Sample records for valence shell photoelectron

  1. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine

    NASA Astrophysics Data System (ADS)

    Holland, D. M. P.; Powis, I.; Trofimov, A. B.; Menzies, R. C.; Potts, A. W.; Karlsson, L.; Badsyuk, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J.

    2017-10-01

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the

  2. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine.

    PubMed

    Holland, D M P; Powis, I; Trofimov, A B; Menzies, R C; Potts, A W; Karlsson, L; Badsyuk, I L; Moskovskaya, T E; Gromov, E V; Schirmer, J

    2017-10-28

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σ N LP ) has been found to be different to that for the corresponding chlorine lone-pair (σ Cl LP ). For the σ N LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine π Cl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σ Cl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the

  3. Valence and inner-valence shell dissociative photoionization of CO in the 26-33 eV range. II. Molecular-frame and recoil-frame photoelectron angular distributions.

    PubMed

    Lebech, M; Houver, J C; Raseev, G; dos Santos, A S; Dowek, D; Lucchese, Robert R

    2012-03-07

    Experimental and theoretical results for molecular-frame photoemission are presented for inner-valence shell photoionization of the CO molecule induced by linearly and circularly polarized light. The experimental recoil frame photoelectron angular distributions (RFPADs) obtained from dissociative photoionization measurements where the velocities of the ionic fragment and photoelectron were detected in coincidence, are compared to RFPADs computed using the multichannel Schwinger configuration interaction method. The formalism for including a finite lifetime of the predissociative ion state is presented for the case of general elliptically polarized light, to obtain the RFPAD rather than the molecular frame photoelectron angular distribution (MFPAD), which would be obtained with the assumption of instantaneous dissociation. We have considered photoionization of CO for the photon energies of 26.0 eV, 29.5 eV, and 32.5 eV. A comparison of experimental and theoretical RFPADs allows us to identify the ionic states detected in the experimental studies. In addition to previously identified states, we found evidence for the 2 (2)Δ state with an ionization potential of 25.3 eV and (2)Σ(+) states with ionization potentials near 32.5 eV. A comparison of the experimental and theoretical RFPADs permits us to estimate predissociative lifetimes of 0.25-1 ps for some of the ion states. Consideration of the MFPADs of a series of (2)Π ion states indicates the importance of inter-channel coupling at low photoelectron kinetic energy and the limitations of a single-channel analysis based on the corresponding Dyson orbitals. © 2012 American Institute of Physics

  4. Photoelectron Diffraction from Valence States of Oriented Molecules

    NASA Astrophysics Data System (ADS)

    Krüger, Peter

    2018-06-01

    The angular distribution of photoelectrons emitted from valence states of oriented molecules is investigated. The principles underlying the angular pattern formation are explained in terms of photoelectron wave interference, caused by initial state delocalization and final state photoelectron scattering. Computational approaches to photoelectron spectroscopy from molecules are briefly reviewed. Here a combination of molecular orbital calculations for the initial state and multiple scattering theory for the photoelectron final state is used and applied to the 3σ and 4σ orbitals of nitrogen and the highest occupied molecular orbital of pentacene. Appreciable perpendicular emission and circular dichroism in angular distributions is found, two effects that cannot be described by the popular plane wave approximation to the photoelectron final state.

  5. Study of average valence and valence electron distribution of several oxides using X-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Ding, L. L.; Wu, L. Q.; Ge, X. S.; Du, Y. N.; Qian, J. J.; Tang, G. D.; Zhong, W.

    2018-06-01

    X-ray photoelectron spectra of the O 1s electrons of MnFe2O4, ZnFe2O4, ZnO, and CaO were used to estimate the average valence, ValO, of the oxygen anions in these samples. The absolute values of ValO for these samples were found to be distinctly lower than the traditional value of 2.0, suggesting that the total average valences of the cations are also lower than the conventionally accepted values owing to valence balance in the compounds. In addition, we analyzed the valence band spectra of the samples and investigated the distribution characteristics of the valence electrons.

  6. Teaching Valence Shell Electron Pair Repulsion (VSEPR) Theory

    ERIC Educational Resources Information Center

    Talbot, Christopher; Neo, Choo Tong

    2013-01-01

    This "Science Note" looks at the way that the shapes of simple molecules can be explained in terms of the number of electron pairs in the valence shell of the central atom. This theory is formally known as valence shell electron pair repulsion (VSEPR) theory. The article explains the preferred shape of chlorine trifluoride (ClF3),…

  7. Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography

    NASA Astrophysics Data System (ADS)

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang

    2018-03-01

    Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H2+ , the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.

  8. Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography.

    PubMed

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang

    2018-03-30

    Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H_{2}^{+}, the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.

  9. Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom

    NASA Astrophysics Data System (ADS)

    Brauße, Felix; Goldsztejn, Gildas; Amini, Kasra; Boll, Rebecca; Bari, Sadia; Bomme, Cédric; Brouard, Mark; Burt, Michael; de Miranda, Barbara Cunha; Düsterer, Stefan; Erk, Benjamin; Géléoc, Marie; Geneaux, Romain; Gentleman, Alexander S.; Guillemin, Renaud; Ismail, Iyas; Johnsson, Per; Journel, Loïc; Kierspel, Thomas; Köckert, Hansjochen; Küpper, Jochen; Lablanquie, Pascal; Lahl, Jan; Lee, Jason W. L.; Mackenzie, Stuart R.; Maclot, Sylvain; Manschwetus, Bastian; Mereshchenko, Andrey S.; Mullins, Terence; Olshin, Pavel K.; Palaudoux, Jérôme; Patchkovskii, Serguei; Penent, Francis; Piancastelli, Maria Novella; Rompotis, Dimitrios; Ruchon, Thierry; Rudenko, Artem; Savelyev, Evgeny; Schirmel, Nora; Techert, Simone; Travnikova, Oksana; Trippel, Sebastian; Underwood, Jonathan G.; Vallance, Claire; Wiese, Joss; Simon, Marc; Holland, David M. P.; Marchenko, Tatiana; Rouzée, Arnaud; Rolles, Daniel

    2018-04-01

    Due to its element and site specificity, inner-shell photoelectron spectroscopy is a widely used technique to probe the chemical structure of matter. Here, we show that time-resolved inner-shell photoelectron spectroscopy can be employed to observe ultrafast chemical reactions and the electronic response to the nuclear motion with high sensitivity. The ultraviolet dissociation of iodomethane (CH3I ) is investigated by ionization above the iodine 4 d edge, using time-resolved inner-shell photoelectron and photoion spectroscopy. The dynamics observed in the photoelectron spectra appear earlier and are faster than those seen in the iodine fragments. The experimental results are interpreted using crystal-field and spin-orbit configuration interaction calculations, and demonstrate that time-resolved inner-shell photoelectron spectroscopy is a powerful tool to directly track ultrafast structural and electronic transformations in gas-phase molecules.

  10. Valence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kindsmüller, A.; Schmitz, C.; Wiemann, C.; Skaja, K.; Wouters, D. J.; Waser, R.; Schneider, C. M.; Dittmann, R.

    2018-04-01

    The switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum.

  11. Chiral signatures in angle-resolved valence photoelectron spectroscopy of pure glycidol enantiomers.

    PubMed

    Garcia, Gustavo A; Nahon, Laurent; Harding, Chris J; Powis, Ivan

    2008-03-28

    Photoionization of the chiral molecule glycidol has been investigated in the valence region. Photoelectron circular dichroism (PECD) curves have been obtained at various photon energies by using circularly polarized VUV synchrotron radiation and a velocity map imaging technique to record angle-resolved photoelectron spectra (PES). The measured chiral asymmetries vary dramatically with the photon energy as well as with the ionized orbital, improving the effective orbital resolution of the PECD spectrum with respect to the PES. Typical asymmetry factors of 5% are observed, but the peak values measured range up to 15%. The experimental results are interpreted by continuum multiple scattering (CMS-Xalpha) calculations for several thermally accessible glycidol conformers. We find that a nearly quantitative agreement between theory and experiments can be achieved for the ionization of several molecular orbitals. Owing to the sensitivity of PECD to molecular conformation this allows us to identify the dominant conformer. The influence of intramolecular hydrogen bond orbital polarization is found to play a small yet significant role in determining the chiral asymmetry in the electron angular distributions.

  12. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy.

    PubMed

    Wei, Wei; Qin, Zhixin; Fan, Shunfei; Li, Zhiwei; Shi, Kai; Zhu, Qinsheng; Zhang, Guoyi

    2012-10-10

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV.

  13. Correlation of molecular valence- and K-shell photoionization resonances with bond lengths

    NASA Technical Reports Server (NTRS)

    Sheehy, J. A.; Gil, T. J.; Winstead, C. L.; Farren, R. E.; Langhoff, P. W.

    1989-01-01

    The relationship between the interatomic distance and the positions of valence-shell and K-shell sigma(asterisk) photoionization resonances is investigated theoretically for the molecules C2, F2, N2, O2, CO, NO, C2H2, C2H4, C2H6, HCN, H2CO, N20, CO2, and C2N2. The results of molecular-orbital computations are presented in three-dimensional diagrams, which are shown to be similar to the wave functions of a particle in a cylindrical well, confirming the validity of free-electron molecular-orbital (FEMO) approximations for modeling the potential along the symmetry axis. FEMO orbital energies and resonance positions are found to be in good agreement with previous theoretical and experimental results. Also included is a Feshbach-Fano analysis of the relevance of virtual-valence orbitals to the appearance of single-channel resonances in molecular photoionization cross sections.

  14. Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy

    PubMed Central

    2012-01-01

    A sample of the β-Ga2O3/wurtzite GaN heterostructure has been grown by dry thermal oxidation of GaN on a sapphire substrate. X-ray diffraction measurements show that the β-Ga2O3 layer was formed epitaxially on GaN. The valence band offset of the β-Ga2O3/wurtzite GaN heterostructure is measured by X-ray photoelectron spectroscopy. It is demonstrated that the valence band of the β-Ga2O3/GaN structure is 1.40 ± 0.08 eV. PMID:23046910

  15. Valence and L-shell photoionization of Cl-like argon using R-matrix techniques

    NASA Astrophysics Data System (ADS)

    Tyndall, N. B.; Ramsbottom, C. A.; Ballance, C. P.; Hibbert, A.

    2016-02-01

    Photoionization cross-sections are obtained using the relativistic Dirac Atomic R-matrix Codes (DARC) for all valence and L-shell energy ranges between 27 and 270 eV. A total of 557 levels arising from the dominant configurations 3s23p4, 3s3p5, 3p6, 3s23p3[3d, 4s, 4p], 3p53d, 3s23p23d2, 3s3p43d, 3s3p33d2 and 2s22p53s23p5 have been included in the target wavefunction representation of the Ar III ion, including up to 4p in the orbital basis. We also performed a smaller Breit-Pauli (BP) calculation containing the lowest 124 levels. Direct comparisons are made with previous theoretical and experimental work for both valence shell and L-shell photoionization. Excellent agreement was found for transitions involving the 2Po initial state to all allowed final states for both calculations across a range of photon energies. A number of resonant states have been identified to help analyse and explain the nature of the spectra at photon energies between 250 and 270 eV.

  16. Oscillator strengths and integral cross sections for the valence-shell excitations of nitric oxide studied by fast electron impact.

    PubMed

    Xu, Xin; Xu, Long-Quan; Xiong, Tao; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-01-28

    The generalized oscillator strengths for the valence-shell excitations of A 2 Σ + , C 2 Π, and D 2 Σ + electronic-states of nitric oxide have been determined at an incident electron energy of 1500 eV with an energy resolution of 70 meV. The optical oscillator strengths for these transitions have been obtained by extrapolating the generalized oscillator strengths to the limit that the squared momentum transfer approaches to zero, which give an independent cross-check to the previous experimental and theoretical results. The integral cross sections for the valence-shell excitations of nitric oxide have been determined systematically from the threshold to 2500 eV with the aid of the newly developed BE-scaling method for the first time. The present optical oscillator strengths and integral cross sections of the valence-shell excitations of nitric oxide play an important role in understanding many physics and chemistry of the Earth's upper atmosphere such as the radiative cooling, ozone destruction, day glow, aurora, and so on.

  17. Photoelectron Spectroscopy of Substituted Phenylnitrenes

    NASA Astrophysics Data System (ADS)

    Wijeratne, Neloni R.; Da Fonte, Maria; Wenthold, Paul G.

    2009-06-01

    Nitrenes are unusual molecular structures with unfilled electronic valences that are isoelectronic with carbenes. Although, both can be generated by either thermal or photochemical decomposition of appropriate precursors they usually exhibit different reactivities. In this work, we carry out spectroscopic studies of substituted phenylnitrene to determine how the introduction of substituents will affect the reactivity and its thermochemical properties. All studies were carried out by using the newly constructed time-of-flight negative ion photoelectron spectrometer (NIPES) at Purdue University. The 355 nm photoelectron spectra of the o-, m-, and p-chlorophenyl nitrene anions are fairly similar to that measured for phenylnitrene anion. All spectra show low energy triplet state and a high energy singlet state. The singlet state for the meta isomer is well-resolved, with a well defined origin and observable vibrational structure. Whereas the singlet states for the ortho and para isomers have lower energy onsets and no resolved structure. The isomeric dependence suggests that the geometry differences result from the resonance interaction between the nitrogen and the substituent. Quinoidal resonance structures are possible for the open-shell singlet states of the o- and p-chlorinated phenyl nitrenes. The advantages of this type of electronic structures for the open-shell singlet states is that the unpaired electrons can be more localized on separate atoms in the molecules, minimizing the repulsion between. Because the meta position is not in resonance with the nitrenes, substitution at that position should not affect the structure of the open-shell singlet state. The measured electron affinities (EA) of the triplet phenylnitrenes are in excellent agreement with the values predicted by electronic structure calculations. The largest EA, 1.82 eV is found for the meta isomer, with para being the smallest, 1.70 eV.

  18. Photoelectron spectrum of valence anions of uracil and first-principles calculations of excess electron binding energies.

    PubMed

    Bachorz, Rafał A; Klopper, Wim; Gutowski, Maciej; Li, Xiang; Bowen, Kit H

    2008-08-07

    The photoelectron spectrum (PES) of the uracil anion is reported and discussed from the perspective of quantum chemical calculations of the vertical detachment energies (VDEs) of the anions of various tautomers of uracil. The PES peak maximum is found at an electron binding energy of 2.4 eV, and the width of the main feature suggests that the parent anions are in a valence rather than a dipole-bound state. The canonical tautomer as well as four tautomers that result from proton transfer from an NH group to a C atom were investigated computationally. At the Hartree-Fock and second-order Moller-Plesset perturbation theory levels, the adiabatic electron affinity (AEA) and the VDE have been converged to the limit of a complete basis set to within +/-1 meV. Post-MP2 electron-correlation effects have been determined at the coupled-cluster level of theory including single, double, and noniterative triple excitations. The quantum chemical calculations suggest that the most stable valence anion of uracil is the anion of a tautomer that results from a proton transfer from N1H to C5. It is characterized by an AEA of 135 meV and a VDE of 1.38 eV. The peak maximum is as much as 1 eV larger, however, and the photoelectron intensity is only very weak at 1.38 eV. The PES does not lend support either to the valence anion of the canonical tautomer, which is the second most stable anion, and whose VDE is computed at about 0.60 eV. Agreement between the peak maximum and the computed VDE is only found for the third most stable tautomer, which shows an AEA of approximately -0.1 eV and a VDE of 2.58 eV. This tautomer results from a proton transfer from N3H to C5. The results illustrate that the characteristics of biomolecular anions are highly dependent on their tautomeric form. If indeed the third most stable anion is observed in the experiment, then it remains an open question why and how this species is formed under the given conditions.

  19. Transition-Metal Nitride Core@Noble-Metal Shell Nanoparticles as Highly CO Tolerant Catalysts

    DOE PAGES

    Garg, Aaron; Milina, Maria; Ball, Madelyn; ...

    2017-05-25

    Core–shell architectures offer an effective way to tune and enhance the properties of noble-metal catalysts. Herein, we demonstrate the synthesis of Pt shell on titanium tungsten nitride core nanoparticles (Pt/TiWN) by high temperature ammonia nitridation of a parent core–shell carbide material (Pt/TiWC). X-ray photoelectron spectroscopy revealed significant core-level shifts for Pt shells supported on TiWN cores, corresponding to increased stabilization of the Pt valence d-states. The modulation of the electronic structure of the Pt shell by the nitride core translated into enhanced CO tolerance during hydrogen electrooxidation in the presence of CO. In conclusion, the ability to control shell coveragemore » and vary the heterometallic composition of the shell and nitride core opens up attractive opportunities to synthesize a broad range of new materials with tunable catalytic properties.« less

  20. Transition-Metal Nitride Core@Noble-Metal Shell Nanoparticles as Highly CO Tolerant Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Aaron; Milina, Maria; Ball, Madelyn

    Core–shell architectures offer an effective way to tune and enhance the properties of noble-metal catalysts. Herein, we demonstrate the synthesis of Pt shell on titanium tungsten nitride core nanoparticles (Pt/TiWN) by high temperature ammonia nitridation of a parent core–shell carbide material (Pt/TiWC). X-ray photoelectron spectroscopy revealed significant core-level shifts for Pt shells supported on TiWN cores, corresponding to increased stabilization of the Pt valence d-states. The modulation of the electronic structure of the Pt shell by the nitride core translated into enhanced CO tolerance during hydrogen electrooxidation in the presence of CO. In conclusion, the ability to control shell coveragemore » and vary the heterometallic composition of the shell and nitride core opens up attractive opportunities to synthesize a broad range of new materials with tunable catalytic properties.« less

  1. Valence shell threshold photoelectron spectroscopy of the CHxCN (x = 0-2) and CNC radicals.

    PubMed

    Garcia, Gustavo A; Krüger, Julia; Gans, Bérenger; Falvo, Cyril; Coudert, Laurent H; Loison, Jean-Christophe

    2017-07-07

    We present the photoelectron spectroscopy of four radical species, CH x CN (x = 0-2) and CNC, formed in a microwave discharge flow-tube reactor by consecutive H abstractions from CH 3 CN (CH x CN + F → CH x-1 CN + HF (x = 1-3)). The spectra were obtained combining tunable vacuum ultraviolet synchrotron radiation with double imaging electron/ion coincidence techniques, which yielded mass-selected threshold photoelectron spectra. The results obtained for H 2 CCN complement existing ones while for the other radicals the data represent the first observation of their (single-photon) ionizing transitions. In the case of H 2 CCN, Franck-Condon calculations have been performed in order to assign the vibrational structure of the X + 1 A 1 ←X 2 B 1 ionizing transition. A similar treatment for the HCCN, CCN, and CNC radicals appeared to be more complicated mainly because a Renner-Teller effect strongly affects the vibrational levels of the ground electronic state of the HCCN + , CCN, and CNC species. Nevertheless, the first adiabatic ionization energies of these radicals are reported and compared to our ab initio calculated values, leading to new values for enthalpies of formation (Δ f H 298 0 (HCCN + (X 2 A ' ))=1517±12kJmol -1 ,Δ f H 298 0 (CCN(X 2 Π))=682±13kJmol -1 , and Δ f H 298 0 (CNC(X 2 Πg))=676±12kJmol -1 ), which are of fundamental importance for astrochemistry.

  2. A revised MRCI-algorithm coupled to an effective valence-shell Hamiltonian. II. Application to the valence excitations of butadiene

    NASA Astrophysics Data System (ADS)

    Strodel, Paul; Tavan, Paul

    2002-09-01

    In Paper I of this work we have sketched an improved MRCI algorithm and its coupling to the effective valence-shell Hamiltonian OM2. To check the quality of the resulting OM2/MRCI approach, it is applied here to the excited valence states of all-trans butadiene. As is explained by a review of previous theoretical work, proper descriptions of these states posed severe problems within correlated ab initio treatments but seemed to be trivial within simple correlated pi-electron models. We now show that an extended MRCI treatment of the correlations among all valence electrons as described by OM2 closely reproduces the experimental evidence, placing the vertical 2 1Ag excitation by about 0.2 eV below the 1 1Bu excitation. By an analysis of sigma]-[pi interactions we explain the corresponding earlier success of correlated pi-electron theory. Exploiting the enhanced capabilities of the new approach we investigate the potential surfaces. Here, OM2/MRCI is shown to predict that the 2 1Ag state is energetically lowered about four times more strongly than the 1 1Bu state upon geometry relaxation constrained to the C2h symmetry. We conclude that OM2/MRCI should be well-suited for the study of excited state surfaces of organic dye molecules.

  3. Unambiguous observation of F-atom core-hole localization in CF 4 through body-frame photoelectron angular distributions

    DOE PAGES

    McCurdy, C. W.; Rescigno, T. N.; Trevisan, C. S.; ...

    2017-01-17

    A dramatic symmetry breaking in K-shell photoionization of the CF 4 molecule in which a core-hole vacancy is created in one of four equivalent fluorine atoms is displayed in the molecular frame angular distribution of the photoelectrons. In observing the photoejected electron in coincidence with an F + atomic ion after Auger decay we see how selecting the dissociation path where the core hole was localized was almost exclusively on that atom. A combination of measurements and ab initio calculations of the photoelectron angular distribution in the frame of the recoiling CF 3 + and F + atoms elucidates themore » underlying physics that derives from the Ne-like valence structure of the F(1s -1) core-excited atom.« less

  4. Studies of Copper, Silver, and Gold Cluster Anions: Evidence of Electronic Shell Structure.

    NASA Astrophysics Data System (ADS)

    Pettiette, Claire Lynn

    A new Ultraviolet Magnetic Time-of-Flight Photoelectron Spectrometer (MTOFPES) has been developed for the study of the electronic structure of clusters produced in a pulsed supersonic molecular beam. This is the first technique which has been successful in probing the valence electronic states of metal clusters. The ultraviolet photoelectron spectra of negative cluster ions of the noble metals have been taken at several different photon energies. These are presented along with the electron affinity and HOMO-LUMO gap measurements for Cu_6^- to Cu_ {41}^-, using 4.66 eV and 6.42 eV detachment energies; Ag_3^- to Ag_{21}^-, using 6.42 eV detachment energy; and Au_3^ - to Au_{21}^-, using 6.42 eV and 7.89 eV detachment energies. The spectra provide the first detailed probes of the s valence electrons of the noble metal clusters. In addition, the 6.42 eV and 7.89 eV spectra probe the first one to two electron volts of the molecular orbitals of the d valence electrons of copper and gold clusters. The electron affinity and HOMO-LUMO gap measurements of the noble metal clusters agree with the predictions of the ellipsoidal shell model for mono-valent metal clusters. In particular, cluster numbers 8, 20, and 40--which correspond to the spherical shell closings of this model--have low electron affinities and large HOMO-LUMO gaps. The spectra of the gold cluster ions indicate that the molecular orbital energies of the cluster valence electrons are more widely spaced for gold than for copper or silver. This is to be expected for the heavy atom clusters when relativistic effects are taken into account.

  5. Optical oscillator strengths of the valence-shell excitations of atoms and molecules determined by the dipole ( γ,γ) method

    NASA Astrophysics Data System (ADS)

    Xu, Long-Quan; Liu, Ya-Wei; Xu, Xin; Ni, Dong-Dong; Yang, Ke; Zhu, Lin-Fan

    2017-07-01

    The dipole (γ,γ) method, which is the inelastic X-ray scattering operated at a negligibly small momentum transfer, has been developed to determine the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. This new method is free from the line saturation effect, and its Bethe-Born conversion factor varies much more slowly with the excitation energy than that of the dipole (e, e) method. Thus the dipole (γ,γ) method provides a reliable approach to obtain the benchmark optical oscillator strengths of the valence-shell excitations for gaseous atoms and molecules. In this paper, we give a review of the dipole (γ,γ) method and some recent measurements of absolute optical oscillator strengths of gaseous atoms and molecules. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  6. Authentic Assessment Tool for the Measurement of Students' Understanding of the Valence Shell Electron Pair Repulsion Theory

    ERIC Educational Resources Information Center

    Wuttisela, Karntarat

    2017-01-01

    There are various types of instructional media related to Valence Shell Electron Pair Repulsion (VSEPR) but there is a lack of diversity of resources devoted to assessment. This research presents an assessment and comparison of students' understanding of VSEPR theory before and after tuition involving the use of the foam molecule model (FMM) and…

  7. Sample-morphology effects on x-ray photoelectron peak intensities. III. Simulated spectra of model core–shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Cedric J., E-mail: cedric.powell@nist.gov; Chudzicki, Maksymilian; Werner, Wolfgang S. M.

    2015-09-15

    The National Institute of Standards and Technology database for the simulation of electron spectra for surface analysis has been used to simulate Cu 2p photoelectron spectra for four types of spherical copper–gold nanoparticles (NPs). These simulations were made to extend the work of Tougaard [J. Vac. Sci. Technol. A 14, 1415 (1996)] and of Powell et al. [J. Vac. Sci. Technol. A 31, 021402 (2013)] who performed similar simulations for four types of planar copper–gold films. The Cu 2p spectra for the NPs were compared and contrasted with analogous results for the planar films and the effects of elastic scatteringmore » were investigated. The new simulations were made for a monolayer of three types of Cu/Au core–shell NPs on a Si substrate: (1) an Au shell of variable thickness on a Cu core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; (2) a Cu shell of variable thickness on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; and (3) an Au shell of variable thickness on a 1 nm Cu shell on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. For these three morphologies, the outer-shell thickness was varied until the Cu 2p{sub 3/2} peak intensity was the same (within 2%) as that found in our previous work with planar Cu/Au morphologies. The authors also performed similar simulations for a monolayer of spherical NPs consisting of a CuAu{sub x} alloy (also on a Si substrate) with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. In the latter simulations, the relative Au concentration (x) was varied to give the same Cu 2p{sub 3/2} peak intensity (within 2%) as that found previously. For each morphology, the authors performed simulations with elastic scattering switched on and off. The authors found that elastic-scattering effects were generally strong for the Cu-core/Au-shell and weak for the Au-core/Cu-shell NPs; intermediate elastic-scattering effects were found for the Au-core/Cu-shell/Au-shell NPs. The shell thicknesses required

  8. Electronic properties and bonding in Zr Hx thin films investigated by valence-band x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Magnuson, Martin; Schmidt, Susann; Hultman, Lars; Högberg, Hans

    2017-11-01

    The electronic structure and chemical bonding in reactively magnetron sputtered Zr Hx (x =0.15 , 0.30, 1.16) thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level, and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity toward the H 1s-Zr 4d hybridization region at ˜6 eV below the Fermi level. For low hydrogen content (x =0.15 , 0.30), the films consist of a superposition of hexagonal closest-packed metal (α phase) and understoichiometric δ -Zr Hx (Ca F2 -type structure) phases, while for x =1.16 , the films form single-phase Zr Hx that largely resembles that of stoichiometric δ -Zr H2 phase. We show that the cubic δ -Zr Hx phase is metastable as thin film up to x =1.16 , while for higher H contents the structure is predicted to be tetragonally distorted. For the investigated Zr H1.16 film, we find chemical shifts of 0.68 and 0.51 eV toward higher binding energies for the Zr 4 p3 /2 and 3 d5 /2 peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifies a charge transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemical shifts as a function of hydrogen content is discussed in relation to the charge transfer from Zr to H that affects the conductivity by charge redistribution in the valence band.

  9. Understanding valence-shell electron-pair repulsion (VSEPR) theory using origami molecular models

    NASA Astrophysics Data System (ADS)

    Endah Saraswati, Teguh; Saputro, Sulistyo; Ramli, Murni; Praseptiangga, Danar; Khasanah, Nurul; Marwati, Sri

    2017-01-01

    Valence-shell electron-pair repulsion (VSEPR) theory is conventionally used to predict molecular geometry. However, it is difficult to explore the full implications of this theory by simply drawing chemical structures. Here, we introduce origami modelling as a more accessible approach for exploration of the VSEPR theory. Our technique is simple, readily accessible and inexpensive compared with other sophisticated methods such as computer simulation or commercial three-dimensional modelling kits. This method can be implemented in chemistry education at both the high school and university levels. We discuss the example of a simple molecular structure prediction for ammonia (NH3). Using the origami model, both molecular shape and the scientific justification can be visualized easily. This ‘hands-on’ approach to building molecules will help promote understanding of VSEPR theory.

  10. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control.

    PubMed

    Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee

    2015-11-07

    We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.

  11. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study.

    PubMed

    Schneider, M; Soshnikov, D Yu; Holland, D M P; Powis, I; Antonsson, E; Patanen, M; Nicolas, C; Miron, C; Wormit, M; Dreuw, A; Trofimov, A B

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n(5) with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

  12. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, M.; Wormit, M.; Dreuw, A.

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n{sup 5} with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZmore » basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.« less

  13. Examination of U valence states in the brannerite structure by near-infrared diffuse reflectance and X-ray photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Finnie, Kim S.; Zhang, Zhaoming; Vance, Eric R.; Carter, Melody L.

    2003-04-01

    The valence state of uranium doped into a f 0 thorium analog of brannerite (i.e., thorutite) has been examined using near-infrared (NIR) diffuse reflectance (DRS) and X-ray photoelectron (XPS) spectroscopies. NIR transitions of U 4+, which are not observed in spectra of brannerite, have been detected in the samples of U xTh 1- xTi 2O 6, and we propose that strong specular reflectance is responsible for the lack of U 4+ features in UTi 2O 6. Characteristic U 5+ bands have been identified in samples in which sufficient Ca 2+ has been added to nominally effect complete oxidation to U 5+. XPS results support the assignments of U 4+ and U 5+ by DRS. The presence of residual U 4+ bands in the spectra of the Ca-doped samples is consistent with segregation of Ca 2+ to the grain boundaries during high temperature sintering.

  14. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Śmiałek, M. A., E-mail: smialek@pg.gda.pl; Łabuda, M.; Guthmuller, J.

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). Newmore » vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)« less

  15. Deduction of the chemical state and the electronic structure of Nd{sub 2}Fe{sub 14}B compound from X-ray photoelectron spectroscopy core-level and valence-band spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Liang, Le; Zhang, Lanting, E-mail: lantingzh@sjtu.edu.cn, E-mail: lmsun@sjtu.edu.cn

    2014-10-28

    Characterization of chemical state and electronic structure of the technologically important Nd{sub 2}Fe{sub 14}B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd{sub 2}Fe{sub 14}B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd{sub 2}Fe{sub 14}B compound can be clearlymore » determined to be 0 and −3, respectively. The Nd in Nd{sub 2}Fe{sub 14}B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd{sub 2}O{sub 3}. In addition, by comparing the valence-band spectrum of Nd{sub 2}Fe{sub 14}B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd{sub 2}Fe{sub 14}B compound is made more clear. The B 2p states and B 2s states are identified to be at ∼11.2 eV and ∼24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd{sub 2}Fe{sub 14}B compound.« less

  16. Synchrotron-based valence shell photoionization of CH radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gans, B., E-mail: berenger.gans@u-psud.fr, E-mail: christian.alcaraz@u-psud.fr; Falvo, C.; Holzmeier, F.

    2016-05-28

    We report the first experimental observations of X{sup +} {sup 1}Σ{sup +}←X {sup 2}Π and a{sup +} {sup 3}Π←X {sup 2}Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg statesmore » of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.« less

  17. Breakdown of ionic character of molecular alkali bromides in inner-valence photoionization

    NASA Astrophysics Data System (ADS)

    Karpenko, A.; Iablonskyi, D.; Urpelainen, S.; Kettunen, J. A.; Cao, W.; Huttula, M.; Aksela, H.

    2014-05-01

    The inner-valence region of alkali bromide XBr (X=Li, Na, K, Rb) vapours has been studied experimentally by means of synchrotron radiation excited photoelectron spectroscopy. Experimental spectra were analyzed by comparing them with available theoretical results and previous experiments. Ionic character of alkali bromides is seen to change in the inner-valence region with increasing atomic number of the alkali atom. A mechanism involving mixing between Br 4s and Rb 4p orbitals has been suggested to account for the fine structure observed in inner-valence ionization region of RbBr.

  18. Band bending at the heterointerface of GaAs/InAs core/shell nanowires monitored by synchrotron X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Khanbabaee, B.; Bussone, G.; Knutsson, J. V.; Geijselaers, I.; Pryor, C. E.; Rieger, T.; Demarina, N.; Grützmacher, D.; Lepsa, M. I.; Timm, R.; Pietsch, U.

    2016-10-01

    Unique electronic properties of semiconductor heterostructured nanowires make them useful for future nano-electronic devices. Here, we present a study of the band bending effect at the heterointerface of GaAs/InAs core/shell nanowires by means of synchrotron based X-ray photoelectron spectroscopy. Different Ga, In, and As core-levels of the nanowire constituents have been monitored prior to and after cleaning from native oxides. The cleaning process mainly affected the As-oxides and was accompanied by an energy shift of the core-level spectra towards lower binding energy, suggesting that the As-oxides turn the nanowire surfaces to n-type. After cleaning, both As and Ga core-levels revealed an energy shift of about -0.3 eV for core/shell compared to core reference nanowires. With respect to depth dependence and in agreement with calculated strain distribution and electron quantum confinement, the observed energy shift is interpreted by band bending of core-levels at the heterointerface between the GaAs nanowire core and the InAs shell.

  19. Emitter-site-selective photoelectron circular dichroism of trifluoromethyloxirane

    DOE PAGES

    Ilchen, M.; Hartmann, G.; Rupprecht, P.; ...

    2017-05-30

    The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C 3H 3F 3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic β 1 and angular distribution β 2 parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry β 1 ofmore » up to about 9% for the K -shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter and site sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.« less

  20. Angle-resolved photoelectron spectroscopy of formaldehyde and methanol

    NASA Astrophysics Data System (ADS)

    Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, Thomas A.

    1984-10-01

    Angle-resolved photoelectron spectroscopy was employed to obtain the angular distribution parameter, β, for the valence orbitals (IP < 21.1 eV) of formaldehyde and methanol over the 10-30 eV photon energy range using dispersed polarized synchrotron radiation as the excitation source. It was found that the energy dependence of β in the photoelectron energy range between 2 and 10 eV can be related to the molecular-orbital type from which ionization occurs. This generalized energy behavior is discussed with regard to earlier energy-dependence studies on molecules of different orbital character. Evidence is presented for the presence of resonance photoionization phenomena in formaldehyde in agreement with theoretical cross-section calculations.

  1. Photoelectron energy-loss study of the Bi2CaSr2Cu2O8 superconductor

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Bozovic, I.; Kapitulnik, A.

    1989-03-01

    Using energy-loss spectroscopy of photoelectrons from a single crystal of Bi2CaSr2Cu2O8, we show that the electronic structure of the near-surface region is the same as that of the bulk. Utilizing the fact that photoelectrons of different elements are excited at different locations in the unit cell, we identify the energy-loss features as due to valence plasmon excitations, and one-electron excitations by comparing the photoelectron energy-loss spectra of the different elements.

  2. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephansen, Anne B.; King, Sarah B.; Li, Wei-Li

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison withmore » calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.« less

  3. X-ray photoelectron study of Si+ ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Tsvetkova, T.; Balabanov, S.; Bischoff, L.; Krastev, V.; Stefanov, P.; Avramova, I.

    2010-11-01

    X-ray photoelectron spectroscopy was used to characterize different polymer materials implanted with low energy Si+ ions (E=30 keV, D= 1.1017 cm-2). Two kinds of polymers were studied - ultra-high-molecular-weight poly-ethylene (UHMWPE), and poly-methyl-methacrylate (PMMA). The non-implanted polymer materials show the expected variety of chemical bonds: carbon-carbon, carbon being three- and fourfold coordinated, and carbon-oxygen in the case of PMMA samples. The X-ray photoelectron and Raman spectra show that Si+ ion implantation leads to the introduction of additional disorder in the polymer material. The X-ray photoelectron spectra of the implanted polymers show that, in addition to already mentioned bonds, silicon creates new bonds with the host elements - Si-C and Si-O, together with additional Si dangling bonds as revealed by the valence band study of the implanted polymer materials.

  4. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling.

    PubMed

    Grell, Gilbert; Bokarev, Sergey I; Winter, Bernd; Seidel, Robert; Aziz, Emad F; Aziz, Saadullah G; Kühn, Oliver

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H2O)6](2+) complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  5. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplicka-Oryńczak, N.; Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków; Fornal, B.

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility ofmore » testing the calculations involving the core excitations.« less

  6. Energetic (above 60 eV) atmospheric photoelectrons

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Decker, D. T.; Kozyra, J. U.; Nagy, A. F.; Jasperse, J. R.

    1989-01-01

    Data from low altitude plasma instrument (LAPI) on Dynamics Explorer 2 document a population of high-energy (up to 800 eV) atmospheric photoelectrons that has not been reported in the published literature. The source of these photoelectrons is postulated to be the soft X-ray portion of the whole sun spectrum. This conclusion is supported by sunrise-sunset characteristics that track those of the classical (below 60 eV) EUV-produced photoelectrons, and theoretical results from two models that incorporate the soft X-ray portion of the solar spectrum. The models include K-shell ionization effects and predict peaks in the photoelectron spectrum due to Auger electrons emitted from oxygen and nitrogen. The peak for nitrogen is observed as predicted, but the peak for oxygen is barely observable. Excellent quantitative agreement is achieved between theory and experiment by using reasonable adjustments to the few published soft X-ray spectra based on solar activity. The upflowing energetic photoelectrons provide a heretofore unknown source of electrons to the magnetosphere. They occur whenever and wherever the sun is up, that is, at all invariant latitudes. Their density is low, but they are steady and ubiquitous. If scattering and trapping occur on closed field lines, then photoelectrons could contribute as a significant particle source and thus represent a new facet of magnetosphere-ionosphere coupling.

  7. The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons

    NASA Astrophysics Data System (ADS)

    Yang, Huihui; Chen, Hongshan

    2017-07-01

    The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9

  8. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1974-01-01

    The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.

  9. Measurement of the background in Auger-Photoemission Spectra (APECS) associated with multi-electron and inelastic valence band photoemission processes

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Hulbert, Steven; Weiss, Alex

    2014-03-01

    Auger Photoelectron Coincidence Spectroscopy (APECS), in which the Auger spectra is measured in coincidence with the core level photoelectron, is capable of pulling difficult to observe low energy Auger peaks out of a large background due mostly to inelastically scattered valence band photoelectrons. However the APECS method alone cannot eliminate the background due to valence band VB photoemission processes in which the initial photon energy is shared by 2 or more electrons and one of the electrons is in the energy range of the core level photoemission peak. Here we describe an experimental method for estimating the contributions from these background processes in the case of an Ag N23VV Auger spectra obtained in coincidence with the 4p photoemission peak. A beam of 180eV photons was incident on a Ag sample and a series of coincidence measurements were made with one cylindrical mirror analyzer (CMA) set at a fixed energies between the core and the valence band and the other CMA scanned over a range corresponding to electrons leaving the surface between 0eV and the 70eV. The spectra obtained were then used to obtain an estimate of the background in the APECS spectra due to multi-electron and inelastic VB photoemission processes. NSF, Welch Foundation.

  10. Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2018-06-01

    The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.

  11. Probing Chemical Bonding and Electronic Structures in ThO- by Anion Photoelectron Imaging and Theoretical Calculations.

    PubMed

    Li, Yanli; Zou, Jinghan; Xiong, Xiao-Gen; Su, Jing; Xie, Hua; Fei, Zejie; Tang, Zichao; Liu, Hongtao

    2017-03-16

    Because of renewed research on thorium-based molten salt reactors, there is growing demand and interest in enhancing the knowledge of thorium chemistry both experimentally and theoretically. Compared with uranium, thorium has few chemical studies reported up to the present. Here we report the vibrationally resolved photoelectron imaging of the thorium monoxide anion. The electron affinity of ThO is first reported to be 0.707 ± 0.020 eV. Vibrational frequencies of the ThO molecule and its anion are determined from Franck-Condon simulation. Spectroscopic evidence is obtained for the two-electron transition in ThO - , indicating the strong electron correlation among the (7s σ ) 2 (6d δ ) 1 electrons in ThO - and the (7s σ ) 2 electrons in ThO. These findings are explained by using quantum-chemical calculations including spin-orbit coupling, and the chemical bonding of gaseous ThO molecules is analyzed. The present work will enrich our understanding of bonding capacities with the 6d valence shell.

  12. The electronic characterization of biphenylene—Experimental and theoretical insights from core and valence level spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüder, Johann; Sanyal, Biplab; Eriksson, Olle

    In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction withmore » hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.« less

  13. Photoelectron angular distributions from rotationally resolved autoionizing states of N 2

    DOE PAGES

    Chartrand, A. M.; McCormack, E. F.; Jacovella, U.; ...

    2017-12-08

    The single-photon, photoelectron-photoion coincidence spectrum of N 2 has been recorded at high (~1.5 cm -1) resolution in the region between the N 2 + X 2Σ g +, v + = 0 and 1 ionization thresholds by using a double imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N 2 + X 2Σ g +more » ground state, and electronically autoionizing states converging to the N 2 + A 2Π and B 2Σ u + states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. Here, a simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, β, and the results are in reasonably good agreement with experiment.« less

  14. Valence-Band Electronic Structures of High-Pressure-Phase PdF2-type Platinum-Group Metal Dioxides MO2 (M = Ru, Rh, Ir, and Pt)

    NASA Astrophysics Data System (ADS)

    Soda, Kazuo; Kobayashi, Daichi; Mizui, Tatsuya; Kato, Masahiko; Shirako, Yuichi; Niwa, Ken; Hasegawa, Masashi; Akaogi, Masaki; Kojitani, Hiroshi; Ikenaga, Eiji; Muro, Takayuki

    2018-04-01

    The valence-band electronic structures of high-pressure-phase PdF2-type (HP-PdF2-type) platinum-group metal dioxides MO2 (M = Ru, Rh, Ir, and Pt) were studied by synchrotron radiation photoelectron spectroscopy and first-principles calculations. The obtained photoelectron spectra for HP-PdF2-type RuO2, RhO2, and IrO2 agree well with the calculated valence-band densities of states (DOSs) for these compounds, indicating their metallic properties, whereas the DOS of HP-PdF2-type PtO2 (calculated in the presence and absence of spin-orbit interactions) predicts that this material may be metallic or semimetallic, which is inconsistent with the electric conductivity reported to date and the charging effect observed in current photoelectron measurements. Compared with the calculated results, the valence-band spectrum of PtO2 appears to have shifted toward the high-binding-energy side and reveals a gradual intensity decrease toward the Fermi energy EF, implying a semiconductor-like electronic structure. Spin-dependent calculations predict a ferromagnetic ground state with a magnetization of 0.475 μB per formula unit for HP-PdF2-type RhO2.

  15. Increased photoelectron transmission in High-pressure photoelectron spectrometers using "swift acceleration"

    NASA Astrophysics Data System (ADS)

    Edwards, Mårten O. M.; Karlsson, Patrik G.; Eriksson, Susanna K.; Hahlin, Maria; Siegbahn, Hans; Rensmo, Håkan; Kahk, Juhan M.; Villar-Garcia, Ignacio J.; Payne, David J.; Åhlund, John

    2015-06-01

    A new operation mode of a HPXPS (high-pressure X-ray photoelectron spectroscopy) analyzer is evaluated on a HPXPS system fitted with an Al Kα X-ray source. A variety of metal foil samples (gold, silver and copper) were measured in different sample gas environments (N2 and H2O), and a front aperture diameter of 0.8 mm. The new design concept is based upon "swiftly" accelerating the photoelectrons to kinetic energies of several keV after they pass the analyzer front aperture. Compared to the standard mode, in which the front section between the two first apertures is field-free, this gives a wider angular collection and a lower tendency for electron losses in collisions with gas molecules within the analyzer. With the swift-acceleration mode we attain, depending on the experimental conditions, up to about 3 times higher peak intensities in vacuum and about 10 to 20 times higher peak intensities in the 6-9 mbar regime, depending on kinetic energy. These experimental findings agree well with simulated transmission functions for the analyzer. The new mode of operation enables faster data acquisition than the standard mode of operation, particularly valuable in a home laboratory environment. Further demonstrations of performance are highlighted by measurements of the valence band structure in dye-sensitized solar cell photoelectrodes under a 2 mbar H2O atmosphere, a molecularly modified surface of interest in photoelectrochemical devices.

  16. Real-time observation of valence electron motion.

    PubMed

    Goulielmakis, Eleftherios; Loh, Zhi-Heng; Wirth, Adrian; Santra, Robin; Rohringer, Nina; Yakovlev, Vladislav S; Zherebtsov, Sergey; Pfeifer, Thomas; Azzeer, Abdallah M; Kling, Matthias F; Leone, Stephen R; Krausz, Ferenc

    2010-08-05

    The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.

  17. Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Arif; Wahab, Yussof; Muhammad, Rosnita; Tahir, Muhammad; Sakrani, Samsudi

    2018-03-01

    Development of controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) with large area by a catalyst free vapor deposition and oxidation approach has been investigated. Structural characterization reveals successful fabrication of a core ZnO nanowire having single crystalline hexagonal wurtzite structure along [002] direction and CuO nanostructure shell with thickness (8-10 nm) having polycrystalline monoclinic structure. The optical property analysis suggests that the reflectance spectrum of ZnO/CuO heterostructure nanowires is decreased by 18% in the visible range, which correspondingly shows high absorption in this region as compared to pristine ZnO nanowires. The current-voltage (I-V) characteristics of core-shell heterojunction nanowires measured by conductive atomic force microscopy (C-AFM) shows excellent rectifying behavior, which indicates the characteristics of a good p-n junction. The high-resolution transmission electron microscopy (HRTEM) has confirmed the sharp junction interface between the core-shell heterojunction nanowire arrays. The valence band offset and conduction band offset at ZnO/CuO heterointerfaces are measured to be 2.4 ± 0.05 and 0.23 ± 0.005 eV respectively, using X-ray photoelectron spectroscopy (XPS) and a type-II band alignment structure is found. The results of this study contribute to the development of new advanced device heterostructures for solar energy conversion and optoelectronics applications.

  18. Investigations of the valence-shell excitations of molecular ethane by high-energy electron scattering

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-04-01

    The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.

  19. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation.

    PubMed

    Chirayath, V A; Callewaert, V; Fairchild, A J; Chrysler, M D; Gladen, R W; Mcdonald, A D; Imam, S K; Shastry, K; Koymen, A R; Saniz, R; Barbiellini, B; Rajeshwar, K; Partoens, B; Weiss, A H

    2017-07-13

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.

  20. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation

    PubMed Central

    Chirayath, V. A.; Callewaert, V.; Fairchild, A. J.; Chrysler, M. D.; Gladen, R. W.; Mcdonald, A. D.; Imam, S. K.; Shastry, K.; Koymen, A. R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A. H.

    2017-01-01

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition. PMID:28703225

  1. Angle-resolved photoelectron spectroscopy of the chloro-substituted methanes

    NASA Astrophysics Data System (ADS)

    Keller, P. R.; Taylor, J. W.; Carlson, Thomas A.; Grimm, F. A.

    1983-09-01

    The angular distribution parameter, β, was determined for the valence orbitals (IP ' 21.2 eV) of CCl 4, CHCl 3, CH 2Cl 2, and CH 3Cl in the 10-30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β in the photoelectron energy range of 2 to 10 eV for the non-bonding chlorine n(Cl) orbitals of these molecules was found to be similar for all n(Cl) orbitals investigated. The energy dependence of β for the σ orbitals in these molecules was similar to that observed previously for other σ orbitals. The experimental CCl 4 results were compared with theoretical CCl 4 results obtained using the Xα multiple scattering formalism. Theory predicts the existence of two strong shape resonances in each of the valence orbitals of CCl 4. The overall agreement between experiment and theory is evaluated along with the experimental evidence concerning the verification of the predicted shape resonances.

  2. Transition energy and potential energy curves for ionized inner-shell states of CO, O2 and N 2 calculated by several inner-shell multiconfigurational approaches.

    PubMed

    Moura, Carlos E V de; Oliveira, Ricardo R; Rocha, Alexandre B

    2013-05-01

    Potential energy curves and inner-shell ionization energies of carbon monoxide, oxygen and nitrogen molecules were calculated using several forms of the inner-shell multiconfigurational self-consistent field (IS-MCSCF) method-a recently proposed protocol to obtain specifically converged inner-shell states at this level. The particular forms of the IS-MCSCF method designated IS-GVB-PP, IS-FVBL and IS-CASSCF stand for perfect pairing generalized valence bond, full valence bond-like MCSCF and complete active space self consistent field, respectively. A comparison of these different versions of the IS-MCSCF method was carried out for the first time. The results indicate that inner-shell states are described accurately even for the simplest version of the method (IS-GVB-PP). Dynamic correlation was recovered by multireference configuration interaction or multireference perturbation theory. For molecules not having equivalent atoms, all methods led to comparable and accurate transition energies. For molecules with equivalent atoms, the most accurate results were obtained by multireference perturbation theory. Scalar relativistic effects were accounted for using the Douglas-Kroll-Hess Hamiltonian.

  3. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation.

    PubMed

    Gartmann, Thomas E; Hartweg, Sebastian; Ban, Loren; Chasovskikh, Egor; Yoder, Bruce L; Signorell, Ruth

    2018-06-06

    Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter β as a function of cluster size. A remarkably steep decrease of β with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

  4. Identification of Cr valence states in Cr and Nd co-doped Lu3Al5O12 laser ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Pande; Jiang, Benxue; Fan, Jintai; Mao, Xiaojian; Zhang, Long

    2017-09-01

    Cr and Nd co-doped laser ceramics, as the potential gain materials in inertial confinement fusion (ICF), have been widely investigated. And the study on valence states of chromium ions is important. The effects of sintering additives and annealing atmosphere on the valence state of chromium were studied in detail, and the results shown that the Cr valence states were demonstrated to be Cr2+ and Cr3+ ions in HIP-sintered Cr(0.2 at.%), Nd(0.8 at.%): LuAG laser ceramics. And the intensity of the near-infrared absorption band caused by Cr2+ ions was attenuated with the decreasing SiO2 concentration and increasing MgO amount. The near-infrared absorption could be eliminated by annealing in air. And the transformation of valence states of Cr ions in the Cr,Nd:LuAG ceramics were also confirmed by electron paramagnetic resonance and X-ray photoelectron spectroscopy.

  5. A revised MRCI-algorithm. I. Efficient combination of spin adaptation with individual configuration selection coupled to an effective valence-shell Hamiltonian

    NASA Astrophysics Data System (ADS)

    Strodel, Paul; Tavan, Paul

    2002-09-01

    We present a revised multi-reference configuration interaction (MRCI) algorithm for balanced and efficient calculation of electronic excitations in molecules. The revision takes up an earlier method, which had been designed for flexible, state-specific, and individual selection (IS) of MRCI expansions, included perturbational corrections (PERT), and used the spin-coupled hole-particle formalism of Tavan and Schulten (1980) for matrix-element evaluation. It removes the deficiencies of this method by introducing tree structures, which code the CI bases and allow us to efficiently exploit the sparseness of the Hamiltonian matrices. The algorithmic complexity is shown to be optimal for IS/MRCI applications. The revised IS/MRCI/PERT module is combined with the effective valence shell Hamiltonian OM2 suggested by Weber and Thiel (2000). This coupling serves the purpose of making excited state surfaces of organic dye molecules accessible to relatively cheap and sufficiently precise descriptions.

  6. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Lohani, H.; Kundu, A. K.; Patel, R.; Solanki, G. K.; Menon, Krishnakumar S. R.; Sekhar, B. R.

    2015-07-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ-Z, Γ-Y and Γ-T symmetry directions. The valence band maximum occurs nearly midway along the Γ-Z direction, at a binding energy of -0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ-T direction. Detailed electronic structure analysis reveals the significance of the cation-anion 4p orbitals hybridization in the valence band dispersion of IV-VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis.

  7. Photoelectron spectra of some antibiotic building blocks: 2-azetidinone and thiazolidine-carboxylic acid.

    PubMed

    Ahmed, Marawan; Ganesan, Aravindhan; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C

    2012-08-23

    X-ray photoelectron spectra of the core and valence levels of the fundamental building blocks of β-lactam antibiotics have been investigated and compared with theoretical calculations. The spectra of the compounds 2-azetidinone and the 2- and 4-isomers of thiazolidine-carboxylic acid are interpreted in the light of theoretical calculations. The spectra of the two isomers of thiazolidine-carboxylic acid are rather similar, as expected, but show clear effects due to isomerization. Both isomers are analogues of proline, which is well-known to populate several low energy conformers in the gas phase. We have investigated the low energy conformers of thiazolidine-4-carboxylic acid theoretically in more detail and find some spectroscopic evidence that multiple conformers may be present. The measured valence levels are assigned for all three compounds, and the character of the frontier orbitals is identified and analyzed.

  8. Levels of Valence

    PubMed Central

    Shuman, Vera; Sander, David; Scherer, Klaus R.

    2013-01-01

    The distinction between the positive and the negative is fundamental in our emotional life. In appraisal theories, in particular in the component process model of emotion (Scherer, 1984, 2010), qualitatively different types of valence are proposed based on appraisals of (un)pleasantness, goal obstructiveness/conduciveness, low or high power, self-(in)congruence, and moral badness/goodness. This multifaceted conceptualization of valence is highly compatible with the frequent observation of mixed feelings in real life. However, it seems to contradict the one-dimensional conceptualization of valence often encountered in psychological theories, and the notion of valence as a common currency used to explain choice behavior. Here, we propose a framework to integrate the seemingly disparate conceptualizations of multifaceted valence and one-dimensional valence by suggesting that valence should be conceived at different levels, micro and macro. Micro-valences correspond to qualitatively different types of evaluations, potentially resulting in mixed feelings, whereas one-dimensional macro-valence corresponds to an integrative “common currency” to compare alternatives for choices. We propose that conceptualizing levels of valence may focus research attention on the mechanisms that relate valence at one level (micro) to valence at another level (macro), leading to new hypotheses, and addressing various concerns that have been raised about the valence concept, such as the valence-emotion relation. PMID:23717292

  9. Pressure and temperature dependence of the Ce valence and c -f hybridization gap in Ce T2In5(T =Co ,Rh ,Ir ) heavy-fermion superconductors

    NASA Astrophysics Data System (ADS)

    Yamaoka, H.; Yamamoto, Y.; Schwier, E. F.; Honda, F.; Zekko, Y.; Ohta, Y.; Lin, J.-F.; Nakatake, M.; Iwasawa, H.; Arita, M.; Shimada, K.; Hiraoka, N.; Ishii, H.; Tsuei, K.-D.; Mizuki, J.

    2015-12-01

    Pressure- and temperature-induced changes in the Ce valence and c -f hybridization of the Ce115 superconductors have been studied systematically. Resonant x-ray-emission spectroscopy indicated that the increase of the Ce valence with pressure was significant for CeCoIn5, and moderate for CeIr (In0.925Cd0.075)5 . We found no abrupt change of the Ce valence in the Kondo regime for CeIr (In0.925Cd0.075)5 , which suggests that valence fluctuations are unlikely to mediate the superconductivity in this material. X-ray-diffraction results were consistent with the pressure-induced change in the Ce valence. High-resolution photoelectron spectroscopy revealed a temperature-dependent reduction of the spectral intensity at the Fermi level, indicating enhanced c -f hybridization on cooling.

  10. Excited State Trends in Bidirectionally Expanded Closed-Shell PAH and PANH Anions

    PubMed Central

    Moore, Megan M.; Lee, Timothy J.

    2018-01-01

    Some anions are known to exhibit excited states independent of external forces such as dipole moments and induced polarizabilities. Such states exist simply as a result of the stabilization of valence accepting orbitals whereby the binding energy of the extra electron is greater than the valence excitation energy. Closed-shell anions are interesting candidates for such transitions since their ground-state, spin-paired nature makes the anions more stable from the beginning. Consequently, this work shows the point beyond which deprotonated, closed-shell polycyclic aromatic hydrocarbons (PAHs) and those PAHs containing nitrogen heteroatoms (PANHs) will exhibit valence excited states. This behavior has already been demonstrated in some PANHs and for anistropically-extended PAHs. This work establishes a general trend for PAHs/PANHs of arbitrary size and directional extension, whether in one dimension or two. Once seven six-membered rings make up a PAH/PANH, valence excited states are present. For most classes of PAHs/PANHs, this number is closer to four. Even though most of these excited states are weak absorbers, the sheer number of PAHs present in various astronomical environments should make them significant contributors to astronomical spectra. PMID:27585793

  11. Phase quantification by X-ray photoemission valence band analysis applied to mixed phase TiO2 powders

    NASA Astrophysics Data System (ADS)

    Breeson, Andrew C.; Sankar, Gopinathan; Goh, Gregory K. L.; Palgrave, Robert G.

    2017-11-01

    A method of quantitative phase analysis using valence band X-ray photoelectron spectra is presented and applied to the analysis of TiO2 anatase-rutile mixtures. The valence band spectra of pure TiO2 polymorphs were measured, and these spectral shapes used to fit valence band spectra from mixed phase samples. Given the surface sensitive nature of the technique, this yields a surface phase fraction. Mixed phase samples were prepared from high and low surface area anatase and rutile powders. In the samples studied here, the surface phase fraction of anatase was found to be linearly correlated with photocatalytic activity of the mixed phase samples, even for samples with very different anatase and rutile surface areas. We apply this method to determine the surface phase fraction of P25 powder. This method may be applied to other systems where a surface phase fraction is an important characteristic.

  12. Direct determination of exciton wavefunction amplitudes by the momentum-resolved photo-electron emission experiment

    NASA Astrophysics Data System (ADS)

    Ohnishi, Hiromasa; Tomita, Norikazu; Nasu, Keiichiro

    2018-03-01

    We study conceptional problems of a photo-electron emission (PEE) process from a free exciton in insulating crystals. In this PEE process, only the electron constituting the exciton is suddenly emitted out of the crystal, while the hole constituting the exciton is still left inside and forced to be recoiled back to its original valence band. This recoil on the hole is surely reflected in the spectrum of the PEE with a statistical distribution along the momentum-energy curve of the valence band. This distribution is nothing but the square of the exciton wavefunction amplitude, since it shows how the electron and the hole are originally bound together. Thus, the momentum-resolved PEE can directly determine the exciton wavefunction. These problems are clarified, taking the Γ and the saddle point excitons in GaAs, as typical examples. New PEE experiments are also suggested.

  13. Molecular frame photoelectron angular distributions for core ionization of ethane, carbon tetrafluoride and 1,1-difluoroethylene

    DOE PAGES

    Menssen, A.; Trevisan, C. S.; Schöffler, M. S.; ...

    2016-02-15

    Molecular frame photoelectron angular distributions (MFPADs) are measured in this paper in electron–ion momentum imaging experiments and compared with complex Kohn variational calculations for carbon K-shell ionization of carbon tetrafluoride (CF 4), ethane (C 2H 6) and 1,1-difluoroethylene (C 2H 2F 2). While in ethane the polarization averaged MFPADs show a tendency at low energies for the photoelectron to be emitted in the directions of the bonds, the opposite effect is seen in CF 4. A combination of these behaviors is seen in difluoroethylene where ionization from the two carbons can be distinguished experimentally because of their different K-shell ionizationmore » potentials. Excellent agreement is found between experiment and simple static-exchange or coupled two-channel theoretical calculations. Finally, however, simple electrostatics do not provide an adequate explanation of the suggestively simple angular distributions at low electron ejection energies.« less

  14. Deriving the nuclear shell model from first principles

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Vary, James P.; Maris, Pieter; Shirokov, Andrey M.; Lisetskiy, Alexander F.

    2014-09-01

    The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. The results of an 18-nucleon No Core Shell Model calculation, performed in a large basis space using a bare, soft NN interaction, can be projected into the 0 ℏω space, i.e., the sd -shell. Because the 16 nucleons in the 16O core are frozen in the 0 ℏω space, all the correlations of the 18-nucleon system are captured by the two valence, sd -shell nucleons. By the projection, we obtain microscopically the sd -shell 2-body effective interactions, the core energy and the sd -shell s.p. energies. Thus, the input for standard shell-model calculations can be determined microscopically by this approach. If the same procedure is then applied to 19-nucleon systems, the sd -shell 3-body effective interactions can also be obtained, indicating the importance of these 3-body effective interactions relative to the 2-body effective interactions. Applications to A = 19 and heavier nuclei with different intrinsic NN interactions will be presented and discussed. Supported by the US NSF under Grant No. 0854912, the US DOE under

  15. Photoelectron spectroscopy of the 6-azauracil anion.

    PubMed

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  16. Micro-Valences: Perceiving Affective Valence in Everyday Objects

    PubMed Central

    Lebrecht, Sophie; Bar, Moshe; Barrett, Lisa Feldman; Tarr, Michael J.

    2012-01-01

    Perceiving the affective valence of objects influences how we think about and react to the world around us. Conversely, the speed and quality with which we visually recognize objects in a visual scene can vary dramatically depending on that scene’s affective content. Although typical visual scenes contain mostly “everyday” objects, the affect perception in visual objects has been studied using somewhat atypical stimuli with strong affective valences (e.g., guns or roses). Here we explore whether affective valence must be strong or overt to exert an effect on our visual perception. We conclude that everyday objects carry subtle affective valences – “micro-valences” – which are intrinsic to their perceptual representation. PMID:22529828

  17. Angle-resolved photoelectron spectroscopy of cyclopropane

    NASA Astrophysics Data System (ADS)

    Keller, P. R.; Taylor, J. W.; Carlson, Thomas A.; Whitley, T. A.; Grimm, F. A.

    1985-10-01

    The angular distribution parameter, β, determined for the valence orbitals (IP < 18 eV) of cyclopropane in the 10-30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β for photoelectron energies between, 2 and 10 eV above threshold was found to be similar to those found previously for other σ orbitals. The effects of Jahn-Teller splitting on β for the 3e' orbital were found to be small but definitely present. The overall shape and magnitude of the β( hv) curve are, however, sufficiently for the different Jahn-Teller components that, for purposes of orbital assignments using β( hv) curves the shape and magnitude of the curves can be considered associated only with the initial state. Resonance photoionization features at a photon ener of ≈ 18 eV were observed in the 3e' and 3a' 1 orbitals and tentatively assigned to autoionization.

  18. Fabrication of Ni@Ti core-shell nanoparticles by modified gas aggregation source

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Vaidulych, M.; Kylián, O.; Choukourov, A.; Kousal, J.; Khalakhan, I.; Cieslar, M.; Solař, P.; Biederman, H.

    2017-11-01

    Ni@Ti core-shell nanoparticles were prepared by a vacuum based method using the gas aggregation source (GAS) of nanoparticles. Ni nanoparticles fabricated in the GAS were afterwards coated by a Ti shell. The Ti shell was deposited by means of magnetron sputtering. The Ni nanoparticles were decelerated in the vicinity of the magnetron to the Ar drift velocity in the second deposition chamber. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy analysis of the nanoparticles showed the core-shell structure. It was shown that the thickness of the shell can be easily tuned by the process parameters with a maximum achieved thickness of the Ti shell ~2.5 nm. The core-shell structure was confirmed by the STEM analysis of the particles.

  19. Ultrafast dynamics of low-energy electron attachment via a non-valence correlation-bound state

    NASA Astrophysics Data System (ADS)

    Rogers, Joshua P.; Anstöter, Cate S.; Verlet, Jan R. R.

    2018-03-01

    The primary electron-attachment process in electron-driven chemistry represents one of the most fundamental chemical transformations with wide-ranging importance in science and technology. However, the mechanistic detail of the seemingly simple reaction of an electron and a neutral molecule to form an anion remains poorly understood, particularly at very low electron energies. Here, time-resolved photoelectron imaging was used to probe the electron-attachment process to a non-polar molecule using time-resolved methods. An initially populated diffuse non-valence state of the anion that is bound by correlation forces evolves coherently in ∼30 fs into a valence state of the anion. The extreme efficiency with which the correlation-bound state serves as a doorway state for low-energy electron attachment explains a number of electron-driven processes, such as anion formation in the interstellar medium and electron attachment to fullerenes.

  20. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    PubMed

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. 2010 Elsevier B.V. All rights reserved.

  1. Evolution of Eu valence and superconductivity in layered Eu0.5La0.5FBiS2 -xSex system

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Y.; Paris, E.; Wakita, T.; Jinno, G.; Puri, A.; Terashima, K.; Joseph, B.; Miura, O.; Yokoya, T.; Saini, N. L.

    2017-02-01

    We have studied the effect of Se substitution on Eu valence in a layered Eu0.5La0.5FBiS2 -xSex superconductor using a combined analysis of x-ray absorption near-edge structure (XANES) and x-ray photoelectron spectroscopy (XPS) measurements. Eu L3-edge XANES spectra reveal that Eu is in the mixed valence state with coexisting Eu2 + and Eu3 +. The average Eu valence decreases sharply from ˜2.3 for x =0.0 to ˜2.1 for x =0.4 . Consistently, Eu 3 d XPS shows a clear decrease in the average valence by Se substitution. Bi 4 f XPS indicates that effective charge carriers in the BiCh2 (Ch = S, Se) layers are slightly increased by Se substitution. On the basis of the present results it has been discussed that the metallic character induced by Se substitution in Eu0.5La0.5FBiS2 -xSex is likely to be due to increased in-plane orbital overlap driven by reduced in-plane disorder that affects the carrier mobility.

  2. X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki

    2018-04-01

    An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.

  3. Valence evaluation with approaching or withdrawing cues: directly testing valence-arousal conflict theory.

    PubMed

    Wang, Yan Mei; Li, Ting; Li, Lin

    2017-07-19

    The valence-arousal conflict theory assumes that both valence and arousal will trigger approaching or withdrawing tendencies. It also predicts that the speed of processing emotional stimuli will depend on whether valence and arousal trigger conflicting or congruent motivational tendencies. However, most previous studies have provided evidence of the interaction between valence and arousal only, and have not provided direct proof of the interactive links between valence, arousal and motivational tendencies. The present study provides direct evidence for the relationship between approach-withdrawal tendencies and the valence-arousal conflict. In an empirical test, participants were instructed to judge the valence of emotional words after visual-spatial cues that appeared to be either approaching or withdrawing from participants. A three-way interaction (valence, arousal, and approach-withdrawal tendency) was observed such that the response time was shorter if participants responded to a negative high-arousal stimulus after a withdrawing cue, or to a positive low-arousal stimulus after an approaching cue. These findings suggest that the approach-withdrawal tendency indeed plays a crucial role in valence-arousal conflict, and that the effect depends on the congruency of valence, arousal and tendency at an early stage of processing.

  4. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy.

    PubMed

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2010-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze valence states at nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO(x) micro-patterns prepared by O(2)(+) ion implantation in Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample was topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of the PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale.

  5. Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties

    PubMed Central

    Chen, Chun-Chi; Wu, Hsin-Hsien; Huang, Hsin-Yi; Liu, Chen-Wei; Chen, Yi-Ning

    2016-01-01

    A simple chemical method was developed for preparing high valence silver (Ag)-loaded mesoporous silica (Ag-ethylenediaminetetraacetic acid (EDTA)-SBA-15), which showed strong antibacterial activity. Ag-EDTA-SBA-15 exhibited stronger and more effective antibacterial activity than commercial Ag nanoparticles did, and it offered high stability of high valence silver in the porous matrix and long-lasting antibacterial activity. The synthesized materials were characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) analysis, and transmission electron microscopy (TEM). Ag existed in both surface complexation and Ag particles. EDTA anchored within a porous structure chelated Ag ions in higher oxidation states and prevented their agglomeration and oxidation reduction. The XRD results showed that most Ag in the Ag-EDTA-SBA-15 existed in higher oxidation states such as Ag(II) and Ag(III). However, the XPS and TEM results showed that Ag easily reduced in lower oxidation states and agglomerated as Ag particles on the exterior layer of the SBA-15. PMID:26742050

  6. Large-scale shell-model calculations for 32-39P isotopes

    NASA Astrophysics Data System (ADS)

    Srivastava, P. C.; Hirsch, J. G.; Ermamatov, M. J.; Kota, V. K. B.

    2012-10-01

    In this work, the structure of 32-39P isotopes is described in the framework of stateof-the-art large-scale shell-model calculations, employing the code ANTOINE with three modern effective interactions: SDPF-U, SDPF-NR and the extended pairing plus quadrupole-quadrupoletype forces with inclusion of monopole interaction (EPQQM). Protons are restricted to fill the sd shell, while neutrons are active in the sd - pf valence space. Results for positive and negative level energies and electromagnetic observables are compared with the available experimental data.

  7. Valence electronic structure of cobalt phthalocyanine from an optimally tuned range-separated hybrid functional.

    PubMed

    Brumboiu, Iulia Emilia; Prokopiou, Georgia; Kronik, Leeor; Brena, Barbara

    2017-07-28

    We analyse the valence electronic structure of cobalt phthalocyanine (CoPc) by means of optimally tuning a range-separated hybrid functional. The tuning is performed by modifying both the amount of short-range exact exchange (α) included in the hybrid functional and the range-separation parameter (γ), with two strategies employed for finding the optimal γ for each α. The influence of these two parameters on the structural, electronic, and magnetic properties of CoPc is thoroughly investigated. The electronic structure is found to be very sensitive to the amount and range in which the exact exchange is included. The electronic structure obtained using the optimal parameters is compared to gas-phase photo-electron data and GW calculations, with the unoccupied states additionally compared with inverse photo-electron spectroscopy measurements. The calculated spectrum with tuned γ, determined for the optimal value of α = 0.1, yields a very good agreement with both experimental results and with GW calculations that well-reproduce the experimental data.

  8. Internal structure of InP/ZnS nanocrystals unraveled by high-resolution soft X-ray photoelectron spectroscopy.

    PubMed

    Huang, Kai; Demadrille, Renaud; Silly, Mathieu G; Sirotti, Fausto; Reiss, Peter; Renault, Olivier

    2010-08-24

    High-energy resolution photoelectron spectroscopy (DeltaE < 200 meV) is used to investigate the internal structure of semiconductor quantum dots containing low Z-contrast elements. In InP/ZnS core/shell nanocrystals synthesized using a single-step procedure (core and shell precursors added at the same time), a homogeneously alloyed InPZnS core structure is evidenced by quantitative analysis of their In3d(5/2) spectra recorded at variable excitation energy. When using a two-step method (core InP nanocrystal synthesis followed by subsequent ZnS shell growth), XPS analysis reveals a graded core/shell interface. We demonstrate the existence of In-S and S(x)-In-P(1-x) bonding states in both types of InP/ZnS nanocrystals, which allows a refined view on the underlying reaction mechanisms.

  9. Quantifying the Impact of Nanoparticle Coatings and Non-uniformities on XPS Analysis: Gold/silver Core-shell Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yung-Chen Andrew; Engelhard, Mark H.; Baer, Donald R.

    2016-03-07

    Abstract or short description: Spectral modeling of photoelectrons can serve as a valuable tool when combined with X-ray photoelectron spectroscopy (XPS) analysis. Herein, a new version of the NIST Simulation of Electron Spectra for Surface Analysis (SESSA 2.0) software, capable of directly simulating spherical multilayer NPs, was applied to model citrate stabilized Au/Ag-core/shell nanoparticles (NPs). The NPs were characterized using XPS and scanning transmission electron microscopy (STEM) to determine the composition and morphology of the NPs. The Au/Ag-core/shell NPs were observed to be polydispersed in size, non-circular, and contain off-centered Au-cores. Using the average NP dimensions determined from STEM analysis,more » SESSA spectral modeling indicated that washed Au/Ag-core shell NPs were stabilized with a 0.8 nm l« less

  10. Postcollision interactions in the Auger decay of the Ar L-shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, J.A.R.; Stolte, W.C.; He, Z.X.

    1997-04-01

    The photoionization cross sections for Ar{sup +} through Ar{sup 4+}, produced by the Auger decay of an inner shell 2p hole, have been measured between 242 eV and 253 eV on beamline 9.0.1 and 6.3.2. In this study the authors are interested in near threshold phenomenon involving postcollision interactions (PCI), which are related to the Auger decay of a vacancy in the Ar L-shell. During an Auger decay a postcollision interaction can occur causing the out-going photoelectron to be retarded thus losing a certain amount of energy. If the retardation is sufficiently large the photoelectron will not escape. This resultmore » produces a singly charged ion, which normally would not be present. Such evidence of electron capture by the PCI effect was first shown clearly by Eberhardt et al. and, with higher resolution, in the present work. However, capture of the photoelectron is expected to be 100% exactly at the L{sub 2,3} thresholds. Thus, from the authors results they would have expected the Ar{sup 2+} signal to be zero at threshold, but it was not? The authors can explain this anomoly on the basis that during the Auger decay the photoelectrons are captured into high lying excited states of Ar{sup +}, which subsequently decay through autoionization yielding Ar{sup 2+}. Future work in this area will seek experimental evidence to verify this prediction.« less

  11. Hexakis(3,6-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)cyclohexane: Closed-shell [6]Radialene or Open-shell Hexa-radicaloid?

    PubMed

    Wu, Jishan; Feng, Jiaqi; Gopalakrishna, Tullimilli Y; Phan, Hoa

    2018-04-19

    We report a star-shaped hexaquinocyclohexane molecule 4c, which turns out to be a closed-shell extended [6]radialene with a twisted-boat conformation according to X-ray crystallographic analysis. It was formed by an unusually slow decay of its in situ generated open-shell valence isomer, the hexa-radicaloid 4o, with a half-life time of about 156 min at room temperature. Reaction progress kinetic analysis revealed a large energy barrier of about 95.5 ± 4.3 kJ/mol at room temperature from the hexa-radical form 4o to the contorted [6]radialene form 4c, because the transformation need overcome large steric repulsion between the neighbouring phenoxyl units. Compound 4c can be chemically reduced to radical anion and dianion, and the dianion is actually a diradical dianion, with a calculated diradical character of 71.9%. This study demonstrated the unique chemical bonding nature of contorted quinoidal π-conjugated molecules and a very unusual valence isomerization process. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bulk electronic structure of non-centrosymmetric EuTGe 3 (T=Co, Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    DOE PAGES

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemys?aw; ...

    2018-03-15

    Non-centrosymmetric EuTGe 3 ( T = Co, Ni, Rh, and Ir) possesses magnetic Eu 2+ ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge 3 ( T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core-level spectrum confirms the robust Eu 2+ valence state against the transition-metal substitutionmore » with a small contribution from Eu 3+ . The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon cha nging the transition metal from 3d to 4d to 5d elements, hinting at a change in the Ge- T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.« less

  13. Bulk electronic structure of non-centrosymmetric EuTGe 3 (T=Co, Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemys?aw

    Non-centrosymmetric EuTGe 3 ( T = Co, Ni, Rh, and Ir) possesses magnetic Eu 2+ ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge 3 ( T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core-level spectrum confirms the robust Eu 2+ valence state against the transition-metal substitutionmore » with a small contribution from Eu 3+ . The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon cha nging the transition metal from 3d to 4d to 5d elements, hinting at a change in the Ge- T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.« less

  14. Electronic structure of β-Ga2O3 single crystals investigated by hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Guo-Ling; Zhang, Fabi; Cui, Yi-Tao; Oji, Hiroshi; Son, Jin-Young; Guo, Qixin

    2015-07-01

    By combination of hard X-ray photoelectron spectroscopy (HAXPES) and first-principles band structure calculations, the electronic states of β-Ga2O3 were investigated to deepen the understanding of bulk information for this compound. The valence band spectra of HAXPES presented the main contribution from Ga 4sp, which are well represented by photoionization cross section weighted partial density of states. The experimental data complemented with the theoretical study yield a realistic picture of the electronic structure for β-Ga2O3.

  15. Bulk electronic structure of non-centrosymmetric Eu T Ge3 (T =Co , Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemysław; Bednarchuk, Oleksandr; Kaczorowski, Dariusz; Ablett, James M.; Rueff, Jean-Pascal

    2018-03-01

    Non-centrosymmetric Eu T Ge3 (T = Co, Ni, Rh, and Ir) possesses magnetic Eu2 + ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge3 (T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3 d core-level spectrum confirms the robust Eu2 + valence state against the transition-metal substitution with a small contribution from Eu3 +. The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2 p spectrum shifts to higher binding energy upon changing the transition metal from 3 d to 4 d to 5 d elements, hinting at a change in the Ge-T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.

  16. Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles.

    PubMed

    Axnanda, Stephanus; Scheele, Marcus; Crumlin, Ethan; Mao, Baohua; Chang, Rui; Rani, Sana; Faiz, Mohamed; Wang, Suidong; Alivisatos, A Paul; Liu, Zhi

    2013-01-01

    Work function is a fundamental property of a material's surface. It is playing an ever more important role in engineering new energy materials and efficient energy devices, especially in the field of photovoltaic devices, catalysis, semiconductor heterojunctions, nanotechnology, and electrochemistry. Using ambient pressure X-ray photoelectron spectroscopy (APXPS), we have measured the binding energies of core level photoelectrons of Ar gas in the vicinity of several reference materials with known work functions (Au(111), Pt(111), graphite) and PbS nanoparticles. We demonstrate an unambiguously negative correlation between the work functions of reference samples and the binding energies of Ar 2p core level photoelectrons detected from the Ar gas near the sample surface region. Using this experimentally determined linear relationship between the surface work function and Ar gas core level photoelectron binding energy, we can measure the surface work function of different materials under different gas environments. To demonstrate the potential applications of this ambient pressure XPS technique in nanotechnology and solar energy research, we investigate the work functions of PbS nanoparticles with various capping ligands: methoxide, mercaptopropionic acid, and ethanedithiol. Significant Fermi level position changes are observed for PbS nanoparticles when the nanoparticle size and capping ligands are varied. The corresponding changes in the valence band maximum illustrate that an efficient quantum dot solar cell design has to take into account the electrochemical effect of the capping ligand as well.

  17. Resource Letter NSM-1: New insights into the nuclear shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, David Jarvis; Hamilton, J. H.

    2011-01-01

    This Resource Letter provides a guide to the literature on the spherical shell model as applied to nuclei. The nuclear shell model describes the structure of nuclei starting with a nuclear core developed by the classical neutron and proton magic numbers N,Z=2,8,20,28,50,82, 126, where gaps occur in the single-particle energies as a shell is filled, and the interactions of valence nucleons that reside beyond that core. Various modern extensions of this model for spherical nuclei are likewise described. Significant extensions of the nuclear shell model include new magic numbers for spherical nuclei and now for deformed nuclei as well. Whenmore » both protons and neutrons have shell gaps at the same spherical or deformed shapes, they can reinforce each other to give added stability to that shape and lead to new magic numbers. The vanishings of the classical spherical shell model energy gaps and magic numbers in new neutron-rich nuclei are described. Spherical and deformed shell gaps are seen to be critical for the existence of elements with Z > 100.« less

  18. Shell Model Far From Stability: Island of Inversion Mergers

    NASA Astrophysics Data System (ADS)

    Nowacki, F.; Poves, A.

    2018-02-01

    In this study we propose a common mechanism for the disappearance of shell closures far from stabilty. With the use of Large Scale Shell Model calculations (SM-CI), we predict that the region of deformation which comprises the heaviest Chromium and Iron isotopes at and beyond N=40 will merge with a new one at N=50 in an astonishing parallel to the N=20 and N=28 case in the Neon and Magnesium isotopes. We propose a valence space including the full pf-shell for the protons and the full sdg shell for the neutrons, which represents a come-back of the the harmonic oscillator shells in the very neutron rich regime. Our calculations preserve the doubly magic nature of the ground state of 78Ni, which, however, exhibits a well deformed prolate band at low excitation energy, providing a striking example of shape coexistence far from stability. This new Island of Inversion (IoI) adds to the four well documented ones at N=8, 20, 28 and 40.

  19. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules.

    PubMed

    Ganesan, Aravindhan; Wang, Feng; Falzon, Chantal

    2011-02-01

    Intramolecular interactions between fragments of L-phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L-phenylalanine, benzene and L-alanine are studied using density functional theory methods. While fully resolved experimental PES of L-phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e(1g) and 1a(2u) orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L-phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14-20 eV, rather than outside of this region. This study presents a competent orbital based fragments-in-molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D-PDF technique. Copyright © 2010 Wiley Periodicals, Inc.

  20. X-ray photoelectron spectroscopy study of chemically-etched Nd-Ce-Cu-O surfaces

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Gupta, A.; Kussmaul, A.

    1991-01-01

    Acetic acid, Br2, and HCl solutions are investigated for removing insulating species from Nd(1.85)Ce(0.15)CuO(4-delta) (NCCO) thin film surfaces. X-ray photoelectron spectroscopy (XPS) shows that the HCl etch is most effective, yielding O 1s spectra comparable to those obtained from samples cleaned in vacuum and a clear Fermi edge in the valence band region. Reduction and oxidation reversibly induces and eliminates, respectively, Fermi level states for undoped samples, but has no clearly observable effect on the XPS spectra for doped samples. Reactivity to air is much less for NCCO compared to hole superconductors, which is attributed to the lack of reactive alkaline earth elements in NCCO.

  1. Room-temperature ferromagnetic Cr-doped Ge/GeOx core-shell nanowires.

    PubMed

    Katkar, Amar S; Gupta, Shobhnath P; Seikh, Md Motin; Chen, Lih-Juann; Walke, Pravin S

    2018-06-08

    The Cr-doped tunable thickness core-shell Ge/GeO x nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr 3+ in core-shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core-shell thickness and intriguing room temperature ferromagnetism is realized only in core-shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (T C  > 300 K) with the dominating values of its magnetic remanence (M R ) and coercivity (H C ) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeO X core-shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  2. Room-temperature ferromagnetic Cr-doped Ge/GeOx core–shell nanowires

    NASA Astrophysics Data System (ADS)

    Katkar, Amar S.; Gupta, Shobhnath P.; Motin Seikh, Md; Chen, Lih-Juann; Walke, Pravin S.

    2018-06-01

    The Cr-doped tunable thickness core–shell Ge/GeOx nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr3+ in core–shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core–shell thickness and intriguing room temperature ferromagnetism is realized only in core–shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (TC > 300 K) with the dominating values of its magnetic remanence (MR) and coercivity (HC) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeOX core–shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  3. Valence band offsets of Sc x Ga1-x N/AlN and Sc x Ga1-x N/GaN heterojunctions

    NASA Astrophysics Data System (ADS)

    Tsui, H. C. L.; Goff, L. E.; Palgrave, R. G.; Beere, H. E.; Farrer, I.; Ritchie, D. A.; Moram, M. A.

    2016-07-01

    The valence band offsets of Sc x Ga1-x N/AlN heterojunctions were measured by x-ray photoelectron spectroscopy (XPS) and were found to increase from 0.42 eV to 0.95 eV as the Sc content x increased from 0 to 0.15. The increase in valence band offset with increasing x is attributed to the corresponding increase in spontaneous polarization of the wurtzite structure. The Sc x Ga1-x N/AlN heterojunction is type I, similar to other III-nitride-based heterojunctions. The data also indicate that a type II staggered heterojunction, which can enhance spatial charge separation, could be formed if Sc x Ga1-x N is grown on GaN.

  4. Polarity determination of polar and semipolar (112¯2) InN and GaN layers by valence band photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Skuridina, D.; Dinh, D. V.; Lacroix, B.; Ruterana, P.; Hoffmann, M.; Sitar, Z.; Pristovsek, M.; Kneissl, M.; Vogt, P.

    2013-11-01

    We demonstrate that the polarity of polar (0001), (0001¯) and semipolar (112¯2) InN and GaN thin layers can be determined by valence band X-ray photoemission spectroscopy (XPS). The polarity of the layers has been confirmed by wet etching and convergent beam electron diffraction. Unlike these two techniques, XPS is a non-destructive method and unaffected by surface oxidation or roughness. Different intensities of the valence band states in spectra recorded by using AlKα X-ray radiation are observed for N-polar and group-III-polar layers. The highest intensity of the valence band state at ≈3.5 eV for InN and ≈5.2 eV for GaN correlates with the group-III polarity, while the highest intensity at ≈6.7 eV for InN and ≈9.5 eV for GaN correlates with the N-polarity. The difference between the peaks for the group-III- and N-polar orientations was found to be statistically significant at the 0.05 significance level. The polarity of semipolar (112¯2) InN and GaN layers can be determined by recording valence band photoelectrons emitted along the [000 ± 1] direction.

  5. Structures of cycloserine and 2-oxazolidinone probed by X-ray photoelectron spectroscopy: theory and experiment.

    PubMed

    Ahmed, Marawan; Wang, Feng; Acres, Robert G; Prince, Kevin C

    2014-05-22

    The electronic structures and properties of 2-oxazolidinone and the related compound cycloserine (CS) have been investigated using theoretical calculations and core and valence photoelectron spectroscopy. Isomerization of the central oxazolidine heterocycle and the addition of an amino group yield cycloserine. Theory correctly predicts the C, N, and O 1s core spectra, and additionally, we report theoretical natural bond orbital (NBO) charges. The valence ionization energies are also in agreement with theory and previous measurements. Although the lowest binding energy part of the spectra of the two compounds shows superficial similarities, further analysis of the charge densities of the frontier orbitals indicates substantial reorganization of the wave functions as a result of isomerization. The highest occupied molecular orbital (HOMO) of CS shows leading carbonyl π character with contributions from other heavy (non-H) atoms in the molecule, while the HOMO of 2-oxazolidinone (OX2) has leading nitrogen, carbon, and oxygen pπ characters. The present study further theoretically predicts bond resonance effects of the compounds, evidence for which is provided by our experimental measurements and published crystallographic data.

  6. Evaluation of band alignment of α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterostructures by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Uchida, Takayuki; Jinno, Riena; Takemoto, Shu; Kaneko, Kentaro; Fujita, Shizuo

    2018-04-01

    The band alignment at an α-Ga2O3/α-(Al x Ga1‑ x )2O3 heterointerface, with different Al compositions (x), grown on a c-plane sapphire substrate was evaluated by X-ray photoelectron spectroscopy. The experimental results show that the heterointerface has the type-I band discontinuity with the valence band offsets of 0.090, 0.12, and 0.14 eV, and the conduction band offsets of 0.34, 0.79, and 1.87 eV, for x values of 0.1, 0.4, and 0.8, respectively. The small band offset for the valence band is attributed to the fact that the valence band of oxides is constituted by the localized O 2p level, which is dominated by the nature of oxygen atoms. The type-I band discontinuity is desirable for a variety of heterostructure devices.

  7. Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations of ethyl acetate

    NASA Astrophysics Data System (ADS)

    Śmialek, Malgorzata A.; Łabuda, Marta; Guthmuller, Julien; Hubin-Franskin, Marie-Jeanne; Delwiche, Jacques; Hoffmann, Søren Vrønning; Jones, Nykola C.; Mason, Nigel J.; Limão-Vieira, Paulo

    2016-06-01

    The high-resolution vacuum ultraviolet photoabsorption spectrum of ethyl acetate, C4H8O2, is presented over the energy range 4.5-10.7 eV (275.5-116.0 nm). Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Also, the photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the upper stratosphere (20-50 km). Calculations have also been carried out to determine the ionisation energies and fine structure of the lowest ionic state of ethyl acetate and are compared with a newly recorded photoelectron spectrum (from 9.5 to 16.7 eV). Vibrational structure is observed in the first photoelectron band of this molecule for the first time.

  8. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Radu, T.; Iacovita, C.; Benea, D.; Turcu, R.

    2017-05-01

    We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe3O4) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe2O3 (by oxygen dissociation) which in turn was transformed into α-Fe2O3. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  9. Open sd-shell nuclei from first principles

    DOE PAGES

    Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; ...

    2016-07-05

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less

  10. Open sd-shell nuclei from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute

    We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less

  11. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Kamada, M.; Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K.

    2016-04-01

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4, m ≥ 3) orbitals. Resonant photoelectron spectra at S-L23 and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  12. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamada, M., E-mail: kamada@cc.saga-u.ac.jp; Hideshima, T.; Azuma, J.

    2016-04-15

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4,  m ≥ 3) orbitals. Resonant photoelectron spectra at S-L{sub 23} and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimesmore » of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.« less

  13. Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity.

    PubMed

    Huang, Bing; Hao, Xiaofei; Zhang, Haobin; Yang, Zhijian; Ma, Zhigang; Li, Hongzhen; Nie, Fude; Huang, Hui

    2014-07-01

    To improve the safety of sensitive explosive HMX while maintaining explosion performance, a moderately powerful but insensitive explosive TATB was used to coat HMX microparticles via a facile ultrasonic method. By using Estane as surface modifier and nano-sized TATB as the shell layer, the HMX@TATB core-shell microparticles with a monodisperse size and compact shell structure were successfully constructed. Both scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of perfect core-shell structured composites. Based on a systematic and comparative study of the effect of experimental conditions, a possible formation mechanism of core-shell structure was proposed in detail. Moreover, the perfect core-shell HMX@TATB microparticles exhibited a unique thermal behavior and significantly improved mechanical sensitivity compared with that of the physical mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Waltzing route toward double-helix formation in cholesteric shells

    NASA Astrophysics Data System (ADS)

    Darmon, Alexandre; Benzaquen, Michael; Seč, David; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa

    2016-08-01

    Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defects. Controlling the number of defects, that is, the shell valency, and their positions, is a key success factor for the realization of those materials. Liquid crystals with helical cholesteric order offer a promising, yet unexplored way of controlling the shell defect configuration. In this paper, we study cholesteric shells with monovalent and bivalent defect configurations. By bringing together experiments and numerical simulations, we show that the defects appearing in these two configurations have a complex inner structure, as recently reported for simulated droplets. Bivalent shells possess two highly structured defects, which are composed of a number of smaller defect rings that pile up through the shell. Monovalent shells have a single radial defect, which is composed of two nonsingular defect lines that wind around each other in a double-helix structure. The stability of the bivalent configuration against the monovalent one is controlled by c = h/p, where h is the shell thickness and p the cholesteric helical pitch. By playing with the shell geometry, we can trigger the transition between the two configurations. This transition involves a fascinating waltz dynamics, where the two defects come closer while turning around each other.

  15. Intermediate-valence state of the Sm and Eu in SmB6 and EuCu2Si2: neutron spectroscopy data and analysis

    NASA Astrophysics Data System (ADS)

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.; Kolesnikov, A. I.; Nemkovski, K. S.

    2018-02-01

    Magnetic neutron scattering data for Sm (SmB6, Sm(Y)S) and Eu (EuCu2Si2-x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion’s valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle of the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.

  16. Intermediate-valence state of the Sm and Eu in SmB 6 and EuCu 2 Si 2 : neutron spectroscopy data and analysis

    DOE PAGES

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.; ...

    2018-01-11

    For this study, magnetic neutron scattering data for Sm (SmB 6, Sm(Y)S) and Eu (EuCu 2Si 2- x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion's valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle ofmore » the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.« less

  17. Intermediate-valence state of the Sm and Eu in SmB 6 and EuCu 2 Si 2 : neutron spectroscopy data and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.

    For this study, magnetic neutron scattering data for Sm (SmB 6, Sm(Y)S) and Eu (EuCu 2Si 2- x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion's valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle ofmore » the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.« less

  18. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Donghwa; Lee, Youngu

    2015-03-24

    A copper nanowire-graphene (CuNW-G) core-shell nanostructure was successfully synthesized using a low-temperature plasma-enhanced chemical vapor deposition process at temperatures as low as 400 °C for the first time. The CuNW-G core-shell nanostructure was systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy measurements. A transparent conducting electrode (TCE) based on the CuNW-G core-shell nanostructure exhibited excellent optical and electrical properties compared to a conventional indium tin oxide TCE. Moreover, it showed remarkable thermal oxidation and chemical stability because of the tight encapsulation of the CuNW with gas-impermeable graphene shells. The potential suitability of CuNW-G TCE was demonstrated by fabricating bulk heterojunction polymer solar cells. We anticipate that the CuNW-G core-shell nanostructure can be used as an alternative to conventional TCE materials for emerging optoelectronic devices such as flexible solar cells, displays, and touch panels.

  19. X-ray photoelectron spectroscopy investigations of band offsets in Ga0.02Zn0.98O/ZnO heterojunction for UV photodetectors

    NASA Astrophysics Data System (ADS)

    Singh, Karmvir; Rawal, Ishpal; Punia, Rajesh; Dhar, Rakesh

    2017-10-01

    Here, we report the valence and conduction band offset measurements in pure ZnO and the Ga0.02Zn0.98O/ZnO heterojunction by X-Ray photoelectron spectroscopy studies for UV photodetector applications. For detailed investigations on the band offsets and UV photodetection behavior of Ga0.02Zn0.98O/ZnO heterostructures, thin films of pristine ZnO, Ga-doped ZnO (Ga0.02Zn0.98O), and heterostructures of Ga-doped ZnO with ZnO (Ga0.02Zn0.98O/ZnO) were deposited using a pulsed laser deposition technique. The deposited thin films were characterized by X-ray diffraction, atomic force microscopy, and UV-Vis spectroscopy. X-ray photoelectron spectroscopy studies were carried out on all the thin films for the investigation of valence and conduction band offsets. The valence band was found to be shifted by 0.28 eV, while the conduction band has a shifting of -0.272 eV in the Ga0.02Zn0.98O/ZnO heterojunction as compared to pristine ZnO thin films. All the three samples were analyzed for photoconduction behavior under UVA light of the intensity of 3.3 mW/cm2, and it was observed that the photoresponse of pristine ZnO (19.75%) was found to increase with 2 wt. % doping of Ga (22.62%) and heterostructured thin films (29.10%). The mechanism of UV photodetection in the deposited samples has been discussed in detail, and the interaction of chemisorbed oxygen on the ZnO surface with holes generated by UV light exposure has been the observed mechanism for the change in electrical conductivity responsible for UV photoresponse on the present deposited ZnO films.

  20. A Multidimensional Measure of Work Valences

    ERIC Educational Resources Information Center

    Porfeli, Erik J.; Lee, Bora; Weigold, Ingrid K.

    2012-01-01

    Work valence is derived from expectancy-valence theory and the literature on children's vocational development and is presumed to be a general appraisal of work that emerges during the childhood period. Work valence serves to promote and inhibit the motivation and tasks associated with vocational development. A measure of work valence, composed of…

  1. Calculation of photoelectron spectra of molybdenum and tungsten complexes using Green's functions methods.

    PubMed

    Bayse, Craig A; Ortwine, Kristine N

    2007-08-16

    Green's functions calculations are presented for several complexes of molybdenum and tungsten, two metals that are similar structurally but display subtle, but significant, differences in electronic structure. Outer valence Green's functions IPs for M(CO)6, M(Me)6, MH6, [MCl4O](-), and [MO4](-) (M = Mo, W) are generally within +/-0.2 eV of available experimental photoelectron spectra. The calculations show that electrons in M-L bonding orbitals are ejected at lower energies for Mo while the detachment energy for electrons in d orbitals varies with metal and complex. For the metal carbonyls, the quasiparticle picture assumed in OVGF breaks down for the inner valence pi CO molecular orbitals due to the coupling of two-hole-one-particle charge transfer states to the one-hole states. Incorporation of the 2h1p states through a Tamm-Dancoff approximation calculation accurately represents the band due to detachment from these molecular orbitals. Though the ordering of IPs for Green's functions methods and DFT Koopmans' theorem IPs is similar for the highest IPs for most compounds considered, the breakdown of the quasiparticle picture for the metal carbonyls suggests that scaling of the latter values may result in a fortuitous or incorrect assignment of experimental VDEs.

  2. Isobutyl acetate: electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Śmiałek, Malgorzata A.; Łabuda, Marta; Hubin-Franskin, Marie-Jeanne; Delwiche, Jacques; Hoffmann, Søren Vrønning; Jones, Nykola C.; Mason, Nigel J.; Limão-Vieira, Paulo

    2017-05-01

    The high-resolution vacuum ultraviolet photoabsorption spectrum of isobutyl acetate, C6H12O2, is presented here and was measured over the energy range 4.3-10.8 eV (290-115 nm). Valence and Rydberg transitions with their associated vibronic series have been observed in the photoabsorption spectrum and are assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. The measured photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the Earth's upper atmosphere (20-50 km). Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl acetate and are compared with a photoelectron spectrum (from 9.5 to 16.7 eV), recorded for the first time. Vibrational structure is observed in the first photoelectron band of this molecule. Contribution to the Topical Issue: "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  3. Photoelectron spectroscopy study on Li substituted NiO using PES beamline installed on Indus-1

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Chaudhari, S. M.; Phase, D. M.; Dasannacharya, B. A.

    2003-01-01

    Photoelectron spectroscopy beamline based on a toroidal grating monochromator (TGM) is recently commissioned on Indus-1 storage ring. It has been used to carry out valence band photoemission study of Li substituted NiO. In this paper initially a brief description of the beamline components and the experimental station for angle integrated photoemission experiment is presented. The later part of this paper is devoted to studies carried out on Li xNi 1- xO with x=0.0, 0.35 and 0.5 samples. Thin pellets of polycrystalline samples were used for the measurements reported here. Valence band spectra recorded on polycrystalline Li xNi 1- xO samples show drastic changes in various features as compared to that of pure NiO. The prominent changes are: (i) change in the relative contributions of Ni-3d and O-2p emissions, (ii) change in the peak position of Ni-3d from the top of the valance band of NiO and (iii) no noticeable change in the Ni satellite peak. These results are evaluated in terms of earlier findings in pure and low Li doped NiO.

  4. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection.

    PubMed

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO(2)@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC(3)H(7))(4)] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO(2) shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO(2) coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors. © The Royal Society of Chemistry 2011

  5. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection

    NASA Astrophysics Data System (ADS)

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO2@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC3H7)4] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO2 shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO2 coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors.

  6. Identification of metal s states in Sn-doped anatase by polarisation dependent hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Regoutz, A.; Oropeza, F. E.; Poll, C. G.; Payne, D. J.; Palgrave, R. G.; Panaccione, G.; Borgatti, F.; Agrestini, S.; Utsumi, Y.; Tsuei, K. D.; Liao, Y. F.; Watson, G. W.; Egdell, R. G.

    2016-03-01

    The contributions of Sn 5s and Ti 4s states to the valence band electronic structure of Sn-doped anatase have been identified by hard X-ray photoelectron spectroscopy. The metal s state intensity is strongly enhanced relative to that of O 2p states at high photon energies due to matrix element effects when electrons are detected parallel to the direction of the polarisation vector of the synchrotron beam, but becomes negligible in the perpendicular direction. The experimental spectra in both polarisations are in good agreement with cross section and asymmetry parameter weighted partial densities of states derived from density functional theory calculations.

  7. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study.

    PubMed

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-28

    The propensity of four representative conformations of 2(')-deoxyadenosine-5(')-monophosphate (5(')-dAMPH) to bind an excess electron has been studied at the B3LYP6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5(')-dAMPH form adiabatically stable anions. The type of an anionic 5(')-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4(')-C5(') bond. The adiabatic electron affinity of the a_south-syn anion is 1.19 eV, while its vertical detachment energy is 1.89 eV. Our results are compared with the photoelectron spectrum (PES) of 5(')-dAMPH(-) measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  8. Bistable mixed-valence molecular architectures for bit storage

    NASA Astrophysics Data System (ADS)

    Guihery, Nathalie; Durand, Gérard; Lepetit, Marie-Bernadette

    1994-05-01

    The work examines the possible realization of bit storage at the molecular scale using mixed valence compounds i.e. the existence of two stable and degenerate forms associated with the 0 and 1 positions of the bit. The proposed systems are constituted of two donors (D) and acceptor (A), or one donor and two acceptors, juxtaposed in DAD or ADA architectures. Our proposals take advantage of the possibility of donor—acceptor complexes to exhibit either complete or partial charge transfer. The first system we propose has an essentially neutral ground state. However, the potential energy surface (PES) presents two degenerated minima associated with a partial charge transfer between the donor and one of the two acceptor molecules (A δ-D δ+1 A and AD δ+ A δ-). Systems presenting a complete charge transfer give rise to two stable, weakly coupled, and degenerate ionic electronic states, A - A + A and AD + A - for an ADA architecture and D + A -D and DA -D + for a DAD In these cases, the two forms differ by both their intramolecular geometries and the relative positions of their constituents. It seems rather difficult to conceive such bistable molecular systems using closed-shell molecules, while a donor radical and a closed-shell acceptor or an acceptor radical and closed-shell donor can generate very stable ionic states. It is assumed that the relative positions of the donor and acceptor molecules can be fixed using chemical bridges constituted of rigid or flexible ligands. The writing and reading processes are discussed for each system as well as the information stability when a large number of bits are juxtaposed on a surface.

  9. Accurate quasiparticle calculation of x-ray photoelectron spectra of solids

    NASA Astrophysics Data System (ADS)

    Aoki, Tsubasa; Ohno, Kaoru

    2018-05-01

    It has been highly desired to provide an accurate and reliable method to calculate core electron binding energies (CEBEs) of crystals and to understand the final state screening effect on a core hole in high resolution x-ray photoelectron spectroscopy (XPS), because the ΔSCF method cannot be simply used for bulk systems. We propose to use the quasiparticle calculation based on many-body perturbation theory for this problem. In this study, CEBEs of band-gapped crystals, silicon, diamond, β-SiC, BN, and AlP, are investigated by means of the GW approximation (GWA) using the full ω integration and compared with the preexisting XPS data. The screening effect on a deep core hole is also investigated in detail by evaluating the relaxation energy (RE) from the core and valence contributions separately. Calculated results show that not only the valence electrons but also the core electrons have an important contribution to the RE, and the GWA have a tendency to underestimate CEBEs due to the excess RE. This underestimation can be improved by introducing the self-screening correction to the GWA. The resulting C1s, B1s, N1s, Si2p, and Al2p CEBEs are in excellent agreement with the experiments within 1 eV absolute error range. The present self-screening corrected GW approach has the capability to achieve the highly accurate prediction of CEBEs without any empirical parameter for band-gapped crystals, and provide a more reliable theoretical approach than the conventional ΔSCF-DFT method.

  10. Accurate quasiparticle calculation of x-ray photoelectron spectra of solids.

    PubMed

    Aoki, Tsubasa; Ohno, Kaoru

    2018-05-31

    It has been highly desired to provide an accurate and reliable method to calculate core electron binding energies (CEBEs) of crystals and to understand the final state screening effect on a core hole in high resolution x-ray photoelectron spectroscopy (XPS), because the ΔSCF method cannot be simply used for bulk systems. We propose to use the quasiparticle calculation based on many-body perturbation theory for this problem. In this study, CEBEs of band-gapped crystals, silicon, diamond, β-SiC, BN, and AlP, are investigated by means of the GW approximation (GWA) using the full ω integration and compared with the preexisting XPS data. The screening effect on a deep core hole is also investigated in detail by evaluating the relaxation energy (RE) from the core and valence contributions separately. Calculated results show that not only the valence electrons but also the core electrons have an important contribution to the RE, and the GWA have a tendency to underestimate CEBEs due to the excess RE. This underestimation can be improved by introducing the self-screening correction to the GWA. The resulting C1s, B1s, N1s, Si2p, and Al2p CEBEs are in excellent agreement with the experiments within 1 eV absolute error range. The present self-screening corrected GW approach has the capability to achieve the highly accurate prediction of CEBEs without any empirical parameter for band-gapped crystals, and provide a more reliable theoretical approach than the conventional ΔSCF-DFT method.

  11. CVD graphene sheets electrochemically decorated with "core-shell" Co/CoO nanoparticles

    NASA Astrophysics Data System (ADS)

    Bayev, V. G.; Fedotova, J. A.; Kasiuk, J. V.; Vorobyova, S. A.; Sohor, A. A.; Komissarov, I. V.; Kovalchuk, N. G.; Prischepa, S. L.; Kargin, N. I.; Andrulevičius, M.; Przewoznik, J.; Kapusta, Cz.; Ivashkevich, O. A.; Tyutyunnikov, S. I.; Kolobylina, N. N.; Guryeva, P. V.

    2018-05-01

    The paper reports on the first successful fabrication of Co-graphene composites by electrochemical deposition of Co nanoparticles (NPs) on the sheets of twisted graphene. Characterization of the surface morphology and element mapping of twisted graphene decorated with Co NPs by transmission and scanning electron microscopy in combination with the energy-dispersive X-ray spectroscopy reveals the formation of isolated quasi-spherical oxidized Co NPs with the mean diameter 〈 d〉 ≈ 220 nm and core-shell structure. X-ray photoelectron spectroscopy indicates that the core of deposited NPs consists of metal Co while the shell is CoO. Composite Co-graphene samples containing core-shell NPs reveal an exchange bias field up to 160 Oe at 4 K as detected by vibrating sample magnetometry after the field cooling procedure.

  12. The valence bond glass phase

    NASA Astrophysics Data System (ADS)

    Tarzia, M.; Biroli, G.

    2008-06-01

    We show that a new glassy phase can emerge in the presence of strong magnetic frustration and quantum fluctuations. It is a valence bond glass (VBG). We study its properties solving the Hubbard-Heisenberg model on a Bethe lattice within the large-N limit introduced by Affleck and Marston. We work out the phase diagram that contains Fermi liquid, dimer and valence bond glass phases. This new glassy phase has no electronic or spin gap (although a pseudo-gap is observed), it is characterized by long-range critical valence bond correlations and is not related to any magnetic ordering. As a consequence, it is quite different from both valence bond crystals and spin glasses.

  13. Elucidating the electronic structure of supported gold nanoparticles and its relevance to catalysis by means of hard X-ray photoelectron spectroscopy

    DOE PAGES

    Reinecke, Benjamin N.; Kuhl, Kendra P.; Ogasawara, Hirohito; ...

    2015-12-31

    We report on the electronic structure of Au (gold) nanoparticles supported onto TiO 2 with a goal of elucidating the most important effects that contribute to their high catalytic activity. We synthesize and characterize with high resolution transmission electron microscopy (HRTEM) 3.4, 5.3, and 9.5 nm diameter TiO 2-supported Au nanoparticles with nearly spherical shape and measure their valence band using Au 5d subshell sensitive hard X-ray photoelectron spectroscopy (HAXPES) conducted at Spring-8. Based on density functional theory (DFT) calculations of various Au surface structures, we interpret the observed changes in the Au 5d valence band structure as a functionmore » of size in terms of an increasing percentage of Au atoms at corners/edges for decreasing particle size. Finally, this work elucidates how Au coordination number impacts the electronic structure of Au nanoparticles, ultimately giving rise to their well-known catalytic activity.« less

  14. Subliminal Affect Valence Words Change Conscious Mood Potency but Not Valence: Is This Evidence for Unconscious Valence Affect?

    PubMed Central

    Shevrin, Howard; Panksepp, Jaak; Brakel, Linda A. W.; Snodgrass, Michael

    2012-01-01

    Whether or not affect can be unconscious remains controversial. Research claiming to demonstrate unconscious affect fails to establish clearly unconscious stimulus conditions. The few investigations that have established unconscious conditions fail to rule out conscious affect changes. We report two studies in which unconscious stimulus conditions were met and conscious mood changes measured. The subliminal stimuli were positive and negative affect words presented at the objective detection threshold; conscious mood changes were measured with standard manikin valence, potency, and arousal scales. We found and replicated that unconscious emotional stimuli produced conscious mood changes on the potency scale but not on the valence scale. Were positive and negative affects aroused unconsciously, but reflected consciously in potency changes? Or were the valence words unconscious cognitive causes of conscious mood changes being activated without unconscious affect? A thought experiment is offered as a way to resolve this dilemma. PMID:24961258

  15. Inner-shell excitation and ionic fragmentation of molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, A.P.; Tyliszczak, T.; Cavell, R.G.

    1997-04-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can revealmore » cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF{sub 6} and CO{sub 2}. Their work is illustrated using results from the carborane and PF{sub 3} studies.« less

  16. Structure of neutron-rich nuclei around the N = 50 shell-gap closure

    NASA Astrophysics Data System (ADS)

    Faul, T.; Duchêne, G.; Thomas, J.-C.; Nowacki, F.; Huyse, M.; Van Duppen, P.

    2010-04-01

    The structure of neutron-rich nuclei in the vicinity of 78Ni have been investigated via the β-decay of 71,73,75Cu isotopes (ISOLDE, CERN). Experimental results have been compared with shell-model calculations performed with the ANTOINE code using a large (2p3/21f5/22p1/21g9/2) valence space and a 56/28Ni28 core.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCurdy, C. W.; Rescigno, T. N.; Trevisan, C. S.

    A dramatic symmetry breaking in K-shell photoionization of the CF 4 molecule in which a core-hole vacancy is created in one of four equivalent fluorine atoms is displayed in the molecular frame angular distribution of the photoelectrons. In observing the photoejected electron in coincidence with an F + atomic ion after Auger decay we see how selecting the dissociation path where the core hole was localized was almost exclusively on that atom. A combination of measurements and ab initio calculations of the photoelectron angular distribution in the frame of the recoiling CF 3 + and F + atoms elucidates themore » underlying physics that derives from the Ne-like valence structure of the F(1s -1) core-excited atom.« less

  18. Valence Band Control of Metal Silicide Films via Stoichiometry.

    PubMed

    Streller, Frank; Qi, Yubo; Yang, Jing; Mangolini, Filippo; Rappe, Andrew M; Carpick, Robert W

    2016-07-07

    The unique electronic and mechanical properties of metal silicide films render them interesting for advanced materials in plasmonic devices, batteries, field-emitters, thermoelectric devices, transistors, and nanoelectromechanical switches. However, enabling their use requires precisely controlling their electronic structure. Using platinum silicide (PtxSi) as a model silicide, we demonstrate that the electronic structure of PtxSi thin films (1 ≤ x ≤ 3) can be tuned between metallic and semimetallic by changing the stoichiometry. Increasing the silicon content in PtxSi decreases the carrier density according to valence band X-ray photoelectron spectroscopy and theoretical density of states (DOS) calculations. Among all PtxSi phases, Pt3Si offers the highest DOS due to the modest shift of the Pt5d manifold away from the Fermi edge by only 0.5 eV compared to Pt, rendering it promising for applications. These results, demonstrating tunability of the electronic structure of thin metal silicide films, suggest that metal silicides can be designed to achieve application-specific electronic properties.

  19. Study of space charge layer in silver bromide microcrystals by means of ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Inami, Yoshiyasu

    2000-09-01

    Ultraviolet photoelectron spectroscopy has been successfully used to measure the heights of the tops of the valence bands of the surfaces of AgBr layers on Ag substrates for the verification of the space charge layer model. According to this model, the positive space charge layer (composed of negative charges with excess negative kink sites on the surface and corresponding positive charges with interstitial silver ions in the interior) is formed in silver halides, causing the difference in the electronic energy levels between their surface and interior. The depression of the positive space charge layer of AgBr caused by such adsorbates as photographic stabilizers and antifoggants was estimated from the decrease in the ionic conductivity of cubic AgBr microcrystals by the adsorbates. It was confirmed by the decrease in the heights of the tops of the valence bands of the surfaces of AgBr layers caused by the adsorbates in the presence of thin gelatin membranes on their surfaces. This result provided the explanation for the fact that the adsorbates increased the number of the microcrystals which formed latent image centers on the surface and decreased the number of the microcrystals, which formed latent image centers in the interior.

  20. From stable divalent to valence-fluctuating behaviour in Eu(Rh1-xIrx)2Si2 single crystals

    NASA Astrophysics Data System (ADS)

    Seiro, Silvia; Geibel, Christoph

    2011-09-01

    We have succeeded in growing high-quality single crystals of the valence-fluctuating system EuIr2Si2, the divalent Eu system EuRh2Si2 and the substitutional alloy Eu(Rh1-xIrx)2Si2 across the range 0 < x < 1, which we characterized by means of x-ray diffraction, energy-dispersive x-ray spectroscopy, specific heat, magnetization and resistivity measurements. On increasing x, the divalent Eu ground state subsists up to x = 0.25 with a slight increase in Néel temperature, while for 0.3≤x < 0.7 a sharp hysteretic change in susceptibility and resistivity marks the first-order valence transition. For x≳0.7 the broad feature observed in the physical properties is characteristic of the continuous valence evolution beyond the critical end point of the valence transition line, and the resistivity is reminiscent of Kondo-like behaviour while the Sommerfeld coefficient indicates a mass renormalization of at least a factor of 8. The resulting phase diagram is similar to those reported for polycrystalline Eu(Pd1-xAux)2Si2 and EuNi2(Si1-xGex)2, confirming its generic character for Eu systems, and markedly different to those of homologue Ce and Yb systems, which present a continuous suppression of the antiferromagnetism accompanied by a very smooth evolution of the valence. We discuss these differences and suggest them to be related to the large polarization energy of the Eu half-filled 4f shell. We further argue that the changes in the rare earth valence between RRh2Si2 and RIr2Si2 (R = Ce, Eu, Yb) are governed by a purely electronic effect and not by a volume effect.

  1. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study

    NASA Astrophysics Data System (ADS)

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-01

    The propensity of four representative conformations of 2'-deoxyadenosine-5'-monophosphate (5'-dAMPH) to bind an excess electron has been studied at the B3LYP /6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5'-dAMPH form adiabatically stable anions. The type of an anionic 5'-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4'-C5' bond. The adiabatic electron affinity of the a&barbelow;south-syn anion is 1.19eV, while its vertical detachment energy is 1.89eV. Our results are compared with the photoelectron spectrum (PES) of 5'-dAMPH- measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  2. Simultaneous conditioning of valence and arousal.

    PubMed

    Gawronski, Bertram; Mitchell, Derek G V

    2014-01-01

    Evaluative conditioning (EC) refers to the change in the valence of a conditioned stimulus (CS) due to its pairing with a positive or negative unconditioned stimulus (US). To the extent that core affect can be characterised by the two dimensions of valence and arousal, EC has important implications for the origin of affective responses. However, the distinction between valence and arousal is rarely considered in research on EC or conditioned responses more generally. Measuring the subjective feelings elicited by a CS, the results from two experiments showed that (1) repeated pairings of a CS with a positive or negative US of either high or low arousal led to corresponding changes in both CS valence and CS arousal, (2) changes in CS arousal, but not changes in CS valence, were significantly related to recollective memory for CS-US pairings, (3) subsequent presentations of the CS without the US reduced the conditioned valence of the CS, with conditioned arousal being less susceptible to extinction and (4) EC effects were stronger for high arousal than low arousal USs. The results indicate that the conditioning of affective responses can occur simultaneously along two independent dimensions, supporting evidence in related areas that calls for a consideration of both valence and arousal. Implications for research on EC and the acquisition of emotional dispositions are discussed.

  3. An explicitly spin-free compact open-shell coupled cluster theory using a multireference combinatoric exponential ansatz: formal development and pilot applications.

    PubMed

    Datta, Dipayan; Mukherjee, Debashis

    2009-07-28

    In this paper, we present a comprehensive account of an explicitly spin-free compact state-universal multireference coupled cluster (CC) formalism for computing the state energies of simple open-shell systems, e.g., doublets and biradicals, where the target open-shell states can be described by a few configuration state functions spanning a model space. The cluster operators in this formalism are defined in terms of the spin-free unitary generators with respect to the common closed-shell component of all model functions (core) as vacuum. The spin-free cluster operators are either closed-shell-like n hole-n particle excitations (denoted by T(mu)) or involve excitations from the doubly occupied (nonvalence) orbitals to the singly occupied (valence) orbitals (denoted by S(e)(mu)). In addition, there are cluster operators with exchange spectator scatterings involving the valence orbitals (denoted by S(re)(mu)). We propose a new multireference cluster expansion ansatz for the wave operator with the above generally noncommuting cluster operators which essentially has the same physical content as the Jeziorski-Monkhorst ansatz with the commuting cluster operators defined in the spin-orbital basis. The T(mu) operators in our ansatz are taken to commute with all other operators, while the S(e)(mu) and S(re)(mu) operators are allowed to contract among themselves through the spectator valence orbitals. An important innovation of this ansatz is the choice of an appropriate automorphic factor accompanying each contracted composite of cluster operators in order to ensure that each distinct excitation generated by this composite appears only once in the wave operator. The resulting CC equations consist of two types of terms: a "direct" term and a "normalization" term containing the effective Hamiltonian operator. It is emphasized that the direct term is almost quartic in the cluster amplitudes, barring only a handful of terms and termination of the normalization term depends on

  4. Development of magnetic luminescent core/shell nanocomplex particles with fluorescence using Rhodamine 6G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hee Uk; Song, Yoon Seok; Park, Chulhwan

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► A simple method was developed to synthesize Co-B/SiO{sub 2}/dye/SiO{sub 2} composite particles. ► The magnetic particle shows that highly luminescent and core/shell particles are formed. ► Such core/shell particles can be easily suspended in water. ► The magnetic particles could detect fluorescence for the application of biosensor. -- Abstract: A simple and reproducible method was developed to synthesize a novel class of Co-B/SiO{sub 2}/dye/SiO{sub 2} composite core/shell particles. Using a single cobalt core, Rhodamine 6G of organic dye molecules was entrapped in a silica shell, resulting in core/shell particles of ∼200 nm diameter. Analysesmore » using a variety of techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, vibration sample magnetometry, confocal laser scanning microscopy, and fluorescence intensity demonstrated that dye molecules were trapped inside the core/shell particles. A photoluminescence investigation showed that highly luminescent and photostable core/shell particles were formed. Such core/shell particles can be easily suspended in water. The synthesized magnetic particles could be used to detect fluorescence on glass substrate arrays for bioassay and biosensor applications.« less

  5. Size-selective breaking of the core-shell structure of gallium nanoparticles.

    PubMed

    Catalán Gómez, Sergio; Redondo-Cubero, Andres; Palomares Simon, Francisco Javier; Vazquez Burgos, Luis; Nogales, Emilio; Nucciarelli, Flavio; Mendez, Bianchi; Gordillo, Nuria; Pau, Jose Luis

    2018-06-11

    Core-shell gallium nanoparticles (Ga NPs) have recently been proposed as an ultraviolet plasmonic material for different applications but only at room temperature. Here, the thermal stability as a function of the size of the NPs is reported over a wide range of temperatures. We analyse the chemical and structural properties of the oxide shell by x-ray photoelectron spectroscopy and atomic force microscopy. We demonstrate the inverse dependence of the shell breaking temperature with the size of the NPs. Spectroscopic ellipsometry is used for tracking the rupture and its mechanism is systematically investigated by scanning electron microscopy, grazing incidence x-ray diffraction and cathodoluminescence. Taking advantage of the thermal stability of the NPs, we perform complete oxidations that lead to homogenous gallium oxide NPs. Thus, this study set the physical limits of Ga NPs to last at high temperatures, and opens up the possibility to achieve totally oxidized NPs while keeping their sphericity. © 2018 IOP Publishing Ltd.

  6. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predictingmore » acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.« less

  7. Core-shell-structured nanothermites synthesized by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Qin, Lijun; Gong, Ting; Hao, Haixia; Wang, Keyong; Feng, Hao

    2013-12-01

    Thermite materials feature very exothermic solid-state redox reactions. However, the energy release rates of traditional thermite mixtures are limited by the reactant diffusion velocities. In this work, atomic layer deposition (ALD) is utilized to synthesize thermite materials with greatly enhanced reaction rates. By depositing certain types of metal oxides (oxidizers) onto a commercial Al nanopowder, core-shell-structured nanothermites can be produced. The average film deposition rate on the Al nanopowder is 0.17 nm/cycle for ZnO and 0.031 nm/cycle for SnO2. The thickness of the oxidizer layer can be precisely controlled by adjusting the ALD cycle number. The compositions, morphologies, and structures of the ALD nanothermites are characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The characterization results reveal nearly perfect coverage of the Al nanoparticles by uniform ALD oxidizer layers and confirm the formation of core-shell nanoparticles. Combustion properties of the nanothermites are probed by laser ignition technique. Reactions of the core-shell-structured nanothermites are several times faster than the mixture of nanopowders. The promoted reaction rate is mostly attributed to the uniform distribution of reactants on the nanometer scale. These core-shell-structured nanothermites provide a potential pathway to control and enhance thermite reactions.

  8. Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.

    2014-10-01

    Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.

  9. The nuclear shell model toward the drip lines

    NASA Astrophysics Data System (ADS)

    Poves, A.; Caurier, E.; Nowacki, F.; Sieja, K.

    2012-10-01

    We describe the 'islands of inversion' that occur when approaching the neutron drip line around the magic numbers N=20, N=28 and N=40 in the framework of the interacting shell model in very large valence spaces. We explain these configuration inversions (and the associated shape transitions) as the result of the competition between the spherical mean field (monopole) that favors magicity and the correlations (multipole) that favor deformed intruder states. We also show that the N=20 and N=28 islands are in reality a single one, which for the magnesium isotopes is limited by N=18 and N=32.

  10. An electron momentum spectroscopy and density functional theory study of the outer valence electronic structure of stella-2,6-dione

    NASA Astrophysics Data System (ADS)

    Nixon, K. L.; Wang, F.; Campbell, L.; Maddern, T.; Winkler, D.; Gleiter, R.; Loeb, P.; Weigold, E.; Brunger, M. J.

    2003-07-01

    We report on the first electron momentum spectroscopy (EMS) study into the outer valence electronic structure of the ground electronic state for the organic molecule stella-2,6-dione (C8H8O2). Experimentally measured binding-energy spectra are compared against a He(Ialpha) photoelectron spectroscopy result, while our derived momentum distributions (MDs) are compared against corresponding results from the plane wave impulse approximation (PWIA) level calculations. These computations employed density functional theory (DFT) basis states at the triple zeta valence polarization (TZVP) level, with a range of exchange-correlation (XC) functionals. A detailed comparison between the experimental and PWIA DFT-XC/TZVP calculated MDs enabled us to evaluate the accuracy of the various functionals, the Becke-Perdew (BP) XC functional being found to provide the most accurate description here. The importance of the through-bond interaction to the molecular orbitals (MOs) of stella-2,6-dione is demonstrated using the orbital imaging capability of EMS. Finally we show that the molecular geometry of this molecule, as derived from BP/TZVP, is in quite good agreement with corresponding independent experimental data.

  11. Combined photoelectron, collision-induced dissociation, and computational studies of parent and fragment anions of N-paranitrophenylsulfonylalanine and N-paranitrophenylalanine

    NASA Astrophysics Data System (ADS)

    Lambert, Jason; Chen, Jing; Buonaugurio, Angela; Bowen, Kit H.; Do-Thanh, Chi-Linh; Wang, Yilin; Best, Michael D.; Compton, R. N.; Sommerfeld, Thomas

    2013-12-01

    After synthesizing the compounds N-paranitrophenylsulfonylalanine (NPNPSA) and N-paranitrophenylalanine (NPNPA), the photoelectron spectrum of the valence anion of N-paranitrophenylsulfonylalanine (NPNPSA)-, was measured and the collision-induced dissociation (CID) pathways of deprotonated N-paranitrophenylsulfonylalanine (NPNPSA-H)- and deprotonated N-paranitrophenylalanine (NPNPA-H)- were determined. Pertinent calculations were conducted to analyze both sets of experimental data. From the valence anion photoelectron spectrum of (NPNPSA)-, the adiabatic electron affinity (AEA) of NPNPSA was determined to be 1.7 ± 0.1 eV, while the vertical detachment energy (VDE) of (NPNPSA)- was found to be 2.3 ± 0.1 eV. Calculations for four low lying conformers of (NPNPSA)- gave AEA values in the range of 1.6-2.1 eV and VDE values in the range of 2.0-2.4 eV. These calculations are in very good agreement with the experimental values. While the NPNPA anion (NPNPSA)- was not observed experimentally it was studied computationally. The six low lying (NPNPSA)- conformers were identified and calculated to have AEA values in the range of 0.7-1.2 eV and VDE values in the range of 0.9-1.6 eV. CID was used to study the fragmentation patterns of deprotonated NPNPA and deprotonated NPNPSA. Based on the CID data and calculations, the excess charge was located on the delocalized π-orbitals of the nitrobenzene moiety. This is made evident by the fact that the dominant fragments all contained the nitrobenzene moiety even though the parent anions used for the CID study were formed via deprotonation of the carboxylic acid. The dipole-bound anions of both molecules are studied theoretically using the results of previous studies on nitrobenzene as a reference.

  12. Combined photoelectron, collision-induced dissociation, and computational studies of parent and fragment anions of N-paranitrophenylsulfonylalanine and N-paranitrophenylalanine.

    PubMed

    Lambert, Jason; Chen, Jing; Buonaugurio, Angela; Bowen, Kit H; Do-Thanh, Chi-Linh; Wang, Yilin; Best, Michael D; Compton, R N; Sommerfeld, Thomas

    2013-12-14

    After synthesizing the compounds N-paranitrophenylsulfonylalanine (NPNPSA) and N-paranitrophenylalanine (NPNPA), the photoelectron spectrum of the valence anion of N-paranitrophenylsulfonylalanine (NPNPSA)(-), was measured and the collision-induced dissociation (CID) pathways of deprotonated N-paranitrophenylsulfonylalanine (NPNPSA-H)(-) and deprotonated N-paranitrophenylalanine (NPNPA-H)(-) were determined. Pertinent calculations were conducted to analyze both sets of experimental data. From the valence anion photoelectron spectrum of (NPNPSA)(-), the adiabatic electron affinity (AEA) of NPNPSA was determined to be 1.7 ± 0.1 eV, while the vertical detachment energy (VDE) of (NPNPSA)(-) was found to be 2.3 ± 0.1 eV. Calculations for four low lying conformers of (NPNPSA)(-) gave AEA values in the range of 1.6-2.1 eV and VDE values in the range of 2.0-2.4 eV. These calculations are in very good agreement with the experimental values. While the NPNPA anion (NPNPSA)(-) was not observed experimentally it was studied computationally. The six low lying (NPNPSA)(-) conformers were identified and calculated to have AEA values in the range of 0.7-1.2 eV and VDE values in the range of 0.9-1.6 eV. CID was used to study the fragmentation patterns of deprotonated NPNPA and deprotonated NPNPSA. Based on the CID data and calculations, the excess charge was located on the delocalized π-orbitals of the nitrobenzene moiety. This is made evident by the fact that the dominant fragments all contained the nitrobenzene moiety even though the parent anions used for the CID study were formed via deprotonation of the carboxylic acid. The dipole-bound anions of both molecules are studied theoretically using the results of previous studies on nitrobenzene as a reference.

  13. Fabrication and characterization of ZnS/ZnO core shell nanostructures on silver wires

    NASA Astrophysics Data System (ADS)

    Kao, Chyuan Haur; Su, Wei Ming; Li, Cheng Yuan; Weng, Wei Chih; Weng, Chen Yuan; Cheng, Chin-Chi; Lin, Yung-Sen; Lin, Chia Feng; Chen, Hsiang

    2018-06-01

    In this research, ZnS nanoparticles were synthesized on ZnO/silver wires to form ZnS/ZnO core shell structures. Various outward appearance and colors could be observed by different ZnO growth and sulfurization conditions. To evaluate the properties of these nanostructures, optical properties and chemical bindings were analyzed by photoluminescence, Raman analysis, and X-ray photoelectron spectroscopy. Furthermore, material characterizations including transmission electron microscopy and X-ray diffraction confirmed that cubic ZnS (311)/ZnO nanostructures were grown on silver wires for the first time. ZnS/ZnO core shell structures on silver wires are promising for future optoelectronic and biomedical applications.

  14. Measurement of the low energy spectral contribution in coincidence with valence band (VB) energy levels of Ag(100) using VB-VB coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gladen, R. W.; Joglekar, P. V.; Lim, Z. H.; Shastry, K.; Hulbert, S. L.; Weiss, A. H.

    A set of coincidence measurements were obtained for the study and measurement of the electron contribution arising from the inter-valence band (VB) transitions along with the inelastically scattered VB electron contribution. These Auger-unrelated contributions arise in the Auger spectrum (Ag 4p NVV) obtained using Auger Photoelectron Coincidence Spectroscopy (APECS). The measured Auger-unrelated contribution can be eliminated from Auger spectrum to obtain the spectrum related to Auger. In our VB-VB coincidence measurement, a photon beam of energy 180eV was used to probe the Ag(100) sample. The coincidence spectrum was obtained using two Cylindrical Mirror Analyzers (CMA's). The scan CMA measured the low energy electron contribution in the energy range 0-70eV in coincidence with VB electrons measured by the fixed CMA. In this talk, we present the data obtained for VB-VB coincidence at the valence band energy of 171eV along with the coincidence measurements in the energy range of 4p core and valence band. NSF DMR 0907679, NSF Award Number: 1213727. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-98CH10886.

  15. Measurement of the low energy spectral contribution in coincidence with valence band (VB) energy levels of Ag(100) using VB-VB coincidence spectroscopy

    NASA Astrophysics Data System (ADS)

    Joglekar, P. V.; Gladen, R.; Lim, Z. H.; Shastry, K.; Hulbert, S. L.; Weiss, A. H.

    2015-03-01

    A set of coincidence measurements were obtained for the study and measurement of the electron contribution arising from the inter-valence band (VB) transitions along with the inelastically scattered VB electron contribution. These Auger-unrelated contributions arise in the Auger spectrum (Ag 4p NVV) obtained using Auger Photoelectron Coincidence Spectroscopy (APECS). The measured Auger-unrelated contribution can be eliminated from Auger spectrum to obtain the spectrum related to Auger. In our VB-VB coincidence measurement, a photon beam of energy 180eV was used to probe the Ag(100) sample. The coincidence spectrum was obtained using two Cylindrical Mirror Analyzers (CMA's). The scan CMA measured the low energy electron contribution in the energy range 0-70eV in coincidence with VB electrons measured by the fixed CMA. In this talk, we present the data obtained for VB-VB coincidence at the valence band energy of 171eV along with the coincidence measurements in the energy range of 4p core and valence band. NSF DMR 0907679, NSF Award Number: 1213727. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  16. Interpretation of atomic mass systematics in terms of the valence shells and a simple scheme for predicting masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haustein, P.E.; Brenner, D.S.; Casten, R.F.

    1988-07-01

    A new semiempirical method that significantly simplifies atomic mass systematics and which provides a method for making mass predictions by linear interpolation is discussed in the context of the nuclear valence space. In certain regions complicated patterns of mass systematics in traditional plots versus Z, N, or isospin are consolidated and transformed into linear ones extending over long isotopic and isotonic sequences.

  17. Intrinsic electrophilic properties of nucleosides: Photoelectron spectroscopy of their parent anions

    NASA Astrophysics Data System (ADS)

    Stokes, Sarah T.; Li, Xiang; Grubisic, Andrej; Ko, Yeon Jae; Bowen, Kit H.

    2007-08-01

    The nucleoside parent anions 2'-deoxythymidine-, 2'-deoxycytidine-, 2'-deoxyadenosine-, uridine-, cytidine-, adenosine-, and guanosine- were generated in a novel source, employing a combination of infrared desorption, electron photoemission, and a gas jet expansion. Once mass selected, the anion photoelectron spectrum of each of these was recorded. In the three cases in which comparisons were possible, the vertical detachment energies and likely adiabatic electron affinities extracted from these spectra agreed well with the values calculated both by Richardson et al. [J. Am. Chem. Soc. 126, 4404 (2004)] and by Li et al. [Radiat. Res. 165, 721 (2006)]. Through the combination of our experimental results and their theoretical calculations, several implications emerge. (1) With the possible exception of dG-, the parent anions of nucleosides exist, and they are stable. (2) These nucleoside anions are valence anions, and in most cases the negative charge is closely associated with the nucleobase moiety. (3) The nucleoside parent anions we have generated and studied are the negative ions of canonical, neutral nucleosides, similar to those found in DNA.

  18. Intrinsic electrophilic properties of nucleosides: photoelectron spectroscopy of their parent anions.

    PubMed

    Stokes, Sarah T; Li, Xiang; Grubisic, Andrej; Ko, Yeon Jae; Bowen, Kit H

    2007-08-28

    The nucleoside parent anions 2(')-deoxythymidine(-), 2(')-deoxycytidine(-), 2(')-deoxyadenosine(-), uridine(-), cytidine(-), adenosine(-), and guanosine(-) were generated in a novel source, employing a combination of infrared desorption, electron photoemission, and a gas jet expansion. Once mass selected, the anion photoelectron spectrum of each of these was recorded. In the three cases in which comparisons were possible, the vertical detachment energies and likely adiabatic electron affinities extracted from these spectra agreed well with the values calculated both by Richardson et al. [J. Am. Chem. Soc. 126, 4404 (2004)] and by Li et al. [Radiat. Res. 165, 721 (2006)]. Through the combination of our experimental results and their theoretical calculations, several implications emerge. (1) With the possible exception of dG(-), the parent anions of nucleosides exist, and they are stable. (2) These nucleoside anions are valence anions, and in most cases the negative charge is closely associated with the nucleobase moiety. (3) The nucleoside parent anions we have generated and studied are the negative ions of canonical, neutral nucleosides, similar to those found in DNA.

  19. Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hongjing, E-mail: wuhongjing@mail.nwpu.edu.cn; Wu, Guanglei, E-mail: wuguanglei@mail.xjtu.edu.cn; Wu, Qiaofeng

    2014-11-15

    We reported the preparation of C@Ni–NiO core–shell hybrid solid spheres or multi-shelled NiO hollow spheres by combining a facile hydrothermal route with a calcination process in H{sub 2} or air atmosphere, respectively. The synthesized C@Ni–NiO core–shell solid spheres with diameters of approximately 2–6 μm were in fact built from dense NiO nanoparticles coated by random two-dimensional metal Ni nanosheets without any visible pores. The multi-shelled NiO hollow spheres were built from particle-like ligaments and there are a lot of pores with size of several nanometers on the surface. Combined Raman spectra with X-ray photoelectron spectra (XPS), it suggested that themore » defects in the samples play a limited role in the dielectric loss. Compared with the other samples, the permeability of the samples calcined in H{sub 2} and air was increased slightly and the natural resonance frequency shifted to higher frequency (7, 11 and 14 GHz, respectively), leading to an enhancement of microwave absorption property. For the sample calcined in H{sub 2}, an optimal reflection loss less than − 10 was obtained at 7 GHz with a matching thickness of 5.0 mm. Our study demonstrated the potential application of C@Ni–NiO core–shell hybrid solid sphere or multi-shelled NiO hollow sphere as a more efficient electromagnetic (EM) wave absorber. - Highlights: • C@Ni–NiO core–shell hybrid solid sphere was synthesized by a facile method. • Multi-shelled NiO hollow sphere was synthesized by a facile method. • It suggested that the defects in the samples play a limited role in dielectric loss. • The permeability of the samples calcined in H{sub 2} and air was increased. • Microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere was investigated.« less

  20. Time-resolved photoelectron imaging of iodide-nitromethane (I-·CH3NO2) photodissociation dynamics.

    PubMed

    Kunin, Alice; Li, Wei-Li; Neumark, Daniel M

    2016-12-07

    Femtosecond time-resolved photoelectron spectroscopy is used to probe the decay channels of iodide-nitromethane (I - ·CH 3 NO 2 ) binary clusters photoexcited at 3.56 eV, near the vertical detachment energy (VDE) of the cluster. The production of I - is observed, and its photoelectron signal exhibits a mono-exponential rise time of 21 ± 1 ps. Previous work has shown that excitation near the VDE of the I - ·CH 3 NO 2 complex transfers an electron from iodide to form a dipole-bound state of CH 3 NO 2 - that rapidly converts to a valence bound (VB) anion. The long appearance time for the I - fragment suggests that the VB anion decays by back transfer of the excess electron to iodide, reforming the I - ·CH 3 NO 2 anion and resulting in evaporation of iodide. Comparison of the measured lifetime to that predicted by RRKM theory suggests that the dissociation rate is limited by intramolecular vibrational energy redistribution in the re-formed anion between the high frequency CH 3 NO 2 vibrational modes and the much lower frequency intermolecular I - ·CH 3 NO 2 stretch and bends, the predominant modes involved in cluster dissociation to form I - . Evidence for a weak channel identified as HI + CH 2 NO 2 - is also observed.

  1. Human Amygdala Represents the Complete Spectrum of Subjective Valence

    PubMed Central

    Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.

    2015-01-01

    Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the hedonic potency of odor stimuli and the amygdala's anatomical proximity to the peripheral olfactory system, we combined high-resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Representational similarity analyses showed that amygdala codes the entire dimension of valence, ranging from pleasantness to unpleasantness. This unidimensional representation significantly correlated with self-reported valence ratings but not with intensity ratings. Furthermore, within-trial valence representations evolved over time, prioritizing earlier differentiation of unpleasant stimuli. Together, these findings underscore the idea that both spatial and temporal features uniquely encode pleasant and unpleasant odor valence in the amygdala. The availability of a unidimensional valence code in the amygdala, distributed in both space and time, would create greater flexibility in determining the pleasantness or unpleasantness of stimuli, providing a mechanism by which expectation, context, attention, and learning could influence affective boundaries for guiding behavior. SIGNIFICANCE STATEMENT Our findings elucidate the mechanisms of affective processing in the amygdala by demonstrating that this brain region represents the entire valence dimension from pleasant to unpleasant. An important implication of this unidimensional valence code is that pleasant and unpleasant valence cannot coexist in the amygdale because overlap of fMRI ensemble patterns for these two valence extremes obscures their unique content. This functional architecture, whereby subjective valence maps onto a pattern continuum between pleasant and unpleasant poles, offers a robust mechanism by which context

  2. Angularly resolved X-ray photoelectron spectroscopy investigation of PTFE after prolonged space exposure

    NASA Technical Reports Server (NTRS)

    Dalins, I.; Karimi, M.

    1992-01-01

    Monochromatized angularly resolved X-ray photoelectron spectroscopy (ARXPS) was used to study PTFE (Teflon) that had been exposed to an earth orbital environment for approximately six years. The primary interest of the research is on a very reactive component of this environment (atomic oxygen) which, because of the typical orbital velocities of a spacecraft, impinge on exposed surfaces with 5 eV energy. This presentation deals with the method of analysis, the findings as they pertain to a rather complex carbon, oxygen, and fluorine XPS peak analysis, and the character of the valence bands. An improved bias referencing method, based on ARXPS, is also demonstrated for evaluating specimen charging effects. It was found that the polymer molecule tends to resist the atomic oxygen attack by reorienting itself, so that the most electronegative CF3 groups are facing the incoming hyperthermal oxygen atoms. The implications of these findings to ground-based laboratory studies are discussed.

  3. Valence and magnitude ambiguity in feedback processing.

    PubMed

    Gu, Ruolei; Feng, Xue; Broster, Lucas S; Yuan, Lu; Xu, Pengfei; Luo, Yue-Jia

    2017-05-01

    Outcome feedback which indicates behavioral consequences are crucial for reinforcement learning and environmental adaptation. Nevertheless, outcome information in daily life is often totally or partially ambiguous. Studying how people interpret this kind of information would provide important knowledge about the human evaluative system. This study concentrates on the neural processing of partially ambiguous feedback, that is, either its valence or magnitude is unknown to participants. To address this topic, we sequentially presented valence and magnitude information; electroencephalography (EEG) response to each kind of presentation was recorded and analyzed. The event-related potential components feedback-related negativity (FRN) and P3 were used as indices of neural activity. Consistent with previous literature, the FRN elicited by ambiguous valence was not significantly different from that elicited by negative valence. On the other hand, the FRN elicited by ambiguous magnitude was larger than both the large and small magnitude, indicating the motivation to seek unambiguous magnitude information. The P3 elicited by ambiguous valence and ambiguous magnitude was not significantly different from that elicited by negative valence and small magnitude, respectively, indicating the emotional significance of feedback ambiguity. Finally, the aforementioned effects also manifested in the stage of information integration. These findings indicate both similarities and discrepancies between the processing of valence ambiguity and that of magnitude ambiguity, which may help understand the mechanisms of ambiguous information processing.

  4. In-medium similarity renormalization group for closed and open-shell nuclei

    NASA Astrophysics Data System (ADS)

    Hergert, H.

    2017-02-01

    We present a pedagogical introduction to the in-medium similarity renormalization group (IMSRG) framework for ab initio calculations of nuclei. The IMSRG performs continuous unitary transformations of the nuclear many-body Hamiltonian in second-quantized form, which can be implemented with polynomial computational effort. Through suitably chosen generators, it is possible to extract eigenvalues of the Hamiltonian in a given nucleus, or drive the Hamiltonian matrix in configuration space to specific structures, e.g., band- or block-diagonal form. Exploiting this flexibility, we describe two complementary approaches for the description of closed- and open-shell nuclei: the first is the multireference IMSRG (MR-IMSRG), which is designed for the efficient calculation of nuclear ground-state properties. The second is the derivation of non-empirical valence-space interactions that can be used as input for nuclear shell model (i.e., configuration interaction (CI)) calculations. This IMSRG+shell model approach provides immediate access to excitation spectra, transitions, etc, but is limited in applicability by the factorial cost of the CI calculations. We review applications of the MR-IMSRG and IMSRG+shell model approaches to the calculation of ground-state properties for the oxygen, calcium, and nickel isotopic chains or the spectroscopy of nuclei in the lower sd shell, respectively, and present selected new results, e.g., for the ground- and excited state properties of neon isotopes.

  5. Emotional valence and physical space: limits of interaction.

    PubMed

    de la Vega, Irmgard; de Filippis, Mónica; Lachmair, Martin; Dudschig, Carolin; Kaup, Barbara

    2012-04-01

    According to the body-specificity hypothesis, people associate positive things with the side of space that corresponds to their dominant hand and negative things with the side corresponding to their nondominant hand. Our aim was to find out whether this association holds also true for a response time study using linguistic stimuli, and whether such an association is activated automatically. Four experiments explored this association using positive and negative words. In Exp. 1, right-handers made a lexical judgment by pressing a left or right key. Attention was not explicitly drawn to the valence of the stimuli. No valence-by-side interaction emerged. In Exp. 2 and 3, right-handers and left-handers made a valence judgment by pressing a left or a right key. A valence-by-side interaction emerged: For positive words, responses were faster when participants responded with their dominant hand, whereas for negative words, responses were faster for the nondominant hand. Exp. 4 required a valence judgment without stating an explicit mapping of valence and side. No valence-by-side interaction emerged. The experiments provide evidence for an association between response side and valence, which, however, does not seem to be activated automatically but rather requires a task with an explicit response mapping to occur.

  6. One Way to Design a Valence-Skip Compound.

    PubMed

    Hase, I; Yanagisawa, T; Kawashima, K

    2017-12-01

    Valence-skip compound is a good candidate with high T c and low anisotropy because it has a large attractive interaction at the site of valence-skip atom. However, it is not easy to synthesize such compound because of (i) the instability of the skipping valence state, (ii) the competing charge order, and (iii) that formal valence may not be true in some compounds. In the present study, we show several examples of the valence-skip compounds and discuss how we can design them by first principles calculations. Furthermore, we calculated the electronic structure of a promising candidate of valence skipping compound RbTlCl 3 from first principles. We confirmed that the charge-density wave (CDW) is formed in this compound, and the Tl atoms in two crystallographic different sites take the valence Tl 1+ and Tl 3+ . Structure optimization study reveals that this CDW is stable at the ambient pressure, while this CDW gap can be collapsed when we apply pressure with several gigapascals. In this metallic phase, we can expect a large charge fluctuation and a large electron-phonon interaction.

  7. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-03-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.

  8. Total photoelectron yield spectroscopy of energy distribution of electronic states density at GaN surface and SiO2/GaN interface

    NASA Astrophysics Data System (ADS)

    Ohta, Akio; Truyen, Nguyen Xuan; Fujimura, Nobuyuki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    The energy distribution of the electronic state density of wet-cleaned epitaxial GaN surfaces and SiO2/GaN structures has been studied by total photoelectron yield spectroscopy (PYS). By X-ray photoelectron spectroscopy (XPS) analysis, the energy band diagram for a wet-cleaned epitaxial GaN surface such as the energy level of the valence band top and electron affinity has been determined to obtain a better understanding of the measured PYS signals. The electronic state density of GaN surface with different carrier concentrations in the energy region corresponding to the GaN bandgap has been evaluated. Also, the interface defect state density of SiO2/GaN structures was also estimated by not only PYS analysis but also capacitance–voltage (C–V) characteristics. We have demonstrated that PYS analysis enables the evaluation of defect state density filled with electrons at the SiO2/GaN interface in the energy region corresponding to the GaN midgap, which is difficult to estimate by C–V measurement of MOS capacitors.

  9. Emotional Valence and the Free-Energy Principle

    PubMed Central

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world. PMID:23785269

  10. Emotional valence and the free-energy principle.

    PubMed

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world.

  11. Site-specific recoil-induced effects on inner-shell photoionization of linear triatomic molecules: N 1 s photoelectron spectra of N2 O

    NASA Astrophysics Data System (ADS)

    Krivosenko, Yu. S.; Pavlychev, A. A.

    2016-11-01

    We investigate hard X-ray ionization of linear triatomic molecules accenting recoil-induced effects on the dynamics of molecular frame. This dynamics is studied within the two-springs and harmonic approximations. The mode-channel relationship connecting the excitations of vibrational, rotational and translational degrees of freedom with the Σ → Σ and Σ → Π photoionization channels is applied to compute the N 1s-1 photoelectron spectra of molecular N2 O for various photon energies. The distinct ionized-site- and molecular-orientation-specific changes in the vibration structure of the 1 s photoelectron lines of terminal and central nitrogen atoms are revealed and discussed.

  12. Dynamics in higher lying excited states: Valence to Rydberg transitions in the relaxation paths of pyrrole and methylated derivatives

    NASA Astrophysics Data System (ADS)

    Geng, Ting; Schalk, Oliver; Neville, Simon P.; Hansson, Tony; Thomas, Richard D.

    2017-04-01

    The involvement of intermediate Rydberg states in the relaxation dynamics of small organic molecules which, after excitation to the valence manifold, also return to the valence manifold is rarely observed. We report here that such a transiently populated Rydberg state may offer the possibility to modify the outcome of a photochemical reaction. In a time resolved photoelectron study on pyrrole and its methylated derivatives, N-methyl pyrrole and 2,5-dimethyl pyrrole, 6.2 eV photons (200 nm) are used to excite these molecules into a bright ππ* state. In each case, a π3p-Rydberg state, either the B1(π3py) or the A2(π3pz) state, is populated within 20-50 fs after excitation. The wavepacket then proceeds to the lower lying A2(πσ*) state within a further 20 fs, at which point two competing reaction channels can be accessed: prompt N-H (N-CH3) bond cleavage or return to the ground state via a conical intersection accessed after ring puckering, the latter of which is predicted to require an additional 100-160 fs depending on the molecule.

  13. Electronic Properties and Dissociative Photoionization of Thiocyanates, Part III. The Effect of the Group's Electronegativity in the Valence and Shallow-Core (Sulfur and Chlorine 2p) Regions of CCl3SCN and CCl2FSCN.

    PubMed

    Rodríguez Pirani, Lucas S; Della Védova, Carlos O; Geronés, Mariana; Romano, Rosana M; Cavasso-Filho, Reinaldo; Ge, Maofa; Ma, Chunping; Erben, Mauricio F

    2017-12-07

    Both photoelectron spectroscopy (PES) data and PhotoElectron-PhotoIon-Coincidence (PEPICO) spectra obtained from a synchrotron facility have been used to examine the electronic structure and the dissociative ionization of halomethyl thiocyantes in the valence and shallow-core S 2p and Cl 2p regions. Two simple and closely related molecules, namely, CCl 3 SCN and CCl 2 FSCN, have been analyzed to assess the role of halogen substitution in the electronic properties of thiocyanates. The assignment of the He(I) photoelectron spectra has been achieved with the help of quantum chemical calculations at the outer-valence Green's function (OVGF) level of approximation. The first ionization energies observed at 10.55 and 10.78 eV for CCl 3 SCN and CCl 2 FSCN, respectively, are assigned to ionization processes from the sulfur lone pair orbital [n(S)]. When these molecules are compared with CX 3 SCN (X = H, Cl, F) species, a linear relationship between the vertical first ionization energy and electronegativity of CX 3 group is observed. Irradiation of CCl 3 SCN and CCl 2 FSCN with photons in the valence energy regions leads to the formation of CCl 2 X + and CClXSCN + ions (X = Cl or F). Additionally, the achievement of the fragmentation patterns and the total ion yield spectra obtained from the PEPICO data in the S 2p and Cl 2p regions and several dissociation channels can be inferred for the core-excited species by using the triple coincidence PEPIPICO (PhotoElectron-PhotoIon-PhotoIon-Coincidence) spectra.

  14. [Emotional valence of words in schizophrenia].

    PubMed

    Jalenques, I; Enjolras, J; Izaute, M

    2013-06-01

    Emotion recognition is a domain in which deficits have been reported in schizophrenia. A number of emotion classification studies have indicated that emotion processing deficits in schizophrenia are more pronounced for negative affects. Given the difficulty of developing material suitable for the study of these emotional deficits, it would be interesting to examine whether patients suffering from schizophrenia are responsive to positively and negatively charged emotion-related words that could be used within the context of remediation strategies. The emotional perception of words was examined in a clinical experiment involving schizophrenia patients. This emotional perception was expressed by the patients in terms of the valence associated with the words. In the present study, we investigated whether schizophrenia patients would assign the same negative and positive valences to words as healthy individuals. Twenty volunteer, clinically stable, outpatients from the Psychiatric Service of the University Hospital of Clermont-Ferrand were recruited. Diagnoses were based on DSM-IV criteria. Global psychiatric symptoms were assessed using the Positive and Negative Symptoms Scale (PANSS). The patients had to evaluate the emotional valence of a set of 300 words on a 5-point scale ranging from "very unpleasant" to "very pleasant". . The collected results were compared with those obtained by Bonin et al. (2003) [13] from 97 University students. Correlational analyses of the two studies revealed that the emotional valences were highly correlated, i.e. the schizophrenia patients estimated very similar emotional valences. More precisely, it was possible to examine three separate sets of 100 words each (positive words, neutral words and negative words). The positive words that were evaluated were the more positive words from the norms collected by Bonin et al. (2003) [13], and the negative words were the more negative examples taken from these norms. The neutral words

  15. Europium mixed-valence, long-range magnetic order, and dynamic magnetic response in EuCu 2 ( Si x Ge 1 - x ) 2

    DOE PAGES

    Nemkovski, Krill S.; Kozlenko, D. P.; Alekseev, Pavel A.; ...

    2016-11-01

    In mixed-valence or heavy-fermion systems, the hybridization between local f orbitals and conduction band states can cause the suppression of long-range magnetic order, which competes with strong spin uctuations. Ce- and Yb-based systems have been found to exhibit fascinating physical properties (heavy-fermion superconductivity, non-Fermi-liquid states, etc.) when tuned to the vicinity of magnetic quantum critical points by use of various external control parameters (temperature, magnetic eld, chemical composition). Recently, similar effects (mixed-valence, Kondo uctuations, heavy Fermi liquid) have been reported to exist in some Eu-based compounds. Unlike Ce (Yb), Eu has a multiple electron (hole) occupancy of its 4f shell,more » and the magnetic Eu 2+ state (4f 7) has no orbital component in the usual LS coupling scheme, which can lead to a quite different and interesting physics. In the EuCu 2(Si xGe 1-x) 2 series, where the valence can be tuned by varying the Si/Ge ratio, it has been reported that a significant valence uctuation can exist even in the magnetic order regime. This paper presents a detailed study of the latter material using different microscopic probes (XANES, Mossbauer spectroscopy, elastic and inelastic neutron scattering), in which the composition dependence of the magnetic order and dynamics across the series is traced back to the change in the Eu valence state. In particular, the results support the persistence of valence uctuations into the antiferromagnetic state over a sizable composition range below the critical Si concentration x c ≈ 0:65. In conclusion, the sequence of magnetic ground states in the series is shown to re ect the evolution of the magnetic spectral response.« less

  16. Band alignment of 2D WS2/HfO2 interfaces from x-ray photoelectron spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhu, H. L.; Zhou, C. J.; Tang, B. S.; Yang, W. F.; Chai, J. W.; Tay, W. L.; Gong, H.; Pan, J. S.; Zou, W. D.; Wang, S. J.; Chi, D. Z.

    2018-04-01

    We report on the growth of two-dimensional (2D) WS2 on high-k HfO2/Si substrates by reactive sputtering deposition. Raman, x-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy characterizations indicate that the 2D WS2 layers exhibit high-quality crystallinity and exact stoichiometry. Through high-resolution XPS valence spectra, we find a type I alignment at the interface of monolayer WS2/HfO2 with a valence band offset (VBO) of 1.95 eV and a conduction band offset (CBO) of 1.57 eV. The VBO and CBO are also found to increase up to 2.24 eV and 2.09 eV, respectively, with increasing WS2 layers. This is consistent with the results obtained from our first-principles calculations. Our theoretical calculations reveal that the remarkable splitting and shift of the W 5 d z 2 orbital originating from interlayer orbital coupling in thicker WS2 films induce a reduction of its bandgap, leading to an increase in both the VBO and CBO. This observation can be attributed to the asymmetric splitting at different high symmetric k-points caused by the interlayer orbital coupling.

  17. Orientation and temperature dependent adsorption of H 2S on GaAs: Valence band photoemission

    NASA Astrophysics Data System (ADS)

    Ranke, W.; Kuhr, H. J.; Finster, J.

    A cylindrically shaped GaAs single crystal was used to study the adsorption of H 2S on the six inequivalent orientations (001), (113), (111), (110), (111) and (113) by angle resolved valence band photoelectron spectroscopy and surface dipole measurements. Adsorption at 150 K on the surface prepared by molecular beam epitaxy (MBE) yields similar adsorbate induced emission on all orientations which were ascribed to SH radicals. On (110), where preferential adsorption occurs additional features from molecular H 2S are observed. The adsorbate spectra at 720 K are ascribed to atomic sulphur. On the surface prepared by ion bombardment and annealing, defect enhanced adsorption occurs in the range (111)-(113). The adsorbate spectra are very similar to those on the MBE surface at 720 K. Thus, no new species are adsorbed on defects but only sticking probability and penetration capability are increased.

  18. Core-shell structure disclosed in self-assembled Cu-Ag nanoalloy particles

    NASA Astrophysics Data System (ADS)

    Tchaplyguine, M.; Andersson, T.; Zhang, Ch.; Björneholm, O.

    2013-03-01

    Core-shell segregation of copper and silver in self-assembled, free nanoparticles is established by means of photoelectron spectroscopy in a wide range of relative Cu-Ag concentrations. These conclusions are based on the analysis of the photon-energy-dependent changes of the Cu 3d and Ag 4d photoelectron spectra. The nanoparticles are formed from mixed Cu-Ag atomic vapor created by magnetron sputtering of a bimetallic sample in a gas-aggregation cluster source. Even at similar Cu and Ag fractions in the primary vapor the surface of the nanoparticles is dominated by silver. Only at low Ag concentration copper appears on the surface of nanoparticles. For the latter case, a threefold decrease in the Ag 4d spin-orbit splitting has been detected. The specific component distribution and electronic structure changes are discussed in connection with the earlier results on Cu-Ag macroscopic and surface alloys.

  19. Effects of surface condition on the work function and valence-band position of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Shing, Amanda M.; Tolstova, Yulia; Lewis, Nathan S.; Atwater, Harry A.

    2017-12-01

    ZnSnN2 is an emerging wide band gap earth-abundant semiconductor with potential applications in photonic devices such as solar cells, LEDs, and optical sensors. We report the characterization by ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy of reactively radio-frequency sputtered II-IV-nitride ZnSnN2 thin films. For samples transferred in high vacuum, the ZnSnN2 surface work function was 4.0 ± 0.1 eV below the vacuum level, with a valence-band onset of 1.2 ± 0.1 eV below the Fermi level. The resulting band diagram indicates that the degenerate bulk Fermi level position in ZnSnN2 shifts to mid-gap at the surface due to band bending that results from equilibration with delocalized surface states within the gap. Brief (< 10 s) exposures to air, a nitrogen-plasma treatment, or argon-ion sputtering caused significant chemical changes at the surface, both in surface composition and interfacial energetics. The relative band positioning of the n-type semiconductor against standard redox potentials indicated that ZnSnN2 has an appropriate energy band alignment for use as a photoanode to effect the oxygen-evolution reaction.

  20. Evolution of collectivity near mid-shell from excited-state lifetime measurements in rare earth nuclei

    NASA Astrophysics Data System (ADS)

    Werner, V.; Cooper, N.; Régis, J.-M.; Rudigier, M.; Williams, E.; Jolie, J.; Cakirli, R. B.; Casten, R. F.; Ahn, T.; Anagnostatou, V.; Berant, Z.; Bonett-Matiz, M.; Elvers, M.; Heinz, A.; Ilie, G.; Radeck, D.; Savran, D.; Smith, M. K.

    2016-03-01

    The B (E 2 ) excitation strength of the first excited 2+ state in even-even nuclei should directly correlate with the size of the valence space and maximize at mid-shell. A previously found saturation of B (E 2 ) strengths in well-deformed rotors at mid-shell is tested through high-precision measurements of the lifetimes of the lowest-lying 2+ states of the 168Hf and 174W rare earth isotopes. Measurements were performed using fast LaBr3 scintillation detectors. Combined with the recently remeasured B (E 2 ;21+→01+) values for Hf and W isotopes the new data remove discrepancies observed in the differentials of B (E 2 ) values for these isotopes.

  1. Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.

    PubMed

    Surucu, Seda; Turkoglu Sasmazel, Hilal

    2016-11-01

    This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to develop three dimensional (3D) PCL/chitosan core-shell scaffolds for tissue engineering applications. The scaffolds were fabricated with coaxial electrospinning technique and the characterizations of the samples were done by thickness and contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS) analyses, mechanical and PBS absorption and shrinkage tests. The average inter-fiber diameter values were calculated for PCL (0.717±0.001μm), chitosan (0.660±0.007μm) and PCL/chitosan core-shell scaffolds (0.412±0.003μm), also the average inter-fiber pore size values exhibited decreases of 66.91% and 61.90% for the PCL and chitosan scaffolds respectively, compared to PCL/chitosan core-shell ones. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies (MTT assay, Confocal Laser Scanning Microscope (CLSM) and SEM analyses) carried out with L929 ATCC CCL-1 mouse fibroblast cell line proved that the biocompatibility performance of the scaffolds. The obtained results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Synthesis and Luminescence Properties of Core/Shell ZnS:Mn/ZnO Nanoparticles.

    PubMed

    Jiang, Daixun; Cao, Lixin; Liu, Wei; Su, Ge; Qu, Hua; Sun, Yuanguang; Dong, Bohua

    2009-01-01

    In this paper the influence of ZnO shell thickness on the luminescence properties of Mn-doped ZnS nanoparticles is studied. Transmission electron microscopy (TEM) images showed that the average diameter of ZnS:Mn nanoparticles is around 14 nm. The formation of ZnO shells on the surface of ZnS:Mn nanoparticles was confirmed by X-ray diffraction (XRD) patterns, high-resolution TEM (HRTEM) images, and X-ray photoelectron spectroscopy (XPS) measurements. A strong increase followed by a gradual decline was observed in the room temperature photoluminescence (PL) spectra with the thickening of the ZnO shell. The photoluminescence excitation (PLE) spectra exhibited a blue shift in ZnO-coated ZnS:Mn nanoparticles compared with the uncoated ones. It is shown that the PL enhancement and the blue shift of optimum excitation wavelength are led by the ZnO-induced surface passivation and compressive stress on the ZnS:Mn cores.

  3. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  4. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE PAGES

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; ...

    2016-09-01

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  5. Quantified Gamow shell model interaction for p s d -shell nuclei

    NASA Astrophysics Data System (ADS)

    Jaganathen, Y.; Betan, R. M. Id; Michel, N.; Nazarewicz, W.; Płoszajczak, M.

    2017-11-01

    Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the p s d f -shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤A ≲12 at the p -s d -shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon-4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A =9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities

  6. Quantified Gamow shell model interaction for p s d -shell nuclei

    DOE PAGES

    Jaganathen, Y.; Betan, R. M. Id; Michel, N.; ...

    2017-11-20

    Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In thismore » study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤ A ≲ 12 at the p-sd-shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ 2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon- 4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A = 9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation

  7. Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.

    PubMed

    Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A

    2018-05-25

    The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.

  8. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  9. Photoelectron Spectroscopy Study of Quinonimides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Ekram; Deng, Shihu M.; Gozem, Samer

    Structures and energetics of o-, m- and p-quinonimide anions (OC6H4N) and quinoniminyl radicals have been investigated by using negative ion photoelectron spectroscopy. Modeling of the photoelectron spectrum of the ortho isomer shows that the ground state of the anion is a triplet, while the quinoniminyl radical has a doublet ground state with a doublet-quartet splitting of 35.5 kcal/mol. The para radical has doublet ground state, but a band for a quartet state is missing from the photoelectron spectrum indicating that the anion has a singlet ground state, in contrast to previously reported calculations. The theoretical modeling is revisited here, andmore » it is shown that accurate predictions for the electronic structure of the para quinonimide anion require both an accurate account of electron correlation and a sufficiently diffuse basis set. Electron affinities of o- and p-quinoniminyl radicals are measured to be 1.715 ± 0.010 and 1.675 ± 0.010 eV, respectively. The photoelectron spectrum of the m-quinonimide anion shows that the ion undergoes several different rearrangements, including a rearrangement to the energetically favorable para isomer. Such rearrangements preclude a meaningful analysis of the experimental spectrum.« less

  10. Effectively-truncated large-scale shell-model calculations and nuclei around 100Sn

    NASA Astrophysics Data System (ADS)

    Gargano, A.; Coraggio, L.; Itaco, N.

    2017-09-01

    This paper presents a short overview of a procedure we have recently introduced, dubbed the double-step truncation method, which is aimed to reduce the computational complexity of large-scale shell-model calculations. Within this procedure, one starts with a realistic shell-model Hamiltonian defined in a large model space, and then, by analyzing the effective single particle energies of this Hamiltonian as a function of the number of valence protons and/or neutrons, reduced model spaces are identified containing only the single-particle orbitals relevant to the description of the spectroscopic properties of a certain class of nuclei. As a final step, new effective shell-model Hamiltonians defined within the reduced model spaces are derived by way of a unitary transformation of the original large-scale Hamiltonian. A detailed account of this transformation is given and the merit of the double-step truncation method is illustrated by discussing few selected results for 96Mo, described as four protons and four neutrons outside 88Sr. Some new preliminary results for light odd-tin isotopes from A = 101 to 107 are also reported.

  11. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    National Institute of Standards and Technology Data Gateway

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  12. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    DOE PAGES

    Wang, Xu; Le, Anh -Thu; Yu, Chao; ...

    2016-03-30

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. Lastly, amore » simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.« less

  13. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    PubMed Central

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-01-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method. PMID:27025410

  14. Preparation and recognition of surface molecularly imprinted core-shell microbeads for protein in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Yan, Chang-Ling; Gao, Shu-Yan

    2009-04-01

    In this paper, a surface molecular imprinting technique was reported for preparing core-shell microbeads of protein imprinting, and bovine hemoglobin or bovine serum albumin were used as model proteins for studying the imprinted core-shell microbeads. 3-Aminophenylboronic acid (APBA) was polymerized onto the surface of polystyrene microbead in the presence of the protein templates to create protein-imprinted core-shell microbeads. The various samples were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) methods. The effect of pH on rebinding of the template hemoglobin, the specific binding and selective recognition were studied for the imprinted microbeads. The results show that the bovine hemoglobin-imprinted core-shell microbeads were successfully created. The shell was a sort of imprinted thin films with porous structure and larger surface areas. The imprinted microbeads have good selectivity for templates and high stability. Due to the recognition sites locating at or closing to the surface, these imprinted microbeads have good property of mass-transport. Unfortunately, the imprint technology was not successfully applied to imprinting bovine serum albumin (BSA).

  15. Born in weak fields: below-threshold photoelectron dynamics

    NASA Astrophysics Data System (ADS)

    Williams, J. B.; Saalmann, U.; Trinter, F.; Schöffler, M. S.; Weller, M.; Burzynski, P.; Goihl, C.; Henrichs, K.; Janke, C.; Griffin, B.; Kastirke, G.; Neff, J.; Pitzer, M.; Waitz, M.; Yang, Y.; Schiwietz, G.; Zeller, S.; Jahnke, T.; Dörner, R.

    2017-02-01

    We investigate the dynamics of ultra-low kinetic energy photoelectrons. Many experimental techniques employed for the detection of photoelectrons require the presence of (more or less) weak electric extraction fields in order to perform the measurement. Our studies show that ultra-low energy photoelectrons exhibit a characteristic shift in their apparent measured momentum when the target system is exposed to such static electric fields. Already fields as weak as 1 V cm-1 have an observable influence on the detected electron momentum. This apparent shift is demonstrated by an experiment on zero energy photoelectrons emitted from He and explained through theoretical model calculations.

  16. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE PAGES

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina; ...

    2017-01-17

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  17. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  18. Ab initio treatment of fully open-shell medium-mass nuclei with the IM-SRG

    NASA Astrophysics Data System (ADS)

    Stroberg, Ragnar; Calci, Angelo; Holt, Jason; Navratil, Petr; Bogner, Scott; Hergert, Heiko; Roth, Robert; Schwenk, Achim

    2016-09-01

    The in-medium similarity renormalization group (IM-SRG) is a recently-developed theoretical many-body framework which - like the coupled cluster and the self-consistent Green's function approaches - allows for the treatment of medium-mass nuclei using interactions fit at the few-body level. I will give a brief overview of how the IM-SRG may be used to decouple a shell-model type valence space. I will then describe a recent development for the approximate treatment of residual 3N forces in the valence space which extends the reach of IM-SRG to essentially all medium-mass nuclei, and I will present some selected results spanning isotopic chains from beryllium (Z=4) to nickel (Z=28). Finally, I will discuss the consistent treatment of transition operators, highlighting the potential for future applications in electroweak physics.

  19. Positive valence music restores executive control over sustained attention

    PubMed Central

    Lewis, Bridget A.

    2017-01-01

    Music sometimes improves performance in sustained attention tasks. But the type of music employed in previous investigations has varied considerably, which can account for equivocal results. Progress has been hampered by lack of a systematic database of music varying in key characteristics like tempo and valence. The aims of this study were to establish a database of popular music varying along the dimensions of tempo and valence and to examine the impact of music varying along these dimensions on restoring attentional resources following performance of a sustained attention to response task (SART) vigil. Sixty-nine participants rated popular musical selections that varied in valence and tempo to establish a database of four musical types: fast tempo positive valence, fast tempo negative valence, slow tempo positive valence, and slow tempo negative valence. A second group of 89 participants performed two blocks of the SART task interspersed with either no break or a rest break consisting of 1 of the 4 types of music or silence. Presenting positive valence music (particularly of slow tempo) during an intermission between two successive blocks of the SART significantly decreased miss rates relative to negative valence music or silence. Results support an attentional restoration theory of the impact of music on sustained attention, rather than arousal theory and demonstrate a means of restoring sustained attention. Further, the results establish the validity of a music database that will facilitate further investigations of the impact of music on performance. PMID:29145395

  20. Positive valence music restores executive control over sustained attention.

    PubMed

    Baldwin, Carryl L; Lewis, Bridget A

    2017-01-01

    Music sometimes improves performance in sustained attention tasks. But the type of music employed in previous investigations has varied considerably, which can account for equivocal results. Progress has been hampered by lack of a systematic database of music varying in key characteristics like tempo and valence. The aims of this study were to establish a database of popular music varying along the dimensions of tempo and valence and to examine the impact of music varying along these dimensions on restoring attentional resources following performance of a sustained attention to response task (SART) vigil. Sixty-nine participants rated popular musical selections that varied in valence and tempo to establish a database of four musical types: fast tempo positive valence, fast tempo negative valence, slow tempo positive valence, and slow tempo negative valence. A second group of 89 participants performed two blocks of the SART task interspersed with either no break or a rest break consisting of 1 of the 4 types of music or silence. Presenting positive valence music (particularly of slow tempo) during an intermission between two successive blocks of the SART significantly decreased miss rates relative to negative valence music or silence. Results support an attentional restoration theory of the impact of music on sustained attention, rather than arousal theory and demonstrate a means of restoring sustained attention. Further, the results establish the validity of a music database that will facilitate further investigations of the impact of music on performance.

  1. Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, x-ray emission spectroscopy, and DFT + DMFT calculations

    DOE PAGES

    Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito; ...

    2017-11-02

    Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less

  2. Electronic structure of ferromagnetic heavy fermion, YbPdSi, YbPdGe, and YbPtGe studied by photoelectron spectroscopy, x-ray emission spectroscopy, and DFT + DMFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaoka, Hitoshi; Thunstrom, Patrik; Tsujii, Naohito

    Here, the electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d–4f resonance, resonant x-ray emission spectroscopy at the Yb L 3 absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with largemore » $${\\rm Yb}^{3+}$$ and small $${\\rm Yb}^{2+}$$ components. The magnitude of the Yb valence is evaluated to be YbPtGe $<$ YbPdGe $$\\lesssim $$ YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds. Our results support the scenario of the coexistence of heavy fermion behavior and ferromagnetic ordering which is described by a magnetically-ordered Kondo lattice where the magnitude of the Kondo effect and the RKKY interaction are comparable.« less

  3. Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction

    NASA Astrophysics Data System (ADS)

    Lee, Kai-Hsuan; Chang, Ping-Chuan; Chen, Tse-Pu; Chang, Sheng-Po; Shiu, Hung-Wei; Chang, Lo-Yueh; Chen, Chia-Hao; Chang, Shoou-Jinn

    2013-02-01

    Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 ± 0.1 eV and conduction band offset of 1.61 ± 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

  4. Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kai-Hsuan; Chen, Chia-Hao; Chang, Ping-Chuan

    2013-02-18

    Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 {+-} 0.1 eV and conduction band offset of 1.61 {+-} 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

  5. Architectural Representation of Valence in the Limbic System

    PubMed Central

    Namburi, Praneeth; Al-Hasani, Ream; Calhoon, Gwendolyn G; Bruchas, Michael R; Tye, Kay M

    2016-01-01

    In order to thrive, animals must be able to recognize aversive and appetitive stimuli within the environment and subsequently initiate appropriate behavioral responses. This assignment of positive or negative valence to a stimulus is a key feature of emotional processing, the neural substrates of which have been a topic of study for several decades. Until recently, the result of this work has been the identification of specific brain regions, such as the basolateral amygdala (BLA) and nucleus accumbens (NAc), as important to valence encoding. The advent of modern tools in neuroscience has allowed further dissection of these regions to identify specific populations of neurons signaling the valence of environmental stimuli. In this review, we focus upon recent work examining the mechanisms of valence encoding, and provide a model for the systematic investigation of valence within anatomically-, genetically-, and functionally defined populations of neurons. PMID:26647973

  6. Analytic approach to photoelectron transport.

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.

    1972-01-01

    The equation governing the transport of photoelectrons in the ionosphere is shown to be equivalent to the equation of radiative transfer. In the single-energy approximation this equation is solved in closed form by the method of discrete ordinates for isotropic scattering and for a single-constituent atmosphere. The results include prediction of the angular distribution of photoelectrons at all altitudes and, in particular, the angular distribution of the escape flux. The implications of these solutions in real atmosphere calculations are discussed.

  7. xLIPA: Promotion of Electrons from the K-shell to 2 GeV using 10 PW Laser Pulses

    DTIC Science & Technology

    2015-08-19

    field [34]. Since then numerous analytical and numerical approaches have been employed with special emphasis on laser photoionization . Besides interest in... photoionization as a fundamental physical process there are many applications for photoelectrons. Knowledge of the electron properties, e.g., energy...Schwinger field. Photoionization of inner-shell electrons in high-Z atoms is another example where relativistic effects are important. Two analytical

  8. Pressure dependence of Ce valence in CeRhIn 5

    DOE PAGES

    Brubaker, Z. E.; Stillwell, R. L.; Chow, P.; ...

    2017-12-14

    We have studied the Ce valence as a function of pressure in CeRhIn5 at 300 K and at 22 K using x-ray absorption spectroscopy in partial fluorescent yield mode. At room temperature, we found no detectable change in Ce valence greater than 0.01 up to a pressure of 5.5 GPa. At 22 K, the valence remains robust against pressure below 6 GPa, in contrast to the predicted valence crossover at P = 2.35 GPa. In conclusion, this work yields an upper limit for the change in Ce-valence and suggests that the critical valence fluctuation scenario, in its current form, ismore » unlikely.« less

  9. Photoionization cross sections for atomic chlorine using an open-shell random phase approximation

    NASA Technical Reports Server (NTRS)

    Starace, A. F.; Armstrong, L., Jr.

    1975-01-01

    The use of the Random Phase Approximation with Exchange (RPAE) for calculating partial and total photoionization cross sections and photoelectron angular distributions for open shell atoms is examined for atomic chlorine. Whereas the RPAE corrections in argon (Z=18) are large, it is found that those in chlorine (Z=17) are much smaller due to geometric factors. Hartree-Fock calculations with and without core relaxation are also presented. Sizable deviations from the close coupling results of Conneely are also found.

  10. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  11. Electronic structure of rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) by X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crerar, Shane J.; Mar, Arthur, E-mail: arthur.mar@ualberta.ca; Grosvenor, Andrew P.

    The electronic structure of the ternary rare-earth chromium antimonides RECrSb{sub 3} (RE=La-Nd, Sm, Gd-Dy, Yb) has been examined by high-resolution X-ray photoelectron spectroscopy (XPS) for the first time. The RE 3d or 4d core-line spectra are substantially complicated by the presence of satellite peaks but their general resemblance to those of RE{sub 2}O{sub 3} tends to support the presence of trivalent RE atoms in RECrSb{sub 3}. However, the Yb 4d spectrum of YbCrSb{sub 3} also shows peaks that are characteristic of divalent ytterbium. The Cr 2p core-line spectra exhibit asymmetric lineshapes and little change in binding energy (BE) relative tomore » Cr metal, providing strong evidence for electronic delocalization. The Sb 3d core-line spectra reveal slightly negative BE shifts relative to elemental antimony, supporting the presence of anionic Sb species in RECrSb{sub 3}. The experimental valence band spectrum of LaCrSb{sub 3} matches well with the calculated density of states, and it can be fitted to component peaks belonging to individual atoms to yield an average formulation that agrees well with expectations ('La{sup 3+}Cr{sup 3+}(Sb{sup 2-}){sub 3}'). On progressing from LaCrSb{sub 3} to NdCrSb{sub 3}, the 4f-band in the valence band spectra grows in intensity and shifts to higher BE. The valence band spectrum for YbCrSb{sub 3} also supports the presence of divalent ytterbium. - Graphical Abstract: In their valence band spectra, the 4f-band intensifies and shifts to higher BE on progressing from LaCrSb{sub 3} to NdCrSb{sub 3}. Highlights: Black-Right-Pointing-Pointer High-resolution core-line and valence band XPS spectra were measured for RECrSb{sub 3}. Black-Right-Pointing-Pointer Divalent Yb is present in YbCrSb{sub 3}, in contrast to trivalent RE in other members. Black-Right-Pointing-Pointer Asymmetric Cr 2p spectral lineshape confirms delocalization of Cr valence electrons. Black-Right-Pointing-Pointer Small negative Sb 3d BE shifts support

  12. Social learning modulates the lateralization of emotional valence.

    PubMed

    Shamay-Tsoory, Simone G; Lavidor, Michal; Aharon-Peretz, Judith

    2008-08-01

    Although neuropsychological studies of lateralization of emotion have emphasized valence (positive vs. negative) or type (basic vs. complex) dimensions, the interaction between the two dimensions has yet to be elucidated. The purpose of the current study was to test the hypothesis that recognition of basic emotions is processed preferentially by the right prefrontal cortex (PFC), whereas recognition of complex social emotions is processed preferentially by the left PFC. Experiment 1 assessed the ability of healthy controls and patients with right and left PFC lesions to recognize basic and complex emotions. Experiment 2 modeled the patient's data of Experiment 1 on healthy participants under lateralized displays of the emotional stimuli. Both experiments support the Type as well as the Valence Hypotheses. However, our findings indicate that the Valence Hypothesis holds for basic but less so for complex emotions. It is suggested that, since social learning overrules the basic preference of valence in the hemispheres, the processing of complex emotions in the hemispheres is less affected by valence.

  13. Affective valence signals agency within and between individuals.

    PubMed

    Chang, Yen-Ping; Algoe, Sara B; Chen, Lung Hung

    2017-03-01

    Affective valence is a core component of all emotional experiences. Building on recent evidence and theory, we reason that valence informs individuals about their agency-the mental capability of doing and intending. Expressed affect may also lead to perceptions of agency by others. Supporting the hypothesis that valence influences self- and other-perception of agency, across 5 studies, we showed that participants perceived more agency in themselves in positive versus neutral and negative personal (Study 1) and interpersonal (Study 2) events. Participants also perceived more agency in fictional characters showing positive versus negative affect, regardless of how acceptable the characters' behavior was (Studies 3 and 4). Finally, we had participants personify 24 specific emotions across the valence dimension, and found that the more positive and less negative an emotion was, the more agency participants ascribed to the "person" (Study 5). We discuss the results in terms of how valence may help with human self- and social regulation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Peculiarities of Spacecraft Photoelectron Shield Formation in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Veselov, Mikhail; Chugunin, Dmitriy

    Traditionally, the current balance equations for a spacecraft in space plasma rely on the electric field of positively charged spacecraft. Equilibrium potential V is derived from currents outward and toward the spacecraft body. The currents are in turn functions of V. However, in reality photoelectrons move in both the electric field of the spacecraft and the Earth or the interplanetary magnetic field. This causes an anisotropic distribution of photoelectrons along a magnetic field line with the characteristic size of the order of several photoelectron gyro-radii. As a result, confinement of photoelectrons in the spacecraft-related electric field is much longer. Thus, a fraction of returned photoelectrons in the electron current toward the spacecraft can be rather great and may even dominate several times over the ambient electrons’ fraction. Modeled ph-electron trajectories as well as general photoelectron shield distribution around spacecraft are represented, and comparison of experimental data on the electron density with the magnetic flux tube model is discussed.

  15. Effects of the carrier concentration on polarity determination in Ga-doped ZnO films by hard x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Huaping; Makino, Hisao; Kobata, Masaaki; Nomoto, Junichi; Kobayashi, Keisuke; Yamamoto, Tetsuya

    2018-03-01

    Core level (CL) and valence band (VB) spectra of heavily Ga-doped ZnO (GZO) films with carrier concentrations (Ne) ranging from 1.8 × 1020 to 1.0 × 1021 cm-3 were measured by high-resolution Al Kα (hν = 1486.6 eV) x-ray photoelectron spectroscopy (XPS) and Cr Kα (hν = 5414.7 eV) hard x-ray photoelectron spectroscopy (HAXPES). The CL spectra of the GZO films measured by XPS had little dependence on Ne. In contrast, clear differences in asymmetric broadening were observed in the HAXPES spectra owing to the large probing depth. The asymmetry in the Zn 2p3/2 and O 1s HAXPES spectra is mainly attributed to the energy loss of the conduction electron plasmon caused by the high Ne of the GZO films. Similar asymmetry was also observed in the VB spectra of these GZO films. It was found that such asymmetry plays a crucial role in the determination of crystal polarity. With increasing Ne, the intensity of the sub-peak at a binding energy Eb of about 5 eV in the VB spectrum decreased and the sub-peak became indistinguishable. We clarified the limitation of the criterion using the sub-peak and proposed an alternative method for polarity determination.

  16. Drastic difference between hole and electron injection through the gradient shell of CdxSeyZn1-xS1-y quantum dots.

    PubMed

    Abdellah, Mohamed; Poulsen, Felipe; Zhu, Qiushi; Zhu, Nan; Žídek, Karel; Chábera, Pavel; Corti, Annamaria; Hansen, Thorsten; Chi, Qijin; Canton, Sophie E; Zheng, Kaibo; Pullerits, Tõnu

    2017-08-31

    Ultrafast fluorescence spectroscopy was used to investigate the hole injection in Cd x Se y Zn 1-x S 1-y gradient core-shell quantum dot (CSQD) sensitized p-type NiO photocathodes. A series of CSQDs with a wide range of shell thicknesses was studied. Complementary photoelectrochemical cell measurements were carried out to confirm that the hole injection from the active core through the gradient shell to NiO takes place. The hole injection from the valence band of the QDs to NiO depends much less on the shell thickness when compared to the corresponding electron injection to n-type semiconductor (ZnO). We simulate the charge carrier tunneling through the potential barrier due to the gradient shell by numerically solving the Schrödinger equation. The details of the band alignment determining the potential barrier are obtained from X-ray spectroscopy measurements. The observed drastic differences between the hole and electron injection are consistent with a model where the hole effective mass decreases, while the gradient shell thickness increases.

  17. Taboo, emotionally valenced, and emotionally neutral word norms.

    PubMed

    Janschewitz, Kristin

    2008-11-01

    Although taboo words are used to study emotional memory and attention, no easily accessible normative data are available that compare taboo, emotionally valenced, and emotionally neutral words on the same scales. Frequency, inappropriateness, valence, arousal, and imageability ratings for taboo, emotionally valenced, and emotionally neutral words were made by 78 native-English-speaking college students from a large metropolitan university. The valenced set comprised both positive and negative words, and the emotionally neutral set comprised category-related and category-unrelated words. To account for influences of demand characteristics and personality factors on the ratings, frequency and inappropriateness measures were decomposed into raters' personal reactions to the words versus raters' perceptions of societal reactions to the words (personal use vs. familiarity and offensiveness vs. tabooness, respectively). Although all word sets were rated higher in familiarity and tabooness than in personal use and offensiveness, these differences were most pronounced for the taboo set. In terms of valence, the taboo set was most similar to the negative set, although it yielded higher arousal ratings than did either valenced set. Imageability for the taboo set was comparable to that of both valenced sets. The ratings of each word are presented for all participants as well as for single-sex groups. The inadequacies of the application of normative data to research that uses emotional words and the conceptualization of taboo words as a coherent category are discussed. Materials associated with this article may be accessed at the Psychonomic Society's Archive of Norms, Stimuli, and Data, www.psychonomic.org/archive.

  18. Amorphous Mixed-Valence Vanadium Oxide/Exfoliated Carbon Cloth Structure Shows a Record High Cycling Stability.

    PubMed

    Song, Yu; Liu, Tian-Yu; Yao, Bin; Kou, Tian-Yi; Feng, Dong-Yang; Liu, Xiao-Xia; Li, Yat

    2017-04-01

    Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V 4+ /V 5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Photoelectron imaging of doped helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Neumark, Daniel

    2008-03-01

    Photoelectron images of helium nanodroplets doped with Kr and Ne atoms are reported. The images and resulting photoelectron spectra were obtained using tunable synchrotron radiation to ionize the droplets. Droplets were excited at 21.6 eV, corresponding to a strong droplet electronic excitation. The rare gas dopant is then ionized via a Penning excitation transfer process. The electron kinetic energy distributions reflect complex ionization and electron escape dynamics.

  20. Effects of Emotional Valence and Arousal on Time Perception

    PubMed Central

    Van Volkinburg, Heather; Balsam, Peter

    2016-01-01

    We examined the influence of emotional arousal and valence on estimating time intervals. A reproduction task was used in which images from the International Affective Picture System served as the stimuli to be timed. Experiment 1 assessed the effects of positive and negative valence at a moderate arousal level and Experiment 2 replicated Experiment 1 with the addition of a high arousal condition. Overestimation increased as a function of arousal during encoding of times regardless of valence. For images presented during reproduction, overestimation occurred at the moderate arousal level for positive and negative valence but underestimation occurred in the negative valence high arousal condition. The overestimation of time intervals produced by emotional arousal during encoding and during reproduction suggests that emotional stimuli affect temporal information processing in a qualitatively different way during different phases of temporal information processing. PMID:27110491

  1. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradforth, Stephen Edmund

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN -, NCO - and NCS -. Transition state photoelectron spectra are presented for the following systems Br + HI, Clmore » + HI, F + HI, F + CH 30H,F + C 2H 5OH,F + OH and F + H 2. A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O( 3P, 1D) + HF and F + H 2. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H 2 system, comparisons with three-dimensional quantum calculations are made.« less

  2. Photoelectron studies of machined brass surfaces

    NASA Astrophysics Data System (ADS)

    Potts, A. W.; Merrison, J. P.; Tournas, A. D.; Yacoot, A.

    UV photoelectron spectroscopy has been used to determine the surface composition of machined brass. The results show a considerable change between the photoelectron surface composition and the bulk composition of the same sample determined by energy-dispersive X-ray fluorescence. On the surface the lead composition is increased by ˜900 G. This is consistent with the important part that lead is believed to play in improving the machinability of this alloy.

  3. Operando x-ray photoelectron emission microscopy for studying forward and reverse biased silicon p-n junctions.

    PubMed

    Barrett, N; Gottlob, D M; Mathieu, C; Lubin, C; Passicousset, J; Renault, O; Martinez, E

    2016-05-01

    Significant progress in the understanding of surfaces and interfaces of materials for new technologies requires operando studies, i.e., measurement of chemical, electronic, and magnetic properties under external stimulus (such as mechanical strain, optical illumination, or electric fields) applied in situ in order to approach real operating conditions. Electron microscopy attracts much interest, thanks to its ability to determine semiconductor doping at various scales in devices. Spectroscopic photoelectron emission microscopy (PEEM) is particularly powerful since it combines high spatial and energy resolution, allowing a comprehensive analysis of local work function, chemistry, and electronic structure using secondary, core level, and valence band electrons, respectively. Here we present the first operando spectroscopic PEEM study of a planar Si p-n junction under forward and reverse bias. The method can be used to characterize a vast range of materials at near device scales such as resistive oxides, conducting bridge memories and domain wall arrays in ferroelectrics photovoltaic devices.

  4. Electronic structure of the dilute magnetic semiconductor G a1 -xM nxP from hard x-ray photoelectron spectroscopy and angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Keqi, A.; Gehlmann, M.; Conti, G.; Nemšák, S.; Rattanachata, A.; Minár, J.; Plucinski, L.; Rault, J. E.; Rueff, J. P.; Scarpulla, M.; Hategan, M.; Pálsson, G. K.; Conlon, C.; Eiteneer, D.; Saw, A. Y.; Gray, A. X.; Kobayashi, K.; Ueda, S.; Dubon, O. D.; Schneider, C. M.; Fadley, C. S.

    2018-04-01

    We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) G a0.98M n0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimental data, as well as theoretical calculations, to understand the role of the Mn dopant in the emergence of ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between G a0.98M n0.02P and GaP in both angle-resolved and angle-integrated valence spectra. The G a0.98M n0.02P bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host GaP crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations and a prior HARPES study of G a0.97M n0.03As and GaAs [Gray et al., Nat. Mater. 11, 957 (2012), 10.1038/nmat3450], demonstrating the strong similarity between these two materials. The Mn 2 p and 3 s core-level spectra also reveal an essentially identical state in doping both GaAs and GaP.

  5. X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Bavand, R.; Yelon, A.; Sacher, E.

    2015-11-01

    Ruthenium nanoparticles (Ru NPs) function as effective catalysts in specific reactions, such as methanation and Fischer-Tropsch syntheses. It is our purpose to physicochemically characterize their surfaces, at which catalysis occurs, by surface-sensitive X-ray photoelectron spectroscopy (XPS), using the symmetric peak component anaylsis technique developed in our laboratory to reveal previously hidden components. Ru NPs were deposited by evaporation (0.25-1.5 nm nominal deposition range) onto highly oriented pyrolytic graphite (HOPG). In addition to their surfaces being characterized by XPS, an indication of morphology was obtained from transmission electron microscopy (TEM). Our use of symmetric peak component XPS analysis has revealed detailed information on a previously unidentified surface oxide initially formed, as well as on the valence electronic structure and its variation with NP size, information that is of potential importance in the use of these NPs in catalysis. Each of the several Ru core XPS spectra characterized (3d, 3p and 3s) was found to be composed of three symmetric components. Together with two metal oxide O1s components, these give evidence of a rather complex, previously unidentified oxide that is initially formed. The Ru valence band (4d and 5s) spectra clearly demonstrate a loss of metallicity, a simultaneous increase of the Kubo gap, and an abrupt transfer in valence electron density from the 4d to the 5s orbitals (known as electron spill-over), as the NP size decreases below 0.5 nm. TEM photomicrographs, as a function of deposition rate, show that, at a rate that gives insufficient time for the NP condensation energy to dissipate, the initially well-separated NPs are capable of diffusing laterally and aggregating. This indicates weak NP bonding to the HOPG substrate. Carbide is formed, at both high and low deposition rates, at Ru deposition thicknesses greater than 0.25 nm, its formation explained by Ru NPs reacting with residual

  6. The allocation of valenced concepts onto 3D space.

    PubMed

    Marmolejo-Ramos, Fernando; Tirado, Carlos; Arshamian, Edward; Vélez, Jorge Iván; Arshamian, Artin

    2018-06-01

    The valence-space metaphor research area investigates the metaphorical mapping of valenced concepts onto space. Research findings from this area indicate that positive, neutral, and negative concepts are associated with upward, midward, and downward locations, respectively, in the vertical plane. The same research area has also indicated that such concepts seem to have no preferential location on the horizontal plane. The approach-avoidance effect consists in decreasing the distance between positive stimuli and the body (i.e. approach) and increasing the distance between negative stimuli and the body (i.e. avoid). Thus, the valence-space metaphor accounts for the mapping of valenced concepts onto the vertical and horizontal planes, and the approach-avoidance effect accounts for the mapping of valenced concepts onto the "depth" plane. By using a cube conceived for the study of allocation of valenced concepts onto 3D space, we show in three studies that positive concepts are placed in upward locations and near the participants' body, negative concepts are placed in downward locations and far from the participants' body, and neutral concepts are placed in between these concepts in both planes.

  7. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectramore » for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.« less

  8. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Shan, Qingsong; Li, Kuiying; Xue, Zhenjie; Lin, Yingying; Yin, Hua; Zhu, Ruiping

    2016-02-01

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core-shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core-shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core-shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10-8 to 2 × 10-3 s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space-charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  9. Benchmark results and theoretical treatments for valence-to-core x-ray emission spectroscopy in transition metal compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortensen, D. R.; Seidler, G. T.; Kas, Joshua J.

    We report measurement of the valence-to-core (VTC) region of the K-shell x-ray emission spectra from several Zn and Fe inorganic compounds, and their critical comparison with several existing theoretical treatments. We find generally good agreement between the respective theories and experiment, and in particular find an important admixture of dipole and quadrupole character for Zn materials that is much weaker in Fe-based systems. These results on materials whose simple crystal structures should not, a prior, pose deep challenges to theory, will prove useful in guiding the further development of DFT and time-dependent DFT methods for VTC-XES predictions and their comparisonmore » to experiment.« less

  10. Valence-Dependent Belief Updating: Computational Validation.

    PubMed

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement

  11. Valence-Dependent Belief Updating: Computational Validation

    PubMed Central

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement

  12. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    PubMed

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  13. Emotion and language: Valence and arousal affect word recognition

    PubMed Central

    Brysbaert, Marc; Warriner, Amy Beth

    2014-01-01

    Emotion influences most aspects of cognition and behavior, but emotional factors are conspicuously absent from current models of word recognition. The influence of emotion on word recognition has mostly been reported in prior studies on the automatic vigilance for negative stimuli, but the precise nature of this relationship is unclear. Various models of automatic vigilance have claimed that the effect of valence on response times is categorical, an inverted-U, or interactive with arousal. The present study used a sample of 12,658 words, and included many lexical and semantic control factors, to determine the precise nature of the effects of arousal and valence on word recognition. Converging empirical patterns observed in word-level and trial-level data from lexical decision and naming indicate that valence and arousal exert independent monotonic effects: Negative words are recognized more slowly than positive words, and arousing words are recognized more slowly than calming words. Valence explained about 2% of the variance in word recognition latencies, whereas the effect of arousal was smaller. Valence and arousal do not interact, but both interact with word frequency, such that valence and arousal exert larger effects among low-frequency words than among high-frequency words. These results necessitate a new model of affective word processing whereby the degree of negativity monotonically and independently predicts the speed of responding. This research also demonstrates that incorporating emotional factors, especially valence, improves the performance of models of word recognition. PMID:24490848

  14. Symmetry of Isoscalar Matrix Elements and Systematics in the sd and beginning of fp shells

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Petkov, P.; Velázquez, V.; McKay, C. J.; Lesher, S. R.; Choudry, S.; Mynk, M.; Linnemann, A.; Jolie, J.; von Brentano, P.; Werner, V.; Yates, S. W.; McEllistrem, M. T.

    2006-03-01

    A careful determination of the lifetime and measurement of the branching ratio for decay of the first 2T=1+ state in 42Sc has allowed an accurate experimental test of charge independence in the A = 42 isobaric triplet. A lifetime of 69(17) fs was measured at the University of Kentucky, while relative intensities for the 975 keV and 1586 keV transitions depopulating the first 2T=1+ state have been determined at the University of Cologne as 100(1) and 8(1), respectively. Both measurements give an isoscalar matrix element, M0, of 6.4(9) (W.u.)1/2. This result confirms charge independence for the A=42 isobaric triplet. Shell model calculations have been carried out for understanding the global trend of M0 values for A = 4n + 2 isobaric triplets ranging from A = 18 to A = 42. The 21 (T=1)+ → 01 (T=1)+ transition energies, reduced transition probabilities and M0 values are reproduced to a high degree of accuracy. The trend of M0 strength along the sd shell is interpreted in terms of the shell structure. Certain discrepancies arise at the extremes of the sd shell, for the A = 18 and A = 38 isobaric triplets, which might be explained in terms of the low valence space at the extremes of the sd shell.

  15. Temperature dependent electron delocalization in CdSe/CdS type-I core-shell systems: An insight from scanning tunneling spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Biswajit; Chakrabarti, Sudipto; Pal, Amlan J., E-mail: sspajp@iacs.res.in

    2016-03-14

    Core-shell nanocrystals having a type-I band-alignment confine charge carriers to the core. In this work, we choose CdSe/CdS core-shell nano-heterostructures that evidence confinement of holes only. Such a selective confinement occurs in the core-shell nanocrystals due to a low energy-offset of conduction band (CB) edges resulting in delocalization of electrons and thus a decrease in the conduction band-edge. Since the delocalization occurs through a thermal assistance, we study temperature dependence of selective delocalization process through scanning tunneling spectroscopy. From the density of states (DOS), we observe that the electrons are confined to the core at low temperatures. Above a certainmore » temperature, they become delocalized up to the shell leading to a decrease in the CB of the core-shell system due to widening of quantum confinement effect. With holes remaining confined to the core due to a large offset in the valence band (VB), we record the topography of the core-shell nanocrystals by probing their CB and VB edges separately. The topographies recorded at different temperatures representing wave-functions of electrons and holes corresponded to the results obtained from the DOS spectra. The results evidence temperature-dependent wave-function delocalization of one-type of carriers up to the shell layer in core-shell nano-heterostructures.« less

  16. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  17. Photoelectron photoion molecular beam spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  18. Band alignment of TiO{sub 2}/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Haibo, E-mail: hbfan@nwu.edu.cn, E-mail: liusz@snnu.edu.cn; School of Physics, Northwest University, Xi’an 710069; Yang, Zhou

    2016-01-15

    The energy band alignment between pulsed-laser-deposited TiO{sub 2} and FTO was firstly characterized using high-resolution X-ray photoelectron spectroscopy. A valence band offset (VBO) of 0.61 eV and a conduction band offset (CBO) of 0.29 eV were obtained across the TiO{sub 2}/FTO heterointerface. With annealing process, the VBO and CBO across the heterointerface were found to be -0.16 eV and 1.06 eV, respectively, with the alignment transforming from type-I to type-II. The difference in the band alignment is believed to be dominated by the core level down-shift of the FTO substrate, which is a result of the oxidation of Sn. Current-voltagemore » test has verified that the band alignment has a significant effect on the current transport of the heterojunction.« less

  19. Valenced cues and contexts have different effects on event-based prospective memory.

    PubMed

    Graf, Peter; Yu, Martin

    2015-01-01

    This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants' task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement.

  20. Valenced Cues and Contexts Have Different Effects on Event-Based Prospective Memory

    PubMed Central

    Graf, Peter; Yu, Martin

    2015-01-01

    This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants’ task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement. PMID:25647484

  1. Selective Removal of Hemoglobin from Blood Using Hierarchical Copper Shells Anchored to Magnetic Nanoparticles

    PubMed Central

    Wang, Yaokun; Yan, Mingyang

    2017-01-01

    Hierarchical copper shells anchored on magnetic nanoparticles were designed and fabricated to selectively deplete hemoglobin from human blood by immobilized metal affinity chromatography. Briefly, CoFe2O4 nanoparticles coated with polyacrylic acid were first synthesized by a one-pot solvothermal method. Hierarchical copper shells were then deposited by immobilizing Cu2+ on nanoparticles and subsequently by reducing between the solid CoFe2O4@COOH and copper solution with NaBH4. The resulting nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The particles were also tested against purified bovine hemoglobin over a range of pH, contact time, and initial protein concentration. Hemoglobin adsorption followed pseudo-second-order kinetics and reached equilibrium in 90 min. Isothermal data also fit the Langmuir model well, with calculated maximum adsorption capacity 666 mg g−1. Due to the high density of Cu2+ on the shell, the nanoparticles efficiently and selectively deplete hemoglobin from human blood. Taken together, the results demonstrate that the particles with hierarchical copper shells effectively remove abundant, histidine-rich proteins, such as hemoglobin from human blood, and thereby minimize interference in diagnostic and other assays. PMID:28316987

  2. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics.

    PubMed

    Gani, Terry Z H; Kulik, Heather J

    2017-11-14

    Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the

  3. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction

    NASA Astrophysics Data System (ADS)

    Sun, Haiding; Torres Castanedo, C. G.; Liu, Kaikai; Li, Kuang-Hui; Guo, Wenzhe; Lin, Ronghui; Liu, Xinwei; Li, Jingtao; Li, Xiaohang

    2017-10-01

    Both β-Ga2O3 and wurtzite AlN have wide bandgaps of 4.5-4.9 and 6.1 eV, respectively. We calculated the in-plane lattice mismatch between the (-201) plane of β-Ga2O3 and the (0002) plane of AlN, which was found to be 2.4%. This is the smallest mismatch between β-Ga2O3 and binary III-nitrides which is beneficial for the formation of a high quality β-Ga2O3/AlN heterojunction. However, the valence and conduction band offsets (VBO and CBO) at the β-Ga2O3/AlN heterojunction have not yet been identified. In this study, a very thin (less than 2 nm) β-Ga2O3 layer was deposited on an AlN/sapphire template to form the heterojunction by pulsed laser deposition. High-resolution X-ray photoelectron spectroscopy revealed the core-level (CL) binding energies of Ga 3d and Al 2p with respect to the valence band maximum in individual β-Ga2O3 and AlN layers, respectively. The separation between Ga 3d and Al 2p CLs at the β-Ga2O3/AlN interface was also measured. Eventually, the VBO was found to be -0.55 ± 0.05 eV. Consequently, a staggered-gap (type II) heterojunction with a CBO of -1.75 ± 0.05 eV was determined. The identification of the band alignment of the β-Ga2O3/AlN heterojunction could facilitate the design of optical and electronic devices based on these and related alloys.

  4. Decoding emotional valence from electroencephalographic rhythmic activity.

    PubMed

    Celikkanat, Hande; Moriya, Hiroki; Ogawa, Takeshi; Kauppi, Jukka-Pekka; Kawanabe, Motoaki; Hyvarinen, Aapo

    2017-07-01

    We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parietal sources being especially significant, and (2) even though the locations of the involved neuronal sources are consistent, subjects can display highly varying degrees of valence-related EEG activity in the sources.

  5. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  6. Space-valence priming with subliminal and supraliminal words.

    PubMed

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime "up" before the target "happy") than with an incongruent prime (e.g., the prime "up" before the target "sad"). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments.

  7. Space-Valence Priming with Subliminal and Supraliminal Words

    PubMed Central

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime “up” before the target “happy”) than with an incongruent prime (e.g., the prime “up” before the target “sad”). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments. PMID:23439863

  8. Photoelectron spectroscopy study of the electronic structures at CoPc/Bi(111) interface

    NASA Astrophysics Data System (ADS)

    Sun, Haoliang; Liang, Zhaofeng; Shen, Kongchao; Hu, Jinbang; Ji, Gengwu; Li, Zheshen; Li, Haiyang; Zhu, Zhiyuan; Li, Jiong; Gao, Xingyu; Han, Huang; Jiang, Zheng; Song, Fei

    2017-07-01

    Self-assembly of functional molecules on solid substrate has been recognized as an appealing approach for the fabrication of diverse nanostructures for nanoelectronics. Herein, we investigate the growth of cobalt phthalocyanine (CoPc) on a Bi(111) surface with focus on the interface electronic structures utilizing photoelectron spectroscopy. While charge transfer from bismuth substrate to the molecule results in the emergence of an interface component in the Co 3p core level at lower binding energy, core-levels associated to the molecular ligand (C 1s and N 1s) are less influenced by the adsorption. In addition, density functional theory (DFT) calculations also support the empirical inference that the molecule-substrate interaction mainly involves the out-of-plane empty Co 3d orbital and bismuth states. Finally, valence band spectra demonstrate the molecule-substrate interaction is induced by interface charge transfer, agreeing well with core level measurements. Charge transfer is shown to be mainly from the underlying bismuth substrate to the empty states located at the central Co atom in the CoPc molecules. This report may provide a fundamental basis to the on-surface engineering of interfaces for molecular devices and spintronics.

  9. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    NASA Astrophysics Data System (ADS)

    Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi; El Achouby, Hicham; Feddi, El Mustapha; Dujardin, Francis

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image-charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  10. High ink absorption performance of inkjet printing based on SiO2@Al13 core-shell composites

    NASA Astrophysics Data System (ADS)

    Chen, YiFan; Jiang, Bo; Liu, Li; Du, Yunzhe; Zhang, Tong; Zhao, LiWei; Huang, YuDong

    2018-04-01

    The increasing growth of the inkjet market makes the inkjet printing more necessary. A composite material based on core-shell structure has been developed and applied to prepare inkjet printing layer. In this contribution, the ink printing record layers based on SiO2@Al13 core-shell composite was elaborated. The prepared core-shell composite materials were characterized by X-ray photoelectron spectroscopy (XPS), zeta potential, X-ray diffraction (XRD), scanning electron microscopy (SEM). The results proved the presence of electrostatic adsorption between SiO2 molecules and Al13 molecules with the formation of the well-dispersed system. In addition, based on the adsorption and the liquid permeability analysis, SiO2@Al13 ink printing record layer achieved a relatively high ink uptake (2.5 gmm-1) and permeability (87%), respectively. The smoothness and glossiness of SiO2@Al13 record layers were higher than SiO2 record layers. The core-shell structure facilitated the dispersion of the silica, thereby improved its ink absorption performance and made the clear printed image. Thus, the proposed procedure based on SiO2@Al13 core-shell structure of dye particles could be applied as a promising strategy for inkjet printing.

  11. Photoelectron Imaging as a Quantum Chemistry Visualization Tool

    ERIC Educational Resources Information Center

    Grumbling, Emily R.; Pichugin, Kostyantyn; Mabbs, Richard; Sanov, Andrei

    2011-01-01

    An overview and simple example of photoelectron imaging is presented, highlighting its efficacy as a pedagogical tool for visualizing quantum phenomena. Specifically, photoelectron imaging of H[superscript -] (the simplest negative ion) is used to demonstrate several quantum mechanical principles. This example could be incorporated into an…

  12. Quantum chemical study of conformational fingerprints in the photoelectron spectra and (e, 2e) electron momentum distributions of n-hexane.

    PubMed

    Morini, F; Knippenberg, S; Deleuze, M S; Hajgató, B

    2010-04-01

    The main purpose of the present work is to simulate from many-body quantum mechanical calculations the results of experimental studies of the valence electronic structure of n-hexane employing photoelectron spectroscopy (PES) and electron momentum spectroscopy (EMS). This study is based on calculations of the valence ionization spectra and spherically averaged (e, 2e) electron momentum distributions for each known conformer by means of one-particle Green's function [1p-GF] theory along with the third-order algebraic diagrammatic construction [ADC(3)] scheme and using Kohn-Sham orbitals derived from DFT calculations employing the Becke 3-parameters Lee-Yang-Parr (B3LYP) functional as approximations to Dyson orbitals. A first thermostatistical analysis of these spectra and momentum distributions employs recent estimations at the W1h level of conformational energy differences, by Gruzman et al. [J. Phys. Chem. A 2009, 113, 11974], and of correspondingly obtained conformer weights using MP2 geometrical, vibrational, and rotational data in thermostatistical calculations of partition functions beyond the level of the rigid rotor-harmonic oscillator approximation. Comparison is made with the results of a focal point analysis of these energy differences using this time B3LYP geometries and the corresponding vibrational and rotational partition functions in the thermostatistical analysis. Large differences are observed between these two thermochemical models, especially because of strong variations in the contributions of hindered rotations to relative entropies. In contrast, the individual ionization spectra or momentum profiles are almost insensitive to the employed geometry. This study confirms the great sensitivity of valence ionization bands and (e, 2e) momentum distributions on the molecular conformation and sheds further light on spectral fingerprints of through-space methylenic hyperconjugation, in both PES and EMS experiments.

  13. Photoelectron Spectroscopy of Free Polyoxoanions Mo6O19 2- and W6O19 2- in the Gas Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Infante, Ivan A.; Visscher, Lucas; Wang, Xue B.

    2004-09-22

    Two doubly charged polyoxoanions, Mo6O19 2- and W6O19 2-, were observed in the gas phase using electrospray ionization. Their electronic structures were investigated using photoelectron spectroscopy and quasi-relativistic density functional calculations. Each dianion was found to be highly stable despite the presence of strong intramolecular coulomb repulsion, estimated to be about 2 eV for each system. The valence detachment features were all shown to originate from electronic excitations involving oxygen lone-pair type orbitals. Their observed energies were in excellent agreement with the theoretical vertical detachment energies calculated using time-dependent density functional theory. Despite being multiply charged, polyoxometalate oxide clusters canmore » be studied in the gas phase, providing the opportunity for detailed benchmark theoretical studies on the electronic structures of these important transition-metal oxide systems.« less

  14. Conformational effects in photoelectron circular dichroism

    NASA Astrophysics Data System (ADS)

    Turchini, S.

    2017-12-01

    Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.

  15. Developmental reversals in false memory: Effects of emotional valence and arousal.

    PubMed

    Brainerd, C J; Holliday, R E; Reyna, V F; Yang, Y; Toglia, M P

    2010-10-01

    Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can be manipulated factorially. False memories increased with age for unpresented semantic associates of word lists, and net accuracy (the ratio of true memory to total memory) decreased with age. These surprising developmental trends were more pronounced for negatively valenced materials than for positively valenced materials, they were more pronounced for high-arousal materials than for low-arousal materials, and developmental increases in the effects of arousal were small in comparison with developmental increases in the effects of valence. These findings have ramifications for legal applications of false memory research; materials that share the emotional hallmark of crimes (events that are negatively valenced and arousing) produced the largest age increases in false memory and the largest age declines in net accuracy. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Photoelectron spectroscopic and microspectroscopic probes of ferroelectrics

    NASA Astrophysics Data System (ADS)

    Tǎnase, Liviu C.; Abramiuc, Laura E.; Teodorescu, Cristian M.

    2017-12-01

    This contribution is a review of recent aspects connected with photoelectron spectroscopy of free ferroelectric surfaces, metals interfaced with these surfaces, graphene-like layers together with some exemplifications concerning molecular adsorption, dissociations and desorptions occurring from ferroelectrics. Standard photoelectron spectroscopy is used nowadays in correlation with other characterization techniques, such as piezoresponse force microscopy, high resolution transmission electron spectroscopy, and ferroelectric hysteresis cycles. In this work we will concentrate mainly on photoelectron spectroscopy and spectro-microscopy characterization of ferroelectric thin films, starting from atomically clean ferroelectric surfaces of lead zirco-titanate, then going towards heterostructures using this material in combination with graphene-like carbon layers or with metals. Concepts involving charge accumulation and depolarization near surface will be revisited by taking into account the newest findings in this area.

  17. Coherent control of photoelectron wavepacket angular interferograms

    NASA Astrophysics Data System (ADS)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  18. The acoustic correlates of valence depend on emotion family.

    PubMed

    Belyk, Michel; Brown, Steven

    2014-07-01

    The voice expresses a wide range of emotions through modulations of acoustic parameters such as frequency and amplitude. Although the acoustics of individual emotions are well understood, attempts to describe the acoustic correlates of broad emotional categories such as valence have yielded mixed results. In the present study, we analyzed the acoustics of emotional valence for different families of emotion. We divided emotional vocalizations into "motivational," "moral," and "aesthetic" families as defined by the OCC (Ortony, Clore, and Collins) model of emotion. Subjects viewed emotional scenarios and were cued to vocalize congruent exclamations in response to them, for example, "Yay!" and "Damn!". Positive valence was weakly associated with high-pitched and loud vocalizations. However, valence interacted with emotion family for both pitch and amplitude. A general acoustic code for valence does not hold across families of emotion, whereas family-specific codes provide a more accurate description of vocal emotions. These findings are consolidated into a set of "rules of expression" relating vocal dimensions to emotion dimensions. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  19. Photoelectron spectroscopy of nitromethane anion clusters

    NASA Astrophysics Data System (ADS)

    Pruitt, Carrie Jo M.; Albury, Rachael M.; Goebbert, Daniel J.

    2016-08-01

    Nitromethane anion and nitromethane dimer, trimer, and hydrated cluster anions were studied by photoelectron spectroscopy. Vertical detachment energies, estimated electron affinities, and solvation energies were obtained from the photoelectron spectra. Cluster structures were investigated using theoretical calculations. Predicted detachment energies agreed with experiment. Calculations show water binds to nitromethane anion through two hydrogen bonds. The dimer has a non-linear structure with a single ionic Csbnd H⋯O hydrogen bond. The trimer has two different solvent interactions, but both involve the weak Csbnd H⋯O hydrogen bond.

  20. Electronic structure of lanthanide scandates

    NASA Astrophysics Data System (ADS)

    Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.

    2018-02-01

    X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.

  1. Electronic structures of U X3 (X =Al , Ga, and In) studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2017-09-01

    The electronic structures of U X3 (X =Al , Ga , and In ) were studied by photoelectron spectroscopy to understand the relationship between their electronic structures and magnetic properties. The band structures and Fermi surfaces of UAl3 and UGa3 were revealed experimentally by angle-resolved photoelectron spectroscopy (ARPES), and they were compared with the result of band-structure calculations. The topologies of the Fermi surfaces and the band structures of UAl3 and UGa3 were explained reasonably well by the calculation, although bands near the Fermi level (EF) were renormalized owing to the finite electron correlation effect. The topologies of the Fermi surfaces of UAl3 and UGa3 are very similar to each other, except for some minor differences. Such minor differences in their Fermi surface or electron correlation effect might take an essential role in their different magnetic properties. No significant changes were observed between the ARPES spectra of UGa3 in the paramagnetic and antiferromagnetic phases, suggesting that UGa3 is an itinerant weak antiferromagnet. The effect of chemical pressure on the electronic structures of U X3 compounds was also studied by utilizing the smaller lattice constants of UAl3 and UGa3 than that of UIn3. The valence band spectrum of UIn3 is accompanied by a satellitelike structure on the high-binding-energy side. The core-level spectrum of UIn3 is also qualitatively different from those of UAl3 and UGa3. These findings suggest that the U 5 f states in UIn3 are more localized than those in UAl3 and UGa3.

  2. Temperature and pressure dependences of Sm valence in intermediate valence compound SmB6

    NASA Astrophysics Data System (ADS)

    Emi, N.; Mito, T.; Kawamura, N.; Mizumaki, M.; Ishimatsu, N.; Pristáš, G.; Kagayama, T.; Shimizu, K.; Osanai, Y.; Iga, F.

    2018-05-01

    We report the results of the X-ray absorption spectroscopy (XAS) on the intermediate valence compound SmB6. The XAS measurements were performed near the nonmagnetic-magnetic phase boundary. Mean Sm valence vSm was estimated from absorption spectra, and we found that vSm near the boundary (P ≥ 10 GPa and T ∼ 12 K) is far below a trivalent state with magnetic characteristics. Although the result is markedly different from the cases of pressure induced magnetic orders in Yb and Ce compounds, it is likely that the large deviation from the trivalent state seems to be common in some Sm compounds which possess electronic configuration between 4f5 and 4f6 with multi 4 f electrons.

  3. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    DOE PAGES

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    2018-01-15

    Level energies are reported for Si v, Si vi, Si vii, Si viii, Si ix, Si x, Si xi, and Si xii. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si v to 0.04 eV in Si xii. For K-vacancy states, the available values recommendedmore » in the NIST database are limited to Si xii and Si xiii. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. Here, we expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.« less

  4. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    2018-01-01

    Level energies are reported for Si V, Si VI, Si VII, Si VIII, Si IX, Si X, Si XI, and Si XII. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si V to 0.04 eV in Si XII. For K-vacancy states, the available values recommended in the NIST database are limited to Si XII and Si XIII. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. We expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.

  5. Relativistic MR–MP Energy Levels for L-shell Ions of Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, Juan A.; Lopez-Dauphin, Nahyr A.; Beiersdorfer, Peter

    Level energies are reported for Si v, Si vi, Si vii, Si viii, Si ix, Si x, Si xi, and Si xii. The energies have been calculated with the relativistic Multi-Reference Møller–Plesset Perturbation Theory method and include valence and K-vacancy states with nl up to 5f. The accuracy of the calculated level energies is established by comparison with the recommended data listed in the National Institute of Standards and Technology (NIST) online database. The average deviation of valence level energies ranges from 0.20 eV in Si v to 0.04 eV in Si xii. For K-vacancy states, the available values recommendedmore » in the NIST database are limited to Si xii and Si xiii. The average energy deviation is below 0.3 eV for K-vacancy states. The extensive and accurate data set presented here greatly augments the amount of available reference level energies. Here, we expect our data to ease the line identification of L-shell ions of Si in celestial sources and laboratory-generated plasmas, and to serve as energy references in the absence of more accurate laboratory measurements.« less

  6. Processing negative valence of word pairs that include a positive word.

    PubMed

    Itkes, Oksana; Mashal, Nira

    2016-09-01

    Previous research has suggested that cognitive performance is interrupted by negative relative to neutral or positive stimuli. We examined whether negative valence affects performance at the word or phrase level. Participants performed a semantic decision task on word pairs that included either a negative or a positive target word. In Experiment 1, the valence of the target word was congruent with the overall valence conveyed by the word pair (e.g., fat kid). As expected, response times were slower in the negative condition relative to the positive condition. Experiment 2 included target words that were incongruent with the overall valence of the word pair (e.g., fat salary). Response times were longer for word pairs whose overall valence was negative relative to positive, even though these word pairs included a positive word. Our findings support the Cognitive Primacy Hypothesis, according to which emotional valence is extracted after conceptual processing is complete.

  7. Core-shell rhodium sulfide catalyst for hydrogen evolution reaction / hydrogen oxidation reaction in hydrogen-bromine reversible fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Yuanchao; Nguyen, Trung Van

    2018-04-01

    Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.

  8. Photoelectron spectroscopic study on the electronic structures of the dental gold alloys and their interaction with L-cysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Koji; Takahashi, Kazutoshi; Azuma, Junpei

    The valence electronic structures of the dental gold alloys, type 1, type 3, and K14, and their interaction with L-cysteine have been studied by ultraviolet photoelectron spectroscopy with synchrotron radiation. It was found that the electronic structures of the type-1 and type-3 dental alloys are similar to that of polycrystalline Au, while that of the K14 dental alloy is much affected by Cu. The peak shift and the change in shape due to alloying are observed in all the dental alloys. It is suggested that the new peak observed around 2 eV for the L-cysteine thin films on all themore » dental alloys may be due to the bonding of S 3sp orbitals with the dental alloy surfaces, and the Cu-S bond, as well as the Au-S and Au-O bonds, may cause the change in the electronic structure of the L-cysteine on the alloys.« less

  9. Explaining the effect of event valence on unrealistic optimism.

    PubMed

    Gold, Ron S; Brown, Mark G

    2009-05-01

    People typically exhibit 'unrealistic optimism' (UO): they believe they have a lower chance of experiencing negative events and a higher chance of experiencing positive events than does the average person. UO has been found to be greater for negative than positive events. This 'valence effect' has been explained in terms of motivational processes. An alternative explanation is provided by the 'numerosity model', which views the valence effect simply as a by-product of a tendency for likelihood estimates pertaining to the average member of a group to increase with the size of the group. Predictions made by the numerosity model were tested in two studies. In each, UO for a single event was assessed. In Study 1 (n = 115 students), valence was manipulated by framing the event either negatively or positively, and participants estimated their own likelihood and that of the average student at their university. In Study 2 (n = 139 students), valence was again manipulated and participants again estimated their own likelihood; additionally, group size was manipulated by having participants estimate the likelihood of the average student in a small, medium-sized, or large group. In each study, the valence effect was found, but was due to an effect on estimates of own likelihood, not the average person's likelihood. In Study 2, valence did not interact with group size. The findings contradict the numerosity model, but are in accord with the motivational explanation. Implications for health education are discussed.

  10. Anion photoelectron imaging spectroscopy of glyoxal

    NASA Astrophysics Data System (ADS)

    Xue, Tian; Dixon, Andrew R.; Sanov, Andrei

    2016-09-01

    We report a photoelectron imaging study of the radical-anion of glyoxal. The 532 nm photoelectron spectrum provides the first direct spectroscopic determination of the adiabatic electron affinity of glyoxal, EA = 1.10 ± 0.02 eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy of the radical-anion is determined as VDE = 1.30 ± 0.04 eV. The reported EA and VDE values are attributed to the most stable (C2h symmetry) isomers of the neutral and the anion.

  11. Auroral and photoelectron fluxes in cometary ionospheres

    NASA Astrophysics Data System (ADS)

    Bhardwaj, A.; Haider, S. A.; Spinghal, R. P.

    1990-05-01

    The analytical yield spectrum method has been used to ascertain photoelectron and auroral electron fluxes in cometary ionospheres, with a view to determining the effects of cometocentric distances, solar zenith angle, and solar minimum and maximum conditions. Auroral electron fluxes are thus calculated for monoenergetic and observed primary electron spectra; auroral electrons are found to make a larger contribution to the observed electron spectrum than EUV-generated photoelectrons. Good agreement is established with extant theoretical works.

  12. Anion photoelectron spectroscopy of radicals and clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis, Taylor R.

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C 2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C 2H and C 4H. Other radicals studied include NCN and I 3. The author was able to observe the low-lying singlet and triplet states of NCNmore » for the first time. Measurement of the electron affinity of I 3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.« less

  13. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    PubMed

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-06-03

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  14. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    PubMed Central

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-01-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904

  15. Room-temperature H2S Gas Sensor Based on Au-doped ZnFe2O4 Yolk-shell Microspheres.

    PubMed

    Yan, Yin; Nizamidin, Patima; Turdi, Gulmira; Kari, Nuerguli; Yimit, Abliz

    2017-01-01

    Room-temperature type H 2 S sensing devices that use Au-doped ZnFe 2 O 4 yolk-shell microspheres as the active material have been fabricated using a solvothermal method as well as subsequent annealing and a chemical etching process. The samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the doping of Au does not change the spinel structure of the products, which were yolk-shell microspheres, while the particle size varied with the Au doping concentration. Also, the as-fabricated sensor device exhibited excellent selectivity toward H 2 S gas at the room temperature; the gas-sensing property of 2 wt% Au-doped ZnFe 2 O 4 microspheres was the best. The Au-doped ZnFe 2 O 4 yolk-shell microspheres can be promising as a sensing material for H 2 S gas detecting at room temperature.

  16. Lying about the valence of affective pictures: an fMRI study.

    PubMed

    Lee, Tatia M C; Lee, Tiffany M Y; Raine, Adrian; Chan, Chetwyn C H

    2010-08-25

    The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception.

  17. Developmental Reversals in False Memory: Effects of Emotional Valence and Arousal

    ERIC Educational Resources Information Center

    Brainerd, C. J.; Holliday, R. E.; Reyna, V. F.; Yang, Y.; Toglia, M. P.

    2010-01-01

    Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can…

  18. Slow Photoelectron Velocity-Map Imaging of Cryogenically Cooled Anions

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; Neumark, Daniel M.

    2018-04-01

    Slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of neutral radicals, clusters, and reaction transition states. SEVI is a high-resolution variant of anion photoelectron spectroscopy based on photoelectron imaging that yields spectra with energy resolution as high as 1-2 cm‑1. The preparation of cryogenically cold anions largely eliminates hot bands and dramatically narrows the rotational envelopes of spectral features, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species. We review the basis and history of the SEVI method, including recent experimental developments that have improved its resolution and versatility. We then survey recent SEVI studies to demonstrate the utility of this technique in the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadiabatic interactions between excited states of small molecules, and transition states of benchmark bimolecular reactions.

  19. NIF Double Shell outer/inner shell collision experiments

    NASA Astrophysics Data System (ADS)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  20. Character Disposition and Behavior Type: Influences of Valence on Preschool Children's Social Judgments

    ERIC Educational Resources Information Center

    Jones, Elaine F.; Tobias, Marvin; Pauley, Danielle; Thomson, Nicole Renick; Johnson, Shawana Lewis

    2009-01-01

    The authors studied the influences of valence information on preschool children's (n = 47) moral (good or bad), liking (liked or disliked by a friend), and consequence-of-behavior (reward or punishment) judgments. The authors presented 8 scenarios describing the behavior valence, positive valence (help, share), negative valence (verbal insult,…

  1. Pressure-induced valence change and moderate heavy fermion state in Eu-compounds

    NASA Astrophysics Data System (ADS)

    Honda, Fuminori; Okauchi, Keigo; Sato, Yoshiki; Nakamura, Ai; Akamine, Hiromu; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Takeuchi, Tetsuya; Valenta, Jaroslav; Prchal, Jiri; Sechovský, Vladimir; Aoki, Dai; Ōnuki, Yoshichika

    2018-05-01

    A pressure-induced valence transition has attracted much attention in Eu-compounds. Among them, EuRh2Si2, EuNi2Ge2, and EuCo2Ge2 reveal the valence transition around 1, 2, and 3 GPa, respectively. We have succeeded in growing single crystals of EuT2X2 (T: transition metal, X: Si, Ge) and studied electronic properties under pressure. EuRh2Si2 indicates a first-order valence transition between 1 and 2 GPa, with a large and prominent hysteresis in the electrical resistivity. At higher pressures, the first-order valence transition changes to a cross-over regime with an intermediate valence state. Tuning of the valence state with pressure is reflected in a drastic change of the temperature dependence of the electrical resistivity in EuRh2Si2 single crystals. Effect of pressure on the valence states on EuRh2Si2, EuIr2Si2, EuNi2Ge2, and EuCo2Ge2, as well as an isostructural related compound EuGa4, are reviewed.

  2. Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity.

    PubMed

    Deng, Yaling; Li, Shijia; Zhou, Renlai; Walter, Martin

    2018-04-01

    Neuroticism has been found to specifically modulate amygdala activations during differential processing of valence and motivation while other brain networks yet are unexplored for associated effects. The main purpose of this study was to investigate whether neural mechanisms processing valence or motivation are prone to neuroticism in the salience network (SN), a network that is anchored in the anterior cingulate cortex (ACC) and the anterior insula. This study used functional magnetic resonance imaging (fMRI) and an approach/avoid emotional pictures task to investigate brain activations modulated by pictures' valence or motivational status between high and low neurotic individuals. We found that neuroticism-dependent SN and the parahippocampal-fusiform area activations were modulated by motivation but not valence. Valence in contrast interacted with neuroticism in the lateral orbitofrontal cortex. We suggested that neuroticism modulated valence and motivation processing, however, under the influence of the two distinct networks. Neuroticism modulated the motivation through the SN while it modulated the valence through the orbitofrontal networks. © 2018 Wiley Periodicals, Inc.

  3. Gram-level synthesis of core-shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Mingchuan; Wei, Lingli; Wang, Fanghui; Han, Kefei; Zhu, Hong

    2014-12-01

    Over the past decade, Pt based core-shell structured alloys have been studied extensively as oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) because of their distinctive electrochemical performance and low Pt loading. In this paper, a facile route based on microwave-assisted polyol method and chemical dealloying process is proposed to synthesize carbon supported core-shell structured nanoparticles (NPs) in gram-level for ORR electrocatalysis in PEMFCs. The obtained samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). These physical characterization indicate that the final synthesized NPs are highly dispersed on the carbon support, and in a core-shell structure with CuPt alloy as the core and Pt as the shell. Electrochemical measurements, conducted by cyclic voltammetry (CV) and rotating disk electrode (RDE) tests, show the core-shell structured catalyst exhibit a 3× increase in mass activity and a 2× increase in specific activity over the commercial Pt/C catalyst, respectively. These results demonstrate that this route can be a reliable way to synthesize low-Pt catalyst in large-scale for PEMFCs.

  4. Enhanced oxidation stability of quasi core-shell alloyed CdSeS quantum dots prepared through aqueous microwave synthesis technique.

    PubMed

    Zhan, Hong-Ju; Zhou, Pei-Jiang; Ma, Rong; Liu, Xi-Jing; He, Yu-Ning; Zhou, Chuan-Yun

    2014-01-01

    Quasi core shell alloyed CdSeS quantum dots (QDs) have been prepared through a facile aqueous-phase route employing microwave irradiation technique. The optical spectroscopy and structure characterization evidenced the quasi core shell alloyed structures of CdSeS QDs. The X-ray diffraction patterns of the obtained CdSeS QDs displayed peak positions very close to those of bulk cubic CdS crystal structures and the result of X-ray photoelectron spectroscopy data re-confirmed the thick CdS shell on the CdSe core. The TEM images and HRTEM images of the CdSeS QDs ascertained the well-defined spherical particles and a relatively narrow size distribution. On the basis, the stability of the obtained QDs in an oxidative environment was also discussed using etching reaction by H2O2. The experiments result showed the as-prepared QDs present high tolerance towards H2O2, obviously superior to the commonly used CdTe QDs and core-shell CdTe/CdS QDs, which was attributed to the unique quasi core-shell CdSeS crystal structure and the small lattice mismatch between CdSe and CdS semiconductor materials. This assay provided insight to obtain high stable crystal structured semiconductor nanocrystals in the design and synthesis process.

  5. Startle modulation and explicit valence evaluations dissociate during backward fear conditioning.

    PubMed

    Luck, Camilla C; Lipp, Ottmar V

    2017-05-01

    Blink startle magnitude is linearly modulated by affect such that, relative to neutral stimuli, startle magnitude is inhibited during pleasant stimuli and potentiated during unpleasant stimuli. Andreatta, Mühlberger, Yarali, Gerber, and Pauli (2010), however, report a dissociation between startle modulation and explicit valence evaluations during backward conditioning, a procedure in which the unconditional stimulus precedes the conditional stimulus (CS). Relative to controls, startles elicited during the CS were inhibited, suggesting that the CS had acquired positive valence, but participants still evaluated the CS as unpleasant after the experiment. In Experiment 1, we aimed to replicate this dissociation using a trial-by-trial measure of CS valence to measure startle modulation and CS valence simultaneously during forward and backward differential fear conditioning. In Experiment 2, we examined whether early and late portions of the CS could acquire differential valence by presenting startle probes at early and late probe positions during the CS. In both experiments, the dissociation between startle modulation and explicit valence evaluations in backward conditioning replicated, with CS+ evaluated as less pleasant than CS-, but startles elicited during CS+ inhibited relative to CS-. In Experiment 2, we provide preliminary evidence that this inhibition was present early, but not late, during the CS+. The results replicate the dissociation between implicit and explicit CS valence reported by Andreatta et al. (2010) using a trial-by-trial measure of valence. We also provide preliminary evidence that this dissociation may occur because the implicit and explicit measures are recorded at different times during the CS presentation. © 2017 Society for Psychophysiological Research.

  6. X-ray Photoelectron Spectroscopy of High-κ Dielectrics

    NASA Astrophysics Data System (ADS)

    Mathew, A.; Demirkan, K.; Wang, C.-G.; Wilk, G. D.; Watson, D. G.; Opila, R. L.

    2005-09-01

    Photoelectron spectroscopy is a powerful technique for the analysis of gate dielectrics because it can determine the elemental composition, the chemical states, and the compositional depth profiles non-destructively. The sampling depth, determined by the escape depth of the photoelectrons, is comparable to the thickness of current gate oxides. A maximum entropy algorithm was used to convert photoelectron collection angle dependence of the spectra to compositional depth profiles. A nitrided hafnium silicate film is used to demonstrate the utility of the technique. The algorithm balances deviations from a simple assumed depth profile against a calculated depth profile that best fits the angular dependence of the photoelectron spectra. A flow chart of the program is included in this paper. The development of the profile is also shown as the program is iterated. Limitations of the technique include the electron escape depths and elemental sensitivity factors used to calculate the profile. The technique is also limited to profiles that extend to the depth of approximately twice the escape depth. These limitations restrict conclusions to comparison among a family of similar samples. Absolute conclusions about depths and concentrations must be used cautiously. Current work to improve the algorithm is also described.

  7. Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Liu, Yongjia; Zhu, Bangshang; Su, Yue; Zhu, Xinyuan

    2017-01-01

    The paclitaxel/chitosan (PTX/CS) core-shell nanofibers (NFs) are easily prepared by co-assembly of PTX and CS and used in drug-eluting stent. The mixture solution of PTX (dissolved in ethanol) and CS (dissolved in 1% acetic acid water solution) under sonication will make the formation of NFs, in which small molecule PTX co-assembles with biomacromolecular CS through non-covalent interactions. The obtained NFs are tens to hundreds nanometers in diameter and millimeter level in length. Furthermore, the structure of PTX/CS NFs was characterized by confocal laser scanning microscopy (CLSM), zeta potential, X-ray photoelectron spectroscopy (XPS) and nanoscale infra-red (nanoIR), which provided evidences demonstrated that PTX/CS NFs are core-shell structures. The 'shell' of CS wrapped outside of the NFs, while PTX is located in the core. Thus it resulted in high drug loading content (>40 wt.%). The well-controlled drug release, low cytotoxicity and good haemocompatibility were also found in drug carrier system of PTX/CS NFs. In addition, the hydrophilic and flexible properties of NFs make them easily coating and filming on stent to prepare drug-eluting stent (DES). Therefore, this study provides a convenient method to prepare high PTX loaded NFs, which is a promising nano-drug carrier used for DES and other biomedical applications. The possible molecular mechanism of PTX and CS co-assembly and core-shell nanofiber formation is also explored.

  8. Effects of Emotion on Associative Recognition: Valence and Retention Interval Matter

    PubMed Central

    Pierce, Benton H.; Kensinger, Elizabeth A.

    2011-01-01

    In two experiments, we examined the effects of emotional valence and arousal on associative binding. Participants studied negative, positive, and neutral word pairs, followed by an associative recognition test. In Experiment 1, with a short-delayed test, accuracy for intact pairs was equivalent across valences, whereas accuracy for rearranged pairs was lower for negative than for positive and neutral pairs. In Experiment 2, we tested participants after a one-week delay and found that accuracy was greater for intact negative than for intact neutral pairs, whereas rearranged pair accuracy was equivalent across valences. These results suggest that, although negative emotional valence impairs associative binding after a short delay, it may improve binding after a longer delay. The results also suggest that valence, as well as arousal, needs to be considered when examining the effects of emotion on associative memory. PMID:21401233

  9. Excitons in Core-Shell Nanowires with Polygonal Cross Sections.

    PubMed

    Sitek, Anna; Urbaneja Torres, Miguel; Torfason, Kristinn; Gudmundsson, Vidar; Bertoni, Andrea; Manolescu, Andrei

    2018-04-11

    The distinctive prismatic geometry of semiconductor core-shell nanowires leads to complex localization patterns of carriers. Here, we describe the formation of optically active in-gap excitonic states induced by the interplay between localization of carriers in the corners and their mutual Coulomb interaction. To compute the energy spectra and configurations of excitons created in the conductive shell, we use a multielectron numerical approach based on the exact solution of the multiparticle Hamiltonian for electrons in the valence and conduction bands, which includes the Coulomb interaction in a nonperturbative manner. We expose the formation of well-separated quasidegenerate levels, and focus on the implications of the electron localization in the corners or on the sides of triangular, square, and hexagonal cross sections. We obtain excitonic in-gap states associated with symmetrically distributed electrons in the spin singlet configuration. They acquire large contributions due to Coulomb interaction, and thus are shifted to much higher energies than other states corresponding to the conduction electron and the vacancy localized in the same corner. We compare the results of the multielectron method with those of an electron-hole model, and we show that the latter does not reproduce the singlet excitonic states. We also obtain the exciton lifetime and explain selection rules which govern the recombination process.

  10. Catalytic activity in lithium-treated core–shell MoO x/MoS 2 nanowires

    DOE PAGES

    Cummins, Dustin R.; Martinez, Ulises; Kappera, Rajesh; ...

    2015-09-22

    Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoO x/MoS 2 core–shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechanism of H 2 evolution. The 1D nanowires exhibit significant improvement in H 2 evolution properties after lithiation, reducing the hydrogen evolution reaction (HER) onset potential by ~50 mV and increasing the generated current density by ~600%. The high electrochemical activity in the nanowires results from disruption of MoS 2 layersmore » in the outer shell, leading to increased activity and concentration of defect sites. This is in contrast to the typical mechanism of improved catalysis following lithium exfoliation, i.e., crystal phase transformation. As a result, these structural changes are verified by a combination of Raman and X-ray photoelectron spectroscopy (XPS).« less

  11. Valence electronic properties of porphyrin derivatives.

    PubMed

    Stenuit, G; Castellarin-Cudia, C; Plekan, O; Feyer, V; Prince, K C; Goldoni, A; Umari, P

    2010-09-28

    We present a combined experimental and theoretical investigation of the valence electronic structure of porphyrin-derived molecules. The valence photoemission spectra of the free-base tetraphenylporphyrin and of the octaethylporphyrin molecule were measured using synchrotron radiation and compared with theoretical spectra calculated using the GW method and the density-functional method within the generalized gradient approximation. Only the GW results could reproduce the experimental data. We found that the contribution to the orbital energies due to electronic correlations has the same linear behavior in both molecules, with larger deviations in the vicinity of the HOMO level. This shows the importance of adequate treatment of electronic correlations in these organic systems.

  12. New insights into the photocatalytic activity of 3-D core-shell P25@silica nanocomposites: impact of mesoporous coating.

    PubMed

    Gong, Yichao; Wang, Dan Ping; Wu, Renbing; Gazi, Sarifuddin; Soo, Han Sen; Sritharan, Thirumany; Chen, Zhong

    2017-04-11

    In this report, a three-dimensional (3-D) network of core-shell TiO 2 (P25)-mesoporous SiO 2 (P25@mSiO 2 ) nanocomposites was prepared via a controllable surfactant-assisted sol-gel method. The nanocomposites were investigated for photocatalytic reactions of organic dye degradation, water splitting, and CO 2 reduction to understand the roles of the mSiO 2 shell in these photocatalytic reactions. It was found that the mSiO 2 shell accelerates the photodegradation of the organic dye, but dramatically reduces the photocatalytic activity of P25 in water splitting and CO 2 reduction. The roles played by the mSiO 2 shell in the photocatalytic reactions are summarized as: (1) effective prevention of agglomeration of P25 nanoparticles, (2) facilitating the transfer of uncharged photo-generated ˙OH radicals via the abundant -OH groups on the mesoporous surface, (3) provision of increased reaction sites between ˙OH radicals and dye molecules by its mesoporous nanostructure and large surface area, and (4) prevention of diffusion of the photo-generated charge carriers (photoelectrons and photoholes) because of its insulating nature.

  13. Statistical observations of martian 20-30 eV photoelectrons by MAVEN/SWEA

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Steckiewicz, M.; Andre, N.; Mazelle, C. X.; Sauvaud, J. A.; Sakai, S.; Cravens, T.; Mitchell, D. L.; Lillis, R. J.; Espley, J. R.; Brain, D.; Andersson, L.; Jakosky, B. M.

    2016-12-01

    Photoelectron peaks in the 20-30 eV energy range are commonly observed in planetary atmospheres, produced by intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons are known to escape the planet down its tail (Frahm et al., 2006). Assuming overall charge neutrality, the number of corresponding electrons must be identical to the number of ion charges escaping the planet. Studying the photoelectrons is thus important to understand and quantify the erosion of the martian atmosphere. Moreover, the photoelectrons also play a significant role for the heating and ionization of the atmosphere. The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft has provided detailed observations of the Martian environment for the last two years thanks to its unique orbital coverage and comprehensive plasma instrument suite. The low periapsis altitudes (down to 125 km altitude) and combined presence of an electron spectrometer (Solar Wind Electron Analyzer, SWEA) and of a magnetometer (MAG) provide a unique opportunity to investigate the source region of the photoelectrons and their transport and escape down the tail. We will present statistical results of an automatic detection of 20-30 eV photoelectrons at Mars, based on a simple algorithm using three levels of confidence. More than 150,000 spectra (each averaged over 30s) revealed clear photoelectron peaks from October 2014 to May 2016. The analysis reveals several interesting features such as: the evolution of the peak shape from their source region to higher altitudes, the influence of the magnetic field topology on photoelectron transport, a clear dusk-dawn asymmetry in agreement with the recently-discovered neutral density asymmetry, the statistical influence of the EUV and solar wind parameters and the location of the photoelectron boundary. These results will also be compared with an electron transport code (Sakai et al., 2015, 2016) to better constrain the photoelectron production and transport.

  14. Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Zn, Cu, Co, Ni) metal-organic framework polymers: X-ray photoelectron spectroscopy, QTAIM and ELF study

    NASA Astrophysics Data System (ADS)

    Kozlova, S. G.; Ryzhikov, M. R.; Samsonenko, D. G.; Kalinkin, A. V.

    2017-12-01

    Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic framework polymers have been studied with the methods of quantum chemistry and X-ray photoelectron spectroscopy. Interactions of C6H12N2 molecules and C8H4O42- anions with metal atoms are shown to be of closed-shell type. C6H12N2 molecules are positively charged, the value of the charge slightly depends on the type of the metal atoms. Msbnd M interactions are described as "intermediate interactions" with some covalence contribution which reaches maximum for the interactions between cobalt atoms. The obtained quantum-chemical data agree with those obtained from photoelectron spectroscopy measurements.

  15. Work Valence as a Predictor of Academic Achievement in the Family Context

    ERIC Educational Resources Information Center

    Porfeli, Erik; Ferrari, Lea; Nota, Laura

    2013-01-01

    This study asserts a theoretical model of academic and work socialization within the family setting. The presumed associations between parents' work valences, children's work valences and valence perceptions, and children's academic interest and achievement are tested. The results suggest that children's perceptions of parents mediate the…

  16. Multi-Shell Hollow Nanogels with Responsive Shell Permeability

    PubMed Central

    Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter

    2016-01-01

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478

  17. A self-assembly aptasensor based on thick-shell quantum dots for sensing of ochratoxin A

    NASA Astrophysics Data System (ADS)

    Chu, Xianfeng; Dou, Xiaowen; Liang, Ruizheng; Li, Menghua; Kong, Weijun; Yang, Xihui; Luo, Jiaoyang; Yang, Meihua; Zhao, Ming

    2016-02-01

    A novel self-assembling aptasensor was fabricated by precisely attaching three phosphorothioate-modified capture aptamers onto a single thick-shell quantum dot in a controllable manner for monitoring of ochratoxin A (OTA), a poisonous contaminant widespread in foodstuffs. Herein, CdSe/CdS QDs coated in ten layer CdS shells were synthesized using a continual precursor injection method. Analysis of the prepared CdSe/CdS QDs showed a zinc-blende structure, high photoluminescence quantum yields (>80%), and a photoemission peak with a narrow full-width at half-maximum (about 29 nm), all qualities that render them as a superior choice for optical applications. By adjusting the number of phosphorothioate bases in the anchor domain, the tunable-valency aptasensor was able to self-assemble. In the sensing strategy, the thick-shell quantum dot was provided as an acceptor while OTA itself was used as a donor. In the presence of OTA, the capture aptamers drive the aptasensor function into a measurable signal through a fluorescence resonance energy transfer (FRET) system. The newly developed aptasensor had a detection limit as low as 0.5 ng mL-1, with a linear concentration in the range of 1 to 30 ng mL-1, and therefore meets the requirements for rapid, effective, and anti-interference sensors for real-world applications. Moreover, the high quality thick-shell QDs provide an ideal alternative for highly sensitive imaging and intensive illumination in the fields of biotechnology and bioengineering.A novel self-assembling aptasensor was fabricated by precisely attaching three phosphorothioate-modified capture aptamers onto a single thick-shell quantum dot in a controllable manner for monitoring of ochratoxin A (OTA), a poisonous contaminant widespread in foodstuffs. Herein, CdSe/CdS QDs coated in ten layer CdS shells were synthesized using a continual precursor injection method. Analysis of the prepared CdSe/CdS QDs showed a zinc-blende structure, high photoluminescence quantum

  18. VUV photodynamics and chiral asymmetry in the photoionization of gas phase alanine enantiomers.

    PubMed

    Tia, Maurice; Cunha de Miranda, Barbara; Daly, Steven; Gaie-Levrel, François; Garcia, Gustavo A; Nahon, Laurent; Powis, Ivan

    2014-04-17

    The valence shell photoionization of the simplest proteinaceous chiral amino acid, alanine, is investigated over the vacuum ultraviolet region from its ionization threshold up to 18 eV. Tunable and variable polarization synchrotron radiation was coupled to a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer to produce mass-selected threshold photoelectron spectra and derive the state-selected fragmentation channels. The photoelectron circular dichroism (PECD), an orbital-sensitive, conformer-dependent chiroptical effect, was also recorded at various photon energies and compared to continuum multiple scattering calculations. Two complementary vaporization methods-aerosol thermodesorption and a resistively heated sample oven coupled to an adiabatic expansion-were applied to promote pure enantiomers of alanine into the gas phase, yielding neutral alanine with different internal energy distributions. A comparison of the photoelectron spectroscopy, fragmentation, and dichroism measured for each of the vaporization methods was rationalized in terms of internal energy and conformer populations and supported by theoretical calculations. The analytical potential of the so-called PECD-PICO detection technique-where the electron spectroscopy and circular dichroism can be obtained as a function of mass and ion translational energy-is underlined and applied to characterize the origin of the various species found in the experimental mass spectra. Finally, the PECD findings are discussed within an astrochemical context, and possible implications regarding the origin of biomolecular asymmetry are identified.

  19. Conduction band offset at GeO{sub 2}/Ge interface determined by internal photoemission and charge-corrected x-ray photoelectron spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W. F.; Nishimula, T.; Nagashio, K.

    2013-03-11

    We report a consistent conduction band offset (CBO) at a GeO{sub 2}/Ge interface determined by internal photoemission spectroscopy (IPE) and charge-corrected X-ray photoelectron spectroscopy (XPS). IPE results showed that the CBO value was larger than 1.5 eV irrespective of metal electrode and substrate type variance, while an accurate determination of valence band offset (VBO) by XPS requires a careful correction of differential charging phenomena. The VBO value was determined to be 3.60 {+-} 0.2 eV by XPS after charge correction, thus yielding a CBO (1.60 {+-} 0.2 eV) in excellent agreement with the IPE results. Such a large CBO (>1.5more » eV) confirmed here is promising in terms of using GeO{sub 2} as a potential passivation layer for future Ge-based scaled CMOS devices.« less

  20. Emotions and false memories: valence or arousal?

    PubMed

    Corson, Yves; Verrier, Nadège

    2007-03-01

    The effects of mood on false memories have not been studied systematically until recently. Some results seem to indicate that negative mood may reduce false recall and thus suggest an influence of emotional valence on false memory. The present research tested the effects of both valence and arousal on recall and recognition and indicates that the effect is actually due to arousal. In fact, whether participants' mood is positive, negative, or neutral, false memories are significantly more frequent under conditions of high arousal than under conditions of low arousal.

  1. A complete active space valence bond method with nonorthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Hirao, Kimihiko; Nakano, Haruyuki; Nakayama, Kenichi

    1997-12-01

    A complete active space self-consistent field (SCF) wave function is transformed into a valence bond type representation built from nonorthogonal orbitals, each strongly localized on a single atom. Nonorthogonal complete active space SCF orbitals are constructed by Ruedenberg's projected localization procedure so that they have maximal overlaps with the corresponding minimum basis set of atomic orbitals of the free-atoms. The valence bond structures which are composed of such nonorthogonal quasiatomic orbitals constitute the wave function closest to the concept of the oldest and most simple valence bond method. The method is applied to benzene, butadiene, hydrogen, and methane molecules and compared to the previously proposed complete active space valence bond approach with orthogonal orbitals. The results demonstrate the validity of the method as a powerful tool for describing the electronic structure of various molecules.

  2. Electronic structure and optical properties of Cs2HgCl4: DFT calculations and X-ray photoelectron spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Parasyuk, O. V.; Fedorchuk, A. O.; Khyzhun, O. Y.

    2016-10-01

    A high-quality single crystal of cesium mercury tetrabromide, Cs2HgCl4, was synthesized by using the vertical Bridgman-Stockbarger method and its electronic structure was studied from both experimental and theoretical viewpoints. In particular, X-ray photoelectron spectra were measured for both pristine and Ar+ ion-bombarded Cs2HgCl4 single crystal surfaces. The present XPS measurements indicate that the Cs2HgCl4 single crystal surface is sensitive with respect to Ar+ ion-bombardment: such a treatment changes substantially its elemental stoichiometry. With the aim of exploring total and partial densities of states within the valence band and conduction band regions of the Cs2HgCl4 compound, band-structure calculations based on density functional theory (DFT) using the augmented plane wave + local orbitals (APW + lo) method as incorporated within the WIEN2k package are performed. The calculations indicate that the Cl 3p states are the principal contributors in the upper portion of the valence band, while the Hg 5d and Cs 5p states dominate in its lower portion. In addition, the calculations allow for concluding that the unoccupied Cl p and Hg s states are the main contributors to the bottom of the conduction band. Furthermore, main optical characteristics of Cs2HgCl4, namely dispersion of the absorption coefficient, real and imaginary parts of dielectric function, electron energy-loss spectrum, refractive index, extinction coefficient and optical reflectivity, are elucidated based on the DFT calculations.

  3. Direct Observation of Pressure-Driven Valence Electron Transfer in Ba 3 BiRu 2 O 9 , Ba 3 BiIr 2 O 9 , and Ba 4 BiIr 3 O 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, Peter E. R.; Chapman, Karena W.; Heald, Steve M.

    The hexagonal perovskites Ba3BiIr2O9, Ba3BiRu2O9 and Ba4BiIr3O12 all undergo pressure-induced 1% volume collapses above 5 GPa. These first-order transitions have been ascribed to internal transfer of valence electrons between bismuth and iridium/ruthenium, which is driven by external applied pressure because the reduction in volume achieved by emptying the 6s shell of bismuth upon oxidation to Bi5+ is greater in magnitude than the increase in volume by reducing iridium or ruthenium. Here, we report direct observation of these valence transfers for the first time, using high-pressure X-ray absorption near-edge spectroscopy (XANES) measurements. Our data also support the highly unusual “4+” nominalmore » oxidation state of bismuth in these compounds, although the possibility of local disproportionation into Bi3+/Bi5+ cannot be definitively ruled out. Ab initio calculations reproduce the transition, support its interpretation as a valence electron transfer from Bi to Ir/Ru, and suggest that the high-pressure phase may show metallic behavior (in contrast to the insulating ambient-pressure phase).« less

  4. Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition

    NASA Astrophysics Data System (ADS)

    Spadaro, M. C.; Luches, P.; Benedetti, F.; Valeri, S.; Turchini, S.; Bertoni, G.; Ferretti, A. M.; Capetti, E.; Ponti, A.; D'Addato, S.

    2017-02-01

    Films of Ni@CoO core-shell nanoparticles (NP Ni core size d ≈ 11 nm) have been grown on Si/SiOx and lacey carbon supports, by a sequential layer deposition method: a first layer of CoO was evaporated on the substrate, followed by the deposition of a layer of pre-formed, mass-selected Ni NPs, and finally an overlayer of CoO was added. The Ni NPs were formed by a magnetron gas aggregation source, and mass selected with a quadrupole mass filter. The morphology of the films was investigated with Scanning Electron Microscopy and Scanning Transmission Electron Microscopy. The Ni NP cores have a shape compatible with McKay icosahedron, caused by multitwinning occurring during their growth in the source, and the Ni NP layer shows the typical random paving growth mode. After the deposition of the CoO overlayer, CoO islands are observed, gradually extending and tending to merge with each other, with the formation of shells that enclose the Ni NP cores. In situ X-ray Photoelectron Spectroscopy showed that a few Ni atomic layers localized at the core-shell interface are oxidized, hinting at the possibility of creating an intermediate NiO shell between Ni and CoO, depending on the deposition conditions. Finally, X-ray Magnetic Circular Dichroism at the Ni L2,3 absorption edge showed the presence of magnetization at room temperature even at remanence, revealing the possibility of magnetic stabilization of the NP film.

  5. Double-shelled silicon anode nanocomposite materials: A facile approach for stabilizing electrochemical performance via interface construction

    NASA Astrophysics Data System (ADS)

    Du, Lulu; Wen, Zhongsheng; Wang, Guanqin; Yang, Yan-E.

    2018-04-01

    The rapid capacity fading induced by volumetric changes is the main issue that hinders the widespread application of silicon anode materials. Thus, double-shelled silicon composite materials where lithium silicate was located between an Nb2O5 coating layer and a silicon active core were configured to overcome the chemical compatibility issues related to silicon and oxides. The proposed composites were prepared via a facile co-precipitation method combined with calcination. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis demonstrated that a transition layer of lithium silicate was constructed successfully, which effectively hindered the thermal inter-diffusion between the silicon and oxide coating layers during heat treatment. The electrochemical performance of the double-shelled silicon composites was enhanced dramatically with a retained specific capacity of 1030 mAh g-1 after 200 cycles at a current density of 200 mA g-1 compared with 598 mAh g-1 for a core-shell Si@Nb2O5 composite that lacked the interface. The lithium silicate transition layer was shown to play an important role in maintaining the high electrochemical stability.

  6. Fluorescence properties of alloyed ZnSeS quantum dots overcoated with ZnTe and ZnTe/ZnS shells

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Mashazi, Philani; Nyokong, Tebello; Forbes, Patricia B. C.

    2016-04-01

    Fluorescent alloyed ternary ZnSeS quantum dots (QDs) have been synthesized via the pyrolysis of organometallic precursors. The effects of passivation of ZnTe and ZnTe/ZnS shells on the optical properties of the ternary alloyed ZnSeS core have been studied. A ligand exchange reaction using L-cysteine as a capping ligand was used to obtain water-soluble nanocrystals. The nanocrystals were each characterized by UV/vis absorption and fluorescence spectroscopy, transmission electron microscopy, X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) quantum yield (QY) of alloyed ZnSeS QDs was 14% and this value increased to 27% when ZnTe was overcoated around the surface but further coating with a ZnS shell decreased the PL QY slightly to 24%. This implies that ZnTe shell suppressed non-radiative recombination exciton states in the alloyed core while further layering with a ZnS shell offered no further improvement in suppressing the defect states. XPS analysis confirmed the presence of the first shell layering but showed a weakened intensity signal of S (2p) and Se (3d) for the ZnSeS/ZnTe/ZnS QDs. Our work demonstrates for the first time that shell passivation of alloyed Zn-based QDs can offer improved optical properties. We hope the optical information presented in this work will be useful in the selection of alloyed Zn-based QDs appropriate for the intended application.

  7. NEVER forget: negative emotional valence enhances recapitulation.

    PubMed

    Bowen, Holly J; Kark, Sarah M; Kensinger, Elizabeth A

    2018-06-01

    A hallmark feature of episodic memory is that of "mental time travel," whereby an individual feels they have returned to a prior moment in time. Cognitive and behavioral neuroscience methods have revealed a neurobiological counterpart: Successful retrieval often is associated with reactivation of a prior brain state. We review the emerging literature on memory reactivation and recapitulation, and we describe evidence for the effects of emotion on these processes. Based on this review, we propose a new model: Negative Emotional Valence Enhances Recapitulation (NEVER). This model diverges from existing models of emotional memory in three key ways. First, it underscores the effects of emotion during retrieval. Second, it stresses the importance of sensory processing to emotional memory. Third, it emphasizes how emotional valence - whether an event is negative or positive - affects the way that information is remembered. The model specifically proposes that, as compared to positive events, negative events both trigger increased encoding of sensory detail and elicit a closer resemblance between the sensory encoding signature and the sensory retrieval signature. The model also proposes that negative valence enhances the reactivation and storage of sensory details over offline periods, leading to a greater divergence between the sensory recapitulation of negative and positive memories over time. Importantly, the model proposes that these valence-based differences occur even when events are equated for arousal, thus rendering an exclusively arousal-based theory of emotional memory insufficient. We conclude by discussing implications of the model and suggesting directions for future research to test the tenets of the model.

  8. Aesthetic valence of visual illusions

    PubMed Central

    Stevanov, Jasmina; Marković, Slobodan; Kitaoka, Akiyoshi

    2012-01-01

    Visual illusions constitute an interesting perceptual phenomenon, but they also have an aesthetic and affective dimension. We hypothesized that the illusive nature itself causes the increased aesthetic and affective valence of illusions compared with their non-illusory counterparts. We created pairs of stimuli. One qualified as a standard visual illusion whereas the other one did not, although they were matched in as many perceptual dimensions as possible. The phenomenal quality of being an illusion had significant effects on “Aesthetic Experience” (fascinating, irresistible, exceptional, etc), “Evaluation” (pleasant, cheerful, clear, bright, etc), “Arousal” (interesting, imaginative, complex, diverse, etc), and “Regularity” (balanced, coherent, clear, realistic, etc). A subsequent multiple regression analysis suggested that Arousal was a better predictor of Aesthetic Experience than Evaluation. The findings of this study demonstrate that illusion is a phenomenal quality of the percept which has measurable aesthetic and affective valence. PMID:23145272

  9. Double photoionization of propylene oxide: A coincidence study of the ejection of a pair of valence-shell electrons

    NASA Astrophysics Data System (ADS)

    Falcinelli, Stefano; Vecchiocattivi, Franco; Alagia, Michele; Schio, Luca; Richter, Robert; Stranges, Stefano; Catone, Daniele; Arruda, Manuela S.; Mendes, Luiz A. V.; Palazzetti, Federico; Aquilanti, Vincenzo; Pirani, Fernando

    2018-03-01

    Propylene oxide, a favorite target of experimental and theoretical studies of circular dichroism, was recently discovered in interstellar space, further amplifying the attention to its role in the current debate on protobiological homochirality. In the present work, a photoelectron-photoion-photoion coincidence technique, using an ion-imaging detector and tunable synchrotron radiation in the 18.0-37.0 eV energy range, permits us (i) to observe six double ionization fragmentation channels, their relative yields being accounted for about two-thirds by the couple (C2H4+, CH2O+) and one-fifth by (C2H3+, CH3O+); (ii) to measure thresholds for their openings as a function of photon energy; and (iii) to unravel a pronounced bimodality for a kinetic-energy-released distribution, fingerprint of competitive non-adiabatic mechanisms.

  10. Motivation and attention: Incongruent effects of feedback on the processing of valence.

    PubMed

    Rothermund, Klaus

    2003-09-01

    Four experiments investigated the relation between outcome-related motivational states and processes of automatic attention allocation. Experiments 1-3 analyzed influences of feedback on evaluative decisions. Words of opposite valence to the feedback were processed faster, indicating that it is easier to allocate attention to the valence of an affectively incongruent word. Experiment 4 replicated the incongruent effect with interference effects of word valence in a grammatical-categorization task, indicating that the effect reflects automatic attentional capture. In all experiments, incongruent effects of feedback emerged only in a situation involving an attentional shift between words that differed in valence.

  11. Valence-band-edge shift due to doping in p + GaAs

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-05-01

    Accurate knowledge of the shifts in valence- and conduction-band edges due to heavy doping effects is crucial in modeling GaAs device structures that utilize heavily doped layers. X-ray photoemission spectroscopy was used to deduce the shift in the valence-band-edge induced by carbon (p type) doping to a carrier density of 1×1020 cm-3 based on a determination of the bulk binding energy of the Ga and As core levels in this material. Analysis of the data indicates that the shift of the valence-band maximum into the gap and the penetration of the Fermi level into the valence bands exactly compensate at this degenerate carrier concentration, to give ΔEv =0.12±0.05 eV.

  12. Trait valence and the better-than-average effect.

    PubMed

    Gold, Ron S; Brown, Mark G

    2011-12-01

    People tend to regard themselves as having superior personality traits compared to their average peer. To test whether this "better-than-average effect" varies with trait valence, participants (N = 154 students) rated both themselves and the average student on traits constituting either positive or negative poles of five trait dimensions. In each case, the better-than-average effect was found, but trait valence had no effect. Results were discussed in terms of Kahneman and Tversky's prospect theory.

  13. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    PubMed

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  14. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction.

  15. Human Amygdala Tracks a Feature-Based Valence Signal Embedded within the Facial Expression of Surprise.

    PubMed

    Kim, M Justin; Mattek, Alison M; Bennett, Randi H; Solomon, Kimberly M; Shin, Jin; Whalen, Paul J

    2017-09-27

    Human amygdala function has been traditionally associated with processing the affective valence (negative vs positive) of an emotionally charged event, especially those that signal fear or threat. However, this account of human amygdala function can be explained by alternative views, which posit that the amygdala might be tuned to either (1) general emotional arousal (activation vs deactivation) or (2) specific emotion categories (fear vs happy). Delineating the pure effects of valence independent of arousal or emotion category is a challenging task, given that these variables naturally covary under many circumstances. To circumvent this issue and test the sensitivity of the human amygdala to valence values specifically, we measured the dimension of valence within the single facial expression category of surprise. Given the inherent valence ambiguity of this category, we show that surprised expression exemplars are attributed valence and arousal values that are uniquely and naturally uncorrelated. We then present fMRI data from both sexes, showing that the amygdala tracks these consensus valence values. Finally, we provide evidence that these valence values are linked to specific visual features of the mouth region, isolating the signal by which the amygdala detects this valence information. SIGNIFICANCE STATEMENT There is an open question as to whether human amygdala function tracks the valence value of cues in the environment, as opposed to either a more general emotional arousal value or a more specific emotion category distinction. Here, we demonstrate the utility of surprised facial expressions because exemplars within this emotion category take on valence values spanning the dimension of bipolar valence (positive to negative) at a consistent level of emotional arousal. Functional neuroimaging data showed that amygdala responses tracked the valence of surprised facial expressions, unconfounded by arousal. Furthermore, a machine learning classifier identified

  16. Effects of valence and divided attention on cognitive reappraisal processes

    PubMed Central

    Leclerc, Christina M.; Kensinger, Elizabeth A.

    2014-01-01

    Numerous studies have investigated the neural substrates supporting cognitive reappraisal, identifying the importance of cognitive control processes implemented by prefrontal cortex (PFC). This study examined how valence and attention affect the processes used for cognitive reappraisal by asking participants to passively view or to cognitively reappraise positive and negative images with full or divided attention. When participants simply viewed these images, results revealed few effects of valence or attention. However, when participants engaged in reappraisal, there was a robust effect of valence, with the reappraisal of negative relative to positive images associated with more widespread activation, including within regions of medial and lateral PFC. There also was an effect of attention, with more lateral PFC recruitment when regulating with full attention and more medial PFC recruitment when regulating with divided attention. Within two regions of medial PFC and one region of ventrolateral PFC, there was an interaction between valence and attention: in these regions, divided attention reduced activity during reappraisal of positive but not negative images. Critically, participants continued to report reappraisal success even during the Divided Attention condition. These results suggest multiple routes to successful cognitive reappraisal, depending upon image valence and the availability of attentional resources. PMID:24493837

  17. Effects of valence and divided attention on cognitive reappraisal processes.

    PubMed

    Morris, John A; Leclerc, Christina M; Kensinger, Elizabeth A

    2014-12-01

    Numerous studies have investigated the neural substrates supporting cognitive reappraisal, identifying the importance of cognitive control processes implemented by prefrontal cortex (PFC). This study examined how valence and attention affect the processes used for cognitive reappraisal by asking participants to passively view or to cognitively reappraise positive and negative images with full or divided attention. When participants simply viewed these images, results revealed few effects of valence or attention. However, when participants engaged in reappraisal, there was a robust effect of valence, with the reappraisal of negative relative to positive images associated with more widespread activation, including within regions of medial and lateral PFC. There also was an effect of attention, with more lateral PFC recruitment when regulating with full attention and more medial PFC recruitment when regulating with divided attention. Within two regions of medial PFC and one region of ventrolateral PFC, there was an interaction between valence and attention: in these regions, divided attention reduced activity during reappraisal of positive but not negative images. Critically, participants continued to report reappraisal success even during the Divided Attention condition. These results suggest multiple routes to successful cognitive reappraisal, depending upon image valence and the availability of attentional resources. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Microstructure and Thermal Reliability of Microcapsules Containing Phase Change Material with Self-Assembled Graphene/Organic Nano-Hybrid Shells.

    PubMed

    Wang, Xianfeng; Guo, Yandong; Su, Junfeng; Zhang, Xiaolong; Han, Ningxu; Wang, Xinyu

    2018-05-24

    In recent decades, microcapsules containing phase change materials (microPCMs) have been the center of much attention in the field of latent thermal energy storage. The aim of this work was to prepare and investigate the microstructure and thermal conductivity of microPCMs containing self-assembled graphene/organic hybrid shells. Paraffin was used as a phase change material, which was successfully microencapsulated by graphene and polymer forming hybrid composite shells. The physicochemical characters of microPCM samples were investigated including mean size, shell thickness, and chemical structure. Scanning electron microscope (SEM) results showed that the microPCMs were spherical particles and graphene enhanced the degree of smoothness of the shell surface. The existence of graphene in the shells was proved by using the methods of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). It was found that graphene hybrid shells were constructed by forces of electric charge absorption and long-molecular entanglement. MicroPCMs with graphene had a higher degradation temperature of 300 °C. Graphene greatly enhanced the thermal stability of microPCMs. The thermal conductivity tests indicated that the phase change temperature of microPCMs was regulated by the graphene additive because of enhancement of the thermal barrier of the hybrid shells. Differential scanning calorimetry (DSC) tests proved that the latent thermal energy capability of microPCMs had been improved with a higher heat conduction rate. In addition, infrared thermograph observations implied that the microPCMs had a sensitivity response to heat during the phase change cycling process because of the excellent thermal conductivity of graphene.

  19. From double-slit interference to structural information in simple hydrocarbons

    PubMed Central

    Kushawaha, Rajesh Kumar; Patanen, Minna; Guillemin, Renaud; Journel, Loic; Miron, Catalin; Simon, Marc; Piancastelli, Maria Novella; Skates, C.; Decleva, Piero

    2013-01-01

    Interferences in coherent emission of photoelectrons from two equivalent atomic centers in a molecule are the microscopic analogies of the celebrated Young’s double-slit experiment. By considering inner-valence shell ionization in the series of simple hydrocarbons C2H2, C2H4, and C2H6, we show that double-slit interference is widespread and has built-in quantitative information on geometry, orbital composition, and many-body effects. A theoretical and experimental study is presented over the photon energy range of 70–700 eV. A strong dependence of the oscillation period on the C–C distance is observed, which can be used to determine bond lengths between selected pairs of equivalent atoms with an accuracy of at least 0.01 Å. Furthermore, we show that the observed oscillations are directly informative of the nature and atomic composition of the inner-valence molecular orbitals and that observed ratios are quantitative measures of elusive many-body effects. The technique and analysis can be immediately extended to a large class of compounds. PMID:24003155

  20. Photoelectron Effects on the Self-Consistent Potential in the Collisionless Polar Wind

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.; Moore, T. E.

    1997-01-01

    The presence of unthermalized photoelectrons in the sunlit polar cap leads to an enhanced ambipolar potential drop and enhanced upward ion acceleration. Observations in the topside ionosphere have led to the conclusion that large-scale electrostatic potential drops exist above the spacecraft along polar magnetic field lines connected to regions of photoelectron production. A kinetic approach is used for the O(+), H(+), and photoelectron (p) distributions, while a fluid approach is used to describe the thermal electrons (e) and self-consistent electric field (E(sub II)) electrons are allowed to carry a flux that compensates for photoelectron escape, a critical assumption. Collisional processes are excluded, leading to easier escape of polar wind particles and therefore to the formation of the largest potential drop consistent with this general approach. We compute the steady state electric field enhancement and net potential drop expected in the polar wind due to the presence of photoelectrons as a function of the fractional photoelectron content and the thermal plasma characteristics. For a set of low-altitude boundary conditions typical of the polar wind ionosphere, including 0.1% photoelectron content, we found a potential drop from 500 km to 5 R(sub E) of 6.5 V and a maximum thermal electron temperature of 8800 K. The reasonable agreement of our results with the observed polar wind suggests that the assumptions of this approach are valid.

  1. Memory effects of sleep, emotional valence, arousal and novelty in children.

    PubMed

    Vermeulen, Marije C M; van der Heijden, Kristiaan B; Benjamins, Jeroen S; Swaab, Hanna; van Someren, Eus J W

    2017-06-01

    Effectiveness of memory consolidation is determined by multiple factors, including sleep after learning, emotional valence, arousal and novelty. Few studies investigated how the effect of sleep compares with (and interacts with) these other factors, of which virtually none are in children. The present study did so by repeated assessment of declarative memory in 386 children (45% boys) aged 9-11 years through an online word-pair task. Children were randomly assigned to either a morning or evening learning session of 30 unrelated word-pairs with positive, neutral or negative valenced cues and neutral targets. After immediately assessing baseline recognition, delayed recognition was recorded either 12 or 24 h later, resulting in four different assessment schedules. One week later, the procedure was repeated with exactly the same word-pairs to evaluate whether effects differed for relearning versus original novel learning. Mixed-effect logistic regression models were used to evaluate how the probability of correct recognition was affected by sleep, valence, arousal, novelty and their interactions. Both immediate and delayed recognition were worse for pairs with negatively valenced or less arousing cue words. Relearning improved immediate and delayed word-pair recognition. In contrast to these effects, sleep did not affect recognition, nor did sleep moderate the effects of arousal, valence and novelty. The findings suggest a robust inclination of children to specifically forget the pairing of words to negatively valenced cue words. In agreement with a recent meta-analysis, children seem to depend less on sleep for the consolidation of information than has been reported for adults, irrespective of the emotional valence, arousal and novelty of word-pairs. © 2017 European Sleep Research Society.

  2. On pleasure and thrill: the interplay between arousal and valence during visual word recognition.

    PubMed

    Recio, Guillermo; Conrad, Markus; Hansen, Laura B; Jacobs, Arthur M

    2014-07-01

    We investigated the interplay between arousal and valence in the early processing of affective words. Event-related potentials (ERPs) were recorded while participants read words organized in an orthogonal design with the factors valence (positive, negative, neutral) and arousal (low, medium, high) in a lexical decision task. We observed faster reaction times for words of positive valence and for those of high arousal. Data from ERPs showed increased early posterior negativity (EPN) suggesting improved visual processing of these conditions. Valence effects appeared for medium and low arousal and were absent for high arousal. Arousal effects were obtained for neutral and negative words but were absent for positive words. These results suggest independent contributions of arousal and valence at early attentional stages of processing. Arousal effects preceded valence effects in the ERP data suggesting that arousal serves as an early alert system preparing a subsequent evaluation in terms of valence. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Photoelectron spectroscopy and density functional theory studies of (FeS)mH- (m = 2-4) cluster anions: effects of the single hydrogen.

    PubMed

    Yin, Shi; Bernstein, Elliot R

    2017-12-20

    Single hydrogen containing iron hydrosulfide cluster anions (FeS) m H - (m = 2-4) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by Density Functional Theory (DFT) calculations. The structural properties, relative energies of different spin states and isomers, and the first calculated vertical detachment energies (VDEs) of different spin states for these (FeS) m H - (m = 2-4) cluster anions are investigated at various reasonable theory levels. Two types of structural isomers are found for these (FeS) m H - (m = 2-4) clusters: (1) the single hydrogen atom bonds to a sulfur site (SH-type); and (2) the single hydrogen atom bonds to an iron site (FeH-type). Experimental and theoretical results suggest such available different SH- and FeH-type structural isomers should be considered when evaluating the properties and behavior of these single hydrogen containing iron sulfide clusters in real chemical and biological systems. Compared to their related, respective pure iron sulfur (FeS) m - clusters, the first VDE trend of the diverse type (FeS) m H 0,1 - (m = 1-4) clusters can be understood through (1) the different electron distribution properties of their highest singly occupied molecular orbital employing natural bond orbital analysis (NBO/HSOMO), and (2) the partial charge distribution on the NBO/HSOMO localized sites of each cluster anion. Generally, the properties of the NBO/HSOMOs play the principal role with regard to the physical and chemical properties of all the anions. The change of cluster VDE from low to high is associated with the change in nature of their NBO/HSOMO from a dipole bound and valence electron mixed character, to a valence p orbital on S, to a valence d orbital on Fe, and to a valence p orbital on Fe or an Fe-Fe delocalized valence bonding orbital. For clusters having the same properties for NBO/HSOMOs, the partial charge distributions at the NBO/HSOMO localized sites additionally

  4. Investigating Valence and Autonomy in Children's Relationships with Imaginary Companions

    ERIC Educational Resources Information Center

    McInnis, Melissa A.; Pierucci, Jillian M.; Gilpin, Ansley Tullos

    2013-01-01

    Little research has explored valence and autonomy in children's imaginary relationships. In the present study, a new interview (modeled after an existing measure for real relationships) was designed to elicit descriptions of both positive and negative interactions with imaginary companions and to provide a measure of relationship valence and…

  5. Valence and arousal-based affective evaluations of foods.

    PubMed

    Woodward, Halley E; Treat, Teresa A; Cameron, C Daryl; Yegorova, Vitaliya

    2017-01-01

    We investigated the nutrient-specific and individual-specific validity of dual-process models of valenced and arousal-based affective evaluations of foods across the disordered eating spectrum. 283 undergraduate women provided implicit and explicit valence and arousal-based evaluations of 120 food photos with known nutritional information on structurally similar indirect and direct affect misattribution procedures (AMP; Payne et al., 2005, 2008), and completed questionnaires assessing body mass index (BMI), hunger, restriction, and binge eating. Nomothetically, added fat and added sugar enhance evaluations of foods. Idiographically, hunger and binge eating enhance activation, whereas BMI and restriction enhance pleasantness. Added fat is salient for women who are heavier, hungrier, or who restrict; added sugar is influential for less hungry women. Restriction relates only to valence, whereas binge eating relates only to arousal. Findings are similar across implicit and explicit affective evaluations, albeit stronger for explicit, providing modest support for dual-process models of affective evaluation of foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Analysis of photoelectron effect on the antenna impedance via Particle-In-Cell simulation

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.

    2008-08-01

    We present photoelectron effects on the impedance of electric field antennas used for plasma wave investigations. To illustrate the photoelectron effects, we applied electromagnetic Particle-In-Cell simulation to the self-consistent antenna impedance analysis. We confirmed the formation of a dense photoelectron region around the sunlit surfaces of the antenna and the spacecraft. The dense photoelectrons enhance the real part, and decrease the absolute value of the imaginary part, of antenna impedance at low frequencies. We also showed that the antenna conductance can be analytically calculated from simulation results of the electron current flowing into or out of the antenna. The antenna impedance in the photoelectron environment is represented by a parallel equivalent circuit consisting of a capacitance and a resistance, which is consistent with empirical knowledge. The results also imply that the impedance varies with the spin of the spacecraft, which causes the variation of the photoelectron density around the antenna.

  7. Fabrication of hierarchical core-shell polydopamine@MgAl-LDHs composites for the efficient enrichment of radionuclides

    NASA Astrophysics Data System (ADS)

    Zhu, Kairuo; Lu, Songhua; Gao, Yang; Zhang, Rui; Tan, Xiaoli; Chen, Changlun

    2017-02-01

    Novel hierarchical core/shell structured polydopamine@MgAl-layered double hydroxides (PDA@MgAl-LDHs) composites involving MgAl-layered double hydroxide shells and PDA cores were fabricated thought one-pot coprecipitation assembly and methodically characterized by X-ray diffraction, Fourier transformed infrared spectroscopy, scanning/transmission electron microscopy, selected area electron diffraction, elemental mapping, thermogravimetric analysis and X-ray photoelectron spectroscopy technologies. U(VI) and Eu(III) sorption experiments showed that the PDA@MgAl-LDHs exhibited higher sorption ability with a maximum sorption capacity of 142.86 and 76.02 mg/g at 298 K and pH 4.5, respectively. More importantly, according to XPS analyses, U(VI) and Eu(III) were sorbed on PDA@MgAl-LDHs via oxygen-containing functional groups, and the chemical affinity of U(VI) by oxygen-containing functional groups is higher than that of Eu(III). These observations show great expectations in the enrichment of radionuclides from aquatic environments by PDA@MgAl-LDHs.

  8. Synthesis and in vitro cellular interactions of superparamagnetic iron nanoparticles with a crystalline gold shell

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sulalit; Singh, Gurvinder; Sandvig, Ioanna; Sandvig, Axel; Mathieu, Roland; Anil Kumar, P.; Glomm, Wilhelm Robert

    2014-10-01

    Fe@Au core-shell nanoparticles (NPs) exhibit multiple functionalities enabling their effective use in applications such as medical imaging and drug delivery. In this work, a novel synthetic method was developed and optimized for the synthesis of highly stable, monodisperse Fe@Au NPs of average diameter ∼24 nm exhibiting magneto-plasmonic characteristics. Fe@Au NPs were characterized by a wide range of experimental techniques, including scanning (transmission) electron microscopy (S(T)EM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) and UV-vis spectroscopy. The formed particles comprise an amorphous iron core with a crystalline Au shell of tunable thickness, and retain the superparamagnetic properties at room temperature after formation of a crystalline Au shell. After surface modification, PEGylated Fe@Au NPs were used for in vitro studies on olfactory ensheathing cells (OECs) and human neural stem cells (hNSCs). No adverse effects of the Fe@Au particles were observed post-labeling, both cell types retaining normal morphology, viability, proliferation, and motility. It can be concluded that no appreciable toxic effects on both cell types, coupled with multifunctionality and chemical stability make them ideal candidates for therapeutic as well as diagnostic applications.

  9. Arousal (but not valence) amplifies the impact of salience.

    PubMed

    Sutherland, Matthew R; Mather, Mara

    2018-05-01

    Previous findings indicate that negative arousal enhances bottom-up attention biases favouring perceptual salient stimuli over less salient stimuli. The current study tests whether those effects were driven by emotional arousal or by negative valence by comparing how well participants could identify visually presented letters after hearing either a negative arousing, positive arousing or neutral sound. On each trial, some letters were presented in a high contrast font and some in a low contrast font, creating a set of targets that differed in perceptual salience. Sounds rated as more emotionally arousing led to more identification of highly salient letters but not of less salient letters, whereas sounds' valence ratings did not impact salience biases. Thus, arousal, rather than valence, is a key factor enhancing visual processing of perceptually salient targets.

  10. The range and valence of a real Smirnov function

    NASA Astrophysics Data System (ADS)

    Ferguson, Timothy; Ross, William T.

    2018-02-01

    We give a complete description of the possible ranges of real Smirnov functions (quotients of two bounded analytic functions on the open unit disk where the denominator is outer and such that the radial boundary values are real almost everywhere on the unit circle). Our techniques use the theory of unbounded symmetric Toeplitz operators, some general theory of unbounded symmetric operators, classical Hardy spaces, and an application of the uniformization theorem. In addition, we completely characterize the possible valences for these real Smirnov functions when the valence is finite. To do so we construct Riemann surfaces we call disk trees by welding together copies of the unit disk and its complement in the Riemann sphere. We also make use of certain trees we call valence trees that mirror the structure of disk trees.

  11. Band alignment of SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) determined by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Zhaoqing; Feng, Qian; Zhang, Jincheng; Li, Xiang; Li, Fuguo; Huang, Lu; Chen, Hong-Yan; Lu, Hong-Liang; Hao, Yue

    2018-03-01

    In this work, we report the investigation of the band alignment of SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) utilizing the high resolution X-ray photoelectron spectroscopy (XPS) measurements. The single crystallinity and orientation of β-(AlxGa1-x)2O3 films grown on sapphire by pulsed laser deposition were studied with the high resolution X-ray diffraction. The Ga 2p3/2 and Si 2p core-level spectra as well as valence band spectra were used in the analysis of band alignment. As the mole fraction x of Al increases from 0 to 0.49, the bandgap and conduction band offset values of SiO2/(AlxGa1-x)2O3 increases from 4.9 to 5.6 eV and from 1.5 to 2.1 eV, respectively, while that of valence band offset decreases from 2.2 to 0.9 eV. From the results obtained, the energy band diagram of the studied SiO2/(AlxGa1-x)2O3 (0 ≤ x ≤ 0.49) interfaces is found to be of type I. Energy band lineups of SiO2/(AlxGa1-x)2O3 were thus determined which can be used as for Ga2O3 based power device technology.

  12. Electron interference effects in energetic photoelectrons from C60@C240 probed by the Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    McCreary, Meghan; Chakraborty, Himadri

    2013-05-01

    The ground state structure of the simplest two-fullerene onion system, the C60@C240 molecule, is solved in the Kohn-Sham framework of local density approximation (LDA). Calculations are carried out with delocalized carbon valence electrons after modeling the onion ion-core of sixty C4+ ions from C60 and two hundred and forty of those from C240 in a smeared out jellium-type double-shell structure. Ionization cross sections of all the levels are then calculated in both independent particle LDA and many-particle time dependent LDA approaches at photon energies above the plasmon resonances. These high-energy results exhibit rich structures of energy dependent oscillations from the quantum interference of electron waves produced at the edges of the fullerene layers. A detailed scrutiny of these structures is conducted by Fourier transforming the spectra to the configuration space that relates the oscillations to the onion geometry. Supported by NSF and DOE.

  13. MicroShell Minimalist Shell for Xilinx Microprocessors

    NASA Technical Reports Server (NTRS)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  14. Chromium valences in ureilite olivine and implications for ureilite petrogenesis

    NASA Astrophysics Data System (ADS)

    Goodrich, C. A.; Sutton, S. R.; Wirick, S.; Jercinovic, M. J.

    2013-12-01

    Ureilites are a group of ultramafic achondrites commonly thought to be residues of partial melting on a carbon-rich asteroid. They show a large variation in FeO content (olivine Fo values ranging from ∼74 to 95) that cannot be due to igneous fractionation and suggests instead variation in oxidation state. The presence of chromite in only a few of the most ferroan (Fo 75-76) samples appears to support such a model. MicroXANES analyses were used in this study to determine the valence states of Cr (previously unknown) in olivine cores of 11 main group ureilites. The goal of this work was to use a method that is independent of Fo to determine the oxidation conditions under which ureilites formed, in order to evaluate whether the ureilite FeO-variation is correlated with oxidation state, and whether it is nebular or planetary in origin. Two of the analyzed samples, LEW 88774 (Fo 74.2) and NWA 766 (Fo 76.7) contain primary chromite; two others, LAP 03587 (Fo 74.4) and CMS 04048 (Fo 76.2) contain sub-micrometer-sized exsolutions of chromite + Ca-rich pyroxene in olivine; and one, EET 96328 (Fo 85.2) contains an unusual chromite grain of uncertain origin. No chromite has been observed in the remaining six samples (Fo 77.4-92.3). Chromium in olivine in all eleven samples was found to be dominated by the divalent species, with valences ranging from 2.10 ± 0.02 (1σ) to 2.46 ± 0.04. The non-chromite-bearing ureilites have the most reduced Cr, with a weighted mean valence of 2.12 ± 0.01, i.e., Cr2+/Cr3+ = 7.33. All low-Fo chromite-bearing ureilites have more oxidized Cr, with valences ranging from 2.22 ± 0.03 to 2.46 ± 0.04. EET 96328, whose chromite grain we interpret as a late-crystallizing phase, yielded a reduced Cr valence of 2.15 ± 0.07, similar to the non-chromite-bearing samples. Based on the measured Cr valences, magmatic (1200-1300 °C) oxygen fugacities (fO2) of the non-chromite-bearing samples were estimated to be in the range IW-1.9 to IW-2.8 (assuming

  15. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  16. Multielectron effects in the photoelectron momentum distribution of noble-gas atoms driven by visible-to-infrared-frequency laser pulses: A time-dependent density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Zhang, G. P.; Chu, Shih-I.

    2017-05-01

    We present the photoelectron momentum distributions (PMDs) of helium, neon, and argon atoms driven by a linearly polarized, visible (527-nm) or near-infrared (800-nm) laser pulse (20 optical cycles in duration) based on the time-dependent density-functional theory (TDDFT) under the local-density approximation with a self-interaction correction. A set of time-dependent Kohn-Sham equations for all electrons in an atom is numerically solved using the generalized pseudospectral method. An effect of the electron-electron interaction driven by a visible laser field is not recognizable in the helium and neon PMDs except for a reduction of the overall photoelectron yield, but there is a clear difference between the PMDs of an argon atom calculated with the frozen-core approximation and TDDFT, indicating an interference of its M -shell wave functions during the ionization. Furthermore, we find that the PMDs of degenerate p states are well separated in intensity when driven by a near-infrared laser field, so that the single-active-electron approximation can be adopted safely.

  17. Effect of Morphology and Manganese Valence on the Voltage Fade and Capacity Retention of Li[Li 2/12Ni 3/12Mn 7/12]O 2

    DOE PAGES

    Verde, Michael G.; Liu, Haodong; Carroll, Kyler J.; ...

    2014-10-02

    We have determined the electrochemical characteristics of the high voltage, high capacity Li-ion battery cathode material Li[Li 2/12Ni 3/12Mn 7/12]O 2 prepared using three different synthesis routes: sol-gel, hydroxide co-precipitation, and carbonate co-precipitation. Each route leads to distinct morphologies and surface areas while maintaining the same crystal structures. X-ray photoelectron spectroscopy (XPS) measurements reveal differences in their surface chemistries upon cycling, which correlate with voltage fading. As expected, we observed the valence state of Mn on the surface to decrease upon lithiation, and this reduction is specifically correlated to discharging below 3.6V. Furthermore, the data shows a correlation of themore » formation of Li 2CO 3 with Mn oxidation state from the« less

  18. Distinct Brain Systems Underlie the Processing of Valence and Arousal of Affective Pictures

    ERIC Educational Resources Information Center

    Nielen, M. M. A.; Heslenfeld, D. J.; Heinen, K.; Van Strien, J. W.; Witter, M. P.; Jonker, C.; Veltman, D. J.

    2009-01-01

    Valence and arousal are thought to be the primary dimensions of human emotion. However, the degree to which valence and arousal interact in determining brain responses to emotional pictures is still elusive. This functional MRI study aimed to delineate neural systems responding to valence and arousal, and their interaction. We measured neural…

  19. On the Relationship between Value Orientation, Valences, and Academic Achievement

    ERIC Educational Resources Information Center

    Fries, Stefan; Schmid, Sebastian; Hofer, Manfred

    2007-01-01

    Value orientations are believed to influence learning in school. We assume that this influence is mediated by the valences attached to specific school subjects. In a questionnaire study (704 students from 36 classes) achievement and well-being value orientations were measured. Students also rated valence scales for the school subjects German and…

  20. Observation of circular dichroism in photoelectron angular distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appling, J.R.; White, M.G.; Orlando, T.M.

    1986-12-01

    The first observations of dichroic effects in photoelectron angular distributions are reported for photoionization of aligned molecular excited states with circularly polarized light. Photoelectron angular distributions resulting from the two-color, (2+1) REMPI of NO via the A /sup 2/summation/sup +/, v = 0, J = 3/2,5/2 excited states exhibit significant left--right asymmetry. The experimental CD angular distributions are found to be well described by the general theoretical framework recently developed by Dubs, Dixit, and McKoy and are in good qualitative agreement with their calculated REMPI--CD distributions.

  1. Observation of circular dichroism in photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Appling, Jeffrey R.; White, Michael G.; Orlando, Thomas M.; Anderson, Scott L.

    1986-12-01

    The first observations of dichroic effects in photoelectron angular distributions are reported for photoionization of aligned molecular excited states with circularly polarized light. Photoelectron angular distributions resulting from the two-color, (2+1) REMPI of NO via the A 2∑+, v=0, J=3/2,5/2 excited states exhibit significant left-right asymmetry. The experimental CD angular distributions are found to be well described by the general theoretical framework recently developed by Dubs, Dixit, and McKoy and are in good qualitative agreement with their calculated REMPI-CD distributions.

  2. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  3. Accurate Valence Ionization Energies from Kohn-Sham Eigenvalues with the Help of Potential Adjustors.

    PubMed

    Thierbach, Adrian; Neiss, Christian; Gallandi, Lukas; Marom, Noa; Körzdörfer, Thomas; Görling, Andreas

    2017-10-10

    An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G 0 W 0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in

  4. Itsy bitsy spider?: Valence and self-relevance predict size estimation.

    PubMed

    Leibovich, Tali; Cohen, Noga; Henik, Avishai

    2016-12-01

    The current study explored the role of valence and self-relevance in size estimation of neutral and aversive animals. In Experiment 1, participants who were highly fearful of spiders and participants with low fear of spiders rated the size and unpleasantness of spiders and other neutral animals (birds and butterflies). We found that although individuals with both high and low fear of spiders rated spiders as highly unpleasant, only the highly fearful participants rated spiders as larger than butterflies. Experiment 2 included additional pictures of wasps (not self-relevant, but unpleasant) and beetles. The results of this experiment replicated those of Experiment 1 and showed a similar bias in size estimation for beetles, but not for wasps. Mediation analysis revealed that in the high-fear group both relevance and valence influenced perceived size, whereas in the low-fear group only valence affected perceived size. These findings suggest that the effect of highly relevant stimuli on size perception is both direct and mediated by valence. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Particle Simulations of the Guard Electrode Effects on the Photoelectron Distribution Around an Electric Field Sensor

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.; Kojima, H.

    2010-12-01

    In tenuous space plasma environment, photoelectrons emitted due to solar illumination produce a high-density photoelectron cloud localized in the vicinity of a spacecraft body and an electric field sensor. The photoelectron current emitted from the sensor has also received considerable attention because it becomes a primary factor in determining floating potentials of the sunlit spacecraft and sensor bodies. Considering the fact that asymmetric photoelectron distribution between sunlit and sunless sides of the spacecraft occasionally causes a spurious sunward electric field, we require quantitative evaluation of the photoelectron distribution around the spacecraft and its influence on electric field measurements by means of a numerical approach. In the current study, we applied the Particle-in-Cell plasma simulation to the analysis of the photoelectron environment around spacecraft. By using the PIC modeling, we can self-consistently consider the plasma kinetics. This enables us to simulate the formation of the photoelectron cloud as well as the spacecraft and sensor charging in a self-consistent manner. We report the progress of an analysis on photoelectron environment around MEFISTO, which is an electric field instrument for the BepiColombo/MMO spacecraft to Mercury’s magnetosphere. The photoelectron guard electrode is a key technology for ensuring an optimum photoelectron environment. We show some simulation results on the guard electrode effects on surrounding photoelectrons and discuss a guard operation condition for producing the optimum photoelectron environment. We also deal with another important issue, that is, how the guard electrode can mitigate an undesirable influence of an asymmetric photoelectron distribution on electric field measurements.

  6. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell π-conjugated systems

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi

    2005-03-01

    The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree

  7. Optical properties of core-shell and multi-shell nanorods

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  8. Angular distribution of photoelectrons at 584A using polarized radiation

    NASA Technical Reports Server (NTRS)

    Hancock, W. H.; Samson, J. A. R.

    1975-01-01

    Photoelectron angular distributions for Ar, Xe, N2, O2, CO, CO2, and NH3 were obtained at 584 A by observing the photoelectrons at a fixed angle and simply rotating the plane of polarization of a highly polarized photon source. The radiation from a helium dc glow discharge source was polarized (84%) using a reflection type polarizer.

  9. Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Craft, H. S.; Collazo, R.; Losego, M. D.; Mita, S.; Sitar, Z.; Maria, J.-P.

    2007-10-01

    MgO is a proposed dielectric for use as a tunneling barrier in devices integrating GaN and ferroelectric oxides. In this study, we present data regarding the growth mode and band offsets of MgO grown epitaxially on GaN (0002) surfaces using molecular beam epitaxy. Using in situ x-ray photoelectron spectroscopy (XPS) and molecular beam epitaxy, we determine, from sequential growth experiments, that the growth of MgO proceeds via the Volmer-Weber (three-dimensional) mode, and full coalescence of the film does not occur until approximately 12nm of MgO has been deposited. The observation of a three-dimensional growth mode is in agreement with previously published data. For the valence band offset, we find a value of 1.2±0.2eV, which corresponds to a 3.2eV conduction band offset. XPS measurements suggest a chemically abrupt interface and no effect on band lineup due to the slow coalescence behavior.

  10. Inelastic collisions of positrons with one-valence-electron targets

    NASA Technical Reports Server (NTRS)

    Abdel-Raouf, Mohamed Assad

    1990-01-01

    The total elastic and positronium formation cross sections of the inelastic collisions between positrons and various one-valence-electron atoms, (namely hydrogen, lithium, sodium, potassium and rubidium), and one-valence-electron ions, (namely hydrogen-like, lithium-like and alkaline-earth positive ions) are determined using an elaborate modified coupled-static approximation. Special attention is devoted to the behavior of the Ps cross sections at the energy regions lying above the Ps formation thresholds.

  11. Negatively valenced expectancy violation predicts emotionality: A longitudinal analysis.

    PubMed

    Bettencourt, B Ann; Manning, Mark

    2016-09-01

    We hypothesized that negatively valenced expectancy violations about the quality of 1's life would predict negative emotionality. We tested this hypothesis in a 4-wave longitudinal study of breast cancer survivors. The findings showed that higher levels of negatively valenced expectancy violation, at earlier time points, were associated with greater negative emotionality, at later time points. Implications of the findings are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Gold/silver core-shell 20 nm nanoparticles extracted from citrate solution examined by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Smith, Jordan N.; Baer, Donald R.

    Silver nanoparticles of many types are widely used in consumer and medical products. The surface chemistry of particles and the coatings that form during synthesis or use in many types of media can significantly impact the behaviors of particles including dissolution, transformation and biological or environmental impact. Consequently it is useful to be able to extract information about the thickness of surface coatings and other attributes of nanoparticles produced in a variety of ways. It has been demonstrated that X-ray Photoelectron Spectroscopy (XPS) can be reliably used to determine the thickness of organic and other nanoparticles coatings and shells. However,more » care is required to produce reliable and consistent information. Here we report the XPS spectra from gold/silver core-shell nanoparticles of nominal size 20 nm removed from a citrate saturated solution after one and two washing cycles. The Simulation of Electron Spectra for Surface Analysis (SESSA) program had been used to model peak amplitudes to obtain information on citrate coatings that remain after washing and demonstrate the presence of the gold core. This data is provided so that others can compare use of SESSA or other modeling approaches to quantify the nature of coatings to those already published and to explore the impacts particle non-uniformities on XPS signals from core-shell nanoparticles.« less

  13. The Fabrication and High-Efficiency Electromagnetic Wave Absorption Performance of CoFe/C Core-Shell Structured Nanocomposites

    NASA Astrophysics Data System (ADS)

    Wan, Gengping; Luo, Yongming; Wu, Lihong; Wang, Guizhen

    2018-03-01

    CoFe/C core-shell structured nanocomposites (CoFe@C) have been fabricated through the thermal decomposition of acetylene with CoFe2O4 as precursor. The as-prepared CoFe@C was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The results demonstrate that the carbon shell in CoFe@C has a poor crystallization with a thickness about 5-30 nm and a content approximately 48.5 wt.%. Due to a good combination between intrinsic magnetic properties and high-electrical conductivity, the CoFe@C exhibits not only excellent absorption intensity but also wide frequency bandwidth. The minimum RL value of CoFe@C can reach - 44 dB at a thickness of 4.0 mm, and RL values below - 10 dB is up to 4.3 GHz at a thickness of 2.5 mm. The present CoFe@C may be a potential candidate for microwave absorption application.

  14. Renner-Teller effects in the photoelectron spectra of CNC, CCN, and HCCN.

    PubMed

    Coudert, Laurent H; Gans, Bérenger; Garcia, Gustavo A; Loison, Jean-Christophe

    2018-02-07

    The line intensity of photoelectron spectra when either the neutral or cationic species display a Renner-Teller coupling is derived and applied to the modeling of the photoelectron spectra of CNC, CCN, and HCCN. The rovibronic energy levels of these three radicals and of their cations are investigated starting from ab initio results. A model treating simultaneously the bending mode and the overall rotation is developed to deal with the quasilinearity problem in CNC + , CCN + , and HCCN and accounts for the large amplitude nature of their bending mode. This model is extended to treat the Renner-Teller coupling in CNC, CCN, and HCCN + . Based on the derived photoelectron line intensity, the photoelectron spectra of all three molecules are calculated and compared to the experimental ones.

  15. The PhotoElectron Boundary as observed by MAVEN instruments

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Steckiewicz, M.; Mazelle, C. X.; Xu, S.; Mitchell, D. L.; Holmberg, M.; Halekas, J. S.; Andersson, L.; Brain, D.; Connerney, J. E. P.; Espley, J. R.; Lillis, R. J.; Luhmann, J. G.; Savaud, J. A.; Jakosky, B. M.

    2017-12-01

    Photoelectron peaks in the 20-30 eV energy range are commonly observed in planetary atmospheres (Earth, Mars, Titan...), produced by the intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons result from the ionization of CO2 and O atmospheric neutrals, and are known to escape the planet down its tail, making them tracers for the atmospheric escape (Frahm et al., 2006). Furthermore, their presence or absence allows us to define the so-called PhotoElectron Boundary (PEB), that separates the sunlit photoelectron-dominated ionosphere from the solar wind controlled environment, as initially observed by the Mars Global Surveyor (MGS) MAG/ER instrument (Mitchell et al. (2000, 2001). We provide here a detailed statistical analysis of the location and properties of the PEB based on the Mars Atmosphere and Volatile Evolution (MAVEN) mission electron and magnetic field data. Our dataset includes 1696 dayside PEB crossings obtained from September 2014 until May 2016 (the observations of escaping photoelectrons in the wake being not included). The PEB appears as mostly sensitive to the solar wind dynamic and crustal magnetic fields pressures, for which a quantitative dependance is derived and compared with two other important boundaries : the bow shock and magnetic pileup boundary. The PEB altitude is highly variable, leading to a variable wake cross section for escape (up to +- 50%), which is important for deriving global escape rates from in situ photoelectron escape rates. The PEB is not always sharp, and is, despite a strong variability, characterized on average by : a magnetic field topology typical for the edge of the Magnetic Pile Up Region above it, more field aligned fluxes above than below, and a clear change of the altitude dependence of both electron fluxes and total density (that appears different from the ionopause). The PEB thus appears as a transition region between two plasma and field configurations which is determined by the

  16. The Martian Photoelectron Boundary as Seen by MAVEN

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Steckiewicz, M.; Mazelle, C.; Xu, S.; Mitchell, D.; Holmberg, M. K. G.; Halekas, J. S.; Andersson, L.; Brain, D. A.; Connerney, J. E. P.; Espley, J. R.; Lillis, R. J.; Luhmann, J. G.; Sauvaud, J.-A.; Jakosky, B. M.

    2017-10-01

    Photoelectron peaks in the 20-30 eV energy range are commonly observed in the planetary atmospheres, produced by the intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons are known to escape the planet down its tail, making them tracers for the atmospheric escape. Furthermore, their presence or absence allow to define the so-called photoelectron boundary (PEB), which separates the photoelectron dominated ionosphere from the external environment. We provide here a detailed statistical analysis of the location and properties of the PEB based on the Mars Atmosphere and Volatile EvolutioN (MAVEN) electron and magnetic field data obtained from September 2014 to May 2016 (including 1696 PEB crossings). The PEB appears as mostly sensitive to the solar wind dynamic and crustal fields pressures. Its variable altitude thus leads to a variable wake cross section for escape (up to ˜+50%), which is important for deriving escape rates. The PEB is not always sharp and is characterized on average by the following: a magnetic field topology typical for the end of magnetic pileup region above it, more field-aligned fluxes above than below, and a clear change of the altitude slopes of both electron fluxes and total density (that appears different from the ionopause). The PEB thus appears as a transition region between two plasma and fields configurations determined by the draping topology of the interplanetary magnetic field around Mars and much influenced by the crustal field sources below, whose dynamics also impacts the estimated escape rate of ionospheric plasma.

  17. Valence-Specific Laterality Effects in Vocal Emotion: Interactions with Stimulus Type, Blocking and Sex

    ERIC Educational Resources Information Center

    Schepman, Astrid; Rodway, Paul; Geddes, Pauline

    2012-01-01

    Valence-specific laterality effects have been frequently obtained in facial emotion perception but not in vocal emotion perception. We report a dichotic listening study further examining whether valence-specific laterality effects generalise to vocal emotions. Based on previous literature, we tested whether valence-specific laterality effects were…

  18. Photoelectron Imaging Spectroscopy as a Window to Unexpected Molecules

    NASA Astrophysics Data System (ADS)

    Blackstone, Christopher C.

    2017-06-01

    Targeting an anion with the formula CH_{3}O_{3} for exploration with photoelectron imaging spectroscopy, we determine its identity to be dihydroxymethanolate, an anion largely absent in the literature, and the conjugate base of the hypothetical species orthoformic acid. Comparing the observed photoelectron spectrum to CCSD-EOM-IP and CCSD-EOM-SF calculations completed in QChem and Franck-Condon overlap simulations in PESCAL, we are able to determine with confidence the connectivity of the atoms in this molecule.

  19. The power of emotional valence-from cognitive to affective processes in reading.

    PubMed

    Altmann, Ulrike; Bohrn, Isabel C; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M

    2012-01-01

    The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.

  20. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering.

    PubMed

    Antonsson, E; Langer, B; Halfpap, I; Gottwald, J; Rühl, E

    2017-06-28

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO 2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO 2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  1. Photoelectrons in the Quiet Polar Wind

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Khazanov, G.; Liemohn, M.

    2017-01-01

    This study presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solution. The model combines the hydrodynamic Polar Wind Outflow Model (PWOM) with the kinetic SuperThermal Electron Transport (STET) code. The resulting PWOM-STET coupled model is described and then used to investigate the role of photoelectrons in the polar wind. We present polar wind results along single stationary field lines under dayside and nightside conditions, as well as the global solution reconstructed from nearly 1000 moving field lines. The model results show significant day-night asymmetries in the polar wind solution owing to the higher ionization and photoelectron fluxes on the dayside compared to the nightside. Field line motion is found to modify this dependence and create global structure by transporting field lines through different conditions of illumination and through the localized effects of Joule heating.

  2. Influence of emotional valence and arousal on the spread of activation in memory.

    PubMed

    Jhean-Larose, Sandra; Leveau, Nicolas; Denhière, Guy

    2014-11-01

    Controversy still persists on whether emotional valence and arousal influence cognitive activities. Our study sought to compare how these two factors foster the spread of activation within the semantic network. In a lexical decision task, prime words were varied depending on the valence (pleasant or unpleasant) or on the level of emotional arousal (high or low). Target words were carefully selected to avoid semantic priming effects, as well as to avoid arousing specific emotions (neutral). Three SOA durations (220, 420 and 720 ms) were applied across three independent groups. Results indicate that at 220 ms, the effect of arousal is significantly higher than the effect of valence in facilitating spreading activation while at 420 ms, the effect of valence is significantly higher than the effect of arousal in facilitating spreading activation. These findings suggest that affect is a sequential process involving the successive intervention of arousal and valence.

  3. Effects of Emotional Valence and Arousal on Recollective and Nonrecollective Recall

    ERIC Educational Resources Information Center

    Gomes, Carlos F. A.; Brainerd, Charles J.; Stein, Lilian M.

    2013-01-01

    The authors investigated the effects of valence and arousal on memory using a dual-process model that quantifies recollective and nonrecollective components of recall without relying on metacognitive judgments to separate them. The results showed that valenced words increased reconstruction (a component of nonrecollective retrieval) relative to…

  4. Microscopic Shell Model Calculations for sd-Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Shirokov, Andrey M.; Smirnova, Nadya A.; Vary, James P.

    Several techniques now exist for performing detailed and accurate calculations of the structure of light nuclei, i.e., A ≤ 16. Going to heavier nuclei requires new techniques or extensions of old ones. One of these is the so-called No Core Shell Model (NCSM) with a Core approach, which involves an Okubo-Lee-Suzuki (OLS) transformation of a converged NCSM result into a single major shell, such as the sd-shell. The obtained effective two-body matrix elements can be separated into core and single-particle (s.p.) energies plus residual two-body interactions, which can be used for performing standard shell-model (SSM) calculations. As an example, an application of this procedure will be given for nuclei at the beginning ofthe sd-shell.

  5. Facile synthesis of mercaptosuccinic acid-capped CdTe/CdS/ZnS core/double shell quantum dots with improved cell viability on different cancer cells and normal cells

    NASA Astrophysics Data System (ADS)

    Parani, Sundararajan; Bupesh, Giridharan; Manikandan, Elayaperumal; Pandian, Kannaiyan; Oluwafemi, Oluwatobi Samuel

    2016-11-01

    Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ˜3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.

  6. Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells

    PubMed Central

    Zhang, Zhijian; Xu, Liping; Zhang, Chunlong

    2015-01-01

    The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater. PMID:25837498

  7. How much does emotional valence of action outcomes affect temporal binding?

    PubMed

    Moreton, Joshua; Callan, Mitchell J; Hughes, Gethin

    2017-03-01

    Temporal binding refers to the compression of the perceived time interval between voluntary actions and their sensory consequences. Research suggests that the emotional content of an action outcome can modulate the effects of temporal binding. We attempted to conceptually replicate these findings using a time interval estimation task and different emotionally-valenced action outcomes (Experiments 1 and 2) than used in previous research. Contrary to previous findings, we found no evidence that temporal binding was affected by the emotional valence of action outcomes. After validating our stimuli for equivalence of perceived emotional valence and arousal (Experiment 3), in Experiment 4 we directly replicated Yoshie and Haggard's (2013) original experiment using sound vocalizations as action outcomes and failed to detect a significant effect of emotion on temporal binding. These studies suggest that the emotional valence of action outcomes exerts little influence on temporal binding. The potential implications of these findings are discussed. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Molybdenum Valence in Basaltic Silicate Melts: Effects of Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Choi, Y.; Pando, K.

    2011-01-01

    The metal-silicate partitioning behavior of molybdenum has been used as a test for equilibrium core formation hypotheses [for example, 1-6]. However, current models that apply experimental data to equilibrium core-mantle differentiation infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Molybdenum, a multi-valent element with a valence transition near the fO2 of interest for core formation (approx.IW-2) will be sensitive to changes in fO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo(6+) can be either octahedrally or tetrahedrally coordinated. Here we present X-ray absorption near edge structure (XANES) measurements of Mo valence in basaltic run products at a range of P, T, and fO2 and further quantify the valence transition of Mo.

  9. SERS study of surface plasmon resonance induced carrier movement in Au@Cu2O core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Fan; Deng, Xin-Yu; Xue, Xiangxin; Wang, Li; Sun, Yantao; Feng, Jing-Dong; Zhang, Yongjun; Wang, Yaxin; Jung, Young Mee

    2018-01-01

    A plasmon induced carrier movement enhanced mechanism of surface-enhanced Raman scattering (SERS) was investigated using a charge-transfer (CT) enhancement mechanism. Here, we designed a strategy to study SERS in Au@Cu2O nanoshell nanoparticles with different shell thicknesses. Among the plasmonically coupled nanostructures, Au spheres with Cu2O shells have been of special interest due to their ultrastrong electromagnetic fields and controllable carrier transfer properties, which are useful for SERS. Au@Cu2O nanoshell nanoparticles (NPs) with shell thicknesses of 48-56 nm are synthesized that exhibit high SERS activity. This high activity originates from plasmonic-induced carrier transfer from Au@Cu2O to 4-mercaptobenzoic acid (MBA). The CT transition from the valence band (VB) of Cu2O to the second excited π-π* transition of MBA, and is of b2 electronic symmetry, which was enhanced significantly. The Herzberg-Teller selection rules were employed to predict the observed enhanced b2 symmetry modes. The system constructed in this study combines the long-range electromagnetic effect of Au NPs, localized surface plasmon resonance (LSPR) of the Au@Cu2O nanoshell, and the CT contribution to assist in understanding the SERS mechanism based on LSPR-induced carrier movement in metal/semiconductor nanocomposites.

  10. Values, Valences, and Course Enrollment: Testing the Role of Personal Values within an Expectancy-Valence Framework.

    ERIC Educational Resources Information Center

    Feather, N. T.

    1988-01-01

    The enrollment decisions of 444 (183 male, 260 female, and 1 unspecified) university students at Flinders University (South Australia) were investigated. Results shed light on gender differences in achievement patterns in mathematics and English and in relation to assumptions about relations between expectations and valences. (TJH)

  11. Reactive Force Fields via Explicit Valency

    NASA Astrophysics Data System (ADS)

    Kale, Seyit

    Computational simulations are invaluable in elucidating the dynamics of biological macromolecules. Unfortunately, reactions present a fundamental challenge. Calculations based on quantum mechanics can predict bond formation and rupture; however they suffer from severe length- and time-limitations. At the other extreme, classical approaches provide orders of magnitude faster simulations; however they regard chemical bonds as immutable entities. A few exceptions exist, but these are not always trivial to adopt for routine use. We bridge this gap by providing a novel, pseudo-classical approach, based on explicit valency. We unpack molecules into valence electron pairs and atomic cores. Particles bear ionic charges and interact via pairwise-only potentials. The potentials are informed of quantum effects in the short-range and obey dissociation limits in the long-range. They are trained against a small set of isolated species, including geometries and thermodynamics of small hydrides and of dimers formed by them. The resulting force field captures the essentials of reactivity, polarizability and flexibility in a simple, seamless setting. We call this model LEWIS, after the chemical theory that inspired the use of valence pairs. Following the introduction in Chapter 1, we initially focus on the properties of water. Chapter 2 considers gas phase clusters. To transition to the liquid phase, Chapter 3 describes a novel pairwise long-range compensation that performs comparably to infinite lattice summations. The approach is suited to ionic solutions in general. In Chapters 4 and 5, LEWIS is shown to correctly predict the dipolar and quadrupolar response in bulk liquid, and can accommodate proton transfers in both acid and base. Efficiency permits the study of proton defects at dilutions not accessible to experiment or quantum mechanics. Chapter 6 discusses explicit valency approaches in other hydrides, forming the basis of a reactive organic force field. Examples of simple

  12. Age-related emotional bias in processing two emotionally valenced tasks.

    PubMed

    Allen, Philip A; Lien, Mei-Ching; Jardin, Elliott

    2017-01-01

    Previous studies suggest that older adults process positive emotions more efficiently than negative emotions, whereas younger adults show the reverse effect. We examined whether this age-related difference in emotional bias still occurs when attention is engaged in two emotional tasks. We used a psychological refractory period paradigm and varied the emotional valence of Task 1 and Task 2. In both experiments, Task 1 was emotional face discrimination (happy vs. angry faces) and Task 2 was sound discrimination (laugh, punch, vs. cork pop in Experiment 1 and laugh vs. scream in Experiment 2). The backward emotional correspondence effect for positively and negatively valenced Task 2 on Task 1 was measured. In both experiments, younger adults showed a backward correspondence effect from a negatively valenced Task 2, suggesting parallel processing of negatively valenced stimuli. Older adults showed similar negativity bias in Experiment 2 with a more salient negative sound ("scream" relative to "punch"). These results are consistent with an arousal-bias competition model [Mather and Sutherland (Perspectives in Psychological Sciences 6:114-133, 2011)], suggesting that emotional arousal modulates top-down attentional control settings (emotional regulation) with age.

  13. Fabrication and Characterization of Novel Electrothermal Self-Healing Microcapsules with Graphene/Polymer Hybrid Shells for Bitumenious Material.

    PubMed

    Wang, Xinyu; Guo, Yandong; Su, Junfeng; Zhang, Xiaolong; Wang, Yingyuan; Tan, Yiqiu

    2018-06-09

    Self-healing bituminous material has been a hot research topic in self-healing materials, and this smart self-healing approach is a promising a revolution in pavement material technology. Bitumen has a self-healing naturality relating to temperature, healing time, and aging degree. To date, heat induction and microencapsulation rejuvenator are two feasible approaches, which have been put into real applications. However, both methods have disadvantages limiting their practical results and efficiency. It will be an ideal method combining the advantages and avoiding the disadvantages of the above two methods at the same time. The aim of this work was to synthesize and characterize electrothermal self-healing microcapsules containing bituminous rejuvenator with graphene/organic nanohybrid structure shells. The microcapsules owned electric conductivity capability because of the advent of graphene, and realized the self-healing through the two approaches of heat induction and rejuvenation. The microcapsule shells were fabricated using a strength hexamethoxymethylmelamine (HMMM) resin and graphene by two-step hybrid polymerization. Experimental tests were carried out to character the morphology, integrity, and shell structure. It was found that the electric charge balance determined the graphene/HMMM microstructure. The graphene content in shells could not be greatly increased under an electrostatic balance in emulsion. X-ray photoelectron spectroscopy (XPS), Energy dispersive spectrometer (EDS), Transmission electron microscope (TEM) and Atomic force microscopy (AFM) results indicated that the graphene had deposited on shells. TGA/DTG tests implied that the thermal decomposition temperature of microcapsules with graphene had increased to about 350 °C. The thermal conductivity of microcapsules had been sharply increased to about 8.0 W/m²·K with 2.0 wt % graphene in shells. At the same time, electrical resistivity of microcapsules/bitumen samples had a decrease

  14. Production, Thermalization and Transport of Photoelectrons in the Mars Environment

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.; Xu, S.; Mazelle, C. X.; Steckiewicz, M.; Luhmann, J. G.; Connerney, J. E. P.; Andersson, L.

    2016-12-01

    The Solar Wind Electron Analyzer (SWEA) on the MAVEN spacecraft provides a detailed look at the production, thermalization, and transport of photoelectrons in the Mars environment. The MAVEN orbit routinely samples altitudes down to 150 km over wide ranges of solar zenith angle, local time, longitude, latitude and altitude. The altitude range extends into the region of photochemical equilibrium. SWEA's nominal energy resolution of 17% (ΔE/E, FWHM) is insufficient to resolve the photoelectron peaks at 23 and 27 eV, which result from photoionization of CO2 and O by the intense He II line in the solar EUV spectrum. However, during some orbits the spacecraft charged to -18 V near periapsis, which shifted the He II photoelectron features to lower energies, thus allowing them to be resolved. During several week-long deep dip campaigns, the periapsis altitude was lowered to 120 km. Thermalization of primary photoelectrons is very rapid at this altitude, resulting in a residual population at 7 eV, where the cross section to interaction with CO2 has a minimum. At altitudes above the 200 km, collisions become negligible (mean free path > 100 km), and the motion of suprathermal electrons is controlled by the magnetic field. Electron energy-pitch angle distributions reveal transport of photoelectrons from the day to the night hemisphere on both closed crustal magnetic loops and on open lines that extend into the tail. Mapping of such open field lines reveals the regions of the tail with access to the day-side ionosphere, which provide a conduit for ion outflow and loss.

  15. Valency-Controlled Framework Nucleic Acid Signal Amplifiers.

    PubMed

    Liu, Qi; Ge, Zhilei; Mao, Xiuhai; Zhou, Guobao; Zuo, Xiaolei; Shen, Juwen; Shi, Jiye; Li, Jiang; Wang, Lihua; Chen, Xiaoqing; Fan, Chunhai

    2018-06-11

    Weak ligand-receptor recognition events are often amplified by recruiting multiple regulatory biomolecules to the action site in biological systems. However, signal amplification in in vitro biomimetic systems generally lack the spatiotemporal regulation in vivo. Herein we report a framework nucleic acid (FNA)-programmed strategy to develop valence-controlled signal amplifiers with high modularity for ultrasensitive biosensing. We demonstrated that the FNA-programmed signal amplifiers could recruit nucleic acids, proteins, and inorganic nanoparticles in a stoichiometric manner. The valence-controlled signal amplifier enhanced the quantification ability of electrochemical biosensors, and enabled ultrasensitive detection of tumor-relevant circulating free DNA (cfDNA) with sensitivity enhancement of 3-5 orders of magnitude and improved dynamic range. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals.

    PubMed

    Tomizawa, Mayuka; Kurosu, Shunji; Kobayashi, Maki; Kawase, Yoshinori

    2016-12-01

    The decolorization and total organic carbon (TOC) removal of dark brown colored coffee effluent by zero-valent iron (ZVI) have been systematically examined with solution pH of 3.0, 4.0, 6.0 and 8.0 under oxic and anoxic conditions. The optimal decolorization and TOC removal were obtained at pH 8.0 with oxic condition. The maximum efficiencies of decolorization and TOC removal were 92.6 and 60.2%, respectively. ZVI presented potential properties for pollutant removal at nearly neutral pH because of its core-shell structure in which shell or iron oxide/hydroxide layer on ZVI surface dominated the decolorization and TOC removal of coffee effluent. To elucidate the contribution of the core-shell structure to removals of color and TOC at the optimal condition, the characterization of ZVI surface by scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was conducted. It was confirmed that the core-shell structure was formed and the shell on ZVI particulate surface and the precipitates formed during the course of ZVI treatment consisted of iron oxides and hydroxides. They were significantly responsible for decolorization and TOC removal of coffee effluent via adsorption to shell on ZVI surface and inclusion into the precipitates rather than the oxidative degradation by OH radicals and the reduction by emitted electrons. The presence of dissolved oxygen (DO) enhanced the formation of the core-shell structure and as a result improved the efficiency of ZVI treatment for the removal of colored components in coffee effluents. ZVI was found to be an efficient material toward the treatment of coffee effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Titan's plasma interaction: photoelectrons and negative ions

    NASA Astrophysics Data System (ADS)

    Coates, Coates; Welbrock, Anne; Desai, Ravi; Waite, Hunter

    2016-06-01

    We present a review of some of the most important results from the CAPS electron spectrometer.These include the role of photoelectrons and polar wind escape processes, and remarkable negative ion observations.

  18. A spectroscopic study for understanding the speciation of Cr on palm shell based adsorbents and their application for the remediation of chrome plating effluents.

    PubMed

    Kushwaha, Shilpi; Sreedhar, B; Sudhakar, Padmaja P

    2012-07-01

    Palm shell based adsorbents prepared under five different thermochemical conditions have been shown to be quite effective for removal of chromium (III and VI) from aqueous solutions. X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR) have been used to determine information about the speciation and binding of chromium on the adsorbents under study. X-ray photoelectron spectroscopy (XPS) studies indicate that oxidation of lignin moieties takes place concurrently to Cr(VI) reduction and leads to the formation of hydroxyl and carboxyl functions. The maximum adsorption capacity for hexavalent chromium was found to be about 313 mg/g in an acidic medium using PAPSP. This is comparable to other natural substrates and ordinary adsorbents. The efficacy of the adsorbents under study to remove chromium from plating waste water has been demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Bidirectional switch of the valence associated with a hippocampal contextual memory engram.

    PubMed

    Redondo, Roger L; Kim, Joshua; Arons, Autumn L; Ramirez, Steve; Liu, Xu; Tonegawa, Susumu

    2014-09-18

    The valence of memories is malleable because of their intrinsic reconstructive property. This property of memory has been used clinically to treat maladaptive behaviours. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here we investigated these mechanisms by applying the recently developed memory engram cell- manipulation technique. We labelled with channelrhodopsin-2 (ChR2) a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that although the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new unconditioned stimulus of an opposite valence. Our present work provides new insight into the functional neural circuits underlying the

  20. Basic features of the pion valence-quark distribution function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Lei; Mezrag, Cédric; Moutarde, Hervé

    2014-10-07

    The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables amore » realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q π(x); namely, at a characteristic hadronic scale, q π(x)~(1-x) 2 for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.« less

  1. Affective Priming with Associatively Acquired Valence

    ERIC Educational Resources Information Center

    Aguado, Luis; Pierna, Manuel; Saugar, Cristina

    2005-01-01

    Three experiments explored the effect of affectively congruent or incongruent primes on evaluation responses to positive or negative valenced targets (the "affective priming" effect). Experiment 1 replicated the basic affective priming effect with Spanish nouns: reaction time for evaluative responses (pleasant/unpleasant) were slower on…

  2. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  3. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    PubMed

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  4. Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H

    2011-01-28

    Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.

  5. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    PubMed

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Physics of Resonating Valence Bond Spin Liquids

    NASA Astrophysics Data System (ADS)

    Wildeboer, Julia Saskia

    This thesis will investigate various aspects of the physics of resonating valence bond spin liquids. After giving an introduction to the world that lies beyond Landau's priciple of symmetry breaking, e.g. giving an overview of exotic magnetic phases and how they can be described and (possibly) found, we will study a spin-rotationally invariant model system with a known parent Hamiltonian, and argue its ground state to lie within a highly sought after exotic phase, namely the Z2 quantum spin liquid phase. A newly developed numerical procedure --Pfaffian Monte Carlo-- will be introduced to amass evidence that our model Hamiltonian indeed exhibits a Z2 quantum spin liquid phase. Subsequently, we will prove a useful mathematical property of the resonating valence bond states: these states are shown to be linearly independent. Various lattices are investigated concerning this property, and its applications and usefullness are discussed. Eventually, we present a simplified model system describing the interplay of the well known Heisenberg interaction and the Dzyaloshinskii-Moriya (DM) interaction term acting on a sawtooth chain. The effect of the interplay between the two interaction couplings on the phase diagram is investigated. To do so, we employ modern techniques such as the density matrix renormalization group (DMRG) scheme. We find that for weak DM interaction the system exhibits valence bond order. However, a strong enough DM coupling destroys this order.

  7. Influence of affective valence on working memory processes.

    PubMed

    Gotoh, Fumiko

    2008-02-01

    Recent research has revealed widespread effects of emotion on cognitive function and memory. However, the influence of affective valence on working or short-term memory remains largely unexplored. In two experiments, the present study examined the predictions that negative words would capture attention, that attention would be difficult to disengage from such negative words, and that the cost of attention switching would increase the time required to update information in working memory. Participants switched between two concurrent working memory tasks: word recognition and a working memory digit updating task. Experiment 1 showed substantial switching cost for negative words, relative to neutral words. Experiment 2 replicated the first experiment, using a self-report measure of anxiety to examine if switching cost is a function of an anxiety-related attention bias. Results did not support this hypothesis. In addition, Experiment 2 revealed switch costs for positive words without the effect of the attention bias from anxiety. The present study demonstrates the effect of affective valence on a specific component of working memory. Moreover, findings suggest why affective valence effects on working memory have not been found in previous research.

  8. Clustering of low-valence particles: structure and kinetics.

    PubMed

    Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François

    2014-08-01

    We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.

  9. Valence-band states in Bi2(Ca,Sr,La)3Cu2O8

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Spicer, W. E.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.

    1989-09-01

    We have used photoemission spectroscopy to examine the symmetry of the occupied states of the valence band for the La-doped superconductor Bi2(Ca,Sr,La)3Cu2O8. While the oxygen states near the bottom of the 7-eV wide valence band exhibit predominantly O 2pz symmetry, the states at the top of the valence band extending to the Fermi level are found to have primarily O 2px and O 2py character. We have also examined anomalous intensity enhancements in the valence-band features for photon energies near 18 eV. These enhancements, which occur at photon energies ranging from 15.8 to 18.0 eV for the different valence-band features, are not consistent with either simple final-state effects or direct O 2s transitions to unoccupied O 2p states.

  10. Electric-field-driven electron-transfer in mixed-valence molecules.

    PubMed

    Blair, Enrique P; Corcelli, Steven A; Lent, Craig S

    2016-07-07

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate the electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.

  11. Electric-field-driven electron-transfer in mixed-valence molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, Enrique P., E-mail: enrique-blair@baylor.edu; Corcelli, Steven A., E-mail: scorcell@nd.edu; Lent, Craig S., E-mail: lent@nd.edu

    2016-07-07

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate themore » electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.« less

  12. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A., E-mail: gpetersson@wesleyan.edu

    2015-12-07

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.

  13. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M.; McGrath, R.; Sharma, H. R.

    The use of quasicrystals as precursors to catalysts for the steam reforming of methanol is potentially one of the most important applications of these new materials. To develop application as a technology requires a detailed understanding of the microscopic behavior of the catalyst. Here, we report the effect of leaching treatments on the surface microstructure, chemical composition, and valence band of the icosahedral (i-) Al-Cu-Fe quasicrystal in an attempt to prepare a model catalyst. The high symmetry fivefold surface of a single grain i-Al-Cu-Fe quasicrystal was leached with NaOH solution for varying times, and the resulting surface was characterized bymore » x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The leaching treatments preferentially remove Al producing a capping layer consisting of Fe and Cu oxides. The subsurface layer contains elemental Fe and Cu in addition to the oxides. The quasicrystalline bulk structure beneath remains unchanged. The subsurface gradually becomes Fe{sub 3}O{sub 4} rich with increasing leaching time. The surface after leaching exhibits micron sized dodecahedral cavities due to preferential leaching along the fivefold axis. Nanoparticles of the transition metals and their oxides are precipitated on the surface after leaching. The size of the nanoparticles is estimated by high resolution transmission microscopy to be 5-20 nm, which is in agreement with the AFM results. Selected area electron diffraction (SAED) confirms the crystalline nature of the nanoparticles. SAED further reveals the formation of an interface between the high atomic density lattice planes of nanoparticles and the quasicrystal. These results provide an important insight into the preparation of model catalysts of nanoparticles for steam reforming of methanol.« less

  14. Enhance the photoluminescence and radioluminescence of La2Zr2O7:Eu3+ core nanoparticles by coating with a thin Y2O3 shell

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Burger, Arnold; Groza, Michael; Mao, Yuanbing

    2017-06-01

    We report the generation of La2Zr2O7:5%Eu3+@Y2O3 (LZO5E@YO) core@shell crystalline inorganic-inorganic heterogeneous nanoparticles (NPs). The Y2O3 (YO) shell coating process based on a chemical sol-gel method led to the growth of a thin YO shell on the ordered pyrochlore La2Zr2O7:5%Eu3+ (LZO5E) core NPs. Photoluminescence (PL) analyses demonstrated a blue shift of 15 nm on charge transfer (CT) excitation band of the core@shell NPs from that of the core NPs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) along x-ray diffraction (XRD), Fourier-transform Infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) studies confirmed the formation of the thin YO layer over the LZO5E core NPs. The PL intensity of the LZO5E@YO core@shell NPs was enhanced by three fold compared to that of the LZO5E core NPs, and higher quantum yield (QY) was observed for the former compared to the original NPs by more than 70%. Higher radioluminescence (RL) emission was also observed for the core@shell NPs compared to the core NPs. Our ability of obtaining near-perfect core@shell heterostructure with enhanced luminescence performance opens the door for the development of efficient La2Zr2O7:5%Eu3+@Y2O3 NPs for both optical and x-ray scintillation applications.

  15. The production and photoelectron spectrum of thiazyl iodide. NSI

    NASA Astrophysics Data System (ADS)

    Allaf, A. W.; Matti, G. Y.; Suffolk, R. J.; Watts, J. D.

    1989-02-01

    The previously unknown molecule thiazyl iodide, NSI, has been prepared and studied by HeI photoelectron and low-resolution infrared spectroscopy. It has been produced by an on-line process using thiazyl chloride, NSCl, as precursor. The observed photoelectron spectrum has been rationalised using ab initio molecular-orbital calculations. The first ionisation energy is 10.06±0.05 eV, assigned to a largely non-bonding orbital with major components on nitrogen and iodine. Gas-phase infrared spectra yield a value for ν 1 of 1295 cm -1.

  16. Dissociating motivational direction and affective valence: specific emotions alter central motor processes.

    PubMed

    Coombes, Stephen A; Cauraugh, James H; Janelle, Christopher M

    2007-11-01

    We aimed to clarify the relation between affective valence and motivational direction by specifying how central and peripheral components of extension movements are altered according to specific unpleasant affective states. As predicted, premotor reaction time was quicker for extension movements initiated during exposure to attack than for extension movements initiated during exposure to all other valence categories (mutilation, erotic couples, opposite-sex nudes, neutral humans, household objects, blank). Exposure to erotic couples and mutilations yielded greater peak force than exposure to images of attack, neutral humans, and household objects. Finally, motor reaction time and peak electromyographic amplitude were not altered by valence. These findings indicate that unpleasant states do not unilaterally prime withdrawal movements, and that the quick execution of extension movements during exposure to threatening images is due to rapid premotor, rather than motor, reaction time. Collectively, our findings support the call for dissociating motivational direction and affective valence.

  17. The bidirectional congruency effect of brightness-valence metaphoric association in the Stroop-like and priming paradigms.

    PubMed

    Huang, Yanli; Tse, Chi-Shing; Xie, Jiushu

    2017-11-04

    The conceptual metaphor theory (Lakoff & Johnson, 1980, 1999) postulates a unidirectional metaphoric association between abstract and concrete concepts: sensorimotor experience activated by concrete concepts facilitates the processing of abstract concepts, but not the other way around. However, this unidirectional view has been challenged by studies that reported a bidirectional metaphoric association. In three experiments, we tested the directionality of the brightness-valence metaphoric association, using Stroop-like paradigm, priming paradigm, and Stroop-like paradigm with a go/no-go manipulation. Both mean and vincentile analyses of reaction time data were performed. We showed that the directionality of brightness-valence metaphoric congruency effect could be modulated by the activation level of the brightness/valence information. Both brightness-to-valence and valence-to-brightness metaphoric congruency effects occurred in the priming paradigm, which could be attributed to the presentation of prime that pre-activated the brightness or valence information. However, in the Stroop-like paradigm the metaphoric congruency effect was only observed in the brightness-to-valence direction, but not in the valence-to-brightness direction. When the go/no-go manipulation was used to boost the activation of word meaning in the Stroop-like paradigm, the valence-to-brightness metaphoric congruency effect was observed. Vincentile analyses further revealed that valence-to-brightness metaphoric congruency effect approached significance in the Stroop-like paradigm when participants' reaction times were slower (at around 490ms). The implications of the current findings on the conceptual metaphor theory and embodied cognition are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2015-01-01

    Published two-body bond-valence parameters for cation–oxygen bonds have been evaluated via the root mean-square deviation (RMSD) from the valence-sum rule for 128 cations, using 180 194 filtered bond lengths from 31 489 coordination polyhedra. Values of the RMSD range from 0.033–2.451 v.u. (1.1–40.9% per unit of charge) with a weighted mean of 0.174 v.u. (7.34% per unit of charge). The set of best published parameters has been determined for 128 ions and used as a benchmark for the determination of new bond-valence parameters in this paper. Two common methods for the derivation of bond-valence parameters have been evaluated: (1) fixing B and solving for R o; (2) the graphical method. On a subset of 90 ions observed in more than one coordination, fixing B at 0.37 Å leads to a mean weighted-RMSD of 0.139 v.u. (6.7% per unit of charge), while graphical derivation gives 0.161 v.u. (8.0% per unit of charge). The advantages and disadvantages of these (and other) methods of derivation have been considered, leading to the conclusion that current methods of derivation of bond-valence parameters are not satisfactory. A new method of derivation is introduced, the GRG (generalized reduced gradient) method, which leads to a mean weighted-RMSD of 0.128 v.u. (6.1% per unit of charge) over the same sample of 90 multiple-coordination ions. The evaluation of 19 two-parameter equations and 7 three-parameter equations to model the bond-valence–bond-length relation indicates that: (1) many equations can adequately describe the relation; (2) a plateau has been reached in the fit for two-parameter equations; (3) the equation of Brown & Altermatt (1985 ▸) is sufficiently good that use of any of the other equations tested is not warranted. Improved bond-valence parameters have been derived for 135 ions for the equation of Brown & Altermatt (1985 ▸) in terms of both the cation and anion bond-valence sums using the GRG method and our complete data set. PMID

  19. Modeling Photoelectron Spectra of CuO, Cu2O, and CuO2 Anions with Equation-of-Motion Coupled-Cluster Methods: An Adventure in Fock Space.

    PubMed

    Orms, Natalie; Krylov, Anna I

    2018-04-12

    The experimental photoelectron spectra of di- and triatomic copper oxide anions have been reported previously. We present an analysis of the experimental spectra of the CuO - , Cu 2 O - , and CuO 2 - anions using equation-of-motion coupled-cluster (EOM-CC) methods. The open-shell electronic structure of each molecule demands a unique combination of EOM-CC methods to achieve an accurate and balanced representation of the multiconfigurational anionic- and neutral-state manifolds. Analysis of the Dyson orbitals associated with photodetachment from CuO - reveals the strong non-Koopmans character of the CuO states. For the lowest detachment energy, a good agreement between theoretical and experimental values is obtained with CCSD(T) (coupled-cluster with single and double excitations and perturbative account of triple excitations). The (T) correction is particularly important for Cu 2 O - . Use of a relativistic pseudopotential and matching basis set improves the quality of results in most cases. EOM-DIP-CCSD analysis of the low-lying states of CuO 2 - reveals multiple singlet and triplet anionic states near the triplet ground state, adding an extra layer of complexity to the interpretation of the experimental CuO 2 - photoelectron spectrum.

  20. Assessment of Quantum Mechanical Methods for Copper and Iron Complexes by Photoelectron Spectroscopy.

    PubMed

    Niu, Shuqiang; Huang, Dao-Ling; Dau, Phuong D; Liu, Hong-Tao; Wang, Lai-Sheng; Ichiye, Toshiko

    2014-03-11

    Broken-symmetry density functional theory (BS-DFT) calculations are assessed for redox energetics [Cu(SCH 3 ) 2 ] 1-/0 , [Cu(NCS) 2 ] 1-/0 , [FeCl 4 ] 1-/0 , and [Fe(SCH 3 ) 4 ] 1-/0 against vertical detachment energies (VDE) from valence photoelectron spectroscopy (PES), as a prelude to studies of metalloprotein analogs. The M06 and B3LYP hybrid functionals give VDE that agree with the PES VDE for the Fe complexes, but both underestimate it by ∼400 meV for the Cu complexes; other hybrid functionals give VDEs that are an increasing function of the amount of Hartree-Fock (HF) exchange and so cannot show good agreement for both Cu and Fe complexes. Range-separated (RS) functionals appear to give a better distribution of HF exchange since the negative HOMO energy is approximately equal to the VDEs but also give VDEs dependent on the amount of HF exchange, sometimes leading to ground states with incorrect electron configurations; the LRC- ω PBEh functional reduced to 10% HF exchange at short-range give somewhat better values for both, although still ∼150 meV too low for the Cu complexes and ∼50 meV too high for the Fe complexes. Overall, the results indicate that while HF exchange compensates for self-interaction error in DFT calculations of both Cu and Fe complexes, too much may lead to more sensitivity to nondynamical correlation in the spin-polarized Fe complexes.

  1. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core-shell nanospheres for catalytic reduction of nitrobenzene to aniline

    NASA Astrophysics Data System (ADS)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu

    2015-12-01

    Graphitized carbon-encapsulated palladium (Pd) core-shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core-shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd2+. The catalytic properties of the Pd and Pd@C core-shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH4 in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their unique structure and excellent catalytic performance render Pd@C core-shell nanostructures highly promising candidates for catalysis applications.

  2. Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water.

    PubMed

    Yan, Weile; Herzing, Andrew A; Kiely, Christopher J; Zhang, Wei-Xian

    2010-11-25

    Aspects of the core-shell model of nanoscale zero-valent iron (nZVI) and their environmental implications were examined in this work. The structure and elemental distribution of nZVI were characterized by X-ray energy-dispersive spectroscopy (XEDS) with nanometer-scale spatial resolution in an aberration-corrected scanning transmission electron microscope (STEM). The analysis provides unequivocal evidence of a layered structure of nZVI consisting of a metallic iron core encapsulated by a thin amorphous oxide shell. Three aqueous environmental contaminants, namely Hg(II), Zn(II) and hydrogen sulfide, were studied to probe the reactive properties and the surface chemistry of nZVI. High-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis of the reacted particles indicated that Hg(II) was sequestrated via chemical reduction to elemental mercury. On the other hand, Zn(II) removal was achieved via sorption to the iron oxide shell followed by zinc hydroxide precipitation. Hydrogen sulfide was immobilized on the nZVI surface as disulfide (S(2)(2-)) and monosulfide (S(2-)) species. Their relative abundance in the final products suggests that the retention of hydrogen sulfide occurs via reactions with the oxide shell to form iron sulfide (FeS) and subsequent conversion to iron disulfide (FeS(2)). The results presented herein highlight the multiple reactive pathways permissible with nZVI owing to its two functional constituents. The core-shell structure imparts nZVI with manifold functional properties previously unexamined and grants the material with potentially new applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Sutton, S. R.; Papike, J. J.; Shearer, C. K.; Jones, J. H.; Newville, M.

    2004-01-01

    We have been developing an oxygen barometer based on the valence state of V (V(2+), V(3+), V(4+), and V(5+)) in solar system basaltic glasses. The V valence is determined by synchrotron micro x-ray absorption near edge structure (XANES), which uses x-ray absorption associated with core-electronic transitions (absorption edges) to reveal a pre-edge peak whose intensity is directly proportional to the valence state of an element. XANES has advantages over other techniques that determine elemental valence because measurements can be made non-destructively in air and in situ on conventional thin sections at a micrometer spatial resolution with elemental sensitivities of approx. 100 ppm. Recent results show that fO2 values derived from the V valence technique are consistent with fO2 estimates determined by other techniques for materials that crystallized above the IW buffer. The fO2's determined by V valence (IW-3.8 to IW-2) for the lunar pyroclastic glasses, however, are on the order of 1 to 2.8 log units below previous estimates. Furthermore, the calculated fO2's decrease with increasing TiO2 contents from the A17 VLT to the A17 Orange glasses. In order to investigate these results further, we have synthesized lunar green and orange glasses and examined them by XANES.

  4. Representational similarity of social and valence information in the medial pFC.

    PubMed

    Chavez, Robert S; Heatherton, Todd F

    2015-01-01

    The human brain is remarkably adept at integrating complex information to form unified psychological representations of agents, objects, and events in the environment. Two domains in which this ability is particularly salient are the processing of social and valence information and are supported by common cortical areas in the medial pFC (MPFC). Because social information is often embedded within valenced emotional contexts, it is possible that activation patterns within the MPFC may represent both of these types of cognitive processes when presented simultaneously. The current study tested this possibility by employing a large-scale automated meta-analysis tool, together with multivoxel pattern analysis to investigate the representational similarity of social and valence information in the MPFC during fMRI. Using a representational similarity analysis, we found a high degree of representational similarity both within social dimensions and within valence dimensions, but not across them (e.g., positive social information was highly dissimilar to negative nonsocial information), in a ventral portion of the MPFC. These results were significantly correlated with a behaviorally measured similarity structure of the same stimuli, suggesting that a psychologically meaningful representation of social and valence information is reflected by multivoxel activation patterns in the ventral MPFC.

  5. Controlling Valence of DNA-Coated Emulsion Droplets with Multiple Flavors of DNA

    NASA Astrophysics Data System (ADS)

    McMullen, Angus; Bargteil, Dylan; Pine, David; Brujic, Jasna

    We explore the control of valence of DNA-coated emulsion droplets as a first step in developing DNA-directed self-assembly of emulsions. Emulsion droplets differ from solid colloids in that they are deformable and the DNA strands attached to them are free to move along the emulsion surface. The balance of binding energy and droplet deformation provides control over a droplet's valence via its ligand density. After binding, some DNA often remains unbound due to the entropic cost of DNA recruitment. In practice, therefore, the assembly kinetics yield a distribution in valence. Our goal is to control valence by altering the binding kinetics with multiple flavors of DNA. We coat one set of droplets with two DNA types, A and B, and two other sets with one complementary strand, A' or B'. When an AB droplet binds to an A' droplet, the adhesion patch depletes A strands, leaving the rest of the droplet coated with more B than A strands. This increases the chance that the next droplet to bind will be a B' rather than an A'. Controlling valence will allow us to build a wide array of soft structures, such as emulsion polymers or networks with a determined coordination number. This work was supported by the NSF MRSEC Program (DMR-0820341).

  6. Facile synthesis and photocatalytic activity of ZnO/zinc titanate core-shell nanorod arrays

    NASA Astrophysics Data System (ADS)

    He, Ding-Chao; Fu, Qiu-Ming; Ma, Zhi-Bin; Zhao, Hong-Yang; Tu, Ya-Fang; Tian, Yu; Zhou, Di; Zheng, Guang; Lu, Hong-Bing

    2018-02-01

    ZnO/zinc titanate core-shell nanorod arrays (CSNRs) were successfully prepared via a simple synthesis process by combining hydrothermal synthesis and liquid phase deposition (LPD). The surface morphologies, crystalline characteristics, optical properties and surface electronic states of the ZnO/zinc titanate CSNRs were characterized by scanning electron microscope, transmission electron microscope, x-ray diffractometer, x-ray photoelectron spectroscopy, PL and ultraviolet (UV)-visible absorption spectra. By controlling the reaction time of LPD, the shell thickness could vary with the reaction time. Furthermore, the impacts of the reaction time and post-annealing temperature on the crystalline structure and chemical composition of the CSNRs were also investigated. The studies of photocatalytic activity under UV light irradiation revealed that the ZnO/zinc titanate CSNRs annealed at 700 °C with 30 min deposition exhibited the best photocatalytic activity and good stability for degradation of methylene blue. It had been found that the effective separation of photogenerated electron-hole pairs in the CSNRs led to the enhanced photocatalytic activity. Moreover, the ZnO/zinc titanate CSNRs grown on quartz glass substrate could be easily recycled for reuse with almost unchanged photocatalytic activity.

  7. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin

    2018-03-01

    Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.

  8. Photoelectron circular dichroism in different ionization regimes

    NASA Astrophysics Data System (ADS)

    Wollenhaupt, Matthias

    2016-12-01

    Photoelectron circular dichroism (PECD) describes an asymmetry in the photoelectron angular distribution (PAD) from photoionization of randomly oriented enantiomers with circularly polarized light. Beaulieu et al present a comprehensive set of measured PADs from multiphoton ionization of limonene and fenchone in different ionization regimes (multiphoton and tunneling) and analyze the resulting PECD (Beaulieu et al 2016 New J. Phys. 18 102002). From their observations the authors conclude that the PECD is universal in the sense that the molecular chirality is encoded in the PAD independent of the ionization regime. The analysis is supplemented by a classical model based on electron scattering in a chiral potential. The paper presents beautiful data and is an important step towards a more complete physical picture of PECD. The results and their interpretation stimulate the ongoing vivid debate on the role of resonances in multiphoton PECD.

  9. Recent trends in spin-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  10. Changing the conversation: the influence of emotions on conversational valence and alcohol consumption.

    PubMed

    Hendriks, Hanneke; van den Putte, Bas; de Bruijn, Gert-Jan

    2014-10-01

    Health campaign effects may be improved by taking interpersonal communication processes into account. The current study, which employed an experimental, pretest-posttest, randomized exposure design (N = 208), investigated whether the emotions induced by anti-alcohol messages influence conversational valence about alcohol and subsequent persuasion outcomes. The study produced three main findings. First, an increase in the emotion fear induced a negative conversational valence about alcohol. Second, fear was most strongly induced by a disgusting message, whereas a humorous appeal induced the least fear. Third, a negative conversational valence elicited healthier binge drinking attitudes, subjective norms, perceived behavioral control, intentions, and behaviors. Thus, health campaign planners and health researchers should pay special attention to the emotional characteristics of health messages and should focus on inducing a healthy conversational valence.

  11. Mixed valency and site-preference chemistry for cerium and its compounds: A predictive density-functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Aftab; Johnson, Duane D.

    Cerium and its technologically relevant compounds are examples of anomalous mixed valency, originating from two competing oxidation states—itinerant Ce4+ and localized Ce3+. Under applied stress, anomalous transitions are observed but not well understood. Here we treat mixed valency as an “alloy” problem involving two valences with competing and numerous site-occupancy configurations. We use density-functional theory with Hubbard U (i.e., DFT+U) to evaluate the effective valence and predict properties, including controlling the valence by pseudoternary alloying. For Ce and its compounds, such as (Ce,La)2(Fe,Co)14B permanent magnets, we find a stable mixed-valent α state near the spectroscopic value of νs=3.53. Ce valencymore » in compounds depends on its steric volume and local chemistry. For La doping, Ce valency shifts towards γ-like Ce3+, as expected from steric volume; for Co doping, valency depends on local Ce-site chemistry and steric volume. Our approach captures the key origins of anomalous valency and site-preference chemistry in complex compounds.« less

  12. Bidirectional switch of the valence associated with a hippocampal contextual memory engram

    PubMed Central

    Redondo, Roger L; Kim, Joshua; Arons, Autumn L; Ramirez, Steve; Liu, Xu; Tonegawa, Susumu

    2014-01-01

    The valence of memories is malleable because of their intrinsic reconstructive property1. This property of memory has been used clinically to treat maladaptive behaviours2. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here, we investigated these mechanisms by applying the recently developed memory engram cell-labelling and -manipulation technique 3,4. We labelled, with Channelrhodopsin-2 (ChR2), a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that while the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new US of an opposite valence. Our present work provides new insight into the functional neural circuit underlying the

  13. Reactivity of seventeen- and nineteen-valence electron complexes in organometallic chemistry

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.; Tyler, David R.

    1986-01-01

    A guideline to the reactivity of 17- and 19-valence electron species in organometallic chemistry is proposed which the authors believe will supersede all others. The thesis holds that the reactions of 17-electron metal radicals are associatively activated with reactions proceeding through a 19-valence electron species. The disparate reaction chemistry of the 17-electron metal radicals are unified in terms of this associative reaction pathway, and the intermediacy of 19-valence electron complexes in producing the observed products is discussed. It is suggested that related associatively activated pathways need to be considered in some reactions that are thought to occur by more conventional routes involving 16- and 18-electron intermediates. The basic reaction chemistry and electronic structures of these species are briefly discussed.

  14. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    NASA Astrophysics Data System (ADS)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  15. On the valence fluctuation in the early actinide metals

    DOE PAGES

    Soderlind, P.; Landa, A.; Tobin, J. G.; ...

    2015-12-15

    In this study, recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the α phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the δ phase. The model predicts uranium and neptunium to be dominated by the f 3 and f 4 configurations, respectively, with only minor contributions from other configurations. For plutonium (both αmore » and δ phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The δ phase has a greater configuration fraction of f 6 compared to that of the α phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for α-uranium.« less

  16. Valency configuration of transition metal impurities in ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Leon; Schulthess, Thomas C; Svane, Axel

    2006-01-01

    We use the self-interaction corrected local spin-density approximation to investigate the ground state valency configuration of transition metal (TM=Mn, Co) impurities in n- and p-type ZnO. We find that in pure Zn{sub 1-x}TM{sub x}O, the localized TM{sup 2+} configuration is energetically favored over the itinerant d-electron configuration of the local spin density (LSD) picture. Our calculations indicate furthermore that the (+/0) donor level is situated in the ZnO gap. Consequently, for n-type conditions, with the Fermi energy {epsilon}F close to the conduction band minimum, TM remains in the 2+ charge state, while for p-type conditions, with {epsilon}F close to themore » valence band maximum, the 3+ charge state is energetically preferred. In the latter scenario, modeled here by co-doping with N, the additional delocalized d-electron charge transfers into the entire states at the top of the valence band, and hole carriers will only exist, if the N concentration exceeds the TM impurity concentration.« less

  17. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection.

    PubMed

    Lehmann, C Stefan; Ram, N Bhargava; Powis, Ivan; Janssen, Maurice H M

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  18. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M., E-mail: m.h.m.janssen@vu.nl

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flightmore » mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  19. AB INITIO calculation of the electromigration wind valence of interstitial hydrogen in f.c.c metals

    NASA Astrophysics Data System (ADS)

    van Ek, J.; Lodder, A.

    1990-02-01

    Calculated electromigration wind valences, obtained within a KKR-Green function description, are presented. It is shown that the electromigration wind valence of hydrogen along different migration paths in Cu, Ag and Pd can be calculated including charge transfer effects in the impurity cluster. A nice procedure for retrieving the scalar character of the wind valence in an f.c.c metal introduces an explanation for the isotope effect in the wind valence.

  20. X-ray photoelectron spectrometry and binding energies of Be 1s and O 1s core levels in clinobarylite, BaBe{sub 2}Si{sub 2}O{sub 7}, from Khibiny massif, Kola peninsula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atuchin, V.V.; Kesler, V.G.; Sapozhnikov, V.K.

    2008-09-15

    The electronic structure of BaBe{sub 2}Si{sub 2}O{sub 7}, clinobarylite, has been investigated by means of X-ray photoelectron spectroscopy (XPS). The valence band of the crystal is mainly formed by Ba 5p, Ba 3s and O 2s states. At higher binding energies the emission lines related to the Si 2p, Be 1s, Si 2s, O 1s and numerous Ba-related states were analyzed in the photoemission spectrum. The Si KLL Auger line has been measured under excitation by the bremsstrahlung X-rays from the Al anode. Chemical bonding effects for Be 1s core level have been considered by comparison with electronic parameters measuredmore » for other beryllium containing oxides.« less

  1. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity

    PubMed Central

    Jackson, Daniel J.; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M.; Fleck, Claudia

    2017-01-01

    Abstract Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent “GS” domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. PMID:28961798

  2. A facilitative effect of negative affective valence on working memory.

    PubMed

    Gotoh, Fumiko; Kikuchi, Tadashi; Olofsson, Ulrich

    2010-06-01

    Previous studies have shown that negatively valenced information impaired working memory performance due to an attention-capturing effect. The present study examined whether negative valence could also facilitate working memory. Affective words (negative, neutral, positive) were used as retro-cues in a working memory task that required participants to remember colors at different spatial locations on a computer screen. Following the cue, a target detection task was used to either shift attention to a different location or keep attention at the same location as the retro-cue. Finally, participants were required to discriminate the cued color from a set of distractors. It was found that negative cues yielded shorter response times (RTs) in the attention-shift condition and longer RTs in the attention-stay condition, compared with neutral and positive cues. The results suggest that negative affective valence may enhance working memory performance (RTs), provided that attention can be disengaged.

  3. Effects of valence and arousal on written word recognition: time course and ERP correlates.

    PubMed

    Citron, Francesca M M; Weekes, Brendan S; Ferstl, Evelyn C

    2013-01-15

    Models of affect assume a two-dimensional framework, composed of emotional valence and arousal. Although neuroimaging evidence supports a neuro-functional distinction of their effects during single word processing, electrophysiological studies have not yet compared the effects of arousal within the same category of valence (positive and negative). Here we investigate effects of arousal and valence on written lexical decision. Amplitude differences between emotion and neutral words were seen in the early posterior negativity (EPN), the late positive complex and in a sustained slow positivity. In addition, trends towards interactive effects of valence and arousal were observed in the EPN, showing larger amplitude for positive, high-arousal and negative, low-arousal words. The results provide initial evidence for interactions between arousal and valence during processing of positive words and highlight the importance of both variables in studies of emotional stimulus processing. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Modeling of LMM-MVV Auger-Auger Coincidence Spectra From Solids

    NASA Astrophysics Data System (ADS)

    Sundaramoorthy, R.; Weiss, A. H.; Hulbert, S. L.; Bartynski, R. A.

    2006-03-01

    Atoms that are highly excited due to the presence of a hole in an inner shell often relax via an Auger transition. This auto-ionizing process results in a final state with two or more holes from an Auger cascade. We present results of the direct measurements of the second and third Auger decays in this sequence. We have measured the Mn MVV Auger spectra from a single-crystal sample of MnO in time coincidence with Auger electrons emitted from prior Mn LMM Auger decays and find these to be much wider than the MVV spectrum measured in time coincidence with M core photoelectron emission. We present a model which attributes the increased energy width of the MVV transitions that follow LMM decays to the rearrangement of ``not so innocent'' bystander hole(s) in the valence band. The energetics of the Auger cascade process are modeled mathematically in terms of correlation integral(s) and convolution integral(s) over the valence band density of states. Comparisons with recent Auger-Auger coincidence studies of Ag and Pd will be made. Acknowledgements: Welch Foundation, NSF DMR98-12628, NSF DMR98-01681, and DOE DE-AC02-98CH10886.

  5. An analytical investigation: Effect of solar wind on lunar photoelectron sheath

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Misra, Shikha

    2018-02-01

    The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.

  6. Persistence of the Z =28 Shell Gap Around 78Ni: First Spectroscopy of 79Cu

    NASA Astrophysics Data System (ADS)

    Olivier, L.; Franchoo, S.; Niikura, M.; Vajta, Z.; Sohler, D.; Doornenbal, P.; Obertelli, A.; Tsunoda, Y.; Otsuka, T.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Gillibert, A.; Isobe, T.; Lapoux, V.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Otsu, H.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Browne, F.; Chung, L. X.; Dombradi, Z.; Flavigny, F.; Giacoppo, F.; Gottardo, A.; Hadyńska-Klek, K.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Louchart, C.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Nishimura, S.; Ogata, K.; Ota, S.; Patel, Z.; Sahin, E.; Shand, C.; Söderström, P.-A.; Stefan, I.; Steppenbeck, D.; Sumikama, T.; Suzuki, D.; Werner, V.; Wu, J.; Xu, Z.

    2017-11-01

    In-beam γ -ray spectroscopy of 79Cu is performed at the Radioactive Isotope Beam Factory of RIKEN. The nucleus of interest is produced through proton knockout from a 80Zn beam at 270 MeV /nucleon . The level scheme up to 4.6 MeV is established for the first time and the results are compared to Monte Carlo shell-model calculations. We do not observe significant knockout feeding to the excited states below 2.2 MeV, which indicates that the Z =28 gap at N =50 remains large. The results show that the 79Cu nucleus can be described in terms of a valence proton outside a 78Ni core, implying the magic character of the latter.

  7. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    PubMed

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  8. Band alignment of ZnO/multilayer MoS{sub 2} interface determined by x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: liuwj@szu.edu.cn; He, Jiazhu; Chen, Le

    2016-08-15

    The energy band alignment between ZnO and multilayer (ML)-MoS{sub 2} was characterized using high-resolution x-ray photoelectron spectroscopy. The ZnO film was deposited using an atomic layer deposition tool, and ML-MoS{sub 2} was grown by chemical vapor deposition. A valence band offset (VBO) of 3.32 eV and a conduction band offset (CBO) of 1.12 eV were obtained for the ZnO/ML-MoS{sub 2} interface without any treatment. With CHF{sub 3} plasma treatment, a VBO and a CBO across the ZnO/ML-MoS{sub 2} interface were found to be 3.54 eV and 1.34 eV, respectively. With the CHF{sub 3} plasma treatment, the band alignment of the ZnO/ML-MoS{sub 2} interface hasmore » been changed from type II or staggered band alignment to type III or misaligned one, which favors the electron-hole pair separation. The band alignment difference is believed to be dominated by the down-shift in the core level of Zn 2p or the interface dipoles, which is caused by the interfacial layer rich in F.« less

  9. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.

    PubMed

    Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia

    2017-11-01

    Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Photoelectron Spectroscopy in Advanced Placement Chemistry

    ERIC Educational Resources Information Center

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  11. L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells.

    PubMed

    Zhang, Hongyan; Sun, Pan; Liu, Chang; Gao, Huanyu; Xu, Linru; Fang, Jin; Wang, Meng; Liu, Jinling; Xu, Shukun

    2011-01-01

    Functionalized CdTe-CdS core-shell quantum dots (QDs) were synthesized in aqueous solution via water-bathing combined hydrothermal method using L-cysteine (L-Cys) as a stabilizer. This method possesses both the advantages of water-bathing and hydrothermal methods for preparing high-quality QDs with markedly reduced synthesis time, and better stability than a lone hydrothermal method. The QDs were characterized by transmission electronic microscopy and powder X-ray diffraction and X-ray photoelectron spectroscopy. The CdTe-CdS QDs with core-shell structure showed both enhanced fluorescence and better photo stability than nude CdTe QDs. After conjugating with antibody rabbit anti-CEACAM8 (CD67), the as-prepared l-Cys capped CdTe-CdS QDs were successfully used as fluorescent probes for the direct immuno-labeling and imaging of HeLa cells. It was indicated that this kind of QD would have application potential in bio-labeling and cell imaging. Copyright © 2009 John Wiley & Sons, Ltd.

  12. Pressure and magnetic field effects on the valence transition of EuRh2Si2

    NASA Astrophysics Data System (ADS)

    Mitsuda, Akihiro; Kishaba, Eigo; Fujimoto, Takumi; Oyama, Kohei; Wada, Hirofumi; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki

    2018-05-01

    We have measured the X-ray absorption spectra (XAS), electrical resistivity and magnetic susceptibility of EuRh2Si2, which undergoes a valence transition under high pressures. A sharp decrease in the Eu valence determined from the XAS was observed at around 70 K in the temperature dependence at P = 1.2-1.9 GPa. In the temperature dependence of electrical resistivity and magnetic susceptibility, we observed jumps associated with the temperature-induced valence transition under high pressures. The magnetoresistance detected a field-induced valence transition. The results are discussed from the thermodynamic point of view.

  13. A photoelectron spectroscopic investigation of vinyl fluoride (C2H3F): the HeI, threshold and CIS photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Locht, R.; Leyh, B.; Dehareng, D.; Hottmann, K.; Baumgärtel, H.

    2010-01-01

    The threshold photoelectron spectrum (TPES) and the constant ion state (CIS) spectra of the individual ionic states of C2H3F have been recorded using synchrotron radiation. For comparison a well-resolved HeI photoelectron spectrum (HeI-PES) has also been measured and analysed in detail. The TPES has been measured between 9.5 eV and 35 eV photon energy. Numerous vibrational structures, reported for the first time, observed in the ground state and the six excited states of the cation are analysed. Quantum chemical calculations have been performed and provide strong support to the assignments. State-selected CIS spectra highlighted the major importance of autoionization for the production of almost all ionized states of C2H3F observed in this work.

  14. Photoelectron diffraction and holography: Some new directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadley, C.S.

    1993-08-01

    Photoelectron diffraction has by now become a versatile and powerful technique for studying surface structures, with special capabilities for resolving chemical and magnetic states of atoms and deriving direct structural information from both forward scattering along bond directions and back-scattering path length differences. Further fitting experiment to theory can lead to structural accuracies in the {plus_minus}0.03 ){Angstrom} range. Holographic inversions of such diffraction data also show considerable promise for deriving local three-dimensional structures around a given emitter with accuracies of {plus_minus}0.2--0.3 {Angstrom}. Resolving the photoelectron spin in some way and using circularly polarized radiation for excitation provide added dimensions formore » the study of magnetic systems and chiral experimental geometries. Synchrotron radiation with the highest brightness and energy resolution, as well as variable polarization, is crucial to the full exploitation of these techniques.« less

  15. Oxidation and deprotonation of synthetic Fe{sup II}-Fe{sup III} (oxy)hydroxycarbonate Green Rust: An X-ray photoelectron study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullet, M.; Guillemin, Y.; Ruby, C.

    X-ray photoelectron spectroscopy (XPS) was used to investigate chemical bonding and distribution of iron and oxygen species at the surface of Green Rusts (GRs). GRs with variable composition, i.e. Fe{sup II}{sub 6(1-x)}Fe{sup III}{sub 6x}O{sub 12}H{sub 2(7-3x)} CO{sub 3}.3H{sub 2}O where the Fe{sup III} molar fraction of the positively charged hydroxide sheets, x=[Fe(III)]/[Fe(total)] belongs to [1/3, 1], were synthesised under an inert atmosphere. The broadened Fe(2p{sub 3/2}) spectra were fitted using Gupta and Sen multiplets peaks and additional satellite and surface features. The [Fe(III)]/[Fe(total)] surface atomic ratios closely agree with the x ratios expected from the bulk composition, which gives amore » high degree of confidence on the validity of the proposed fitting procedure. The valence band spectra are also reported and show dependencies on iron speciation. The O(1s) spectra revealed the presence of O{sup 2-}, OH{sup -} species and adsorbed water. The hydroxyl component decreases with increasing x values, i.e. with the amount of ferric iron, while the oxide component increases. This study provides direct spectroscopic evidence of the deprotonation of hydroxyl groups that occurs simultaneously with the oxidation of ferrous iron within the GR structure. - Graphical abstract: X-ray photoelectron spectroscopy (XPS) is used to investigate chemical bonding and distribution of iron and oxygen species at the surface of Green Rust (GR) compounds. First spectroscopic evidence of the deprotonation of hydroxyls groups occurring simultaneously to the oxidation of Fe(II) into Fe(III) species is provided.« less

  16. Photoelectron spectra of carbonyls. Propellenes and propellanones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, D.; Bloomfield, J.J.; Newkome, G.R.

    1976-09-23

    The HeI photoelectron spectra (UPS) of a number of unsaturated (4.4.2)propellanes and (4.4.2)propellane-dione derivatives are presented. The interpretation of the UPS data is based on through-space and through-bond interaction models and on CNDO/s computations. An analysis of the photoelectron spectra of (4.4.2)propella-3,8-diene-11,12-dione (1), (4.4.2)propell-3-ene-11,12-dione (2), (4.4.2)propellane-11,12-dione (3), (4.4.2)propella-3,8-dien-11-one (4), and (4.4.2) propella-3,8-diene (5) involves the assignment of n/sub +/, n/sub -/, ..pi../sub +/, ..pi../sub -/, and sigma/sub square/ (i.e., cyclobutane sigma) ionization events. The analysis of the data for 5, (4.4.2)propella-3,8,11-triene (6), (4.4.2)propella-3,11-diene (7), and (4.4.2)propell-11-ene (8) leads to the conclusion that the photoelectron spectrum of 6 should be reassigned.more » The /sup 1/GAMMA/sub n..pi..*/ reverse arrow /sup 1/GAMMA/sub 1/ absorption spectra of 1,2, and 3 have been investigated as a function of temperature. The low energy of this transition in 1 is attributed to a high degree of CO/CO coplanarity, the high energy of this transition in 3 is attributed to CO/CO noncoplanarity, and the isomerism evident in 2 is attributed to multiple minima of the potential energy along the CO/CO dihedral angle coordinate of the ground state.« less

  17. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patanen, M.; Benkoula, S.; Nicolas, C.

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  18. Beyond Valence and Magnitude: a Flexible Evaluative Coding System in the Brain

    PubMed Central

    Gu, Ruolei; Lei, Zhihui; Broster, Lucas; Wu, Tingting; Jiang, Yang; Luo, Yue-jia

    2013-01-01

    Outcome evaluation is a cognitive process that plays an important role in our daily lives. In most paradigms utilized in the field of experimental psychology, outcome valence and outcome magnitude are the two major features investigated. The classical “independent coding model” suggest that outcome valence and outcome magnitude are evaluated by separate neural mechanisms that may be mapped onto discrete event-related potential (ERP) components: feedback-related negativity (FRN) and the P3, respectively. To examine this model, we presented outcome valence and magnitude sequentially rather than simultaneously. The results reveal that when only outcome valence or magnitude is known, both the FRN and the P3 encode that outcome feature; when both aspects of outcome are known, the cognitive functions of the two components dissociate: the FRN responds to the information available in the current context, while the P3 pattern depends on outcome presentation sequence. The current study indicates that the human evaluative system, indexed in part by the FRN and the P3, is more flexible than previous theories suggested. PMID:22019775

  19. A formula for calculating theoretical photoelectron fluxes resulting from the He/+/ 304 A solar spectral line

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Torr, D. G.

    1981-01-01

    A simplified method for the evaluation of theoretical photoelectron fluxes in the upper atmosphere resulting from the solar radiation at 304 A is presented. The calculation is based on considerations of primary and cascade (secondary) photoelectron production in the two-stream model, where photoelectron transport is described by two electron streams, one moving up and one moving down, and of loss rates due to collisions with neutral gases and thermal electrons. The calculation is illustrated for the case of photoelectrons at an energy of 24.5 eV, and it is noted that the 24.5-eV photoelectron flux may be used to monitor variations in the solar 304 A flux. Theoretical calculations based on various ionization and excitation cross sections of Banks et al. (1974) are shown to be in generally good agreement with AE-E measurements taken between 200 and 235 km, however the use of more recent, larger cross sections leads to photoelectron values a factor of two smaller than observations but in agreement with previous calculations. It is concluded that a final resolution of the photoelectron problem may depend on a reevaluation of the inelastic electron collision cross sections.

  20. Effective surface passivation of multi-shelled InP quantum dots through a simple complexing with titanium species

    NASA Astrophysics Data System (ADS)

    Jo, Jung-Ho; Kim, Min-Seok; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2018-01-01

    Fluorescent efficiency of various visible quantum dots (QDs) has been incessantly improved to meet industrially high standard mainly through the advance in core/shell heterostructural design, however, their stability against degradable environments appears still lacking. The most viable strategy to cope with this issue was to exploit chemically inert oxide phases to passivate QD surface in the form of either individual overcoating or matrix embedding. Herein, we report a simple but effective means to passivate QD surface by complexing its organic ligands with a metal alkoxide of titanium isopropoxide (Ti(i-PrO)4). For this, highly efficient red-emitting InP QDs with a multi-shell structure of ZnSeS intermediate plus ZnS outer shell are first synthesized and then the surface of resulting InP/ZnSeS/ZnS QDs is in-situ decorated with Ti(i-PrO)4. The presence of Tisbnd O species from Ti(i-PrO)4 on QD surface is verified by x-ray photoelectron and Fourier transform infrared spectroscopic analyses. Two comparative dispersions of pristine versus Ti(i-PrO)4-complexed QDs are exposed for certain periods of time to UV photon and heat and their temporal changes in photoluminescence are monitored, resulting in a huge improvement in QD stability from the latter ones through Ti(i-PrO)4-mediated better surface passivation.

  1. Adolescents' responses to the gender valence of cigarette advertising imagery: the role of affect and the self-concept.

    PubMed

    Shadel, William G; Niaura, Raymond; Abrams, David B

    2004-12-01

    The studies presented in this manuscript evaluated the role that affect and the self-concept play in adolescent never smokers' reactions to the gender valence of cigarette advertising imagery. Study 1 (n=29; 59% female) revealed that adolescent females have more positive affective reactions to female-valenced cigarette advertising imagery compared to male-valenced cigarette advertising imagery. Study 2 (n=101; 56% female) revealed that adolescent females viewed female-valenced cigarette advertising imagery as more relevant to their self-concepts compared to male-valenced cigarette advertising imagery. Across both studies, male adolescents did not respond differently as a function of the gender valence of cigarette advertising imagery. Thus, female-valenced cigarette advertising imagery may have specific effects on never smoking female adolescents by enhancing positive affect and suggesting that women who smoke hold the same characteristics as do the young women themselves.

  2. Improving photoelectron counting and particle identification in scintillation detectors with Bayesian techniques

    NASA Astrophysics Data System (ADS)

    Akashi-Ronquest, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bodmer, M.; Boulay, M. G.; Broerman, B.; Buck, B.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chen, Y.; Cleveland, B.; Coakley, K.; Dering, K.; Duncan, F. A.; Formaggio, J. A.; Gagnon, R.; Gastler, D.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grace, E.; Guerrero, N.; Guiseppe, V.; Hallin, A. L.; Harvey, P.; Hearns, C.; Henning, R.; Hime, A.; Hofgartner, J.; Jaditz, S.; Jillings, C. J.; Kachulis, C.; Kearns, E.; Kelsey, J.; Klein, J. R.; Kuźniak, M.; LaTorre, A.; Lawson, I.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Linden, S.; McFarlane, K.; McKinsey, D. N.; MacMullin, S.; Mastbaum, A.; Mathew, R.; McDonald, A. B.; Mei, D.-M.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J. A.; Noble, T.; O'Dwyer, E.; Olsen, K.; Orebi Gann, G. D.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Perumpilly, G.; Pollmann, T.; Rau, P.; Retière, F.; Rielage, K.; Schnee, R.; Seibert, S.; Skensved, P.; Sonley, T.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Wang, B.; Wang, J.; Ward, M.; Zhang, C.

    2015-05-01

    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.

  3. Valence and arousal of emotional stimuli impact cognitive-motor performance in an oddball task.

    PubMed

    Lu, Yingzhi; Jaquess, Kyle J; Hatfield, Bradley D; Zhou, Chenglin; Li, Hong

    2017-04-01

    It is widely recognized that emotions impact an individual's ability to perform in a given task. However, little is known about how emotion impacts the various aspects of cognitive -motor performance. We recorded event-related potentials (ERPs) and chronometric responses from twenty-six participants while they performed a cognitive-motor oddball task in regard to four categories of emotional stimuli (high-arousing positive-valence, low-arousing positive-valence, high-arousing negative-valence, and low-arousing negative-valence) as "deviant" stimuli. Six chronometric responses (reaction time, press time, return time, choice time, movement time, and total time) and three ERP components (P2, N2 and late positive potential) were measured. Results indicated that reaction time was significantly affected by the presentation of emotional stimuli. Also observed was a negative relationship between N2 amplitude and elements of performance featuring reaction time in the low-arousing positive-valence condition. This study provides further evidence that emotional stimuli influence cognitive-motor performance in a specific manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Acetabular shell deformation as a function of shell stiffness and bone strength.

    PubMed

    Dold, Philipp; Pandorf, Thomas; Flohr, Markus; Preuss, Roman; Bone, Martin C; Joyce, Tom J; Holland, James; Deehan, David

    2016-04-01

    Press-fit acetabular shells used for hip replacement rely upon an interference fit with the bone to provide initial stability. This process may result in deformation of the shell. This study aimed to model shell deformation as a process of shell stiffness and bone strength. A cohort of 32 shells with two different wall thicknesses (3 and 4 mm) and 10 different shell sizes (44- to 62-mm outer diameter) were implanted into eight cadavers. Shell deformation was then measured in the cadavers using a previously validated ATOS Triple Scan III optical system. The shell-bone interface was then considered as a spring system according to Hooke's law and from this the force exerted on the shell by the bone was calculated using a combined stiffness consisting of the measured shell stiffness and a calculated bone stiffness. The median radial stiffness for the 3-mm wall thickness was 4192 N/mm (range, 2920-6257 N/mm), while for the 4-mm wall thickness the median was 9633 N/mm (range, 6875-14,341 N/mm). The median deformation was 48 µm (range, 3-187 µm), while the median force was 256 N (range, 26-916 N). No statistically significant correlation was found between shell stiffness and deformation. Deformation was also found to be not fully symmetric (centres 180° apart), with a median angle discrepancy of 11.5° between the two maximum positive points of deformation. Further work is still required to understand how the bone influences acetabular shell deformation. © IMechE 2016.

  5. Age effects in emotional prospective memory: cue valence differentially affects the prospective and retrospective component.

    PubMed

    Schnitzspahn, Katharina M; Horn, Sebastian S; Bayen, Ute J; Kliegel, Matthias

    2012-06-01

    While first studies suggested that emotional task material may enhance prospective memory performance in young and older adults, the extent and mechanisms of this effect are under debate. The authors explored possible differential effects of cue valence on the prospective and retrospective component of prospective memory in young and older adults. Forty-five young and 41 older adults performed a prospective memory task in which emotional valence of the prospective memory cue was manipulated (positive, negative, neutral). The multinomial model of event-based prospective memory was used to analyze effects of valence and age on the two prospective memory components separately. Results revealed an interaction indicating that age differences were smaller in both emotional valence conditions. For older adults positive cues improved the prospective component, while negative cues improved the retrospective component. No main effect of valence was found for younger adults on an overt accuracy measure, but model-based analyses showed that the retrospective component was enhanced in the positive compared with the negative cue condition. The study extends the literature in demonstrating that processes underlying emotional effects on prospective memory may differ depending on valence and age. PsycINFO Database Record (c) 2012 APA, all rights reserved

  6. Photo-electronic current transport in back-gated graphene transistor

    NASA Astrophysics Data System (ADS)

    Srivastava, Ashok; Chen, Xinlu; Pradhan, Aswini K.

    2017-04-01

    In this work, we have studied photo-electronic current transport in a back-gated graphene field-effect transistor. Under the light illumination, band bending at the metal/graphene interface develops a built-in potential which generates photonic current at varying back-gate biases. A typical MOSFET type back-gated transistor structure uses a monolayer graphene as the channel layer formed over the silicon dioxide/silicon substrate. It is shown that the photo-electronic current consists of current contributions from photovoltaic, photo-thermoelectric and photo-bolometric effects. A maximum external responsivity close to 0.0009A/W is achieved at 30μW laser power source and 633nm wavelength.

  7. Modeling, Analysis, and Interpretation of Photoelectron Energy Spectra at Enceladus Observed by Cassini

    NASA Astrophysics Data System (ADS)

    Taylor, S. A.; Coates, A. J.; Jones, G. H.; Wellbrock, A.; Fazakerley, A. N.; Desai, R. T.; Caro-Carretero, R.; Michiko, M. W.; Schippers, P.; Waite, J. H.

    2018-01-01

    The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are observed during Enceladus encounters in the energetic particle shadow where the spacecraft is largely shielded from penetrating radiation by the moon. We present a complex electron spectrum at Enceladus including evidence of two previously unidentified electron populations at 6-10 eV and 10-16 eV. We estimate that the proportion of "hot" (>15 eV) to "cold" (<15 eV) electrons during the Enceladus flybys is ≈ 0.1-0.5%. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data by scaling and energy shifting according to spacecraft potential. We suggest that the complex structure of the electron spectrum observed can be explained entirely by photoelectron production in the plume ionosphere.

  8. Green synthesis of CuInS2/ZnS core-shell quantum dots by facile solvothermal route with enhanced optical properties

    NASA Astrophysics Data System (ADS)

    Jindal, Shikha; Giripunje, Sushama M.; Kondawar, Subhash B.; Koinkar, Pankaj

    2018-03-01

    We report an eco-friendly green synthesis of highly luminescent CuInS2/ZnS core-shell quantum dots (QDs) with average particle size ∼ 3.9 nm via solvothermal process. The present study embodies the intensification of CuInS2/ZnS QDs properties by the shell growth on the CuInS2 QDs. The as-prepared CuInS2 core and CuInS2/ZnS core-shell QDs have been characterized using a range of optical and structural techniques. By adopting a low temperature growth of CuInS2 core and high temperature growth of CuInS2/ZnS core-shell growth, the tuning of absorption and photoluminescence emission spectra were observed. Optical absorption and photoluminescence spectroscopy probe the effect of ZnS passivation on the electronic structure of the CuInS2 dots. In addition, QDs have been scrutinized using ultra violet photoelectron spectroscopy (UPS) to explore their electronic band structure. The band level positions of CuInS2 and CuInS2/ZnS QDs suffices the demand of non-toxic acceptor material for electronic devices. The variation in electronic energy levels of CuInS2 core with the coating of wide band gap ZnS shell influence the removal of trap assisted recombination on the surface of the core. QDs exhibited tunable emission from red to orange region. These studies reveal the feasibility of QDs in photovoltaic and light emitting diodes.

  9. Modelling Photoelectron Production in the Enceladus Plume and Comparison with Observations by CAPS-ELS

    NASA Astrophysics Data System (ADS)

    Taylor, S. A.; Coates, A. J.; Jones, G.; Wellbrock, A.; Waite, J. H., Jr.

    2016-12-01

    The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer (CAPS) measures electrons in the energy range 0.6-28,000 eV with an energy resolution of 16.7%. ELS has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are found during Enceladus encounters in the energetic particle shadow where the spacecraft is shielded from penetrating radiation by the moon [Coates et al, 2013]. Observable is a population of photoelectrons at 20-30eV, which are seen at other bodies in the solar system and are usually associated with ionisation by the strong solar He II (30.4 nm) line. We have identified secondary peaks at 40-50eV detected by ELS which are also interpreted as a warmer population of photoelectrons created through the ionisation of neutrals in the Enceladus torus. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data using automated fitting procedures. This has yielded estimates for electron temperature and density as well as a spacecraft potential estimate which is corrected for.

  10. The role of interfacial metal silicates on the magnetism in FeCo/SiO 2 and Fe 49% Co 49% V 2% /SiO 2 core/shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desautels, R. D.; Freeland, J. W.; Rowe, M. P.

    2015-05-07

    We have investigated the role of spontaneously formed interfacial metal silicates on the magnetism of FeCo/SiO2 and Fe49%Co49%V2%/SiO2 core/shell nanoparticles. Element specific x-ray absorption and photoelectron spectroscopy experiments have identified the characteristic spectral features of metallic iron and cobalt from within the nanoparticle core. In addition, metal silicates of iron, cobalt, and vanadium were found to have formed spontaneously at the interface between the nanoparticle core and silica shell. X-ray magnetic circular dichroism experiments indicated that the elemental magnetism was a result of metallic iron and cobalt with small components from the iron, cobalt, and vanadium silicates. Magnetometry experiments havemore » shown that there was no exchange bias loop shift in the FeCo nanoparticles; however, exchange bias from antiferromagnetic vanadium oxide was measured in the V-doped nanoparticles. These results showed clearly that the interfacial metal silicates played a significant role in the magnetism of these core/shell nanoparticles, and that the vanadium percolated from the FeCo-cores into the SiO2-based interfacial shell.« less

  11. Contextual blending of ingroup/outgroup face stimuli and word valence: LPP modulation and convergence of measures.

    PubMed

    Hurtado, Esteban; Haye, Andrés; González, Ramiro; Manes, Facundo; Ibáñez, Agustiń

    2009-06-26

    Several event related potential (ERP) studies have investigated the time course of different aspects of evaluative processing in social bias research. Various reports suggest that the late positive potential (LPP) is modulated by basic evaluative processes, and some reports suggest that in-/outgroup relative position affects ERP responses. In order to study possible LPP blending between facial race processing and semantic valence (positive or negative words), we recorded ERPs while indigenous and non-indigenous participants who were matched by age and gender performed an implicit association test (IAT). The task involved categorizing faces (ingroup and outgroup) and words (positive and negative). Since our paradigm implies an evaluative task with positive and negative valence association, a frontal distribution of LPPs similar to that found in previous reports was expected. At the same time, we predicted that LPP valence lateralization would be modulated not only by positive/negative associations but also by particular combinations of valence, face stimuli and participant relative position. Results showed that, during an IAT, indigenous participants with greater behavioral ingroup bias displayed a frontal LPP that was modulated in terms of complex contextual associations involving ethnic group and valence. The LPP was lateralized to the right for negative valence stimuli and to the left for positive valence stimuli. This valence lateralization was influenced by the combination of valence and membership type relevant to compatibility with prejudice toward a minority. Behavioral data from the IAT and an explicit attitudes questionnaire were used to clarify this finding and showed that ingroup bias plays an important role. Both ingroup favoritism and indigenous/non-indigenous differences were consistently present in the data. Our results suggest that frontal LPP is elicited by contextual blending of evaluative judgments of in-/outgroup information and positive vs

  12. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    NASA Astrophysics Data System (ADS)

    Langer, G.; Nehrke, G.; Baggini, C.; Rodolfo-Metalpa, R.; Hall-Spencer, J.; Bijma, J.

    2014-08-01

    Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size normalised aragonite area. Size normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size normalised thickness of the pHlow-shells, these data led us to conclude that low pH exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. The latter is different from normal elongation growth and proceeds through addition of aragonitic layers only, while the production of calcitic layers is confined to elongation growth. Therefore aragonite cannot be regarded as a per se disadvantageous polymorph under ocean acidification conditions.

  13. Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers

    NASA Astrophysics Data System (ADS)

    Langer, G.; Nehrke, G.; Baggini, C.; Rodolfo-Metalpa, R.; Hall-Spencer, J. M.; Bijma, J.

    2014-12-01

    Specimens of the patellogastropod limpet Patella caerulea were collected within (pHlow-shells) and outside (pHn-shells) a CO2 vent site at Ischia, Italy. Four pHlow-shells and four pHn-shells were sectioned transversally and scanned for polymorph distribution by means of confocal Raman microscopy. The pHlow-shells displayed a twofold increase in aragonite area fraction and size-normalised aragonite area. Size-normalised calcite area was halved in pHlow-shells. Taken together with the increased apical and the decreased flank size-normalised thickness of the pHlow-shells, these data led us to conclude that low-pH-exposed P. caerulea specimens counteract shell dissolution by enhanced shell production. This is different from normal elongation growth and proceeds through addition of aragonitic parts only, while the production of calcitic parts is confined to elongation growth. Therefore, aragonite cannot be regarded as a disadvantageous polymorph per se under ocean acidification conditions.

  14. On the analysis of photo-electron spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, C.-Z., E-mail: gao@irsamc.ups-tlse.fr; CNRS, LPT; Dinh, P.M.

    2015-09-15

    We analyze Photo-Electron Spectra (PES) for a variety of excitation mechanisms from a simple mono-frequency laser pulse to involved combination of pulses as used, e.g., in attosecond experiments. In the case of simple pulses, the peaks in PES reflect the occupied single-particle levels in combination with the given laser frequency. This usual, simple rule may badly fail in the case of excitation pulses with mixed frequencies and if resonant modes of the system are significantly excited. We thus develop an extension of the usual rule to cover all possible excitation scenarios, including mixed frequencies in the attosecond regime. We find thatmore » the spectral distributions of dipole, monopole and quadrupole power for the given excitation taken together and properly shifted by the single-particle energies provide a pertinent picture of the PES in all situations. This leads to the derivation of a generalized relation allowing to understand photo-electron yields even in complex experimental setups.« less

  15. X-Ray photoelectron diffraction and photoelectron holography as methods for investigating the local atomic structure of the surface of solids

    NASA Astrophysics Data System (ADS)

    Kuznetsov, M. V.; Ogorodnikov, I. I.; Vorokh, A. S.

    2014-01-01

    The state-of-the-art theory and experimental applications of X-ray photoelectron diffraction (XPD) and photoelectron holography (PH) are discussed. These methods are rapidly progressing and serve to examine the surface atomic structure of solids, including nanostructures formed on surfaces during adsorption of gases, epitaxial film growth, etc. The depth of analysis by these methods is several nanometres, which makes it possible to characterize the positions of atoms localized both on and beneath the surface. A remarkable feature of the XPD and PH methods is their sensitivity to the type of examined atoms and, in the case of high energy resolution, to the particular chemical form of the element under study. The data on experimental applications of XPD and PH to studies of various surface structures are analyzed and generalized. The bibliography includes 121 references.

  16. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex.

    PubMed

    Roemelt, Michael; Krewald, Vera; Pantazis, Dimitrios A

    2018-01-09

    The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.

  17. Photoelectric dust levitation around airless bodies revised using realistic photoelectron velocity distributions

    NASA Astrophysics Data System (ADS)

    Senshu, H.; Kimura, H.; Yamamoto, T.; Wada, K.; Kobayashi, M.; Namiki, N.; Matsui, T.

    2015-10-01

    The velocity distribution function of photoelectrons from a surface exposed to solar UV radiation is fundamental to the electrostatic status of the surface. There is one and only one laboratory measurement of photoelectron emission from astronomically relevant material, but the energy distribution function was measured only in the emission angle from the normal to the surface of 0 to about π / 4. Therefore, the measured distribution is not directly usable to estimate the vertical structure of a photoelectric sheath above the surface. In this study, we develop a new analytical method to calculate an angle-resolved velocity distribution function of photoelectrons from the laboratory measurement data. We find that the photoelectric current and yield for lunar surface fines measured in a laboratory have been underestimated by a factor of two. We apply our new energy distribution function of photoelectrons to model the formation of photoelectric sheath above the surface of asteroid 433 Eros. Our model shows that a 0.1 μm-radius dust grain can librate above the surface of asteroid 433 Eros regardless of its launching velocity. In addition, a 0.5 μm grain can hover over the surface if the grain was launched at a velocity slower than 0.4 m/s, which is a more stringent condition for levitation than previous studies. However, a lack of high-energy data on the photoelectron energy distribution above 6 eV prevents us from firmly placing a constraint on the levitation condition.

  18. Approach and Withdrawal Tendencies during Written Word Processing: Effects of Task, Emotional Valence, and Emotional Arousal.

    PubMed

    Citron, Francesca M M; Abugaber, David; Herbert, Cornelia

    2015-01-01

    The affective dimensions of emotional valence and emotional arousal affect processing of verbal and pictorial stimuli. Traditional emotional theories assume a linear relationship between these dimensions, with valence determining the direction of a behavior (approach vs. withdrawal) and arousal its intensity or strength. In contrast, according to the valence-arousal conflict theory, both dimensions are interactively related: positive valence and low arousal (PL) are associated with an implicit tendency to approach a stimulus, whereas negative valence and high arousal (NH) are associated with withdrawal. Hence, positive, high-arousal (PH) and negative, low-arousal (NL) stimuli elicit conflicting action tendencies. By extending previous research that used several tasks and methods, the present study investigated whether and how emotional valence and arousal affect subjective approach vs. withdrawal tendencies toward emotional words during two novel tasks. In Study 1, participants had to decide whether they would approach or withdraw from concepts expressed by written words. In Studies 2 and 3 participants had to respond to each word by pressing one of two keys labeled with an arrow pointing upward or downward. Across experiments, positive and negative words, high or low in arousal, were presented. In Study 1 (explicit task), in line with the valence-arousal conflict theory, PH and NL words were responded to more slowly than PL and NH words. In addition, participants decided to approach positive words more often than negative words. In Studies 2 and 3, participants responded faster to positive than negative words, irrespective of their level of arousal. Furthermore, positive words were significantly more often associated with "up" responses than negative words, thus supporting the existence of implicit associations between stimulus valence and response coding (positive is up and negative is down). Hence, in contexts in which participants' spontaneous responses are

  19. Shell concrete pavement.

    DOT National Transportation Integrated Search

    1966-10-01

    This report describes the testing performed with reef shell, clam shell and a combination of reef and clam shell used as coarse aggregate to determine if a low modulus concrete could be developed for use as a base material as an alternate to the pres...

  20. Social Annotation Valence: The Impact on Online Informed Consent Beliefs and Behavior.

    PubMed

    Balestra, Martina; Shaer, Orit; Okerlund, Johanna; Westendorf, Lauren; Ball, Madeleine; Nov, Oded

    2016-07-20

    Social media, mobile and wearable technology, and connected devices have significantly expanded the opportunities for conducting biomedical research online. Electronic consent to collecting such data, however, poses new challenges when contrasted to traditional consent processes. It reduces the participant-researcher dialogue but provides an opportunity for the consent deliberation process to move from solitary to social settings. In this research, we propose that social annotations, embedded in the consent form, can help prospective participants deliberate on the research and the organization behind it in ways that traditional consent forms cannot. Furthermore, we examine the role of the comments' valence on prospective participants' beliefs and behavior. This study focuses specifically on the influence of annotations' valence on participants' perceptions and behaviors surrounding online consent for biomedical research. We hope to shed light on how social annotation can be incorporated into digitally mediated consent forms responsibly and effectively. In this controlled between-subjects experiment, participants were presented with an online consent form for a personal genomics study that contained social annotations embedded in its margins. Individuals were randomly assigned to view the consent form with positive-, negative-, or mixed-valence comments beside the text of the consent form. We compared participants' perceptions of being informed and having understood the material, their trust in the organization seeking the consent, and their actual consent across conditions. We find that comment valence has a marginally significant main effect on participants' perception of being informed (F2=2.40, P=.07); specifically, participants in the positive condition (mean 4.17, SD 0.94) felt less informed than those in the mixed condition (mean 4.50, SD 0.69, P=.09). Comment valence also had a marginal main effect on the extent to which participants reported trusting the

  1. Pupillary responses during lexical decisions vary with word frequency but not emotional valence.

    PubMed

    Kuchinke, Lars; Võ, Melissa L-H; Hofmann, Markus; Jacobs, Arthur M

    2007-08-01

    Pupillary responses were examined during a lexical decision task (LDT). Word frequency (high and low frequency words) and emotional valence (positive, neutral and negative words) were varied as experimental factors incidental to the subjects. Both variables significantly affected lexical decision performance and an interaction effect was observed. The behavioral results suggest that manipulating word frequency may partly account for the heterogeneous literature findings regarding emotional valence effects in the LDT. In addition, a difference between high and low frequency words was observed in the pupil data as reflected by higher peak pupil dilations for low frequency words, whereas pupillary responses to emotionally valenced words did not differ. This result was further supported by means of a principal component analysis on the pupil data, in which a late component was shown only to be affected by word frequency. Consistent with previous findings, word frequency was found to affect the resource allocation towards processing of the letter string, while emotionally valenced words tend to facilitate processing.

  2. Examining the role of emotional valence of mind wandering: All mind wandering is not equal.

    PubMed

    Banks, Jonathan B; Welhaf, Matthew S; Hood, Audrey V B; Boals, Adriel; Tartar, Jaime L

    2016-07-01

    To evaluate the role of emotional valence on the impact of mind wandering on working memory (WM) and sustained attention, we reanalyzed data from three independently conducted studies that examined the impact of stress on WM (Banks & Boals, 2016; Banks, Welhaf, & Srour, 2015) and sustained attention (Banks, Tartar, & Welhaf, 2014). Across all studies, participants reported the content of their thoughts at random intervals during the WM or sustained attention task. Thought probes in all studies included a core set of response options for task-unrelated thoughts (TUTs) that were negatively, positively, or neutrally emotionally valenced. In line with theories of emotional valenced stimuli on capture of attention, results suggest negatively valenced TUTs, but not positively valenced TUTs, were related to poorer WM and sustained attention in two studies. Neutral TUTs were related to poorer WM but not sustained attention performance. Implications for models of mind wandering are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Verbal instructions targeting valence alter negative conditional stimulus evaluations (but do not affect reinstatement rates).

    PubMed

    Luck, Camilla C; Lipp, Ottmar V

    2018-02-01

    Negative conditional stimulus (CS) valence acquired during fear conditioning may enhance fear relapse and is difficult to remove as it extinguishes slowly and does not respond to the instruction that unconditional stimulus (US) presentations will cease. We examined whether instructions targeting CS valence would be more effective. In Experiment 1, an image of one person (CS+) was paired with an aversive US, while another (CS-) was presented alone. After acquisition, participants were given positive information about the CS+ poser and negative information about the CS- poser. Instructions reversed the pattern of differential CS valence present during acquisition and eliminated differential electrodermal responding. In Experiment 2, we compared positive and negative CS revaluation by providing positive/negative information about the CS+ and neutral information about CS-. After positive revaluation, differential valence was removed and differential electrodermal responding remained intact. After negative revaluation, differential valence was strengthened and differential electrodermal responding was eliminated. Unexpectedly, the instructions did not affect the reinstatement of differential electrodermal responding.

  4. Assessment of Quantum Mechanical Methods for Copper and Iron Complexes by Photoelectron Spectroscopy

    PubMed Central

    2015-01-01

    Broken-symmetry density functional theory (BS-DFT) calculations are assessed for redox energetics [Cu(SCH3)2]1–/0, [Cu(NCS)2]1–/0, [FeCl4]1–/0, and [Fe(SCH3)4]1–/0 against vertical detachment energies (VDE) from valence photoelectron spectroscopy (PES), as a prelude to studies of metalloprotein analogs. The M06 and B3LYP hybrid functionals give VDE that agree with the PES VDE for the Fe complexes, but both underestimate it by ∼400 meV for the Cu complexes; other hybrid functionals give VDEs that are an increasing function of the amount of Hartree–Fock (HF) exchange and so cannot show good agreement for both Cu and Fe complexes. Range-separated (RS) functionals appear to give a better distribution of HF exchange since the negative HOMO energy is approximately equal to the VDEs but also give VDEs dependent on the amount of HF exchange, sometimes leading to ground states with incorrect electron configurations; the LRC-ωPBEh functional reduced to 10% HF exchange at short-range give somewhat better values for both, although still ∼150 meV too low for the Cu complexes and ∼50 meV too high for the Fe complexes. Overall, the results indicate that while HF exchange compensates for self-interaction error in DFT calculations of both Cu and Fe complexes, too much may lead to more sensitivity to nondynamical correlation in the spin-polarized Fe complexes. PMID:24803858

  5. Emotional valence and arousal interact in attentional control.

    PubMed

    Jefferies, Lisa N; Smilek, Daniel; Eich, Eric; Enns, James T

    2008-03-01

    A recent study demonstrated that observers' ability to identify targets in a rapid visual sequence was enhanced when they simultaneously listened to happy music. In the study reported here, we examined how the emotion-attention relationship is influenced by changes in both mood valence (negative vs. positive) and arousal (low vs. high). We used a standard induction procedure to generate calm, happy, sad, and anxious moods in participants. Results for an attentional blink task showed no differences in first-target accuracy, but second-target accuracy was highest for participants with low arousal and negative affect (sad), lowest for those with strong arousal and negative affect (anxious), and intermediate for those with positive affect regardless of their arousal (calm, happy). We discuss implications of this valence-arousal interaction for the control of visual attention.

  6. Dissociable Modulation of Overt Visual Attention in Valence and Arousal Revealed by Topology of Scan Path

    PubMed Central

    Ni, Jianguang; Jiang, Huihui; Jin, Yixiang; Chen, Nanhui; Wang, Jianhong; Wang, Zhengbo; Luo, Yuejia; Ma, Yuanye; Hu, Xintian

    2011-01-01

    Emotional stimuli have evolutionary significance for the survival of organisms; therefore, they are attention-grabbing and are processed preferentially. The neural underpinnings of two principle emotional dimensions in affective space, valence (degree of pleasantness) and arousal (intensity of evoked emotion), have been shown to be dissociable in the olfactory, gustatory and memory systems. However, the separable roles of valence and arousal in scene perception are poorly understood. In this study, we asked how these two emotional dimensions modulate overt visual attention. Twenty-two healthy volunteers freely viewed images from the International Affective Picture System (IAPS) that were graded for affective levels of valence and arousal (high, medium, and low). Subjects' heads were immobilized and eye movements were recorded by camera to track overt shifts of visual attention. Algebraic graph-based approaches were introduced to model scan paths as weighted undirected path graphs, generating global topology metrics that characterize the algebraic connectivity of scan paths. Our data suggest that human subjects show different scanning patterns to stimuli with different affective ratings. Valence salient stimuli (with neutral arousal) elicited faster and larger shifts of attention, while arousal salient stimuli (with neutral valence) elicited local scanning, dense attention allocation and deep processing. Furthermore, our model revealed that the modulatory effect of valence was linearly related to the valence level, whereas the relation between the modulatory effect and the level of arousal was nonlinear. Hence, visual attention seems to be modulated by mechanisms that are separate for valence and arousal. PMID:21494331

  7. Photoelectron imaging using an ellipsoidal display analyzer

    NASA Astrophysics Data System (ADS)

    Dütemeyer, T.; Quitmann, C.; Kitz, M.; Dörnemann, K.; Johansson, L. S. O.; Reihl, B.

    2001-06-01

    We have built an ellipsoidal display analyzer (EDA) for angle-resolved photoelectron spectroscopy and related techniques. The instrument is an improved version of a design by Eastman et al. [Nucl. Instrum. Methods 172, 327 (1980)] and measures the angle-resolved intensity distribution of photoelectrons at fixed energy I(θ,φ)|E=const.. Such two-dimensional cuts through the Brillouin zone are recorded using a position-sensitive detector. The large acceptance angle (Δθ=43° in the polar direction and Δφ=360° in the azimuthal direction) leads to a collection efficiency which exceeds that of conventional hemispherical analyzers by a factor of about 3000. Using ray-tracing calculations we analyze the electron optical properties of the various analyzer components and optimize their arrangement. This minimizes distortions and aberrations in the recorded images and greatly improves the performance compared to previous realizations of this analyzer. We present examples demonstrating the performance of the analyzer and its versatility. Using a commercial He-discharge lamp we are able to measure complete angular distribution patterns in less than 5 s. The energy and angular resolution are ΔEEDA=85 meV and Δθ=1.2°, respectively. Complete stacks of such cuts through the Brillouin zone at different kinetic energies E can be acquired automatically using custom software. The raw data are processed leading to a three-dimensional set (I(EB,k∥) of photoelectron intensity versus binding energy E and wave vector k∥. From this all relevant information, like the dispersion relations EB(k∥) along arbitrary directions of the Brillouin zone or Fermi-surface maps, can then be computed. An additional electron gun enables low-energy electron diffraction, Auger electron spectroscopy, and electron energy-loss spectroscopy. Switching between electrons and photons as the excitation source is possible without any movement of the sample or analyzer. Because of the high acquisition

  8. Valence asymmetries in attitude ambivalence.

    PubMed

    Snyder, Aaron I; Tormala, Zakary L

    2017-04-01

    Existing models of ambivalence suggest that as the number of conflicting reactions (e.g., attitude components) increases, so too does the experience of ambivalence. Interestingly, though, these models overwhelmingly assume that this relationship is independent of valence. Across 3 studies we observe that this effect is in fact heavily influenced by 2 established valence asymmetries: positivity offset (baseline positive reactions even in the absence of positive information) and negativity bias (greater impact of negative reactions than positive reactions). Consistent with positivity offset, we observe that subjective ambivalence is greater when people have univalent negative rather than univalent positive attitudes. However, as conflicting information is acquired, subjective ambivalence rises more quickly when that information is negative rather than positive. The latter effect is consistent with negativity bias and suggests that although people feel more conflicted when they have only negative (vs. only positive) reactions, they also feel more conflicted when they have mostly positive (vs. mostly negative) reactions. Our investigation also uncovers an interesting consequence of these asymmetries: When people have mixed reactions, they do not experience maximum ambivalence at equal levels of positivity and negativity, as suggested by canonical ambivalence theory. Rather, subjective ambivalence peaks when positive reactions outnumber negative reactions. These effects are found to have downstream consequences for other dimensions of attitude strength. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Photoelectron spectroscopy of heavy atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.G.

    1979-07-01

    The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target.

  10. Valence and Arousal Ratings for 420 Finnish Nouns by Age and Gender

    PubMed Central

    Söderholm, Carina; Häyry, Emilia; Laine, Matti; Karrasch, Mira

    2013-01-01

    Language-and culture-specific norms are needed for research on emotion-laden stimuli. We present valence and arousal ratings for 420 Finnish nouns for a sample of 996 Finnish speakers. Ratings are provided both for the whole sample and for subgroups divided by age and gender in light of previous research suggesting age- and gender-specific reactivity to the emotional content in stimuli. Moreover, corpus-based frequency values and word length are provided as objective psycholinguistic measures of the nouns. The relationship between valence and arousal mainly showed the curvilinear relationship reported in previous studies. Age and gender effects on valence and arousal ratings were statistically significant but weak. The inherent affective properties of the words in terms of mean valence and arousal ratings explained more of the variance in the ratings. In all, the findings suggest that language- and culture-related factors influence the way affective properties of words are rated to a greater degree than demographic factors. This database will provide researchers with normative data for Finnish emotion-laden and emotionally neutral words. The normative database is available in Database S1. PMID:24023650

  11. Affective ERP Processing in a Visual Oddball Task: Arousal, Valence, and Gender

    PubMed Central

    Rozenkrants, Bella; Polich, John

    2008-01-01

    Objective To assess affective event-related brain potentials (ERPs) using visual pictures that were highly distinct on arousal level/valence category ratings and a response task. Methods Images from the International Affective Pictures System (IAPS) were selected to obtain distinct affective arousal (low, high) and valence (negative, positive) rating levels. The pictures were used as target stimuli in an oddball paradigm, with a visual pattern as the standard stimulus. Participants were instructed to press a button whenever a picture occurred and to ignore the standard. Task performance and response time did not differ across conditions. Results High-arousal compared to low-arousal stimuli produced larger amplitudes for the N2, P3, early slow wave, and late slow wave components. Valence amplitude effects were weak overall and originated primarily from the later waveform components and interactions with electrode position. Gender differences were negligible. Conclusion The findings suggest that arousal level is the primary determinant of affective oddball processing, and valence minimally influences ERP amplitude. Significance Affective processing engages selective attentional mechanisms that are primarily sensitive to the arousal properties of emotional stimuli. The application and nature of task demands are important considerations for interpreting these effects. PMID:18783987

  12. Accurate determination of the valence band edge in hard x-ray photoemission spectra using GW theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lischner, Johannes, E-mail: jlischner597@gmail.com; Department of Physics and Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ; Nemšák, Slavomír

    We introduce a new method for determining accurate values of the valence-band maximum in x-ray photoemission spectra. Specifically, we align the sharpest peak in the valence-band region of the experimental spectrum with the corresponding feature of a theoretical valence-band density of states curve from ab initio GW theory calculations. This method is particularly useful for soft and hard x-ray photoemission studies of materials with a mixture of valence-band characters, where strong matrix element effects can render standard methods for extracting the valence-band maximum unreliable. We apply our method to hydrogen-terminated boron-doped diamond, which is a promising substrate material for novelmore » solar cell devices. By carrying out photoemission experiments with variable light polarizations, we verify the accuracy of our analysis and the general validity of the method.« less

  13. The Effect of Stimulus Valence on Lexical Retrieval in Younger and Older Adults

    ERIC Educational Resources Information Center

    Blackett, Deena Schwen; Harnish, Stacy M.; Lundine, Jennifer P.; Zezinka, Alexandra; Healy, Eric W.

    2017-01-01

    Purpose: Although there is evidence that emotional valence of stimuli impacts lexical processes, there is limited work investigating its specific impact on lexical retrieval. The current study aimed to determine the degree to which emotional valence of pictured stimuli impacts naming latencies in healthy younger and older adults. Method: Eighteen…

  14. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    PubMed

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  15. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    PubMed Central

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071

  16. THE ENDOCANNABINOID SYSTEM MODULATES THE VALENCE OF THE EMOTION ASSOCIATED TO FOOD INGESTION

    PubMed Central

    Méndez-Díaz, Mónica; Rueda-Orozco, Pavel Ernesto; Ruiz-Contreras, Alejandra Evelyn; Prospéro-García, O.

    2010-01-01

    Endocannabinoids (eCBs) are mediators of the homeostatic and hedonic systems that modulate food ingestion. Hence, eCBs, by regulating the hedonic system, may be modulating the valence of the emotion associated to food ingestion (positive: pleasant, or negative: unpleasant). Our first goal was to demonstrate that palatable food induces conditioned place preference (CPP), hence a positive valence emotion. Additionally, we analyzed if this CPP is blocked by AM251, inducing a negative valence emotion, meaning avoiding the otherwise pursued compartment. The second goal was to demonstrate that CPP induced by regular food would be strengthened by the simultaneous administration of anandamide or oleamide and if such CPP is blocked by AM251. Finally, we tested the capacity of eCBs (without food) to induce CPP. Our results indicate that rats readily developed CPP to palatable food, which was blocked by AM251. The CPP induced by regular food was strengthened by eCBs and blocked by AM251. Finally, oleamide, unlike anandamide, induced CPP. These results showed that eCBs mediate the positive valence (CPP) of the emotion associated to food ingestion. It was also observed that the blockade of the CB1 receptor causes a loss of correlation between food and CPP (negative valence: avoidance). These data further support the role of eCBs as regulators of the hedonic value of food. PMID:21182571

  17. The valence and Rydberg states of difluoromethane: A combined experimental vacuum ultraviolet spectrum absorption and theoretical study by ab initio configuration interaction and density functional computations

    NASA Astrophysics Data System (ADS)

    Palmer, Michael H.; Vrønning Hoffmann, Søren; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare

    2018-06-01

    two states, which are only active in absorption. The nature of the two states, 11B1 and 21B1, is fundamentally different, but both are complex owing to the presence of FC and HT effects occurring in different ways. The two most intense bands, close to 12.5 and 15.5 eV, contain valence states as expected; the onset of the 15.5 eV band shows a set of vibrational peaks, but the vibration frequency does not correspond to any of the photoelectron spectral (PES) structure and is clearly valence in nature. The routine use of PES footprints to detect Rydberg states in VUV spectra is shown to be inadequate. The combined effects of FC and HT in the VUV spectral bands lead to additional vibrations when compared with the PES.

  18. Lattice QCD with mixed action - Borici-Creutz valence quark on staggered sea

    NASA Astrophysics Data System (ADS)

    Basak, Subhasish; Goswami, Jishnu; Chakrabarti, Dipankar

    2018-03-01

    Mixed action lattice QCD with Borici-Creutz valence quarks on staggered sea is investigated. The counter terms in Borici-Creutz action are fixed nonperturbatively to restore the broken symmetries. On symmetry restoration, the usual signatures of partial quenching / unitarity violation like negative scalar correlator are observed. The size of unitarity violation due to different discretization of valence and sea quark is determined by measuring Δmix.

  19. Photoelectron interference fringes by super intense x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2009-09-01

    The photoelectron spectra of H- produced by circularly polarized strong high-frequency laser pulses are theoretically studied. An oscillating substructure in the above-threshold ionization (ATI) peaks is observed, which extends the validity of the earlier findings in the 1D calculations [K. Toyota et al., Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. Its origin is due to an interference between a pair of photoelectron wave packets created in the rising and falling part of the pulse, which appears clearly in the stabilization regime.

  20. Valence-Bond Concepts in Coordination Chemistry and the Nature of Metal-Metal Bonds.

    ERIC Educational Resources Information Center

    Pauling, Linus; Herman, Zelek S.

    1984-01-01

    Discusses the valence-bond method, applying it to some coordination compounds of metals, especially those involving metal-metal bonds. Suggests that transition metals can form as many as nine covalent bonds, permitting valence-theory to be extended to transition metal compounds in a more effective way than has been possible before. (JN)

  1. Sketching the pion's valence-quark generalised parton distribution

    DOE PAGES

    Mezrag, C.; Chang, L.; Moutarde, H.; ...

    2015-02-01

    In order to learn effectively from measurements of generalised parton distributions (GPDs), it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL) truncation of QCD’s Dyson–Schwinger equations and exemplified via the pion’s valence dressed-quark GPD, H v π(x, ξ, t). Our analysis focuses primarily on ξ=0, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting H v π(x, ξ=±1, t)with the pion’s valence-quark parton distribution amplitude. We explain that the impulse-approximationmore » used hitherto to define the pion’s valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for H v π(x, 0, t), expressed as the Radon transform of a single amplitude. Therewith we obtain results for H v π(x, 0, t) and the associated impact-parameter dependent distribution, q v π(x, |b⊥|), which provide a qualitatively sound picture of the pion’s dressed-quark structure at a hadronic scale. We evolve the distributions to a scale ζ = 2 GeV, so as to facilitate comparisons in future with results from experiment or other nonperturbative methods.« less

  2. Approach and Withdrawal Tendencies during Written Word Processing: Effects of Task, Emotional Valence, and Emotional Arousal

    PubMed Central

    Citron, Francesca M. M.; Abugaber, David; Herbert, Cornelia

    2016-01-01

    The affective dimensions of emotional valence and emotional arousal affect processing of verbal and pictorial stimuli. Traditional emotional theories assume a linear relationship between these dimensions, with valence determining the direction of a behavior (approach vs. withdrawal) and arousal its intensity or strength. In contrast, according to the valence-arousal conflict theory, both dimensions are interactively related: positive valence and low arousal (PL) are associated with an implicit tendency to approach a stimulus, whereas negative valence and high arousal (NH) are associated with withdrawal. Hence, positive, high-arousal (PH) and negative, low-arousal (NL) stimuli elicit conflicting action tendencies. By extending previous research that used several tasks and methods, the present study investigated whether and how emotional valence and arousal affect subjective approach vs. withdrawal tendencies toward emotional words during two novel tasks. In Study 1, participants had to decide whether they would approach or withdraw from concepts expressed by written words. In Studies 2 and 3 participants had to respond to each word by pressing one of two keys labeled with an arrow pointing upward or downward. Across experiments, positive and negative words, high or low in arousal, were presented. In Study 1 (explicit task), in line with the valence-arousal conflict theory, PH and NL words were responded to more slowly than PL and NH words. In addition, participants decided to approach positive words more often than negative words. In Studies 2 and 3, participants responded faster to positive than negative words, irrespective of their level of arousal. Furthermore, positive words were significantly more often associated with “up” responses than negative words, thus supporting the existence of implicit associations between stimulus valence and response coding (positive is up and negative is down). Hence, in contexts in which participants' spontaneous responses are

  3. Social Annotation Valence: The Impact on Online Informed Consent Beliefs and Behavior

    PubMed Central

    Shaer, Orit; Okerlund, Johanna; Westendorf, Lauren; Ball, Madeleine; Nov, Oded

    2016-01-01

    Background Social media, mobile and wearable technology, and connected devices have significantly expanded the opportunities for conducting biomedical research online. Electronic consent to collecting such data, however, poses new challenges when contrasted to traditional consent processes. It reduces the participant-researcher dialogue but provides an opportunity for the consent deliberation process to move from solitary to social settings. In this research, we propose that social annotations, embedded in the consent form, can help prospective participants deliberate on the research and the organization behind it in ways that traditional consent forms cannot. Furthermore, we examine the role of the comments’ valence on prospective participants’ beliefs and behavior. Objective This study focuses specifically on the influence of annotations’ valence on participants’ perceptions and behaviors surrounding online consent for biomedical research. We hope to shed light on how social annotation can be incorporated into digitally mediated consent forms responsibly and effectively. Methods In this controlled between-subjects experiment, participants were presented with an online consent form for a personal genomics study that contained social annotations embedded in its margins. Individuals were randomly assigned to view the consent form with positive-, negative-, or mixed-valence comments beside the text of the consent form. We compared participants’ perceptions of being informed and having understood the material, their trust in the organization seeking the consent, and their actual consent across conditions. Results We find that comment valence has a marginally significant main effect on participants’ perception of being informed (F2=2.40, P=.07); specifically, participants in the positive condition (mean 4.17, SD 0.94) felt less informed than those in the mixed condition (mean 4.50, SD 0.69, P=.09). Comment valence also had a marginal main effect on the

  4. Systematic shell-model study of β -decay properties and Gamow-Teller strength distributions in A ≈40 neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Yoshida, Sota; Utsuno, Yutaka; Shimizu, Noritaka; Otsuka, Takaharu

    2018-05-01

    We perform large-scale shell-model calculations of β -decay properties for neutron-rich nuclei with 13 ≤Z ≤18 and 22 ≤N ≤34 , taking the first-forbidden transitions into account. The natural-parity and unnatural-parity states are calculated in the 0 ℏ ω and 1 ℏ ω model spaces, respectively, within the full s d +p f +s d g valence shell. The calculated β -decay half-lives and β -delayed neutron emission probabilities show good agreement with the experimental data. The first-forbidden transitions make a non-negligible contribution to the half-lives of N ≳28 nuclei. The low-lying Gamow-Teller strengths of even-even nuclei are considerably larger than those of the neighboring odd-A and odd-odd nuclei, strongly affecting the half-lives and neutron emission probabilities. It is shown that this even-odd effect is caused by the Jπ=1+ proton-neutron pairing interaction. We derive a formula to represent the positions of the Gamow-Teller giant resonances from the calculated strength distributions.

  5. The valence of event-based prospective memory cues or the context in which they occur affects their detection.

    PubMed

    Clark-Foos, Arlo; Brewer, Gene A; Marsh, Richard L; Meeks, J Thadeus; Cook, Gabriel I

    2009-01-01

    Event-based prospective memory tasks entail detecting cues or reminders in our environment related to previously established intentions. If they are detected at an opportune time, then the intention can be fulfilled. In Experiments 1a-1c, we gave people 3 different nonfocal intentions (e.g., respond to words denoting animals) and discovered that negatively valenced cues delivered the intention to mind less frequently than positively valenced cues. In Experiment 2, this effect was extended to valenced and neutral sentential contexts with convergent results that cues embedded in negatively valenced sentences evoked remembering the intention less often than in positive contexts. In addition, both classes of valence caused the intention to be forgotten more often than a more neutral context. We propose that valence has the ability to usurp attentional resources that otherwise would have supported successful prospective memory performance.

  6. Gender differences in preferences for coaching as an occupation: the role of self-efficacy, valence, and perceived barriers.

    PubMed

    Everhart, C B; Chelladurai, P

    1998-06-01

    This study investigated gender differences in the role of self-efficacy, occupational valence, valence of coaching, and perceived barriers in preference to coach at the high school, 2-year college, Division III, Division II, and Division I levels. The participants, 191 Big Ten university basketball players (94 men, 97 women), responded to a specially constructed instrument. The genders did not differ in their coaching self-efficacy, preferred occupational valence, and perceived barriers. Relative to men, women perceived greater valence in coaching (p < .001). Women with a female coach perceived greater valence in coaching (p < .05) and expressed less concern with perceived discrimination (p < .05) than those with a male coach. Perceived self-efficacy and preferred occupational valence were differentially related to the desire to coach at various levels. Working Hours most negatively affected the desire to coach at every level (R > .20).

  7. Comparative study of the shell development of hard- and soft-shelled turtles

    PubMed Central

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-01-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used – the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. PMID:24754673

  8. Comparative study of the shell development of hard- and soft-shelled turtles.

    PubMed

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-07-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. © 2014 Anatomical Society.

  9. Dark field photoelectron emission microscopy of micron scale few layer graphene

    NASA Astrophysics Data System (ADS)

    Barrett, N.; Conrad, E.; Winkler, K.; Krömker, B.

    2012-08-01

    We demonstrate dark field imaging in photoelectron emission microscopy (PEEM) of heterogeneous few layer graphene (FLG) furnace grown on SiC(000-1). Energy-filtered, threshold PEEM is used to locate distinct zones of FLG graphene. In each region, selected by a field aperture, the k-space information is imaged using appropriate transfer optics. By selecting the photoelectron intensity at a given wave vector and using the inverse transfer optics, dark field PEEM gives a spatial distribution of the angular photoelectron emission. In the results presented here, the wave vector coordinates of the Dirac cones characteristic of commensurate rotations of FLG on SiC(000-1) are selected providing a map of the commensurate rotations across the surface. This special type of contrast is therefore a method to map the spatial distribution of the local band structure and offers a new laboratory tool for the characterisation of technically relevant, microscopically structured matter.

  10. Rosetta photoelectron emission and solar ultraviolet flux at comet 67P

    NASA Astrophysics Data System (ADS)

    Johansson, Fredrik L.; Odelstad, E.; Paulsson, J. J. P.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Eparvier, F.; Andersson, L.

    2017-07-01

    The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting data set can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths which are important for photoionization of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 per cent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.

  11. The effects of smoking and abstinence on experience of happiness and sadness in response to positively valenced, negatively valenced, and neutral film clips.

    PubMed

    Dawkins, Lynne; Acaster, Sarah; Powell, Jane H

    2007-02-01

    Incentive motivation theories of addiction suggest that behavioural concomitants of compromised mesocorticolimbic reward activity during abstinence might include decreased affective reactions to natural reinforcers. This study tested implications for hedonic reactions in abstinent smokers. It was hypothesised that positively valenced (pleasurable) film clips would elicit lower ratings of happiness in abstinent than satiated smokers. Twenty-nine smokers, randomly assigned to either an 'abstinent' or a 'satiated' condition, and 15 non-smokers took part in a single session in which they rated (i) signs and symptoms of nicotine withdrawal and (ii) affective responses to positively valenced, negatively valenced, and neutral film clips. Compared with satiated smokers, abstinent smokers rated positive clips as eliciting significantly lower levels of happiness, and this was independent of self-reported nicotine withdrawal symptoms; the scores of non-smokers fell between those of abstinent and satiated smokers, more closely approximating those of the latter. By contrast, sadness ratings in response to negative clips were not affected by smoking status, indicating that the effect on happiness was not simply due to general emotional blunting. These results suggest that, for regular smokers, stimuli that are motivationally salient for the general population may elicit reduced positive affective responses during periods of abstinence.

  12. The role of valence focus and appraisal overlap in emotion differentiation.

    PubMed

    Erbas, Yasemin; Ceulemans, Eva; Koval, Peter; Kuppens, Peter

    2015-06-01

    Emotion differentiation refers to the level of specificity with which people distinguish between their emotional states and is considered to play an important role for psychological well-being. Yet, not much is known about what characterizes people high or low in emotion differentiation and what underlies these differences. In 2 studies involving experience sampling (Studies 1-2) and lab based (Study 2) methods, we investigated how emotion differentiation is related to individual differences in valence focus and the overlap in appraisal patterns between emotions. In line with expectations, results showed that high levels of both positive and negative emotion differentiation are related to lower levels of valence focus and lower levels of appraisal overlap between emotions. These findings suggest that individuals who are low in emotion differentiation mainly emphasize the valence aspect of emotions while individuals who are high in emotion differentiation make stronger distinctions between emotions in terms of their underlying appraisal profiles. (c) 2015 APA, all rights reserved).

  13. Neurons for hunger and thirst transmit a negative-valence teaching signal

    PubMed Central

    Gong, Rong; Magnus, Christopher J.; Yu, Yang; Sternson, Scott M.

    2015-01-01

    Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics and dynamics of two separate neuron populations that regulate energy and fluid homeostasis by using cell type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis. PMID:25915020

  14. Neurons for hunger and thirst transmit a negative-valence teaching signal.

    PubMed

    Betley, J Nicholas; Xu, Shengjin; Cao, Zhen Fang Huang; Gong, Rong; Magnus, Christopher J; Yu, Yang; Sternson, Scott M

    2015-05-14

    Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics of two separate neuron populations that regulate energy and fluid homeostasis by using cell-type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis.

  15. Cyberframing Cancer: An Exploratory Investigation of Valenced Cybercoping on Cancer Blogs.

    PubMed

    Donovan, Erin E; Nelson, Erin C; Scheinfeld, Emily

    2017-01-01

    Although scholarship on coping with cancer implies many ways that coping is communicative, the discursive features of coping have been understudied. The purpose of the present investigation was to theorize the content of cancer blogs, a form of cybercoping, by examining valenced coping-relevant frames that bloggers use to describe their experiences with cancer. This research is both theoretically and methodologically innovative. Theoretically, we advance the concept of cyberframing by connecting the rather disconnected literatures on coping and framing and by studying this topic from a communication perspective. Methodologically, this is one of the few studies of coping with cancer that has used naturally occurring communication data to its advantage. A content analysis of cancer blog entries (N = 194) indicated that more than 90% of cancer blog posts were embedded in a valenced frame. The frames were either negative, positive, or balanced; balanced frames varied in the intensity of the valence. The most common frames were positive and balanced with low affect.

  16. The Interaction of Arousal and Valence in Affective Priming: Behavioral and Electrophysiological Evidence

    PubMed Central

    Zhang, Qin; Kong, Lingyue; Jiang, Yang

    2013-01-01

    The affective priming paradigm has been studied extensively and applied in many fields during the past two decades. Most research thus far has focused on the valence dimension. Whether emotional arousal influences affective priming remains poorly understood. The present study demonstrates how arousal impacts evaluation of affective words using reaction time and event-related potential (ERP) measures. Eighteen younger subjects evaluated pleasantness of target words after seeing affective pictures as primes. The participants’ responses were faster and/or more accurate for valence-congruent trials than for incongruent trials, particularly with high-arousal stimuli. An ERP affective priming effect (N400) also occurred mainly in high-arousing stimulus pairs. In addition, whereas valence congruency influenced both the N400 and the LPP, arousal congruency influenced only the LPP, suggesting that arousal congruency mainly modulates post-semantic processes, but valence congruency effects begin with semantic processes. Overall, our current findings indicate that the arousal level of visual images impacts both behavioral and ERP effects of affective priming. Section Cognitive and Behavioral Neuroscience PMID:22820299

  17. Spectroscopic and Redox Studies of Valence-Delocalized [Fe2S2]+ Centers in Thioredoxin-Like Ferredoxins

    PubMed Central

    Subramanian, Sowmya; Duin, Evert C.; Fawcett, Sarah E. J.; Armstrong, Fraser A.; Meyer, Jacques; Johnson, Michael K.

    2015-01-01

    Reduced forms of the C56S and C60S variants of the thioredoxin-like Clostridium pasteurianum [Fe2S2] ferredoxin (CpFd) provide the only known examples of valence-delocalized [Fe2S2]+ clusters, which constitute a fundamental building block of all higher nuclearity Fe-S clusters. In this work, we have revisited earlier work on the CpFd variants and carried out redox and spectroscopic studies on the [Fe2S2]2+,+ centers in wild-type and equivalent variants of the highly homologous and structurally characterized Aquifex aeolicus ferredoxin 4 (AaeFd4) using EPR, UV-visible-NIR absorption, CD and variable-temperature MCD, and protein-film electrochemistry. The results indicate that the [Fe2S2]+ centers in the equivalent AaeFd4 and CpFd variants reversibly interconvert between similar valence-localized S = 1/2 and valence-delocalized S = 9/2 forms as a function of pH, with pKa values in the range 8.3-9.0, due to protonation of the coordinated serinate residue. However, freezing high-pH samples results in partial or full conversion from valence-delocalized S = 9/2 to valence-localized S = 1/2 [Fe2S2]+ clusters. MCD saturation magnetization data for valence-delocalized S = 9/2 [Fe2S2]+ centers facilitated determination of transition polarizations and thereby assignments of low-energy MCD bands associated with the Fe−Fe interaction. The assignments provide experimental assessment of the double exchange parameter, B, for valence-delocalized [Fe2S2]+ centers and demonstrate that variable-temperature MCD spectroscopy provides a means of detecting and investigating the properties of valence-delocalized S = 9/2 [Fe2S2]+ fragments in higher nuclearity Fe-S clusters. The origin of valence delocalization in thioredoxin-like ferredoxin Cys-to-Ser variants and Fe-S clusters in general is discussed in light of these results. PMID:25790339

  18. Improving ethical knowledge and sensemaking from cases through elaborative interrogation and outcome valence.

    PubMed

    Johnson, James F; Bagdasarov, Zhanna; MacDougall, Alexandra E; Steele, Logan; Connelly, Shane; Devenport, Lynn D; Mumford, Michael D

    2014-01-01

    The case-based approach to learning is popular among many applied fields. However, results of case-based education vary widely on case content and case presentation. This study examined two aspects of case-based education-outcome valence and case elaboration methods-in a two-day case-based Responsible Conduct of Research (RCR) ethics education program. Results suggest that outcome information is an integral part of a quality case. Furthermore, valence consistent outcomes may have certain advantages over mixed valence outcome information. Finally, students enjoy and excel working with case material, and the use of elaborative interrogation techniques can significantly improve internally-focused ethical sensemaking strategies associated with personal biases, constraints, and emotions.

  19. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    PubMed

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  20. Interpersonal Valence Dimensions as Discriminators of Communication Contexts: An Empirical Assessment of Dyadic Linkages.

    ERIC Educational Resources Information Center

    Garrison, John P.; And Others

    The capability of 14 interpersonal dimensions to predict dyadic communication contexts was investigated in this study. Friend, acquaintance, co-worker, and family contexts were examined. The interpersonal valence construct, based on a coactive or mutual-causal paradigm, encompasses traditional source-valence components (credibility, power,…