » ionic vibrational and rotational constants: ..omega../sub e/, ..omega../sub e/x/sub e/, ..omega../sub e/y/sub e/, ..omega../sub e/z/sub e/, B/sub e/, and ..cap alpha../sub e/. The results represent a substantial improvement over previous experimental determinations and were found to be consistent with the available theoretical rotation-vibration energy levels. The measurement of the intensity distribution of photoelectrons as a function of vibrational states yielded photoionization cross sections which were in good agreement with the theoretical values calculated by O'Niel and Reinhardt.« less

  11. Positive valence music restores executive control over sustained attention

    PubMed Central

    Lewis, Bridget A.

    2017-01-01

    Music sometimes improves performance in sustained attention tasks. But the type of music employed in previous investigations has varied considerably, which can account for equivocal results. Progress has been hampered by lack of a systematic database of music varying in key characteristics like tempo and valence. The aims of this study were to establish a database of popular music varying along the dimensions of tempo and valence and to examine the impact of music varying along these dimensions on restoring attentional resources following performance of a sustained attention to response task (SART) vigil. Sixty-nine participants rated popular musical selections that varied in valence and tempo to establish a database of four musical types: fast tempo positive valence, fast tempo negative valence, slow tempo positive valence, and slow tempo negative valence. A second group of 89 participants performed two blocks of the SART task interspersed with either no break or a rest break consisting of 1 of the 4 types of music or silence. Presenting positive valence music (particularly of slow tempo) during an intermission between two successive blocks of the SART significantly decreased miss rates relative to negative valence music or silence. Results support an attentional restoration theory of the impact of music on sustained attention, rather than arousal theory and demonstrate a means of restoring sustained attention. Further, the results establish the validity of a music database that will facilitate further investigations of the impact of music on performance. PMID:29145395

  12. Positive valence music restores executive control over sustained attention.

    PubMed

    Baldwin, Carryl L; Lewis, Bridget A

    2017-01-01

    Music sometimes improves performance in sustained attention tasks. But the type of music employed in previous investigations has varied considerably, which can account for equivocal results. Progress has been hampered by lack of a systematic database of music varying in key characteristics like tempo and valence. The aims of this study were to establish a database of popular music varying along the dimensions of tempo and valence and to examine the impact of music varying along these dimensions on restoring attentional resources following performance of a sustained attention to response task (SART) vigil. Sixty-nine participants rated popular musical selections that varied in valence and tempo to establish a database of four musical types: fast tempo positive valence, fast tempo negative valence, slow tempo positive valence, and slow tempo negative valence. A second group of 89 participants performed two blocks of the SART task interspersed with either no break or a rest break consisting of 1 of the 4 types of music or silence. Presenting positive valence music (particularly of slow tempo) during an intermission between two successive blocks of the SART significantly decreased miss rates relative to negative valence music or silence. Results support an attentional restoration theory of the impact of music on sustained attention, rather than arousal theory and demonstrate a means of restoring sustained attention. Further, the results establish the validity of a music database that will facilitate further investigations of the impact of music on performance.

  13. Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, x-ray emission spectroscopy, and DFT + DMFT calculations

    DOE PAGES

    Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito; ...

    2017-11-02

    Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less

  14. Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, x-ray emission spectroscopy, and DFT + DMFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito

    Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less

  15. Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction

    NASA Astrophysics Data System (ADS)

    Lee, Kai-Hsuan; Chang, Ping-Chuan; Chen, Tse-Pu; Chang, Sheng-Po; Shiu, Hung-Wei; Chang, Lo-Yueh; Chen, Chia-Hao; Chang, Shoou-Jinn

    2013-02-01

    Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 ± 0.1 eV and conduction band offset of 1.61 ± 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

  16. Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kai-Hsuan; Chen, Chia-Hao; Chang, Ping-Chuan

    2013-02-18

    Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 {+-} 0.1 eV and conduction band offset of 1.61 {+-} 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

  17. The role of the 5f valence orbitals of early actinides in chemical bonding

    PubMed Central

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-01-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/ϕ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements. PMID:28681848

  18. The role of the 5f valence orbitals of early actinides in chemical bonding

    NASA Astrophysics Data System (ADS)

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-07-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/φ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements.

  19. Multiphoton Rydberg and valence dynamics of CH3Br probed by mass spectrometry and slice imaging.

    PubMed

    Hafliðason, Arnar; Glodic, Pavle; Koumarianou, Greta; Samartzis, Peter C; Kvaran, Ágúst

    2018-06-18

    The multiphoton dynamics of CH3Br were probed by Mass Resolved MultiPhoton Ionization (MR-MPI), Slice Imaging and Photoelectron Imaging in the two-photon excitation region of 66 000 to 80 000 cm-1. Slice images of the CH3+ and Br+ photoproducts of ten two-photon resonant transitions to np and nd Rydberg states of the parent molecule were recorded. CH3+ ions dominate the mass spectra. Kinetic energy release spectra (KERs) were derived from slice and photoelectron images and anisotropy parameters were extracted from the angular distributions of the ions to identify the processes and the dynamics involved. At all wavelengths we observe three-photon excitations, via the two-photon resonant transitions to molecular Rydberg states, forming metastable, superexcited (CH3Br#) states which dissociate to form CH3 Rydberg states (CH3**) along with Br/Br*. A correlation between the parent Rydberg states excited and CH3** formed is evident. For the three highest excitation energies used, the CH3Br# metastable states also generate high kinetic energy fragments of CH3(X) and Br/Br*. In addition for two out of these three wavelengths we also measure one-photon photolysis of CH3Br in the A band forming CH3(X) in various vibrational modes and bromine atoms in the ground (Br) and spin-orbit excited (Br*) states.

  20. Architectural Representation of Valence in the Limbic System

    PubMed Central

    Namburi, Praneeth; Al-Hasani, Ream; Calhoon, Gwendolyn G; Bruchas, Michael R; Tye, Kay M

    2016-01-01

    In order to thrive, animals must be able to recognize aversive and appetitive stimuli within the environment and subsequently initiate appropriate behavioral responses. This assignment of positive or negative valence to a stimulus is a key feature of emotional processing, the neural substrates of which have been a topic of study for several decades. Until recently, the result of this work has been the identification of specific brain regions, such as the basolateral amygdala (BLA) and nucleus accumbens (NAc), as important to valence encoding. The advent of modern tools in neuroscience has allowed further dissection of these regions to identify specific populations of neurons signaling the valence of environmental stimuli. In this review, we focus upon recent work examining the mechanisms of valence encoding, and provide a model for the systematic investigation of valence within anatomically-, genetically-, and functionally defined populations of neurons. PMID:26647973

  1. Analytic approach to photoelectron transport.

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.

    1972-01-01

    The equation governing the transport of photoelectrons in the ionosphere is shown to be equivalent to the equation of radiative transfer. In the single-energy approximation this equation is solved in closed form by the method of discrete ordinates for isotropic scattering and for a single-constituent atmosphere. The results include prediction of the angular distribution of photoelectrons at all altitudes and, in particular, the angular distribution of the escape flux. The implications of these solutions in real atmosphere calculations are discussed.

  2. Pressure dependence of Ce valence in CeRhIn 5

    DOE PAGES

    Brubaker, Z. E.; Stillwell, R. L.; Chow, P.; ...

    2017-12-14

    We have studied the Ce valence as a function of pressure in CeRhIn5 at 300 K and at 22 K using x-ray absorption spectroscopy in partial fluorescent yield mode. At room temperature, we found no detectable change in Ce valence greater than 0.01 up to a pressure of 5.5 GPa. At 22 K, the valence remains robust against pressure below 6 GPa, in contrast to the predicted valence crossover at P = 2.35 GPa. In conclusion, this work yields an upper limit for the change in Ce-valence and suggests that the critical valence fluctuation scenario, in its current form, ismore » unlikely.« less

  3. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  4. Social learning modulates the lateralization of emotional valence.

    PubMed

    Shamay-Tsoory, Simone G; Lavidor, Michal; Aharon-Peretz, Judith

    2008-08-01

    Although neuropsychological studies of lateralization of emotion have emphasized valence (positive vs. negative) or type (basic vs. complex) dimensions, the interaction between the two dimensions has yet to be elucidated. The purpose of the current study was to test the hypothesis that recognition of basic emotions is processed preferentially by the right prefrontal cortex (PFC), whereas recognition of complex social emotions is processed preferentially by the left PFC. Experiment 1 assessed the ability of healthy controls and patients with right and left PFC lesions to recognize basic and complex emotions. Experiment 2 modeled the patient's data of Experiment 1 on healthy participants under lateralized displays of the emotional stimuli. Both experiments support the Type as well as the Valence Hypotheses. However, our findings indicate that the Valence Hypothesis holds for basic but less so for complex emotions. It is suggested that, since social learning overrules the basic preference of valence in the hemispheres, the processing of complex emotions in the hemispheres is less affected by valence.

  5. Affective valence signals agency within and between individuals.

    PubMed

    Chang, Yen-Ping; Algoe, Sara B; Chen, Lung Hung

    2017-03-01

    Affective valence is a core component of all emotional experiences. Building on recent evidence and theory, we reason that valence informs individuals about their agency-the mental capability of doing and intending. Expressed affect may also lead to perceptions of agency by others. Supporting the hypothesis that valence influences self- and other-perception of agency, across 5 studies, we showed that participants perceived more agency in themselves in positive versus neutral and negative personal (Study 1) and interpersonal (Study 2) events. Participants also perceived more agency in fictional characters showing positive versus negative affect, regardless of how acceptable the characters' behavior was (Studies 3 and 4). Finally, we had participants personify 24 specific emotions across the valence dimension, and found that the more positive and less negative an emotion was, the more agency participants ascribed to the "person" (Study 5). We discuss the results in terms of how valence may help with human self- and social regulation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Peculiarities of Spacecraft Photoelectron Shield Formation in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Veselov, Mikhail; Chugunin, Dmitriy

    Traditionally, the current balance equations for a spacecraft in space plasma rely on the electric field of positively charged spacecraft. Equilibrium potential V is derived from currents outward and toward the spacecraft body. The currents are in turn functions of V. However, in reality photoelectrons move in both the electric field of the spacecraft and the Earth or the interplanetary magnetic field. This causes an anisotropic distribution of photoelectrons along a magnetic field line with the characteristic size of the order of several photoelectron gyro-radii. As a result, confinement of photoelectrons in the spacecraft-related electric field is much longer. Thus, a fraction of returned photoelectrons in the electron current toward the spacecraft can be rather great and may even dominate several times over the ambient electrons’ fraction. Modeled ph-electron trajectories as well as general photoelectron shield distribution around spacecraft are represented, and comparison of experimental data on the electron density with the magnetic flux tube model is discussed.

  7. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers.

    PubMed

    Tia, Maurice; Cunha de Miranda, Barbara; Daly, Steven; Gaie-Levrel, François; Garcia, Gustavo A; Nahon, Laurent; Powis, Ivan

    2014-04-17

    The valence shell photoionization of the simplest proteinaceous chiral amino acid, alanine, is investigated over the vacuum ultraviolet region from its ionization threshold up to 18 eV. Tunable and variable polarization synchrotron radiation was coupled to a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer to produce mass-selected threshold photoelectron spectra and derive the state-selected fragmentation channels. The photoelectron circular dichroism (PECD), an orbital-sensitive, conformer-dependent chiroptical effect, was also recorded at various photon energies and compared to continuum multiple scattering calculations. Two complementary vaporization methods-aerosol thermodesorption and a resistively heated sample oven coupled to an adiabatic expansion-were applied to promote pure enantiomers of alanine into the gas phase, yielding neutral alanine with different internal energy distributions. A comparison of the photoelectron spectroscopy, fragmentation, and dichroism measured for each of the vaporization methods was rationalized in terms of internal energy and conformer populations and supported by theoretical calculations. The analytical potential of the so-called PECD-PICO detection technique-where the electron spectroscopy and circular dichroism can be obtained as a function of mass and ion translational energy-is underlined and applied to characterize the origin of the various species found in the experimental mass spectra. Finally, the PECD findings are discussed within an astrochemical context, and possible implications regarding the origin of biomolecular asymmetry are identified.

  8. Absorption spectra and optical transitions in InAs/GaAs self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Cusack, M. A.; Briddon, P. R.; Jaros, M.

    1997-08-01

    We have applied the multiband effective mass/valence force field method to the calculation of optical transitions and absorption spectra in InAs/GaAs self-organized dots of different sizes. We have found that the apparently conflicting assignments of luminescence features to optical transitions in different experiments are in fact entirely compatible with each other. Whether the optical signature of a dot is constructed from transitions between states of the same quantum numbers, or via additional processes between the ground conduction state and a low-lying valence state depends on the aspect ratio of the quantum dot radius and height. The states involved can be predicted from a simple particle in a rigid rectangular box model.

  9. Taboo, emotionally valenced, and emotionally neutral word norms.

    PubMed

    Janschewitz, Kristin

    2008-11-01

    Although taboo words are used to study emotional memory and attention, no easily accessible normative data are available that compare taboo, emotionally valenced, and emotionally neutral words on the same scales. Frequency, inappropriateness, valence, arousal, and imageability ratings for taboo, emotionally valenced, and emotionally neutral words were made by 78 native-English-speaking college students from a large metropolitan university. The valenced set comprised both positive and negative words, and the emotionally neutral set comprised category-related and category-unrelated words. To account for influences of demand characteristics and personality factors on the ratings, frequency and inappropriateness measures were decomposed into raters' personal reactions to the words versus raters' perceptions of societal reactions to the words (personal use vs. familiarity and offensiveness vs. tabooness, respectively). Although all word sets were rated higher in familiarity and tabooness than in personal use and offensiveness, these differences were most pronounced for the taboo set. In terms of valence, the taboo set was most similar to the negative set, although it yielded higher arousal ratings than did either valenced set. Imageability for the taboo set was comparable to that of both valenced sets. The ratings of each word are presented for all participants as well as for single-sex groups. The inadequacies of the application of normative data to research that uses emotional words and the conceptualization of taboo words as a coherent category are discussed. Materials associated with this article may be accessed at the Psychonomic Society's Archive of Norms, Stimuli, and Data, www.psychonomic.org/archive.

  10. Manganese L-edge X-ray absorption spectroscopy of manganese catalase from Lactobacillus plantarum and mixed valence manganese complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grush, M.M.; Chen, J.; George, S.J.

    1996-01-10

    The first Mn L-edge absorption spectra of a Mn metalloprotein are presented in this paper. Both reduced and superoxidized Mn catalase have been examined by fluorescence-detected soft X-ray absorption spectroscopy, and their Mn L-edge spectra are dramatically different. The spectrum of reduced Mn(II)Mn(II) catalase has been interpreted by ligand field atomic multiplet calculations and by comparison to model compound spectra. The analysis finds a 10 Dq value of nearly 1.1 eV, consistent with coordination by predominately nitrogen and oxygen donor ligands. For interpretation of mixed valence Mn spectra, an empirical simulation procedure based on the addition of homovalent model compoundmore » spectra has been developed and was tested on a variety of Mn complexes and superoxidized Mn catalase. This routine was also used to determine the oxidation state composition of the Mn in [Ba{sub 8}Na{sub 2}ClMn{sub 16}(OH){sub 8}(CO{sub 3}){sub 4}L{sub 8}] .53 H{sub 2}O (L=1,3-diamino-2-hydroxypropane-N,N,N`N`-tetraacetic acid). 27 refs., 6 figs.« less

  11. Photoelectron and computational studies of the copper-nucleoside anionic complexes, Cu(-)(cytidine) and Cu(-)(uridine).

    PubMed

    Li, Xiang; Ko, Yeon-Jae; Wang, Haopeng; Bowen, Kit H; Guevara-García, Alfredo; Martínez, Ana

    2011-02-07

    The copper-nucleoside anions, Cu(-)(cytidine) and Cu(-)(uridine), have been generated in the gas phase and studied by both experimental (anion photoelectron spectroscopy) and theoretical (density functional calculations) methods. The photoelectron spectra of both systems are dominated by single, intense, and relatively narrow peaks. These peaks are centered at 2.63 and 2.71 eV for Cu(-)(cytidine) and Cu(-)(uridine), respectively. According to our calculations, Cu(-)(cytidine) and Cu(-)(uridine) species with these peak center [vertical detachment energy (VDE)] values correspond to structures in which copper atomic anions are bound to the sugar portions of their corresponding nucleosides largely through electrostatic interactions; the observed species are anion-molecule complexes. The combination of experiment and theory also reveal the presence of a slightly higher energy, anion-molecule complex isomer in the case of the Cu(-)(cytidine). Furthermore, our calculations found that chemically bond isomers of these species are much more stable than their anion-molecule complex counterparts, but since their calculated VDE values are larger than the photon energy used in these experiments, they were not observed.

  12. Photoelectron and computational studies of the copper-nucleoside anionic complexes, Cu-(cytidine) and Cu-(uridine)

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Ko, Yeon-Jae; Wang, Haopeng; Bowen, Kit H.; Guevara-García, Alfredo; Martínez, Ana

    2011-02-01

    The copper-nucleoside anions, Cu-(cytidine) and Cu-(uridine), have been generated in the gas phase and studied by both experimental (anion photoelectron spectroscopy) and theoretical (density functional calculations) methods. The photoelectron spectra of both systems are dominated by single, intense, and relatively narrow peaks. These peaks are centered at 2.63 and 2.71 eV for Cu-(cytidine) and Cu-(uridine), respectively. According to our calculations, Cu-(cytidine) and Cu-(uridine) species with these peak center [vertical detachment energy (VDE)] values correspond to structures in which copper atomic anions are bound to the sugar portions of their corresponding nucleosides largely through electrostatic interactions; the observed species are anion-molecule complexes. The combination of experiment and theory also reveal the presence of a slightly higher energy, anion-molecule complex isomer in the case of the Cu-(cytidine). Furthermore, our calculations found that chemically bond isomers of these species are much more stable than their anion-molecule complex counterparts, but since their calculated VDE values are larger than the photon energy used in these experiments, they were not observed.

  13. Boron difluoride dibenzoylmethane derivatives: Electronic structure and luminescence

    NASA Astrophysics Data System (ADS)

    Tikhonov, Sergey A.; Vovna, Vitaliy I.; Osmushko, Ivan S.; Fedorenko, Elena V.; Mirochnik, Anatoliy G.

    2018-01-01

    Electronic structure and optical properties of boron difluoride dibenzoylmethanate and four of its derivatives have been studied by X-ray photoelectron spectroscopy, absorption and luminescence spectroscopy and quantum chemistry (DFT, TDDFT). The relative quantum luminescence yields have been revealed to correlate with charge transfers of HOMO-LUMO transitions, energy barriers of aromatic substituents rotation and the lifetime of excited states in the investigated complexes. The bathochromic shift of intensive bands in the optical spectra has been observed to occur when the functional groups are introduced into p-positions of phenyl cycles due to destabilizing HOMO levels. Calculated energy intervals between electronic levels correlate well with XPS spectra structure of valence and core electrons.

  14. The electronic spectra of benzo[b]thiete and transient o-thiobenzoquinonemethide. Spectral assignments on the basis of the electronic spectra of aniline, thiophenol, thioanisole, all-trans-octatetraene and transient o-xylylene in conjunction with quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    Schweig, Armin; Diehl, Frank; Kesper, Karl; Meyer, Hermann

    1989-07-01

    The electronic absorption spectra of benzo[b]thiete ( 1) and of transient o-thiobenzoquinonemethide ( 2) have been obtained. Semiempirical valence-electron calculations using the CNDO/S SECI, CNDO/S PERTCI and LNDO/S PERTCI methods and correlation diagrams using suitable reference compounds ad aniline, thiophenol, thioanisole, all-trans-octatetraene and o-xylylene are applied to the interpretation of the spectra. The results clearly reveal 1 as a typically donor-substituted benzene derivative and 2 as a polyene-like system closely related to o-xylylene.

  15. Photoelectron Energy Loss in Al(002) Revisited: Retrieval of the Single Plasmon Loss Energy Distribution by a Fourier Transform Method

    NASA Astrophysics Data System (ADS)

    Santana, Victor Mancir da Silva; David, Denis; de Almeida, Jailton Souza; Godet, Christian

    2018-06-01

    A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach-Sunjic approximation using the Mahan-Wertheim-Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy D (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function, q , of Al(002) differs from the optical value Im[- 1 / ɛ( E, q = 0)] and is well described by the Lindhard-Mermin dispersion relation. A quality criterion of the inversion algorithm is given by the capability of observing weak interband transitions close to the zero-loss peak, namely at 0.65 and 1.65 eV in ɛ( E, q) as found in optical spectra and ab initio calculations of aluminum.

  16. Photoelectron Energy Loss in Al(002) Revisited: Retrieval of the Single Plasmon Loss Energy Distribution by a Fourier Transform Method

    NASA Astrophysics Data System (ADS)

    Santana, Victor Mancir da Silva; David, Denis; de Almeida, Jailton Souza; Godet, Christian

    2018-04-01

    A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach-Sunjic approximation using the Mahan-Wertheim-Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy D (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function, q , of Al(002) differs from the optical value Im[- 1 / ɛ(E, q = 0)] and is well described by the Lindhard-Mermin dispersion relation. A quality criterion of the inversion algorithm is given by the capability of observing weak interband transitions close to the zero-loss peak, namely at 0.65 and 1.65 eV in ɛ(E, q) as found in optical spectra and ab initio calculations of aluminum.

  17. Imaging of the outer valence orbitals of CO by electron momentum spectroscopy — Comparison with high level MRSD-CI and DFT calculations

    NASA Astrophysics Data System (ADS)

    Fan, X. W.; Chen, X. J.; Zhou, S. J.; Zheng, Y.; Brion, C. E.; Frey, R.; Davidson, E. R.

    1997-09-01

    A newly constructed energy dispersive multichannel electron momentum spectrometer has been used to image the electron density of the outer valence orbitals of CO with high precision. Binding energy spectra are obtained at a coincidence energy resolution of 1.2 eV fwhm. The measured electron density profiles in momentum space for the outer valence orbitals of CO are compared with cross sections calculated using SCF wavefunctions with basis sets of varying complexity up to near-Hartree-Fock limit in quality. The effects of correlation and electronic relaxation on the calculated momentum profiles are investigated using large MRSD-CI calculations of the full ion-neutral overlap distributions, as well as large basis set DFT calculations with local and non-local (gradient corrected) functionals.

  18. Effects of local field and inherent strain in reflectance anisotropy spectra of AIIIBV semiconductors with naturally oxidized surfaces

    NASA Astrophysics Data System (ADS)

    Berkovits, V. L.; Kosobukin, V. A.; Gordeeva, A. B.

    2015-12-01

    Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of local field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers.

  19. Isomer-specific vibronic structure of the 9-, 1-, and 2-anthracenyl radicals via slow photoelectron velocity-map imaging

    PubMed Central

    DeVine, Jessalyn A.; Levine, Daniel S.; Kim, Jongjin B.; Neumark, Daniel M.

    2016-01-01

    Polycyclic aromatic hydrocarbons, in various charge and protonation states, are key compounds relevant to combustion chemistry and astrochemistry. Here, we probe the vibrational and electronic spectroscopy of gas-phase 9-, 1-, and 2-anthracenyl radicals (C14H9) by photodetachment of the corresponding cryogenically cooled anions via slow photoelectron velocity-map imaging (cryo-SEVI). The use of a newly designed velocity-map imaging lens in combination with ion cooling yields photoelectron spectra with <2 cm−1 resolution. Isomer selection of the anions is achieved using gas-phase synthesis techniques, resulting in observation and interpretation of detailed vibronic structure of the ground and lowest excited states for the three anthracenyl radical isomers. The ground-state bands yield electron affinities and vibrational frequencies for several Franck–Condon active modes of the 9-, 1-, and 2-anthracenyl radicals; term energies of the first excited states of these species are also measured. Spectra are interpreted through comparison with ab initio quantum chemistry calculations, Franck–Condon simulations, and calculations of threshold photodetachment cross sections and anisotropies. Experimental measures of the subtle differences in energetics and relative stabilities of these radical isomers are of interest from the perspective of fundamental physical organic chemistry and aid in understanding their behavior and reactivity in interstellar and combustion environments. Additionally, spectroscopic characterization of these species in the laboratory is essential for their potential identification in astrochemical data. PMID:26792521

  20. Theoretical studies on the electronic structures and photoelectron spectra of tri-rhenium oxide clusters: Re3O(n)(-) and Re3O(n) (n=1-6).

    PubMed

    Zhou, Qi; Gong, Wei-Chao; Xie, Lu; Zheng, Cun-Gong; Zhang, Wei; Wang, Bin; Zhang, Yong-Fan; Huang, Xin

    2014-01-03

    Density functional theory (DFT) calculations are performed to study the structural and electronic properties of tri-rhenium oxide clusters Re3On(-/0) (n=1-6). Generalized Koopmans' theorem is applied to predict the vertical detachment energies (VDEs) and simulate the photoelectron spectra (PES). Theoretical calculations at the B3LYP level are carried out to search for the global minima for both the anions and the neutrals. For the anions, the first two O atoms prefer the same corner position of a Re3 triangle. Whereas, Re3O3(-) possesses a C2v symmetry with one bridging and two terminal O atoms. The next three O atoms (n=4-6) are adding sequentially on the basis of Re3O3(-) motif, i.e., adding one terminal O atom for Re3O4(-), one terminal and one bridging O atoms for Re3O5(-), and one terminal and two bridging O atoms for Re3O6(-), respectively. Their corresponding neutral species are similar to the anions in geometry except Re3O4 and Re3O5. Molecular orbital analyses are employed to investigate the chemical bonding and structural evolution in these tri-rhenium oxide clusters. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Effects of Emotional Valence and Arousal on Time Perception

    PubMed Central

    Van Volkinburg, Heather; Balsam, Peter

    2016-01-01

    We examined the influence of emotional arousal and valence on estimating time intervals. A reproduction task was used in which images from the International Affective Picture System served as the stimuli to be timed. Experiment 1 assessed the effects of positive and negative valence at a moderate arousal level and Experiment 2 replicated Experiment 1 with the addition of a high arousal condition. Overestimation increased as a function of arousal during encoding of times regardless of valence. For images presented during reproduction, overestimation occurred at the moderate arousal level for positive and negative valence but underestimation occurred in the negative valence high arousal condition. The overestimation of time intervals produced by emotional arousal during encoding and during reproduction suggests that emotional stimuli affect temporal information processing in a qualitatively different way during different phases of temporal information processing. PMID:27110491

  2. Photoelectron studies of machined brass surfaces

    NASA Astrophysics Data System (ADS)

    Potts, A. W.; Merrison, J. P.; Tournas, A. D.; Yacoot, A.

    UV photoelectron spectroscopy has been used to determine the surface composition of machined brass. The results show a considerable change between the photoelectron surface composition and the bulk composition of the same sample determined by energy-dispersive X-ray fluorescence. On the surface the lead composition is increased by ˜900 G. This is consistent with the important part that lead is believed to play in improving the machinability of this alloy.

  3. Operando x-ray photoelectron emission microscopy for studying forward and reverse biased silicon p-n junctions.

    PubMed

    Barrett, N; Gottlob, D M; Mathieu, C; Lubin, C; Passicousset, J; Renault, O; Martinez, E

    2016-05-01

    Significant progress in the understanding of surfaces and interfaces of materials for new technologies requires operando studies, i.e., measurement of chemical, electronic, and magnetic properties under external stimulus (such as mechanical strain, optical illumination, or electric fields) applied in situ in order to approach real operating conditions. Electron microscopy attracts much interest, thanks to its ability to determine semiconductor doping at various scales in devices. Spectroscopic photoelectron emission microscopy (PEEM) is particularly powerful since it combines high spatial and energy resolution, allowing a comprehensive analysis of local work function, chemistry, and electronic structure using secondary, core level, and valence band electrons, respectively. Here we present the first operando spectroscopic PEEM study of a planar Si p-n junction under forward and reverse bias. The method can be used to characterize a vast range of materials at near device scales such as resistive oxides, conducting bridge memories and domain wall arrays in ferroelectrics photovoltaic devices.

  4. Electronic-structure theory of plutonium chalcogenides

    NASA Astrophysics Data System (ADS)

    Shick, Alexander; Havela, Ladislav; Gouder, Thomas; Rebizant, Jean

    2009-03-01

    The correlated band theory methods, the around-mean-field LDA + U and dynamical LDA + HIA (Hubbard-I), are applied to investigate the electronic structure of Pu chalcogenides. The LDA + U calculations for PuX (X = S, Se, Te) provide non-magnetic ground state in agreement with the experimental data. Non-integer filling of 5 f-manifold (from approx. 5.6 in PuS to 5.7 PuTe). indicates a mixed valence ground state which combines f5 and f6 multiplets. Making use of the dynamical LDA+HIA method the photoelectron spectra are calculated in good agreement with experimental data. The three-peak feature near EF attributed to 5 f-manifold is well reproduced by LDA + HIA, and follows from mixed valence character of the ground state.

  5. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    PubMed

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  6. Development of a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA), and its application to Auger photoelectron coincidence spectroscopy (APECS)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Eiichi; Seo, Junya; Nambu, Akira; Mase, Kazuhiko

    2007-09-01

    We have developed a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA) with an outer diameter of 26 mm. The DPCMA consists of a shield for the electric field, inner and outer cylinders, two pinholes with a diameter of 2.0 mm, and an electron multiplier. By assembling the DPCMA in a coaxially symmetric mirror electron energy analyzer (ASMA) coaxially and confocally we developed an analyzer for Auger photoelectron coincidence spectroscopy (APECS). The performance was estimated by measuring the Si-LVV-Auger Si-1s-photoelectron coincidence spectra of clean Si(1 1 1). The electron-energy resolution of the DPCMA was estimated to be E/Δ E = 20. This value is better than that of the miniature single-pass CMA ( E/Δ E = 12) that was used in the previous APECS analyzer.

  7. The allocation of valenced concepts onto 3D space.

    PubMed

    Marmolejo-Ramos, Fernando; Tirado, Carlos; Arshamian, Edward; Vélez, Jorge Iván; Arshamian, Artin

    2018-06-01

    The valence-space metaphor research area investigates the metaphorical mapping of valenced concepts onto space. Research findings from this area indicate that positive, neutral, and negative concepts are associated with upward, midward, and downward locations, respectively, in the vertical plane. The same research area has also indicated that such concepts seem to have no preferential location on the horizontal plane. The approach-avoidance effect consists in decreasing the distance between positive stimuli and the body (i.e. approach) and increasing the distance between negative stimuli and the body (i.e. avoid). Thus, the valence-space metaphor accounts for the mapping of valenced concepts onto the vertical and horizontal planes, and the approach-avoidance effect accounts for the mapping of valenced concepts onto the "depth" plane. By using a cube conceived for the study of allocation of valenced concepts onto 3D space, we show in three studies that positive concepts are placed in upward locations and near the participants' body, negative concepts are placed in downward locations and far from the participants' body, and neutral concepts are placed in between these concepts in both planes.

  8. Variable Mixed Orbital Character in the Photoelectron Angular Distribution of NO_{2}

    NASA Astrophysics Data System (ADS)

    Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.

    2017-06-01

    NO_{2} a key component of photochemical smog and an important species in the Earth's atmosphere, is an example of a molecule which exhibits significant mixed orbital character in the HOMO. In photoelectron experiments the geometric properties of the parent anion orbital are reflected in the photoelectron angular distribution (PAD), an area of research that has benefited largely from the ability of velocity-map imaging (VMI) to simultaneously record both the energetic and angular information, with 100% collection efficiency. Photoelectron spectra of NO_{2}^{-}, taken over a range of wavelengths (355nm-520nm) with the ANU's VMI spectrometer, reveal an anomalous jump in the anisotropy parameter near threshold. Consequently, the orbital behavior of NO_{2}^{-} appears to be quite different near threshold compared to detachment at higher photon energies. This surprising effect is due to the Wigner Threshold law, which causes p orbital character to dominate the photodetachment cross-section near threshold, before the mixed s/d orbital character becomes significant at higher electron kinetic energies. By extending recent work on binary character models to form a more general expression, the variable mixed orbital character of NO_{2}^{-} is able to be described. This study provides the first multi-wavelength NO_{2} anisotropy data, which is shown to be in decent agreement with much earlier zero-core model predictions of the anisotropy parameter. K. J. Reed, A. H. Zimmerman, H. C. Andersen, and J. I. Brauman, J. Chem. Phys. 64, 1368, (1976). doi:10.1063/1.432404 D. Khuseynov, C. C. Blackstone, L. M. Culberson, and A. Sanov, J. Chem. Phys. 141, 124312, (2014). doi:10.1063/1.4896241 W. B. Clodius, R. M. Stehman, and S. B. Woo, Phys. Rev. A. 28, 760, (1983). doi:10.1103/PhysRevA.28.760 Research supported by the Australian Research Council Discovery Project Grant DP160102585

  9. Electronic structure and charge transport in nonstoichiometric tantalum oxide

    NASA Astrophysics Data System (ADS)

    Perevalov, T. V.; Gritsenko, V. A.; Gismatulin, A. A.; Voronkovskii, V. A.; Gerasimova, A. K.; Aliev, V. Sh; Prosvirin, I. A.

    2018-06-01

    The atomic and electronic structure of nonstoichiometric oxygen-deficient tantalum oxide TaO x<2.5 grown by ion beam sputtering deposition was studied. The TaO x film content was analyzed by x-ray photoelectron spectroscopy and by quantum-chemistry simulation. TaO x is composed of Ta2O5, metallic tantalum clusters and tantalum suboxides. A method for evaluating the stoichiometry parameter of TaO x from the comparison of experimental and theoretical photoelectron valence band spectra is proposed. The charge transport properties of TaO x were experimentally studied and the transport mechanism was quantitatively analyzed with four theoretical dielectric conductivity models. It was found that the charge transport in almost stoichiometric and nonstoichiometric tantalum oxide can be consistently described by the phonon-assisted tunneling between traps.

  10. Valence-Dependent Belief Updating: Computational Validation.

    PubMed

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement

  11. Valence-Dependent Belief Updating: Computational Validation

    PubMed Central

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement

  12. Emotion and language: Valence and arousal affect word recognition

    PubMed Central

    Brysbaert, Marc; Warriner, Amy Beth

    2014-01-01

    Emotion influences most aspects of cognition and behavior, but emotional factors are conspicuously absent from current models of word recognition. The influence of emotion on word recognition has mostly been reported in prior studies on the automatic vigilance for negative stimuli, but the precise nature of this relationship is unclear. Various models of automatic vigilance have claimed that the effect of valence on response times is categorical, an inverted-U, or interactive with arousal. The present study used a sample of 12,658 words, and included many lexical and semantic control factors, to determine the precise nature of the effects of arousal and valence on word recognition. Converging empirical patterns observed in word-level and trial-level data from lexical decision and naming indicate that valence and arousal exert independent monotonic effects: Negative words are recognized more slowly than positive words, and arousing words are recognized more slowly than calming words. Valence explained about 2% of the variance in word recognition latencies, whereas the effect of arousal was smaller. Valence and arousal do not interact, but both interact with word frequency, such that valence and arousal exert larger effects among low-frequency words than among high-frequency words. These results necessitate a new model of affective word processing whereby the degree of negativity monotonically and independently predicts the speed of responding. This research also demonstrates that incorporating emotional factors, especially valence, improves the performance of models of word recognition. PMID:24490848

  13. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  14. Metallic behavior and periodical valence ordering in a MMX chain compound, Pt(2)(EtCS(2))(4)I.

    PubMed

    Mitsumi, M; Murase, T; Kishida, H; Yoshinari, T; Ozawa, Y; Toriumi, K; Sonoyama, T; Kitagawa, H; Mitani, T

    2001-11-14

    A new one-dimensional (1-D) halogen-bridged mixed-valence diplatinum(II,III) compound, Pt(2)(EtCS(2))(4)I (3), has been successfully synthesized from [Pt(2)(EtCS(2))(4)] (1) and [Pt(2)(EtCS(2))(4)I(2)] (2). These three compounds have been examined using UV-visible-near-IR, IR, polarized Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray crystal structure analyses (except for 1). Compound 3 was further characterized through electrical transport measurements, determination of the temperature dependence of lattice parameters, X-ray diffuse scattering, and SQUID magnetometry. 3 crystallizes in the monoclinic space group C2/c and exhibits a crystal structure consisting of neutral 1-D chains with a repeating -Pt-Pt-I- unit lying on the crystallographic 2-fold axis parallel to the b axis. The Pt-Pt distance at 293 K is 2.684 (1) A in the dinuclear unit, while the Pt-I distances are essentially equal (2.982 (1) and 2.978 (1) A). 3 shows relatively high electrical conductivity (5-30 S cm(-1)) at room temperature and undergoes a metal-semiconductor transition at T(M-S) = 205 K. The XPS spectrum in the metallic state reveals a Pt(2+) and Pt(3+) mixed-valence state on the time scale of XPS spectroscopy ( approximately 10(-17) s). In accordance with the metal-semiconductor transition, anomalies are observed in the temperature dependence of the crystal structure, lattice parameters, X-ray diffuse scattering, and polarized Raman spectra near T(M-S). In variable-temperature crystal structure analyses, a sudden and drastic increase in the Pt-I distance near the transition temperature is observed. Furthermore, a steep increase in U(22) of iodine atoms in the 1-D chain direction has been observed. The lattice parameters exhibit significant temperature dependence with drastic change in slope at about 205-240 K. This was especially evident in the unit cell parameter b (1-D chain direction) as it was found to lengthen rapidly with increasing temperature. X

  15. Use of valence band Auger electron spectroscopy to study thin film growth: oxide and diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Steffen, H. J.

    1994-12-01

    It is demonstrated how Auger line shape analysis with factor analysis (FA), least-squares fitting and even simple peak height measurements may provide detailed information about the composition, different chemical states and also defect concentration or crystal order. Advantage is taken of the capability of Auger electron spectroscopy to give valence band structure information with high surface sensitivity and the special aspect of FA to identify and discriminate quantitatively unknown chemical species. Valence band spectra obtained from Ni, Fe, Cr and NiFe40Cr20 during oxygen exposure at room temperature reveal the oxidation process in the initial stage of the thin layer formation. Furthermore, the carbon chemical states that were formed during low energy C(+) and Ne(+) ion irradiation of graphite are delineated and the evolution of an amorphous network with sp3 bonds is disclosed. The analysis represents a unique method to quantify the fraction of sp3-hybridized carbon in diamond-like materials.

  16. Photoelectron photoion molecular beam spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  17. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    PubMed

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  18. Band alignment of TiO{sub 2}/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Haibo, E-mail: hbfan@nwu.edu.cn, E-mail: liusz@snnu.edu.cn; School of Physics, Northwest University, Xi’an 710069; Yang, Zhou

    2016-01-15

    The energy band alignment between pulsed-laser-deposited TiO{sub 2} and FTO was firstly characterized using high-resolution X-ray photoelectron spectroscopy. A valence band offset (VBO) of 0.61 eV and a conduction band offset (CBO) of 0.29 eV were obtained across the TiO{sub 2}/FTO heterointerface. With annealing process, the VBO and CBO across the heterointerface were found to be -0.16 eV and 1.06 eV, respectively, with the alignment transforming from type-I to type-II. The difference in the band alignment is believed to be dominated by the core level down-shift of the FTO substrate, which is a result of the oxidation of Sn. Current-voltagemore » test has verified that the band alignment has a significant effect on the current transport of the heterojunction.« less

  19. Valenced cues and contexts have different effects on event-based prospective memory.

    PubMed

    Graf, Peter; Yu, Martin

    2015-01-01

    This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants' task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement.

  20. Valenced Cues and Contexts Have Different Effects on Event-Based Prospective Memory

    PubMed Central

    Graf, Peter; Yu, Martin

    2015-01-01

    This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants’ task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement. PMID:25647484

  1. Rovibrational photoionization dynamics of methyl and its isotopomers studied by high-resolution photoionization and photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulenburg, A. M.; Alcaraz, Ch.; Grassi, G.; Merkt, F.

    2006-09-01

    High-resolution photoionization and pulsed-field-ionization zero-kinetic-energy photoelectron spectra of CH3, CH2D, CHD2, and CD3 have been recorded in the vicinity of the first adiabatic ionization threshold following single-photon excitation from the ground neutral state using a narrow-bandwidth vacuum-ultraviolet laser. The radicals were produced from the precursor molecules methyl-bromide, methyl-iodide, dimethyl-thioether, acetone, and nitromethane by 193nm excimer photolysis in a quartz capillary and were subsequently cooled to a rotational temperature Trot≈30K in a supersonic expansion. Nitromethane was identified as a particularly suitable photolytic precursor of methyl for studies by photoionization and threshold photoelectron spectroscopy. Thanks to the cold rotational temperature reached in the supersonic expansion, the rotational structure of the threshold ionization spectra could be resolved, and the photoionization dynamics investigated. Rydberg series converging on excited rotational levels of CH3+ could be observed in the range of principal quantum number n =30-50, and both rotational autoionization and predissociation were identified as decay processes in the threshold region. The observed photoionization transitions can be understood in the realm of an orbital model for direct ionization but the intensity distributions can only be fully accounted for if the rotational channel interactions mediated by the quadrupole of the cation are considered. Improved values of the adiabatic ionization thresholds were derived for all isotopomers [CH3: 79356.2(15)cm-1, CH2D: 79338.8(15)cm-1, CHD2: 79319.1(15)cm-1, and CD3: 79296.4(15)cm-1].

  2. Valence and L-shell photoionization of Cl-like argon using R-matrix techniques

    NASA Astrophysics Data System (ADS)

    Tyndall, N. B.; Ramsbottom, C. A.; Ballance, C. P.; Hibbert, A.

    2016-02-01

    Photoionization cross-sections are obtained using the relativistic Dirac Atomic R-matrix Codes (DARC) for all valence and L-shell energy ranges between 27 and 270 eV. A total of 557 levels arising from the dominant configurations 3s23p4, 3s3p5, 3p6, 3s23p3[3d, 4s, 4p], 3p53d, 3s23p23d2, 3s3p43d, 3s3p33d2 and 2s22p53s23p5 have been included in the target wavefunction representation of the Ar III ion, including up to 4p in the orbital basis. We also performed a smaller Breit-Pauli (BP) calculation containing the lowest 124 levels. Direct comparisons are made with previous theoretical and experimental work for both valence shell and L-shell photoionization. Excellent agreement was found for transitions involving the 2Po initial state to all allowed final states for both calculations across a range of photon energies. A number of resonant states have been identified to help analyse and explain the nature of the spectra at photon energies between 250 and 270 eV.

  3. X ray photoelectron spectroscopy (XPS) analysis of Photosensitive ZrO2 array

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhao, G.; Zhu, R.; Kou, Z.

    2018-03-01

    Based on organic zirconium source as the starting material, by adding chemical modifiers which are made up with photosensitive ZrO2 sol. A uniformed ZrO2 array dot was fabricated with a mean diameter of around 800 nm. By using UV-vis spectra and X-ray photoelectron spectroscopy analysis method, studies the photosensitive ZrO2 gel film of photochemical reaction process and the photosensitive mechanism, to determine the zirconium atom centered chelate structure, reaction formed by metal chelate Zr atom for the center, and to establish the molecular model of the chelate. And studied the ultraviolet light in the process of the variation of the XPS spectra, Zr3d5/2 to 184.9 eV corresponding to the binding energy of the as the combination of state peak gradually reduce; By combining with the status of Zr-O peak gradually increase; The strength of the peak is gradually decline. This suggests that in the process of ultraviolet light photo chemical reaction happened. This study is of great significance to the micro fabrication of ZrO2 array not only to the memory devices but also to the optical devices.

  4. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction

    NASA Astrophysics Data System (ADS)

    Sun, Haiding; Torres Castanedo, C. G.; Liu, Kaikai; Li, Kuang-Hui; Guo, Wenzhe; Lin, Ronghui; Liu, Xinwei; Li, Jingtao; Li, Xiaohang

    2017-10-01

    Both β-Ga2O3 and wurtzite AlN have wide bandgaps of 4.5-4.9 and 6.1 eV, respectively. We calculated the in-plane lattice mismatch between the (-201) plane of β-Ga2O3 and the (0002) plane of AlN, which was found to be 2.4%. This is the smallest mismatch between β-Ga2O3 and binary III-nitrides which is beneficial for the formation of a high quality β-Ga2O3/AlN heterojunction. However, the valence and conduction band offsets (VBO and CBO) at the β-Ga2O3/AlN heterojunction have not yet been identified. In this study, a very thin (less than 2 nm) β-Ga2O3 layer was deposited on an AlN/sapphire template to form the heterojunction by pulsed laser deposition. High-resolution X-ray photoelectron spectroscopy revealed the core-level (CL) binding energies of Ga 3d and Al 2p with respect to the valence band maximum in individual β-Ga2O3 and AlN layers, respectively. The separation between Ga 3d and Al 2p CLs at the β-Ga2O3/AlN interface was also measured. Eventually, the VBO was found to be -0.55 ± 0.05 eV. Consequently, a staggered-gap (type II) heterojunction with a CBO of -1.75 ± 0.05 eV was determined. The identification of the band alignment of the β-Ga2O3/AlN heterojunction could facilitate the design of optical and electronic devices based on these and related alloys.

  5. Decoding emotional valence from electroencephalographic rhythmic activity.

    PubMed

    Celikkanat, Hande; Moriya, Hiroki; Ogawa, Takeshi; Kauppi, Jukka-Pekka; Kawanabe, Motoaki; Hyvarinen, Aapo

    2017-07-01

    We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parietal sources being especially significant, and (2) even though the locations of the involved neuronal sources are consistent, subjects can display highly varying degrees of valence-related EEG activity in the sources.

  6. A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses

    NASA Astrophysics Data System (ADS)

    Chalmin, E.; Farges, F.; Brown, G. E.

    2009-01-01

    High-resolution manganese K-edge X-ray absorption near edge structure spectra were collected on a set of 40 Mn-bearing minerals. The pre-edge feature information (position, area) was investigated to extract as much as possible quantitative valence and symmetry information for manganese in various “test” and “unknown” minerals and glasses. The samples present a range of manganese symmetry environments (tetrahedral, square planar, octahedral, and cubic) and valences (II to VII). The extraction of the pre-edge information is based on a previous multiple scattering and multiplet calculations for model compounds. Using the method described in this study, a robust estimation of the manganese valence could be obtained from the pre-edge region at 5% accuracy level. This method applied to 20 “test” compounds (such as hausmannite and rancieite) and to 15 “unknown” compounds (such as axinite and birnessite) provides a quantitative estimate of the average valence of manganese in complex minerals and silicate glasses.

  7. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    PubMed

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  8. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  9. Space-valence priming with subliminal and supraliminal words.

    PubMed

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime "up" before the target "happy") than with an incongruent prime (e.g., the prime "up" before the target "sad"). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments.

  10. Space-Valence Priming with Subliminal and Supraliminal Words

    PubMed Central

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime “up” before the target “happy”) than with an incongruent prime (e.g., the prime “up” before the target “sad”). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments. PMID:23439863

  11. Photoelectron Imaging as a Quantum Chemistry Visualization Tool

    ERIC Educational Resources Information Center

    Grumbling, Emily R.; Pichugin, Kostyantyn; Mabbs, Richard; Sanov, Andrei

    2011-01-01

    An overview and simple example of photoelectron imaging is presented, highlighting its efficacy as a pedagogical tool for visualizing quantum phenomena. Specifically, photoelectron imaging of H[superscript -] (the simplest negative ion) is used to demonstrate several quantum mechanical principles. This example could be incorporated into an…

  12. Electron spectra of xenon clusters irradiated with a laser-driven plasma soft-x-ray laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, S.; Takiyama, K.; Hasegawa, N.

    Xenon clusters were irradiated with plasma soft-x-ray laser pulses (having a wavelength of 13.9 nm, time duration of 7 ps, and intensities of up to 10 GW/cm{sup 2}). The laser photon energy was high enough to photoionize 4d core electrons. The cross section is large due to a giant resonance. The interaction was investigated by measuring the electron energy spectra. The photoelectron spectra for small clusters indicate that the spectral width due to the 4d hole significantly broadens with increasing cluster size. For larger clusters, the electron energy spectra evolve into a Maxwell-Boltzmann distribution, as a strongly coupled cluster nanoplasmamore » is generated.« less

  13. Photoelectron Spectroscopy of Free Polyoxoanions Mo6O19 2- and W6O19 2- in the Gas Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Infante, Ivan A.; Visscher, Lucas; Wang, Xue B.

    2004-09-22

    Two doubly charged polyoxoanions, Mo6O19 2- and W6O19 2-, were observed in the gas phase using electrospray ionization. Their electronic structures were investigated using photoelectron spectroscopy and quasi-relativistic density functional calculations. Each dianion was found to be highly stable despite the presence of strong intramolecular coulomb repulsion, estimated to be about 2 eV for each system. The valence detachment features were all shown to originate from electronic excitations involving oxygen lone-pair type orbitals. Their observed energies were in excellent agreement with the theoretical vertical detachment energies calculated using time-dependent density functional theory. Despite being multiply charged, polyoxometalate oxide clusters canmore » be studied in the gas phase, providing the opportunity for detailed benchmark theoretical studies on the electronic structures of these important transition-metal oxide systems.« less

  14. Conformational effects in photoelectron circular dichroism

    NASA Astrophysics Data System (ADS)

    Turchini, S.

    2017-12-01

    Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.

  15. Developmental reversals in false memory: Effects of emotional valence and arousal.

    PubMed

    Brainerd, C J; Holliday, R E; Reyna, V F; Yang, Y; Toglia, M P

    2010-10-01

    Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can be manipulated factorially. False memories increased with age for unpresented semantic associates of word lists, and net accuracy (the ratio of true memory to total memory) decreased with age. These surprising developmental trends were more pronounced for negatively valenced materials than for positively valenced materials, they were more pronounced for high-arousal materials than for low-arousal materials, and developmental increases in the effects of arousal were small in comparison with developmental increases in the effects of valence. These findings have ramifications for legal applications of false memory research; materials that share the emotional hallmark of crimes (events that are negatively valenced and arousing) produced the largest age increases in false memory and the largest age declines in net accuracy. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Photoelectron spectroscopic and microspectroscopic probes of ferroelectrics

    NASA Astrophysics Data System (ADS)

    Tǎnase, Liviu C.; Abramiuc, Laura E.; Teodorescu, Cristian M.

    2017-12-01

    This contribution is a review of recent aspects connected with photoelectron spectroscopy of free ferroelectric surfaces, metals interfaced with these surfaces, graphene-like layers together with some exemplifications concerning molecular adsorption, dissociations and desorptions occurring from ferroelectrics. Standard photoelectron spectroscopy is used nowadays in correlation with other characterization techniques, such as piezoresponse force microscopy, high resolution transmission electron spectroscopy, and ferroelectric hysteresis cycles. In this work we will concentrate mainly on photoelectron spectroscopy and spectro-microscopy characterization of ferroelectric thin films, starting from atomically clean ferroelectric surfaces of lead zirco-titanate, then going towards heterostructures using this material in combination with graphene-like carbon layers or with metals. Concepts involving charge accumulation and depolarization near surface will be revisited by taking into account the newest findings in this area.

  17. Coherent control of photoelectron wavepacket angular interferograms

    NASA Astrophysics Data System (ADS)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  18. The acoustic correlates of valence depend on emotion family.

    PubMed

    Belyk, Michel; Brown, Steven

    2014-07-01

    The voice expresses a wide range of emotions through modulations of acoustic parameters such as frequency and amplitude. Although the acoustics of individual emotions are well understood, attempts to describe the acoustic correlates of broad emotional categories such as valence have yielded mixed results. In the present study, we analyzed the acoustics of emotional valence for different families of emotion. We divided emotional vocalizations into "motivational," "moral," and "aesthetic" families as defined by the OCC (Ortony, Clore, and Collins) model of emotion. Subjects viewed emotional scenarios and were cued to vocalize congruent exclamations in response to them, for example, "Yay!" and "Damn!". Positive valence was weakly associated with high-pitched and loud vocalizations. However, valence interacted with emotion family for both pitch and amplitude. A general acoustic code for valence does not hold across families of emotion, whereas family-specific codes provide a more accurate description of vocal emotions. These findings are consolidated into a set of "rules of expression" relating vocal dimensions to emotion dimensions. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  19. Isomer-specific vibronic structure of the 9-, 1-, and 2-anthracenyl radicals via slow photoelectron velocity-map imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weichman, Marissa L.; DeVine, Jessalyn A.; Levine, Daniel S.

    Polycyclic aromatic hydrocarbons, in various charge and protonation states, are key compounds relevant to combustion chemistry and astrochemistry. In this paper, we probe the vibrational and electronic spectroscopy of gas-phase 9-, 1-, and 2-anthracenyl radicals (C 14H 9) by photodetachment of the corresponding cryogenically cooled anions via slow photoelectron velocity-map imaging (cryo-SEVI). The use of a newly designed velocity-map imaging lens in combination with ion cooling yields photoelectron spectra with <2 cm -1 resolution. Isomer selection of the anions is achieved using gas-phase synthesis techniques, resulting in observation and interpretation of detailed vibronic structure of the ground and lowest excitedmore » states for the three anthracenyl radical isomers. The ground-state bands yield electron affinities and vibrational frequencies for several Franck–Condon active modes of the 9-, 1-, and 2-anthracenyl radicals; term energies of the first excited states of these species are also measured. Spectra are interpreted through comparison with ab initio quantum chemistry calculations, Franck–Condon simulations, and calculations of threshold photodetachment cross sections and anisotropies. Experimental measures of the subtle differences in energetics and relative stabilities of these radical isomers are of interest from the perspective of fundamental physical organic chemistry and aid in understanding their behavior and reactivity in interstellar and combustion environments. Finally and additionally, spectroscopic characterization of these species in the laboratory is essential for their potential identification in astrochemical data.« less

  20. Isomer-specific vibronic structure of the 9-, 1-, and 2-anthracenyl radicals via slow photoelectron velocity-map imaging

    DOE PAGES

    Weichman, Marissa L.; DeVine, Jessalyn A.; Levine, Daniel S.; ...

    2016-01-20

    Polycyclic aromatic hydrocarbons, in various charge and protonation states, are key compounds relevant to combustion chemistry and astrochemistry. In this paper, we probe the vibrational and electronic spectroscopy of gas-phase 9-, 1-, and 2-anthracenyl radicals (C 14H 9) by photodetachment of the corresponding cryogenically cooled anions via slow photoelectron velocity-map imaging (cryo-SEVI). The use of a newly designed velocity-map imaging lens in combination with ion cooling yields photoelectron spectra with <2 cm -1 resolution. Isomer selection of the anions is achieved using gas-phase synthesis techniques, resulting in observation and interpretation of detailed vibronic structure of the ground and lowest excitedmore » states for the three anthracenyl radical isomers. The ground-state bands yield electron affinities and vibrational frequencies for several Franck–Condon active modes of the 9-, 1-, and 2-anthracenyl radicals; term energies of the first excited states of these species are also measured. Spectra are interpreted through comparison with ab initio quantum chemistry calculations, Franck–Condon simulations, and calculations of threshold photodetachment cross sections and anisotropies. Experimental measures of the subtle differences in energetics and relative stabilities of these radical isomers are of interest from the perspective of fundamental physical organic chemistry and aid in understanding their behavior and reactivity in interstellar and combustion environments. Finally and additionally, spectroscopic characterization of these species in the laboratory is essential for their potential identification in astrochemical data.« less

  1. Kα X-Ray Emission Spectra and K X-Ray Absorption-Edge Structures of Fluorine in 3d Transition-Metal Difluorides

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara

    1991-08-01

    The fluorine Kα emission spectra in fluorescence from a series of 3d transition-metal difluorides MF2 (M=Mn, Fe, Co, Ni, Cu and Zn) have been measured with a high-resolution two-crystal vacuum spectrometer. It is shown that the observed FWHM of the Kα1,2 emission band is closely related to the difference in the electronegativity between the metal and fluorine atoms. The measured emission spectra are presented along with the UPS or XPS spectra of the valence bands and the fluorine K absorption spectra of the metal difluorides, reported previously. The structures at the fluorine K absorption edges are interpreted in terms of a molecular orbital (MO) model.

  2. Processing negative valence of word pairs that include a positive word.

    PubMed

    Itkes, Oksana; Mashal, Nira

    2016-09-01

    Previous research has suggested that cognitive performance is interrupted by negative relative to neutral or positive stimuli. We examined whether negative valence affects performance at the word or phrase level. Participants performed a semantic decision task on word pairs that included either a negative or a positive target word. In Experiment 1, the valence of the target word was congruent with the overall valence conveyed by the word pair (e.g., fat kid). As expected, response times were slower in the negative condition relative to the positive condition. Experiment 2 included target words that were incongruent with the overall valence of the word pair (e.g., fat salary). Response times were longer for word pairs whose overall valence was negative relative to positive, even though these word pairs included a positive word. Our findings support the Cognitive Primacy Hypothesis, according to which emotional valence is extracted after conceptual processing is complete.

  3. Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure.

    PubMed

    Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim

    2018-04-13

    We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.

  4. X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tantawy, Hesham Ramzy; Aston, D. Eric, E-mail: aston@uidaho.edu; Kengne, Blaise-Alexis F.

    2015-11-07

    An in-depth analysis of the chemical functionality in HCl-doped polyaniline (PANI) nanopowders is discussed through interpretations of x-ray photoelectron spectra. The distinctions between three PANI sample types, produced under varied synthesis conditions, are compared on the basis correlations between newly collected electron spectra for chemical analysis (or also x-ray photoelectron spectroscopy) and electromagnetic (EM) shielding effectiveness (SE) within two frequency bands (100–1500 MHz and ∼2–14 GHz). The findings are discussed with reference to previous data analysis of electrical conductivities and Raman and UV-vis spectra analyzed from replicates of the same PANI nanopowders, where only the 8–12 GHz range for SE was tested.more » They further corroborate previous results for limited-solvent conditions that enhance EM shielding. The three nanopowder types show distinctive differences in polaron, bipolaron, and polar lattice contributions. The collective findings describe the chemical connections between controlling and, most importantly, limiting the available solvent for polymerization with simultaneously doping and how it is that the newly developed solvent-limited approach for HCl-PANI nanopowders provides better shielding than traditionally solvent-rich methods by having more extended and perhaps even faster polaron delocalization than other PANI-based products. The maximum oxidation (50%) and doping (49%) levels obtained in the solvent-free nanopowders also produced the highest SE values of 37.3 ± 3.7 dB (MHz band) and 68.6 ± 4.6 dB (GHz band)« less

  5. High resolution photoelectron imaging of UO{sup −} and UO{sub 2}{sup −} and the low-lying electronic states and vibrational frequencies of UO and UO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czekner, Joseph; Lopez, Gary V.; Wang, Lai-Sheng

    2014-12-28

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO{sup −} and UO{sub 2}{sup −}. The spectra for UO{sub 2}{sup −} are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO{sub 2} as 1.1688(6) eV. The symmetricmore » stretching modes for the neutral and anionic ground states, and two neutral excited states for UO{sub 2} are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO{sub 2} are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species.« less

  6. Real-time observation of valence electron motion.

    PubMed

    Goulielmakis, Eleftherios; Loh, Zhi-Heng; Wirth, Adrian; Santra, Robin; Rohringer, Nina; Yakovlev, Vladislav S; Zherebtsov, Sergey; Pfeifer, Thomas; Azzeer, Abdallah M; Kling, Matthias F; Leone, Stephen R; Krausz, Ferenc

    2010-08-05

    The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.

  7. Photoelectron spectroscopic study on the electronic structures of the dental gold alloys and their interaction with L-cysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Koji; Takahashi, Kazutoshi; Azuma, Junpei

    The valence electronic structures of the dental gold alloys, type 1, type 3, and K14, and their interaction with L-cysteine have been studied by ultraviolet photoelectron spectroscopy with synchrotron radiation. It was found that the electronic structures of the type-1 and type-3 dental alloys are similar to that of polycrystalline Au, while that of the K14 dental alloy is much affected by Cu. The peak shift and the change in shape due to alloying are observed in all the dental alloys. It is suggested that the new peak observed around 2 eV for the L-cysteine thin films on all themore » dental alloys may be due to the bonding of S 3sp orbitals with the dental alloy surfaces, and the Cu-S bond, as well as the Au-S and Au-O bonds, may cause the change in the electronic structure of the L-cysteine on the alloys.« less

  8. Explaining the effect of event valence on unrealistic optimism.

    PubMed

    Gold, Ron S; Brown, Mark G

    2009-05-01

    People typically exhibit 'unrealistic optimism' (UO): they believe they have a lower chance of experiencing negative events and a higher chance of experiencing positive events than does the average person. UO has been found to be greater for negative than positive events. This 'valence effect' has been explained in terms of motivational processes. An alternative explanation is provided by the 'numerosity model', which views the valence effect simply as a by-product of a tendency for likelihood estimates pertaining to the average member of a group to increase with the size of the group. Predictions made by the numerosity model were tested in two studies. In each, UO for a single event was assessed. In Study 1 (n = 115 students), valence was manipulated by framing the event either negatively or positively, and participants estimated their own likelihood and that of the average student at their university. In Study 2 (n = 139 students), valence was again manipulated and participants again estimated their own likelihood; additionally, group size was manipulated by having participants estimate the likelihood of the average student in a small, medium-sized, or large group. In each study, the valence effect was found, but was due to an effect on estimates of own likelihood, not the average person's likelihood. In Study 2, valence did not interact with group size. The findings contradict the numerosity model, but are in accord with the motivational explanation. Implications for health education are discussed.

  9. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1974-01-01

    The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.

  10. Evolution of optical properties and band structure from amorphous to crystalline Ga2O3 films

    NASA Astrophysics Data System (ADS)

    Zhang, Fabi; Li, Haiou; Cui, Yi-Tao; Li, Guo-Ling; Guo, Qixin

    2018-04-01

    The optical properties and band structure evolution from amorphous to crystalline Ga2O3 films was investigated in this work. Amorphous and crystalline Ga2O3 films were obtained by changing the growth substrate temperatures of pulsed laser deposition and the crystallinity increase with the rising of substrate temperature. The bandgap value and ultraviolet emission intensity of the films increase with the rising of crystallinity as observed by means of spectrophotometer and cathodoluminescence spectroscopy. Abrupt bandgap value and CL emission variations were observed when amorphous to crystalline transition took place. X-ray photoelectron spectroscopy core level spectra reveal that more oxygen vacancies and disorders exist in amorphous Ga2O3 film grown at lower substrate temperature. The valence band spectra of hard X-ray photoelectron spectroscopy present the main contribution from Ga 4sp for crystalline film deposited at substrate temperature of 500 oC, while extra subgap states has been observed in amorphous film deposited at 300 oC. The oxygen vacancy and the extra subgap density of states are suggested to be the parts of origin of bandgap and CL spectra variations. The experimental data above yields a realistic picture of optical properties and band structure variation for the amorphous to crystalline transition of Ga2O3 films.

  11. Anion photoelectron imaging spectroscopy of glyoxal

    NASA Astrophysics Data System (ADS)

    Xue, Tian; Dixon, Andrew R.; Sanov, Andrei

    2016-09-01

    We report a photoelectron imaging study of the radical-anion of glyoxal. The 532 nm photoelectron spectrum provides the first direct spectroscopic determination of the adiabatic electron affinity of glyoxal, EA = 1.10 ± 0.02 eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy of the radical-anion is determined as VDE = 1.30 ± 0.04 eV. The reported EA and VDE values are attributed to the most stable (C2h symmetry) isomers of the neutral and the anion.

  12. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO(-).

    PubMed

    Roy, Soumendra K; Jian, Tian; Lopez, Gary V; Li, Wei-Li; Su, Jing; Bross, David H; Peterson, Kirk A; Wang, Lai-Sheng; Li, Jun

    2016-02-28

    The observation of the gaseous UFO(-) anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO(-) is linear with an O-U-F structure and a (3)H4 spectral term derived from a U 7sσ(2)5fφ(1)5fδ(1) electron configuration, whereas the ground state of neutral UFO has a (4)H(7/2) spectral term with a U 7sσ(1)5fφ(1)5fδ(1) electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  13. A combined photoelectron spectroscopy and relativistic ab initio studies of the electronic structures of UFO and UFO-

    NASA Astrophysics Data System (ADS)

    Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun

    2016-02-01

    The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.

  14. Mössbauer study of the effect of pH on Fe valence in iron-polygalacturonate as a medicine for human anaemia

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Garg, V. K.; de Oliveira, A. C.; Klencsár, Z.; Szentmihályi, K.; Fodor, J.; May, Z.; Homonnay, Z.

    2015-02-01

    Iron-polygalacturonate complexes have been synthesized from polygalacturonic acid by applying a novel preparation method in order to develop medicine suitable for the effective iron supplementation of the human body in the case of anemia. Since the iron uptake depends on the oxidation state of iron, 57Fe Mössbauer spectroscopy was used to study the occurrence of different valence states in the iron-polygalacturonate complexes prepared under different circumstances. The Mössbauer-spectra indicated the presence of iron both in FeII and FeIII states in the investigated iron-polygalacturonate compounds, the occurrence of which varied with the preparation parameters. A correlation of the relative occurrence of iron valence states with the pH has been found. The relative occurrence of FeIII was found to increase with increasing pH. The knowledge of this correlation can help find optimum preparation conditions of iron-polygalacturonates to cure human anemia.

  15. Teaching Valence Shell Electron Pair Repulsion (VSEPR) Theory

    ERIC Educational Resources Information Center

    Talbot, Christopher; Neo, Choo Tong

    2013-01-01

    This "Science Note" looks at the way that the shapes of simple molecules can be explained in terms of the number of electron pairs in the valence shell of the central atom. This theory is formally known as valence shell electron pair repulsion (VSEPR) theory. The article explains the preferred shape of chlorine trifluoride (ClF3),…

  16. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    PubMed

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-06-03

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  17. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    PubMed Central

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-01-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904

  18. Simulating Ru L3-edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.

    2013-05-01

    Ruthenium L2,3-edge X-ray absorption (XA) spectroscopy probes transitions from core 2p orbitals to the 4d levels of the atom and is a powerful tool for interrogating the local electronic and molecular structure around the metal atom. However, a molecular-level interpretation of the Ru L2,3-edge spectral lineshapes is often complicated by spin–orbit coupling (SOC) and multiplet effects. In this study, we develop spin-free time-dependent density functional theory (TDDFT) as a viable and predictive tool to simulate the Ru L3-edge spectra. We successfully simulate and analyze the ground state Ru L3-edge XA spectra of a series of RuII and RuIII complexes: [Ru(NH3)6]2+/3+,more » [Ru(CN)6]4-/3-, [RuCl6]4-/3-, and the ground (1A1) and photoexcited (3MLCT) transient states of [Ru(bpy)3]2+ and Ru(dcbpy)2(NCS)2 (termed N3). The TDDFT simulations reproduce all the experimentally observed features in Ru L3-edge XA spectra. The advantage of using TDDFT to assign complicated Ru L3-edge spectra is illustrated by its ability to identify ligand specific charge transfer features in complex molecules. We conclude that the B3LYP functional is the most reliable functional for accurately predicting the location of charge transfer features in these spectra. Experimental and simulated Ru L3-edge XA spectra are presented for the transition metal mixed-valence dimers [(NC)5MII-CN-RuIII(NH3)5]- (where M = Fe or Ru) dissolved in water. We explore the spectral signatures of electron delocalization in Ru L3-edge XA spectroscopy and our simulations reveal that the inclusion of explicit solvent molecules is crucial for reproducing the experimentally determined valencies, highlighting the importance of the role of the solvent in transition metal charge transfer chemistry.« less

  19. Probing Chemical Bonding and Electronic Structures in ThO- by Anion Photoelectron Imaging and Theoretical Calculations.

    PubMed

    Li, Yanli; Zou, Jinghan; Xiong, Xiao-Gen; Su, Jing; Xie, Hua; Fei, Zejie; Tang, Zichao; Liu, Hongtao

    2017-03-16

    Because of renewed research on thorium-based molten salt reactors, there is growing demand and interest in enhancing the knowledge of thorium chemistry both experimentally and theoretically. Compared with uranium, thorium has few chemical studies reported up to the present. Here we report the vibrationally resolved photoelectron imaging of the thorium monoxide anion. The electron affinity of ThO is first reported to be 0.707 ± 0.020 eV. Vibrational frequencies of the ThO molecule and its anion are determined from Franck-Condon simulation. Spectroscopic evidence is obtained for the two-electron transition in ThO - , indicating the strong electron correlation among the (7s σ ) 2 (6d δ ) 1 electrons in ThO - and the (7s σ ) 2 electrons in ThO. These findings are explained by using quantum-chemical calculations including spin-orbit coupling, and the chemical bonding of gaseous ThO molecules is analyzed. The present work will enrich our understanding of bonding capacities with the 6d valence shell.

  20. Lying about the valence of affective pictures: an fMRI study.

    PubMed

    Lee, Tatia M C; Lee, Tiffany M Y; Raine, Adrian; Chan, Chetwyn C H

    2010-08-25

    The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception.

  1. Developmental Reversals in False Memory: Effects of Emotional Valence and Arousal

    ERIC Educational Resources Information Center

    Brainerd, C. J.; Holliday, R. E.; Reyna, V. F.; Yang, Y.; Toglia, M. P.

    2010-01-01

    Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can…

  2. Character Disposition and Behavior Type: Influences of Valence on Preschool Children's Social Judgments

    ERIC Educational Resources Information Center

    Jones, Elaine F.; Tobias, Marvin; Pauley, Danielle; Thomson, Nicole Renick; Johnson, Shawana Lewis

    2009-01-01

    The authors studied the influences of valence information on preschool children's (n = 47) moral (good or bad), liking (liked or disliked by a friend), and consequence-of-behavior (reward or punishment) judgments. The authors presented 8 scenarios describing the behavior valence, positive valence (help, share), negative valence (verbal insult,…

  3. Pressure-induced valence change and moderate heavy fermion state in Eu-compounds

    NASA Astrophysics Data System (ADS)

    Honda, Fuminori; Okauchi, Keigo; Sato, Yoshiki; Nakamura, Ai; Akamine, Hiromu; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Takeuchi, Tetsuya; Valenta, Jaroslav; Prchal, Jiri; Sechovský, Vladimir; Aoki, Dai; Ōnuki, Yoshichika

    2018-05-01

    A pressure-induced valence transition has attracted much attention in Eu-compounds. Among them, EuRh2Si2, EuNi2Ge2, and EuCo2Ge2 reveal the valence transition around 1, 2, and 3 GPa, respectively. We have succeeded in growing single crystals of EuT2X2 (T: transition metal, X: Si, Ge) and studied electronic properties under pressure. EuRh2Si2 indicates a first-order valence transition between 1 and 2 GPa, with a large and prominent hysteresis in the electrical resistivity. At higher pressures, the first-order valence transition changes to a cross-over regime with an intermediate valence state. Tuning of the valence state with pressure is reflected in a drastic change of the temperature dependence of the electrical resistivity in EuRh2Si2 single crystals. Effect of pressure on the valence states on EuRh2Si2, EuIr2Si2, EuNi2Ge2, and EuCo2Ge2, as well as an isostructural related compound EuGa4, are reviewed.

  4. Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity.

    PubMed

    Deng, Yaling; Li, Shijia; Zhou, Renlai; Walter, Martin

    2018-04-01

    Neuroticism has been found to specifically modulate amygdala activations during differential processing of valence and motivation while other brain networks yet are unexplored for associated effects. The main purpose of this study was to investigate whether neural mechanisms processing valence or motivation are prone to neuroticism in the salience network (SN), a network that is anchored in the anterior cingulate cortex (ACC) and the anterior insula. This study used functional magnetic resonance imaging (fMRI) and an approach/avoid emotional pictures task to investigate brain activations modulated by pictures' valence or motivational status between high and low neurotic individuals. We found that neuroticism-dependent SN and the parahippocampal-fusiform area activations were modulated by motivation but not valence. Valence in contrast interacted with neuroticism in the lateral orbitofrontal cortex. We suggested that neuroticism modulated valence and motivation processing, however, under the influence of the two distinct networks. Neuroticism modulated the motivation through the SN while it modulated the valence through the orbitofrontal networks. © 2018 Wiley Periodicals, Inc.

  5. Retrieval of target structure information from laser-induced photoelectrons by few-cycle bicircular laser fields

    NASA Astrophysics Data System (ADS)

    Hoang, Van-Hung; Le, Van-Hoang; Lin, C. D.; Le, Anh-Thu

    2017-03-01

    By analyzing theoretical results from a numerical solution of the time-dependent Schrödinger equation for atoms in few-cycle bicircular laser pulses, we show that high-energy photoelectron momentum spectra can be used to extract accurate elastic scattering differential cross sections of the target ion with free electrons. We find that the retrieval range for a scattering angle with bicircular pulses is wider than with linearly polarized pulses, although the retrieval method has to be modified to account for different returning directions of the electron in the continuum. This result can be used to extend the range of applicability of ultrafast imaging techniques such as laser-induced electron diffraction and for the accurate characterization of laser pulses.

  6. Conformational properties and electronic structure of tetrahydrotetrazines studied by photoelectron spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Muchall, Heidi M.; Rademacher, Paul

    1997-11-01

    The photoelectron (PE) spectra of tetrahydro-1,2,3,4-tetrazines 1 and 2 and tetrahydro-1,2,4,5-tetrazines 3-5 have been recorded and their conformations have been investigated by ab initio SCF calculations. While v-tetrazine 2 is planar, tetrazines 1 and 3-5 each possess two low-energy conformations, according to ab initio HF and Becke3LYP methods. Attempts to assign ionization potentials to molecular orbitals obtained by semiempirical PM3 calculations indicate that this method is not suited for the compounds studied. Best results were obtained when the ab initio hybrid method Becke3LYP of the density functional theory was employed. Two conformers of 1 and 3-5 are present in the gas phase and their PE spectra are superimposed one upon the other. For v-tetrazine 1, ionizations arising from half-chair and unsymmetrical boat conformers have similar energies and cannot be separated in the PE spectrum. For s-tetrazine 3, on the other hand, the spectrum clearly shows different ionizations of both half-chairs, 3ee and 3ae.

  7. Startle modulation and explicit valence evaluations dissociate during backward fear conditioning.

    PubMed

    Luck, Camilla C; Lipp, Ottmar V

    2017-05-01

    Blink startle magnitude is linearly modulated by affect such that, relative to neutral stimuli, startle magnitude is inhibited during pleasant stimuli and potentiated during unpleasant stimuli. Andreatta, Mühlberger, Yarali, Gerber, and Pauli (2010), however, report a dissociation between startle modulation and explicit valence evaluations during backward conditioning, a procedure in which the unconditional stimulus precedes the conditional stimulus (CS). Relative to controls, startles elicited during the CS were inhibited, suggesting that the CS had acquired positive valence, but participants still evaluated the CS as unpleasant after the experiment. In Experiment 1, we aimed to replicate this dissociation using a trial-by-trial measure of CS valence to measure startle modulation and CS valence simultaneously during forward and backward differential fear conditioning. In Experiment 2, we examined whether early and late portions of the CS could acquire differential valence by presenting startle probes at early and late probe positions during the CS. In both experiments, the dissociation between startle modulation and explicit valence evaluations in backward conditioning replicated, with CS+ evaluated as less pleasant than CS-, but startles elicited during CS+ inhibited relative to CS-. In Experiment 2, we provide preliminary evidence that this inhibition was present early, but not late, during the CS+. The results replicate the dissociation between implicit and explicit CS valence reported by Andreatta et al. (2010) using a trial-by-trial measure of valence. We also provide preliminary evidence that this dissociation may occur because the implicit and explicit measures are recorded at different times during the CS presentation. © 2017 Society for Psychophysiological Research.

  8. Quasiparticle spectra from molecules to bulk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlček, Vojtěch; Rabani, Eran; Neuhauser, Daniel

    We present a stochastic cumulant GW method, allowing us to map the evolution of photoemission spectra, quasiparticle energies, lifetimes, and emergence of collective excitations from molecules to bulklike systems with up to thousands of valence electrons, including Si nanocrystals and nanoplatelets. The quasiparticle energies rise due to their coupling with collective shake-up (plasmon) excitations, and this coupling leads to significant spectral weight loss (up to 50% for the low-energy states), shortening the lifetimes and shifting the spectral features to lower energies by as much as 0.6 eV. Such features are common to all the systems studied irrespective of their sizesmore » and shapes. For small and low-dimensional systems the surface plasmon resonances affect the frequency of the collective excitation and position of the satellites.« less

  9. Quasiparticle spectra from molecules to bulk

    DOE PAGES

    Vlček, Vojtěch; Rabani, Eran; Neuhauser, Daniel

    2018-03-16

    We present a stochastic cumulant GW method, allowing us to map the evolution of photoemission spectra, quasiparticle energies, lifetimes, and emergence of collective excitations from molecules to bulklike systems with up to thousands of valence electrons, including Si nanocrystals and nanoplatelets. The quasiparticle energies rise due to their coupling with collective shake-up (plasmon) excitations, and this coupling leads to significant spectral weight loss (up to 50% for the low-energy states), shortening the lifetimes and shifting the spectral features to lower energies by as much as 0.6 eV. Such features are common to all the systems studied irrespective of their sizesmore » and shapes. For small and low-dimensional systems the surface plasmon resonances affect the frequency of the collective excitation and position of the satellites.« less

  10. Effects of Emotion on Associative Recognition: Valence and Retention Interval Matter

    PubMed Central

    Pierce, Benton H.; Kensinger, Elizabeth A.

    2011-01-01

    In two experiments, we examined the effects of emotional valence and arousal on associative binding. Participants studied negative, positive, and neutral word pairs, followed by an associative recognition test. In Experiment 1, with a short-delayed test, accuracy for intact pairs was equivalent across valences, whereas accuracy for rearranged pairs was lower for negative than for positive and neutral pairs. In Experiment 2, we tested participants after a one-week delay and found that accuracy was greater for intact negative than for intact neutral pairs, whereas rearranged pair accuracy was equivalent across valences. These results suggest that, although negative emotional valence impairs associative binding after a short delay, it may improve binding after a longer delay. The results also suggest that valence, as well as arousal, needs to be considered when examining the effects of emotion on associative memory. PMID:21401233

  11. Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations.

    PubMed

    Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel

    2009-05-13

    Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.

  12. Effects of local field and inherent strain in reflectance anisotropy spectra of A{sup III}B{sup V} semiconductors with naturally oxidized surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkovits, V. L.; Kosobukin, V. A.; Gordeeva, A. B.

    2015-12-28

    Reflectance anisotropy (RA) spectra of naturally oxidized (001) surfaces of GaAs and InAs crystals are measured for photon energies from 1.5 up to 5.5 eV. The differential high-accuracy RA spectra reveal features substantially different from those caused by either a reconstruction of clean surface or a built-in near-surface electric field. Models of atomic structure with anisotropic transition layers of excess arsenic atoms specific for GaAs(001)/oxide and InAs(001)/oxide interfaces are proposed. In conformity with these models, a general theory of reflectance anisotropy is developed for semiconductor/oxide interfaces within the Green's function technique. The theory takes into account the combined effect of localmore » field due to interface dipoles and of intrinsic near-surface strain of the crystal. Measured RA spectra are analyzed in the model of valence-bond dipoles occupying a rectangular lattice in a multilayer medium. Comparing the measured and calculated spectra, we conclude that RA spectra of oxidized GaAs(001) and InAs(001) surfaces are simultaneously influenced by interface and near-surface anisotropies. The former is responsible for the broad-band spectral features which are associated with polarizability of the valence bonds attached to As atoms at the crystal/oxide interface. The near-surface anisotropy is due to inherent uniaxial straining the near-surface region of crystal. The effect of strain on RA spectra is experimentally and theoretically substantiated for GaAs crystal wafers undergone a uniaxial applied stress. Basically, this work results in the following. It establishes the physical nature of different levels of RA spectra observed in a majority of papers, but never analyzed. It demonstrates how the studied features of RA spectra could be applied for optical characterization of strained interfaces and atomic layers.« less

  13. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.

    PubMed

    Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A

    2016-01-12

    Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes.

  14. Silicon K-edge XANES spectra of silicate minerals

    NASA Astrophysics Data System (ADS)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  15. Work Valence as a Predictor of Academic Achievement in the Family Context

    ERIC Educational Resources Information Center

    Porfeli, Erik; Ferrari, Lea; Nota, Laura

    2013-01-01

    This study asserts a theoretical model of academic and work socialization within the family setting. The presumed associations between parents' work valences, children's work valences and valence perceptions, and children's academic interest and achievement are tested. The results suggest that children's perceptions of parents mediate the…

  16. The Rovibronic Spectra of the Cyclopentadienyl Radical

    NASA Astrophysics Data System (ADS)

    Sharma, Ketan; Miller, Terry A.; Stanton, John F.; Nesbitt, David

    2017-06-01

    Cyclopentadienyl (Cp) radical has been subject to numerous studies for the greater part of half a century. Experimental work has involved photo-electron spectroscopy, laser induced fluorescence excitation and emission, infrared absorption spectroscopy, and recently rotationally resolved spectra in the CH stretch region taken at JILA. Even more theoretical works appear in the literature, but substantial advances in computation have occurred since their completion. Cp's highly symmetric (D_{5h}) structure and doubly degenerate electronic ground (˜{X}^2E_1^{''}), which is subject to linear Jahn-Teller distortion, have been a great motivation for work on it. We have commenced new computational work to obtain a broad understanding of the electronic, vibrational, and rotational, i.e. rovibronic, structure of the Cp radical as revealed by its spectra, with particular emphasis on the new infrared spectra. The goal is to guide experiments and their analyses and reconcile results from spectroscopy and quantum chemistry calculations. T. Ichino, et al. J. Chem. Phys. 129, 084310 (2008) L. Yu, S. C. Foster, J. M. Williamson, M. C. Heaven and T. A. Miller J. Phys. Chem. 92, 4263 (1988) B. E. Applegate, A. J. Bezant and T. A. Miller J. Chem. Phys 114, 4869 (2001) D. Leicht, M. Kaufmann, G. Schwaab, and M. Havenith J. Chem. Phys. 145, 7 (2016), 074304.

  17. Studies of protonated and anionic artemisinin in the gas-phase by infrared multi-photon dissociation and by negative ion photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Seydou, M.; Gillet, J. C.; Li, X.; Wang, H.; Posner, G. H.; Grégoire, G.; Schermann, J. P.; Bowen, K. H.; Desfrançois, C.

    2007-12-01

    Protonated and anionic artemisinin in the gas phase have respectively been studied by infrared multi-photon dissociation (IRMPD) spectroscopy and by anion photoelectron spectroscopy. Comparison of the measured IRMPD spectrum with calculated spectra of various conformations showed that the two lowest-energy protonated structures, both corresponding to protonation at the C dbnd O 14 carbonyl site, were observed experimentally. The calculations also indicated that the peroxide bridge in artemisinin is only slightly modified by protonation. Additionally, stable, intact (parent) artemisinin radical anions have been obtained for the first time in the gas phase and the photoelectron spectrum supports the computational finding that the excess electron is mainly localized on the σ ∗ orbital of the peroxide bond. The vertical detachment energy and adiabatic electron affinity, calculated at the MP2/6-31+G ∗ level, are in good agreement with the experimental data and the O-O distance is calculated to be stretched by more than 50% in the anion.

  18. Conduction band offset at GeO{sub 2}/Ge interface determined by internal photoemission and charge-corrected x-ray photoelectron spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W. F.; Nishimula, T.; Nagashio, K.

    2013-03-11

    We report a consistent conduction band offset (CBO) at a GeO{sub 2}/Ge interface determined by internal photoemission spectroscopy (IPE) and charge-corrected X-ray photoelectron spectroscopy (XPS). IPE results showed that the CBO value was larger than 1.5 eV irrespective of metal electrode and substrate type variance, while an accurate determination of valence band offset (VBO) by XPS requires a careful correction of differential charging phenomena. The VBO value was determined to be 3.60 {+-} 0.2 eV by XPS after charge correction, thus yielding a CBO (1.60 {+-} 0.2 eV) in excellent agreement with the IPE results. Such a large CBO (>1.5more » eV) confirmed here is promising in terms of using GeO{sub 2} as a potential passivation layer for future Ge-based scaled CMOS devices.« less

  19. Photoelectron and computational studies of the copper-nucleoside anionic complexes, Cu{sup -}(cytidine) and Cu{sup -}(uridine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiang; Ko, Yeon-Jae; Wang Haopeng

    2011-02-07

    The copper-nucleoside anions, Cu{sup -}(cytidine) and Cu{sup -}(uridine), have been generated in the gas phase and studied by both experimental (anion photoelectron spectroscopy) and theoretical (density functional calculations) methods. The photoelectron spectra of both systems are dominated by single, intense, and relatively narrow peaks. These peaks are centered at 2.63 and 2.71 eV for Cu{sup -}(cytidine) and Cu{sup -}(uridine), respectively. According to our calculations, Cu{sup -}(cytidine) and Cu{sup -}(uridine) species with these peak center [vertical detachment energy (VDE)] values correspond to structures in which copper atomic anions are bound to the sugar portions of their corresponding nucleosides largely through electrostaticmore » interactions; the observed species are anion-molecule complexes. The combination of experiment and theory also reveal the presence of a slightly higher energy, anion-molecule complex isomer in the case of the Cu{sup -}(cytidine). Furthermore, our calculations found that chemically bond isomers of these species are much more stable than their anion-molecule complex counterparts, but since their calculated VDE values are larger than the photon energy used in these experiments, they were not observed.« less

  20. Probing the electronic structure of UO+ with high-resolution photoelectron spectroscopy.

    PubMed

    Goncharov, Vasiliy; Kaledin, Leonid A; Heaven, Michael C

    2006-10-07

    The pulsed field ionization-zero kinetic energy photoelectron technique has been used to observe the low-lying energy levels of UO+. Rotationally resolved spectra were recorded for the ground state and the first nine electronically excited states. Extensive vibrational progressions were characterized. Omega+ assignments were unambiguously determined from the first rotational lines identified in each vibronic band. Term energies, vibrational frequencies, and anharmonicity constants for low-lying energy levels of UO+ are reported. In addition, accurate values for the ionization energies for UO [48,643.8(2) cm(-1)] and U [49,957.6(2) cm(-1)] were determined. The pattern of low-lying electronic states for UO+ indicates that they originate from the U3+(5f3)O2- configuration, where the uranium ion-centered interactions between the 5f electrons are significantly stronger than interactions with the intramolecular electric field. The latter lifts the degeneracy of U3+ ion-core states, but the atomic angular momentum quantum numbers remain reasonably well defined.

  1. Core Levels, Band Alignments, and Valence-Band States in CuSbS 2 for Solar Cell Applications

    DOE PAGES

    Whittles, Thomas J.; Veal, Tim D.; Savory, Christopher N.; ...

    2017-11-10

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa (1-x)Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from themore » antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.« less

  2. Core Levels, Band Alignments, and Valence-Band States in CuSbS2 for Solar Cell Applications.

    PubMed

    Whittles, Thomas J; Veal, Tim D; Savory, Christopher N; Welch, Adam W; de Souza Lucas, Francisco Willian; Gibbon, James T; Birkett, Max; Potter, Richard J; Scanlon, David O; Zakutayev, Andriy; Dhanak, Vinod R

    2017-12-06

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuIn x Ga (1-x) Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from the antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.

  3. Emotions and false memories: valence or arousal?

    PubMed

    Corson, Yves; Verrier, Nadège

    2007-03-01

    The effects of mood on false memories have not been studied systematically until recently. Some results seem to indicate that negative mood may reduce false recall and thus suggest an influence of emotional valence on false memory. The present research tested the effects of both valence and arousal on recall and recognition and indicates that the effect is actually due to arousal. In fact, whether participants' mood is positive, negative, or neutral, false memories are significantly more frequent under conditions of high arousal than under conditions of low arousal.

  4. Study of MoVO(y) (y = 2-5) anion and neutral clusters using anion photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Mann, Jennifer E; Rothgeb, David W; Waller, Sarah E; Jarrold, Caroline Chick

    2010-10-28

    The vibrationally resolved anion photoelectron (PE) spectra of MoVO(y)(-) (y = 2 - 5) metal suboxide clusters are presented and analyzed in the context of density functional theory (DFT) calculations. The electronically congested spectra reflect an increase in cluster electron affinity with increasing oxidation state. Ion beam hole-burning results reveal the features in the PE spectra of MoVO(2)(-) and MoVO(4)(-) are a result of only one anion isomer, while at least two isomers contribute to electronic structure observed in the PE spectrum of MoVO(3)(-). Spectral features of the binary systems are compared to their pure analogs, Mo(2)O(y) and V(2)O(y). An attempt to characterize the anion and neutral electronic and molecular structures is made by comparison with results from DFT calculations. However, reconciliation between the cluster spectra and the calculated spectroscopic parameters is not as straightforward as in previous studies on similar systems (Yoder, B. L.; Maze, J. T.; Raghavachari, K.; Jarrold, C. C. J. Chem. Phys. 2005, 122, 094313 and Mayhall, N. J.; Rothgeb, D. W.; Hossain, E.; Raghavachari, K.; Jarrold, C. C. J. Chem. Phys. 2009, 130, 124313).

  5. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplicka-Oryńczak, N.; Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków; Fornal, B.

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility ofmore » testing the calculations involving the core excitations.« less

  6. A complete active space valence bond method with nonorthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Hirao, Kimihiko; Nakano, Haruyuki; Nakayama, Kenichi

    1997-12-01

    A complete active space self-consistent field (SCF) wave function is transformed into a valence bond type representation built from nonorthogonal orbitals, each strongly localized on a single atom. Nonorthogonal complete active space SCF orbitals are constructed by Ruedenberg's projected localization procedure so that they have maximal overlaps with the corresponding minimum basis set of atomic orbitals of the free-atoms. The valence bond structures which are composed of such nonorthogonal quasiatomic orbitals constitute the wave function closest to the concept of the oldest and most simple valence bond method. The method is applied to benzene, butadiene, hydrogen, and methane molecules and compared to the previously proposed complete active space valence bond approach with orthogonal orbitals. The results demonstrate the validity of the method as a powerful tool for describing the electronic structure of various molecules.

  7. Electronic structure of binuclear acetylacetonates of boron difluoride

    NASA Astrophysics Data System (ADS)

    Tikhonov, Sergey A.; Svistunova, Irina V.; Samoilov, Ilya S.; Osmushko, Ivan S.; Borisenko, Aleksandr V.; Vovna, Vitaliy I.

    2018-05-01

    The electronic structure of boron difluoride acetylacetonate and its three derivatives was studied using photoelectron and absorption spectroscopy, as well as the density functional theory. In a series of binuclear acetylacetonate complexes containing bridge-moieties of sulfur and selenium atoms, it was found an appreciable mixing of the π3-orbital of the chelate cycle with atomic orbitals S 3p and Se 4p resulting in destabilization of the HOMO levels by 0.4-0.6 eV, in comparison with the monomer. The positively charged fragment C(CH3)-CX-C(CH3) causes the field effect, which leads to stabilization of the LUMO levels by 0.3-0.4 eV and C 1s-levels by 0.5-1.2 eV. An analysis of the research results on the electronic structure made it possible to determine the effect of substituents in the γ position on the absorption spectra, which is mainly determined by the electron density transfer from the chalcogen atoms to the chelate cycles. It is shown that the calculated energy intervals between electron levels correlate well with the structure of the photoelectron spectra of valence and core electrons.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimoto, Shinya, E-mail: yosshi@issp.u-tokyo.ac.jp; Shiozawa, Yuichiro; Koitaya, Takanori

    Electronic states and electrical conductivity of the native oxide Si(111) surface adsorbed with an electron donor tetrakis(dimethylamino)ethylene (TDAE) were investigated using ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy (XPS), and independently driven four-probe conductivity measurements. The formation of positively charged TDAE species is confirmed by the downward shift of the vacuum level by 1.45 eV, the absence of HOMO level in the valence band, and observation of the positively charged state in the N 1s XPS spectra. Si 2p XPS spectra and four-probe conductivity measurements revealed that TDAE adsorption induces an increase in downward band bending and a reduction in electrical resistancemore » of the surface, respectively. The sheet conductivity and the electron density of the surface are 1.1 μS/◻ and 4.6 × 10{sup 9} cm{sup −2}, respectively, after TDAE adsorption, and they are as high as 350% of the original surface. These results demonstrate that the electron density of the semiconductor surface is successfully controlled by the electron donor molecule TDAE.« less

  9. Electronic structure and optical properties of LiGa0.5In0.5Se2 single crystal, a nonlinear optical mid-IR material

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, Tuan V.; Isaenko, L. I.; Yelisseyev, A. P.; Khyzhun, O. Y.

    2018-06-01

    Measurements of X-ray photoelectron core-level and valence-band spectra for pristine and irradiated with Ar+ ions surfaces of LiGa0.5In0.5Se2 single crystal, novel nonlinear optical mid-IR selenide grown by a modified vertical Bridgman-Stockbarger technique, are reported. Electronic structure of LiGa0.5In0.5Se2 is elucidated from theoretical and experimental points of view. Notably, total and partial densities of states (DOSs) of the LiGa0.5In0.5Se2 compound are calculated based on density functional theory (DFT) using the augmented plane wave + local orbitals (APW + lo) method. In accordance with the DFT calculations, the principal contributors to the valence band are the Se 4p states, making the main input at the top and in the upper part of the band, while its bottom is dominated by contributions of the valence s states associated with Ga and In atoms. The theoretical total DOS curve peculiarities are found to be in excellent agreement with the shape of the X-ray photoelectron valence-band spectrum of the LiGa0.5In0.5Se2 single crystal. The bottom of the conduction band of LiGa0.5In0.5Se2 is formed mainly by contributions of the unoccupied Ga 4s and In 5s states in almost equal proportion, with somewhat smaller contributions of the unoccupied Se 4p states as well. Our calculations indicate that the LiGa0.5In0.5Se2 compound is a direct gap semiconductor. The principal optical constants of LiGa0.5In0.5Se2 are calculated in the present work.

  10. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    NASA Astrophysics Data System (ADS)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  11. Photoelectron Angular Distributions of Transition Metal Dioxide Anions - a joint experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Iordanov, Ivan; Gunaratne, Dasitha; Harmon, Christopher; Sofo, Jorge; Castleman, A. W., Jr.

    2012-02-01

    Angular-resolved photoelectron spectroscopy (PES) studies of the MO2- (M=Ti, Zr, Hf, Co, Rh) clusters are presented for the first time along with theoretical calculations of their properties. We confirm previously reported non-angular PES results for the vertical detachment energies (VDE), vibrational energies and geometric structures of these clusters and further explore the effect of the 'lanthanide contraction' on the MO2- clusters by comparing the electronic spectra of 4d and 5d transition metal dioxides. Angular-resolved PES provides the angular momentum contributions to the HOMO of these clusters and we use theoretical calculations to examine the HOMO and compare to our experimental results. First-principles calculations are done using both density functional theory (DFT) and the coupled-cluster, singles, doubles and triples (CCSD(T)) methods.

  12. NEVER forget: negative emotional valence enhances recapitulation.

    PubMed

    Bowen, Holly J; Kark, Sarah M; Kensinger, Elizabeth A

    2018-06-01

    A hallmark feature of episodic memory is that of "mental time travel," whereby an individual feels they have returned to a prior moment in time. Cognitive and behavioral neuroscience methods have revealed a neurobiological counterpart: Successful retrieval often is associated with reactivation of a prior brain state. We review the emerging literature on memory reactivation and recapitulation, and we describe evidence for the effects of emotion on these processes. Based on this review, we propose a new model: Negative Emotional Valence Enhances Recapitulation (NEVER). This model diverges from existing models of emotional memory in three key ways. First, it underscores the effects of emotion during retrieval. Second, it stresses the importance of sensory processing to emotional memory. Third, it emphasizes how emotional valence - whether an event is negative or positive - affects the way that information is remembered. The model specifically proposes that, as compared to positive events, negative events both trigger increased encoding of sensory detail and elicit a closer resemblance between the sensory encoding signature and the sensory retrieval signature. The model also proposes that negative valence enhances the reactivation and storage of sensory details over offline periods, leading to a greater divergence between the sensory recapitulation of negative and positive memories over time. Importantly, the model proposes that these valence-based differences occur even when events are equated for arousal, thus rendering an exclusively arousal-based theory of emotional memory insufficient. We conclude by discussing implications of the model and suggesting directions for future research to test the tenets of the model.

  13. Aesthetic valence of visual illusions

    PubMed Central

    Stevanov, Jasmina; Marković, Slobodan; Kitaoka, Akiyoshi

    2012-01-01

    Visual illusions constitute an interesting perceptual phenomenon, but they also have an aesthetic and affective dimension. We hypothesized that the illusive nature itself causes the increased aesthetic and affective valence of illusions compared with their non-illusory counterparts. We created pairs of stimuli. One qualified as a standard visual illusion whereas the other one did not, although they were matched in as many perceptual dimensions as possible. The phenomenal quality of being an illusion had significant effects on “Aesthetic Experience” (fascinating, irresistible, exceptional, etc), “Evaluation” (pleasant, cheerful, clear, bright, etc), “Arousal” (interesting, imaginative, complex, diverse, etc), and “Regularity” (balanced, coherent, clear, realistic, etc). A subsequent multiple regression analysis suggested that Arousal was a better predictor of Aesthetic Experience than Evaluation. The findings of this study demonstrate that illusion is a phenomenal quality of the percept which has measurable aesthetic and affective valence. PMID:23145272

  14. Motivation and attention: Incongruent effects of feedback on the processing of valence.

    PubMed

    Rothermund, Klaus

    2003-09-01

    Four experiments investigated the relation between outcome-related motivational states and processes of automatic attention allocation. Experiments 1-3 analyzed influences of feedback on evaluative decisions. Words of opposite valence to the feedback were processed faster, indicating that it is easier to allocate attention to the valence of an affectively incongruent word. Experiment 4 replicated the incongruent effect with interference effects of word valence in a grammatical-categorization task, indicating that the effect reflects automatic attentional capture. In all experiments, incongruent effects of feedback emerged only in a situation involving an attentional shift between words that differed in valence.

  15. Valence-band-edge shift due to doping in p + GaAs

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-05-01

    Accurate knowledge of the shifts in valence- and conduction-band edges due to heavy doping effects is crucial in modeling GaAs device structures that utilize heavily doped layers. X-ray photoemission spectroscopy was used to deduce the shift in the valence-band-edge induced by carbon (p type) doping to a carrier density of 1×1020 cm-3 based on a determination of the bulk binding energy of the Ga and As core levels in this material. Analysis of the data indicates that the shift of the valence-band maximum into the gap and the penetration of the Fermi level into the valence bands exactly compensate at this degenerate carrier concentration, to give ΔEv =0.12±0.05 eV.

  16. Trait valence and the better-than-average effect.

    PubMed

    Gold, Ron S; Brown, Mark G

    2011-12-01

    People tend to regard themselves as having superior personality traits compared to their average peer. To test whether this "better-than-average effect" varies with trait valence, participants (N = 154 students) rated both themselves and the average student on traits constituting either positive or negative poles of five trait dimensions. In each case, the better-than-average effect was found, but trait valence had no effect. Results were discussed in terms of Kahneman and Tversky's prospect theory.

  17. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction.

  18. Human Amygdala Tracks a Feature-Based Valence Signal Embedded within the Facial Expression of Surprise.

    PubMed

    Kim, M Justin; Mattek, Alison M; Bennett, Randi H; Solomon, Kimberly M; Shin, Jin; Whalen, Paul J

    2017-09-27

    Human amygdala function has been traditionally associated with processing the affective valence (negative vs positive) of an emotionally charged event, especially those that signal fear or threat. However, this account of human amygdala function can be explained by alternative views, which posit that the amygdala might be tuned to either (1) general emotional arousal (activation vs deactivation) or (2) specific emotion categories (fear vs happy). Delineating the pure effects of valence independent of arousal or emotion category is a challenging task, given that these variables naturally covary under many circumstances. To circumvent this issue and test the sensitivity of the human amygdala to valence values specifically, we measured the dimension of valence within the single facial expression category of surprise. Given the inherent valence ambiguity of this category, we show that surprised expression exemplars are attributed valence and arousal values that are uniquely and naturally uncorrelated. We then present fMRI data from both sexes, showing that the amygdala tracks these consensus valence values. Finally, we provide evidence that these valence values are linked to specific visual features of the mouth region, isolating the signal by which the amygdala detects this valence information. SIGNIFICANCE STATEMENT There is an open question as to whether human amygdala function tracks the valence value of cues in the environment, as opposed to either a more general emotional arousal value or a more specific emotion category distinction. Here, we demonstrate the utility of surprised facial expressions because exemplars within this emotion category take on valence values spanning the dimension of bipolar valence (positive to negative) at a consistent level of emotional arousal. Functional neuroimaging data showed that amygdala responses tracked the valence of surprised facial expressions, unconfounded by arousal. Furthermore, a machine learning classifier identified

  19. Effects of valence and divided attention on cognitive reappraisal processes

    PubMed Central

    Leclerc, Christina M.; Kensinger, Elizabeth A.

    2014-01-01

    Numerous studies have investigated the neural substrates supporting cognitive reappraisal, identifying the importance of cognitive control processes implemented by prefrontal cortex (PFC). This study examined how valence and attention affect the processes used for cognitive reappraisal by asking participants to passively view or to cognitively reappraise positive and negative images with full or divided attention. When participants simply viewed these images, results revealed few effects of valence or attention. However, when participants engaged in reappraisal, there was a robust effect of valence, with the reappraisal of negative relative to positive images associated with more widespread activation, including within regions of medial and lateral PFC. There also was an effect of attention, with more lateral PFC recruitment when regulating with full attention and more medial PFC recruitment when regulating with divided attention. Within two regions of medial PFC and one region of ventrolateral PFC, there was an interaction between valence and attention: in these regions, divided attention reduced activity during reappraisal of positive but not negative images. Critically, participants continued to report reappraisal success even during the Divided Attention condition. These results suggest multiple routes to successful cognitive reappraisal, depending upon image valence and the availability of attentional resources. PMID:24493837

  20. Effects of valence and divided attention on cognitive reappraisal processes.

    PubMed

    Morris, John A; Leclerc, Christina M; Kensinger, Elizabeth A

    2014-12-01

    Numerous studies have investigated the neural substrates supporting cognitive reappraisal, identifying the importance of cognitive control processes implemented by prefrontal cortex (PFC). This study examined how valence and attention affect the processes used for cognitive reappraisal by asking participants to passively view or to cognitively reappraise positive and negative images with full or divided attention. When participants simply viewed these images, results revealed few effects of valence or attention. However, when participants engaged in reappraisal, there was a robust effect of valence, with the reappraisal of negative relative to positive images associated with more widespread activation, including within regions of medial and lateral PFC. There also was an effect of attention, with more lateral PFC recruitment when regulating with full attention and more medial PFC recruitment when regulating with divided attention. Within two regions of medial PFC and one region of ventrolateral PFC, there was an interaction between valence and attention: in these regions, divided attention reduced activity during reappraisal of positive but not negative images. Critically, participants continued to report reappraisal success even during the Divided Attention condition. These results suggest multiple routes to successful cognitive reappraisal, depending upon image valence and the availability of attentional resources. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Electron-plasmon and electron-phonon satellites in the angle-resolved photoelectron spectra of n -doped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Caruso, Fabio; Verdi, Carla; Poncé, Samuel; Giustino, Feliciano

    2018-04-01

    We develop a first-principles approach based on many-body perturbation theory to investigate the effects of the interaction between electrons and carrier plasmons on the electronic properties of highly doped semiconductors and oxides. Through the evaluation of the electron self-energy, we account simultaneously for electron-plasmon and electron-phonon coupling in theoretical calculations of angle-resolved photoemission spectra, electron linewidths, and relaxation times. We apply this methodology to electron-doped anatase TiO2 as an illustrative example. The simulated spectra indicate that electron-plasmon coupling in TiO2 underpins the formation of satellites at energies comparable to those of polaronic spectral features. At variance with phonons, however, the energy of plasmons and their spectral fingerprints depends strongly on the carrier concentration, revealing a complex interplay between plasmon and phonon satellites. The electron-plasmon interaction accounts for approximately 40% of the total electron-boson interaction strength, and it is key to improve the agreement with measured quasiparticle spectra.

  2. Photoelectron Effects on the Self-Consistent Potential in the Collisionless Polar Wind

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.; Moore, T. E.

    1997-01-01

    The presence of unthermalized photoelectrons in the sunlit polar cap leads to an enhanced ambipolar potential drop and enhanced upward ion acceleration. Observations in the topside ionosphere have led to the conclusion that large-scale electrostatic potential drops exist above the spacecraft along polar magnetic field lines connected to regions of photoelectron production. A kinetic approach is used for the O(+), H(+), and photoelectron (p) distributions, while a fluid approach is used to describe the thermal electrons (e) and self-consistent electric field (E(sub II)) electrons are allowed to carry a flux that compensates for photoelectron escape, a critical assumption. Collisional processes are excluded, leading to easier escape of polar wind particles and therefore to the formation of the largest potential drop consistent with this general approach. We compute the steady state electric field enhancement and net potential drop expected in the polar wind due to the presence of photoelectrons as a function of the fractional photoelectron content and the thermal plasma characteristics. For a set of low-altitude boundary conditions typical of the polar wind ionosphere, including 0.1% photoelectron content, we found a potential drop from 500 km to 5 R(sub E) of 6.5 V and a maximum thermal electron temperature of 8800 K. The reasonable agreement of our results with the observed polar wind suggests that the assumptions of this approach are valid.

  3. Memory effects of sleep, emotional valence, arousal and novelty in children.

    PubMed

    Vermeulen, Marije C M; van der Heijden, Kristiaan B; Benjamins, Jeroen S; Swaab, Hanna; van Someren, Eus J W

    2017-06-01

    Effectiveness of memory consolidation is determined by multiple factors, including sleep after learning, emotional valence, arousal and novelty. Few studies investigated how the effect of sleep compares with (and interacts with) these other factors, of which virtually none are in children. The present study did so by repeated assessment of declarative memory in 386 children (45% boys) aged 9-11 years through an online word-pair task. Children were randomly assigned to either a morning or evening learning session of 30 unrelated word-pairs with positive, neutral or negative valenced cues and neutral targets. After immediately assessing baseline recognition, delayed recognition was recorded either 12 or 24 h later, resulting in four different assessment schedules. One week later, the procedure was repeated with exactly the same word-pairs to evaluate whether effects differed for relearning versus original novel learning. Mixed-effect logistic regression models were used to evaluate how the probability of correct recognition was affected by sleep, valence, arousal, novelty and their interactions. Both immediate and delayed recognition were worse for pairs with negatively valenced or less arousing cue words. Relearning improved immediate and delayed word-pair recognition. In contrast to these effects, sleep did not affect recognition, nor did sleep moderate the effects of arousal, valence and novelty. The findings suggest a robust inclination of children to specifically forget the pairing of words to negatively valenced cue words. In agreement with a recent meta-analysis, children seem to depend less on sleep for the consolidation of information than has been reported for adults, irrespective of the emotional valence, arousal and novelty of word-pairs. © 2017 European Sleep Research Society.

  4. On pleasure and thrill: the interplay between arousal and valence during visual word recognition.

    PubMed

    Recio, Guillermo; Conrad, Markus; Hansen, Laura B; Jacobs, Arthur M

    2014-07-01

    We investigated the interplay between arousal and valence in the early processing of affective words. Event-related potentials (ERPs) were recorded while participants read words organized in an orthogonal design with the factors valence (positive, negative, neutral) and arousal (low, medium, high) in a lexical decision task. We observed faster reaction times for words of positive valence and for those of high arousal. Data from ERPs showed increased early posterior negativity (EPN) suggesting improved visual processing of these conditions. Valence effects appeared for medium and low arousal and were absent for high arousal. Arousal effects were obtained for neutral and negative words but were absent for positive words. These results suggest independent contributions of arousal and valence at early attentional stages of processing. Arousal effects preceded valence effects in the ERP data suggesting that arousal serves as an early alert system preparing a subsequent evaluation in terms of valence. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Excited electronic states of the methyl radical. Ab initio molecular orbital study of geometries, excitation energies and vibronic spectra

    NASA Astrophysics Data System (ADS)

    Mebel, Alexander M.; Lin, Sheng-Hsien

    1997-03-01

    The geometries, vibrational frequencies and vertical and adiabatic excitation energies of the excited valence and Rydberg 3s, 3p, 3d, and 4s electronic states of CH 3 have been studied using ab initio molecular orbital multiconfigurational SCF (CASSCF), internally contracted multireference configuration interaction (MRCI) and equation-of-motion coupled cluster (EOM-CCSD) methods. The vibronic spectra are determined through the calculation of Franck-Condon factors. Close agreement between theory and experiment has been found for the excitation energies, vibrational frequencies and vibronic spectra. The adiabatic excitation energies of the Rydberg 3s B˜ 2A' 1 and 3p 2 2A″ 2 states are calculated to be 46435 and 60065 cm -1 compared to the experimental values of 46300 and 59972 cm -1, respectively. The valence 2A″ excited state of CH 3 has been found to have a pyramidal geometry within C s symmetry and to be adiabatically by 97 kcal/mol higher in energy than the ground state. The 2A″ state is predicted to be stable by 9 and 13 kcal/mol with respect to H 2 and H elimination.

  6. Photoelectron spectroscopy and density functional theory studies of (FeS)mH- (m = 2-4) cluster anions: effects of the single hydrogen.

    PubMed

    Yin, Shi; Bernstein, Elliot R

    2017-12-20

    Single hydrogen containing iron hydrosulfide cluster anions (FeS) m H - (m = 2-4) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by Density Functional Theory (DFT) calculations. The structural properties, relative energies of different spin states and isomers, and the first calculated vertical detachment energies (VDEs) of different spin states for these (FeS) m H - (m = 2-4) cluster anions are investigated at various reasonable theory levels. Two types of structural isomers are found for these (FeS) m H - (m = 2-4) clusters: (1) the single hydrogen atom bonds to a sulfur site (SH-type); and (2) the single hydrogen atom bonds to an iron site (FeH-type). Experimental and theoretical results suggest such available different SH- and FeH-type structural isomers should be considered when evaluating the properties and behavior of these single hydrogen containing iron sulfide clusters in real chemical and biological systems. Compared to their related, respective pure iron sulfur (FeS) m - clusters, the first VDE trend of the diverse type (FeS) m H 0,1 - (m = 1-4) clusters can be understood through (1) the different electron distribution properties of their highest singly occupied molecular orbital employing natural bond orbital analysis (NBO/HSOMO), and (2) the partial charge distribution on the NBO/HSOMO localized sites of each cluster anion. Generally, the properties of the NBO/HSOMOs play the principal role with regard to the physical and chemical properties of all the anions. The change of cluster VDE from low to high is associated with the change in nature of their NBO/HSOMO from a dipole bound and valence electron mixed character, to a valence p orbital on S, to a valence d orbital on Fe, and to a valence p orbital on Fe or an Fe-Fe delocalized valence bonding orbital. For clusters having the same properties for NBO/HSOMOs, the partial charge distributions at the NBO/HSOMO localized sites additionally

  7. Investigating Valence and Autonomy in Children's Relationships with Imaginary Companions

    ERIC Educational Resources Information Center

    McInnis, Melissa A.; Pierucci, Jillian M.; Gilpin, Ansley Tullos

    2013-01-01

    Little research has explored valence and autonomy in children's imaginary relationships. In the present study, a new interview (modeled after an existing measure for real relationships) was designed to elicit descriptions of both positive and negative interactions with imaginary companions and to provide a measure of relationship valence and…

  8. A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24(-) cluster.

    PubMed

    Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Wang, Lai-Sheng; Boldyrev, Alexander I

    2013-10-14

    The structure and chemical bonding of the 24-atom boron cluster are investigated using photoelectron spectroscopy and ab initio calculations. The joint experimental and theoretical investigation shows that B24(-) possesses a quasi-planar structure containing fifteen outer and nine inner atoms with six of the inner atoms forming a filled pentagonal moiety. The central atom of the pentagonal moiety is puckered out of plane by 0.9 Å, reminiscent of the six-atom pentagonal caps of the well-known B12 icosahedral unit. The next closest isomer at the ROCCSD(T) level of theory has a tubular double-ring structure. Comparison of the simulated spectra with the experimental data shows that the global minimum quasi-planar B24(-) isomer is the major contributor to the observed photoelectron spectrum, while the tubular isomer has no contribution to the experiment. Chemical bonding analyses reveal that the periphery of the quasi-planar B24 constitutes 15 classical 2c-2e B-B σ-bonds, whereas delocalized σ- and π-bonds are found in the interior of the cluster with one unique 6c-2e π-bond responsible for bonding in the B-centered pentagon. The current work suggests that the 24-atom boron cluster continues to be quasi-2D, albeit the tendency to form filled pentagonal units, characteristic of 3D cage-like structures of bulk boron, is observed.

  9. Valence and arousal-based affective evaluations of foods.

    PubMed

    Woodward, Halley E; Treat, Teresa A; Cameron, C Daryl; Yegorova, Vitaliya

    2017-01-01

    We investigated the nutrient-specific and individual-specific validity of dual-process models of valenced and arousal-based affective evaluations of foods across the disordered eating spectrum. 283 undergraduate women provided implicit and explicit valence and arousal-based evaluations of 120 food photos with known nutritional information on structurally similar indirect and direct affect misattribution procedures (AMP; Payne et al., 2005, 2008), and completed questionnaires assessing body mass index (BMI), hunger, restriction, and binge eating. Nomothetically, added fat and added sugar enhance evaluations of foods. Idiographically, hunger and binge eating enhance activation, whereas BMI and restriction enhance pleasantness. Added fat is salient for women who are heavier, hungrier, or who restrict; added sugar is influential for less hungry women. Restriction relates only to valence, whereas binge eating relates only to arousal. Findings are similar across implicit and explicit affective evaluations, albeit stronger for explicit, providing modest support for dual-process models of affective evaluation of foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Analysis of photoelectron effect on the antenna impedance via Particle-In-Cell simulation

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.

    2008-08-01

    We present photoelectron effects on the impedance of electric field antennas used for plasma wave investigations. To illustrate the photoelectron effects, we applied electromagnetic Particle-In-Cell simulation to the self-consistent antenna impedance analysis. We confirmed the formation of a dense photoelectron region around the sunlit surfaces of the antenna and the spacecraft. The dense photoelectrons enhance the real part, and decrease the absolute value of the imaginary part, of antenna impedance at low frequencies. We also showed that the antenna conductance can be analytically calculated from simulation results of the electron current flowing into or out of the antenna. The antenna impedance in the photoelectron environment is represented by a parallel equivalent circuit consisting of a capacitance and a resistance, which is consistent with empirical knowledge. The results also imply that the impedance varies with the spin of the spacecraft, which causes the variation of the photoelectron density around the antenna.

  11. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    NASA Astrophysics Data System (ADS)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  12. Electron and fluorescence spectra of a water molecule irradiated by an x-ray free-electron laser pulse

    NASA Astrophysics Data System (ADS)

    Schäfer, Julia M.; Inhester, Ludger; Son, Sang-Kil; Fink, Reinhold F.; Santra, Robin

    2018-05-01

    With the highly intense x-ray light generated by x-ray free-electron lasers (XFELs), molecular samples can be ionized many times in a single pulse. Here we report on a computational study of molecular spectroscopy at the high x-ray intensity provided by XFELs. Calculated photoelectron, Auger electron, and x-ray fluorescence spectra are presented for a single water molecule that reaches many electronic hole configurations through repeated ionization steps. The rich details shown in the spectra depend on the x-ray pulse parameters in a nonintuitive way. We discuss how the observed trends can be explained by the competition of microscopic electronic transition processes. A detailed comparison between spectra calculated within the independent-atom model and within the molecular-orbital framework highlights the chemical sensitivity of the spectral lines of multiple-hole configurations. Our results demonstrate how x-ray multiphoton ionization-related effects such as charge-rearrangement-enhanced x-ray ionization of molecules and frustrated absorption manifest themselves in the electron and fluorescence spectra.

  13. Arousal (but not valence) amplifies the impact of salience.

    PubMed

    Sutherland, Matthew R; Mather, Mara

    2018-05-01

    Previous findings indicate that negative arousal enhances bottom-up attention biases favouring perceptual salient stimuli over less salient stimuli. The current study tests whether those effects were driven by emotional arousal or by negative valence by comparing how well participants could identify visually presented letters after hearing either a negative arousing, positive arousing or neutral sound. On each trial, some letters were presented in a high contrast font and some in a low contrast font, creating a set of targets that differed in perceptual salience. Sounds rated as more emotionally arousing led to more identification of highly salient letters but not of less salient letters, whereas sounds' valence ratings did not impact salience biases. Thus, arousal, rather than valence, is a key factor enhancing visual processing of perceptually salient targets.

  14. The range and valence of a real Smirnov function

    NASA Astrophysics Data System (ADS)

    Ferguson, Timothy; Ross, William T.

    2018-02-01

    We give a complete description of the possible ranges of real Smirnov functions (quotients of two bounded analytic functions on the open unit disk where the denominator is outer and such that the radial boundary values are real almost everywhere on the unit circle). Our techniques use the theory of unbounded symmetric Toeplitz operators, some general theory of unbounded symmetric operators, classical Hardy spaces, and an application of the uniformization theorem. In addition, we completely characterize the possible valences for these real Smirnov functions when the valence is finite. To do so we construct Riemann surfaces we call disk trees by welding together copies of the unit disk and its complement in the Riemann sphere. We also make use of certain trees we call valence trees that mirror the structure of disk trees.

  15. Chromium valences in ureilite olivine and implications for ureilite petrogenesis

    NASA Astrophysics Data System (ADS)

    Goodrich, C. A.; Sutton, S. R.; Wirick, S.; Jercinovic, M. J.

    2013-12-01

    Ureilites are a group of ultramafic achondrites commonly thought to be residues of partial melting on a carbon-rich asteroid. They show a large variation in FeO content (olivine Fo values ranging from ∼74 to 95) that cannot be due to igneous fractionation and suggests instead variation in oxidation state. The presence of chromite in only a few of the most ferroan (Fo 75-76) samples appears to support such a model. MicroXANES analyses were used in this study to determine the valence states of Cr (previously unknown) in olivine cores of 11 main group ureilites. The goal of this work was to use a method that is independent of Fo to determine the oxidation conditions under which ureilites formed, in order to evaluate whether the ureilite FeO-variation is correlated with oxidation state, and whether it is nebular or planetary in origin. Two of the analyzed samples, LEW 88774 (Fo 74.2) and NWA 766 (Fo 76.7) contain primary chromite; two others, LAP 03587 (Fo 74.4) and CMS 04048 (Fo 76.2) contain sub-micrometer-sized exsolutions of chromite + Ca-rich pyroxene in olivine; and one, EET 96328 (Fo 85.2) contains an unusual chromite grain of uncertain origin. No chromite has been observed in the remaining six samples (Fo 77.4-92.3). Chromium in olivine in all eleven samples was found to be dominated by the divalent species, with valences ranging from 2.10 ± 0.02 (1σ) to 2.46 ± 0.04. The non-chromite-bearing ureilites have the most reduced Cr, with a weighted mean valence of 2.12 ± 0.01, i.e., Cr2+/Cr3+ = 7.33. All low-Fo chromite-bearing ureilites have more oxidized Cr, with valences ranging from 2.22 ± 0.03 to 2.46 ± 0.04. EET 96328, whose chromite grain we interpret as a late-crystallizing phase, yielded a reduced Cr valence of 2.15 ± 0.07, similar to the non-chromite-bearing samples. Based on the measured Cr valences, magmatic (1200-1300 °C) oxygen fugacities (fO2) of the non-chromite-bearing samples were estimated to be in the range IW-1.9 to IW-2.8 (assuming

  16. Rotationally resolved pulsed field ionization photoelectron study of CO[sup +](X[sup 2][Sigma][sup +],v[sup +]=0[endash]42) in the energy range of 13. 98[endash]21. 92 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, M.; Ng, C.Y.

    1999-11-01

    We have obtained rotationally resolved pulsed field ionization[endash]photoelectron (PFI-PE) spectra of CO in the energy range of 13.98[endash]21.92 eV, covering the ionization transitions CO[sup +](X hthinsp;[sup 2][Sigma][sup +],v[sup +]=0[endash]42,N[sup +])[l arrow]CO(X hthinsp;[sup 1][Sigma][sup +],v[sup [double prime

  17. Polarization Dependent Bulk-sensitive Valence Band Photoemission Spectroscopy and Density Functional Theory Calculations: Part I. 3d Transition Metals

    NASA Astrophysics Data System (ADS)

    Ueda, Shigenori; Hamada, Ikutaro

    2017-12-01

    The X-ray polarization dependent valence band HAXPES spectra of 3d transition metals (TMs) of Ti-Zn were measured to investigate the orbital resolved electronic structures by utilizing that the fact the photoionization cross-section of the atomic orbitals strongly depends on the experimental geometry. We have calculated the HAXPES spectra, which correspond to the cross-section weighted densities of states (CSW-DOSs), where the DOSs were obtained by the density functional theory calculations, and we have determined the relative photoionization cross-sections of the 4s and 4p orbitals to the 3d orbital in the 3d TMs. The experimentally obtained bulk-sensitive 3d and 4s DOSs were good agreement with the calculated DOSs in Ti, V, Cr, and Cu. In contrast, the deviations between the experimental and calculated 3d DOSs for Mn, Fe, Co, Ni were found, suggesting that the electron correlation plays an important role in the electronic structures for these materials.

  18. Benchmark results and theoretical treatments for valence-to-core x-ray emission spectroscopy in transition metal compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortensen, D. R.; Seidler, G. T.; Kas, Joshua J.

    We report measurement of the valence-to-core (VTC) region of the K-shell x-ray emission spectra from several Zn and Fe inorganic compounds, and their critical comparison with several existing theoretical treatments. We find generally good agreement between the respective theories and experiment, and in particular find an important admixture of dipole and quadrupole character for Zn materials that is much weaker in Fe-based systems. These results on materials whose simple crystal structures should not, a prior, pose deep challenges to theory, will prove useful in guiding the further development of DFT and time-dependent DFT methods for VTC-XES predictions and their comparisonmore » to experiment.« less

  19. Atlas of reflectance spectra of terrestrial, lunar and meteoritic powders and frosts from 92 to 1800 nm

    NASA Technical Reports Server (NTRS)

    Wagner, Jeffrey; Hapke, Bruce; Wells, Eddie

    1987-01-01

    The reflectance spectra of powdered samples of selected minerals, meteorites, lunar materials and frosts are presented as an aid in the interpretation of present and future remote sensing data of solar system objects. Spectra obtained in separate wavelength regions have been combined and normalized, yielding coverage from 92 to 1800 nm. Spectral features include reflectance maxima in the far UV region produced by valence-conduction interband transitions, and reflectance minima in the near UV, visible and near IR regions, produced by charge transfer and crystal field transitions. Specific maxima and minima are diagnostic of mineral type and composition; additionally, the minerals present in mixtures such as meteorites and lunar samples can be determined.

  20. Effect of Morphology and Manganese Valence on the Voltage Fade and Capacity Retention of Li[Li 2/12Ni 3/12Mn 7/12]O 2

    DOE PAGES

    Verde, Michael G.; Liu, Haodong; Carroll, Kyler J.; ...

    2014-10-02

    We have determined the electrochemical characteristics of the high voltage, high capacity Li-ion battery cathode material Li[Li 2/12Ni 3/12Mn 7/12]O 2 prepared using three different synthesis routes: sol-gel, hydroxide co-precipitation, and carbonate co-precipitation. Each route leads to distinct morphologies and surface areas while maintaining the same crystal structures. X-ray photoelectron spectroscopy (XPS) measurements reveal differences in their surface chemistries upon cycling, which correlate with voltage fading. As expected, we observed the valence state of Mn on the surface to decrease upon lithiation, and this reduction is specifically correlated to discharging below 3.6V. Furthermore, the data shows a correlation of themore » formation of Li 2CO 3 with Mn oxidation state from the« less

  1. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaofeng; Raaen, Steinar, E-mail: sraaen@ntnu.no

    2015-09-14

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K{sub 2p} core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbonmore » cone containing material.« less

  2. Distinct Brain Systems Underlie the Processing of Valence and Arousal of Affective Pictures

    ERIC Educational Resources Information Center

    Nielen, M. M. A.; Heslenfeld, D. J.; Heinen, K.; Van Strien, J. W.; Witter, M. P.; Jonker, C.; Veltman, D. J.

    2009-01-01

    Valence and arousal are thought to be the primary dimensions of human emotion. However, the degree to which valence and arousal interact in determining brain responses to emotional pictures is still elusive. This functional MRI study aimed to delineate neural systems responding to valence and arousal, and their interaction. We measured neural…

  3. On the Relationship between Value Orientation, Valences, and Academic Achievement

    ERIC Educational Resources Information Center

    Fries, Stefan; Schmid, Sebastian; Hofer, Manfred

    2007-01-01

    Value orientations are believed to influence learning in school. We assume that this influence is mediated by the valences attached to specific school subjects. In a questionnaire study (704 students from 36 classes) achievement and well-being value orientations were measured. Students also rated valence scales for the school subjects German and…

  4. Observation of circular dichroism in photoelectron angular distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appling, J.R.; White, M.G.; Orlando, T.M.

    1986-12-01

    The first observations of dichroic effects in photoelectron angular distributions are reported for photoionization of aligned molecular excited states with circularly polarized light. Photoelectron angular distributions resulting from the two-color, (2+1) REMPI of NO via the A /sup 2/summation/sup +/, v = 0, J = 3/2,5/2 excited states exhibit significant left--right asymmetry. The experimental CD angular distributions are found to be well described by the general theoretical framework recently developed by Dubs, Dixit, and McKoy and are in good qualitative agreement with their calculated REMPI--CD distributions.

  5. Observation of circular dichroism in photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Appling, Jeffrey R.; White, Michael G.; Orlando, Thomas M.; Anderson, Scott L.

    1986-12-01

    The first observations of dichroic effects in photoelectron angular distributions are reported for photoionization of aligned molecular excited states with circularly polarized light. Photoelectron angular distributions resulting from the two-color, (2+1) REMPI of NO via the A 2∑+, v=0, J=3/2,5/2 excited states exhibit significant left-right asymmetry. The experimental CD angular distributions are found to be well described by the general theoretical framework recently developed by Dubs, Dixit, and McKoy and are in good qualitative agreement with their calculated REMPI-CD distributions.

  6. Evidence for intramolecular OH⋯π hydrogen bonding in unsaturated alcohols from UV photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kowski, Klaus; Lüttke, Wolfgang; Rademacher, Paul

    2001-06-01

    The gas phase He(I) photoelectron (PE) spectra of several unsaturated alcohols (1-11) have been measured and analysed with respect to intramolecular OH⋯π hydrogen bonding. Evidence for such a hydrogen bond has been detected in the spectra of 2-allylphenol (1) and 2-phenylethan-1-ol (3). 1 exists as a conformational mixture of a hydrogen bonded form 1a and an open form 1b in a composition of roughly 2:1. A strong ionization band (IPv=10.01 eV; where IPv is the vertical ionization potential) is assigned to the ethylenic Cdbnd C double bond in the major conformer (1a) and a weak band (IPv=9.72 eV) to that of the minor conformer (1b). The latter IP coincides with the corresponding ionization of allylbenzene. In the series of ω-phenylalkan-1-ols, compound 3 exhibits an unusually low nπ(O) ionization indicating hydrogen bonding between the OH group and the π electron system of the phenyl ring. The higher homologs 4 and 5 prefer 'open' conformations without such interaction. The PE spectra of alkenols such as but-3-en-1-ol (7) and pent-4-en-1-ol (8) as well as of alkynols such as but-3-yn-1-ol (10) and pent-4-yn-1-ol (11) are consistent with OH⋯π hydrogen bonded conformers. The methanol/ethylene hetero-dimer has a T-shaped structure, as indicated by B3LYP/6-311++G(d) calculations, with a binding energy of 5.65 kJ mol-1.

  7. Fluorine Kα X-Ray Emission Spectra of MgF2, CaF2, SrF2 and BaF2

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara; Konishi, Wataru; Shoji, Shizuko; Kojima, Shinjiro

    1990-11-01

    The fluorine Kα emission spectra in fluorescence from a series of alkaline-earth fluorides MF2 (M=Mg, Ca, Sr and Ba) are measured with a high-resolution two-crystal vacuum spectrometer. An anomalously low intensity of the K1L1 satellite peak arising from 1s-1(2s2p)-1 initial states is observed for SrF2. The measured emission spectra are presented along with the UPS spectra of the F- 2p valence bands obtained by Poole et al. and the fluorine K absorption-edge spectra by Oizumi et al. By using these spectra, the first peak or shoulder in the fluorine K absorption-edge spectra is identified as being due to a core exciton which is formed below the bottom of the conduction band. The binding energy of the exciton is estimated to be 1.3(± 0.3), 1.1(± 0.2), 1.0(± 0.2) and 1.7(± 0.2) eV for MgF2, CaF2, SrF2 and BaF2, respectively.

  8. Itsy bitsy spider?: Valence and self-relevance predict size estimation.

    PubMed

    Leibovich, Tali; Cohen, Noga; Henik, Avishai

    2016-12-01

    The current study explored the role of valence and self-relevance in size estimation of neutral and aversive animals. In Experiment 1, participants who were highly fearful of spiders and participants with low fear of spiders rated the size and unpleasantness of spiders and other neutral animals (birds and butterflies). We found that although individuals with both high and low fear of spiders rated spiders as highly unpleasant, only the highly fearful participants rated spiders as larger than butterflies. Experiment 2 included additional pictures of wasps (not self-relevant, but unpleasant) and beetles. The results of this experiment replicated those of Experiment 1 and showed a similar bias in size estimation for beetles, but not for wasps. Mediation analysis revealed that in the high-fear group both relevance and valence influenced perceived size, whereas in the low-fear group only valence affected perceived size. These findings suggest that the effect of highly relevant stimuli on size perception is both direct and mediated by valence. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Particle Simulations of the Guard Electrode Effects on the Photoelectron Distribution Around an Electric Field Sensor

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.; Kojima, H.

    2010-12-01

    In tenuous space plasma environment, photoelectrons emitted due to solar illumination produce a high-density photoelectron cloud localized in the vicinity of a spacecraft body and an electric field sensor. The photoelectron current emitted from the sensor has also received considerable attention because it becomes a primary factor in determining floating potentials of the sunlit spacecraft and sensor bodies. Considering the fact that asymmetric photoelectron distribution between sunlit and sunless sides of the spacecraft occasionally causes a spurious sunward electric field, we require quantitative evaluation of the photoelectron distribution around the spacecraft and its influence on electric field measurements by means of a numerical approach. In the current study, we applied the Particle-in-Cell plasma simulation to the analysis of the photoelectron environment around spacecraft. By using the PIC modeling, we can self-consistently consider the plasma kinetics. This enables us to simulate the formation of the photoelectron cloud as well as the spacecraft and sensor charging in a self-consistent manner. We report the progress of an analysis on photoelectron environment around MEFISTO, which is an electric field instrument for the BepiColombo/MMO spacecraft to Mercury’s magnetosphere. The photoelectron guard electrode is a key technology for ensuring an optimum photoelectron environment. We show some simulation results on the guard electrode effects on surrounding photoelectrons and discuss a guard operation condition for producing the optimum photoelectron environment. We also deal with another important issue, that is, how the guard electrode can mitigate an undesirable influence of an asymmetric photoelectron distribution on electric field measurements.

  10. Norbornane: An investigation into its valence electronic structure using electron momentum spectroscopy, and density functional and Green's function theories

    NASA Astrophysics Data System (ADS)

    Knippenberg, S.; Nixon, K. L.; Brunger, M. J.; Maddern, T.; Campbell, L.; Trout, N.; Wang, F.; Newell, W. R.; Deleuze, M. S.; Francois, J.-P.; Winkler, D. A.

    2004-12-01

    We report on the results of an exhaustive study of the valence electronic structure of norbornane (C7H12), up to binding energies of 29 eV. Experimental electron momentum spectroscopy and theoretical Green's function and density functional theory approaches were all utilized in this investigation. A stringent comparison between the electron momentum spectroscopy and theoretical orbital momentum distributions found that, among all the tested models, the combination of the Becke-Perdew functional and a polarized valence basis set of triple-ζ quality provides the best representation of the electron momentum distributions for all of the 20 valence orbitals of norbornane. This experimentally validated quantum chemistry model was then used to extract some chemically important properties of norbornane. When these calculated properties are compared to corresponding results from other independent measurements, generally good agreement is found. Green's function calculations with the aid of the third-order algebraic diagrammatic construction scheme indicate that the orbital picture of ionization breaks down at binding energies larger than 22.5 eV. Despite this complication, they enable insights within 0.2 eV accuracy into the available ultraviolet photoemission and newly presented (e,2e) ionization spectra, except for the band associated with the 1a2-1 one-hole state, which is probably subject to rather significant vibronic coupling effects, and a band at ˜25 eV characterized by a momentum distribution of "s-type" symmetry, which Green's function calculations fail to reproduce. We note the vicinity of the vertical double ionization threshold at ˜26 eV.

  11. Vanadium, sulfur, and iron valences in melt inclusions as a window into magmatic processes: A case study at Nyamuragira volcano, Africa

    NASA Astrophysics Data System (ADS)

    Head, Elisabet; Lanzirotti, Antonio; Newville, Matthew; Sutton, Stephen

    2018-04-01

    This study describes microscale sulfur (S), vanadium (V), and iron (Fe) K-edge X-ray absorption near edge structure (μ-XANES) spectroscopy measurements on olivine-hosted melt inclusions (MI) preserved in tephras (1986 and 2006) and lavas (1938 and 1948) erupted from Nyamuragira volcano (D.R. Congo, Africa). The S, V, and Fe spectroscopic data are used to constrain the evolution of oxygen fugacity (fO2) and sulfur speciation for the entrapped melts. Melt inclusions from lavas show evidence of post-entrapment crystallization and were thus reheated prior to μ-XANES analysis. The MI from tephra show no evidence of post-entrapment crystallization and were, therefore, not reheated. Sulfur, V, and Fe μ-XANES results from 1938, 1948, and 2006 eruptive materials are all similar within analytical uncertainty and provide similar average calculated melt fO2's based on XANES oxybarometry. However, olivine-hosted MI from the 1986 tephras yield significantly different S, V, and Fe XANES spectra when compared to MI from the other eruptions, with disagreement between calculated fO2's from the three valence state oxybarometers beyond the uncertainty of the calibration models. Their V μ-XANES spectra are also significantly more ordered and yield more reduced average V valence. The S μ-XANES spectra display a significantly more intense low-energy spectral resonance, which indicates differences in Fe-S bonding character, and greater variability in their measured sulfate content. These V and S spectroscopic features are best explained by crystallization of sub-micrometer magnetite and sulfide crystallites within the 1986 inclusions. The sensitivity of XANES spectroscopy to short-range order allows these crystallites to be recognized even though they are not easily detected by imaging analysis. This shows that V and S μ-XANES are potentially highly sensitive tools for identifying the presence of volumetrically minor amounts of spinel and sulfide within inclusions extracted from

  12. Assignment of the photoelectron spectrum of the nitrate anion NO3- and vibronic interactions in the nitrate free radical

    NASA Astrophysics Data System (ADS)

    Hirota, Eizi

    2018-01-01

    The unpaired electron orbital of NO3 is of a2‧ symmetry in the ground electronic state, and thus its motion about the symmetry axis of the molecule is free rotation. When a degenerate vibration is excited, however, the free azimuthal rotation of the unpaired electron is perturbed much by nuclear motions of the degenerate mode, as evidenced by high-resolution spectroscopic studies. Thus the ν4 fundamental state, for example, bears some characters of the B ˜ excited electronic state through the Herzberg-Teller (H-T) interaction, and Neumark et al. explained anomalous ν4 progression in the photoelectron spectra of the NO3- anion by the H-T mechanism. However, the interaction parameter Neumark required was too large to reproduce the ν4 molecular parameters in the ground electronic state precisely determined by high-resolution IR spectroscopy. This discrepancy was resolved by the fact that the upper ν4 overtone/combination states of Neumark's photoelectron transitions were primarily of vibrational in nature. The present study thus showed that NO3 bears both vibrational and H-T induced electronic characters in excited states of degenerate modes in the ground electronic state.

  13. Electronic structures of AlMoO(y)(-) (y = 1-4) determined by photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Waller, Sarah E; Mann, Jennifer E; Hossain, Ekram; Troyer, Mary; Jarrold, Caroline C

    2012-07-14

    Vibrationally-resolved photoelectron spectra of AlMoO(y)(-) (y = 1-4) are presented and analyzed in conjunction with density functional theory computational results. The structures determined for the AlMoO(y) anion and neutral clusters suggest ionic bonding between Al(+) and a MoO(y)(-) or MoO(y)(-2) moiety, and point to the relative stability of Mo=O versus Al=O bonds. The highest occupied and partially occupied orbitals in the anions and neutrals can be described as Mo atomic-like orbitals, so while the Mo is in a higher oxidation state than Al, the most energetically accessible electrons are localized on the molybdenum center.

  14. Angular distribution of photoelectrons at 584A using polarized radiation

    NASA Technical Reports Server (NTRS)

    Hancock, W. H.; Samson, J. A. R.

    1975-01-01

    Photoelectron angular distributions for Ar, Xe, N2, O2, CO, CO2, and NH3 were obtained at 584 A by observing the photoelectrons at a fixed angle and simply rotating the plane of polarization of a highly polarized photon source. The radiation from a helium dc glow discharge source was polarized (84%) using a reflection type polarizer.

  15. Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Craft, H. S.; Collazo, R.; Losego, M. D.; Mita, S.; Sitar, Z.; Maria, J.-P.

    2007-10-01

    MgO is a proposed dielectric for use as a tunneling barrier in devices integrating GaN and ferroelectric oxides. In this study, we present data regarding the growth mode and band offsets of MgO grown epitaxially on GaN (0002) surfaces using molecular beam epitaxy. Using in situ x-ray photoelectron spectroscopy (XPS) and molecular beam epitaxy, we determine, from sequential growth experiments, that the growth of MgO proceeds via the Volmer-Weber (three-dimensional) mode, and full coalescence of the film does not occur until approximately 12nm of MgO has been deposited. The observation of a three-dimensional growth mode is in agreement with previously published data. For the valence band offset, we find a value of 1.2±0.2eV, which corresponds to a 3.2eV conduction band offset. XPS measurements suggest a chemically abrupt interface and no effect on band lineup due to the slow coalescence behavior.

  16. Inelastic collisions of positrons with one-valence-electron targets

    NASA Technical Reports Server (NTRS)

    Abdel-Raouf, Mohamed Assad

    1990-01-01

    The total elastic and positronium formation cross sections of the inelastic collisions between positrons and various one-valence-electron atoms, (namely hydrogen, lithium, sodium, potassium and rubidium), and one-valence-electron ions, (namely hydrogen-like, lithium-like and alkaline-earth positive ions) are determined using an elaborate modified coupled-static approximation. Special attention is devoted to the behavior of the Ps cross sections at the energy regions lying above the Ps formation thresholds.

  17. Negatively valenced expectancy violation predicts emotionality: A longitudinal analysis.

    PubMed

    Bettencourt, B Ann; Manning, Mark

    2016-09-01

    We hypothesized that negatively valenced expectancy violations about the quality of 1's life would predict negative emotionality. We tested this hypothesis in a 4-wave longitudinal study of breast cancer survivors. The findings showed that higher levels of negatively valenced expectancy violation, at earlier time points, were associated with greater negative emotionality, at later time points. Implications of the findings are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Rotationally resolved state-to-state photoionization and the photoelectron study of vanadium monocarbide and its cations (VC/VC(+)).

    PubMed

    Chang, Yih Chung; Luo, Zhihong; Pan, Yi; Zhang, Zheng; Song, Ying-Nan; Kuang, Sophie Yajin; Yin, Qing Zhu; Lau, Kai-Chung; Ng, C Y

    2015-04-21

    By employing two-color visible (VIS)-ultraviolet (UV) laser photoionization and pulsed field ionization-photoelectron (PFI-PE) techniques, we have obtained highly rotationally resolved photoelectron spectra for vanadium monocarbide cations (VC(+)). The state-to-state VIS-UV-PFI-PE spectra thus obtained allow unambiguous assignments for the photoionization rotational transitions, resulting in a highly precise value for the adiabatic ionization energy (IE) of vanadium monocarbide (VC), IE(VC) = 57512.0 ± 0.8 cm(-1) (7.13058 ± 0.00010 eV), which is defined as the energy of the VC(+)(X(3)Δ1; v(+) = 0; J(+) = 1) ← VC(X(2)Δ3/2; v'' = 0; J'' = 3/2) photoionization transition. The spectroscopic constants for VC(+)(X(3)Δ1) determined in the present study include the harmonic vibrational frequency ωe(+) = 896.4 ± 0.8 cm(-1), the anharmonicity constant ωe(+)xe(+) = 5.7 ± 0.8 cm(-1), the rotational constants Be(+) = 0.6338 ± 0.0025 cm(-1) and αe(+) = 0.0033 ± 0.0007 cm(-1), the equilibrium bond length re(+) = 1.6549 ± 0.0003 Å, and the spin-orbit coupling constant A = 75.2 ± 0.8 cm(-1) for VC(+)(X(3)Δ1,2,3). These highly precise energetic and spectroscopic data are used to benchmark state-of-the-art CCSDTQ/CBS calculations. In general, good agreement is found between the theoretical predictions and experimental results. The theoretical calculations yield the values, IE(VC) = 7.126 eV; the 0 K bond dissociation energies: D0(V-C) = 4.023 eV and D0(V(+)-C) = 3.663 eV; and heats of formation: ΔH°(f0)(VC) = 835.2, ΔH°(f298)(VC) = 840.4, ΔH°(f0)(VC(+)) = 1522.8, and ΔH°(f298)(VC(+)) = 1528.0 kJ mol(-1).

  19. The Ar-NO van der Waals complex studied by resonant multiphoton ionization spectroscopy involving photoion and photoelectron measurements

    NASA Astrophysics Data System (ADS)

    Sato, Kenji; Achiba, Yohji; Kimura, Katsumi

    1984-07-01

    Using a 5% mixture of NO in Ar in a supersonic free jet, in the present work we have carried out measurements of the total ion current in the 380-385 nm laser wavelength region. We have also measured photoelectron kinetic energy spectra at individual ion current peaks. In the ion-current spectrum we have observed a new vibrational progression which consists of four peaks in the wavelength region longer than the peak of the two-photon transition of the free NO molecule NO(X, v″=0) →2hν NO(C,v'=0). It has been concluded that the new ion-current peaks are attributed to bound-to-bound transitions of the Ar-NO van der Waals complex from its ground state to the two-photon resonant state expressed by Ar-NO*(C 2Π, v'=0), in which the NO component is in the 3p Rydberg state. The whole resonant ionization process studied may be expressed by Ar-NO(X, v″=0) →2hνAr-NO*(C, v'=0) →hν Ar-NO+(X, v+=0). Each ion-current peak separation is about 50 cm-1, which may correspond to the frequency of the Ar-NO intermolecular stretching vibration, showing a strong anharmonicity. The dissociation energy (D0) of the Ar-NO*(C 2Π) state has been found to be 0.055±0.001 eV. From the photoelectron spectra, we also conclude that the adiabatic ionization energy of Ar-NO is Ia =9.148±0.005 eV and the dissociation energy of the Ar-NO+(X 1Σ) ion is D0=0.129±0.005 eV.

  20. Electronic structures of WAlO(y) and WAlO(y)(-) (y = 2-4) determined by anion photoelectron spectroscopy and density functional theory calculations.

    PubMed

    Mann, Jennifer E; Waller, Sarah E; Jarrold, Caroline Chick

    2012-07-28

    The anion photoelectron spectra of WAlO(y)(-) (y = 2-4) are presented and assigned based on results of density functional theory calculations. The WAlO(2)(-) and WAlO(3)(-) spectra are both broad, with partially resolved vibrational structure. In contrast, the WAlO(4)(-) spectrum features well-resolved vibrational structure with contributions from three modes. There is reasonable agreement between experiment and theory for all oxides, and calculations are in particular validated by the near perfect agreement between the WAlO(4)(-) photoelectron spectrum and a Franck-Condon simulation based on computationally determined spectroscopic parameters. The structures determined from this study suggest strong preferential W-O bond formation, and ionic bonding between Al(+) and WO(y)(-2) for all anions. Neutral species are similarly ionic, with WAlO(2) and WAlO(3) having electronic structure that suggests Al(+) ionically bound to WO(y)(-) and WAlO(4) being described as Al(+2) ionically bound to WO(4)(-2). The doubly-occupied 3sp hybrid orbital localized on the Al center is energetically situated between the bonding O-local molecular orbitals and the anti- or non-bonding W-local molecular orbitals. The structures determined in this study are very similar to structures recently determined for the analogous MoAlO(y)(-)/MoAlO(y) cluster series, with subtle differences found in the electronic structures [S. E. Waller, J. E. Mann, E. Hossain, M. Troyer, and C. C. Jarrold, J. Chem. Phys. 137, 024302 (2012)].

  1. Modeling Optical Spectra of Large Organic Systems Using Real-Time Propagation of Semiempirical Effective Hamiltonians.

    PubMed

    Ghosh, Soumen; Andersen, Amity; Gagliardi, Laura; Cramer, Christopher J; Govind, Niranjan

    2017-09-12

    We present an implementation of a time-dependent semiempirical method (INDO/S) in NWChem using real-time (RT) propagation to address, in principle, the entire spectrum of valence electronic excitations. Adopting this model, we study the UV/vis spectra of medium-sized systems such as P3B2 and f-coronene, and in addition much larger systems such as ubiquitin in the gas phase and the betanin chromophore in the presence of two explicit solvents (water and methanol). RT-INDO/S provides qualitatively and often quantitatively accurate results when compared with RT- TDDFT or experimental spectra. Even though we only consider the INDO/S Hamiltonian in this work, our implementation provides a framework for performing electron dynamics in large systems using semiempirical Hartree-Fock Hamiltonians in general.

  2. Modeling Optical Spectra of Large Organic Systems Using Real-Time Propagation of Semiempirical Effective Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Soumen; Andersen, Amity; Gagliardi, Laura

    2017-08-16

    We present an implementation of a time-dependent semiempirical method (INDO/S) in NWChem using real-time (RT) propagation to address, in principle, the entire spectrum of valence electronic excitations. Adopting this model, we study the UV-visible spectra of medium-sized systems like P3B2, f-coronene, and in addition much larger systems like ubiquitin in the gas phase and the betanin chromophore in the presence of two explicit solvents (water and methanol). RT-INDO/S provides qualitatively and indeed often quantitatively accurate results when compared with RT- TDDFT or experimental spectra. While demonstrated here for INDO/S in particular, our implementation provides a framework for performing electron dynamicsmore » in large systems using semiempirical Hartree-Fock (HF) Hamiltonians in general.« less

  3. The PhotoElectron Boundary as observed by MAVEN instruments

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Steckiewicz, M.; Mazelle, C. X.; Xu, S.; Mitchell, D. L.; Holmberg, M.; Halekas, J. S.; Andersson, L.; Brain, D.; Connerney, J. E. P.; Espley, J. R.; Lillis, R. J.; Luhmann, J. G.; Savaud, J. A.; Jakosky, B. M.

    2017-12-01

    Photoelectron peaks in the 20-30 eV energy range are commonly observed in planetary atmospheres (Earth, Mars, Titan...), produced by the intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons result from the ionization of CO2 and O atmospheric neutrals, and are known to escape the planet down its tail, making them tracers for the atmospheric escape (Frahm et al., 2006). Furthermore, their presence or absence allows us to define the so-called PhotoElectron Boundary (PEB), that separates the sunlit photoelectron-dominated ionosphere from the solar wind controlled environment, as initially observed by the Mars Global Surveyor (MGS) MAG/ER instrument (Mitchell et al. (2000, 2001). We provide here a detailed statistical analysis of the location and properties of the PEB based on the Mars Atmosphere and Volatile Evolution (MAVEN) mission electron and magnetic field data. Our dataset includes 1696 dayside PEB crossings obtained from September 2014 until May 2016 (the observations of escaping photoelectrons in the wake being not included). The PEB appears as mostly sensitive to the solar wind dynamic and crustal magnetic fields pressures, for which a quantitative dependance is derived and compared with two other important boundaries : the bow shock and magnetic pileup boundary. The PEB altitude is highly variable, leading to a variable wake cross section for escape (up to +- 50%), which is important for deriving global escape rates from in situ photoelectron escape rates. The PEB is not always sharp, and is, despite a strong variability, characterized on average by : a magnetic field topology typical for the edge of the Magnetic Pile Up Region above it, more field aligned fluxes above than below, and a clear change of the altitude dependence of both electron fluxes and total density (that appears different from the ionopause). The PEB thus appears as a transition region between two plasma and field configurations which is determined by the

  4. The Martian Photoelectron Boundary as Seen by MAVEN

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Steckiewicz, M.; Mazelle, C.; Xu, S.; Mitchell, D.; Holmberg, M. K. G.; Halekas, J. S.; Andersson, L.; Brain, D. A.; Connerney, J. E. P.; Espley, J. R.; Lillis, R. J.; Luhmann, J. G.; Sauvaud, J.-A.; Jakosky, B. M.

    2017-10-01

    Photoelectron peaks in the 20-30 eV energy range are commonly observed in the planetary atmospheres, produced by the intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons are known to escape the planet down its tail, making them tracers for the atmospheric escape. Furthermore, their presence or absence allow to define the so-called photoelectron boundary (PEB), which separates the photoelectron dominated ionosphere from the external environment. We provide here a detailed statistical analysis of the location and properties of the PEB based on the Mars Atmosphere and Volatile EvolutioN (MAVEN) electron and magnetic field data obtained from September 2014 to May 2016 (including 1696 PEB crossings). The PEB appears as mostly sensitive to the solar wind dynamic and crustal fields pressures. Its variable altitude thus leads to a variable wake cross section for escape (up to ˜+50%), which is important for deriving escape rates. The PEB is not always sharp and is characterized on average by the following: a magnetic field topology typical for the end of magnetic pileup region above it, more field-aligned fluxes above than below, and a clear change of the altitude slopes of both electron fluxes and total density (that appears different from the ionopause). The PEB thus appears as a transition region between two plasma and fields configurations determined by the draping topology of the interplanetary magnetic field around Mars and much influenced by the crustal field sources below, whose dynamics also impacts the estimated escape rate of ionospheric plasma.

  5. Valence-Specific Laterality Effects in Vocal Emotion: Interactions with Stimulus Type, Blocking and Sex

    ERIC Educational Resources Information Center

    Schepman, Astrid; Rodway, Paul; Geddes, Pauline

    2012-01-01

    Valence-specific laterality effects have been frequently obtained in facial emotion perception but not in vocal emotion perception. We report a dichotic listening study further examining whether valence-specific laterality effects generalise to vocal emotions. Based on previous literature, we tested whether valence-specific laterality effects were…

  6. Photoelectron Imaging Spectroscopy as a Window to Unexpected Molecules

    NASA Astrophysics Data System (ADS)

    Blackstone, Christopher C.

    2017-06-01

    Targeting an anion with the formula CH_{3}O_{3} for exploration with photoelectron imaging spectroscopy, we determine its identity to be dihydroxymethanolate, an anion largely absent in the literature, and the conjugate base of the hypothetical species orthoformic acid. Comparing the observed photoelectron spectrum to CCSD-EOM-IP and CCSD-EOM-SF calculations completed in QChem and Franck-Condon overlap simulations in PESCAL, we are able to determine with confidence the connectivity of the atoms in this molecule.

  7. The power of emotional valence-from cognitive to affective processes in reading.

    PubMed

    Altmann, Ulrike; Bohrn, Isabel C; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M

    2012-01-01

    The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.

  8. Determination of the radiation resistance order of high explosives by the two dimensional correlation X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Sui, Heliang; Hao, Xiaofei; Luo, Yiwei; Xu, Jinjiang; Zhong, Fachun; Xu, Ruijuan

    2017-09-01

    Two-dimensional X-ray photoelectron spectroscopy (2DXPS) was employed to obtain the radiation resistance order of high explosives. Mixed hexanitrohexaazaisowurtzitane (CL-20) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) were irradiated by X-ray radiation. The time-dependent N1s XPS spectra were collected. 2DXPS was used to analyze the variation of the binding energy peaks. The main degradation time of TATB was longer than that of CL-20. CL-20 changes occurred prior to that of TATB during radiation. These changes suggest that TATB exhibited higher radiation resistance property than CL-20. 2DXPS is a very useful method to distinguish the radiation resistance orders of materials.

  9. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering.

    PubMed

    Antonsson, E; Langer, B; Halfpap, I; Gottwald, J; Rühl, E

    2017-06-28

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO 2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO 2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  10. Photoelectrons in the Quiet Polar Wind

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Khazanov, G.; Liemohn, M.

    2017-01-01

    This study presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solution. The model combines the hydrodynamic Polar Wind Outflow Model (PWOM) with the kinetic SuperThermal Electron Transport (STET) code. The resulting PWOM-STET coupled model is described and then used to investigate the role of photoelectrons in the polar wind. We present polar wind results along single stationary field lines under dayside and nightside conditions, as well as the global solution reconstructed from nearly 1000 moving field lines. The model results show significant day-night asymmetries in the polar wind solution owing to the higher ionization and photoelectron fluxes on the dayside compared to the nightside. Field line motion is found to modify this dependence and create global structure by transporting field lines through different conditions of illumination and through the localized effects of Joule heating.

  11. Influence of emotional valence and arousal on the spread of activation in memory.

    PubMed

    Jhean-Larose, Sandra; Leveau, Nicolas; Denhière, Guy

    2014-11-01

    Controversy still persists on whether emotional valence and arousal influence cognitive activities. Our study sought to compare how these two factors foster the spread of activation within the semantic network. In a lexical decision task, prime words were varied depending on the valence (pleasant or unpleasant) or on the level of emotional arousal (high or low). Target words were carefully selected to avoid semantic priming effects, as well as to avoid arousing specific emotions (neutral). Three SOA durations (220, 420 and 720 ms) were applied across three independent groups. Results indicate that at 220 ms, the effect of arousal is significantly higher than the effect of valence in facilitating spreading activation while at 420 ms, the effect of valence is significantly higher than the effect of arousal in facilitating spreading activation. These findings suggest that affect is a sequential process involving the successive intervention of arousal and valence.

  12. Effects of Emotional Valence and Arousal on Recollective and Nonrecollective Recall

    ERIC Educational Resources Information Center

    Gomes, Carlos F. A.; Brainerd, Charles J.; Stein, Lilian M.

    2013-01-01

    The authors investigated the effects of valence and arousal on memory using a dual-process model that quantifies recollective and nonrecollective components of recall without relying on metacognitive judgments to separate them. The results showed that valenced words increased reconstruction (a component of nonrecollective retrieval) relative to…

  13. How much does emotional valence of action outcomes affect temporal binding?

    PubMed

    Moreton, Joshua; Callan, Mitchell J; Hughes, Gethin

    2017-03-01

    Temporal binding refers to the compression of the perceived time interval between voluntary actions and their sensory consequences. Research suggests that the emotional content of an action outcome can modulate the effects of temporal binding. We attempted to conceptually replicate these findings using a time interval estimation task and different emotionally-valenced action outcomes (Experiments 1 and 2) than used in previous research. Contrary to previous findings, we found no evidence that temporal binding was affected by the emotional valence of action outcomes. After validating our stimuli for equivalence of perceived emotional valence and arousal (Experiment 3), in Experiment 4 we directly replicated Yoshie and Haggard's (2013) original experiment using sound vocalizations as action outcomes and failed to detect a significant effect of emotion on temporal binding. These studies suggest that the emotional valence of action outcomes exerts little influence on temporal binding. The potential implications of these findings are discussed. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Molybdenum Valence in Basaltic Silicate Melts: Effects of Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Choi, Y.; Pando, K.

    2011-01-01

    The metal-silicate partitioning behavior of molybdenum has been used as a test for equilibrium core formation hypotheses [for example, 1-6]. However, current models that apply experimental data to equilibrium core-mantle differentiation infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Molybdenum, a multi-valent element with a valence transition near the fO2 of interest for core formation (approx.IW-2) will be sensitive to changes in fO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo(6+) can be either octahedrally or tetrahedrally coordinated. Here we present X-ray absorption near edge structure (XANES) measurements of Mo valence in basaltic run products at a range of P, T, and fO2 and further quantify the valence transition of Mo.

  15. Values, Valences, and Course Enrollment: Testing the Role of Personal Values within an Expectancy-Valence Framework.

    ERIC Educational Resources Information Center

    Feather, N. T.

    1988-01-01

    The enrollment decisions of 444 (183 male, 260 female, and 1 unspecified) university students at Flinders University (South Australia) were investigated. Results shed light on gender differences in achievement patterns in mathematics and English and in relation to assumptions about relations between expectations and valences. (TJH)

  16. Electronic structure and optical properties of Cs2HgI4: Experimental study and band-structure DFT calculations

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.

    2015-04-01

    High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.

  17. Reactive Force Fields via Explicit Valency

    NASA Astrophysics Data System (ADS)

    Kale, Seyit

    Computational simulations are invaluable in elucidating the dynamics of biological macromolecules. Unfortunately, reactions present a fundamental challenge. Calculations based on quantum mechanics can predict bond formation and rupture; however they suffer from severe length- and time-limitations. At the other extreme, classical approaches provide orders of magnitude faster simulations; however they regard chemical bonds as immutable entities. A few exceptions exist, but these are not always trivial to adopt for routine use. We bridge this gap by providing a novel, pseudo-classical approach, based on explicit valency. We unpack molecules into valence electron pairs and atomic cores. Particles bear ionic charges and interact via pairwise-only potentials. The potentials are informed of quantum effects in the short-range and obey dissociation limits in the long-range. They are trained against a small set of isolated species, including geometries and thermodynamics of small hydrides and of dimers formed by them. The resulting force field captures the essentials of reactivity, polarizability and flexibility in a simple, seamless setting. We call this model LEWIS, after the chemical theory that inspired the use of valence pairs. Following the introduction in Chapter 1, we initially focus on the properties of water. Chapter 2 considers gas phase clusters. To transition to the liquid phase, Chapter 3 describes a novel pairwise long-range compensation that performs comparably to infinite lattice summations. The approach is suited to ionic solutions in general. In Chapters 4 and 5, LEWIS is shown to correctly predict the dipolar and quadrupolar response in bulk liquid, and can accommodate proton transfers in both acid and base. Efficiency permits the study of proton defects at dilutions not accessible to experiment or quantum mechanics. Chapter 6 discusses explicit valency approaches in other hydrides, forming the basis of a reactive organic force field. Examples of simple

  18. Age-related emotional bias in processing two emotionally valenced tasks.

    PubMed

    Allen, Philip A; Lien, Mei-Ching; Jardin, Elliott

    2017-01-01

    Previous studies suggest that older adults process positive emotions more efficiently than negative emotions, whereas younger adults show the reverse effect. We examined whether this age-related difference in emotional bias still occurs when attention is engaged in two emotional tasks. We used a psychological refractory period paradigm and varied the emotional valence of Task 1 and Task 2. In both experiments, Task 1 was emotional face discrimination (happy vs. angry faces) and Task 2 was sound discrimination (laugh, punch, vs. cork pop in Experiment 1 and laugh vs. scream in Experiment 2). The backward emotional correspondence effect for positively and negatively valenced Task 2 on Task 1 was measured. In both experiments, younger adults showed a backward correspondence effect from a negatively valenced Task 2, suggesting parallel processing of negatively valenced stimuli. Older adults showed similar negativity bias in Experiment 2 with a more salient negative sound ("scream" relative to "punch"). These results are consistent with an arousal-bias competition model [Mather and Sutherland (Perspectives in Psychological Sciences 6:114-133, 2011)], suggesting that emotional arousal modulates top-down attentional control settings (emotional regulation) with age.

  19. Production, Thermalization and Transport of Photoelectrons in the Mars Environment

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Xu, S.; Mazelle, C. X.; Steckiewicz, M.; Luhmann, J. G.; Connerney, J. E. P.; Andersson, L.

    2016-12-01

    The Solar Wind Electron Analyzer (SWEA) on the MAVEN spacecraft provides a detailed look at the production, thermalization, and transport of photoelectrons in the Mars environment. The MAVEN orbit routinely samples altitudes down to 150 km over wide ranges of solar zenith angle, local time, longitude, latitude and altitude. The altitude range extends into the region of photochemical equilibrium. SWEA's nominal energy resolution of 17% (ΔE/E, FWHM) is insufficient to resolve the photoelectron peaks at 23 and 27 eV, which result from photoionization of CO2 and O by the intense He II line in the solar EUV spectrum. However, during some orbits the spacecraft charged to -18 V near periapsis, which shifted the He II photoelectron features to lower energies, thus allowing them to be resolved. During several week-long deep dip campaigns, the periapsis altitude was lowered to 120 km. Thermalization of primary photoelectrons is very rapid at this altitude, resulting in a residual population at 7 eV, where the cross section to interaction with CO2 has a minimum. At altitudes above the 200 km, collisions become negligible (mean free path > 100 km), and the motion of suprathermal electrons is controlled by the magnetic field. Electron energy-pitch angle distributions reveal transport of photoelectrons from the day to the night hemisphere on both closed crustal magnetic loops and on open lines that extend into the tail. Mapping of such open field lines reveals the regions of the tail with access to the day-side ionosphere, which provide a conduit for ion outflow and loss.

  20. Valency-Controlled Framework Nucleic Acid Signal Amplifiers.

    PubMed

    Liu, Qi; Ge, Zhilei; Mao, Xiuhai; Zhou, Guobao; Zuo, Xiaolei; Shen, Juwen; Shi, Jiye; Li, Jiang; Wang, Lihua; Chen, Xiaoqing; Fan, Chunhai

    2018-06-11

    Weak ligand-receptor recognition events are often amplified by recruiting multiple regulatory biomolecules to the action site in biological systems. However, signal amplification in in vitro biomimetic systems generally lack the spatiotemporal regulation in vivo. Herein we report a framework nucleic acid (FNA)-programmed strategy to develop valence-controlled signal amplifiers with high modularity for ultrasensitive biosensing. We demonstrated that the FNA-programmed signal amplifiers could recruit nucleic acids, proteins, and inorganic nanoparticles in a stoichiometric manner. The valence-controlled signal amplifier enhanced the quantification ability of electrochemical biosensors, and enabled ultrasensitive detection of tumor-relevant circulating free DNA (cfDNA) with sensitivity enhancement of 3-5 orders of magnitude and improved dynamic range. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.