Sample records for valence-dependent bond-order potentials

  1. The valence bond glass phase

    NASA Astrophysics Data System (ADS)

    Tarzia, M.; Biroli, G.

    2008-06-01

    We show that a new glassy phase can emerge in the presence of strong magnetic frustration and quantum fluctuations. It is a valence bond glass (VBG). We study its properties solving the Hubbard-Heisenberg model on a Bethe lattice within the large-N limit introduced by Affleck and Marston. We work out the phase diagram that contains Fermi liquid, dimer and valence bond glass phases. This new glassy phase has no electronic or spin gap (although a pseudo-gap is observed), it is characterized by long-range critical valence bond correlations and is not related to any magnetic ordering. As a consequence, it is quite different from both valence bond crystals and spin glasses.

  2. A valence bond study of three-center four-electron pi bonding: electronegativity vs electroneutrality.

    PubMed

    DeBlase, Andrew; Licata, Megan; Galbraith, John Morrison

    2008-12-18

    Three-center four-electron (3c4e) pi bonding systems analogous to that of the ozone molecule have been studied using modern valence bond theory. Molecules studied herein consist of combinations of first row atoms C, N, and O with the addition of H atoms where appropriate in order to preserve the 3c4e pi system. Breathing orbital valence bond (BOVB) calculations were preformed at the B3LYP/6-31G**-optimized geometries in order to determine structural weights, pi charge distributions, resonance energies, and pi bond energies. It is found that the most weighted VB structure depends on atomic electronegativity and charge distribution, with electronegativity as the dominant factor. By nature, these systems are delocalized, and therefore, resonance energy is the main contributor to pi bond energies. Molecules with a single dominant VB structure have low resonance energies and therefore low pi bond energies.

  3. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics.

    PubMed

    Gani, Terry Z H; Kulik, Heather J

    2017-11-14

    Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the

  4. Block correlated second order perturbation theory with a generalized valence bond reference function.

    PubMed

    Xu, Enhua; Li, Shuhua

    2013-11-07

    The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a "multi-orbital" block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Mo̸ller-Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.

  5. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predictingmore » acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.« less

  6. Application of the bond valence method in the non-isovalent semiconductor alloy (GaN) 1–x (ZnO) x

    DOE PAGES

    Liu, Jian

    2016-09-29

    This paper studies the bond valence method (BVM) and its application in the non-isovalent semiconductor alloy (GaN) 1-x(ZnO) x. Particular attention is paid to the role of short-range order (SRO). A physical interpretation based on atomic orbital interaction is proposed and examined by density-functional theory (DFT) calculations. Combining BVM with Monte-Carlo simulations and a DFT-based cluster expansion model, bond-length distributions and bond-angle variations are predicted. The correlation between bond valence and bond stiffness is also revealed. Lastly the concept of bond valence is extended into the modelling of an atomistic potential.

  7. Physics of Resonating Valence Bond Spin Liquids

    NASA Astrophysics Data System (ADS)

    Wildeboer, Julia Saskia

    This thesis will investigate various aspects of the physics of resonating valence bond spin liquids. After giving an introduction to the world that lies beyond Landau's priciple of symmetry breaking, e.g. giving an overview of exotic magnetic phases and how they can be described and (possibly) found, we will study a spin-rotationally invariant model system with a known parent Hamiltonian, and argue its ground state to lie within a highly sought after exotic phase, namely the Z2 quantum spin liquid phase. A newly developed numerical procedure --Pfaffian Monte Carlo-- will be introduced to amass evidence that our model Hamiltonian indeed exhibits a Z2 quantum spin liquid phase. Subsequently, we will prove a useful mathematical property of the resonating valence bond states: these states are shown to be linearly independent. Various lattices are investigated concerning this property, and its applications and usefullness are discussed. Eventually, we present a simplified model system describing the interplay of the well known Heisenberg interaction and the Dzyaloshinskii-Moriya (DM) interaction term acting on a sawtooth chain. The effect of the interplay between the two interaction couplings on the phase diagram is investigated. To do so, we employ modern techniques such as the density matrix renormalization group (DMRG) scheme. We find that for weak DM interaction the system exhibits valence bond order. However, a strong enough DM coupling destroys this order.

  8. The effect of diffuse basis functions on valence bond structural weights

    NASA Astrophysics Data System (ADS)

    Galbraith, John Morrison; James, Andrew M.; Nemes, Coleen T.

    2014-03-01

    Structural weights and bond dissociation energies have been determined for H-F, H-X, and F-X molecules (-X = -OH, -NH2, and -CH3) at the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) levels of theory with the aug-cc-pVDZ and 6-31++G(d,p) basis sets. At the BOVB level, the aug-cc-pVDZ basis set yields a counterintuitive ordering of ionic structural weights when the initial heavy atom s-type basis functions are included. For H-F, H-OH, and F-X, the ordering follows chemical intuition when these basis functions are not included. These counterintuitive weights are shown to be a result of the diffuse polarisation function on one VB fragment being spatially located, in part, on the other VB fragment. Except in the case of F-CH3, this problem is corrected with the 6-31++G(d,p) basis set. The initial heavy atom s-type functions are shown to make an important contribution to the VB orbitals and bond dissociation energies and, therefore, should not be excluded. It is recommended to not use diffuse basis sets in valence bond calculations unless absolutely necessary. If diffuse basis sets are needed, the 6-31++G(d,p) basis set should be used with caution and the structural weights checked against VBSCF values which have been shown to follow the expected ordering in all cases.

  9. Valence-Bond Concepts in Coordination Chemistry and the Nature of Metal-Metal Bonds.

    ERIC Educational Resources Information Center

    Pauling, Linus; Herman, Zelek S.

    1984-01-01

    Discusses the valence-bond method, applying it to some coordination compounds of metals, especially those involving metal-metal bonds. Suggests that transition metals can form as many as nine covalent bonds, permitting valence-theory to be extended to transition metal compounds in a more effective way than has been possible before. (JN)

  10. High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    NASA Astrophysics Data System (ADS)

    Farnell, D. J. J.; Richter, J.; Zinke, R.; Bishop, R. F.

    2009-04-01

    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. Néel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J 1- J 2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J 2/ J 1=0.5. The dimerized phase is stable over a range of values for J 2/ J 1 around 0.5, and results for the ground-state energies are in good agreement with the results of exact diagonalizations of finite-length chains in this regime. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J 2/ J 1. A radical change is also observed in the behavior of the CCM sublattice magnetization as we enter the dimerized phase. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the Néel and the dimerized phases. Once again, very good results for the ground-state energies are obtained. We find CCM critical points of the bra-state equations that are in agreement with the known phase transition point for this model. The results for the sublattice magnetization remain near to the "true" value of zero over much of the dimerized regime, although they diverge exactly at the critical point. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4O9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, Néel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are

  11. Bond order potential module for LAMMPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-09-11

    pair_bop is a module for performing energy calculations using the Bond Order Potential (BOP) for use in the parallel molecular dynamics code LAMMPS. The bop pair style computes BOP based upon quantum mechanical incorporating both sigma and pi bondings. By analytically deriving the BOP pair bop from quantum mechanical theory its transferability to different phases can approach that of quantum mechanical methods. This potential is extremely effective at modeling 111-V and II-VI compounds such as GaAs and CdTe. This potential is similar to the original BOP developed by Pettifor and later updated by Murdock et al. and Ward et al.

  12. Combined valence bond-molecular mechanics potential-energy surface and direct dynamics study of rate constants and kinetic isotope effects for the H + C2H6 reaction.

    PubMed

    Chakraborty, Arindam; Zhao, Yan; Lin, Hai; Truhlar, Donald G

    2006-01-28

    This article presents a multifaceted study of the reaction H+C(2)H(6)-->H(2)+C(2)H(5) and three of its deuterium-substituted isotopologs. First we present high-level electronic structure calculations by the W1, G3SX, MCG3-MPWB, CBS-APNO, and MC-QCISD/3 methods that lead to a best estimate of the barrier height of 11.8+/-0.5 kcal/mol. Then we obtain a specific reaction parameter for the MPW density functional in order that it reproduces the best estimate of the barrier height; this yields the MPW54 functional. The MPW54 functional, as well as the MPW60 functional that was previously parametrized for the H+CH(4) reaction, is used with canonical variational theory with small-curvature tunneling to calculate the rate constants for all four ethane reactions from 200 to 2000 K. The final MPW54 calculations are based on curvilinear-coordinate generalized-normal-mode analysis along the reaction path, and they include scaled frequencies and an anharmonic C-C bond torsion. They agree with experiment within 31% for 467-826 K except for a 38% deviation at 748 K; the results for the isotopologs are predictions since these rate constants have never been measured. The kinetic isotope effects (KIEs) are analyzed to reveal the contributions from subsets of vibrational partition functions and from tunneling, which conspire to yield a nonmonotonic temperature dependence for one of the KIEs. The stationary points and reaction-path potential of the MPW54 potential-energy surface are then used to parametrize a new kind of analytical potential-energy surface that combines a semiempirical valence bond formalism for the reactive part of the molecule with a standard molecular mechanics force field for the rest; this may be considered to be either an extension of molecular mechanics to treat a reactive potential-energy surface or a new kind of combined quantum-mechanical/molecular mechanical (QM/MM) method in which the QM part is semiempirical valence bond theory; that is, the new potential

  13. Covalent bond orders and atomic valences from correlated wavefunctions

    NASA Astrophysics Data System (ADS)

    Ángyán, János G.; Rosta, Edina; Surján, Péter R.

    1999-01-01

    A comparison is made between two alternative definitions for covalent bond orders: one derived from the exchange part of the two-particle density matrix and the other expressed as the correlation of fluctuations (covariance) of the number of electrons between the atomic centers. Although these definitions lead to identical formulae for mono-determinantal SCF wavefunctions, they predict different bond orders for correlated wavefunctions. It is shown that, in this case, the fluctuation-based definition leads to slightly lower values of the bond order than does the exchange-based definition, provided one uses an appropriate space-partitioning technique like that of Bader's topological theory of atoms in a molecule; however, use of Mulliken partitioning in this context leads to unphysical behaviour. The example of H 2 is discussed in detail.

  14. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    PubMed

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  15. A complete active space valence bond method with nonorthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Hirao, Kimihiko; Nakano, Haruyuki; Nakayama, Kenichi

    1997-12-01

    A complete active space self-consistent field (SCF) wave function is transformed into a valence bond type representation built from nonorthogonal orbitals, each strongly localized on a single atom. Nonorthogonal complete active space SCF orbitals are constructed by Ruedenberg's projected localization procedure so that they have maximal overlaps with the corresponding minimum basis set of atomic orbitals of the free-atoms. The valence bond structures which are composed of such nonorthogonal quasiatomic orbitals constitute the wave function closest to the concept of the oldest and most simple valence bond method. The method is applied to benzene, butadiene, hydrogen, and methane molecules and compared to the previously proposed complete active space valence bond approach with orthogonal orbitals. The results demonstrate the validity of the method as a powerful tool for describing the electronic structure of various molecules.

  16. Topological Qubits from Valence Bond Solids

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; Affleck, Ian; Raussendorf, Robert

    2018-05-01

    Topological qubits based on S U (N )-symmetric valence-bond solid models are constructed. A logical topological qubit is the ground subspace with twofold degeneracy, which is due to the spontaneous breaking of a global parity symmetry. A logical Z rotation by an angle 2 π /N , for any integer N >2 , is provided by a global twist operation, which is of a topological nature and protected by the energy gap. A general concatenation scheme with standard quantum error-correction codes is also proposed, which can lead to better codes. Generic error-correction properties of symmetry-protected topological order are also demonstrated.

  17. Valence bond and von Neumann entanglement entropy in Heisenberg ladders.

    PubMed

    Kallin, Ann B; González, Iván; Hastings, Matthew B; Melko, Roger G

    2009-09-11

    We present a direct comparison of the recently proposed valence bond entanglement entropy and the von Neumann entanglement entropy on spin-1/2 Heisenberg systems using quantum Monte Carlo and density-matrix renormalization group simulations. For one-dimensional chains we show that the valence bond entropy can be either less or greater than the von Neumann entropy; hence, it cannot provide a bound on the latter. On ladder geometries, simulations with up to seven legs are sufficient to indicate that the von Neumann entropy in two dimensions obeys an area law, even though the valence bond entanglement entropy has a multiplicative logarithmic correction.

  18. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2015-01-01

    Published two-body bond-valence parameters for cation–oxygen bonds have been evaluated via the root mean-square deviation (RMSD) from the valence-sum rule for 128 cations, using 180 194 filtered bond lengths from 31 489 coordination polyhedra. Values of the RMSD range from 0.033–2.451 v.u. (1.1–40.9% per unit of charge) with a weighted mean of 0.174 v.u. (7.34% per unit of charge). The set of best published parameters has been determined for 128 ions and used as a benchmark for the determination of new bond-valence parameters in this paper. Two common methods for the derivation of bond-valence parameters have been evaluated: (1) fixing B and solving for R o; (2) the graphical method. On a subset of 90 ions observed in more than one coordination, fixing B at 0.37 Å leads to a mean weighted-RMSD of 0.139 v.u. (6.7% per unit of charge), while graphical derivation gives 0.161 v.u. (8.0% per unit of charge). The advantages and disadvantages of these (and other) methods of derivation have been considered, leading to the conclusion that current methods of derivation of bond-valence parameters are not satisfactory. A new method of derivation is introduced, the GRG (generalized reduced gradient) method, which leads to a mean weighted-RMSD of 0.128 v.u. (6.1% per unit of charge) over the same sample of 90 multiple-coordination ions. The evaluation of 19 two-parameter equations and 7 three-parameter equations to model the bond-valence–bond-length relation indicates that: (1) many equations can adequately describe the relation; (2) a plateau has been reached in the fit for two-parameter equations; (3) the equation of Brown & Altermatt (1985 ▸) is sufficiently good that use of any of the other equations tested is not warranted. Improved bond-valence parameters have been derived for 135 ions for the equation of Brown & Altermatt (1985 ▸) in terms of both the cation and anion bond-valence sums using the GRG method and our complete data set. PMID

  19. A Definition of the Magnetic Transition Temperature Using Valence Bond Theory.

    PubMed

    Jornet-Somoza, Joaquim; Deumal, Mercè; Borge, Juan; Robb, Michael A

    2018-03-01

    Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature T C for magnetic systems is associated with a maximum in the energy-based heat capacity C p (T). Here a more broadly applicable definition of the magnetic transition temperature T C is described using the spin moment expectation value (i.e., applying the spin exchange density operator) instead of energy. Namely, the magnetic capacity C s (T) reflects variation in the spin multiplicity as a function of temperature, which is shown to be related to ∂[χT(T)]/∂T. Magnetic capacity C s (T) depends on long-range spin interactions that are not relevant in the energy-based heat capacity C p (T). Differences between C s (T) and C p (T) are shown to be due to spin order/disorder within the crystal that can be monitored via a Valence Bond analysis of the corresponding magnetic wave function. Indeed the concept of the Boltzmann spin-alignment order is used to provide information about the spin correlation between magnetic units. As a final illustration, the critical temperature is derived from the magnetic capacity for several molecular magnets presenting different magnetic topologies that have been experimentally studied. A systematic shift between the transition temperatures associated with C s (T) and C p (T) is observed. It is demonstrated that this shift can be attributed to the loss of long-range spin correlation. This suggests that the magnetic capacity C s (T) can be used as a predictive tool for the magnetic topology and thus for the synthetic chemists.

  20. Valence-bond theory of compounds of transition metals

    PubMed Central

    Pauling, Linus

    1975-01-01

    An equation relating the strength (bondforming power) of an spd hybrid bond orbital to the angles it makes with other bond orbitals is formulated and applied in the discussion of the structures of transition-metal carbonyls and other substances by the valence-bond method. The rather simple theory gives results that agree well with those obtained by the complicated and laborious calculation of sets of orthogonal hybrid bond orbitals with maximum strength. PMID:16592279

  1. Seniority Number in Valence Bond Theory.

    PubMed

    Chen, Zhenhua; Zhou, Chen; Wu, Wei

    2015-09-08

    In this work, a hierarchy of valence bond (VB) methods based on the concept of seniority number, defined as the number of singly occupied orbitals in a determinant or an orbital configuration, is proposed and applied to the studies of the potential energy curves (PECs) of H8, N2, and C2 molecules. It is found that the seniority-based VB expansion converges more rapidly toward the full configuration interaction (FCI) or complete active space self-consistent field (CASSCF) limit and produces more accurate PECs with smaller nonparallelity errors than its molecular orbital (MO) theory-based analogue. Test results reveal that the nonorthogonal orbital-based VB theory provides a reverse but more efficient way to truncate the complete active Hilbert space by seniority numbers.

  2. Non-collinear magnetism with analytic Bond-Order Potentials

    NASA Astrophysics Data System (ADS)

    Ford, Michael E.; Pettifor, D. G.; Drautz, Ralf

    2015-03-01

    The theory of analytic Bond-Order Potentials as applied to non-collinear magnetic structures of transition metals is extended to take into account explicit rotations of Hamiltonian and local moment matrix elements between locally and globally defined spin-coordinate systems. Expressions for the gradients of the energy with respect to the Hamiltonian matrix elements, the interatomic forces and the magnetic torques are derived. The method is applied to simulations of the rotation of magnetic moments in α iron, as well as α and β manganese, based on d-valent orthogonal tight-binding parametrizations of the electronic structure. A new weighted-average terminator is introduced to improve the convergence of the Bond-Order Potential energies and torques with respect to tight-binding reference values, although the general behavior is qualitatively correct for low-moment expansions.

  3. Valence-Dependent Belief Updating: Computational Validation.

    PubMed

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement

  4. Valence-Dependent Belief Updating: Computational Validation

    PubMed Central

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement

  5. Influence of polyhedron distortions on calculated bond-valence sums for cations with one lone electron pair.

    PubMed

    Wang, X; Liebau, F

    2007-04-01

    In the present bond-valence model (BVM), the bond-valence parameters r(0) and b are, in general, supposed to be constant for each A-X pair and equal to 0.37 A for all A-X pairs, respectively. For [A(i)(X(j))(n)] coordination polyhedra that do not deviate strongly from regularity, these suppositions are well fulfilled and calculated values for the bond-valence sums (BVS)(i) are nearly equal to the whole-number values of the stoichiometric valence. However, application of the BVM to 2591 [L(i)(X(j))(n)] polyhedra, where L are p-block cations, i.e. cations of the 13th to 17th group of the periodic system of elements, with one lone electron pair and X = O(-II), S(-II) and Se(-II), shows that r(0i) values of individual [LX(n)] polyhedra are correlated with the absolute value /Phi(i)/ of an eccentricity parameter, Phi(i), which is higher for more distorted [LX(n)] polyhedra. As a consequence, calculated (BVS)(i) values for these polyhedra are also correlated with /Phi(i)/, rather than being numerically equal to the stoichiometric valence of L. This is interpreted as the stereochemical influence of the lone electron pair of L. It is shown that the values of the correlation parameters and the R(2) values of the correlation equations depend on the position of the L cation in the periodic system of elements, if the correlations are assumed to be linear. This observation suggests that (BVS)(L) describes a chemical quantity that is different from the stoichiometric valence of L.

  6. Brønsted acidity of protic ionic liquids: a modern ab initio valence bond theory perspective.

    PubMed

    Patil, Amol Baliram; Mahadeo Bhanage, Bhalchandra

    2016-09-21

    Room temperature ionic liquids (ILs), especially protic ionic liquids (PILs), are used in many areas of the chemical sciences. Ionicity, the extent of proton transfer, is a key parameter which determines many physicochemical properties and in turn the suitability of PILs for various applications. The spectrum of computational chemistry techniques applied to investigate ionic liquids includes classical molecular dynamics, Monte Carlo simulations, ab initio molecular dynamics, Density Functional Theory (DFT), CCSD(t) etc. At the other end of the spectrum is another computational approach: modern ab initio Valence Bond Theory (VBT). VBT differs from molecular orbital theory based methods in the expression of the molecular wave function. The molecular wave function in the valence bond ansatz is expressed as a linear combination of valence bond structures. These structures include covalent and ionic structures explicitly. Modern ab initio valence bond theory calculations of representative primary and tertiary ammonium protic ionic liquids indicate that modern ab initio valence bond theory can be employed to assess the acidity and ionicity of protic ionic liquids a priori.

  7. Size-dependent disproportionation (in 2-20 nm regime) and hybrid Bond Valence derived interatomic potentials for BaTaO2N

    NASA Astrophysics Data System (ADS)

    Anbalagan, Kousika; Thomas, Tiju

    2018-05-01

    Interatomic potentials for complex materials (like ceramic systems) are important for realistic molecular dynamics (MD) simulations. Such simulations are relevant for understanding equilibrium, transport and dynamical properties of materials, especially in the nanoregime. Here we derive a hybrid interatomic potential (based on bond valence (BV) derived Morse and Coulomb terms), for modeling a complex ceramic, barium tantalum oxynitride (BaTaO2N). This material has been chosen due to its relevance for capacitive and photoactive applications. However, the material presents processing challenges such as the emergence of non-stoichiometric phases during processing, demonstrating complex processing-property correlations. This makes MD investigations of this material both scientifically and technologically relevant. The BV based hybrid potential presented here has been used for simulating sintering of BaTaO2N nanoparticles ( 2-20 nm) under different conditions (using the relevant canonical ensemble). Notably, we show that sintering of particles of diameter < 10 nm requires no external sintering aids such as the addition of barium sources (since stoichiometry is preserved during heat treatment in this size regime). Also, we observe that sintering of particles > 10 nm in size results in the formation of a cluster of tantalum and oxygen atoms at the interface of the BaTaO2N particles. This is in agreement with the experimental reports. The results presented here suggest that the potential proposed can be used to explore dynamical properties of BaTaO2N and related systems. This work will also open avenues for development of nanoscience-enabled aid-free sintering approaches to this and related materials.

  8. Exploring the Nature of the H[subscript 2] Bond. 1. Using Spreadsheet Calculations to Examine the Valence Bond and Molecular Orbital Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.; Glendening, Eric D.

    2013-01-01

    A three-part project for students in physical chemistry, computational chemistry, or independent study is described in which they explore applications of valence bond (VB) and molecular orbital-configuration interaction (MO-CI) treatments of H[subscript 2]. Using a scientific spreadsheet, students construct potential-energy (PE) curves for several…

  9. Extension of the statistical theory of resonating valence bonds to hyperelectronic metals

    PubMed Central

    Kamb, Barclay; Pauling, Linus

    1985-01-01

    The statistical treatment of resonating covalent bonds in metals, previously applied to hypoelectronic metals, is extended to hyperelectronic metals and to metals with two kinds of bonds. The theory leads to half-integral values of the valence for hyperelectronic metallic elements. PMID:16593632

  10. On the correlations between the polyhedron eccentricity parameters and the bond-valence sums for the cations with one lone electron pair.

    PubMed

    Sidey, Vasyl

    2008-08-01

    Applicability of the Wang-Liebau polyhedron eccentricity parameter in the bond-valence model [Wang & Liebau (2007). Acta Cryst. B63, 216-228] has been found to be doubtful: the correlations between the values of the polyhedron eccentricity parameters and the bond-valence sums calculated for the cations with one lone electron pair are probably an artifact of the poorly determined bond-valence parameters.

  11. Fast and accurate predictions of covalent bonds in chemical space.

    PubMed

    Chang, K Y Samuel; Fias, Stijn; Ramakrishnan, Raghunathan; von Lilienfeld, O Anatole

    2016-05-07

    We assess the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among molecules. We have investigated σ bonding to hydrogen, as well as σ and π bonding between main-group elements, occurring in small sets of iso-valence-electronic molecules with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order Taylor expansions of covalent bonding potentials can achieve high accuracy if (i) the alchemical interpolation is vertical (fixed geometry), (ii) it involves elements from the third and fourth rows of the periodic table, and (iii) an optimal reference geometry is used. This leads to near linear changes in the bonding potential, resulting in analytical predictions with chemical accuracy (∼1 kcal/mol). Second order estimates deteriorate the prediction. If initial and final molecules differ not only in composition but also in geometry, all estimates become substantially worse, with second order being slightly more accurate than first order. The independent particle approximation based second order perturbation theory performs poorly when compared to the coupled perturbed or finite difference approach. Taylor series expansions up to fourth order of the potential energy curve of highly symmetric systems indicate a finite radius of convergence, as illustrated for the alchemical stretching of H2 (+). Results are presented for (i) covalent bonds to hydrogen in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl, GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br); (iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S, CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSi

  12. Energy shift and conduction-to-valence band transition mediated by a time-dependent potential barrier in graphene

    NASA Astrophysics Data System (ADS)

    Chaves, Andrey; da Costa, D. R.; de Sousa, G. O.; Pereira, J. M.; Farias, G. A.

    2015-09-01

    We investigate the scattering of a wave packet describing low-energy electrons in graphene by a time-dependent finite-step potential barrier. Our results demonstrate that, after Klein tunneling through the barrier, the electron acquires an extra energy which depends on the rate of change of the barrier height with time. If this rate is negative, the electron loses energy and ends up as a valence band state after leaving the barrier, which effectively behaves as a positively charged quasiparticle.

  13. Bond-orientational order in liquid Si

    NASA Technical Reports Server (NTRS)

    Wang, Z. Q.; Stroud, D.

    1991-01-01

    Bond-orientational order in liquid Si via Monte Carlo simulation in conjuncation with empirical two- and three-body potentials of the form proposed by Stillinger and Weber are studied. Bond-orientational order (BOO) is described in terms of combinations of spherical harmonic functions. Liquid Si is found to have pronounced short-range BOO corresponding to l = 3, as expected for a structure with local tetrahedral order. No long-range BOO is found either in the equilibrium or the supercooled liquid. When the three-body potential is artificially removed, the tetrahedral bond-orientation order disappears and the liquid assumes a close-packed structure.

  14. Microscopic theory of the nearest-neighbor valence bond sector of the spin-1/2 kagome antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ralko, Arnaud; Mila, Frédéric; Rousochatzakis, Ioannis

    2018-03-01

    The spin-1/2 Heisenberg model on the kagome lattice, which is closely realized in layered Mott insulators such as ZnCu3(OH) 6Cl2 , is one of the oldest and most enigmatic spin-1/2 lattice models. While the numerical evidence has accumulated in favor of a quantum spin liquid, the debate is still open as to whether it is a Z2 spin liquid with very short-range correlations (some kind of resonating valence bond spin liquid), or an algebraic spin liquid with power-law correlations. To address this issue, we have pushed the program started by Rokhsar and Kivelson in their derivation of the effective quantum dimer model description of Heisenberg models to unprecedented accuracy for the spin-1/2 kagome, by including all the most important virtual singlet contributions on top of the orthogonalization of the nearest-neighbor valence bond singlet basis. Quite remarkably, the resulting picture is a competition between a Z2 spin liquid and a diamond valence bond crystal with a 12-site unit cell, as in the density-matrix renormalization group simulations of Yan et al. Furthermore, we found that, on cylinders of finite diameter d , there is a transition between the Z2 spin liquid at small d and the diamond valence bond crystal at large d , the prediction of the present microscopic description for the two-dimensional lattice. These results show that, if the ground state of the spin-1/2 kagome antiferromagnet can be described by nearest-neighbor singlet dimers, it is a diamond valence bond crystal, and, a contrario, that, if the system is a quantum spin liquid, it has to involve long-range singlets, consistent with the algebraic spin liquid scenario.

  15. The role of the 5f valence orbitals of early actinides in chemical bonding

    PubMed Central

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-01-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/ϕ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements. PMID:28681848

  16. The role of the 5f valence orbitals of early actinides in chemical bonding

    NASA Astrophysics Data System (ADS)

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-07-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/φ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements.

  17. Machine learnt bond order potential to investigate the low thermal conductivity of stanene nanostructures

    NASA Astrophysics Data System (ADS)

    Cherukara, Mathew; Narayanan, Badri; Kinaci, Alper; Sasikumar, Kiran; Gray, Stephen; Chan, Maria; Sankaranarayanan, Subramanian

    The growth of stanene on a Bi2Te3\\ substrate has engendered a great deal of interest, in part due to stanene's predicted exotic properties. In particular, stanene shows promise in topological insulation, large-gap 2D quantum spin hall states, lossless electrical conduction, enhanced thermoelectricity, and topological superconductivity. However, atomistic investigations of growth mechanisms (needed to guide synthesis), phonon transport (crucial for designing thermoelectrics), and thermo-mechanical behavior of stanene are scarce. This paucity is primarily due to the lack of inter-atomic potentials that can accurately capture atomic interactions in stanene. To address this, we have developed a machine learnt bond-order potential (BOP) based on Tersoff's formalism that can accurately capture bond breaking/formation events, structure, energetics, thermodynamics, thermal conductivity, and mechanical properties of single layer tin, using a training set derived from density functional theory calculations. Finally, we employed our newly developed BOP to study anisotropy in thermal conductivity of stanene sheets, temperature induced rippling, as well as dependence of anharmonicity and thermal conductivity on temperature.

  18. Efficient parallelization of analytic bond-order potentials for large-scale atomistic simulations

    NASA Astrophysics Data System (ADS)

    Teijeiro, C.; Hammerschmidt, T.; Drautz, R.; Sutmann, G.

    2016-07-01

    Analytic bond-order potentials (BOPs) provide a way to compute atomistic properties with controllable accuracy. For large-scale computations of heterogeneous compounds at the atomistic level, both the computational efficiency and memory demand of BOP implementations have to be optimized. Since the evaluation of BOPs is a local operation within a finite environment, the parallelization concepts known from short-range interacting particle simulations can be applied to improve the performance of these simulations. In this work, several efficient parallelization methods for BOPs that use three-dimensional domain decomposition schemes are described. The schemes are implemented into the bond-order potential code BOPfox, and their performance is measured in a series of benchmarks. Systems of up to several millions of atoms are simulated on a high performance computing system, and parallel scaling is demonstrated for up to thousands of processors.

  19. An analytical bond-order potential for carbon

    DOE PAGES

    Zhou, Xiaowang; Ward, Donald K.; Foster, Michael E.

    2015-05-27

    Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, themore » potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. The potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. An unlimited number of structures not included in the potential parameterization are encountered, thus the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We also demonstrate that our potential reasonably captures the property trends of important carbon phases. As a result, stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure.« less

  20. An analytical bond-order potential for carbon.

    PubMed

    Zhou, X W; Ward, D K; Foster, M E

    2015-09-05

    Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, the potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. Most importantly, the potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. Because an unlimited number of structures not included in the potential parameterization are encountered, the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We demonstrate that our potential reasonably captures the property trends of important carbon phases. Stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure. © 2015 Wiley Periodicals, Inc.

  1. On the correlations between the polyhedron eccentricity parameters and the bond-valence sums for the cations with one lone electron pair. Addendum.

    PubMed

    Sidey, Vasyl

    2009-06-01

    Systematic variations of the bond-valence sums calculated from the poorly determined bond-valence parameters [Sidey (2008), Acta Cryst. B64, 515-518] have been illustrated using a simple graphical scheme.

  2. Ab Initio -Based Bond Order Potential to Investigate Low Thermal Conductivity of Stanene Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherukara, Mathew J.; Narayanan, Badri; Kinaci, Alper

    2016-08-28

    We introduce a bond order potential (BOP) for stanene based on an ab initio derived training data set. The potential is optimized to accurately describe the energetics, as well as thermal and mechanical properties of a free-standing sheet, and used to study diverse nanostructures of stanene, including tubes and ribbons. As a representative case study, using the potential, we perform molecular dynamics simulations to study stanene’s structure and temperature-dependent thermal conductivity. We find that the structure of stanene is highly rippled, far in excess of other 2-D materials (e.g., graphene), owing to its low in-plane stiffness (stanene: ~ 25 N/m;more » graphene: ~ 480 N/ m). The extent of stanene’s rippling also shows stronger temperature dependence compared to that in graphene. Furthermore, we find that stanene based nanostructures have significantly lower thermal conductivity compared to graphene based structures owing to their softness (i.e., low phonon group velocities) and high anharmonic response. Our newly developed BOP will facilitate the exploration of stanene based low dimensional heterostructures for thermoelectric and thermal management applications.« less

  3. Chemical Bonding: The Orthogonal Valence-Bond View

    PubMed Central

    Sax, Alexander F.

    2015-01-01

    Chemical bonding is the stabilization of a molecular system by charge- and spin-reorganization processes in chemical reactions. These processes are said to be local, because the number of atoms involved is very small. With multi-configurational self-consistent field (MCSCF) wave functions, these processes can be calculated, but the local information is hidden by the delocalized molecular orbitals (MO) used to construct the wave functions. The transformation of such wave functions into valence bond (VB) wave functions, which are based on localized orbitals, reveals the hidden information; this transformation is called a VB reading of MCSCF wave functions. The two-electron VB wave functions describing the Lewis electron pair that connects two atoms are frequently called covalent or neutral, suggesting that these wave functions describe an electronic situation where two electrons are never located at the same atom; such electronic situations and the wave functions describing them are called ionic. When the distance between two atoms decreases, however, every covalent VB wave function composed of non-orthogonal atomic orbitals changes its character from neutral to ionic. However, this change in the character of conventional VB wave functions is hidden by its mathematical form. Orthogonal VB wave functions composed of orthonormalized orbitals never change their character. When localized fragment orbitals are used instead of atomic orbitals, one can decide which local information is revealed and which remains hidden. In this paper, we analyze four chemical reactions by transforming the MCSCF wave functions into orthogonal VB wave functions; we show how the reactions are influenced by changing the atoms involved or by changing their local symmetry. Using orthogonal instead of non-orthogonal orbitals is not just a technical issue; it also changes the interpretation, revealing the properties of wave functions that remain otherwise undetected. PMID:25906476

  4. Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.

    PubMed

    Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong

    2016-05-05

    Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes.

  5. Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the potts model.

    PubMed

    Jacobsen, J L; Saleur, H

    2008-02-29

    We determine exactly the probability distribution of the number N_(c) of valence bonds connecting a subsystem of length L>1 to the rest of the system in the ground state of the XXX antiferromagnetic spin chain. This provides, in particular, the asymptotic behavior of the valence-bond entanglement entropy S_(VB)=N_(c)ln2=4ln2/pi(2)lnL disproving a recent conjecture that this should be related with the von Neumann entropy, and thus equal to 1/3lnL. Our results generalize to the Q-state Potts model.

  6. Valence atom with bohmian quantum potential: the golden ratio approach

    PubMed Central

    2012-01-01

    Background The alternative quantum mechanical description of total energy given by Bohmian theory was merged with the concept of the golden ratio and its appearance as the Heisenberg imbalance to provide a new density-based description of the valence atomic state and reactivity charge with the aim of clarifying their features with respect to the so-called DFT ground state and critical charge, respectively. Results The results, based on the so-called double variational algorithm for chemical spaces of reactivity, are fundamental and, among other issues regarding chemical bonding, solve the existing paradox of using a cubic parabola to describe a quadratic charge dependency. Conclusions Overall, the paper provides a qualitative-quantitative explanation of chemical reactivity based on more than half of an electronic pair in bonding, and provide new, more realistic values for the so-called “universal” electronegativity and chemical hardness of atomic systems engaged in reactivity (analogous to the atoms-in-molecules framework). PMID:23146157

  7. Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number

    ERIC Educational Resources Information Center

    Smith, Derek W.

    2005-01-01

    Valence as a numerical measure of an atom's combining power, expressed by the number of bonds it forms in a molecular formulation of the compound in question, was unable to cope with coordination compounds. The covalence of an atom is the nearest model equivalent, but is subject to ambiguity since it often depends on which bonding model is being…

  8. High-valent manganese–oxo valence tautomers and the influence of Lewis/Brönsted acids on C–H bond cleavage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglia, Regina A.; Krest, Courtney M.; Yang, Tzuhsiung

    The addition of Lewis or Brönsted acids (LA = Zn(OTf) 2, B(C 6F 5) 3, HBAr F, TFA) to the high-valent manganese–oxo complex Mn V(O)(TBP 8Cz) results in the stabilization of a valence tautomer Mn IV(O-LA)(TBP 8Cz •+). The Zn II and B(C 6F 5) 3 complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energies and the intensities of the pre-edge (1s to 3d) peaks confirm that the Mn ion is in the +4 oxidation state. Fitting of the extended X-ray absorption fine structure (EXAFS) region reveals 4 N/O ligands at Mn–N avemore » = 1.89 Å and a fifth N/O ligand at 1.61 Å, corresponding to the terminal oxo ligand. This Mn–O bond length is elongated compared to the Mn V(O) starting material (Mn–O = 1.55 Å). The reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H substrates was examined, and it was found that H • abstraction from C–H bonds occurs in a 1:1 stoichiometry, giving a Mn IV complex and the dehydrogenated organic product. The rates of C–H cleavage are accelerated for the Mn IV(O-LA)(TBP 8Cz •+) valence tautomer as compared to the MnV(O) valence tautomer when LA = Zn II, B(C 6F 5) 3, and HBArF, whereas for LA = TFA, the C–H cleavage rate is slightly slower than when compared to MnV(O). A large, nonclassical kinetic isotope effect of k H/ k D = 25–27 was observed for LA = B(C 6F 5) 3 and HBAr F, indicating that H-atom transfer (HAT) is the rate-limiting step in the C–H cleavage reaction and implicating a potential tunneling mechanism for HAT. Furthermore, the reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H bonds depends on the strength of the Lewis acid. The HAT reactivity is compared with the analogous corrole complex Mn IV(O–H)(tpfc •+) recently reported.« less

  9. High-valent manganese–oxo valence tautomers and the influence of Lewis/Brönsted acids on C–H bond cleavage

    DOE PAGES

    Baglia, Regina A.; Krest, Courtney M.; Yang, Tzuhsiung; ...

    2016-09-30

    The addition of Lewis or Brönsted acids (LA = Zn(OTf) 2, B(C 6F 5) 3, HBAr F, TFA) to the high-valent manganese–oxo complex Mn V(O)(TBP 8Cz) results in the stabilization of a valence tautomer Mn IV(O-LA)(TBP 8Cz •+). The Zn II and B(C 6F 5) 3 complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energies and the intensities of the pre-edge (1s to 3d) peaks confirm that the Mn ion is in the +4 oxidation state. Fitting of the extended X-ray absorption fine structure (EXAFS) region reveals 4 N/O ligands at Mn–N avemore » = 1.89 Å and a fifth N/O ligand at 1.61 Å, corresponding to the terminal oxo ligand. This Mn–O bond length is elongated compared to the Mn V(O) starting material (Mn–O = 1.55 Å). The reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H substrates was examined, and it was found that H • abstraction from C–H bonds occurs in a 1:1 stoichiometry, giving a Mn IV complex and the dehydrogenated organic product. The rates of C–H cleavage are accelerated for the Mn IV(O-LA)(TBP 8Cz •+) valence tautomer as compared to the MnV(O) valence tautomer when LA = Zn II, B(C 6F 5) 3, and HBArF, whereas for LA = TFA, the C–H cleavage rate is slightly slower than when compared to MnV(O). A large, nonclassical kinetic isotope effect of k H/ k D = 25–27 was observed for LA = B(C 6F 5) 3 and HBAr F, indicating that H-atom transfer (HAT) is the rate-limiting step in the C–H cleavage reaction and implicating a potential tunneling mechanism for HAT. Furthermore, the reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H bonds depends on the strength of the Lewis acid. The HAT reactivity is compared with the analogous corrole complex Mn IV(O–H)(tpfc •+) recently reported.« less

  10. Pi Bond Orders and Bond Lengths

    ERIC Educational Resources Information Center

    Herndon, William C.; Parkanyi, Cyril

    1976-01-01

    Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)

  11. Linear Response Function of Bond-Order

    PubMed Central

    Suzuki, Nayuta; Mitsuta, Yuki; Okumura, Mitsutaka; Yamanaka, Shusuke

    2016-01-01

    We present the linear response function of bond-orders (LRF-BO) based on a real space integration scheme for molecular systems. As in the case of the LRF of density, the LRF-BO is defined as the response of the bond order of the molecule for the virtual perturbation. Our calculations show that the LRF-BO enables us not only to detect inductive and resonating effects of conjugating systems, but also to predict pKa values on substitution groups via linear relationships between the Hammett constants and the LRF-BO values for meta- and para-substituted benzoic acids. More importantly, the LRF-BO values for the O-H bonds strongly depend on the sites to which the virtual perturbation is applied, implying that the LRF-BO values include essential information about reaction mechanism of the acid-dissociation of substituted benzoic acids. PMID:27792148

  12. Electronic Structure of pi Systems: Part II. The Unification of Huckel and Valence Bond Theories.

    ERIC Educational Resources Information Center

    Fox, Marye Anne; Matsen, F. A.

    1985-01-01

    Presents a new view of the electronic structure of pi systems that unifies molecular orbital and valence bond theories. Describes construction of electronic structure diagrams (central to this new view) which demonstrate how configuration interaction can improve qualitative predictions made from simple Huckel theory. (JN)

  13. Effects of Uncertainty on ERPs to Emotional Pictures Depend on Emotional Valence

    PubMed Central

    Lin, Huiyan; Jin, Hua; Liang, Jiafeng; Yin, Ruru; Liu, Ting; Wang, Yiwen

    2015-01-01

    Uncertainty about the emotional content of an upcoming event has found to modulate neural activity to the event before its occurrence. However, it is still under debate whether the uncertainty effects occur after the occurrence of the event. To address this issue, participants were asked to view emotional pictures that were shortly after a cue, which either indicated a certain emotion of the picture or not. Both certain and uncertain cues were used by neutral symbols. The anticipatory phase (i.e., inter-trial interval, ITI) between the cue and the picture was short to enhance the effects of uncertainty. In addition, we used positive and negative pictures that differed only in valence but not in arousal to investigate whether the uncertainty effect was dependent on emotional valence. Electroencephalography (EEG) was recorded during the presentation of the pictures. Event-related potential (ERP) results showed that negative pictures evoked smaller P2 and late LPP but larger N2 in the uncertain as compared to the certain condition; whereas we did not find the uncertainty effect in early LPP. For positive pictures, the early LPP was larger in the uncertain as compared to the certain condition; however, there were no uncertainty effects in some other ERP components (e.g., P2, N2, and late LPP). The findings suggest that uncertainty modulates neural activity to emotional pictures and this modulation is altered by the valence of the pictures, indicating that individuals alter the allocation of attentional resources toward uncertain emotional pictures dependently on the valence of the pictures. PMID:26733916

  14. Reactive Force Fields via Explicit Valency

    NASA Astrophysics Data System (ADS)

    Kale, Seyit

    Computational simulations are invaluable in elucidating the dynamics of biological macromolecules. Unfortunately, reactions present a fundamental challenge. Calculations based on quantum mechanics can predict bond formation and rupture; however they suffer from severe length- and time-limitations. At the other extreme, classical approaches provide orders of magnitude faster simulations; however they regard chemical bonds as immutable entities. A few exceptions exist, but these are not always trivial to adopt for routine use. We bridge this gap by providing a novel, pseudo-classical approach, based on explicit valency. We unpack molecules into valence electron pairs and atomic cores. Particles bear ionic charges and interact via pairwise-only potentials. The potentials are informed of quantum effects in the short-range and obey dissociation limits in the long-range. They are trained against a small set of isolated species, including geometries and thermodynamics of small hydrides and of dimers formed by them. The resulting force field captures the essentials of reactivity, polarizability and flexibility in a simple, seamless setting. We call this model LEWIS, after the chemical theory that inspired the use of valence pairs. Following the introduction in Chapter 1, we initially focus on the properties of water. Chapter 2 considers gas phase clusters. To transition to the liquid phase, Chapter 3 describes a novel pairwise long-range compensation that performs comparably to infinite lattice summations. The approach is suited to ionic solutions in general. In Chapters 4 and 5, LEWIS is shown to correctly predict the dipolar and quadrupolar response in bulk liquid, and can accommodate proton transfers in both acid and base. Efficiency permits the study of proton defects at dilutions not accessible to experiment or quantum mechanics. Chapter 6 discusses explicit valency approaches in other hydrides, forming the basis of a reactive organic force field. Examples of simple

  15. A bond-order potential for the Al–Cu–H ternary system

    DOE PAGES

    Zhou, X. W.; Ward, D. K.; Foster, M. E.

    2018-02-27

    Al-Based Al–Cu alloys have a very high strength to density ratio, and are therefore important materials for transportation systems including vehicles and aircrafts. These alloys also appear to have a high resistance to hydrogen embrittlement, and as a result, are being explored for hydrogen related applications. To enable fundamental studies of mechanical behavior of Al–Cu alloys under hydrogen environments, we have developed an Al–Cu–H bond-order potential according to the formalism implemented in the molecular dynamics code LAMMPS. Our potential not only fits well to properties of a variety of elemental and compound configurations (with coordination varying from 1 to 12)more » including small clusters, bulk lattices, defects, and surfaces, but also passes stringent molecular dynamics simulation tests that sample chaotic configurations. Careful studies verified that this Al–Cu–H potential predicts structural property trends close to experimental results and quantum-mechanical calculations; in addition, it properly captures Al–Cu, Al–H, and Cu–H phase diagrams and enables simulations of H 2 dissociation, chemisorption, and absorption on Al–Cu surfaces.« less

  16. A bond-order potential for the Al–Cu–H ternary system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X. W.; Ward, D. K.; Foster, M. E.

    Al-Based Al–Cu alloys have a very high strength to density ratio, and are therefore important materials for transportation systems including vehicles and aircrafts. These alloys also appear to have a high resistance to hydrogen embrittlement, and as a result, are being explored for hydrogen related applications. To enable fundamental studies of mechanical behavior of Al–Cu alloys under hydrogen environments, we have developed an Al–Cu–H bond-order potential according to the formalism implemented in the molecular dynamics code LAMMPS. Our potential not only fits well to properties of a variety of elemental and compound configurations (with coordination varying from 1 to 12)more » including small clusters, bulk lattices, defects, and surfaces, but also passes stringent molecular dynamics simulation tests that sample chaotic configurations. Careful studies verified that this Al–Cu–H potential predicts structural property trends close to experimental results and quantum-mechanical calculations; in addition, it properly captures Al–Cu, Al–H, and Cu–H phase diagrams and enables simulations of H 2 dissociation, chemisorption, and absorption on Al–Cu surfaces.« less

  17. Valence-bond theory of linear Hubbard and Pariser-Parr-Pople models

    NASA Astrophysics Data System (ADS)

    Soos, Z. G.; Ramasesha, S.

    1984-05-01

    The ground and low-lying states of finite quantum-cell models with one state per site are obtained exactly through a real-space basis of valence-bond (VB) diagrams that explicitly conserve the total spin. Regular and alternating Hubbard and Pariser-Parr-Pople (PPP) chains and rings with Ne electrons on N(<=12) sites are extrapolated to infinite arrays. The ground-state energy and optical gap of regular U=4|t| Hubbard chains agree with exact results, suggesting comparable accuracy for alternating Hubbard and PPP models, but differ from mean-field results. Molecular PPP parameters describe well the excitations of finite polyenes, odd polyene ions, linear cyanine dyes, and slightly overestimate the absorption peaks in polyacetylene (CH)x. Molecular correlations contrast sharply with uncorrelated descriptions of topological solitons, which are modeled by regular polyene radicals and their ions for both wide and narrow alternation crossovers. Neutral solitons have no midgap absorption and negative spin densities, while the intensity of the in-gap excitation of charged solitons is not enhanced. The properties of correlated states in quantum-cell models with one valence state per site are discussed in the adiabatic limit for excited-state geometries and instabilities to dimerization.

  18. Temperature and pressure dependences of Sm valence in intermediate valence compound SmB6

    NASA Astrophysics Data System (ADS)

    Emi, N.; Mito, T.; Kawamura, N.; Mizumaki, M.; Ishimatsu, N.; Pristáš, G.; Kagayama, T.; Shimizu, K.; Osanai, Y.; Iga, F.

    2018-05-01

    We report the results of the X-ray absorption spectroscopy (XAS) on the intermediate valence compound SmB6. The XAS measurements were performed near the nonmagnetic-magnetic phase boundary. Mean Sm valence vSm was estimated from absorption spectra, and we found that vSm near the boundary (P ≥ 10 GPa and T ∼ 12 K) is far below a trivalent state with magnetic characteristics. Although the result is markedly different from the cases of pressure induced magnetic orders in Yb and Ce compounds, it is likely that the large deviation from the trivalent state seems to be common in some Sm compounds which possess electronic configuration between 4f5 and 4f6 with multi 4 f electrons.

  19. Simultaneous First-Order Valence and Oxygen Vacancy Order/Disorder Transitions in (Pr 0.85 Y 0.15 ) 0.7 Ca 0.3 CoO 3-δ via Analytical Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulec, Ahmet; Phelan, Daniel; Leighton, Chris

    Perovskite cobaltites have been studied for years as some of the few solids to exhibit thermally driven spin-state crossovers. The unanticipated first-order spin and electronic transitions recently discovered in Pr-based cobaltites are notably different from these conventional crossovers, and are understood in terms of a unique valence transition. In essence, the Pr valence is thought to spontaneously shift from 3+ toward 4+ on cooling, driving subsequent transitions in Co valence and electronic/magnetic properties. Here, we apply temperature-dependent transmission electron microscopy and spectroscopy to study this phenomenon, for the first time with atomic spatial resolution, in the prototypical (Pr 0.85Y 0.15)(0.70)more » Ca 0.30CoO 3-δ. In addition to the direct spectroscopic observation of charge transfer between Pr and Co at the 165 K transition (on both the Pr and O edges), we also find a simultaneous order/disorder transition associated with O vacancies. Remarkably, the first-order valence change drives a transition between ordered and random O vacancies, at constant O vacancy density, demonstrating reversible crystallization of such vacancies even at cryogenic temperatures.« less

  20. Motivation but not valence modulates neuroticism-dependent cingulate cortex and insula activity.

    PubMed

    Deng, Yaling; Li, Shijia; Zhou, Renlai; Walter, Martin

    2018-04-01

    Neuroticism has been found to specifically modulate amygdala activations during differential processing of valence and motivation while other brain networks yet are unexplored for associated effects. The main purpose of this study was to investigate whether neural mechanisms processing valence or motivation are prone to neuroticism in the salience network (SN), a network that is anchored in the anterior cingulate cortex (ACC) and the anterior insula. This study used functional magnetic resonance imaging (fMRI) and an approach/avoid emotional pictures task to investigate brain activations modulated by pictures' valence or motivational status between high and low neurotic individuals. We found that neuroticism-dependent SN and the parahippocampal-fusiform area activations were modulated by motivation but not valence. Valence in contrast interacted with neuroticism in the lateral orbitofrontal cortex. We suggested that neuroticism modulated valence and motivation processing, however, under the influence of the two distinct networks. Neuroticism modulated the motivation through the SN while it modulated the valence through the orbitofrontal networks. © 2018 Wiley Periodicals, Inc.

  1. The Changing Nature of the Chemical Bond

    NASA Astrophysics Data System (ADS)

    Angel, R. J.; Ross, N. L.; Zhao, J.

    2006-12-01

    It is commonly assumed that the relationship between bond strength and bond length for a particular pair of atoms is a simple and single-valued one for a given coordination environment; longer bonds are weaker. This is the basis of the concept of bond valence, for example. Indeed, in strongly-bonded oxide minerals, the range of bond lengths found for a given cation-anion polyhedron is so small that it was long thought that the polyhedral bulk moduli were essentially independent of structure type and thus the environment of the polyhedron. This view is incompatible with the discovery that the response of the perovskite structure to high pressures is controlled by the equipartition of bond-valence strain between the A and B cation sites within the structure [1]. The same appears to be true, within experimental uncertainties, for all framework structures with rigid-unit modes. In perovskites, this explicitly implies that the octahedral compressibility depends not only upon the octahedral cation, but also upon the compressibility of the cation-oxygen bonds of the extra-framework (nominally dodecahedral) site. Thus the octahedral compressibility of a B cation site must change as the A- site cation is changed, whether or not the B-O bond lengths change as a result of the substitution on the A site. The strength of bonds is thus dependent upon the crystal environment and not solely upon the bond length. The observation of a plateau effect in the variation of octahedral compressibilities in perovskite solid solutions suggests that the bond-valence matching principle is followed not just globally, but on a local scale as well. Such observations should allow the change with pressure of the excess thermodynamic properties of solid solutions to be directly related to the microscopic (atomic scale) evolution of the structure. [1] Zhao, Ross, & Angel (2004). Acta Cryst. B60:263

  2. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    PubMed

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  3. Clustering of low-valence particles: structure and kinetics.

    PubMed

    Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François

    2014-08-01

    We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.

  4. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Bonding in O3 and SO2.

    PubMed

    Takeshita, Tyler Y; Lindquist, Beth A; Dunning, Thom H

    2015-07-16

    There are many well-known differences in the physical and chemical properties of ozone (O3) and sulfur dioxide (SO2). O3 has longer and weaker bonds than O2, whereas SO2 has shorter and stronger bonds than SO. The O-O2 bond is dramatically weaker than the O-SO bond, and the singlet-triplet gap in SO2 is more than double that in O3. In addition, O3 is a very reactive species, while SO2 is far less so. These disparities have been attributed to variations in the amount of diradical character in the two molecules. In this work, we use generalized valence bond (GVB) theory to characterize the electronic structure of ozone and sulfur dioxide, showing O3 does indeed possess significant diradical character, whereas SO2 is effectively a closed shell molecule. The GVB results provide critical insights into the genesis of the observed difference in these two isoelectronic species. SO2 possesses a recoupled pair bond dyad in the a"(π) system, resulting in SO double bonds. The π system of O3, on the other hand, has a lone pair on the central oxygen atom plus a pair of electrons in orbitals on the terminal oxygen atoms that give rise to a relatively weak π interaction.

  5. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations.

    PubMed

    Chen, Ying; Bylaska, Eric J; Weare, John H

    2017-03-31

    Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick). The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe 3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe 3+ . The water molecules capping surface Fe 3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe 3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe 3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe 3+ , those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe 3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism. Water molecules adjacent to the surface were found to only weakly interact with the surface and as a

  6. Symmetry laws improve electronegativity equalization by orders of magnitude and call for a paradigm shift in conceptual density functional theory.

    PubMed

    von Szentpály, László

    2015-03-05

    The strict Wigner-Witmer symmetry constraints on chemical bonding are shown to determine the accuracy of electronegativity equalization (ENE) to a high degree. Bonding models employing the electronic chemical potential, μ, as the negative of the ground-state electronegativity, χ(GS), frequently collide with the Wigner-Witmer laws in molecule formation. The violations are presented as the root of the substantially disturbing lack of chemical potential equalization (CPE) in diatomic molecules. For the operational chemical potential, μ(op), the relative deviations from CPE fall between -31% ≤ δμ(op) ≤ +70%. Conceptual density functional theory (cDFT) cannot claim to have operationally (not to mention, rigorously) proven and unified the CPE and ENE principles. The solution to this limitation of cDFT and the symmetry violations is found in substituting μ(op) (i) by Mulliken's valence-state electronegativity, χ(M), for atoms and (ii) its new generalization, the valence-pair-affinity, α(VP), for diatomic molecules. Mulliken's χ(M) is equalized into the α(VP) of the bond, and the accuracy of ENE is orders of magnitude better than that of CPE using μ(op). A paradigm shift replacing the dominance of ground states by emphasizing valence states seems to be in order for conceptual DFT.

  7. The triel bond: a potential force for tuning anion-π interactions

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mousavian, Parisasadat

    2018-02-01

    Using ab-initio calculations, the mutual influence between anion-π and B···N or B···C triel bond interactions is investigated in some model complexes. The properties of these complexes are studied by molecular electrostatic potential, noncovalent interaction index, quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. According to the results, the formation of B···N or B···C triel bond interactions in the multi-component systems makes a significant shortening of anion-π distance. Such remarkable variation in the anion-π distances has not been reported previously. The strengthening of the anion-π bonding in the multi-component systems depend significantly on the nature of the anion, and it becomes larger in the order Br- > Cl- > F-. The parameters derived from the QTAIM and NBO methodologies are used to study the mechanism of the cooperativity between the anion-π and triel bond interactions in the multi-component complexes.

  8. Efficient implementation of the many-body Reactive Bond Order (REBO) potential on GPU

    NASA Astrophysics Data System (ADS)

    Trędak, Przemysław; Rudnicki, Witold R.; Majewski, Jacek A.

    2016-09-01

    The second generation Reactive Bond Order (REBO) empirical potential is commonly used to accurately model a wide range hydrocarbon materials. It is also extensible to other atom types and interactions. REBO potential assumes complex multi-body interaction model, that is difficult to represent efficiently in the SIMD or SIMT programming model. Hence, despite its importance, no efficient GPGPU implementation has been developed for this potential. Here we present a detailed description of a highly efficient GPGPU implementation of molecular dynamics algorithm using REBO potential. The presented algorithm takes advantage of rarely used properties of the SIMT architecture of a modern GPU to solve difficult synchronizations issues that arise in computations of multi-body potential. Techniques developed for this problem may be also used to achieve efficient solutions of different problems. The performance of proposed algorithm is assessed using a range of model systems. It is compared to highly optimized CPU implementation (both single core and OpenMP) available in LAMMPS package. These experiments show up to 6x improvement in forces computation time using single processor of the NVIDIA Tesla K80 compared to high end 16-core Intel Xeon processor.

  9. Europium mixed-valence, long-range magnetic order, and dynamic magnetic response in EuCu 2 ( Si x Ge 1 - x ) 2

    DOE PAGES

    Nemkovski, Krill S.; Kozlenko, D. P.; Alekseev, Pavel A.; ...

    2016-11-01

    In mixed-valence or heavy-fermion systems, the hybridization between local f orbitals and conduction band states can cause the suppression of long-range magnetic order, which competes with strong spin uctuations. Ce- and Yb-based systems have been found to exhibit fascinating physical properties (heavy-fermion superconductivity, non-Fermi-liquid states, etc.) when tuned to the vicinity of magnetic quantum critical points by use of various external control parameters (temperature, magnetic eld, chemical composition). Recently, similar effects (mixed-valence, Kondo uctuations, heavy Fermi liquid) have been reported to exist in some Eu-based compounds. Unlike Ce (Yb), Eu has a multiple electron (hole) occupancy of its 4f shell,more » and the magnetic Eu 2+ state (4f 7) has no orbital component in the usual LS coupling scheme, which can lead to a quite different and interesting physics. In the EuCu 2(Si xGe 1-x) 2 series, where the valence can be tuned by varying the Si/Ge ratio, it has been reported that a significant valence uctuation can exist even in the magnetic order regime. This paper presents a detailed study of the latter material using different microscopic probes (XANES, Mossbauer spectroscopy, elastic and inelastic neutron scattering), in which the composition dependence of the magnetic order and dynamics across the series is traced back to the change in the Eu valence state. In particular, the results support the persistence of valence uctuations into the antiferromagnetic state over a sizable composition range below the critical Si concentration x c ≈ 0:65. In conclusion, the sequence of magnetic ground states in the series is shown to re ect the evolution of the magnetic spectral response.« less

  10. Hexatic smectic phase with algebraically decaying bond-orientational order

    NASA Astrophysics Data System (ADS)

    Agosta, Lorenzo; Metere, Alfredo; Dzugutov, Mikhail

    2018-05-01

    The hexatic phase predicted by the theories of two-dimensional melting is characterized by the power-law decay of the orientational correlations, whereas the in-layer bond orientational order in all the hexatic smectic phases observed so far was found to be long range. We report a hexatic smectic phase where the in-layer bond orientational correlations decay algebraically, in quantitative agreement with the hexatic ordering predicted by the theory for two dimensions. The phase was formed in a molecular dynamics simulation of a one-component system of particles interacting via a spherically symmetric potential. The present results thus demonstrate that the theoretically predicted two-dimensional hexatic order can exist in a three-dimensional system.

  11. Valence bond and enzyme catalysis: a time to break down and a time to build up.

    PubMed

    Sharir-Ivry, Avital; Varatharaj, Rajapandian; Shurki, Avital

    2015-05-04

    Understanding enzyme catalysis and developing ability to control of it are two great challenges in biochemistry. A few successful examples of computational-based enzyme design have proved the fantastic potential of computational approaches in this field, however, relatively modest rate enhancements have been reported and the further development of complementary methods is still required. Herein we propose a conceptually simple scheme to identify the specific role that each residue plays in catalysis. The scheme is based on a breakdown of the total catalytic effect into contributions of individual protein residues, which are further decomposed into chemically interpretable components by using valence bond theory. The scheme is shown to shed light on the origin of catalysis in wild-type haloalkane dehalogenase (wt-DhlA) and its mutants. Furthermore, the understanding gained through our scheme is shown to have great potential in facilitating the selection of non-optimal sites for catalysis and suggesting effective mutations to enhance the enzymatic rate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Valence and arousal influence the late positive potential during central and lateralized presentation of images.

    PubMed

    O'Hare, Aminda J; Atchley, Ruth Ann; Young, Keith M

    2017-09-01

    The motivated attention network is believed to be the system that allocates attention toward motivationally relevant, emotional stimuli in order to better prepare an organism for action [Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). Motivated attention: Affect, activation, and action. In P. J. Lang, R. F. Simons, M. Balaban, & R. Simons (Eds.), Attention and orienting: Sensory and motivational processes (pp. 97-135). Psychology Press]. The late positive potential (LPP), an event-related potential (ERP) that is a manifestation of the motivated attention network, has not been found to reliably differentiate the valence of emotionally relevant stimuli. In two studies, we systematically varied epoch, stimulus arousal, stimulus valence, and hemisphere of presentation (Study 2) to investigate valence effects in the LPP. Both central and divided visual field presentations of emotional stimuli found the LPP to be sustained in later windows for high-arousing unpleasant images compared to pleasant images. Further, this effect was driven by sustained LPP responses following left hemisphere presentations of unpleasant stimuli compared to right. Findings are discussed regarding hemispheric processing of emotion and how lateralized emotion processes might contribute to psychopathology.

  13. Bonding in Heavier Group 14 Zero-Valent Complexes-A Combined Maximum Probability Domain and Valence Bond Theory Approach.

    PubMed

    Turek, Jan; Braïda, Benoît; De Proft, Frank

    2017-10-17

    The bonding in heavier Group 14 zero-valent complexes of a general formula L 2 E (E=Si-Pb; L=phosphine, N-heterocyclic and acyclic carbene, cyclic tetrylene and carbon monoxide) is probed by combining valence bond (VB) theory and maximum probability domain (MPD) approaches. All studied complexes are initially evaluated on the basis of the structural parameters and the shape of frontier orbitals revealing a bent structural motif and the presence of two lone pairs at the central E atom. For the VB calculations three resonance structures are suggested, representing the "ylidone", "ylidene" and "bent allene" structures, respectively. The influence of both ligands and central atoms on the bonding situation is clearly expressed in different weights of the resonance structures for the particular complexes. In general, the bonding in the studied E 0 compounds, the tetrylones, is best described as a resonating combination of "ylidone" and "ylidene" structures with a minor contribution of the "bent allene" structure. Moreover, the VB calculations allow for a straightforward assessment of the π-backbonding (E→L) stabilization energy. The validity of the suggested resonance model is further confirmed by the complementary MPD calculations focusing on the E lone pair region as well as the E-L bonding region. Likewise, the MPD method reveals a strong influence of the σ-donating and π-accepting properties of the ligand. In particular, either one single domain or two symmetrical domains are found in the lone pair region of the central atom, supporting the predominance of either the "ylidene" or "ylidone" structures having one or two lone pairs at the central atom, respectively. Furthermore, the calculated average populations in the lone pair MPDs correlate very well with the natural bond orbital (NBO) populations, and can be related to the average number of electrons that is backdonated to the ligands. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bond-order potential for magnetic body-centered-cubic iron and its transferability

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-06-01

    We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to

  15. A corpuscular picture of electrons in chemical bond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ando, Koji

    We introduce a theory of chemical bond with a corpuscular picture of electrons. It employs a minimal set of localized electron wave packets with “floating and breathing” degrees of freedom and the spin-coupling of non-orthogonal valence-bond theory. Its accuracy for describing potential energy curves of chemical bonds in ground and excited states of spin singlet and triplet is examined.

  16. Maximum-valence radii of transition metals

    PubMed Central

    Pauling, Linus

    1975-01-01

    In many of their compounds the transition metals have covalence 9, forming nine bonds with use of nine hybrid spd bond orbitals. A set of maximum-valence single-bond radii is formulated for use in these compounds. These radii are in reasonably good agreement with observed bond lengths. Quadruple bonds between two transition metal atoms are about 50 pm (iron-group atoms) or 55 pm (palladium and platinum-group atoms) shorter than single bonds. This amount of shortening corresponds to four bent single bonds with the best set of bond angles, 79.24° and 128.8°. PMID:16578730

  17. Valence evaluation with approaching or withdrawing cues: directly testing valence-arousal conflict theory.

    PubMed

    Wang, Yan Mei; Li, Ting; Li, Lin

    2017-07-19

    The valence-arousal conflict theory assumes that both valence and arousal will trigger approaching or withdrawing tendencies. It also predicts that the speed of processing emotional stimuli will depend on whether valence and arousal trigger conflicting or congruent motivational tendencies. However, most previous studies have provided evidence of the interaction between valence and arousal only, and have not provided direct proof of the interactive links between valence, arousal and motivational tendencies. The present study provides direct evidence for the relationship between approach-withdrawal tendencies and the valence-arousal conflict. In an empirical test, participants were instructed to judge the valence of emotional words after visual-spatial cues that appeared to be either approaching or withdrawing from participants. A three-way interaction (valence, arousal, and approach-withdrawal tendency) was observed such that the response time was shorter if participants responded to a negative high-arousal stimulus after a withdrawing cue, or to a positive low-arousal stimulus after an approaching cue. These findings suggest that the approach-withdrawal tendency indeed plays a crucial role in valence-arousal conflict, and that the effect depends on the congruency of valence, arousal and tendency at an early stage of processing.

  18. Micro-Valences: Perceiving Affective Valence in Everyday Objects

    PubMed Central

    Lebrecht, Sophie; Bar, Moshe; Barrett, Lisa Feldman; Tarr, Michael J.

    2012-01-01

    Perceiving the affective valence of objects influences how we think about and react to the world around us. Conversely, the speed and quality with which we visually recognize objects in a visual scene can vary dramatically depending on that scene’s affective content. Although typical visual scenes contain mostly “everyday” objects, the affect perception in visual objects has been studied using somewhat atypical stimuli with strong affective valences (e.g., guns or roses). Here we explore whether affective valence must be strong or overt to exert an effect on our visual perception. We conclude that everyday objects carry subtle affective valences – “micro-valences” – which are intrinsic to their perceptual representation. PMID:22529828

  19. Pressure dependence of Ce valence in CeRhIn 5

    DOE PAGES

    Brubaker, Z. E.; Stillwell, R. L.; Chow, P.; ...

    2017-12-14

    We have studied the Ce valence as a function of pressure in CeRhIn5 at 300 K and at 22 K using x-ray absorption spectroscopy in partial fluorescent yield mode. At room temperature, we found no detectable change in Ce valence greater than 0.01 up to a pressure of 5.5 GPa. At 22 K, the valence remains robust against pressure below 6 GPa, in contrast to the predicted valence crossover at P = 2.35 GPa. In conclusion, this work yields an upper limit for the change in Ce-valence and suggests that the critical valence fluctuation scenario, in its current form, ismore » unlikely.« less

  20. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  1. Low-temperature spin dynamics of a valence bond glass in Ba2YMoO6

    NASA Astrophysics Data System (ADS)

    de Vries, M. A.; Piatek, J. O.; Misek, M.; Lord, J. S.; Rønnow, H. M.; Bos, J.-W. G.

    2013-04-01

    We carried out ac magnetic susceptibility measurements and muon spin relaxation spectroscopy on the cubic double perovskite Ba2YMoO6, down to 50 mK. Below ∼1 K the muon relaxation is typical of a magnetic insulator with a spin-liquid type ground state, i.e. without broken symmetries or frozen moments. However, the ac susceptibility revealed a dilute-spin-glass-like transition below ∼1 K. Antiferromagnetically coupled Mo5+ 4d1 electrons in triply degenerate t2g orbitals are in this material arranged in a geometrically frustrated fcc lattice. Bulk magnetic susceptibility data has previously been interpreted in terms of a freezing to a heterogeneous state with non-magnetic sites where 4d1 electrons have paired in spin-singlets dimers, and residual unpaired Mo5+ 4d1 electron spins. Based on the magnetic heat capacity data it has been suggested that this heterogeneity is the result of kinetic constraints intrinsic to the physics of the pure system (possibly due to topological overprotection) leading to a self-induced glass of valence bonds between neighbouring 4d1 electrons. The muon spin relaxation (μSR) unambiguously points to a heterogeneous state with a static arrangement of unpaired electrons in a background of (valence bond) dimers between the majority of Mo5+ 4d electrons. The ac susceptibility data indicate that the residual magnetic moments freeze into a dilute-spin-glass-like state. This is in apparent contradiction with the muon-spin decoupling at 50 mK in fields up to 200 mT, which indicates that, remarkably, the time scale of the field fluctuations from the residual moments is ∼5 ns. Comparable behaviour has been observed in other geometrically frustrated magnets with spin-liquid-like behaviour and the implications of our observations on Ba2YMoO6 are discussed in this context.

  2. Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Byggmästar, J.; Hodille, E. A.; Ferro, Y.; Nordlund, K.

    2018-04-01

    An analytical interatomic bond order potential for the Be-O system is presented. The potential is fitted and compared to a large database of bulk BeO and point defect properties obtained using density functional theory. Its main applications include simulations of plasma-surface interactions involving oxygen or oxide layers on beryllium, as well as simulations of BeO nanotubes and nanosheets. We apply the potential in a study of oxygen irradiation of Be surfaces, and observe the early stages of an oxide layer forming on the Be surface. Predicted thermal and elastic properties of BeO nanotubes and nanosheets are simulated and compared with published ab initio data.

  3. Correlation of molecular valence- and K-shell photoionization resonances with bond lengths

    NASA Technical Reports Server (NTRS)

    Sheehy, J. A.; Gil, T. J.; Winstead, C. L.; Farren, R. E.; Langhoff, P. W.

    1989-01-01

    The relationship between the interatomic distance and the positions of valence-shell and K-shell sigma(asterisk) photoionization resonances is investigated theoretically for the molecules C2, F2, N2, O2, CO, NO, C2H2, C2H4, C2H6, HCN, H2CO, N20, CO2, and C2N2. The results of molecular-orbital computations are presented in three-dimensional diagrams, which are shown to be similar to the wave functions of a particle in a cylindrical well, confirming the validity of free-electron molecular-orbital (FEMO) approximations for modeling the potential along the symmetry axis. FEMO orbital energies and resonance positions are found to be in good agreement with previous theoretical and experimental results. Also included is a Feshbach-Fano analysis of the relevance of virtual-valence orbitals to the appearance of single-channel resonances in molecular photoionization cross sections.

  4. Pressure-induced valence change and moderate heavy fermion state in Eu-compounds

    NASA Astrophysics Data System (ADS)

    Honda, Fuminori; Okauchi, Keigo; Sato, Yoshiki; Nakamura, Ai; Akamine, Hiromu; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Takeuchi, Tetsuya; Valenta, Jaroslav; Prchal, Jiri; Sechovský, Vladimir; Aoki, Dai; Ōnuki, Yoshichika

    2018-05-01

    A pressure-induced valence transition has attracted much attention in Eu-compounds. Among them, EuRh2Si2, EuNi2Ge2, and EuCo2Ge2 reveal the valence transition around 1, 2, and 3 GPa, respectively. We have succeeded in growing single crystals of EuT2X2 (T: transition metal, X: Si, Ge) and studied electronic properties under pressure. EuRh2Si2 indicates a first-order valence transition between 1 and 2 GPa, with a large and prominent hysteresis in the electrical resistivity. At higher pressures, the first-order valence transition changes to a cross-over regime with an intermediate valence state. Tuning of the valence state with pressure is reflected in a drastic change of the temperature dependence of the electrical resistivity in EuRh2Si2 single crystals. Effect of pressure on the valence states on EuRh2Si2, EuIr2Si2, EuNi2Ge2, and EuCo2Ge2, as well as an isostructural related compound EuGa4, are reviewed.

  5. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study.

    PubMed

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-28

    The propensity of four representative conformations of 2(')-deoxyadenosine-5(')-monophosphate (5(')-dAMPH) to bind an excess electron has been studied at the B3LYP6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5(')-dAMPH form adiabatically stable anions. The type of an anionic 5(')-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4(')-C5(') bond. The adiabatic electron affinity of the a_south-syn anion is 1.19 eV, while its vertical detachment energy is 1.89 eV. Our results are compared with the photoelectron spectrum (PES) of 5(')-dAMPH(-) measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  6. Simulating Valence-to-Core X-ray Emission Spectroscopy of Transition Metal Complexes with Time-Dependent Density Functional Theory.

    PubMed

    Zhang, Yu; Mukamel, Shaul; Khalil, Munira; Govind, Niranjan

    2015-12-08

    Valence-to-core (VtC) X-ray emission spectroscopy (XES) has emerged as a powerful technique for the structural characterization of complex organometallic compounds in realistic environments. Since the spectrum represents electronic transitions from the ligand molecular orbitals to the core holes of the metal centers, the approach is more chemically sensitive to the metal-ligand bonding character compared with conventional X-ray absorption techniques. In this paper we study how linear-response time-dependent density functional theory (LR-TDDFT) can be harnessed to simulate K-edge VtC X-ray emission spectra reliably. LR-TDDFT allows one to go beyond the single-particle picture that has been extensively used to simulate VtC-XES. We consider seven low- and high-spin model complexes involving chromium, manganese, and iron transition metal centers. Our results are in good agreement with experiment.

  7. The acoustic correlates of valence depend on emotion family.

    PubMed

    Belyk, Michel; Brown, Steven

    2014-07-01

    The voice expresses a wide range of emotions through modulations of acoustic parameters such as frequency and amplitude. Although the acoustics of individual emotions are well understood, attempts to describe the acoustic correlates of broad emotional categories such as valence have yielded mixed results. In the present study, we analyzed the acoustics of emotional valence for different families of emotion. We divided emotional vocalizations into "motivational," "moral," and "aesthetic" families as defined by the OCC (Ortony, Clore, and Collins) model of emotion. Subjects viewed emotional scenarios and were cued to vocalize congruent exclamations in response to them, for example, "Yay!" and "Damn!". Positive valence was weakly associated with high-pitched and loud vocalizations. However, valence interacted with emotion family for both pitch and amplitude. A general acoustic code for valence does not hold across families of emotion, whereas family-specific codes provide a more accurate description of vocal emotions. These findings are consolidated into a set of "rules of expression" relating vocal dimensions to emotion dimensions. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  8. Levels of Valence

    PubMed Central

    Shuman, Vera; Sander, David; Scherer, Klaus R.

    2013-01-01

    The distinction between the positive and the negative is fundamental in our emotional life. In appraisal theories, in particular in the component process model of emotion (Scherer, 1984, 2010), qualitatively different types of valence are proposed based on appraisals of (un)pleasantness, goal obstructiveness/conduciveness, low or high power, self-(in)congruence, and moral badness/goodness. This multifaceted conceptualization of valence is highly compatible with the frequent observation of mixed feelings in real life. However, it seems to contradict the one-dimensional conceptualization of valence often encountered in psychological theories, and the notion of valence as a common currency used to explain choice behavior. Here, we propose a framework to integrate the seemingly disparate conceptualizations of multifaceted valence and one-dimensional valence by suggesting that valence should be conceived at different levels, micro and macro. Micro-valences correspond to qualitatively different types of evaluations, potentially resulting in mixed feelings, whereas one-dimensional macro-valence corresponds to an integrative “common currency” to compare alternatives for choices. We propose that conceptualizing levels of valence may focus research attention on the mechanisms that relate valence at one level (micro) to valence at another level (macro), leading to new hypotheses, and addressing various concerns that have been raised about the valence concept, such as the valence-emotion relation. PMID:23717292

  9. Fundamental aspects of recoupled pair bonds. I. Recoupled pair bonds in carbon and sulfur monofluoride

    NASA Astrophysics Data System (ADS)

    Dunning, Thom H.; Xu, Lu T.; Takeshita, Tyler Y.

    2015-01-01

    The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their 3P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pair bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a4Σ- states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.

  10. Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Chu, Geng; He, Meng; Zhang, Shu; Xiao, RuiJuan; Li, Hong; Chen, LiQuan

    2014-08-01

    Inorganic solid electrolytes have distinguished advantages in terms of safety and stability, and are promising to substitute for conventional organic liquid electrolytes. However, low ionic conductivity of typical candidates is the key problem. As connective diffusion path is the prerequisite for high performance, we screen for possible solid electrolytes from the 2004 International Centre for Diffraction Data (ICDD) database by calculating conduction pathways using Bond Valence (BV) method. There are 109846 inorganic crystals in the 2004 ICDD database, and 5295 of them contain lithium. Except for those with toxic, radioactive, rare, or variable valence elements, 1380 materials are candidates for solid electrolytes. The rationality of the BV method is approved by comparing the existing solid electrolytes' conduction pathways we had calculated with those from experiments or first principle calculations. The implication for doping and substitution, two important ways to improve the conductivity, is also discussed. Among them Li2CO3 is selected for a detailed comparison, and the pathway is reproduced well with that based on the density functional studies. To reveal the correlation between connectivity of pathways and conductivity, α/ γ-LiAlO2 and Li2CO3 are investigated by the impedance spectrum as an example, and many experimental and theoretical studies are in process to indicate the relationship between property and structure. The BV method can calculate one material within a few minutes, providing an efficient way to lock onto targets from abundant data, and to investigate the structure-property relationship systematically.

  11. Topological Z2 resonating-valence-bond spin liquid on the square lattice

    NASA Astrophysics Data System (ADS)

    Chen, Ji-Yao; Poilblanc, Didier

    2018-04-01

    A one-parameter family of long-range resonating-valence-bond (RVB) state on the square lattice was previously proposed to describe a critical spin liquid (SL) phase of the spin-1/2 frustrated Heisenberg model. We provide evidence that this RVB state in fact also realizes a topological (long-range entangled) Z2 SL, limited by two transitions to critical SL phases. The topological phase is naturally connected to the Z2 gauge symmetry of the local tensor. This Rapid Communication shows that, on one hand, spin-1/2 topological SL with C4 v point-group symmetry and S U (2 ) spin rotation symmetry exists on the square lattice and, on the other hand, criticality and nonbipartiteness are compatible. We also point out that strong similarities between our phase diagram and the ones of classical interacting dimer models suggest both can be described by similar Kosterlitz-Thouless transitions. This scenario is further supported by the analysis of the one-dimensional boundary state. Forms of parent Hamiltonians hosting the Z2 SL are suggested.

  12. Analysis of the bond-valence method for calculating (29) Si and (31) P magnetic shielding in covalent network solids.

    PubMed

    Holmes, Sean T; Alkan, Fahri; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil

    2016-07-05

    (29) Si and (31) P magnetic-shielding tensors in covalent network solids have been evaluated using periodic and cluster-based calculations. The cluster-based computational methodology employs pseudoatoms to reduce the net charge (resulting from missing co-ordination on the terminal atoms) through valence modification of terminal atoms using bond-valence theory (VMTA/BV). The magnetic-shielding tensors computed with the VMTA/BV method are compared to magnetic-shielding tensors determined with the periodic GIPAW approach. The cluster-based all-electron calculations agree with experiment better than the GIPAW calculations, particularly for predicting absolute magnetic shielding and for predicting chemical shifts. The performance of the DFT functionals CA-PZ, PW91, PBE, rPBE, PBEsol, WC, and PBE0 are assessed for the prediction of (29) Si and (31) P magnetic-shielding constants. Calculations using the hybrid functional PBE0, in combination with the VMTA/BV approach, result in excellent agreement with experiment. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Fundamental aspects of recoupled pair bonds. I. Recoupled pair bonds in carbon and sulfur monofluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, Thom H., E-mail: thdjr@uw.edu; Xu, Lu T.; Takeshita, Tyler Y.

    2015-01-21

    The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their {sup 3}P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pairmore » bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a{sup 4}Σ{sup −} states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.« less

  14. Barrier-free proton transfer in the valence anion of 2'-deoxyadenosine-5'-monophosphate. II. A computational study

    NASA Astrophysics Data System (ADS)

    Kobyłecka, Monika; Gu, Jiande; Rak, Janusz; Leszczynski, Jerzy

    2008-01-01

    The propensity of four representative conformations of 2'-deoxyadenosine-5'-monophosphate (5'-dAMPH) to bind an excess electron has been studied at the B3LYP /6-31++G(d,p) level. While isolated canonical adenine does not support stable valence anions in the gas phase, all considered neutral conformations of 5'-dAMPH form adiabatically stable anions. The type of an anionic 5'-dAMPH state, i.e., the valence, dipole bound, or mixed (valence/dipole bound), depends on the internal hydrogen bond(s) pattern exhibited by a particular tautomer. The most stable anion results from an electron attachment to the neutral syn-south conformer. The formation of this anion is associated with a barrier-free proton transfer triggered by electron attachment and the internal rotation around the C4'-C5' bond. The adiabatic electron affinity of the a&barbelow;south-syn anion is 1.19eV, while its vertical detachment energy is 1.89eV. Our results are compared with the photoelectron spectrum (PES) of 5'-dAMPH- measured recently by Stokes et al., [J. Chem. Phys. 128, 044314 (2008)]. The computational VDE obtained for the most stable anionic structure matches well with the experimental electron binding energy region of maximum intensity. A further understanding of DNA damage might require experimental and computational studies on the systems in which purine nucleotides are engaged in hydrogen bonding.

  15. Dissociable Effects of Valence and Arousal on Different Subtypes of Old/New Effect: Evidence from Event-Related Potentials

    PubMed Central

    Xu, Huifang; Zhang, Qin; Li, Bingbing; Guo, Chunyan

    2015-01-01

    Here, we utilized the study-test paradigm combined with recognition confidence assessment and behavioral and event-related potential (ERP) measurements to investigate the effects of valence and arousal on the different subtypes of the old-new effect. We also test the effect of valence and arousal at encoding stage to investigate the underlying mechanism of the effect of the two emotional dimension on different retrieval process. In order to test the effects of valence and arousal on old/new effect precisely, we used the “subject-oriented orthogonal design” which manipulated valence and arousal independently according to subjects’ verbal reporting to investigate the effects of valence and arousal on old/new effect respectively. Three subtypes of old/new effect were obtained in the test phase, which were FN400, LPC, and late positivity over right frontal. They are supposed to be associated with familiarity, recollection, and post-retrieval processes respectively according to previous studies. For the FN400 component, valence affected mid-frontal negativity from 350–500 ms. Pleasant items evoked an enhanced ERP old/new effect relative to unpleasant items. However, arousal only affected LPC amplitude from 500–800 ms. The old/new effect for high-arousal items was greater than for low-arousal items. Valence also affected the amplitude of a positive-going slow wave at right frontal sites from 800–1000 ms, possibly serving as an index of post-retrieval processing. At encoding stage, the valence and arousal also have dissociable effect on the frontal slow wave between 350–800 ms and the centro-parietal positivity in 500–800 ms. The pleasant items evoked a more positive frontal slow wave relative to unpleasant ones, and the high arousal items evoked a larger centro-parietal positivity relative to low arousal ones. These results suggest that valence and arousal may differentially impact these different memory processes: valence affects familiarity and post

  16. Roles of bond orientational ordering in glass transition and crystallization.

    PubMed

    Tanaka, Hajime

    2011-07-20

    It is widely believed that crystallization in three dimensions is primarily controlled by positional ordering, and not by bond orientational ordering. In other words, bond orientational ordering is usually considered to be merely a consequence of positional ordering and thus has often been ignored. This one-order-parameter (density) description may be reasonable when we consider an equilibrium liquid-solid transition, but may not be enough to describe a metastable state and the kinetics of the transition. Here we propose that bond orientational ordering can play a key role in (i) crystallization, (ii) the ordering to quasi-crystal and (iii) vitrification, which occurs under rather weak frustration against crystallization. In a metastable supercooled state before crystallization, a system generally tends to have bond orientational order at least locally as a result of a constraint of dense packing. For a system interacting with hard-core repulsions, the constraint is intrinsically of geometrical origin and thus the basic physics is the same as nematic ordering of rod-like particles upon densification. Furthermore, positional ordering is easily destroyed even by weak frustration such as polydispersity and anisotropic interactions which favour a symmetry not consistent with that of the equilibrium crystal. Thus we may say that vitrification can be achieved by disturbing and prohibiting long-range positional ordering. Even in such a situation, bond orientational ordering still survives, accompanying its critical-like fluctuations, which are the origin of dynamic heterogeneity for this case. This scenario naturally explains both the absence of positional order and the development of bond orientational order upon cooling in a supercooled state. Although our argument is speculative in nature, we emphasize that this physical picture can coherently explain crystallization, vitrification, quasi-crystallization and their relationship in a natural manner. For a strongly

  17. Anharmonic Potential Constants and Their Dependence Upon Bond Length

    DOE R&D Accomplishments Database

    Herschbach, D. R.; Laurie, V. W.

    1961-01-01

    Empirical study of cubic and quartic vibrational force constants for diatomic molecules shows them to be approximately exponential functions of internuclear distance. A family of curves is obtained, determined by the location of the bonded atoms in rows of the periodic table. Displacements between successive curves correspond closely to those in Badger's rule for quadratic force constants (for which the parameters are redetermined to accord with all data now available). Constants for excited electronic and ionic states appear on practically the same curves as those for the ground states. Predictions based on the diatomic correlations agree with the available cubic constants for bond stretching in polyatomic molecules, regardless of the type of bonding involved. Implications of these regularities are discussed. (auth)

  18. Probing the Bond Order Wave Phase Transitions of the Ionic Hubbard Model by Superlattice Modulation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Loida, Karla; Bernier, Jean-Sébastien; Citro, Roberta; Orignac, Edmond; Kollath, Corinna

    2017-12-01

    An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidence, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions signaling the presence of the bond order wave phase. This scheme also provides insights into the excitation spectra of both the band and Mott insulators.

  19. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE PAGES

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina; ...

    2017-01-17

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  20. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  1. Temperature and composition dependence of short-range order and entropy, and statistics of bond length: the semiconductor alloy (GaN)(1-x)(ZnO)(x).

    PubMed

    Liu, Jian; Pedroza, Luana S; Misch, Carissa; Fernández-Serra, Maria V; Allen, Philip B

    2014-07-09

    We present total energy and force calculations for the (GaN)1-x(ZnO)x alloy. Site-occupancy configurations are generated from Monte Carlo (MC) simulations, on the basis of a cluster expansion model proposed in a previous study. Local atomic coordinate relaxations of surprisingly large magnitude are found via density-functional calculations using a 432-atom periodic supercell, for three representative configurations at x = 0.5. These are used to generate bond-length distributions. The configurationally averaged composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. The entropy is approximated in terms of pair distribution statistics and thus related to SRO parameters. This approximate entropy is compared with accurate numerical values from MC simulations. An empirical model for the dependence of the bond length on the local chemical environments is proposed.

  2. B-site cation order/disorder and their valence states in Ba3MnNb2O9 perovskite oxide

    NASA Astrophysics Data System (ADS)

    Xin, Yan; Huang, Qing; Shafieizadeh, Zahra; Zhou, Haidong

    2018-06-01

    Polycrystalline samples Ba3MnNb2O9 synthesized by solid state reaction and single crystal samples grown by optical floating zone have been characterized using scanning transmission electron microscopy and electron energy loss spectroscopy. Three types of B-site Mn and Nb ordering phase are observed: fully ordered 1Mn:2Nb; fully disordered; nano-sized 1Mn:1Nb ordered. No electronic structure change for crystals with different ordering/disordering. The Mn valence is determined to be 2+, and Nb valence is 5+. Oxygen 2p orbitals hybridize with Mn 3d and Nb 4d orbitals. Factors that affect the electron energy loss near edge structures of transition metal white-lines in electron energy loss spectroscopy are explicitly illustrated and discussed.

  3. Resonant inelastic x-ray scattering and photoemission measurement of O2: Direct evidence for dependence of Rydberg-valence mixing on vibrational states in O 1s → Rydberg states

    NASA Astrophysics Data System (ADS)

    Gejo, T.; Oura, M.; Tokushima, T.; Horikawa, Y.; Arai, H.; Shin, S.; Kimberg, V.; Kosugi, N.

    2017-07-01

    High-resolution resonant inelastic x-ray scattering (RIXS) and low-energy photoemission spectra of oxygen molecules have been measured for investigating the electronic structure of Rydberg states in the O 1s → σ* energy region. The electronic characteristics of each Rydberg state have been successfully observed, and new assignments are made for several states. The RIXS spectra clearly show that vibrational excitation is very sensitive to the electronic characteristics because of Rydberg-valence mixing and vibronic coupling in O2. This observation constitutes direct experimental evidence that the Rydberg-valence mixing characteristic depends on the vibrational excitation near the avoided crossing of potential surfaces. We also measured the photoemission spectra of metastable oxygen atoms (O*) from O2 excited to 1s → Rydberg states. The broadening of the 4p Rydberg states of O* has been found with isotropic behavior, implying that excited oxygen molecules undergo dissociation with a lifetime of the order of 10 fs in 1s → Rydberg states.

  4. Polar Cation Ordering: A Route to Introducing >10% Bond Strain Into Layered Oxide Films

    DOE PAGES

    Nelson-Cheeseman, Brittany B.; Zhou, Hua; Balachandran, Prasanna V.; ...

    2014-09-05

    The 3d transition metal (M) perovskite oxides exhibit a remarkable array of properties, including novel forms of superconductivity, magnetism and multiferroicity. Strain can have a profound effect on many of these properties. This is due to the localized nature of the M 3d orbitals, where even small changes in the M–O bond lengths and M–O–M bond angles produced by strain can be used to tune the 3d– O 2p hybridization, creating large changes in electronic structure. We present a new route to strain the M–O bonds in epitaxial two-dimensional perovskite films by tailoring local electrostatic dipolar interactions within every formulamore » unit via atomic layer-by-layer synthesis. The response of the O anions to the resulting dipole electric fields distorts the M–O bonds by more than 10%, without changing substrate strain or chemical composition. We found that this distortion is largest for the apical oxygen atoms (O ap), and alters the transition metal valence state via self-doping without chemical substitution.« less

  5. Presentation-order effects for aesthetic stimulus preference.

    PubMed

    Englund, Mats P; Hellström, Åke

    2012-10-01

    For preference comparisons of paired successive musical excerpts, Koh (American Journal of Psychology, 80, 171-185, 1967) found time-order effects (TOEs) that correlated negatively with stimulus valence-the first (vs. the second) of two unpleasant (vs. two pleasant) excerpts tended to be preferred. We present three experiments designed to investigate whether valence-level-dependent order effects for aesthetic preference (a) can be accounted for using Hellström's (e.g., Journal of Experimental Psychology: Human Perception and Performance, 5, 460-477, 1979) sensation-weighting (SW) model, (b) can be generalized to successive and to simultaneous visual stimuli, and (c) vary, in accordance with the stimulus weighting, with interstimulus interval (ISI; for successive stimuli) or stimulus duration (for simultaneous stimuli). Participants compared paired successive jingles (Exp. 1), successive color patterns (Exp. 2), and simultaneous color patterns (Exp. 3), selecting the preferred stimulus. The results were well described by the SW model, which provided a better fit than did two extended versions of the Bradley-Terry-Luce model. Experiments 1 and 2 revealed higher weights for the second stimulus than for the first, and negatively valence-level-dependent TOEs. In Experiment 3, there was no laterality effect on the stimulus weighting and no valence-level-dependent space-order effects (SOEs). In terms of the SW model, the valence-level-dependent TOEs can be explained as a consequence of differential stimulus weighting in combination with stimulus valence varying from low to high, and the absence of valence-level-dependent SOEs as a consequence of the absence of differential weighting. For successive stimuli, there were no important effects of ISI on weightings and TOEs, and, for simultaneous stimuli, duration had only a small effect on the weighting.

  6. Magnetic analytic bond-order potential for modeling the different phases of Mn at zero Kelvin

    NASA Astrophysics Data System (ADS)

    Drain, John F.; Drautz, Ralf; Pettifor, D. G.

    2014-04-01

    It is known that while group VII 4d Tc and 5d Re have hexagonally close-packed (hcp) ground states, 3d Mn adopts a complex χ-phase ground state, exhibiting complex noncollinear magnetic ordering. Density functional theory (DFT) calculations have shown that without magnetism, the χ phase is still the ground state of Mn implying that magnetism and the resultant atomic-size difference between large- and small-moment atoms are not the critical factors, as is commonly believed, in driving the anomalous stability of the χ phase over hcp. Using a canonical tight-binding (TB) model, it is found that for a more than half-filled d band, while harder potentials stabilize close-packed hcp, a softer potential stabilizes the more open χ phase. By analogy with the structural trend from open to close-packed phases down the group IV elements, the anomalous stability of the χ phase in Mn is shown to be due to 3d valent Mn lacking d states in the core which leads to an effectively softer atomic repulsion between the atoms than in 4d Tc and 5d Re. Subsequently, an analytic bond-order potential (BOP) is developed to investigate the structural and magnetic properties of elemental Mn at 0 K. It is derived within BOP theory directly from a new short-ranged orthogonal d-valent TB model of Mn, the parameters of which are fitted to reproduce the DFT binding energy curves of the four experimentally observed phases of Mn, namely, α, β, γ, δ, and ɛ-Mn. Not only does the BOP reproduce qualitatively the DFT binding energy curves of the five different structure types, it also predicts the complex collinear antiferromagnetic (AFM) ordering in α-Mn, the ferrimagnetic ordering in β-Mn, and the AFM ordering in γ-, δ-, and ɛ-Mn that are found by DFT. A BOP expansion including 14 moments is sufficiently converged to reproduce most of the properties of the TB model with the exception of the elastic shear constants, which require further moments. The current TB model, however, predicts

  7. Transverse momentum dependent (TMD) parton distribution functions generated in the modified DGLAP formalism based on the valence-like distributions

    NASA Astrophysics Data System (ADS)

    Hosseinkhani, H.; Modarres, M.; Olanj, N.

    2017-07-01

    Transverse momentum dependent (TMD) parton distributions, also referred to as unintegrated parton distribution functions (UPDFs), are produced via the Kimber-Martin-Ryskin (KMR) prescription. The GJR08 set of parton distribution functions (PDFs) which are based on the valence-like distributions is used, at the leading order (LO) and the next-to-leading order (NLO) approximations, as inputs of the KMR formalism. The general and the relative behaviors of the generated TMD PDFs at LO and NLO and their ratios in a wide range of the transverse momentum values, i.e. kt2 = 10, 102, 104 and 108GeV2 are investigated. It is shown that the properties of the parent valence-like PDFs are imprinted on the daughter TMD PDFs. Imposing the angular ordering constraint (AOC) leads to the dynamical variable limits on the integrals which in turn increase the contributions from the lower scales at lower kt2. The results are compared with our previous studies based on the MSTW2008 input PDFs and it is shown that the present calculation gives flatter TMD PDFs. Finally, a comparison of longitudinal structure function (FL) is made by using the produced TMD PDFs and those that were generated through the MSTW2008-LO PDF from our previous work and the corresponding data from H1 and ZEUS collaborations and a reasonable agreement is found.

  8. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    PubMed

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-05

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  9. Plasmon satellites in valence-band photoemission spectroscopy. Ab initio study of the photon-energy dependence in semiconductors

    NASA Astrophysics Data System (ADS)

    Guzzo, M.; Kas, J. J.; Sottile, F.; Silly, M. G.; Sirotti, F.; Rehr, J. J.; Reining, L.

    2012-09-01

    We present experimental data and theoretical results for valence-band satellites in semiconductors, using the prototypical example of bulk silicon. In a previous publication we introduced a new approach that allows us to describe satellites in valence photoemission spectroscopy, in good agreement with experiment. Here we give more details; we show how the the spectra change with photon energy, and how the theory explains this behaviour. We also describe how we include several effects which are important to obtain a correct comparison between theory and experiment, such as secondary electrons and photon cross sections. In particular the inclusion of extrinsic losses and their dependence on the photon energy are key to the description of the energy dependence of spectra.

  10. Embodied simulation as part of affective evaluation processes: task dependence of valence concordant EMG activity.

    PubMed

    Weinreich, André; Funcke, Jakob Maria

    2014-01-01

    Drawing on recent findings, this study examines whether valence concordant electromyography (EMG) responses can be explained as an unconditional effect of mere stimulus processing or as somatosensory simulation driven by task-dependent processing strategies. While facial EMG over the Corrugator supercilii and the Zygomaticus major was measured, each participant performed two tasks with pictures of album covers. One task was an affective evaluation task and the other was to attribute the album covers to one of five decades. The Embodied Emotion Account predicts that valence concordant EMG is more likely to occur if the task necessitates a somatosensory simulation of the evaluative meaning of stimuli. Results support this prediction with regard to Corrugator supercilii in that valence concordant EMG activity was only present in the affective evaluation task but not in the non-evaluative task. Results for the Zygomaticus major were ambiguous. Our findings are in line with the view that EMG activity is an embodied part of the evaluation process and not a mere physical outcome.

  11. Lie algebraic approach to valence bond theory of π-electron systems: a preliminary study of excited states

    NASA Astrophysics Data System (ADS)

    Paldus, J.; Li, X.

    1992-10-01

    Following a brief outline of various developments and exploitations of the unitary group approach (UGA), and its extension referred to as Clifford algebra UGA (CAUGA), in molecular electronic structure calculations, we present a summary of a recently introduced implementation of CAUGA for the valence bond (VB) method based on the Pariser-Parr-Pople (PPP)-type Hamiltonian. The existing applications of this PPP-VB approach have been limited to groundstates of various π-electron systems or, at any rate, to the lowest states of a given multiplicity. In this paper the method is applied to the low-lying excited states of several archetypal models, namely cyclobutadiene and benzene, representing antiaromatic and aromatic systems, hexatriene, representing linear polyenic systems and, finally, naphthalene, representing polyacenes.

  12. Mulliken-Hush analysis of a bis(triarylamine) mixed-valence system with a N...N distance of 28.7 A.

    PubMed

    Heckmann, Alexander; Amthor, Stephan; Lambert, Christoph

    2006-07-28

    An organic mixed valence compound with a spacer length of 25 unsaturated bonds separating two amine redox centres was synthesised and the electron transfer behaviour was investigated in the context of a Mulliken-Hush analysis in order to estimate the longest redox centre separation for which an intervalence charge transfer band can be observed.

  13. Electronic properties and bonding in Zr Hx thin films investigated by valence-band x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Magnuson, Martin; Schmidt, Susann; Hultman, Lars; Högberg, Hans

    2017-11-01

    The electronic structure and chemical bonding in reactively magnetron sputtered Zr Hx (x =0.15 , 0.30, 1.16) thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level, and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity toward the H 1s-Zr 4d hybridization region at ˜6 eV below the Fermi level. For low hydrogen content (x =0.15 , 0.30), the films consist of a superposition of hexagonal closest-packed metal (α phase) and understoichiometric δ -Zr Hx (Ca F2 -type structure) phases, while for x =1.16 , the films form single-phase Zr Hx that largely resembles that of stoichiometric δ -Zr H2 phase. We show that the cubic δ -Zr Hx phase is metastable as thin film up to x =1.16 , while for higher H contents the structure is predicted to be tetragonally distorted. For the investigated Zr H1.16 film, we find chemical shifts of 0.68 and 0.51 eV toward higher binding energies for the Zr 4 p3 /2 and 3 d5 /2 peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifies a charge transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemical shifts as a function of hydrogen content is discussed in relation to the charge transfer from Zr to H that affects the conductivity by charge redistribution in the valence band.

  14. Sketching the pion's valence-quark generalised parton distribution

    DOE PAGES

    Mezrag, C.; Chang, L.; Moutarde, H.; ...

    2015-02-01

    In order to learn effectively from measurements of generalised parton distributions (GPDs), it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL) truncation of QCD’s Dyson–Schwinger equations and exemplified via the pion’s valence dressed-quark GPD, H v π(x, ξ, t). Our analysis focuses primarily on ξ=0, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting H v π(x, ξ=±1, t)with the pion’s valence-quark parton distribution amplitude. We explain that the impulse-approximationmore » used hitherto to define the pion’s valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for H v π(x, 0, t), expressed as the Radon transform of a single amplitude. Therewith we obtain results for H v π(x, 0, t) and the associated impact-parameter dependent distribution, q v π(x, |b⊥|), which provide a qualitatively sound picture of the pion’s dressed-quark structure at a hadronic scale. We evolve the distributions to a scale ζ = 2 GeV, so as to facilitate comparisons in future with results from experiment or other nonperturbative methods.« less

  15. Testing time-dependent density functional theory with depopulated molecular orbitals for predicting electronic excitation energies of valence, Rydberg, and charge-transfer states and potential energies near a conical intersection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaohong L.; Truhlar, Donald G., E-mail: truhlar@umn.edu

    2014-09-14

    Kohn-Sham (KS) time-dependent density functional theory (TDDFT) with most exchange-correlation functionals is well known to systematically underestimate the excitation energies of Rydberg and charge-transfer excited states of atomic and molecular systems. To improve the description of Rydberg states within the KS TDDFT framework, Gaiduk et al. [Phys. Rev. Lett. 108, 253005 (2012)] proposed a scheme that may be called HOMO depopulation. In this study, we tested this scheme on an extensive dataset of valence and Rydberg excitation energies of various atoms, ions, and molecules. It is also tested on a charge-transfer excitation of NH{sub 3}-F{sub 2} and on the potentialmore » energy curves of NH{sub 3} near a conical intersection. We found that the method can indeed significantly improve the accuracy of predicted Rydberg excitation energies while preserving reasonable accuracy for valence excitation energies. However, it does not appear to improve the description of charge-transfer excitations that are severely underestimated by standard KS TDDFT with conventional exchange-correlation functionals, nor does it perform appreciably better than standard TDDFT for the calculation of potential energy surfaces.« less

  16. Spectroscopic evidence for temperature dependent relative movement of light and heavy hole valence bands of PbQ (Q=Te,Se,S)

    NASA Astrophysics Data System (ADS)

    Chatterjee, Utpal; Zhao, Junjing; Kanatzidis, Mercouri; Malliakas, Christos

    We have conducted temperature dependent Angle Resolved Photoemission Spectroscopy (ARPES) studies of the electronic structures of PbTe, PbSe and PbS. Our ARPES measurements provide direct evidences for the light hole upper valence bands (UVBs) and the so-called heavy hole lower valence bands (LVBs), and an unusual temperature dependent relative movement between their band maxima leading to a monotonic decrease in the energy separation between LVBs and UVBs with increase in temperature. This enables convergence of these valence bands and consequently an effective increase in the valley degeneracy in PbQ at higher temperatures, which has long been believed to be the driving factor behind their extraordinary thermoelectric performance.

  17. Neural modulation of directed forgetting by valence and arousal: An event-related potential study.

    PubMed

    Gallant, Sara N; Dyson, Benjamin J

    2016-10-01

    Intentional forgetting benefits memory by removing no longer needed information and promoting processing of more relevant materials. This study sought to understand how the behavioural and neurophysiological representation of intentional forgetting would be impacted by emotion. We took a novel approach by examining the unique contribution of both valence and arousal on emotional directed forgetting. Participants completed an item directed forgetting task for positive, negative, and neutral words at high and lower levels of arousal while brain activity was recorded using electroencephalography (EEG). Behaviourally, recognition of to-be-remembered (TBR) and to-be-forgotten (TBF) items varied as a function of valence and arousal with reduced directed forgetting for high arousing negative and neutral words. In the brain, patterns of frontal and posterior activation in response to TBF and TBR cues respectively replicated prior EEG evidence to support involvement of inhibitory and selective rehearsal mechanisms in item directed forgetting. Interestingly, emotion only impacted cue-related posterior activity, which varied depending on specific interactions between valence and arousal. Together, results suggest that the brain handles valence and arousal differently and highlights the importance of considering in a collective manner the multidimensional nature of emotion in experimentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. 19 CFR 19.33 - General order; transportation in bond.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Bonded for the Storage of Wheat § 19.33 General order; transportation in bond. The provisions of §§ 19.29 through 19.32 shall be applicable to those parts of any premises in which imported wheat is stored in a...

  19. Can the second order multireference perturbation theory be considered a reliable tool to study mixed-valence compounds?

    PubMed

    Pastore, Mariachiara; Helal, Wissam; Evangelisti, Stefano; Leininger, Thierry; Malrieu, Jean-Paul; Maynau, Daniel; Angeli, Celestino; Cimiraglia, Renzo

    2008-05-07

    In this paper, the problem of the calculation of the electronic structure of mixed-valence compounds is addressed in the frame of multireference perturbation theory (MRPT). Using a simple mixed-valence compound (the 5,5(') (4H,4H('))-spirobi[ciclopenta[c]pyrrole] 2,2('),6,6(') tetrahydro cation), and the n-electron valence state perturbation theory (NEVPT2) and CASPT2 approaches, it is shown that the ground state (GS) energy curve presents an unphysical "well" for nuclear coordinates close to the symmetric case, where a maximum is expected. For NEVPT, the correct shape of the energy curve is retrieved by applying the MPRT at the (computationally expensive) third order. This behavior is rationalized using a simple model (the ionized GS of two weakly interacting identical systems, each neutral system being described by two electrons in two orbitals), showing that the unphysical well is due to the canonical orbital energies which at the symmetric (delocalized) conformation lead to a sudden modification of the denominators in the perturbation expansion. In this model, the bias introduced in the second order correction to the energy is almost entirely removed going to the third order. With the results of the model in mind, one can predict that all MRPT methods in which the zero order Hamiltonian is based on canonical orbital energies are prone to present unreasonable energy profiles close to the symmetric situation. However, the model allows a strategy to be devised which can give a correct behavior even at the second order, by simply averaging the orbital energies of the two charge-localized electronic states. Such a strategy is adopted in a NEVPT2 scheme obtaining a good agreement with the third order results based on the canonical orbital energies. The answer to the question reported in the title (is this theoretical approach a reliable tool for a correct description of these systems?) is therefore positive, but care must be exercised, either in defining the orbital

  20. Molecular statics simulation of CdTe grain boundary structures and energetics using a bond-order potential

    NASA Astrophysics Data System (ADS)

    Stechmann, Guillaume; Zaefferer, Stefan; Raabe, Dierk

    2018-06-01

    The structure and energetics of coincidence site lattice grain boundaries (GB) in CdTe are investigated by mean of molecular statics simulations, using the Cd–Zn–Te bond-order potential (second iteration) developed by Ward et al (2012 Phys. Rev. B 86 245203; 2013 J. Mol. Modelling 19 5469–77). The effects of misorientation (Σ value) and interface plane are treated separately, complying with the critical need for full five-parameter characterization of GB. In addition, stoichiometric shifts, occurring between the inner interfaces and their adjacent atomic layers, are also predicted, revealing the energetic preference of Te-rich boundaries, opening opportunities for crystallography-based intrinsic interface doping. Our results also suggest that the intuitive assumption that Σ3 boundaries with low-indexed planes are more energetically favorable is often unfounded, except for coherent twins developing on {111} boundary planes. Therefore, Σ5, 7 or 9 boundaries, with lower interface energy than that of twin boundaries lying on different facets, are frequently encountered.

  1. Machine learnt bond order potential to model metal-organic (Co-C) heterostructures.

    PubMed

    Narayanan, Badri; Chan, Henry; Kinaci, Alper; Sen, Fatih G; Gray, Stephen K; Chan, Maria K Y; Sankaranarayanan, Subramanian K R S

    2017-11-30

    A fundamental understanding of the inter-relationships between structure, morphology, atomic scale dynamics, chemistry, and physical properties of mixed metallic-covalent systems is essential to design novel functional materials for applications in flexible nano-electronics, energy storage and catalysis. To achieve such knowledge, it is imperative to develop robust and computationally efficient atomistic models that describe atomic interactions accurately within a single framework. Here, we present a unified Tersoff-Brenner type bond order potential (BOP) for a Co-C system, trained against lattice parameters, cohesive energies, equation of state, and elastic constants of different crystalline phases of cobalt as well as orthorhombic Co 2 C derived from density functional theory (DFT) calculations. The independent BOP parameters are determined using a combination of supervised machine learning (genetic algorithms) and local minimization via the simplex method. Our newly developed BOP accurately describes the structural, thermodynamic, mechanical, and surface properties of both the elemental components as well as the carbide phases, in excellent accordance with DFT calculations and experiments. Using our machine-learnt BOP potential, we performed large-scale molecular dynamics simulations to investigate the effect of metal/carbon concentration on the structure and mechanical properties of porous architectures obtained via self-assembly of cobalt nanoparticles and fullerene molecules. Such porous structures have implications in flexible electronics, where materials with high electrical conductivity and low elastic stiffness are desired. Using unsupervised machine learning (clustering), we identify the pore structure, pore-distribution, and metallic conduction pathways in self-assembled structures at different C/Co ratios. We find that as the C/Co ratio increases, the connectivity between the Co nanoparticles becomes limited, likely resulting in low electrical

  2. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential

    PubMed Central

    Zhou, Yu-Ping; Jiang, Jin-Wu

    2017-01-01

    While most existing theoretical studies on the borophene are based on first-principles calculations, the present work presents molecular dynamics simulations for the lattice dynamical and mechanical properties in borophene. The obtained mechanical quantities are in good agreement with previous first-principles calculations. The key ingredients for these molecular dynamics simulations are the two efficient empirical potentials developed in the present work for the interaction of borophene with low-energy triangular structure. The first one is the valence force field model, which is developed with the assistance of the phonon dispersion of borophene. The valence force field model is a linear potential, so it is rather efficient for the calculation of linear quantities in borophene. The second one is the Stillinger-Weber potential, whose parameters are derived based on the valence force field model. The Stillinger-Weber potential is applicable in molecular dynamics simulations of nonlinear physical or mechanical quantities in borophene. PMID:28349983

  3. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    NASA Astrophysics Data System (ADS)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  4. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  5. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2015-08-01

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  6. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus.

    PubMed

    Jiang, Jin-Wu

    2015-08-07

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  7. Long-range Coulomb forces and localized bonds.

    PubMed

    Preiser; Lösel; Brown; Kunz; Skowron

    1999-10-01

    The ionic model is shown to be applicable to all compounds in which the atoms carry a net charge and their electron density is spherically symmetric regardless of the covalent character of the bonding. By examining the electric field generated by an array of point charges placed at the positions of the ions in over 40 inorganic compounds, we show that the Coulomb field naturally partitions itself into localized regions (bonds) which are characterized by the electric flux that links neighbouring ions of opposite charge. This flux is identified with the bond valence, and Gauss' law with the valence-sum rule, providing a secure theoretical foundation for the bond-valence model. The localization of the Coulomb field provides an unambiguous definition of coordination number and our calculations show that, in addition to the expected primary coordination sphere, there are a number of weak bonds between cations and the anions in the second coordination sphere. Long-range Coulomb interactions are transmitted through the crystal by the application of Gauss' law at each of the intermediate atoms. Bond fluxes have also been calculated for compounds containing ions with non-spherical electron densities (e.g. cations with stereoactive lone electron pairs). In these cases the point-charge model continues to describe the distant field, but multipoles must be added to the point charges to give the correct local field.

  8. Spectroscopic evidence for temperature-dependent convergence of light- and heavy-hole valence bands of PbQ (Q = Te, Se, S)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J.; Malliakas, C. D.; Wijayaratne, K.

    2017-01-01

    We have conducted a temperature- dependent angle-resolved photoemission spectroscopy (ARPES) study of the electronic structures of PbTe, PbSe and PbS. Our ARPES data provide direct evidence for the light-hole upper valence bands (UVBs) and hitherto undetected heavy-hole lower valence bands (LVBs) in these materials. An unusual temperature-dependent relative movement between these bands leads to a monotonic decrease in the energy separation between their maxima with increasing temperature, which is known as band convergence and has long been believed to be the driving factor behind extraordinary thermoelectric performances of these compounds at elevated temperatures.

  9. Spectroscopic evidence for temperature-dependent convergence of light- and heavy-hole valence bands of PbQ (Q = Te, Se, S)

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Malliakas, C. D.; Wijayaratne, K.; Karlapati, V.; Appathurai, N.; Chung, D. Y.; Rosenkranz, S.; Kanatzidis, M. G.; Chatterjee, U.

    2017-01-01

    We have conducted a temperature-dependent angle-resolved photoemission spectroscopy (ARPES) study of the electronic structures of PbTe, PbSe and PbS. Our ARPES data provide direct evidence for the light-hole upper valence bands (UVBs) and hitherto undetected heavy-hole lower valence bands (LVBs) in these materials. An unusual temperature-dependent relative movement between these bands leads to a monotonic decrease in the energy separation between their maxima with increasing temperature, which is known as band convergence and has long been believed to be the driving factor behind extraordinary thermoelectric performances of these compounds at elevated temperatures.

  10. Electronic structure and bonding of ozone

    NASA Astrophysics Data System (ADS)

    Kalemos, Apostolos; Mavridis, Aristides

    2008-08-01

    The ground and low-lying states of ozone (O3) have been studied by multireference variational methods and large basis sets. We have constructed potential energy curves along the bending coordinate for (1,2) 1A', (1,2) 1A'', (1,2) 3A', and (1,2) 3A'' symmetries, optimizing at the same time the symmetric stretching coordinate. Thirteen minima have been located whose geometrical and energetic characteristics are in very good agreement with existing experimental data. Special emphasis has been given to the interpretation of the chemical bond through valence-bond-Lewis diagrams; their appropriate use captures admirably the bonding nature of the O3 molecule. The biradical character of its ground state, adopted long ago by the scientific community, does not follow from a careful analysis of its wave function.

  11. Bonding in Sulfur-Oxygen Compounds-HSO/SOH and SOO/OSO: An Example of Recoupled Pair π Bonding.

    PubMed

    Lindquist, Beth A; Takeshita, Tyler Y; Woon, David E; Dunning, Thom H

    2013-10-08

    The ground states (X(2)A″) of HSO and SOH are extremely close in energy, yet their molecular structures differ dramatically, e.g., re(SO) is 1.485 Å in HSO and 1.632 Å in SOH. The SO bond is also much stronger in HSO than in SOH: 100.3 kcal/mol versus 78.8 kcal/mol [RCCSD(T)-F12/AVTZ]. Similar differences are found in the SO2 isomers, SOO and OSO, depending on whether the second oxygen atom binds to oxygen or sulfur. We report generalized valence bond and RCCSD(T)-F12 calculations on HSO/SOH and OSO/SOO and analyze the bonding in all four species. We find that HSO has a shorter and stronger SO bond than SOH due to the presence of a recoupled pair bond in the π(a″) system of HSO. Similarly, the bonding in SOO and OSO differs greatly. SOO is like ozone and has substantial diradical character, while OSO has two recoupled pair π bonds and negligible diradical character. The ability of the sulfur atom to form recoupled pair bonds provides a natural explanation for the dramatic variation in the bonding in these and many other sulfur-oxygen compounds.

  12. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    PubMed

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations. © 2015 Wiley Periodicals, Inc.

  13. Higher Order Multipole Potentials and Electrostatic Screening Effects on Cohesive Energy and Bulk Modulus of Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Barakat, T.

    2011-12-01

    Higher order multipole potentials and electrostatic screening effects are introduced to incorporate the dangling bonds on the surface of a metallic nanopaticle and to modify the coulomb like potential energy terms, respectively. The total interaction energy function for any metallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terms are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.

  14. Atomic Structure and Valence: Level II, Unit 10, Lesson 1; Chemical Bonding: Lesson 2; The Table of Elements: Lesson 3; Electrolysis: Lesson 4. Advanced General Education Program. A High School Self-Study Program.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Atomic Structure and Valence, Chemical Bonding, The Table of Elements, and Electrolysis. Each of the lessons concludes with a Mastery Test to be completed by the student. (DB)

  15. 3c/4e [small sigma, Greek, circumflex]-type long-bonding competes with ω-bonding in noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I): a NBO/NRT perspective.

    PubMed

    Zhang, Guiqiu; Li, Hong; Weinhold, Frank; Chen, Dezhan

    2016-03-21

    Noble-gas hydrides HNgY are frequently described as a single ionic form (H-Ng)(+)Y(-). We apply natural bond orbital (NBO) and natural resonance theory (NRT) analyses to a series of noble-gas hydrides HNgY (Ng = He, Ne, Ar, Kr, Xe, Rn; Y = F, Cl, Br, I) to gain quantitative insight into the resonance bonding of these hypervalent molecules. We find that each of the studied species should be better represented as a resonance hybrid of three leading resonance structures, namely, H-Ng(+ -):Y (I), H:(- +)Ng-Y (II), and H^Y (III), in which the "ω-bonded" structures I and II arise from the complementary donor-acceptor interactions nY → σ*HNg and nH → σ*NgY, while the "long-bond" ([small sigma, Greek, circumflex]-type) structure III arises from the nNg → [small sigma, Greek, circumflex]*HY/[small sigma, Greek, circumflex]HY interaction. The bonding for all of the studied molecules can be well described in terms of the continuously variable resonance weightings of 3c/4e ω-bonding and [small sigma, Greek, circumflex]-type long-bonding motifs. Furthermore, we find that the calculated bond orders satisfy a generalized form of "conservation of bond order" that incorporates both ω-bonding and long-bonding contributions [viz., (bHNg + bNgY) + bHY = bω-bonding + blong-bonding = 1]. Such "conservation" throughout the title series implies a competitive relationship between ω-bonding and [small sigma, Greek, circumflex]-type long-bonding, whose variations are found to depend in a chemically reasonable manner on the electronegativity of Y and the outer valence-shell character of the central Ng atom. The calculated bond orders are also found to exhibit chemically reasonable correlations with bond lengths, vibrational frequencies, and bond dissociation energies, in accord with Badger's rule and related empirical relationships. Overall, the results provide electronic principles and chemical insight that may prove useful in the rational design of noble-gas hydrides of

  16. Core-valence stockholder AIM analysis and its connection to nonadiabatic effects in small molecules.

    PubMed

    Amaral, Paulo H R; Mohallem, José R

    2017-05-21

    A previous theory of separation of motions of core and valence fractions of electrons in a molecule [J. R. Mohallem et al., Chem. Phys. Lett. 501, 575 (2011)] is invoked as basis for the useful concept of Atoms-in-Molecules (AIM) in the stockholder scheme. The output is a new tool for the analysis of the chemical bond that identifies core and valence electron density fractions (core-valence stockholder AIM (CVSAIM)). One-electron effective potentials for each atom are developed, which allow the identification of the parts of the AIM which move along with the nuclei (cores). This procedure results in a general method for obtaining effective masses that yields accurate non-adiabatic corrections to vibrational energies, necessary to attain cm -1 accuracy in molecular spectroscopy. The clear-cut determination of the core masses is exemplified for either homonuclear (H 2 + , H 2 ) or heteronuclear (HeH + , LiH) molecules. The connection of CVSAIM with independent physically meaningful quantities can resume the question of whether they are observable or not.

  17. Core-valence stockholder AIM analysis and its connection to nonadiabatic effects in small molecules

    PubMed Central

    Amaral, Paulo H. R.; Mohallem, José R.

    2017-01-01

    A previous theory of separation of motions of core and valence fractions of electrons in a molecule [J. R. Mohallem et al., Chem. Phys. Lett. 501, 575 (2011)] is invoked as basis for the useful concept of Atoms-in-Molecules (AIM) in the stockholder scheme. The output is a new tool for the analysis of the chemical bond that identifies core and valence electron density fractions (core-valence stockholder AIM (CVSAIM)). One-electron effective potentials for each atom are developed, which allow the identification of the parts of the AIM which move along with the nuclei (cores). This procedure results in a general method for obtaining effective masses that yields accurate non-adiabatic corrections to vibrational energies, necessary to attain cm−1 accuracy in molecular spectroscopy. The clear-cut determination of the core masses is exemplified for either homonuclear (H2+, H2) or heteronuclear (HeH+, LiH) molecules. The connection of CVSAIM with independent physically meaningful quantities can resume the question of whether they are observable or not. PMID:28527456

  18. Sketching the pion's valence-quark generalised parton distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezrag, C.; Chang, L.; Moutarde, H.

    2015-02-01

    In order to learn effectively from measurements of generalised parton distributions (GPDs), it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL) truncation of QCD's Dyson-Schwinger equations and exemplified via the pion's valence dressed-quark GPD, H-pi(V)(chi, xi, t). Our analysis focuses primarily on xi = 0, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting H-pi(V)(chi, xi = +/- 1, t) with the pion's valence-quark parton distribution amplitude. We explain thatmore » the impulse-approximation used hitherto to define the pion's valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for H(pi)(V)p(chi, 0, t), expressed as the Radon transform of a single amplitude. Therewith we obtain results for H pi V(chi, 0, t) and the associated impact-parameter dependent distribution, q(pi)(V)(chi, vertical bar(b) over right arrow (perpendicular to)vertical bar), which provide a qualitatively sound picture of the pion's dressed-quark structure at a hadronic scale. We evolve the distributions to a scale zeta = 2 GeV, so as to facilitate comparisons in future with results from experiment or other nonperturbative methods. (C) 2014 Published by Elsevier B. V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).« less

  19. Pauling bond strength, bond length and electron density distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.

    2014-01-18

    A power law regression equation, = 1.46(/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, , between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(ρ(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43( /r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined formore » geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M-O bonded interactions for a relatively wide range of M atoms of the

  20. Bonding in phase change materials: concepts and misconceptions.

    PubMed

    Jones, R O

    2018-04-18

    Bonding concepts originating in chemistry are surveyed from a condensed matter perspective, beginning around 1850 with 'valence' and the word 'bond' itself. The analysis of chemical data in the 19th century resulted in astonishing progress in understanding the connectivity and stereochemistry of molecules, almost without input from physicists until the development of quantum mechanics in 1925 and afterwards. The valence bond method popularized by Pauling and the molecular orbital methods of Hund, Mulliken, Bloch, and Hückel play major roles in the subsequent development, as does the central part played by the kinetic energy in covalent bonding (Ruedenberg and others). 'Metallic' (free electron) and related approaches, including pseudopotential and density functional theories, have been remarkably successful in understanding structures and bonding in molecules and solids. We discuss these concepts in the context of phase change materials, which involve the rapid and reversible transition between amorphous and crystalline states, and note the confusion that some have caused, in particular 'resonance' and 'resonant bonding'.

  1. Multistate empirical valence bond study of temperature and confinement effects on proton transfer in water inside hydrophobic nanochannels.

    PubMed

    Tahat, Amani; Martí, Jordi

    2016-07-01

    Microscopic characteristics of an aqueous excess proton in a wide range of thermodynamic states, from low density amorphous ices (down to 100 K) to high temperature liquids under the critical point (up to 600 K), placed inside hydrophobic graphene slabs at the nanometric scale (with interplate distances between 3.1 and 0.7 nm wide) have been analyzed by means of molecular dynamics simulations. Water-proton and carbon-proton forces were modeled with a multistate empirical valence bond method. Densities between 0.07 and 0.02 Å(-3) have been considered. As a general trend, we observed a competition between effects of confinement and temperature on structure and dynamical properties of the lone proton. Confinement has strong influence on the local structure of the proton, whereas the main effect of temperature on proton properties is observed on its dynamics, with significant variation of proton transfer rates, proton diffusion coefficients, and characteristic frequencies of vibrational motions. Proton transfer is an activated process with energy barriers between 1 and 10 kJ/mol for both proton transfer and diffusion, depending of the temperature range considered and also on the interplate distance. Arrhenius-like behavior of the transfer rates and of proton diffusion are clearly observed for states above 100 K. Spectral densities of proton species indicated that in all states Zundel-like and Eigen-like complexes survive at some extent. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients.

    PubMed

    Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2017-09-12

    Using the semiclassical neutral atom theory, we developed a modified fourth-order kinetic energy (KE) gradient expansion (GE4m) that keeps unchanged all the linear-response terms of the uniform electron gas and gives a significant improvement with respect to the known semilocal functionals for both large atoms and jellium surfaces. On the other hand, GE4m is not accurate for light atoms; thus, we modified the GE4m coefficients making them dependent on a novel ingredient, the reduced Hartree potential, recently introduced in the Journal of Chemical Physics 2016, 145, 084110, in the context of exchange functionals. The resulting KE gradient expansion functional, named uGE4m, belongs to the novel class of u-meta-generalized-gradient-approximations (uMGGA) whose members depend on the conventional ingredients (i.e., the reduced gradient and Laplacian of the density) as well as on the reduced Hartree potential. To test uGE4m, we defined an appropriate benchmark (including total KE and KE differences for atoms, molecules and jellium clusters) for gradient expansion functionals, that is, including only those systems which are mainly described by a slowly varying density regime. While most of the GGA and meta-GGA KE functionals (we tested 18 of them) are accurate for some properties and inaccurate for others, uGE4m shows a consistently good performance for all the properties considered. This represents a qualitative boost in the KE functional development and highlights the importance of the reduced Hartree potential for the construction of next-generation KE functionals.

  3. Automated bond order assignment as an optimization problem.

    PubMed

    Dehof, Anna Katharina; Rurainski, Alexander; Bui, Quang Bao Anh; Böcker, Sebastian; Lenhof, Hans-Peter; Hildebrandt, Andreas

    2011-03-01

    Numerous applications in Computational Biology process molecular structures and hence strongly rely not only on correct atomic coordinates but also on correct bond order information. For proteins and nucleic acids, bond orders can be easily deduced but this does not hold for other types of molecules like ligands. For ligands, bond order information is not always provided in molecular databases and thus a variety of approaches tackling this problem have been developed. In this work, we extend an ansatz proposed by Wang et al. that assigns connectivity-based penalty scores and tries to heuristically approximate its optimum. In this work, we present three efficient and exact solvers for the problem replacing the heuristic approximation scheme of the original approach: an A*, an ILP and an fixed-parameter approach (FPT) approach. We implemented and evaluated the original implementation, our A*, ILP and FPT formulation on the MMFF94 validation suite and the KEGG Drug database. We show the benefit of computing exact solutions of the penalty minimization problem and the additional gain when computing all optimal (or even suboptimal) solutions. We close with a detailed comparison of our methods. The A* and ILP solution are integrated into the open-source C++ LGPL library BALL and the molecular visualization and modelling tool BALLView and can be downloaded from our homepage www.ball-project.org. The FPT implementation can be downloaded from http://bio.informatik.uni-jena.de/software/.

  4. Anion ordering, magnetic structure and properties of the vacancy ordered perovskite Ba{sub 3}Fe{sub 3}O{sub 7}F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, Oliver, E-mail: oliver.clemens@nano.tu-darmstadt.de; Karlsruher Institut für Technologie, Institut für Nanotechnologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen; University of Birmingham, School of Chemistry, Birmingham B152TT

    2016-11-15

    This article describes a detailed investigation of the crystallographic and magnetic structure of perovskite type Ba{sub 3}Fe{sub 3}O{sub 7}F by a combined analysis of X-ray and neutron powder diffraction data. Complete ordering of vacancies within the perovskite lattice could be confirmed. In addition, the structure of the anion sublattice was studied by means of the valence bond method, which suggested partial ordering of the fluoride ions on two of the six crystallographically different anion sites. Moreover, the compound was found to show G-type antiferromagnetic ordering of Fe moments, in agreement with magnetometric measurements as well as previously recorded {sup 57}Femore » Mössbauer spectroscopy data. - Graphical abstract: The vacancy and anion ordered structure of Ba{sub 3}Fe{sub 3}O{sub 7}F is described together with its magnetic properties. - Highlights: • Ba{sub 3}Fe{sub 3}O{sub 7}F possesses a unique vacancy order not found for other perovskite type compounds. • The valence bond method was used to locate oxide and fluoride ions. • Fluoride ions are distributed only on two of the six anion sites in Ba{sub 3}Fe{sub 3}O{sub 7}F. • The compound shows G-type antiferromagnetic ordering of magnetic moments. • The magnetic structure could be refined in one of the maximal magnetic subgroups of the nuclear structure.« less

  5. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Qisheng; Miller, Gordon J.

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e –/atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Furthermore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate.

  6. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization

    DOE PAGES

    Lin, Qisheng; Miller, Gordon J.

    2017-12-18

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e –/atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Furthermore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate.

  7. Temperature Dependence in the Terahertz Spectrum of Nicotinamide: Anharmonicity and Hydrogen-Bonded Network.

    PubMed

    Takahashi, Masae; Okamura, Nubuyuki; Fan, Xinyi; Shirakawa, Hitoshi; Minamide, Hiroaki

    2017-04-06

    We have investigated the terahertz-spectral property of nicotinamide focusing on the temperature dependence in the range of 14-300 K. We observed that almost all peaks in the terahertz spectrum of the nicotinamide crystal showed a remarkable shift with temperature, whereas the lowest-frequency peak at 34.8 cm -1 showed a negligible shift with temperature. By analyzing the terahertz spectrum with the dispersion-corrected density functional theory calculations, we found that the difference in the temperature dependence of the peak shift is well understood in terms of the presence/absence of stretching vibration of the intermolecular hydrogen bond in the mode and the change of cell parameters. The anharmonicity in the dissociation potential energy of very weak intermolecular hydrogen bonding causes the remarkable peak shift with temperature in the terahertz spectrum of nicotinamide. This finding suggests that the assignment and identification of peaks in the terahertz spectrum are systematically enabled by temperature-dependent measurements.

  8. Nonresonant valence-to-core x-ray emission spectroscopy of niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravel, Bruce; Kropf, A. Jeremy; Yang, Dali

    The valence-to-core (V2C) portion of x-ray emission spectroscopy (XES) measures the electron states close to the Fermi level. These states are involved in bonding, thus providing a measure of the chemistry of the material. For this paper, we show the V2C XES spectra for several niobium compounds. The Kβ" peak in the V2C XES results from the transition of a ligand 2s electron into the 1s core-hole of the niobium, a transition allowed by hybridization with the niobium 4p . This location in energy of this weak peak shows a strong ligand dependence, thus providing a sensitive probe of themore » ligand environment about the niobium.« less

  9. Nonresonant valence-to-core x-ray emission spectroscopy of niobium

    DOE PAGES

    Ravel, Bruce; Kropf, A. Jeremy; Yang, Dali; ...

    2018-03-23

    The valence-to-core (V2C) portion of x-ray emission spectroscopy (XES) measures the electron states close to the Fermi level. These states are involved in bonding, thus providing a measure of the chemistry of the material. For this paper, we show the V2C XES spectra for several niobium compounds. The Kβ" peak in the V2C XES results from the transition of a ligand 2s electron into the 1s core-hole of the niobium, a transition allowed by hybridization with the niobium 4p . This location in energy of this weak peak shows a strong ligand dependence, thus providing a sensitive probe of themore » ligand environment about the niobium.« less

  10. Bond Order and Chemical Properties of BF, CO, and N[subscript 2

    ERIC Educational Resources Information Center

    Martinie, Ryan J.; Bultema, Jarred J.; Vander Wal, Mark N.; Burkhart, Brandon J.; Vander Griend, Douglas A.; DeKock, Roger L.

    2011-01-01

    The traditional chemical approaches, Lewis electron dot structures and molecular orbital theory, predict the relative bond orders of boron monofluoride, carbon monoxide, and dinitrogen to be BF less than CO less than N[subscript 2]. This is quantified by quantum mechanical, theoretical studies that show the bond orders to be approximately 1.4,…

  11. Metallic behavior and periodical valence ordering in a MMX chain compound, Pt(2)(EtCS(2))(4)I.

    PubMed

    Mitsumi, M; Murase, T; Kishida, H; Yoshinari, T; Ozawa, Y; Toriumi, K; Sonoyama, T; Kitagawa, H; Mitani, T

    2001-11-14

    A new one-dimensional (1-D) halogen-bridged mixed-valence diplatinum(II,III) compound, Pt(2)(EtCS(2))(4)I (3), has been successfully synthesized from [Pt(2)(EtCS(2))(4)] (1) and [Pt(2)(EtCS(2))(4)I(2)] (2). These three compounds have been examined using UV-visible-near-IR, IR, polarized Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray crystal structure analyses (except for 1). Compound 3 was further characterized through electrical transport measurements, determination of the temperature dependence of lattice parameters, X-ray diffuse scattering, and SQUID magnetometry. 3 crystallizes in the monoclinic space group C2/c and exhibits a crystal structure consisting of neutral 1-D chains with a repeating -Pt-Pt-I- unit lying on the crystallographic 2-fold axis parallel to the b axis. The Pt-Pt distance at 293 K is 2.684 (1) A in the dinuclear unit, while the Pt-I distances are essentially equal (2.982 (1) and 2.978 (1) A). 3 shows relatively high electrical conductivity (5-30 S cm(-1)) at room temperature and undergoes a metal-semiconductor transition at T(M-S) = 205 K. The XPS spectrum in the metallic state reveals a Pt(2+) and Pt(3+) mixed-valence state on the time scale of XPS spectroscopy ( approximately 10(-17) s). In accordance with the metal-semiconductor transition, anomalies are observed in the temperature dependence of the crystal structure, lattice parameters, X-ray diffuse scattering, and polarized Raman spectra near T(M-S). In variable-temperature crystal structure analyses, a sudden and drastic increase in the Pt-I distance near the transition temperature is observed. Furthermore, a steep increase in U(22) of iodine atoms in the 1-D chain direction has been observed. The lattice parameters exhibit significant temperature dependence with drastic change in slope at about 205-240 K. This was especially evident in the unit cell parameter b (1-D chain direction) as it was found to lengthen rapidly with increasing temperature. X

  12. Application of valence-to-core X-ray emission spectroscopy for identification and estimation of amount of carbon covalently bonded to chromium in amorphous Cr-C coatings prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Safonov, V. A.; Habazaki, H.; Glatzel, P.; Fishgoit, L. A.; Drozhzhin, O. A.; Lafuerza, S.; Safonova, O. V.

    2018-01-01

    Cr-C coatings containing different amount of carbon ranging from ∼5 to 50 at.% were prepared by the direct current (DC) magnetron sputtering on a polished substrate of polycrystalline silicon. The thickness of the samples was about 400 nm. We characterized the composition and the structure of the as-received coatings and those annealed at 500 °C by X-ray diffraction (XRD), Energy dispersion X-ray spectroscopy (EDX) and valence-to-core X-ray emission spectroscopy (vtc-XES) methods As follows from XRD measurements, the samples with the carbon content above 35 at.% do not demonstrate any sign of the long-range order and annealing at 500 °C does not change their crystallinity. The vtc-XES curves of the as-prepared and annealed samples can be fitted as a superposition of corresponding spectra of chromium metal and chromium carbide (Cr3C2) phases. After the annealing, the content of carbides in the samples (and, correspondingly, the content of covalently bonded carbon) somewhat increases. This suggests that the as-received coatings contain a certain amount of carbon that is not covalently bonded to chromium (most likely, elemental carbon) and their annealing at 500 °C transforms this carbon into the additional (of the order of 2-5 at.%) amount of chromium carbide compounds. It deserves mentioning that for Cr-C coatings prepared by the electrochemical deposition from Cr(III) electrolytes containing organic compounds we have not observed changes in the vtc-X-ray emission spectra after similar annealing. This suggests that electrochemical deposition method in contrast to magnetron sputtering technique even at low temperatures favors the formation of only covalently bonded carbon.

  13. Hydrogen bond asymmetric local potentials in compressed ice.

    PubMed

    Huang, Yongli; Ma, Zengsheng; Zhang, Xi; Zhou, Guanghui; Zhou, Yichun; Sun, Chang Q

    2013-10-31

    A combination of the Lagrangian mechanics of oscillators vibration, molecular dynamics decomposition of volume evolution, and Raman spectroscopy of phonon relaxation has enabled us to resolve the asymmetric, local, and short-range potentials pertaining to the hydrogen bond (O:H-O) in compressed ice. Results show that both oxygen atoms in the O:H-O bond shift initially outwardly with respect to the coordination origin (H), lengthening the O-O distance by 0.0136 nm from 0.2597 to 0.2733 nm by Coulomb repulsion between electron pairs on adjacent oxygen atoms. Both oxygen atoms then move toward right along the O:H-O bond by different amounts upon being compressed, approaching identical length of 0.11 nm. The van der Waals potential VL(r) for the O:H noncovalent bond reaches a valley at -0.25 eV, and the lowest exchange VH(r) for the H-O polar-covalent bond is valued at -3.97 eV.

  14. Conservation and functional importance of carbon-oxygen hydrogen bonding in AdoMet-dependent methyltransferases.

    PubMed

    Horowitz, Scott; Dirk, Lynnette M A; Yesselman, Joseph D; Nimtz, Jennifer S; Adhikari, Upendra; Mehl, Ryan A; Scheiner, Steve; Houtz, Robert L; Al-Hashimi, Hashim M; Trievel, Raymond C

    2013-10-16

    S-adenosylmethionine (AdoMet)-based methylation is integral to metabolism and signaling. AdoMet-dependent methyltransferases belong to multiple distinct classes and share a catalytic mechanism that arose through convergent evolution; however, fundamental determinants underlying this shared methyl transfer mechanism remain undefined. A survey of high-resolution crystal structures reveals that unconventional carbon-oxygen (CH···O) hydrogen bonds coordinate the AdoMet methyl group in different methyltransferases irrespective of their class, active site structure, or cofactor binding conformation. Corroborating these observations, quantum chemistry calculations demonstrate that these charged interactions formed by the AdoMet sulfonium cation are stronger than typical CH···O hydrogen bonds. Biochemical and structural studies using a model lysine methyltransferase and an active site mutant that abolishes CH···O hydrogen bonding to AdoMet illustrate that these interactions are important for high-affinity AdoMet binding and transition-state stabilization. Further, crystallographic and NMR dynamics experiments of the wild-type enzyme demonstrate that the CH···O hydrogen bonds constrain the motion of the AdoMet methyl group, potentially facilitating its alignment during catalysis. Collectively, the experimental findings with the model methyltransferase and structural survey imply that methyl CH···O hydrogen bonding represents a convergent evolutionary feature of AdoMet-dependent methyltransferases, mediating a universal mechanism for methyl transfer.

  15. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    PubMed

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  16. Generalized valence bond description of the ground states (X(1)Σg(+)) of homonuclear pnictogen diatomic molecules: N2, P2, and As2.

    PubMed

    Xu, Lu T; Dunning, Thom H

    2015-06-09

    The ground state, X1Σg+, of N2 is a textbook example of a molecule with a triple bond consisting of one σ and two π bonds. This assignment, which is usually rationalized using molecular orbital (MO) theory, implicitly assumes that the spins of the three pairs of electrons involved in the bonds are singlet-coupled (perfect pairing). However, for a six-electron singlet state, there are five distinct ways to couple the electron spins. The generalized valence bond (GVB) wave function lifts this restriction, including all of the five spin functions for the six electrons involved in the bond. For N2, we find that the perfect pairing spin function is indeed dominant at Re but that it becomes progressively less so from N2 to P2 and As2. Although the perfect pairing spin function is still the most important spin function in P2, the importance of a quasi-atomic spin function, which singlet couples the spins of the electrons in the σ orbitals while high spin coupling those of the electrons in the π orbitals on each center, has significantly increased relative to N2 and, in As2, the perfect pairing and quasi-atomic spin couplings are on essentially the same footing. This change in the spin coupling of the electrons in the bonding orbitals down the periodic table may contribute to the rather dramatic decrease in the strengths of the Pn2 bonds from N2 to As2 as well as in the increase in their chemical reactivity and should be taken into account in more detailed analyses of the bond energies in these species. We also compare the spin coupling in N2 with that in C2, where the quasi-atomic spin coupling dominants around Re.

  17. The temporal dynamics of reversal learning: P3 amplitude predicts valence-specific behavioral adjustment.

    PubMed

    Donaldson, Kayla R; Ait Oumeziane, Belel; Hélie, Sebastien; Foti, Dan

    2016-07-01

    Adapting behavior to dynamic stimulus-reward contingences is a core feature of reversal learning and a capacity thought to be critical to socio-emotional behavior. Impairment in reversal learning has been linked to multiple psychiatric outcomes, including depression, Parkinson's disorder, and substance abuse. A recent influential study introduced an innovative laboratory reversal-learning paradigm capable of disentangling the roles of feedback valence and expectancy. Here, we sought to use this paradigm in order to examine the time-course of reward and punishment learning using event-related potentials among a large, representative sample (N=101). Three distinct phases of processing were examined: initial feedback evaluation (reward positivity, or RewP), allocation of attention (P3), and sustained processing (late positive potential, or LPP). Results indicate a differential pattern of valence and expectancy across these processing stages: the RewP was uniquely related to valence (i.e., positive vs. negative feedback), the P3 was uniquely associated with expectancy (i.e., unexpected vs. expected feedback), and the LPP was sensitive to both valence and expectancy (i.e., main effects of each, but no interaction). The link between ERP amplitudes and behavioral performance was strongest for the P3, and this association was valence-specific. Overall, these findings highlight the potential utility of the P3 as a neural marker for feedback processing in reversal-based learning and establish a foundation for future research in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Beyond Valence and Magnitude: a Flexible Evaluative Coding System in the Brain

    PubMed Central

    Gu, Ruolei; Lei, Zhihui; Broster, Lucas; Wu, Tingting; Jiang, Yang; Luo, Yue-jia

    2013-01-01

    Outcome evaluation is a cognitive process that plays an important role in our daily lives. In most paradigms utilized in the field of experimental psychology, outcome valence and outcome magnitude are the two major features investigated. The classical “independent coding model” suggest that outcome valence and outcome magnitude are evaluated by separate neural mechanisms that may be mapped onto discrete event-related potential (ERP) components: feedback-related negativity (FRN) and the P3, respectively. To examine this model, we presented outcome valence and magnitude sequentially rather than simultaneously. The results reveal that when only outcome valence or magnitude is known, both the FRN and the P3 encode that outcome feature; when both aspects of outcome are known, the cognitive functions of the two components dissociate: the FRN responds to the information available in the current context, while the P3 pattern depends on outcome presentation sequence. The current study indicates that the human evaluative system, indexed in part by the FRN and the P3, is more flexible than previous theories suggested. PMID:22019775

  19. One Way to Design a Valence-Skip Compound.

    PubMed

    Hase, I; Yanagisawa, T; Kawashima, K

    2017-12-01

    Valence-skip compound is a good candidate with high T c and low anisotropy because it has a large attractive interaction at the site of valence-skip atom. However, it is not easy to synthesize such compound because of (i) the instability of the skipping valence state, (ii) the competing charge order, and (iii) that formal valence may not be true in some compounds. In the present study, we show several examples of the valence-skip compounds and discuss how we can design them by first principles calculations. Furthermore, we calculated the electronic structure of a promising candidate of valence skipping compound RbTlCl 3 from first principles. We confirmed that the charge-density wave (CDW) is formed in this compound, and the Tl atoms in two crystallographic different sites take the valence Tl 1+ and Tl 3+ . Structure optimization study reveals that this CDW is stable at the ambient pressure, while this CDW gap can be collapsed when we apply pressure with several gigapascals. In this metallic phase, we can expect a large charge fluctuation and a large electron-phonon interaction.

  20. Pressure and temperature dependence of the Ce valence and c -f hybridization gap in Ce T2In5(T =Co ,Rh ,Ir ) heavy-fermion superconductors

    NASA Astrophysics Data System (ADS)

    Yamaoka, H.; Yamamoto, Y.; Schwier, E. F.; Honda, F.; Zekko, Y.; Ohta, Y.; Lin, J.-F.; Nakatake, M.; Iwasawa, H.; Arita, M.; Shimada, K.; Hiraoka, N.; Ishii, H.; Tsuei, K.-D.; Mizuki, J.

    2015-12-01

    Pressure- and temperature-induced changes in the Ce valence and c -f hybridization of the Ce115 superconductors have been studied systematically. Resonant x-ray-emission spectroscopy indicated that the increase of the Ce valence with pressure was significant for CeCoIn5, and moderate for CeIr (In0.925Cd0.075)5 . We found no abrupt change of the Ce valence in the Kondo regime for CeIr (In0.925Cd0.075)5 , which suggests that valence fluctuations are unlikely to mediate the superconductivity in this material. X-ray-diffraction results were consistent with the pressure-induced change in the Ce valence. High-resolution photoelectron spectroscopy revealed a temperature-dependent reduction of the spectral intensity at the Fermi level, indicating enhanced c -f hybridization on cooling.

  1. Protonated Alcohols Are Examples of Complete Charge-Shift Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Peter; Petit, Alban; Ho, Junming

    2014-10-15

    Accurate gas-phase and solution-phase valence bond calculations reveal that protonation of the hydroxyl group of aliphatic alcohols transforms the C–O bond from a principally covalent bond to a complete charge-shift bond with principally “no-bond” character. All bonding in this charge-shift bond is due to resonance between covalent and ionic structures, which is a different bonding mechanism from that of traditional covalent bonds. Until now, charge-shift bonds have been previously identified in inorganic compounds or in exotic organic compounds. This work showcases that charge-shift bonds can occur in common organic species.

  2. Multireference second order perturbation theory with a simplified treatment of dynamical correlation.

    PubMed

    Xu, Enhua; Zhao, Dongbo; Li, Shuhua

    2015-10-13

    A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.

  3. Consequences of Optimal Bond Valence on Structural Rigidity and Improved Luminescence Properties in Sr xBa 2-xSiO 4:Eu 2+ Orthosilicate Phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denault, Kristin A.; Brgoch, Jakoah; Gaultois, Michael W.

    The orthosilicate phosphors Sr xBa 2–xSiO 4:Eu 2+ have now been known for over four decades and have found extensive recent use in solid-state white lighting. It is well-recognized in the literature and in practice that intermediate compositions in the solid-solutions between the orthosilicates Sr 2SiO 4 and Ba 2SiO 4 yield the best phosphor hosts when the thermal stability of luminescence is considered. We employ a combination of synchrotron X-ray diffraction, total scattering measurements, density functional theory calculations, and low-temperature heat capacity measurements, in conjunction with detailed temperature- and time-resolved studies of luminescence properties to understand the origins ofmore » the improved luminescence properties. We observe that in the intermediate compositions, the two cation sites in the crystal structure are optimally bonded as determined from bond valence sum calculations. Optimal bonding results in a more rigid lattice, as established by the intermediate compositions possessing the highest Debye temperature, which are determined experimentally from low-temperature heat capacity measurements. Greater rigidity in turn results in the highest luminescence efficiency for intermediate compositions at elevated temperatures.« less

  4. Magnetic-field induced quantum critical points of valence transition in Ce- and Yb-based heavy fermions

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques

    2009-03-01

    Valence instability and its critical fluctuations have attracted much attention recently in the heavy-electron systems. Valence fluctuations are essentially charge fluctuations, and it is highly non-trivial how the quantum critical point (QCP) as well as the critical end point is controlled by the magnetic field. To clarify this fundamental issue, we have studied the mechanism of how the critical points of the first-order valence transitions are controlled by the magnetic field [1]. We show that the critical temperature is suppressed to be the QCP by the magnetic field and unexpectedly the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be a cooperative phenomenon of Zeeman effect and Kondo effect, which creates a distinct energy scale from the Kondo temperature. This mechanism explains a peculiar magnetic response in CeIrIn5 and metamagnetic transition in YbXCu4 for X=In as well as a sharp contrast between X=Ag and Cd. We present the novel phenomena under the magnetic field to discuss significance of the proximity of the critical points of the first-order valence transition. [1] S. Watanabe et al. PRL100, (2008) 236401.

  5. Irrational Charge from Topological Order

    NASA Astrophysics Data System (ADS)

    Moessner, R.; Sondhi, S. L.

    2010-10-01

    Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.

  6. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    PubMed

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural

  7. Architectural Representation of Valence in the Limbic System

    PubMed Central

    Namburi, Praneeth; Al-Hasani, Ream; Calhoon, Gwendolyn G; Bruchas, Michael R; Tye, Kay M

    2016-01-01

    In order to thrive, animals must be able to recognize aversive and appetitive stimuli within the environment and subsequently initiate appropriate behavioral responses. This assignment of positive or negative valence to a stimulus is a key feature of emotional processing, the neural substrates of which have been a topic of study for several decades. Until recently, the result of this work has been the identification of specific brain regions, such as the basolateral amygdala (BLA) and nucleus accumbens (NAc), as important to valence encoding. The advent of modern tools in neuroscience has allowed further dissection of these regions to identify specific populations of neurons signaling the valence of environmental stimuli. In this review, we focus upon recent work examining the mechanisms of valence encoding, and provide a model for the systematic investigation of valence within anatomically-, genetically-, and functionally defined populations of neurons. PMID:26647973

  8. Investigation of the Impact of Different Terms in the Second Order Hamiltonian on Excitation Energies of Valence and Rydberg States.

    PubMed

    Tajti, Attila; Szalay, Péter G

    2016-11-08

    Describing electronically excited states of molecules accurately poses a challenging problem for theoretical methods. Popular second order techniques like Linear Response CC2 (CC2-LR), Partitioned Equation-of-Motion MBPT(2) (P-EOM-MBPT(2)), or Equation-of-Motion CCSD(2) (EOM-CCSD(2)) often produce results that are controversial and are ill-balanced with their accuracy on valence and Rydberg type states. In this study, we connect the theory of these methods and, to investigate the origin of their different behavior, establish a series of intermediate variants. The accuracy of these on excitation energies of singlet valence and Rydberg electronic states is benchmarked on a large sample against high-accuracy Linear Response CC3 references. The results reveal the role of individual terms of the second order similarity transformed Hamiltonian, and the reason for the bad performance of CC2-LR in the description of Rydberg states. We also clarify the importance of the T̂ 1 transformation employed in the CC2 procedure, which is found to be very small for vertical excitation energies.

  9. Ultra-stiff metallic glasses through bond energy density design.

    PubMed

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  10. Identification and Characterization of Molecular Bonding Structures by ab initio Quasi-Atomic Orbital Analyses.

    PubMed

    West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus

    2017-11-22

    The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.

  11. Valence interacts with the early ERP old/new effect and arousal with the sustained ERP old/new effect for affective pictures.

    PubMed

    Van Strien, Jan W; Langeslag, Sandra J E; Strekalova, Nadja J; Gootjes, Liselotte; Franken, Ingmar H A

    2009-01-28

    To examine whether valence and arousal influence recognition memory during early automatic or during more sustained processes, event-related brain potentials (ERPs) of 21 women were recorded while they made old/new judgments in a continuous recognition task with pictures from the International Affective Picture System. The pictures were presented twice and differed in emotional valence and arousal. The P1 peak and four time windows were investigated: 200-300 ms, 300-400 ms, 400-600 ms, and 750-1000 ms after stimulus onset. There was a robust old/new effect starting in the 200-300 ms epoch and lasting all time windows. The valence effect was mainly present in the P1 peak and the 200-400 ms epoch, whereas the arousal effect was found in the 300-1000 ms epoch. Exploratory sLORETA analyses dissociated valence-dependent ventromedial prefrontal activity and arousal-dependent occipital activity in the 350-380 ms time window. Valence interacted with the 200-400 ms old/new effect at central and frontal sites. Arousal interacted with the 750-1000 ms old/new effect at posterior sites. It is concluded that valence influences fast recognition memory, while arousal may influence sustained encoding.

  12. Accurate Valence Ionization Energies from Kohn-Sham Eigenvalues with the Help of Potential Adjustors.

    PubMed

    Thierbach, Adrian; Neiss, Christian; Gallandi, Lukas; Marom, Noa; Körzdörfer, Thomas; Görling, Andreas

    2017-10-10

    An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G 0 W 0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in

  13. Ferromagnetic bond of Li{sub 10} cluster: An alternative approach in terms of effective ferromagnetic sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donoso, Roberto; Fuentealba, Patricio, E-mail: pfuentea@hotmail.es, E-mail: cardena@macul.ciencias.uchile.cl; Cárdenas, Carlos, E-mail: pfuentea@hotmail.es, E-mail: cardena@macul.ciencias.uchile.cl

    In this work, a model to explain the unusual stability of atomic lithium clusters in their highest spin multiplicity is presented and used to describe the ferromagnetic bonding of high-spin Li{sub 10} and Li{sub 8} clusters. The model associates the (lack of-)fitness of Heisenberg Hamiltonian with the degree of (de-)localization of the valence electrons in the cluster. It is shown that a regular Heisenberg Hamiltonian with four coupling constants cannot fully explain the energy of the different spin states. However, a more simple model in which electrons are located not at the position of the nuclei but at the positionmore » of the attractors of the electron localization function succeeds in explaining the energy spectrum and, at the same time, explains the ferromagnetic bond found by Shaik using arguments of valence bond theory. In this way, two different points of view, one more often used in physics, the Heisenberg model, and the other in chemistry, valence bond, come to the same answer to explain those atypical bonds.« less

  14. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings.

    PubMed

    Wooles, Ashley J; Mills, David P; Tuna, Floriana; McInnes, Eric J L; Law, Gareth T W; Fuller, Adam J; Kremer, Felipe; Ridgway, Mark; Lewis, William; Gagliardi, Laura; Vlaisavljevich, Bess; Liddle, Stephen T

    2018-05-29

    Despite the fact that non-aqueous uranium chemistry is over 60 years old, most polarised-covalent uranium-element multiple bonds involve formal uranium oxidation states IV, V, and VI. The paucity of uranium(III) congeners is because, in common with metal-ligand multiple bonding generally, such linkages involve strongly donating, charge-loaded ligands that bind best to electron-poor metals and inherently promote disproportionation of uranium(III). Here, we report the synthesis of hexauranium-methanediide nanometre-scale rings. Combined experimental and computational studies suggest overall the presence of formal uranium(III) and (IV) ions, though electron delocalisation in this Kramers system cannot be definitively ruled out, and the resulting polarised-covalent U = C bonds are supported by iodide and δ-bonded arene bridges. The arenes provide reservoirs that accommodate charge, thus avoiding inter-electronic repulsion that would destabilise these low oxidation state metal-ligand multiple bonds. Using arenes as electronic buffers could constitute a general synthetic strategy by which to stabilise otherwise inherently unstable metal-ligand linkages.

  15. A second order thermodynamic perturbation theory for hydrogen bond cooperativity in water

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2017-05-01

    It has been extensively demonstrated through first principles quantum mechanics calculations that water exhibits strong hydrogen bond cooperativity. Equations of state developed from statistical mechanics typically assume pairwise additivity, meaning they cannot account for these 3-body and higher cooperative effects. In this paper, we extend a second order thermodynamic perturbation theory to correct for hydrogen bond cooperativity in 4 site water. We demonstrate that the theory predicts hydrogen bonding structure consistent spectroscopy, neutron diffraction, and molecular simulation data. Finally, we implement the approach into a general equation of state for water.

  16. Valence and magnitude ambiguity in feedback processing.

    PubMed

    Gu, Ruolei; Feng, Xue; Broster, Lucas S; Yuan, Lu; Xu, Pengfei; Luo, Yue-Jia

    2017-05-01

    Outcome feedback which indicates behavioral consequences are crucial for reinforcement learning and environmental adaptation. Nevertheless, outcome information in daily life is often totally or partially ambiguous. Studying how people interpret this kind of information would provide important knowledge about the human evaluative system. This study concentrates on the neural processing of partially ambiguous feedback, that is, either its valence or magnitude is unknown to participants. To address this topic, we sequentially presented valence and magnitude information; electroencephalography (EEG) response to each kind of presentation was recorded and analyzed. The event-related potential components feedback-related negativity (FRN) and P3 were used as indices of neural activity. Consistent with previous literature, the FRN elicited by ambiguous valence was not significantly different from that elicited by negative valence. On the other hand, the FRN elicited by ambiguous magnitude was larger than both the large and small magnitude, indicating the motivation to seek unambiguous magnitude information. The P3 elicited by ambiguous valence and ambiguous magnitude was not significantly different from that elicited by negative valence and small magnitude, respectively, indicating the emotional significance of feedback ambiguity. Finally, the aforementioned effects also manifested in the stage of information integration. These findings indicate both similarities and discrepancies between the processing of valence ambiguity and that of magnitude ambiguity, which may help understand the mechanisms of ambiguous information processing.

  17. Use of valence band Auger electron spectroscopy to study thin film growth: oxide and diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Steffen, H. J.

    1994-12-01

    It is demonstrated how Auger line shape analysis with factor analysis (FA), least-squares fitting and even simple peak height measurements may provide detailed information about the composition, different chemical states and also defect concentration or crystal order. Advantage is taken of the capability of Auger electron spectroscopy to give valence band structure information with high surface sensitivity and the special aspect of FA to identify and discriminate quantitatively unknown chemical species. Valence band spectra obtained from Ni, Fe, Cr and NiFe40Cr20 during oxygen exposure at room temperature reveal the oxidation process in the initial stage of the thin layer formation. Furthermore, the carbon chemical states that were formed during low energy C(+) and Ne(+) ion irradiation of graphite are delineated and the evolution of an amorphous network with sp3 bonds is disclosed. The analysis represents a unique method to quantify the fraction of sp3-hybridized carbon in diamond-like materials.

  18. Bond Order Correlations in the 2D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  19. Strength order and nature of the π-hole bond of cyanuric chloride and 1,3,5-triazine with halide.

    PubMed

    Wang, Hui; Li, Chen; Wang, Weizhou; Jin, Wei Jun

    2015-08-28

    The (13)C NMR chemical shift moving upfield indicates the main model of π-holeX(-) bond between cyanuric chloride/1,3,5-triazine (3ClN/3N), which possess both the π-hole and σ-hole, and X(-). (13)C NMR and UV absorption titration in acetonitrile confirmed that the bonding abilities of 3ClN/3N with X(-) follow the order I(-) > Br(-) > Cl(-), which is apparently the order of the charge transfer ability of halide to 3ClN/3N. Chemical calculations showed that the bonding abilities in solution were essentially consistent with those obtained by titration experiments. However, the results in the gas phase were the reverse, i.e., π-holeCl(-) > π-holeBr(-) > π-holeI(-) in bonding energy, which obeys the order of electrostatic interaction. In fact, the π-hole bond and σ-hole bond compete with solvation and possible anion-hydrogen bond between a solvent molecule and a halide in solution. An explanation is that the apparent charge transfer order of π-/σ-holeI(-) > π-/σ-holeBr(-) > π-/σ-holeCl(-) occurs for weak π-hole bonds and σ-hole bonds, whereas the order of electrostatic attraction of π-/σ-holeCl(-) > π-/σ-holeBr(-) > π-/σ-holeI(-) is valid for strong bonds. It can be concluded by combining energy decomposition analysis and natural bond orbital analysis that the π-holeX(-) bond and σ-holeX(-) bond are electrostatically attractive in nature regardless of whether the order is I(-) > Br(-) > Cl(-) or the reverse.

  20. Chemical bonds and vibrational properties of ordered (U, Np, Pu) mixed oxides

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Zhang, Ping

    2013-01-01

    We use density functional theory +U to investigate the chemical bonding characters and vibrational properties of the ordered (U, Np, Pu) mixed oxides (MOXs), UNpO4,NpPuO4, and UPuO4. It is found that the 5f electronic states of different actinide elements keep their localized characters in all three MOXs. The occupied 5f electronic states of different actinide elements do not overlap with each other and tend to distribute over the energy band gap of the other actinide element's 5f states. As a result, the three ordered MOXs all show smaller band gaps than those of the component dioxides, with values of 0.91, 1.47, and 0.19 eV for UNpO4,NpPuO4, and UPuO4, respectively. Through careful charge density analysis, we further show that the U-O and Pu-O bonds in MOXs show more ionic character than in UO2 and PuO2, while the Np-O bonds show more covalent character than in NpO2. The change in covalencies in the chemical bonds leads to vibrational frequencies of oxygen atoms that are different in MOXs.

  1. Influence of the temperature on the composites' fusion bonding quality

    NASA Astrophysics Data System (ADS)

    Harkous, Ali; Jurkowski, Tomasz; Bailleul, Jean-Luc; Le Corre, Steven

    2017-10-01

    Thermoplastic composite parts are increasingly used to replace metal pieces in automotive field due to their mechanical properties, chemical properties and recycling potential [1]. To assemble and give them new mechanical functions, fusion bonding is often used. It is a type of welding carried out at a higher temperature than the fusion one [2]. The mechanical quality of the final adhesion depends on the process parameters like pressure, temperature and cycle time [3]. These parameters depend on two phenomena at the origin of the bonding formation: intimate contact [4] and reptation and healing [5]. In this study, we analyze the influence of the temperature on the bonding quality, disregarding in this first steps the pressure influence. For that, two polyamide composite parts are welded using a specific setup. Then, they undergo a mechanical test of peeling in order to quantify the adhesion quality.

  2. The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity.

    PubMed

    Dunnick, Katherine M; Pillai, Rajalekshmi; Pisane, Kelly L; Stefaniak, Aleksandr B; Sabolsky, Edward M; Leonard, Stephen S

    2015-07-01

    Cerium oxide (CeO2) nanoparticles, which are used in a variety of products including solar cells, gas sensors, and catalysts, are expected to increase in industrial use. This will subsequently lead to additional occupational exposures, making toxicology screenings crucial. Previous toxicology studies have presented conflicting results as to the extent of CeO2 toxicity, which is hypothesized to be due to the ability of Ce to exist in both a +3 and +4 valence state. Thus, to study whether valence state and oxygen vacancy concentration are important in CeO2 toxicity, CeO2 nanoparticles were doped with gadolinium to adjust the cation (Ce, Gd) and anion (O) defect states. The hypothesis that doping would increase toxicity and decrease antioxidant abilities as a result of increased oxygen vacancies and inhibition of +3 to +4 transition was tested. Differences in toxicity and reactivity based on valence state were determined in RLE-6TN rat alveolar epithelial and NR8383 rat alveolar macrophage cells using enhanced dark field microscopy, electron paramagnetic resonance (EPR), and annexin V/propidium iodide cell viability stain. Results from EPR indicated that as doping increased, antioxidant potential decreased. Alternatively, doping had no effect on toxicity at 24 h. The present results imply that as doping increases, thus subsequently increasing the Ce(3+)/Ce(4+) ratio, antioxidant potential decreases, suggesting that differences in reactivity of CeO2 are due to the ability of Ce to transition between the two valence states and the presence of increased oxygen vacancies, rather than dependent on a specific valence state.

  3. Orientation dependence of temporal and spectral properties of high-order harmonics in solids

    NASA Astrophysics Data System (ADS)

    Wu, Mengxi; You, Yongsing; Ghimire, Shambhu; Reis, David A.; Browne, Dana A.; Schafer, Kenneth J.; Gaarde, Mette B.

    2017-12-01

    We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems this gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. We address recent experimental results in MgO [Y. S. You et al., Nat. Phys. 13, 345 (2017)., 10.1038/nphys3955] and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.

  4. Regioselective electrochemical reduction of 2,4-dichlorobiphenyl - Distinct standard reduction potentials for carbon-chlorine bonds using convolution potential sweep voltammetry

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, A.; Sangaranarayanan, M. V.; Boyarskiy, V. P.; Boyarskaya, I. A.

    2010-04-01

    The reductive cleavage of carbon-chlorine bonds in 2,4-dichlorobiphenyl (PCB-7) is investigated using the convolution potential sweep voltammetry and quantum chemical calculations. The potential dependence of the logarithmic rate constant is non-linear which indicates the validity of Marcus-Hush theory of quadratic activation-driving force relationship. The ortho-chlorine of the 2,4-dichlorobiphenyl gets reduced first as inferred from the quantum chemical calculations and bulk electrolysis. The standard reduction potentials pertaining to the ortho-chlorine of 2,4-dichlorobiphenyl and that corresponding to para chlorine of the 4-chlorobiphenyl have been estimated.

  5. Qgui: A high-throughput interface for automated setup and analysis of free energy calculations and empirical valence bond simulations in biological systems.

    PubMed

    Isaksen, Geir Villy; Andberg, Tor Arne Heim; Åqvist, Johan; Brandsdal, Bjørn Olav

    2015-07-01

    Structural information and activity data has increased rapidly for many protein targets during the last decades. In this paper, we present a high-throughput interface (Qgui) for automated free energy and empirical valence bond (EVB) calculations that use molecular dynamics (MD) simulations for conformational sampling. Applications to ligand binding using both the linear interaction energy (LIE) method and the free energy perturbation (FEP) technique are given using the estrogen receptor (ERα) as a model system. Examples of free energy profiles obtained using the EVB method for the rate-limiting step of the enzymatic reaction catalyzed by trypsin are also shown. In addition, we present calculation of high-precision Arrhenius plots to obtain the thermodynamic activation enthalpy and entropy with Qgui from running a large number of EVB simulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Solvent dynamical control of ultrafast ground state electron transfer: implications for Class II-III mixed valency.

    PubMed

    Lear, Benjamin J; Glover, Starla D; Salsman, J Catherine; Londergan, Casey H; Kubiak, Clifford P

    2007-10-24

    We relate the solvent and temperature dependence of the rates of intramolecular electron transfer (ET) of mixed valence complexes of the type {[Ru3O(OAc)6(CO)(L)]2-BL}-1, where L = pyridyl ligand and BL = pyrazine. Complexes were reduced chemically or electrochemically to obtain the mixed valence anions in seven solvents: acetonitrile, methylene chloride, dimethylformamide, tetrahydrofuran, dimethylsulfoxide, chloroform, and hexamethylphosphoramide. Rate constants for intramolecular ET were estimated by simulating the observed degree of nu(CO) IR band shape coalescence in the mixed valence state. Correlations between rate constants for ET and solvent properties including static dielectric constant, optical dielectric constant, the quantity 1/epsilonop - 1/epsilonS, microscopic solvent polarity, viscosity, cardinal rotational moments of inertia, and solvent relaxation times were examined. In the temperature study, the complexes displayed a sharp increase in the ket as the freezing points of the solvents methylene chloride and acetonitrile were approached. The solvent phase transition causes a localized-to-delocalized transition in the mixed valence ions and an acceleration in the rate of ET. This is explained in terms of decoupling the slower solvent motions involved in the frequency factor nuN which increases the value of nuN. The observed solvent and temperature dependence of the ket for these complexes is used in order to formulate a new definition for Robin-Day class II-III mixed valence compounds. Specifically, it is proposed that class II-III compounds are those for which thermodynamic properties of the solvent exert no control over ket, but the dynamic properties of the solvent still influence ket.

  7. Symmetry and charge order in Fe2OBO3 studied through polarized resonant x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Bland, S. R.; Angst, M.; Adiga, S.; Scagnoli, V.; Johnson, R. D.; Herrero-Martín, J.; Hatton, P. D.

    2010-09-01

    Bond valence sum calculations have previously suggested that iron oxyborate exhibits charge order of the Fe ions with integer 2+/3+ valence states. Meanwhile transition metal oxides typically show much smaller, fractional charge disproportionations. Using resonant x-ray diffraction at the iron K edge, we find resonant features which are much larger than those ordinarily observed in charge ordered oxides. Simulations were subsequently performed using a cluster-based, monoelectronic code. The nanoscale domain structure prevents precise fitting; nevertheless the simulations confirm the diagonal charge order symmetry, as well as the unusually large charge disproportionation. We have demonstrated the conversion of linearly to nonlinearly polarized light and vice versa through full polarization analysis. Simulations show that this effect principally results from interference between the isotropic and anisotropic scattering terms. This mechanism is likely to account for similar observations in alternative systems.

  8. Imaging chiral symmetry breaking from Kekule bond order in graphene

    DOE PAGES

    Gutiérrez, Christopher; Kim, Cheol -Joo; Brown, Lola; ...

    2016-05-23

    Chirality—or ‘handedness’—is a symmetry property crucial to fields as diverse as biology, chemistry and high-energy physics. In graphene, chiral symmetry emerges naturally as a consequence of the carbon honeycomb lattice. This symmetry can be broken by interactions that couple electrons with opposite momenta in graphene. Here we directly visualize the formation of Kekulé bond order, one such phase of broken chiral symmetry, in an ultraflat graphene sheet grown epitaxially on a copper substrate. We show that its origin lies in the interactions between individual vacancies in the copper substrate that are mediated electronically by the graphene. We show that thismore » interaction causes the bonds in graphene to distort, creating a phase with broken chiral symmetry. Furthermore, the Kekulé ordering is robust at ambient temperature and atmospheric conditions, indicating that intercalated atoms may be harnessed to drive graphene and other two-dimensional materials towards electronically desirable and exotic collective phases.« less

  9. Electronegativity and the Bond Triangle

    ERIC Educational Resources Information Center

    Meek, Terry L.; Garner, Leah D.

    2005-01-01

    The usefulness of the bond triangle for categorizing compounds of the main-group elements may be extended by the use of weighted average electronegativities to allow distinction between compounds of the same elements with different stoichiometries. In such cases a higher valency for the central atom leads to greater covalent character and the…

  10. Pressure and magnetic field effects on the valence transition of EuRh2Si2

    NASA Astrophysics Data System (ADS)

    Mitsuda, Akihiro; Kishaba, Eigo; Fujimoto, Takumi; Oyama, Kohei; Wada, Hirofumi; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki

    2018-05-01

    We have measured the X-ray absorption spectra (XAS), electrical resistivity and magnetic susceptibility of EuRh2Si2, which undergoes a valence transition under high pressures. A sharp decrease in the Eu valence determined from the XAS was observed at around 70 K in the temperature dependence at P = 1.2-1.9 GPa. In the temperature dependence of electrical resistivity and magnetic susceptibility, we observed jumps associated with the temperature-induced valence transition under high pressures. The magnetoresistance detected a field-induced valence transition. The results are discussed from the thermodynamic point of view.

  11. Contextual blending of ingroup/outgroup face stimuli and word valence: LPP modulation and convergence of measures.

    PubMed

    Hurtado, Esteban; Haye, Andrés; González, Ramiro; Manes, Facundo; Ibáñez, Agustiń

    2009-06-26

    Several event related potential (ERP) studies have investigated the time course of different aspects of evaluative processing in social bias research. Various reports suggest that the late positive potential (LPP) is modulated by basic evaluative processes, and some reports suggest that in-/outgroup relative position affects ERP responses. In order to study possible LPP blending between facial race processing and semantic valence (positive or negative words), we recorded ERPs while indigenous and non-indigenous participants who were matched by age and gender performed an implicit association test (IAT). The task involved categorizing faces (ingroup and outgroup) and words (positive and negative). Since our paradigm implies an evaluative task with positive and negative valence association, a frontal distribution of LPPs similar to that found in previous reports was expected. At the same time, we predicted that LPP valence lateralization would be modulated not only by positive/negative associations but also by particular combinations of valence, face stimuli and participant relative position. Results showed that, during an IAT, indigenous participants with greater behavioral ingroup bias displayed a frontal LPP that was modulated in terms of complex contextual associations involving ethnic group and valence. The LPP was lateralized to the right for negative valence stimuli and to the left for positive valence stimuli. This valence lateralization was influenced by the combination of valence and membership type relevant to compatibility with prejudice toward a minority. Behavioral data from the IAT and an explicit attitudes questionnaire were used to clarify this finding and showed that ingroup bias plays an important role. Both ingroup favoritism and indigenous/non-indigenous differences were consistently present in the data. Our results suggest that frontal LPP is elicited by contextual blending of evaluative judgments of in-/outgroup information and positive vs

  12. Metal–Metal Bonding in Uranium–Group 10 Complexes

    PubMed Central

    2016-01-01

    Heterobimetallic complexes containing short uranium–group 10 metal bonds have been prepared from monometallic IUIV(OArP-κ2O,P)3 (2) {[ArPO]− = 2-tert-butyl-4-methyl-6-(diphenylphosphino)phenolate}. The U–M bond in IUIV(μ-OArP-1κ1O,2κ1P)3M0, M = Ni (3–Ni), Pd (3–Pd), and Pt (3–Pt), has been investigated by experimental and DFT computational methods. Comparisons of 3–Ni with two further U–Ni complexes XUIV(μ-OArP-1κ1O,2κ1P)3Ni0, X = Me3SiO (4) and F (5), was also possible via iodide substitution. All complexes were characterized by variable-temperature NMR spectroscopy, electrochemistry, and single crystal X-ray diffraction. The U–M bonds are significantly shorter than any other crystallographically characterized d–f-block bimetallic, even though the ligand flexes to allow a variable U–M separation. Excellent agreement is found between the experimental and computed structures for 3–Ni and 3–Pd. Natural population analysis and natural localized molecular orbital (NLMO) compositions indicate that U employs both 5f and 6d orbitals in covalent bonding to a significant extent. Quantum theory of atoms-in-molecules analysis reveals U–M bond critical point properties typical of metallic bonding and a larger delocalization index (bond order) for the less polar U–Ni bond than U–Pd. Electrochemical studies agree with the computational analyses and the X-ray structural data for the U–X adducts 3–Ni, 4, and 5. The data show a trend in uranium–metal bond strength that decreases from 3–Ni down to 3–Pt and suggest that exchanging the iodide for a fluoride strengthens the metal–metal bond. Despite short U–TM (transition metal) distances, four other computational approaches also suggest low U–TM bond orders, reflecting highly transition metal localized valence NLMOs. These are more so for 3–Pd than 3–Ni, consistent with slightly larger U–TM bond orders in the latter. Computational studies of the model systems (PH3)3MU(OH)3I

  13. The localized effect of the Bi level on the valence band in the dilute bismuth GaBixAs1-x alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Zhu, Min-Min; Wang, Jun; Wang, Sha-Sha; Lu, Ke-Qing

    2018-05-01

    The research on the temperature dependence of the band gap energy of the dilute bismuth GaBixAs1-x alloy has been done. It is found that its temperature insensitiveness is due to the enhanced localized character of the valence band state and the small decrease of the temperature coefficient for the conduction band minimum (CBM). The enhanced localized character of the valence band state is the main factor. In order to describe the localized effect of the Bi levels on the valence band, the localized energy is introduced into the Varshni's equation. It is found that the effect of the localized Bi level on the valence band becomes strong with increasing Bi content. In addition, it is found that the pressure dependence of the band gap energy of GaBixAs1-x does not seem to be influenced by the localized Bi levels. It is due to two factors. One is that the pressure dependence of the band gap energy is mainly determined by the D CBM of GaBixAs1-x. The D CBM of GaBixAs1-x is not influenced by the localized Bi levels. The other is that the small variation of the pressure coefficient for the D valence band maximum (VBM) state of GaBixAs1-x can be cancelled by the variation of the pressure coefficient for the D CBM state of GaBixAs1-x.

  14. Cluster molecular orbital description of the electronic structures of mixed-valence iron oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1986-01-01

    A molecular orbital description, based on spin-unrestricted X??-scattered wave calculations, is given for the electronic structures of mixed valence iron oxides and silicates. The cluster calculations show that electron hopping and optical intervalence charge-transger result from weak FeFe bonding across shared edges of FeO6 coordination polyhedra. In agreement with Zener's double exchange model, FeFe bonding is found to stabilize ferromagnetic coupling between Fe2+ and Fe3+ cations. ?? 1986.

  15. Human Amygdala Represents the Complete Spectrum of Subjective Valence

    PubMed Central

    Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.

    2015-01-01

    , expectation, and experience could alter the set-point for valence-based behavior. Finally, identification of spatial and temporal differentiation of valence in amygdala may shed new insights into individual differences in emotional responding, with potential relevance for affective disorders. PMID:26558785

  16. Time- and temperature-dependent failures of a bonded joint

    NASA Astrophysics Data System (ADS)

    Sihn, Sangwook

    This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time

  17. Valence-quark distribution functions in the kaon and pion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chen; Chang, Lei; Roberts, Craig D.

    2016-04-18

    We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed quarks carry all the meson’s momentum at a characteristic hadronic scale and vanish as ( 1 - x ) 2 when Bjorken- x → 1 . Comparing such distributions within the pion and kaon, it is apparent that the size of S U ( 3 ) -flavor symmetry breaking in meson parton distribution functions is modulatedmore » by the flavor dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulas may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison with experiment which allows us to identify and highlight basic features of measurable pion and kaon valence-quark distributions. We find that whereas roughly two thirds of the pion’s light-front momentum is carried by valence dressed quarks at a characteristic hadronic scale; this fraction rises to 95% in the kaon; evolving distributions with these features to a scale typical of available Drell-Yan data produces a kaon-to-pion ratio of u -quark distributions that is in agreement with the single existing data set, and predicts a u -quark distribution within the pion that agrees with a modern reappraisal of π N Drell-Yan data. Precise new data are essential in order to validate this reappraisal and because a single modest-quality measurement of the kaon-to-pion ratio cannot be considered definitive.« less

  18. Thermodynamics of H-bonding in alcohols and water. The mobile order theory as opposed to the classical multicomponent order theories

    NASA Astrophysics Data System (ADS)

    Huyskens, P.; Kapuku, F.; Colemonts-Vandevyvere, C.

    1990-09-01

    In liquids the partners of H bonds constantly change. As a consequence the entities observed by IR spectroscopy are not the same as those considered for thermodynamic properties. For the latter, the H-bonds are shared by all the molecules. The thermodynamic "monomeric fraction", γ, the time fraction during which an alcohol molecule is vaporizable, is the square root of the spectroscopic monomeric fraction, and is the fraction of molecules which, during a time interval of 10 -14 s, have their hydroxylic proton and their lone pairs free. The classical thermodynamic treatments of Mecke and Prigogine consider the spectroscopic entities as real thermodynamic entities. Opposed to this, the mobile order theory considers all the formal molecules as equal but with a reduction of the entropy due to the fact that during a fraction 1-γ of the time, the OH proton follows a neighbouring oxygen atom on its journey through the liquid. Mobile order theory and classic multicomponent treatment lead, in binary mixtures of the associated substance A with the inert substance S, to expressions of the chemical potentials μ A and μ S that are fundamentally different. However, the differences become very important only when the molar volumes overlineVS and overlineVA differ by a factor larger than 2. As a consequence the equations of the classic theory can still fit the experimental vapour pressure data of mixtures of liquid alcohols and liquid alkanes. However, the solubilities of solid alkanes in water for which overlineVS > 3 overlineVA are only correctly predicted by the mobile order theory.

  19. Electronic structure and bonding of intergranular glassy films in polycrystalline Si3 N4 : Ab initio studies and classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Rulis, P.; Chen, J.; Ouyang, L.; Ching, W.-Y.; Su, X.; Garofalini, S. H.

    2005-06-01

    The electronic structure and bonding of a realistic model of an intergranular glassy film (IGF) was studied with multiple computational methods. The model has a Si-O-N glassy region sandwiched between crystalline basal planes of β-Si3N4 and contains a total of 798 atoms. It was constructed with periodic boundary conditions via classical molecular dynamics (MD) techniques using an accurate multibody atomic potential. The model was then further relaxed by the VASP (Vienna ab initio simulation package) program. It is shown that the VASP-relaxed structure reduces the total energy from the MD-relaxed structure by only 47.38eV , validating the accuracy of the multiatom potential used. The calculated electronic structure shows the IGF model to be an insulator with a sizable gap of almost 3eV . Quasidefectlike states can be identified near the band edges arising from the more strained Si-N and Si-O bonds at the interface. Calculation of the Mulliken effective charge and bond order values indicates that the bonds in the glassy region and at the interface can be enhanced and weakened by distortions in the bond length and bond angle. The states at the top of the valence band are derived mostly from the crystalline part of the Si-N bonding while the states at the bottom of the conduction band are dominated by the Si-O bonding in the glassy region. Calculation of the electrostatic potential across the interface shows an average band offset of about 1.5eV between the crystalline β-Si3N4 and the glassy Si-O-N region which could be related to the space charge model for IGF.

  20. Dynamic surface electronic reconstruction as symmetry-protected topological orders in topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Shu, G. J.; Liou, S. C.; Karna, S. K.; Sankar, R.; Hayashi, M.; Chou, F. C.

    2018-04-01

    The layered narrow-band-gap semiconductor Bi2Se3 is composed of heavy elements with strong spin-orbital coupling, which has been identified both as a good candidate for a thermoelectric material with high thermoelectric figure of merit (Z T ) and as a topological insulator of the Z2 type with a gapless surface band in a Dirac-cone shape. The existence of a conjugated π -bond system on the surface of each Bi2Se3 quintuple layer is proposed based on an extended valence bond model with valence electrons distributed in the hybridized orbitals. Supporting experimental evidence of a two-dimensional (2D) conjugated π -bond system on each quintuple layer of Bi2Se3 is provided using electron energy-loss spectroscopy and electron density mapping through inverse Fourier transform of x-ray diffraction data. Quantum chemistry calculations support the π -bond existence between partially filled 4 pz orbitals of Se via side-to-side orbital overlap positively. The conjugated π -bond system on the surface of each quintuple Bi2Se3 layer is proposed to be similar to that found in graphite (graphene) and responsible for the unique 2D conduction mechanism. The van der Waals (vdW) attractive force between quintuple layers is interpreted to be coming from the antiferroelectrically ordered effective electric dipoles, which are constructed with π -bond trimer pairs on Se layers across the vdW gap of minimized Coulomb repulsion.

  1. Rotational symmetry breaking toward a string-valence bond solid phase in frustrated J1 -J2 transverse field Ising model

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, M.; Langari, A.

    2018-06-01

    We study the effect of quantum fluctuations by means of a transverse magnetic field (Γ) on the highly degenerate ground state of antiferromagnetic J1 -J2 Ising model on the square lattice, at the limit J2 /J1 = 0.5 . We show that harmonic quantum fluctuations based on single spin flips can not lift such degeneracy, however an-harmonic quantum fluctuations based on multi spin cluster flip excitations lift the degeneracy toward a unique ground state with string-valence bond solid (VBS) nature. A cluster operator formalism has been implemented to incorporate an-harmonic quantum fluctuations. We show that cluster-type excitations of the model lead not only to lower the excitation energy compared with a single-spin flip but also to lift the extensive degeneracy in favor of a string-VBS state, which breaks lattice rotational symmetry with only two fold degeneracy. The tendency toward the broken symmetry state is justified by numerical exact diagonalization. Moreover, we introduce a map to find the relation between the present model on the checkerboard and square lattices.

  2. Stacking fault density and bond orientational order of fcc ruthenium nanoparticles

    NASA Astrophysics Data System (ADS)

    Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi

    2017-12-01

    We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.

  3. Facial and semantic emotional interference: A pilot study on the behavioral and cortical responses to the dual valence association task

    PubMed Central

    2011-01-01

    Background Integration of compatible or incompatible emotional valence and semantic information is an essential aspect of complex social interactions. A modified version of the Implicit Association Test (IAT) called Dual Valence Association Task (DVAT) was designed in order to measure conflict resolution processing from compatibility/incompatibly of semantic and facial valence. The DVAT involves two emotional valence evaluative tasks which elicits two forms of emotional compatible/incompatible associations (facial and semantic). Methods Behavioural measures and Event Related Potentials were recorded while participants performed the DVAT. Results Behavioural data showed a robust effect that distinguished compatible/incompatible tasks. The effects of valence and contextual association (between facial and semantic stimuli) showed early discrimination in N170 of faces. The LPP component was modulated by the compatibility of the DVAT. Conclusions Results suggest that DVAT is a robust paradigm for studying the emotional interference effect in the processing of simultaneous information from semantic and facial stimuli. PMID:21489277

  4. Energy gaps, valence and conduction charge densities and optical properties of GaAs1‑xPx

    NASA Astrophysics Data System (ADS)

    Al-Hagan, O. A.; Algarni, H.; Bouarissa, N.; Alhuwaymel, T. F.; Ajmal Khan, M.

    2018-04-01

    The electronic structure and its derived valence and conduction charge distributions along with the optical properties of zinc-blende GaAs1‑xPx ternary alloys have been studied. The calculations are performed using a pseudopotential approach under the virtual crystal approximation (VCA) which takes into account the compositional disorder effect. Our findings are found to be generally in good accord with experiment. The composition dependence of direct and indirect bandgaps showed a clear bandgap bowing. The nature of the gap is found to depend on phosphorous content. The bonding and ionicity of the material of interest have been examined in terms of the anti-symmetric gap and charge densities. The variation in the optical constants versus phosphorous concentration has been discussed. The present investigation may give a useful applications in infrared and visible spectrum light emitters.

  5. Internuclear separation dependent ionization of the valence orbitals of I2 by strong laser fields.

    PubMed

    Chen, H; Tagliamonti, V; Gibson, G N

    2012-11-09

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σ(g)(2)π(u)(4)π(g)(4)σ(u)(0). We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σ(g)) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  6. Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields

    NASA Astrophysics Data System (ADS)

    Chen, H.; Tagliamonti, V.; Gibson, G. N.

    2012-11-01

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  7. Varying electronegativity of OH/O- groups depending on the nature and strength of H-bonding in phenol/phenolate involved in H-bond complexation.

    PubMed

    Krygowski, Tadeusz M; Szatyłowicz, Halina

    2006-06-08

    Application of the Domenicano et al. method of estimating group electronegativity from angular geometry of the ring in monosubstituted benzene derivatives allowed us to find how the electronegativity of OH/O(-) groups in H-bonded complexes of phenol and phenolate depends on the nature and strength of H-bond. For complexes in which the OH group is only proton donating in the H-bond, a linear dependence of the estimated electronegativity on O...O(N) interatomic distance was found for experimental (CSD base retrieved) data. The following rule is observed: the weaker the H-bond is, the more electronegative the OH group is. If apart from this kind of interaction the oxygen is proton accepting, then an increase of electronegativity is observed. Modeling (B3LYP/6-311+G) the variation of the strength of the H-bond by the fluoride anion approaching the OH leads to qualitatively the same picture as the scatter plots for experimental data.

  8. Reliability of the pair-defect-sum approximation for the strength of valence-bond orbitals

    PubMed Central

    Pauling, Linus; Herman, Zelek S.; Kamb, Barclay J.

    1982-01-01

    The pair-defect-sum approximation to the bond strength of a hybrid orbital (angular wave functions only) is compared to the rigorous value as a function of bond angle for seven types of bonding situations, with between three and eight bond directions equivalent by geometrical symmetry operations and with only one independent bond angle. The approximation is seen to be an excellent one in all cases, and the results provide a rationale for the application of this approximation to a variety of problems. PMID:16593167

  9. Orientation dependence of temporal and spectral properties of high-order harmonics in solids [Orientation dependence of high-harmonic temporal and spectral properties in solids

    DOE PAGES

    Wu, Mengxi; You, Yongsing; Ghimire, Shambhu; ...

    2017-12-18

    We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems thismore » gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. Here, we address recent experimental results in MgO and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.« less

  10. Orientation dependence of temporal and spectral properties of high-order harmonics in solids [Orientation dependence of high-harmonic temporal and spectral properties in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Mengxi; You, Yongsing; Ghimire, Shambhu

    We investigate the connection between crystal symmetry and temporal and spectral properties of high-order harmonics in solids. We calculate the orientation-dependent harmonic spectrum driven by an intense, linearly polarized infrared laser field, using a momentum-space description of the generation process in terms of strong-field-driven electron dynamics on the band structure. We show that the orientation dependence of both the spectral yield and the subcycle time profile of the harmonic radiation can be understood in terms of the coupling strengths and relative curvatures of the valence band and the low-lying conduction bands. In particular, we show that in some systems thismore » gives rise to a rapid shift of a quarter optical cycle in the timing of harmonics in the secondary plateau as the crystal is rotated relative to the laser polarization. Here, we address recent experimental results in MgO and show that the observed change in orientation dependence for the highest harmonics can be interpreted in the momentum space picture in terms of the contributions of several different conduction bands.« less

  11. Bonding Pictures: Affective Ratings Are Specifically Associated to Loneliness But Not to Empathy

    PubMed Central

    Silva, Heraldo D.; Campagnoli, Rafaela R.; Mota, Bruna Eugênia F.; Araújo, Cássia Regina V.; Álvares, Roberta Sônia R.; Mocaiber, Izabela; Rocha-Rego, Vanessa; Volchan, Eliane; Souza, Gabriela G. L.

    2017-01-01

    Responding to pro-social cues plays an important adaptive role in humans. Our aims were (i) to create a catalog of bonding and matched-control pictures to compare the emotional reports of valence and arousal with the International Affective Picture System (IAPS) pictures; (ii) to verify sex influence on the valence and arousal of bonding and matched-control pictures; (iii) to investigate if empathy and loneliness traits exert a specific influence on emotional reports for the bonding pictures. To provide a finer tool for social interaction studies, the present work defined two new sets of pictures consisting of “interacting dyads” (Bonding: N = 70) and matched controls “non-interacting dyads” (Controls: N = 70). The dyads could be either a child and an adult, or two children. Participants (N = 283, 182 women) were divided in 10 groups for the experimental sessions. The task was to rate the hedonic valence and emotional arousal of bonding and controls; and of pleasant, neutral, and unpleasant pictures from the IAPS. Effects of social-related traits, empathy and loneliness, on affective ratings were tested. Participants rated bonding pictures as more pleasant and arousing than control ones. Ratings did not differentiate bonding from IAPS pleasant pictures. Control pictures showed lower ratings than pleasant but higher ratings than neutral IAPS pictures. Women rated bonding and control pictures as more positive than men. There was no sex difference for arousal ratings. High empathic participants rated bonding and control pictures higher than low empathic participants. Also, they rated pleasant IAPS pictures more positive and arousing; and unpleasant pictures more negative and arousing than the less empathic ones. Loneliness trait, on the other hand, affected very specifically the ratings of bonding pictures; lonelier participants rated them less pleasant and less arousing than less lonely. Loneliness trait did not modulate ratings of other categories. In

  12. Bonding Pictures: Affective Ratings Are Specifically Associated to Loneliness But Not to Empathy.

    PubMed

    Silva, Heraldo D; Campagnoli, Rafaela R; Mota, Bruna Eugênia F; Araújo, Cássia Regina V; Álvares, Roberta Sônia R; Mocaiber, Izabela; Rocha-Rego, Vanessa; Volchan, Eliane; Souza, Gabriela G L

    2017-01-01

    Responding to pro-social cues plays an important adaptive role in humans. Our aims were (i) to create a catalog of bonding and matched-control pictures to compare the emotional reports of valence and arousal with the International Affective Picture System (IAPS) pictures; (ii) to verify sex influence on the valence and arousal of bonding and matched-control pictures; (iii) to investigate if empathy and loneliness traits exert a specific influence on emotional reports for the bonding pictures. To provide a finer tool for social interaction studies, the present work defined two new sets of pictures consisting of "interacting dyads" (Bonding: N = 70) and matched controls "non-interacting dyads" (Controls: N = 70). The dyads could be either a child and an adult, or two children. Participants ( N = 283, 182 women) were divided in 10 groups for the experimental sessions. The task was to rate the hedonic valence and emotional arousal of bonding and controls; and of pleasant, neutral, and unpleasant pictures from the IAPS. Effects of social-related traits, empathy and loneliness, on affective ratings were tested. Participants rated bonding pictures as more pleasant and arousing than control ones. Ratings did not differentiate bonding from IAPS pleasant pictures. Control pictures showed lower ratings than pleasant but higher ratings than neutral IAPS pictures. Women rated bonding and control pictures as more positive than men. There was no sex difference for arousal ratings. High empathic participants rated bonding and control pictures higher than low empathic participants. Also, they rated pleasant IAPS pictures more positive and arousing; and unpleasant pictures more negative and arousing than the less empathic ones. Loneliness trait, on the other hand, affected very specifically the ratings of bonding pictures; lonelier participants rated them less pleasant and less arousing than less lonely. Loneliness trait did not modulate ratings of other categories. In conclusion

  13. Two-order-parameter description of liquid Al under five different pressures

    NASA Astrophysics Data System (ADS)

    Li, Y. D.; Hao, Qing-Hai; Cao, Qi-Long; Liu, C. S.

    2008-11-01

    In the present work, using the glue potential, the constant pressure molecular-dynamics simulations of liquid Al under five various pressures and a systematic analysis of the local atomic structures have been performed in order to test the two-order-parameter model proposed by Tanaka [Phys. Rev. Lett. 80, 5750 (1998)] originally for explaining the unusual behaviors of liquid water. The temperature dependence of the bond order parameter Q6 in liquid Al under five different pressures can be well fitted by the functional expression (Q6)/(1-Q6)=Q60exp((ΔE-PΔV)/(kBT)) which produces the energy gain ΔE and the volume change upon the formation of a locally favored structure: ΔE=0.025eV and ΔV=-0.27(Å)3 . ΔE is nearly equal to the difference between the average bond energy of the other type I bonds and the average bond energy of 1551 bonds (characterizing the icosahedronlike local structure); ΔV could be explained as the average volume occupied by one atom in icosahedra minus that occupied by one atom in other structures. With the obtained ΔE and ΔV , it is satisfactorily explained that the density of liquid Al displays a much weaker nonlinear dependence on temperature under lower pressures. So it is demonstrated that the behavior of liquid Al can be well described by the two-order-parameter model.

  14. Mixed valency and site-preference chemistry for cerium and its compounds: A predictive density-functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Aftab; Johnson, Duane D.

    Cerium and its technologically relevant compounds are examples of anomalous mixed valency, originating from two competing oxidation states—itinerant Ce4+ and localized Ce3+. Under applied stress, anomalous transitions are observed but not well understood. Here we treat mixed valency as an “alloy” problem involving two valences with competing and numerous site-occupancy configurations. We use density-functional theory with Hubbard U (i.e., DFT+U) to evaluate the effective valence and predict properties, including controlling the valence by pseudoternary alloying. For Ce and its compounds, such as (Ce,La)2(Fe,Co)14B permanent magnets, we find a stable mixed-valent α state near the spectroscopic value of νs=3.53. Ce valencymore » in compounds depends on its steric volume and local chemistry. For La doping, Ce valency shifts towards γ-like Ce3+, as expected from steric volume; for Co doping, valency depends on local Ce-site chemistry and steric volume. Our approach captures the key origins of anomalous valency and site-preference chemistry in complex compounds.« less

  15. Bond angle variations in XH3 [X = N, P, As, Sb, Bi]: the critical role of Rydberg orbitals exposed using a diabatic state model.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    Ammonia adopts sp(3) hybridization (HNH bond angle 108°) whereas the other members of the XH3 series PH3, AsH3, SbH3, and BiH3 instead prefer octahedral bond angles of 90-93°. We use a recently developed general diabatic description for closed-shell chemical reactions, expanded to include Rydberg states, to understand the geometry, spectroscopy and inversion reaction profile of these molecules, fitting its parameters to results from Equation of Motion Coupled-Cluster Singles and Doubles (EOM-CCSD) calculations using large basis sets. Bands observed in the one-photon absorption spectrum of NH3 at 18.3 eV, 30 eV, and 33 eV are reassigned from Rydberg (formally forbidden) double excitations to valence single-excitation resonances. Critical to the analysis is the inclusion of all three electronic states in which two electrons are placed in the lone-pair orbital n and/or the symmetric valence σ* antibonding orbital. An illustrative effective two-state diabatic model is also developed containing just three parameters: the resonance energy driving the high-symmetry planar structure, the reorganization energy opposing it, and HXH bond angle in the absence of resonance. The diabatic orbitals are identified as sp hybrids on X; for the radical cations XH3(+) for which only 2 electronic states and one conical intersection are involved, the principle of orbital following dictates that the bond angle in the absence of resonance is acos(-1/5) = 101.5°. The multiple states and associated multiple conical intersection seams controlling the ground-state structure of XH3 renormalize this to acos[3 sin(2)(2(1/2)atan(1/2))/2 - 1/2] = 86.7°. Depending on the ratio of the resonance energy to the reorganization energy, equilibrium angles can vary from these limiting values up to 120°, and the anomalously large bond angle in NH3 arises because the resonance energy is unexpectedly large. This occurs as the ordering of the lowest Rydberg orbital and the σ* orbital swap, allowing

  16. [2.2]paracyclophane-bridged mixed-valence compounds: application of a generalized Mulliken-Hush three-level model.

    PubMed

    Amthor, Stephan; Lambert, Christoph

    2006-01-26

    A series of [2.2]paracylophane-bridged bis-triarylamine mixed-valence (MV) radical cations were analyzed by a generalized Mulliken-Hush (GMH) three-level model which takes two transitions into account: the intervalence charge transfer (IV-CT) band which is assigned to an optically induced hole transfer (HT) from one triarylamine unit to the second one and a second band associated with a triarylamine radical cation to bridge (in particular, the [2.2]paracyclophane bridge) hole transfer. From the GMH analysis, we conclude that the [2.2]paracyclophane moiety is not the limiting factor which governs the intramolecular charge transfer. AM1-CISD calculations reveal that both through-bond as well as through-space interactions of the [2.2]paracyclophane bridge play an important role for hole transfer processes. These electronic interactions are of course smaller than direct pi-conjugation, but from the order of magnitude of the couplings of the [2.2]paracyclophane MV species, we assume that this bridge is able to mediate significant through-space and through-bond interactions and that the cyclophane bridge acts more like an unsaturated spacer rather than a saturated one. From the exponential dependence of the electronic coupling V between the two triarylamine localized states on the distance r between the two redox centers, we infer that the hole transfer occurs via a superexchange mechanism. Our analysis reveals that even significantly longer pi-conjugated bridges should still mediate significant electronic interactions because the decay constant beta of a series of pi-conjugated MV species is small.

  17. On Valence-Band Splitting in Layered MoS2.

    PubMed

    Zhang, Youwei; Li, Hui; Wang, Haomin; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2015-08-25

    As a representative two-dimensional semiconducting transition-metal dichalcogenide (TMD), the electronic structure in layered MoS2 is a collective result of quantum confinement, interlayer interaction, and crystal symmetry. A prominent energy splitting in the valence band gives rise to many intriguing electronic, optical, and magnetic phenomena. Despite numerous studies, an experimental determination of valence-band splitting in few-layer MoS2 is still lacking. Here, we show how the valence-band maximum (VBM) splits for one to five layers of MoS2. Interlayer coupling is found to contribute significantly to phonon energy but weakly to VBM splitting in bilayers, due to a small interlayer hopping energy for holes. Hence, spin-orbit coupling is still predominant in the splitting. A temperature-independent VBM splitting, known for single-layer MoS2, is, thus, observed for bilayers. However, a Bose-Einstein type of temperature dependence of VBM splitting prevails in three to five layers of MoS2. In such few-layer MoS2, interlayer coupling is enhanced with a reduced interlayer distance, but thermal expansion upon temperature increase tends to decouple adjacent layers and therefore decreases the splitting energy. Our findings that shed light on the distinctive behaviors about VBM splitting in layered MoS2 may apply to other hexagonal TMDs as well. They will also be helpful in extending our understanding of the TMD electronic structure for potential applications in electronics and optoelectronics.

  18. Quantum criticality and first-order transitions in the extended periodic Anderson model

    NASA Astrophysics Data System (ADS)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-03-01

    We investigate the behavior of the periodic Anderson model in the presence of d-f Coulomb interaction (Udf) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of Udf and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility and investigate how the position of the QCP depends on the other parameters of the Hamiltonian. For larger values of Udf, the Kondo regime is bounded by two first-order transitions. These first-order transitions merge into a triple point at a certain value of Udf. For even larger Udf valence skipping occurs. Although the other methods do not give a critical point, they support this scenario.

  19. Temperature-dependent electron paramagnetic resonance detect oxygen vacancy defects and Cr valence of tetragonal Ba(Ti1-xCrx)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Han, Dan-Dan; Lu, Da-Yong; Meng, Fan-Ling; Yu, Xin-Yu

    2018-03-01

    Temperature-dependent electron paramagnetic resonance (EPR) study was employed to detect oxygen vacancy defects in the tetragonal Ba(Ti1-xCrx)O3 (x = 5%) ceramic for the first time. In the rhombohedral phase below -150 °C, an EPR signal at g = 1.955 appeared in the insulating Ba(Ti1-xCrx)O3 (x = 5%) ceramic with an electrical resistivity of 108 Ω cm and was assigned to ionized oxygen vacancy defects. Ba(Ti1-xCrx)O3 ceramics exhibited a tetragonal structure except Ba(Ti1-xCrx)O3 (x = 10%) with a tetragonal-hexagonal mixed phase and a first-order phase transition dielectric behavior (ε‧m > 11,000). Mixed valence Cr ions could coexist in ceramics, form CrTi‧-VOrad rad or CrTirad-TiTi‧ defect complexes and make no contribution to a dielectric peak shift towards low temperature.

  20. Solvent induced temperature dependencies of NMR parameters of hydrogen bonded anionic clusters

    NASA Astrophysics Data System (ADS)

    Golubev, Nikolai S.; Shenderovich, Ilja G.; Tolstoy, Peter M.; Shchepkin, Dmitry N.

    2004-07-01

    The solvent induced temperature dependence of NMR parameters (proton and fluorine chemical shifts, the two-bond scalar spin coupling constant across the hydrogen bridge, 2hJFF) for dihydrogen trifluoride anion, (FH) 2F -, in a polar aprotic solvent, CDF 3/CDF 2Cl, is reported and discussed. The results are interpreted in terms of a simple electrostatic model, accounting a decrease of electrostatic repulsion of two negatively charged fluorine atoms on placing into a dielectric medium. The conclusion is drawn that polar medium causes some contraction of hydrogen bonds in ionic clusters combined with a decrease of hydrogen bond asymmetry.

  1. Local Bonding Analysis of the Valence and Conduction Band Features of TiO2

    DTIC Science & Technology

    2007-01-01

    valence and conduction band features of TiO2 L. Fleming, C. C. Fulton, G. Lucovsky, J. E. Rowe, M. D. Ulrich, J. Luning W911NF-04-D-0003 Dept of...J. Luning , L. F. Edge, J. L. Whitten, R. J. Nemanich, H. Ade, D. G. Schlom, V. V. Afanase’v, A. Stesmans, S. Zollner, D. Triyoso, and B. R. Rogers

  2. Introducing Students to Inner Sphere Electron Transfer Concepts through Electrochemistry Studies in Diferrocene Mixed-Valence Systems

    ERIC Educational Resources Information Center

    Ventura, Karen; Smith, Mark B.; Prat, Jacob R.; Echegoyen, Lourdes E.; Villagran´, Dino

    2017-01-01

    We have designed a 4 h physical chemistry laboratory to introduce upper division students to electrochemistry concepts, including mixed valency and electron transfer (ET), using cyclic and differential pulse voltammetries. In this laboratory practice, students use a ferrocene dimer consisting of two ferrocene centers covalently bonded through a…

  3. A minimalistic approach to static and dynamic electron correlations: Amending generalized valence bond method with extended random phase approximation correlation correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Koushik; Jawulski, Konrad; Pastorczak, Ewa

    A perfect-pairing generalized valence bond (GVB) approximation is known to be one of the simplest approximations, which allows one to capture the essence of static correlation in molecular systems. In spite of its attractive feature of being relatively computationally efficient, this approximation misses a large portion of dynamic correlation and does not offer sufficient accuracy to be generally useful for studying electronic structure of molecules. We propose to correct the GVB model and alleviate some of its deficiencies by amending it with the correlation energy correction derived from the recently formulated extended random phase approximation (ERPA). On the examples ofmore » systems of diverse electronic structures, we show that the resulting ERPA-GVB method greatly improves upon the GVB model. ERPA-GVB recovers most of the electron correlation and it yields energy barrier heights of excellent accuracy. Thanks to a balanced treatment of static and dynamic correlation, ERPA-GVB stays reliable when one moves from systems dominated by dynamic electron correlation to those for which the static correlation comes into play.« less

  4. Vibrational treatment of the formic acid double minimum case in valence coordinates

    NASA Astrophysics Data System (ADS)

    Richter, Falk; Carbonnière, P.

    2018-02-01

    One single full dimensional valence coordinate HCOOH ground state potential energy surface accurate for both cis and trans conformers for all levels up to 6000 cm-1 relative to trans zero point energy has been generated at CCSD(T)-F12a/aug-cc-pVTZ level. The fundamentals and a set of eigenfunctions complete up to about 3120 and 2660 cm-1 for trans- and cis-HCOOH, respectively, have been calculated and assigned using the improved relaxation method of the Heidelberg multi-configuration time-dependent Hartree package and an exact expression for the kinetic energy in valence coordinates generated by the TANA program. The calculated trans fundamental transition frequencies agree with experiment to within 5 cm-1. A few reassignments are suggested. Our results discard any cis trans delocalization effects for vibrational eigenfunctions up to 3640 cm-1 relative to trans zero point energy.

  5. Concentration-dependent multiple chirality transition in halogen-bond-driven 2D self-assembly process

    NASA Astrophysics Data System (ADS)

    Miao, Xinrui; Li, Jinxing; Zha, Bao; Miao, Kai; Dong, Meiqiu; Wu, Juntian; Deng, Wenli

    2018-03-01

    The concentration-dependent self-assembly of iodine substituted thienophenanthrene derivative (5,10-DITD) is investigated at the 1-octanic acid/graphite interface using scanning tunneling microscopy. Three kinds of chiral arrangement and transition of 2D molecular assembly mainly driven by halogen bonding is clearly revealed. At high concentration the molecules self-assembled into a honeycomb-like chiral network. Except for the interchain van der Waals forces, this pattern is stabilized by intermolecular continuous Cdbnd O⋯I⋯S halogen bonds in each zigzag line. At moderate concentration, a chiral kite-like nanoarchitecture are observed, in which the Cdbnd O⋯I⋯S and I⋯Odbnd C halogen bonds, along with the molecule-solvent Cdbnd O⋯I⋯H halogen bonds are the dominated forces to determine the structural formation. At low concentration, the molecules form a chiral cyclic network resulting from the solvent coadsorption mainly by molecule-molecule Cdbnd O⋯I⋯S halogen bonds and molecule-solvent Cdbnd O⋯I⋯H halogen bonds. The density of molecular packing becomes lower with the decreasing of the solution concentration. The solution-concentration dependent self-assembly of thienophenanthrene derivative with iodine and ester chain moieties reveals that the type of intermolecular halogen bond and the number of the co-adsorbing 1-octanic acids by molecule-solvent Cdbnd O⋯I⋯H halogen bonds determine the formation and transformation of chirality. This research emphasizes the role of different types of halogen (I) bonds in the controllable supramolecular structures and provides an approach for the fabrication of chirality.

  6. Composition-dependent bonding and hardness of γ-aluminum oxynitride: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Tu, Bingtian; Wang, Hao; Liu, Xiao; Khan, Shahzad A.; Wang, Weimin; Fu, Zhengyi

    2014-06-01

    Spinel phase aluminum oxynitride solid solution (γ-alon, with formula of Al(8+x)/3O4-xNx) exists in the narrow Al2O3-rich region of Al2O3-AlN systems. The first-principles calculations were developed to investigate the composition-dependent bonding and hardness of γ-alon. Six supercell model for Al(8+x)/3O4-xNx (x = 0, 0.25, 0.44, 0.63, 0.81, and 1) was constructed to perform our calculations with high accuracy. It was found that the lattice constant increases with increasing composition of nitrogen in γ-alon. The bond lengths of AlIV-O, AlVI-O, AlIV-N, and AlVI-N all increase with the expansion of crystal structure. The well-known Mulliken overlap populations were calculated to estimate the bonding and hardness. As the content of nitrogen substitute increases, the Al-N bonds present more covalent characteristic, while the Al-O bonds present more ionic characteristic. The AlIV-N is the hardest bond in γ-alon. The theoretical hardness of γ-alon could be slightly enhanced from 17.16 GPa to 17.97 GPa by increasing content of nitrogen in full solubility range. The contribution ratio, CHμ, was proposed to quantify the contribution of bonds to hardness of γ-alon. The Al-O bonds are found to contribute more to the hardness. The Al-N bonds are the main influencing factor to enhance the hardness of γ-alon. These calculated results provide the basis for understanding the composition-dependent bonding and hardness of γ-alon.

  7. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies.

    PubMed

    Brownridge, Scott; Crawford, Margaret-Jane; Du, Hongbin; Harcourt, Richard D; Knapp, Carsten; Laitinen, Risto S; Passmore, Jack; Rautiainen, J Mikko; Suontamo, Reijo J; Valkonen, Jussi

    2007-02-05

    The bonding in the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I42+ (three sigma + two pi bonds), the Se-I pi-bonded Se2I42+ (four sigma + one pi bonds), and their higher-energy isomers have been studied using modern DFT and ab initio calculations and theoretical analysis methods: atoms in molecules (AIM), molecular orbital (MO), natural bond orbital (NBO), and valence bond (VB) analyses, giving their relative energies, theoretical bond orders, and atomic charges. The aim of this work was to seek theory-based answers to four main questions: (1) Are the previously proposed simple pi*-pi* bonding models valid for S2I42+ and Se2I42+? (2) What accounts for the difference in the structures of S2I42+ and Se2I42+? (3) Why are the classically bonded isolobal P2I4 and As2I4 structures not adopted? (4) Is the high experimentally observed S-S bond order supported by theoretical bond orders, and how does it relate to high bond orders between other heavier main group elements? The AIM analysis confirmed the high bond orders and established that the weak bonds observed in S2I42+ and Se2I42+ are real and the bonding in these cations is covalent in nature. The full MO analysis confirmed that S2I42+ contains three sigma and two pi bonds, that the positive charge is essentially equally distributed over all atoms, that the bonding between S2 and two I2+ units in S2I42+ is best described by two mutually perpendicular 4c2e pi*-pi* bonds, and that in Se2I42+, two SeI2+ moieties are joined by a 6c2e pi*-pi* bond, both in agreement with previously suggested models. The VB treatment provided a complementary approach to MO analysis and provided insight how the formation of the weak bonds affects the other bonds. The NBO analysis and the calculated AIM charges showed that the minimization of the electrostatic repulsion between EI2+ units (E = S, Se) and the delocalization of the positive charge are the main factors that explain why the nonclassical structures are favored for S2I42

  8. Electric-field-driven electron-transfer in mixed-valence molecules.

    PubMed

    Blair, Enrique P; Corcelli, Steven A; Lent, Craig S

    2016-07-07

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate the electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.

  9. Electric-field-driven electron-transfer in mixed-valence molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, Enrique P., E-mail: enrique-blair@baylor.edu; Corcelli, Steven A., E-mail: scorcell@nd.edu; Lent, Craig S., E-mail: lent@nd.edu

    2016-07-07

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate themore » electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.« less

  10. Bonding temperature dependence of GaInAsP/InP laser diode grown on hydrophilically directly bonded InP/Si substrate

    NASA Astrophysics Data System (ADS)

    Aikawa, Masaki; Onuki, Yuya; Hayasaka, Natsuki; Nishiyama, Tetsuo; Kamada, Naoki; Han, Xu; Kallarasan Periyanayagam, Gandhi; Uchida, Kazuki; Sugiyama, Hirokazu; Shimomura, Kazuhiko

    2018-02-01

    The bonding-temperature-dependent lasing characteristics of 1.5 a µm GaInAsP laser diode (LD) grown on a directly bonded InP/Si substrate were successfully obtained. We have fabricated the InP/Si substrate using a direct hydrophilic wafer bonding technique at bonding temperatures of 350, 400, and 450 °C, and deposited GaInAsP/InP double heterostructure layers on this InP/Si substrate. The surface conditions, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectra, and electrical characteristics after the growth were compared at these bonding temperatures. No significant differences were confirmed in X-ray diffraction analysis and PL spectra at these bonding temperatures. We realized the room-temperature lasing of the GaInAsP LD on the InP/Si substrate bonded at 350 and 400 °C. The threshold current densities were 4.65 kA/cm2 at 350 °C and 4.38 kA/cm2 at 400 °C. The electrical resistance was found to increase with annealing temperature.

  11. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    PubMed

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Variation of sigma-hole magnitude with M valence electron population in MX(n)Y(4-n) molecules (n = 1-4; M = C, Si, Ge; X, Y = F, Cl, Br).

    PubMed

    McDowell, Sean A C; Joseph, Jerelle A

    2014-01-14

    Sigma holes are described as electron-deficient regions on atoms, particularly along the extension of covalent bonds, due to non-uniform electron density distribution on the surface of these atoms. A computational study of MX(n)Y(4-n) molecules (n = 1-4; M = C, Si, Ge; X, Y = F, Cl, Br) was undertaken and it is shown that the relative sigma hole potentials on M due to X-M and Y-M can be adequately explained in terms of the variation in the valence electron population of the central M atom. A model is proposed for the depletion of the M valence electron population which explains the trends in sigma hole strengths, especially those that cannot be accounted for solely on the basis of relative electronegativities.

  13. Effect of valence state and particle size on NO oxidation in fresh and aged Pt-based diesel oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Yanli; Ding, Xinmei; Zhao, Ming; Wang, Jianli; Chen, Yaoqiang

    2018-06-01

    To stabilize Pt, Magnesium-modified SiO2-Al2O3 materials was used to impregnate with Pt, which could strengthen the bonding effect between Pt and Mg. Before and after aging, both showed a higher dispersion. High valence state of Pt in fresh modified catalyst was unfavorable of NO oxidation, indicating that the valence state of Pt was the leader factor in fresh catalytic performance. While for the aged Mg-modified sample, its reaction temperature of 30% NO conversion lowered by around 30 °C. The Pt stabilization via interacting with Mg derives a relation that the variation of Pt valence state and its exposed sites played a significant role in fresh and aged catalytic NO activity, respectively.

  14. Molecular Static Third-Order Polarizabilities of Carbon-Cage Fullerene and Their Correlation with Three Geometric Properties: Symmetry, Aromaticity, and Size

    NASA Technical Reports Server (NTRS)

    Moore, C. E.; Cardelino, B. H.; Frazier, D. O.; Niles, J.; Wang, X.-Q.

    1998-01-01

    The static third-order polarizabilities (gamma) of C60, C70, five isomers of C78 and two isomers of C84 were analyzed in terms of three properties, from a geometric point of view: symmetry, aromaticity and size. The polarizability values were based on the finite field approximation using a semiempirical Hamiltonian (AM1) and applied to molecular structures obtained from density functional theory calculations. Symmetry was characterized by the molecular group order. The selection of 6-member rings as aromatic was determined from an analysis of bond lengths. Maximum interatomic distance and surface area were the parameters considered with respect to size. Based on triple linear regression analysis, it was found that the static linear polarizability (alpha) and gamma in these molecules respond differently to geometrical properties: alpha depends almost exclusively on surface area while gamma is affected by a combination of number of aromatic rings, length and group order, in decreasing importance. In the case of alpha, valence electron contributions provide the same information as all-electron estimates. For gamma, the best correlation coefficients are obtained when all-electron estimates are used and when the dependent parameter is ln(gamma) instead of gamma.

  15. What is the valence of Mn in GaMnN?

    NASA Astrophysics Data System (ADS)

    Nelson, Ryky; Berlijn, Tom; Moreno, Juana; Jarrell, Mark; Ku, Wei

    2014-03-01

    Motivated by the potential high Curie temperature of GaMnN, we investigate the controversial Mn-valence in this diluted magnetic semiconductor. From a first-principles Wannier functions analysis of the high energy Hilbert space we find unambiguously the charge state of Mn to be close to 2 + (d5), but in a mixed spin configuration with average magnetic moments of 4 μB. Using more extended Wannier orbitals to capture the lower-energy physics, we further demonstrate the feasibility of both the effective d4 description (appropriate to deal with the local magnetic moment and Jahn-Teller distortion), and the effective d5 description (relevant to study long-range magnetic order). Our derivation highlights the general richness of low-energy sectors in interacting many-body systems and the generic need for multiple effective descriptions, and advocates for a diminished relevance of atomic valence measured by various experimental probes. This research is supported in part by LA-SiGMA, NSF Award Number #EPS-1003897. TB was supported by DOE CMCSN and as a Wigner Fellow at the Oak Ridge National Laboratory.

  16. Understanding cation ordering and oxygen vacancy site preference in Ba3CaNb2O9 from first-principles

    NASA Astrophysics Data System (ADS)

    Ding, Hepeng; Virkar, Anil; Liu, Feng

    2014-03-01

    We investigate the physical mechanism underlying the formation of the B-site cation ordering and the oxygen vacancy site selection in Ba3CaNb2O9 using density functional theory calculations. We found that either cation site exchange or oxygen vacancy formation induces negligible lattice strain. This implies that the ionic radius plays an insignificant role in governing these two processes. Furthermore, the electrostatic interactions are found dominant in the ordering of mixed valence species on one or more sites, the ionic bond strength is identified as the dominant force in governing both the 1:2 B-site cation ordering along the <111>direction and the oxygen vacancy site preference in Ba3CaNb2O9. Specifically, the cation ordering can be rationalized by the increased mixing bonding energy of the Ca-O-Nb bonds over the Ca-O-Ca and Nb-O-Nb bonds, i.e., 1/2(Ca-O-Ca + Nb-O-Nb) bond. Funded by DOE EFRC Grant Number DE-SC0001061 as a flow through from the University of South Carolina.

  17. Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Sutton, S. R.; Papike, J. J.; Shearer, C. K.; Jones, J. H.; Newville, M.

    2004-01-01

    We have been developing an oxygen barometer based on the valence state of V (V(2+), V(3+), V(4+), and V(5+)) in solar system basaltic glasses. The V valence is determined by synchrotron micro x-ray absorption near edge structure (XANES), which uses x-ray absorption associated with core-electronic transitions (absorption edges) to reveal a pre-edge peak whose intensity is directly proportional to the valence state of an element. XANES has advantages over other techniques that determine elemental valence because measurements can be made non-destructively in air and in situ on conventional thin sections at a micrometer spatial resolution with elemental sensitivities of approx. 100 ppm. Recent results show that fO2 values derived from the V valence technique are consistent with fO2 estimates determined by other techniques for materials that crystallized above the IW buffer. The fO2's determined by V valence (IW-3.8 to IW-2) for the lunar pyroclastic glasses, however, are on the order of 1 to 2.8 log units below previous estimates. Furthermore, the calculated fO2's decrease with increasing TiO2 contents from the A17 VLT to the A17 Orange glasses. In order to investigate these results further, we have synthesized lunar green and orange glasses and examined them by XANES.

  18. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieplicka-Oryńczak, N.; Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków; Fornal, B.

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility ofmore » testing the calculations involving the core excitations.« less

  19. The influence of disulfide bonds on the mechanical stability of proteins is context dependent.

    PubMed

    Manteca, Aitor; Alonso-Caballero, Álvaro; Fertin, Marie; Poly, Simon; De Sancho, David; Perez-Jimenez, Raul

    2017-08-11

    Disulfide bonds play a crucial role in proteins, modulating their stability and constraining their conformational dynamics. A particularly important case is that of proteins that need to withstand forces arising from their normal biological function and that are often disulfide bonded. However, the influence of disulfides on the overall mechanical stability of proteins is poorly understood. Here, we used single-molecule force spectroscopy (smFS) to study the role of disulfide bonds in different mechanical proteins in terms of their unfolding forces. For this purpose, we chose the pilus protein FimG from Gram-negative bacteria and a disulfide-bonded variant of the I91 human cardiac titin polyprotein. Our results show that disulfide bonds can alter the mechanical stability of proteins in different ways depending on the properties of the system. Specifically, disulfide-bonded FimG undergoes a 30% increase in its mechanical stability compared with its reduced counterpart, whereas the unfolding force of I91 domains experiences a decrease of 15% relative to the WT form. Using a coarse-grained simulation model, we rationalized that the increase in mechanical stability of FimG is due to a shift in the mechanical unfolding pathway. The simple topology-based explanation suggests a neutral effect in the case of titin. In summary, our results indicate that disulfide bonds in proteins act in a context-dependent manner rather than simply as mechanical lockers, underscoring the importance of considering disulfide bonds both computationally and experimentally when studying the mechanical properties of proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Electronic and transport properties of Cobalt-based valence tautomeric molecules and polymers

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Calzolari, Arrigo; Buongiorno Nardelli, Marco

    2011-03-01

    The advancement of molecular spintronics requires further understandings of the fundamental electronic structures and transport properties of prototypical spintronics molecules and polymers. Here we present a density functional based theoretical study of the electronic structures of Cobalt-based valence tautomeric molecules Co III (SQ)(Cat)L Co II (SQ)2 L and their polymers, where SQ refers to the semiquinone ligand, and Cat the catecholate ligand, while L is a redox innocent backbone ligand. The conversion from low-spin Co III ground state to high-spin Co II excited state is realized by imposing an on-site potential U on the Co atom and elongating the Co-N bond. Transport properties are subsequently calculated by extracting electronic Wannier functions from these systems and computing the charge transport in the ballistic regime using a Non-Equilibrium Green's Function (NEGF) approach. Our transport results show distinct charge transport properties between low-spin ground state and high-spin excited state, hence suggesting potential spintronics devices from these molecules and polymers such as spin valves.

  1. Valence State Driven Site Preference in the Quaternary Compound Ca5MgAgGe5: An Electron-Deficient Phase with Optimized Bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponou, Simeon; Lidin, Sven; Zhang, Yuemei

    The quaternary phase Ca5Mg0.95Ag1.05(1)Ge5 (3) was synthesized by high-temperature solid-state techniques, and its crystal structure was determined by single-crystal diffraction methods in the orthorhombic space group Pnma – Wyckoff sequence c12 with a = 23.1481(4) Å, b = 4.4736(1) Å, c = 11.0128(2) Å, V = 1140.43(4) Å3, Z = 4. The crystal structure can be described as linear intergrowths of slabs cut from the CaGe (CrB-type) and the CaMGe (TiNiSi-type; M = Mg, Ag) structures. Hence, 3 is a hettotype of the hitherto missing n = 3 member of the structure series with the general formula R2+nT2X2+n, previously describedmore » with n = 1, 2, and 4. The member with n = 3 was predicted in the space group Cmcm – Wyckoff sequence f5c2. The experimental space group Pnma (in the nonstandard setting Pmcn) corresponds to a klassengleiche symmetry reduction of index two of the predicted space group Cmcm. This transition originates from the switching of one Ge and one Ag position in the TiNiSi-related slab, a process that triggers an uncoupling of each of the five 8f sites in Cmcm into two 4c sites in Pnma. The Mg/Ag site preference was investigated using VASP calculations and revealed a remarkable example of an intermetallic compound for which the electrostatic valency principle is a critical structure-directing force. The compound is deficient by one valence electron according to the Zintl concept, but LMTO electronic structure calculations indicate electronic stabilization and overall bonding optimization in the polyanionic network. Other stability factors beyond the Zintl concept that may account for the electronic stabilization are discussed.« less

  2. Direct computation of general chemical energy differences: Application to ionization potentials, excitation, and bond energies.

    PubMed

    Beste, A; Harrison, R J; Yanai, T

    2006-08-21

    Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.

  3. Mechanisms for the reactions of group 10 transition metal complexes with metal-group 14 element bonds, Bbt(Br)E═M(PCy3)2 (E = C, Si, Ge, Sn, Pb; M = Pd and Pt).

    PubMed

    Liao, Wei-Hung; Ho, Pei-Yun; Su, Ming-Der

    2013-02-04

    The electronic structures of the Bbt(Br)E═M(PCy(3))(2) (E = C, Si, Ge, Sn, Pb and M = Pt, Pd) complexes and their potential energy surfaces for the formation and water addition reactions were studied using density functional theory (B3LYP/LANL2DZ). The theoretical evidence suggests that the bonding character of the E═M double bond between the six valence-electron Bbt(Br)E: species and the 14 valence-electron (PCy(3))(2)M complexes has a predominantly high s-character. That is, on the basis of the NBO, this theoretical study indicates that the σ-donation from the E element to the M atom prevails. Also, theoretical computations suggest that the relative reactivity decreases in the order: Bbt(Br)C═M(PCy(3))(2) > Bbt(Br)Si═M(PCy(3))(2) > Bbt(Br)Ge═M(PCy(3))(2) > Bbt(Br)Sn═M(PCy(3))(2) > Bbt(Br)Pb═M(PCy(3))(2), irrespective of whether M = Pt or M = Pd is chosen. Namely, the greater the atomic weight of the group 14 atom (E), the larger is the atomic radius of E and the more stable is its Bbt(Br)E═M(PCy(3))(2) doubly bonded species toward chemical reactions. The computational results show good agreement with the available experimental observations. The theoretical results obtained in this work allow a number of predictions to be made.

  4. Binding branched and linear DNA structures: From isolated clusters to fully bonded gels

    NASA Astrophysics Data System (ADS)

    Fernandez-Castanon, J.; Bomboi, F.; Sciortino, F.

    2018-01-01

    The proper design of DNA sequences allows for the formation of well-defined supramolecular units with controlled interactions via a consecution of self-assembling processes. Here, we benefit from the controlled DNA self-assembly to experimentally realize particles with well-defined valence, namely, tetravalent nanostars (A) and bivalent chains (B). We specifically focus on the case in which A particles can only bind to B particles, via appropriately designed sticky-end sequences. Hence AA and BB bonds are not allowed. Such a binary mixture system reproduces with DNA-based particles the physics of poly-functional condensation, with an exquisite control over the bonding process, tuned by the ratio, r, between B and A units and by the temperature, T. We report dynamic light scattering experiments in a window of Ts ranging from 10 °C to 55 °C and an interval of r around the percolation transition to quantify the decay of the density correlation for the different cases. At low T, when all possible bonds are formed, the system behaves as a fully bonded network, as a percolating gel, and as a cluster fluid depending on the selected r.

  5. Spin and valence dependence of iron partitioning in Earth’s deep mantle

    PubMed Central

    Piet, Hélène; Badro, James; Nabiei, Farhang; Dennenwaldt, Teresa; Shim, Sang-Heon; Cantoni, Marco; Hébert, Cécile; Gillet, Philippe

    2016-01-01

    We performed laser-heated diamond anvil cell experiments combined with state-of-the-art electron microanalysis (focused ion beam and aberration-corrected transmission electron microscopy) to study the distribution and valence of iron in Earth’s lower mantle as a function of depth and composition. Our data reconcile the apparently discrepant existing dataset, by clarifying the effects of spin (high/low) and valence (ferrous/ferric) states on iron partitioning in the deep mantle. In aluminum-bearing compositions relevant to Earth’s mantle, iron concentration in silicates drops above 70 GPa before increasing up to 110 GPa with a minimum at 85 GPa; it then dramatically drops in the postperovskite stability field above 116 GPa. This compositional variation should strengthen the lowermost mantle between 1,800 km depth and 2,000 km depth, and weaken it between 2,000 km depth and the D” layer. The succession of layers could dynamically decouple the mantle above 2,000 km from the lowermost mantle, and provide a rheological basis for the stabilization and nonentrainment of large low-shear-velocity provinces below that depth. PMID:27647917

  6. Topography of social touching depends on emotional bonds between humans.

    PubMed

    Suvilehto, Juulia T; Glerean, Enrico; Dunbar, Robin I M; Hari, Riitta; Nummenmaa, Lauri

    2015-11-10

    Nonhuman primates use social touch for maintenance and reinforcement of social structures, yet the role of social touch in human bonding in different reproductive, affiliative, and kinship-based relationships remains unresolved. Here we reveal quantified, relationship-specific maps of bodily regions where social touch is allowed in a large cross-cultural dataset (N = 1,368 from Finland, France, Italy, Russia, and the United Kingdom). Participants were shown front and back silhouettes of human bodies with a word denoting one member of their social network. They were asked to color, on separate trials, the bodily regions where each individual in their social network would be allowed to touch them. Across all tested cultures, the total bodily area where touching was allowed was linearly dependent (mean r(2) = 0.54) on the emotional bond with the toucher, but independent of when that person was last encountered. Close acquaintances and family members were touched for more reasons than less familiar individuals. The bodily area others are allowed to touch thus represented, in a parametric fashion, the strength of the relationship-specific emotional bond. We propose that the spatial patterns of human social touch reflect an important mechanism supporting the maintenance of social bonds.

  7. Topography of social touching depends on emotional bonds between humans

    PubMed Central

    Suvilehto, Juulia T.; Glerean, Enrico; Dunbar, Robin I. M.; Hari, Riitta; Nummenmaa, Lauri

    2015-01-01

    Nonhuman primates use social touch for maintenance and reinforcement of social structures, yet the role of social touch in human bonding in different reproductive, affiliative, and kinship-based relationships remains unresolved. Here we reveal quantified, relationship-specific maps of bodily regions where social touch is allowed in a large cross-cultural dataset (N = 1,368 from Finland, France, Italy, Russia, and the United Kingdom). Participants were shown front and back silhouettes of human bodies with a word denoting one member of their social network. They were asked to color, on separate trials, the bodily regions where each individual in their social network would be allowed to touch them. Across all tested cultures, the total bodily area where touching was allowed was linearly dependent (mean r2 = 0.54) on the emotional bond with the toucher, but independent of when that person was last encountered. Close acquaintances and family members were touched for more reasons than less familiar individuals. The bodily area others are allowed to touch thus represented, in a parametric fashion, the strength of the relationship-specific emotional bond. We propose that the spatial patterns of human social touch reflect an important mechanism supporting the maintenance of social bonds. PMID:26504228

  8. The nature of the metal-CO interaction and bonding

    NASA Technical Reports Server (NTRS)

    Bagus, P. S.; Nelin, C. J.; Bauschlicher, C. W., Jr.

    1984-01-01

    The adsorption of CO on metal surfaces is represented by molecular orbital cluster models of CO at an on top site and adsorbed normal to the surface carbon end down. Ab initio SCF and MCSCF calculations are performed for several clusters. The new constrained space orbital variation CSOV approach is used to analyze the bonding and to compare CO adsorption on Al, representative of sp metals, with that on Cu, representative of transition metals. There is a large repulsion between the superposed free CO and metal charge distributions which is considerably smaller for Cu than for Al because there are fewer valence sigma electrons for Cu than for Al. The CSOV analysis shows that the metal to CO pi donation is much more important than the CO to metal sigma donation. It is also shown that for Cu, the d pi contribution to the metal pi donation is larger than the valence 4p pi contribution. The d pi donation is compared between Fe, Ni, and Cu and this donation and the metal-CO interaction are found to be different in the order Fe greater than Ni greater than Cu.

  9. A Multidimensional Measure of Work Valences

    ERIC Educational Resources Information Center

    Porfeli, Erik J.; Lee, Bora; Weigold, Ingrid K.

    2012-01-01

    Work valence is derived from expectancy-valence theory and the literature on children's vocational development and is presumed to be a general appraisal of work that emerges during the childhood period. Work valence serves to promote and inhibit the motivation and tasks associated with vocational development. A measure of work valence, composed of…

  10. a Theoretical Investigation on 10-12 Potential of Hydrogen-Hydrogen Covalent Bond

    NASA Astrophysics Data System (ADS)

    Taneri, Sencer

    2013-05-01

    This is an analytical investigation of well-known 10-12 potential of hydrogen-hydrogen covalent bond. In this research, we will make an elaboration of the well-known 6-12 Lennard-Jones potential in case of this type of bond. Though the results are illustrated in many text books and literature, an analytical analysis for these potentials is missing almost everywhere. The power laws are valid for small radial distances, which are calculated to some extent. The internuclear separation as well as the binding energy of the hydrogen molecule are evaluated with success.

  11. Bond Length Dependence on Quantum States as Shown by Spectroscopy

    ERIC Educational Resources Information Center

    Lim, Kieran F.

    2005-01-01

    A discussion on how a spreadsheet simulation of linear-molecular spectra could be used to explore the dependence of rotational band spacing and contours on average bond lengths in the initial and final quantum states is presented. The simulation of hydrogen chloride IR, iodine UV-vis, and nitrogen UV-vis spectra clearly show whether the average…

  12. Dynamics in higher lying excited states: Valence to Rydberg transitions in the relaxation paths of pyrrole and methylated derivatives

    NASA Astrophysics Data System (ADS)

    Geng, Ting; Schalk, Oliver; Neville, Simon P.; Hansson, Tony; Thomas, Richard D.

    2017-04-01

    The involvement of intermediate Rydberg states in the relaxation dynamics of small organic molecules which, after excitation to the valence manifold, also return to the valence manifold is rarely observed. We report here that such a transiently populated Rydberg state may offer the possibility to modify the outcome of a photochemical reaction. In a time resolved photoelectron study on pyrrole and its methylated derivatives, N-methyl pyrrole and 2,5-dimethyl pyrrole, 6.2 eV photons (200 nm) are used to excite these molecules into a bright ππ* state. In each case, a π3p-Rydberg state, either the B1(π3py) or the A2(π3pz) state, is populated within 20-50 fs after excitation. The wavepacket then proceeds to the lower lying A2(πσ*) state within a further 20 fs, at which point two competing reaction channels can be accessed: prompt N-H (N-CH3) bond cleavage or return to the ground state via a conical intersection accessed after ring puckering, the latter of which is predicted to require an additional 100-160 fs depending on the molecule.

  13. Bond-length distributions for ions bonded to oxygen: results for the non-metals and discussion of lone-pair stereoactivity and the polymerization of PO4

    PubMed Central

    Gagné, Olivier Charles

    2018-01-01

    Bond-length distributions are examined for three configurations of the H+ ion, 16 configurations of the group 14–16 non-metal ions and seven configurations of the group 17 ions bonded to oxygen, for 223 coordination polyhedra and 452 bond distances for the H+ ion, 5957 coordination polyhedra and 22 784 bond distances for the group 14–16 non-metal ions, and 248 coordination polyhedra and 1394 bond distances for the group 17 non-metal ions. H⋯O and O—H + H⋯O distances correlate with O⋯O distance (R 2 = 0.94 and 0.96): H⋯O = 1.273 × O⋯O – 1.717 Å; O—H + H⋯O = 1.068 × O⋯O – 0.170 Å. These equations may be used to locate the hydrogen atom more accurately in a structure refined by X-ray diffraction. For non-metal elements that occur with lone-pair electrons, the most observed state between the n versus n+2 oxidation state is that of highest oxidation state for period 3 cations, and lowest oxidation state for period 4 and 5 cations when bonded to O2−. Observed O—X—O bond angles indicate that the period 3 non-metal ions P3+, S4+, Cl3+ and Cl5+ are lone-pair seteroactive when bonded to O2−, even though they do not form secondary bonds. There is no strong correlation between the degree of lone-pair stereoactivity and coordination number when including secondary bonds. There is no correlation between lone-pair stereoactivity and bond-valence sum at the central cation. In synthetic compounds, PO4 polymerizes via one or two bridging oxygen atoms, but not by three. Partitioning our PO4 dataset shows that multi-modality in the distribution of bond lengths is caused by the different bond-valence constraints that arise for Obr = 0, 1 and 2. For strongly bonded cations, i.e. oxyanions, the most probable cause of mean bond length variation is the effect of structure type, i.e. stress induced by the inability of a structure to follow its a priori bond lengths. For ions with stereoactive lone-pair electrons, the most probable cause of

  14. The Pariser-Parr-Pople model for trans-polyenes. I. Ab initio and semiempirical study of the bond alternation in trans-butadiene

    NASA Astrophysics Data System (ADS)

    Förner, Wolfgang

    1992-03-01

    Ab initio investigations of the bond alternation in butadiene are presented. The atomic basis sets applied range from minimal to split valence plus polarization quality. With the latter one the Hartree-Fock limit for the bond alternation is reached. Correlation is considered on Møller-Plesset many-body perturbation theory of second order (MP2), linear coupled cluster doubles (L-CCD) and coupled cluster doubles (CCD) level. For the smaller basis sets it is shown that for the bond alternation π-π correlations are essential while the effects of σ-σ and σ-π correlations are, though large, nearly independent of bond alternation. On MP2 level the variation of σ-π correlation with bond alternation is surprisingly large. This is discussed as an artefact of MP2. Comparative Su-Schrieffer-Heeger (SSH) and Pariser-Parr-Pople (PPP) calculations show that these models in their usual parametrizations cannot reproduce the ab initio results.

  15. Valency-Controlled Framework Nucleic Acid Signal Amplifiers.

    PubMed

    Liu, Qi; Ge, Zhilei; Mao, Xiuhai; Zhou, Guobao; Zuo, Xiaolei; Shen, Juwen; Shi, Jiye; Li, Jiang; Wang, Lihua; Chen, Xiaoqing; Fan, Chunhai

    2018-06-11

    Weak ligand-receptor recognition events are often amplified by recruiting multiple regulatory biomolecules to the action site in biological systems. However, signal amplification in in vitro biomimetic systems generally lack the spatiotemporal regulation in vivo. Herein we report a framework nucleic acid (FNA)-programmed strategy to develop valence-controlled signal amplifiers with high modularity for ultrasensitive biosensing. We demonstrated that the FNA-programmed signal amplifiers could recruit nucleic acids, proteins, and inorganic nanoparticles in a stoichiometric manner. The valence-controlled signal amplifier enhanced the quantification ability of electrochemical biosensors, and enabled ultrasensitive detection of tumor-relevant circulating free DNA (cfDNA) with sensitivity enhancement of 3-5 orders of magnitude and improved dynamic range. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Influence of emotional valence and arousal on the spread of activation in memory.

    PubMed

    Jhean-Larose, Sandra; Leveau, Nicolas; Denhière, Guy

    2014-11-01

    Controversy still persists on whether emotional valence and arousal influence cognitive activities. Our study sought to compare how these two factors foster the spread of activation within the semantic network. In a lexical decision task, prime words were varied depending on the valence (pleasant or unpleasant) or on the level of emotional arousal (high or low). Target words were carefully selected to avoid semantic priming effects, as well as to avoid arousing specific emotions (neutral). Three SOA durations (220, 420 and 720 ms) were applied across three independent groups. Results indicate that at 220 ms, the effect of arousal is significantly higher than the effect of valence in facilitating spreading activation while at 420 ms, the effect of valence is significantly higher than the effect of arousal in facilitating spreading activation. These findings suggest that affect is a sequential process involving the successive intervention of arousal and valence.

  17. Characterisation of CFRP adhesive bonds by electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Wandowski, Tomasz; Ostachowicz, Wieslaw M.

    2014-03-01

    In aircraft industry the Carbon Fiber Reinforced Polymer (CFRP) elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. The contamination leading to weak bonds may have various origin and be caused by moisture, release agent, hydraulic fluid, fuel, poor curing of adhesive and so on. In this research three different causes of possible weak bonds were selected for the investigation: 1. Weak bond due to release agent contamination, 2. Weak bond due to moisture contamination, 3. Weak bond due to poor curing of the adhesive. In order to assess the bond quality electromechanical impedance (EMI) technique was selected and investigation was focused on the influence of bond quality on electrical impedance of piezoelectric transducer. The piezoelectric transducer was mounted at the middle of each sample surface. Measurements were conducted using HIOKI Impedance Analyzer IM3570. Using the impedance analyzer the electrical parameters were measured for wide frequency band. Due to piezoelectric effect the electrical response of a piezoelectric transducer is related to mechanical response of the sample to which the transducers is attached. The impedance spectra were investigated in order to find indication of the weak bonds. These spectra were compared with measurements for reference sample using indexes proposed in order to assess the bond quality.

  18. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    PubMed

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  19. Effects of valence and divided attention on cognitive reappraisal processes

    PubMed Central

    Leclerc, Christina M.; Kensinger, Elizabeth A.

    2014-01-01

    Numerous studies have investigated the neural substrates supporting cognitive reappraisal, identifying the importance of cognitive control processes implemented by prefrontal cortex (PFC). This study examined how valence and attention affect the processes used for cognitive reappraisal by asking participants to passively view or to cognitively reappraise positive and negative images with full or divided attention. When participants simply viewed these images, results revealed few effects of valence or attention. However, when participants engaged in reappraisal, there was a robust effect of valence, with the reappraisal of negative relative to positive images associated with more widespread activation, including within regions of medial and lateral PFC. There also was an effect of attention, with more lateral PFC recruitment when regulating with full attention and more medial PFC recruitment when regulating with divided attention. Within two regions of medial PFC and one region of ventrolateral PFC, there was an interaction between valence and attention: in these regions, divided attention reduced activity during reappraisal of positive but not negative images. Critically, participants continued to report reappraisal success even during the Divided Attention condition. These results suggest multiple routes to successful cognitive reappraisal, depending upon image valence and the availability of attentional resources. PMID:24493837

  20. Effects of valence and divided attention on cognitive reappraisal processes.

    PubMed

    Morris, John A; Leclerc, Christina M; Kensinger, Elizabeth A

    2014-12-01

    Numerous studies have investigated the neural substrates supporting cognitive reappraisal, identifying the importance of cognitive control processes implemented by prefrontal cortex (PFC). This study examined how valence and attention affect the processes used for cognitive reappraisal by asking participants to passively view or to cognitively reappraise positive and negative images with full or divided attention. When participants simply viewed these images, results revealed few effects of valence or attention. However, when participants engaged in reappraisal, there was a robust effect of valence, with the reappraisal of negative relative to positive images associated with more widespread activation, including within regions of medial and lateral PFC. There also was an effect of attention, with more lateral PFC recruitment when regulating with full attention and more medial PFC recruitment when regulating with divided attention. Within two regions of medial PFC and one region of ventrolateral PFC, there was an interaction between valence and attention: in these regions, divided attention reduced activity during reappraisal of positive but not negative images. Critically, participants continued to report reappraisal success even during the Divided Attention condition. These results suggest multiple routes to successful cognitive reappraisal, depending upon image valence and the availability of attentional resources. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Electronic origin of the dependence of hydrogen bond strengths on nearest-neighbor and next-nearest-neighbor hydrogen bonds in polyhedral water clusters (H 2 O) n , n = 8, 20 and 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Suehiro; Akase, Dai; Aida, Misako

    2016-01-01

    The relative stability and the characteristics of the hydrogen bond networks in the cubic cages of (H2O)8, dodecahedral cages of (H2O)20,and tetrakaidodecahedral cages of (H2O)24 are studied. The charge-transfer and dispersion interaction terms of every pair of the hydrogen bonds are evaluated by using the perturbation theory based on the locally-projected molecular orbital (LPMO PT). Every water molecule and every hydrogen-bonded pair in polyhedral clusters are classified by the types of the adjacent molecules and hydrogen bonds. The relative binding energies among the polyhedral clusters are grouped by these classifications. The necessary condition for the stable conformers and the rulesmore » of the ordering of the relative stability among the isomers are derived from the analysis. The O–O distances and the pair-wise charge-transfer terms are dependent not only on the types of the hydrogen donor and acceptor waters but also on the types of the adjacent waters. This dependence is analyzed with Mulliken’s charge-transfer theory. The work is partially supported by the Grant-in-Aid for Science Research of JSPS (SI, DA, MA). SSX was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Battelle operates the Pacific Northwest National Laboratory for the US Department of Energy.« less

  2. Study of average valence and valence electron distribution of several oxides using X-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Ding, L. L.; Wu, L. Q.; Ge, X. S.; Du, Y. N.; Qian, J. J.; Tang, G. D.; Zhong, W.

    2018-06-01

    X-ray photoelectron spectra of the O 1s electrons of MnFe2O4, ZnFe2O4, ZnO, and CaO were used to estimate the average valence, ValO, of the oxygen anions in these samples. The absolute values of ValO for these samples were found to be distinctly lower than the traditional value of 2.0, suggesting that the total average valences of the cations are also lower than the conventionally accepted values owing to valence balance in the compounds. In addition, we analyzed the valence band spectra of the samples and investigated the distribution characteristics of the valence electrons.

  3. In search for an optimal methodology to calculate the valence electron affinities of temporary anions.

    PubMed

    Puiatti, Marcelo; Vera, D Mariano A; Pierini, Adriana B

    2009-10-28

    Recently, we have proposed an approach for finding the valence anion ground state, based on the stabilization exerted by a polar solvent; the methodology used standard DFT methods and relatively inexpensive basis sets and yielded correct electron affinity (EA) values by gradually decreasing the dielectric constant of the medium. In order to address the overall performance of the new methodology, to find the best conditions for stabilizing the valence state and to evaluate its scope and limitations, we gathered a pool of 60 molecules, 25 of them bearing the conventional valence state as the ground anion and 35 for which the lowest anion state found holds the extra electron in a diffuse orbital around the molecule (non valence state). The results obtained by testing this representative set suggest a very good performance for most species having an experimental EA less negative than -3.0 eV; the correlation at the B3LYP/6-311+G(2df,p) level being y = 1.01x + 0.06, with a correlation index of 0.985. As an alternative, the time dependent DFT (TD-DFT) approach was also tested with both B3LYP and PBE0 functionals. The methodology we proposed shows a comparable or better accuracy with respect to TD-DFT, although the TD-DFT approach with the PBE0 functional is suggested as a suitable estimate for species with the most negative EAs (ca.-2.5 to -3.5 eV), for which stabilization strategies can hardly reach the valence state. As an application, a pool of 8 compounds of key biological interest with EAs which remain unknown or unclear were predicted using the new methodology.

  4. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis

    PubMed Central

    Liu, Shuzhen; Liu, Hua; Johnston, Andrea; Hanna-Addams, Sarah; Reynoso, Eduardo; Xiang, Yougui

    2017-01-01

    Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α–induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis. PMID:28827318

  5. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis.

    PubMed

    Liu, Shuzhen; Liu, Hua; Johnston, Andrea; Hanna-Addams, Sarah; Reynoso, Eduardo; Xiang, Yougui; Wang, Zhigao

    2017-09-05

    Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α-induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis.

  6. Optimizing surface defects for atomic-scale electronics: Si dangling bonds

    NASA Astrophysics Data System (ADS)

    Scherpelz, Peter; Galli, Giulia

    2017-07-01

    Surface defects created and probed with scanning tunneling microscopes are a promising platform for atomic-scale electronics and quantum information technology applications. Using first-principles calculations we demonstrate how to engineer dangling bond (DB) defects on hydrogenated Si(100) surfaces, which give rise to isolated impurity states that can be used in atomic-scale devices. In particular, we show that sample thickness and biaxial strain can serve as control parameters to design the electronic properties of DB defects. While in thick Si samples the neutral DB state is resonant with bulk valence bands, ultrathin samples (1-2 nm) lead to an isolated impurity state in the gap; similar behavior is seen for DB pairs and DB wires. Strain further isolates the DB from the valence band, with the response to strain heavily dependent on sample thickness. These findings suggest new methods for tuning the properties of defects on surfaces for electronic and quantum information applications. Finally, we present a consistent and unifying interpretation of many results presented in the literature for DB defects on hydrogenated silicon surfaces, rationalizing apparent discrepancies between different experiments and simulations.

  7. Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite

    NASA Astrophysics Data System (ADS)

    Edelbro, R.; Sandström, Å.; Paul, J.

    2003-02-01

    The bulk electronic structures of Sphalerite, Pyrite and Chalcopyrite have been calculated within an ab initio, full potential, density functional approach. The exchange term was approximated with the Dirac exchange functional, the Vosko-Wilk-Nusair parameterization of the Cepler-Alder free electron gas was used for correlation and linear combinations of Gaussian type orbitals were used as basis functions. The Sphalerite (zinc blende) band gap was calculated to be direct with a width of 2.23 eV. The Sphalerite valence band was 5.2 eV wide and composed of a mixture of sulfur and zinc orbitals. The band below the valence band located around -6.2 eV was mainly composed of Zn 3d orbitals. The S 3s orbitals gave rise to a band located around -12.3 eV. Pyrite was calculated to be a semiconductor with an indirect band gap of 0.51 eV, and a direct gap of 0.55 eV. The valence band was 1.25 eV wide and mainly composed of non-bonding Fe 3d orbitals. The band below the valence band was 4.9 eV wide and composed of a mixture of sulfur and iron orbitals. Due to the short inter-atomic distance between the sulfur dumbbells, the S 3s orbitals in Pyrite were split into a bonding and an anti-bonding range. Chalcopyrite was predicted to be a conductor, with no band-crossings at the Fermi level. The bands at -13.2 eV originate from the sulfur 3s orbitals and were quite similar to the sulfur 3s bands in Sphalerite, though somewhat shifted to lower energy. The top of the valence band consisted of a mixture of orbitals from all the atoms. The lower part of the same band showed metal character. Computational modeling as a tool for illuminating the flotation and leaching processes of Pyrite and Chalcopyrite, in connection with surface science experiments, is discussed.

  8. Proton Order-Disorder Phenomena in a Hydrogen-Bonded Rhodium-η(5)-Semiquinone Complex: A Possible Dielectric Response Mechanism.

    PubMed

    Mitsumi, Minoru; Ezaki, Kazunari; Komatsu, Yuuki; Toriumi, Koshiro; Miyatou, Tatsuya; Mizuno, Motohiro; Azuma, Nobuaki; Miyazaki, Yuji; Nakano, Motohiro; Kitagawa, Yasutaka; Hanashima, Takayasu; Kiyanagi, Ryoji; Ohhara, Takashi; Nakasuji, Kazuhiro

    2015-06-26

    A newly synthesized one-dimensional (1D) hydrogen-bonded (H-bonded) rhodium(II)-η(5)-semiquinone complex, [Cp*Rh(η(5)-p-HSQ-Me4)]PF6 ([1]PF6; Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; HSQ = semiquinone) exhibits a paraelectric-antiferroelectric second-order phase transition at 237.1 K. Neutron and X-ray crystal structure analyses reveal that the H-bonded proton is disordered over two sites in the room-temperature (RT) phase. The phase transition would arise from this proton disorder together with rotation or libration of the Cp* ring and PF6(-) ion. The relative permittivity εb' along the H-bonded chains reaches relatively high values (ca., 130) in the RT phase. The temperature dependence of (13)C CP/MAS NMR spectra demonstrates that the proton is dynamically disordered in the RT phase and that the proton exchange has already occurred in the low-temperature (LT) phase. Rate constants for the proton exchange are estimated to be 10(-4)-10(-6) s in the temperature range of 240-270 K. DFT calculations predict that the protonation/deprotonation of [1](+) leads to interesting hapticity changes of the semiquinone ligand accompanied by reduction/oxidation by the π-bonded rhodium fragment, producing the stable η(6)-hydroquinone complex, [Cp*Rh(3+)(η(6)-p-H2Q-Me4)](2+) ([2](2+)), and η(4)-benzoquinone complex, [Cp*Rh(+)(η(4)-p-BQ-Me4)] ([3]), respectively. Possible mechanisms leading to the dielectric response are discussed on the basis of the migration of the protonic solitons comprising of [2](2+) and [3], which would be generated in the H-bonded chain. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The impact of emotion intensity on recognition memory: Valence polarity matters.

    PubMed

    Meng, Xianxin; Zhang, Ling; Liu, Wenwen; Ding, XinSheng; Li, Hong; Yang, Jiemin; Yuan, JiaJin

    2017-06-01

    Although the effects of emotion of different emotional intensity on memory have been investigated, it remain unclear whether the influence of emotional intensity on memory varies depending on the stimulus valence polarity (i.e., positive or negative). To address this, event-related potentials were recorded when subjects performed a continuous old/new discrimination task, for highly negative (HN), mildly negative (MN) and neutral pictures in the negative session; and for highly positive (HP), mildly positive (MP) and neutral pictures in the positive session. The results showed that relative to neutral stimuli, both HN and MN stimuli showed increased memory discrimination scores, and enhanced old/new effect in early FN400 (Frontal Negativity), but not late positive component (LPC) amplitudes. By contrast, relative to MP stimuli, HP and neutral stimuli showed increased memory discrimination scores and enhanced old/new effect in LPC but not FN400 amplitudes. Additionally, we observed a significant positive correlation between the memory discrimination score and the old/new effect in the amplitudes of the FN400 and LPC, respectively. These results indicate that both HN and MN stimuli were remembered better than neutral stimuli; whereas the recognition was worse for MP stimuli than Neutral and HP stimuli. In conclusion, in the present study, we observed that the effect of emotion intensity on memory depends on the stimulus valence polarity. Copyright © 2017. Published by Elsevier B.V.

  10. Cohesive zone model for direct silicon wafer bonding

    NASA Astrophysics Data System (ADS)

    Kubair, D. V.; Spearing, S. M.

    2007-05-01

    Direct silicon wafer bonding and decohesion are simulated using a spectral scheme in conjunction with a rate-dependent cohesive model. The cohesive model is derived assuming the presence of a thin continuum liquid layer at the interface. Cohesive tractions due to the presence of a liquid meniscus always tend to reduce the separation distance between the wafers, thereby opposing debonding, while assisting the bonding process. In the absence of the rate-dependence effects the energy needed to bond a pair of wafers is equal to that needed to separate them. When rate-dependence is considered in the cohesive law, the experimentally observed asymmetry in the energetics can be explained. The derived cohesive model has the potential to form a bridge between experiments and a multiscale-modelling approach to understand the mechanics of wafer bonding.

  11. Highly efficient perturbative + variational strategy based on orthogonal valence bond theory for the evaluation of magnetic coupling constants. Application to the trinuclear Cu(ii) site of multicopper oxidases.

    PubMed

    Tenti, Lorenzo; Maynau, Daniel; Angeli, Celestino; Calzado, Carmen J

    2016-07-21

    A new strategy based on orthogonal valence-bond analysis of the wave function combined with intermediate Hamiltonian theory has been applied to the evaluation of the magnetic coupling constants in two AF systems. This approach provides both a quantitative estimate of the J value and a detailed analysis of the main physical mechanisms controlling the coupling, using a combined perturbative + variational scheme. The procedure requires a selection of the dominant excitations to be treated variationally. Two methods have been employed: a brute-force selection, using a logic similar to that of the CIPSI approach, or entanglement measures, which identify the most interacting orbitals in the system. Once a reduced set of excitations (about 300 determinants) is established, the interaction matrix is dressed at the second-order of perturbation by the remaining excitations of the CI space. The diagonalization of the dressed matrix provides J values in good agreement with experimental ones, at a very low-cost. This approach demonstrates the key role of d → d* excitations in the quantitative description of the magnetic coupling, as well as the importance of using an extended active space, including the bridging ligand orbitals, for the binuclear model of the intermediates of multicopper oxidases. The method is a promising tool for dealing with complex systems containing several active centers, as an alternative to both pure variational and DFT approaches.

  12. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A., E-mail: gpetersson@wesleyan.edu

    2015-12-07

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.

  13. Effect of Pr Valence State on Interfacial Structure and Electrical Properties of Pr Oxide/PrON/Ge Gate Stack Structure

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Sakashita, Mitsuo; Takeuchi, Wakana; Kondo, Hiroki; Nakatsuka, Osamu; Zaima, Shigeaki

    2011-04-01

    In this study, we investigated the valence state and chemical bonding state of Pr in a Pr oxide/PrON/Ge structure. We clarified the relationship between the valence state of Pr and the Pr oxide/Ge interfacial reaction using Pr oxide/Ge and Pr oxide/PrON/Ge samples. We found the formation of three Pr oxide phases in Pr oxide films; hexagonal Pr2O3 (h-Pr2O3) (Pr3+), cubic Pr2O3 (c-Pr2O3) (Pr3+), and c-PrO2 (Pr4+). We also investigated the effect of a nitride interlayer on the interfacial reaction in Pr oxide/Ge gate stacks. In a sample with a nitride interlayer (Pr oxide/PrON/Ge), metallic Pr-Pr bonds are also formed in the c-Pr2O3 film. After annealing in H2 ambient, the diffusion of Ge into Pr oxide is not observed in this sample. Pr-Pr bonds probably prevent the interfacial reaction and Ge oxide formation, considering that the oxygen chemical potential of this film is lower than that of a GeO2/Ge system. On the other hand, the rapid thermal oxidation (RTO) treatment terminates the O vacancies and defects in c-Pr2O3. As a result, c-PrO2 with tetravalent Pr is formed in the Pr oxide/PrON/Ge sample with RTO. In this sample, the leakage current density is effectively decreased in comparison with the sample without RTO. Hydrogen termination works effectively in Pr oxide/PrON/Ge samples with and without RTO, and we can achieve an interface state density of as low as 4 ×1011 eV-1·cm-2.

  14. On pleasure and thrill: the interplay between arousal and valence during visual word recognition.

    PubMed

    Recio, Guillermo; Conrad, Markus; Hansen, Laura B; Jacobs, Arthur M

    2014-07-01

    We investigated the interplay between arousal and valence in the early processing of affective words. Event-related potentials (ERPs) were recorded while participants read words organized in an orthogonal design with the factors valence (positive, negative, neutral) and arousal (low, medium, high) in a lexical decision task. We observed faster reaction times for words of positive valence and for those of high arousal. Data from ERPs showed increased early posterior negativity (EPN) suggesting improved visual processing of these conditions. Valence effects appeared for medium and low arousal and were absent for high arousal. Arousal effects were obtained for neutral and negative words but were absent for positive words. These results suggest independent contributions of arousal and valence at early attentional stages of processing. Arousal effects preceded valence effects in the ERP data suggesting that arousal serves as an early alert system preparing a subsequent evaluation in terms of valence. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Hydrogen-bonding effect on spin-center transfer of tetrathiafulvalene-linked 6-oxophenalenoxyl evaluated using temperature-dependent cyclic voltammetry and theoretical calculations.

    PubMed

    Nishida, Shinsuke; Fukui, Kozo; Morita, Yasushi

    2014-02-01

    The stable tetrathiafulvalene (TTF)-linked 6-oxophenalenoxyl neutral radical exhibits a spin-center transfer with a continuous color change in solution caused by an intramolecular electron transfer, which is dependent on solvent and temperature. Cyclic voltammetry measurements showed that addition of 2,2,2-trifluoroethanol (TFE) to a benzonitrile solution of the neutral radical induces a redox potential shift that is favorable for the spin-center transfer. Temperature-dependent cyclic voltammetry of the neutral radical using a novel low-temperature electrochemical cell demonstrated that the redox potentials change with decreasing temperature in a 199:1 CH2Cl2/TFE mixed solvent. Furthermore, theoretical calculation revealed that the energy levels of the frontier molecular orbitals involved in the spin-center transfer are lowered by the hydrogen-bonding interaction of TFE with the neutral radical. These results indicate that the hydrogen-bonding effect is a key factor for the occurrence of the spin-center transfer of TTF-linked 6-oxophenalenoxyl. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Valence and arousal of emotional stimuli impact cognitive-motor performance in an oddball task.

    PubMed

    Lu, Yingzhi; Jaquess, Kyle J; Hatfield, Bradley D; Zhou, Chenglin; Li, Hong

    2017-04-01

    It is widely recognized that emotions impact an individual's ability to perform in a given task. However, little is known about how emotion impacts the various aspects of cognitive -motor performance. We recorded event-related potentials (ERPs) and chronometric responses from twenty-six participants while they performed a cognitive-motor oddball task in regard to four categories of emotional stimuli (high-arousing positive-valence, low-arousing positive-valence, high-arousing negative-valence, and low-arousing negative-valence) as "deviant" stimuli. Six chronometric responses (reaction time, press time, return time, choice time, movement time, and total time) and three ERP components (P2, N2 and late positive potential) were measured. Results indicated that reaction time was significantly affected by the presentation of emotional stimuli. Also observed was a negative relationship between N2 amplitude and elements of performance featuring reaction time in the low-arousing positive-valence condition. This study provides further evidence that emotional stimuli influence cognitive-motor performance in a specific manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Pressure-Induced Valence Crossover and Novel Metamagnetic Behavior near the Antiferromagnetic Quantum Phase Transition of YbNi3Ga9

    NASA Astrophysics Data System (ADS)

    Matsubayashi, K.; Hirayama, T.; Yamashita, T.; Ohara, S.; Kawamura, N.; Mizumaki, M.; Ishimatsu, N.; Watanabe, S.; Kitagawa, K.; Uwatoko, Y.

    2015-02-01

    We report electrical resistivity, ac magnetic susceptibility, and x-ray absorption spectroscopy measurements of intermediate valence YbNi3Ga9 under pressure and magnetic field. We have revealed a characteristic pressure-induced Yb valence crossover within the temperature-pressure phase diagram, and a first-order metamagnetic transition is found below Pc˜9 GPa where the system undergoes a pressure-induced antiferromagnetic transition. As a possible origin of the metamagnetic behavior, a critical valence fluctuation emerging near the critical point of the first-order valence transition is discussed on the basis of the temperature-field-pressure phase diagram.

  18. Identifying Facial Emotions: Valence Specific Effects and an Exploration of the Effects of Viewer Gender

    ERIC Educational Resources Information Center

    Jansari, Ashok; Rodway, Paul; Goncalves, Salvador

    2011-01-01

    The valence hypothesis suggests that the right hemisphere is specialised for negative emotions and the left hemisphere is specialised for positive emotions (Silberman & Weingartner, 1986). It is unclear to what extent valence-specific effects in facial emotion perception depend upon the gender of the perceiver. To explore this question 46…

  19. Predicting the Valence of a Scene from Observers’ Eye Movements

    PubMed Central

    R.-Tavakoli, Hamed; Atyabi, Adham; Rantanen, Antti; Laukka, Seppo J.; Nefti-Meziani, Samia; Heikkilä, Janne

    2015-01-01

    Multimedia analysis benefits from understanding the emotional content of a scene in a variety of tasks such as video genre classification and content-based image retrieval. Recently, there has been an increasing interest in applying human bio-signals, particularly eye movements, to recognize the emotional gist of a scene such as its valence. In order to determine the emotional category of images using eye movements, the existing methods often learn a classifier using several features that are extracted from eye movements. Although it has been shown that eye movement is potentially useful for recognition of scene valence, the contribution of each feature is not well-studied. To address the issue, we study the contribution of features extracted from eye movements in the classification of images into pleasant, neutral, and unpleasant categories. We assess ten features and their fusion. The features are histogram of saccade orientation, histogram of saccade slope, histogram of saccade length, histogram of saccade duration, histogram of saccade velocity, histogram of fixation duration, fixation histogram, top-ten salient coordinates, and saliency map. We utilize machine learning approach to analyze the performance of features by learning a support vector machine and exploiting various feature fusion schemes. The experiments reveal that ‘saliency map’, ‘fixation histogram’, ‘histogram of fixation duration’, and ‘histogram of saccade slope’ are the most contributing features. The selected features signify the influence of fixation information and angular behavior of eye movements in the recognition of the valence of images. PMID:26407322

  20. Basic features of the pion valence-quark distribution function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Lei; Mezrag, Cédric; Moutarde, Hervé

    2014-10-07

    The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables amore » realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q π(x); namely, at a characteristic hadronic scale, q π(x)~(1-x) 2 for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.« less

  1. Probing periodic potential of crystals via strong-field re-scattering

    NASA Astrophysics Data System (ADS)

    You, Yong Sing; Cunningham, Eric; Reis, David A.; Ghimire, Shambhu

    2018-06-01

    Strong-field ionization and re-scattering phenomena have been used to image angstrom-scale structures of isolated molecules in the gas phase. These methods typically make use of the anisotropic response of the participating molecular orbital. Recently, an anisotropic strong-field response has also been observed in high-order harmonic generation (HHG) from bulk crystals (2016 Nat. Phys. 13 345). In a (100) cut magnesium oxide crystal, extreme ultraviolet high-harmonics are found to depend strongly on the crystal structure and inter-atomic bonding. Here, we extend these measurements to other two important crystal orientations: (111) and (110). We find that HHG from these orientations is also strongly anisotropic. The underlying dynamics is understood using a real-space picture, where high-harmonics are produced via coherent collision of strong-field driven electrons from the atomic sites, including from the nearest neighbor atoms. We find that harmonic efficiency is enhanced when semi-classical electron trajectories connect to the concentrated valence charge distribution regions around the atomic cores. Similarly, the efficiency is suppressed when the trajectories miss the atomic cores. These results further support the real-space picture of HHG with implications for retrieving the periodic potential of the crystal, if not the wavefunctions in three-dimensions.

  2. Theory for electron transfer from a mixed-valence dimer with paramagnetic sites to a mononuclear acceptor

    NASA Astrophysics Data System (ADS)

    Bominaar, E. L.; Achim, C.; Borshch, S. A.

    1999-06-01

    single connectivity, the rate constant for electron transfer from a valence-localized (class-II) donor can readily be tuned over several orders of magnitude by introducing differences in the electronic potentials at the two metal sites of the donor. These results indicate that theories of cluster-based electron transfer, in order to be realistic, need to consider both intrinsic electronic structure and extrinsic interactions of the cluster with the protein environment.

  3. Valence-space compatibility effects depend on situated motor fluency in both right- and left-handers.

    PubMed

    Milhau, Audrey; Brouillet, Thibaut; Brouillet, Denis

    2015-01-01

    According to the body specificity hypothesis, the way we interact with our environment participates in our conceptualization of concepts and word meanings. For instance, valence is associated to horizontal space because of the motor fluency by which one acts with one's dominant hand. We propose that the decisive factor in the compatibility effects between valence and lateral actions is the interaction between the fluency of response movement and the situational constraints of the task. In a valence judgement task with positive and negative words, right-handers (Experiment 1) and left-handers (Experiment 2) responded with lateralized actions of either their dominant or their nondominant hand. To do so, we used a response device that was either congruent or noncongruent with the fluency of the response hand. Results highlighted that when the response device was congruent with the fluency of the responding hand, response times to positive evaluations were shorter than those to negative evaluations. Conversely, when the response device was noncongruent with the fluency of the responding hand, we observed faster responses for negative evaluations than for positive evaluations. Furthermore, we obtained similar patterns for right- and left-handers, supporting the idea that compatibility effects are driven by the situated fluency of the responding hand.

  4. Startle modulation and explicit valence evaluations dissociate during backward fear conditioning.

    PubMed

    Luck, Camilla C; Lipp, Ottmar V

    2017-05-01

    Blink startle magnitude is linearly modulated by affect such that, relative to neutral stimuli, startle magnitude is inhibited during pleasant stimuli and potentiated during unpleasant stimuli. Andreatta, Mühlberger, Yarali, Gerber, and Pauli (2010), however, report a dissociation between startle modulation and explicit valence evaluations during backward conditioning, a procedure in which the unconditional stimulus precedes the conditional stimulus (CS). Relative to controls, startles elicited during the CS were inhibited, suggesting that the CS had acquired positive valence, but participants still evaluated the CS as unpleasant after the experiment. In Experiment 1, we aimed to replicate this dissociation using a trial-by-trial measure of CS valence to measure startle modulation and CS valence simultaneously during forward and backward differential fear conditioning. In Experiment 2, we examined whether early and late portions of the CS could acquire differential valence by presenting startle probes at early and late probe positions during the CS. In both experiments, the dissociation between startle modulation and explicit valence evaluations in backward conditioning replicated, with CS+ evaluated as less pleasant than CS-, but startles elicited during CS+ inhibited relative to CS-. In Experiment 2, we provide preliminary evidence that this inhibition was present early, but not late, during the CS+. The results replicate the dissociation between implicit and explicit CS valence reported by Andreatta et al. (2010) using a trial-by-trial measure of valence. We also provide preliminary evidence that this dissociation may occur because the implicit and explicit measures are recorded at different times during the CS presentation. © 2017 Society for Psychophysiological Research.

  5. Subliminal Affect Valence Words Change Conscious Mood Potency but Not Valence: Is This Evidence for Unconscious Valence Affect?

    PubMed Central

    Shevrin, Howard; Panksepp, Jaak; Brakel, Linda A. W.; Snodgrass, Michael

    2012-01-01

    Whether or not affect can be unconscious remains controversial. Research claiming to demonstrate unconscious affect fails to establish clearly unconscious stimulus conditions. The few investigations that have established unconscious conditions fail to rule out conscious affect changes. We report two studies in which unconscious stimulus conditions were met and conscious mood changes measured. The subliminal stimuli were positive and negative affect words presented at the objective detection threshold; conscious mood changes were measured with standard manikin valence, potency, and arousal scales. We found and replicated that unconscious emotional stimuli produced conscious mood changes on the potency scale but not on the valence scale. Were positive and negative affects aroused unconsciously, but reflected consciously in potency changes? Or were the valence words unconscious cognitive causes of conscious mood changes being activated without unconscious affect? A thought experiment is offered as a way to resolve this dilemma. PMID:24961258

  6. Theoretical study on the potential energy surfaces of CaNC and CaCN

    NASA Astrophysics Data System (ADS)

    Ishii, Keisaku; Taketsugu, Tetsuya; Hirano, Tsuneo

    2003-06-01

    The potential energy surfaces of CaNC ( overlineX2Σ+) and CaCN ( overlineX2Σ+) have been investigated by the highly correlated ab initio molecular orbital methods. The bending potential for CaNC is shallow, and shows quite anharmonic and anomalous character, which can explain why the centrifugal distortion constants up to the tenth order were required for the analysis of its rotational spectrum. The reaction path for the isomerization reaction of CaNC and CaCN was also determined: The activation barrier is 2111 cm -1 from the CaNC side, and 602 cm -1 from the CaCN side. Core-core and core-valence correlation contributions of Ca M-shell electrons make the Ca-N (for CaNC) and Ca-C (for CaCN) bond lengths shorter by 0.05 and 0.04 Å, respectively, which indicates the significance of these core-correlation effects.

  7. N450 and LPC Event-Related Potential Correlates of an Emotional Stroop Task with Words Differing in Valence and Emotional Origin

    PubMed Central

    Imbir, Kamil K.; Spustek, Tomasz; Duda, Joanna; Bernatowicz, Gabriela; Żygierewicz, Jarosław

    2017-01-01

    Affective meaning of verbal stimuli was found to influence cognitive control as expressed in the Emotional Stroop Task (EST). Behavioral studies have shown that factors such as valence, arousal, and emotional origin of reaction to stimuli associated with words can lead to lengthening of reaction latencies in EST. Moreover, electrophysiological studies have revealed that affective meaning altered amplitude of some components of evoked potentials recorded during EST, and that this alteration correlated with the performance in EST. The emotional origin was defined as processing based on automatic vs. reflective mechanisms, that underlines formation of emotional reactions to words. The aim of the current study was to investigate, within the framework of EST, correlates of processing of words differing in valence and origin levels, but matched in arousal, concreteness, frequency of appearance and length. We found no behavioral differences in response latencies. When controlling for origin, we found no effects of valence. We found the effect of origin on ERP in two time windows: 290–570 and 570–800 ms. The earlier effect can be attributed to cognitive control while the latter is rather the manifestation of explicit processing of words. In each case, reflective originated stimuli evoked more positive amplitudes compared to automatic originated words. PMID:28611717

  8. N450 and LPC Event-Related Potential Correlates of an Emotional Stroop Task with Words Differing in Valence and Emotional Origin.

    PubMed

    Imbir, Kamil K; Spustek, Tomasz; Duda, Joanna; Bernatowicz, Gabriela; Żygierewicz, Jarosław

    2017-01-01

    Affective meaning of verbal stimuli was found to influence cognitive control as expressed in the Emotional Stroop Task (EST). Behavioral studies have shown that factors such as valence, arousal, and emotional origin of reaction to stimuli associated with words can lead to lengthening of reaction latencies in EST. Moreover, electrophysiological studies have revealed that affective meaning altered amplitude of some components of evoked potentials recorded during EST, and that this alteration correlated with the performance in EST. The emotional origin was defined as processing based on automatic vs. reflective mechanisms, that underlines formation of emotional reactions to words. The aim of the current study was to investigate, within the framework of EST, correlates of processing of words differing in valence and origin levels, but matched in arousal, concreteness, frequency of appearance and length. We found no behavioral differences in response latencies. When controlling for origin, we found no effects of valence. We found the effect of origin on ERP in two time windows: 290-570 and 570-800 ms. The earlier effect can be attributed to cognitive control while the latter is rather the manifestation of explicit processing of words. In each case, reflective originated stimuli evoked more positive amplitudes compared to automatic originated words.

  9. Effects of Valence and Origin of Emotions in Word Processing Evidenced by Event Related Potential Correlates in a Lexical Decision Task

    PubMed Central

    Imbir, Kamil K.; Spustek, Tomasz; Żygierewicz, Jarosław

    2016-01-01

    This paper presents behavioral and event-related potential (ERP) correlates of emotional word processing during a lexical decision task (LDT). We showed that valence and origin (two distinct affective properties of stimuli) help to account for the ERP correlates of LDT. The origin of emotion is a factor derived from the emotion duality model. This model distinguishes between the automatic and controlled elicitation of emotional states. The subjects’ task was to discriminate words from pseudo-words. The stimulus words were carefully selected to differ with respect to valence and origin whilst being matched with respect to arousal, concreteness, length and frequency in natural language. Pseudo-words were matched to words with respect to length. The subjects were 32 individuals aged from 19 to 26 years who were invited to participate in an EEG study of lexical decision making. They evaluated a list of words and pseudo-words. We found that valence modulated the amplitude of the FN400 component (290–375 ms) at centro-frontal (Fz, Cz) region, whereas origin modulated the amplitude of the component in the LPC latency range (375–670 ms). The results indicate that the origin of stimuli should be taken into consideration while deliberating on the processing of emotional words. PMID:26973569

  10. Memory effects of sleep, emotional valence, arousal and novelty in children.

    PubMed

    Vermeulen, Marije C M; van der Heijden, Kristiaan B; Benjamins, Jeroen S; Swaab, Hanna; van Someren, Eus J W

    2017-06-01

    Effectiveness of memory consolidation is determined by multiple factors, including sleep after learning, emotional valence, arousal and novelty. Few studies investigated how the effect of sleep compares with (and interacts with) these other factors, of which virtually none are in children. The present study did so by repeated assessment of declarative memory in 386 children (45% boys) aged 9-11 years through an online word-pair task. Children were randomly assigned to either a morning or evening learning session of 30 unrelated word-pairs with positive, neutral or negative valenced cues and neutral targets. After immediately assessing baseline recognition, delayed recognition was recorded either 12 or 24 h later, resulting in four different assessment schedules. One week later, the procedure was repeated with exactly the same word-pairs to evaluate whether effects differed for relearning versus original novel learning. Mixed-effect logistic regression models were used to evaluate how the probability of correct recognition was affected by sleep, valence, arousal, novelty and their interactions. Both immediate and delayed recognition were worse for pairs with negatively valenced or less arousing cue words. Relearning improved immediate and delayed word-pair recognition. In contrast to these effects, sleep did not affect recognition, nor did sleep moderate the effects of arousal, valence and novelty. The findings suggest a robust inclination of children to specifically forget the pairing of words to negatively valenced cue words. In agreement with a recent meta-analysis, children seem to depend less on sleep for the consolidation of information than has been reported for adults, irrespective of the emotional valence, arousal and novelty of word-pairs. © 2017 European Sleep Research Society.

  11. Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires.

    PubMed

    Zilli, Attilio; De Luca, Marta; Tedeschi, Davide; Fonseka, H Aruni; Miriametro, Antonio; Tan, Hark Hoe; Jagadish, Chennupati; Capizzi, Mario; Polimeni, Antonio

    2015-04-28

    Semiconductor nanowires (NWs) formed by non-nitride III-V compounds grow preferentially with wurtzite (WZ) lattice. This is contrary to bulk and two-dimensional layers of the same compounds, where only zincblende (ZB) is observed. The absorption spectrum of WZ materials differs largely from their ZB counterparts and shows three transitions, referred to as A, B, and C in order of increasing energy, involving the minimum of the conduction band and different critical points of the valence band. In this work, we determine the temperature dependence (T = 10-310 K) of the energy of transitions A, B, and C in ensembles of WZ InP NWs by photoluminescence (PL) and PL excitation (PLE) spectroscopy. For the whole temperature and energy ranges investigated, the PL and PLE spectra are quantitatively reproduced by a theoretical model taking into account contribution from both exciton and continuum states. WZ InP is found to behave very similarly to wide band gap III-nitrides and II-VI compounds, where the energy of A, B, and C displays the same temperature dependence. This finding unveils a general feature of the thermal properties of WZ materials that holds regardless of the bond polarity and energy gap of the crystal. Furthermore, no differences are observed in the temperature dependence of the fundamental band gap energy in WZ InP NWs and ZB InP (both NWs and bulk). This result points to a negligible role played by the WZ/ZB differences in determining the deformation potentials and the extent of the electron-phonon interaction that is a direct consequence of the similar nearest neighbor arrangement in the two lattices.

  12. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory

    NASA Astrophysics Data System (ADS)

    Xiao, Ruijuan; Li, Hong; Chen, Liquan

    2015-09-01

    Looking for solid state electrolytes with fast lithium ion conduction is an important prerequisite for developing all-solid-state lithium secondary batteries. By combining the simulation techniques in different levels of accuracy, e.g. the bond-valence (BV) method and the density functional theory (DFT), a high-throughput design and optimization scheme is proposed for searching fast lithium ion conductors as candidate solid state electrolytes for lithium rechargeable batteries. The screening from more than 1000 compounds is performed through BV-based method, and the ability to predict reliable tendency of the Li+ migration energy barriers is confirmed by comparing with the results from DFT calculations. β-Li3PS4 is taken as a model system to demonstrate the application of this combination method in optimizing properties of solid electrolytes. By employing the high-throughput DFT simulations to more than 200 structures of the doping derivatives of β-Li3PS4, the effects of doping on the ionic conductivities in this material are predicted by the BV calculations. The O-doping scheme is proposed as a promising way to improve the kinetic properties of this materials, and the validity of the optimization is proved by the first-principles molecular dynamics (FPMD) simulations.

  13. How fast monoamine oxidases decompose adrenaline? Kinetics of isoenzymes A and B evaluated by empirical valence bond simulation.

    PubMed

    Oanca, Gabriel; Stare, Jernej; Mavri, Janez

    2017-12-01

    This work scrutinizes kinetics of decomposition of adrenaline catalyzed by monoamine oxidase (MAO) A and B enzymes, a process controlling the levels of adrenaline in the central nervous system and other tissues. Experimental kinetic data for MAO A and B catalyzed decomposition of adrenaline are reported only in the form of the maximum reaction rate. Therefore, we estimated the experimental free energy barriers form the kinetic data of closely related systems using regression method, as was done in our previous study. By using multiscale simulation on the Empirical Valence Bond (EVB) level, we studied the chemical reactivity of the MAO A catalyzed decomposition of adrenaline and we obtained a value of activation free energy of 17.3 ± 0.4 kcal/mol. The corresponding value for MAO B is 15.7 ± 0.7 kcal/mol. Both values are in good agreement with the estimated experimental barriers of 16.6 and 16.0 kcal/mol for MAO A and MAO B, respectively. The fact that we reproduced the kinetic data and preferential catalytic effect of MAO B over MAO A gives additional support to the validity of the proposed hydride transfer mechanism. Furthermore, we demonstrate that adrenaline is preferably involved in the reaction in a neutral rather than in a protonated form due to considerably higher barriers computed for the protonated adrenaline substrate. The results are discussed in the context of chemical mechanism of MAO enzymes and possible applications of multiscale simulation to rationalize the effects of MAO activity on adrenaline level. © 2017 Wiley Periodicals, Inc.

  14. Understanding the fast phase-change mechanism of tetrahedrally bonded Cu2GeTe3 : Comprehensive analyses of electronic structure and transport phenomena

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keisuke; Skelton, Jonathan M.; Saito, Yuta; Shindo, Satoshi; Kobata, Masaaki; Fons, Paul; Kolobov, Alexander V.; Elliott, Stephen; Ando, Daisuke; Sutou, Yuji

    2018-05-01

    Cu2GeTe3 (CGT) phase-change material, a promising candidate for advanced fast nonvolatile random-access-memory devices, has a chalcopyritelike structure with s p3 bonding in the crystalline phase; thus, the phase-change (PC) mechanism is considered to be essentially different from that of the standard PC materials (e.g., Ge-Sb-Te) with threefold to sixfold p -like bonding. In order to reveal the PC mechanism of CGT, the electronic structure change due to PC has been investigated by laboratory hard x-ray photoelectron spectroscopy and combined first-principles density-functional theory molecular-dynamics simulations. The valence-band spectra, in both crystalline and amorphous phases, are well simulated by the calculations. An inherent tendency of Te 5 s lone-pair formation and an enhanced participation of Cu 3 d orbitals in the bonding are found to play dominant roles in the PC mechanism. The electrical conductivity of as-deposited films and its change during the PC process is investigated in connection with valence-band spectral changes near the Fermi level. The results are successfully analyzed, based on a model proposed by Davis and Mott for chalcogenide amorphous semiconductors. The results suggest that robustness of the defect-band states against thermal stress is a key to the practical application of this material for memory devices.

  15. Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi 2 Sb 2 O

    DOE PAGES

    Zhang, G.; Glasbrenner, J. K.; Flint, R.; ...

    2017-05-01

    Spin-driven nemore » maticity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. In this paper, we argue that the low-temperature state of the recently discovered superconductor BaTi 2 Sb 2 O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi 2 Sb 2 O . Finally, we then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi 2 Sb 2 O .« less

  16. Double-stage nematic bond ordering above double stripe magnetism: Application to BaTi 2 Sb 2 O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G.; Glasbrenner, J. K.; Flint, R.

    Spin-driven nemore » maticity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. In this paper, we argue that the low-temperature state of the recently discovered superconductor BaTi 2 Sb 2 O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi 2 Sb 2 O . Finally, we then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi 2 Sb 2 O .« less

  17. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.

    PubMed

    Wierez-Kien, M; Craciun, A D; Pinon, A V; Roux, S Le; Gallani, J L; Rastei, M V

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <10 3 nm 2 ) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  18. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements

    NASA Astrophysics Data System (ADS)

    Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <103 nm2) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  19. Experimental study of the valence band of Bi 2 Se 3

    DOE PAGES

    Gao, Yi-Bin; He, Bin; Parker, David; ...

    2014-09-26

    The valence band of Bi 2Se 3 is investigated with Shubnikov - de Haas measurements, galvanomagnetic and thermoelectric transport. At low hole concentration, the hole Fermi surface is closed and box-like, but at higher concentrations it develops tube-like extensions that are open. The experimentally determined density-of-states effective mass is lighter than density-functional theory calculations predict; while we cannot give a definitive explanation for this, we suspect that the theory may lack sufficient precision to compute room-temperature transport properties, such as the Seebeck coefficient, in solids in which there are Van der Waals interlayer bonds.

  20. Nanoscopic length scale dependence of hydrogen bonded molecular associates’ dynamics in methanol

    PubMed Central

    Bertrand, C. E.; Self, J. L.; Copley, J. R. D.; Faraone, A.

    2017-01-01

    In a recent paper [C. E. Bertrand et al., J. Chem. Phys. 145, 014502 (2016)], we have shown that the collective dynamics of methanol shows a fast relaxation process related to the standard density-fluctuation heat mode and a slow non-Fickian mode originating from the hydrogen bonded molecular associates. Here we report on the length scale dependence of this slow relaxation process. Using quasielastic neutron scattering and molecular dynamics simulations, we show that the dynamics of the slow process is affected by the structuring of the associates, which is accessible through polarized neutron diffraction experiments. Using a series of partially deuterated samples, the dynamics of the associates is investigated and is found to have a similar time scale to the lifetime of hydrogen bonding in the system. Both the structural relaxation and the dynamics of the associates are thermally activated by the breaking of hydrogen bonding. PMID:28527447

  1. How much does emotional valence of action outcomes affect temporal binding?

    PubMed

    Moreton, Joshua; Callan, Mitchell J; Hughes, Gethin

    2017-03-01

    Temporal binding refers to the compression of the perceived time interval between voluntary actions and their sensory consequences. Research suggests that the emotional content of an action outcome can modulate the effects of temporal binding. We attempted to conceptually replicate these findings using a time interval estimation task and different emotionally-valenced action outcomes (Experiments 1 and 2) than used in previous research. Contrary to previous findings, we found no evidence that temporal binding was affected by the emotional valence of action outcomes. After validating our stimuli for equivalence of perceived emotional valence and arousal (Experiment 3), in Experiment 4 we directly replicated Yoshie and Haggard's (2013) original experiment using sound vocalizations as action outcomes and failed to detect a significant effect of emotion on temporal binding. These studies suggest that the emotional valence of action outcomes exerts little influence on temporal binding. The potential implications of these findings are discussed. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Simultaneous conditioning of valence and arousal.

    PubMed

    Gawronski, Bertram; Mitchell, Derek G V

    2014-01-01

    Evaluative conditioning (EC) refers to the change in the valence of a conditioned stimulus (CS) due to its pairing with a positive or negative unconditioned stimulus (US). To the extent that core affect can be characterised by the two dimensions of valence and arousal, EC has important implications for the origin of affective responses. However, the distinction between valence and arousal is rarely considered in research on EC or conditioned responses more generally. Measuring the subjective feelings elicited by a CS, the results from two experiments showed that (1) repeated pairings of a CS with a positive or negative US of either high or low arousal led to corresponding changes in both CS valence and CS arousal, (2) changes in CS arousal, but not changes in CS valence, were significantly related to recollective memory for CS-US pairings, (3) subsequent presentations of the CS without the US reduced the conditioned valence of the CS, with conditioned arousal being less susceptible to extinction and (4) EC effects were stronger for high arousal than low arousal USs. The results indicate that the conditioning of affective responses can occur simultaneously along two independent dimensions, supporting evidence in related areas that calls for a consideration of both valence and arousal. Implications for research on EC and the acquisition of emotional dispositions are discussed.

  3. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation.

    PubMed

    Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael

    2014-12-22

    ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chromium valences in ureilite olivine and implications for ureilite petrogenesis

    NASA Astrophysics Data System (ADS)

    Goodrich, C. A.; Sutton, S. R.; Wirick, S.; Jercinovic, M. J.

    2013-12-01

    Ureilites are a group of ultramafic achondrites commonly thought to be residues of partial melting on a carbon-rich asteroid. They show a large variation in FeO content (olivine Fo values ranging from ∼74 to 95) that cannot be due to igneous fractionation and suggests instead variation in oxidation state. The presence of chromite in only a few of the most ferroan (Fo 75-76) samples appears to support such a model. MicroXANES analyses were used in this study to determine the valence states of Cr (previously unknown) in olivine cores of 11 main group ureilites. The goal of this work was to use a method that is independent of Fo to determine the oxidation conditions under which ureilites formed, in order to evaluate whether the ureilite FeO-variation is correlated with oxidation state, and whether it is nebular or planetary in origin. Two of the analyzed samples, LEW 88774 (Fo 74.2) and NWA 766 (Fo 76.7) contain primary chromite; two others, LAP 03587 (Fo 74.4) and CMS 04048 (Fo 76.2) contain sub-micrometer-sized exsolutions of chromite + Ca-rich pyroxene in olivine; and one, EET 96328 (Fo 85.2) contains an unusual chromite grain of uncertain origin. No chromite has been observed in the remaining six samples (Fo 77.4-92.3). Chromium in olivine in all eleven samples was found to be dominated by the divalent species, with valences ranging from 2.10 ± 0.02 (1σ) to 2.46 ± 0.04. The non-chromite-bearing ureilites have the most reduced Cr, with a weighted mean valence of 2.12 ± 0.01, i.e., Cr2+/Cr3+ = 7.33. All low-Fo chromite-bearing ureilites have more oxidized Cr, with valences ranging from 2.22 ± 0.03 to 2.46 ± 0.04. EET 96328, whose chromite grain we interpret as a late-crystallizing phase, yielded a reduced Cr valence of 2.15 ± 0.07, similar to the non-chromite-bearing samples. Based on the measured Cr valences, magmatic (1200-1300 °C) oxygen fugacities (fO2) of the non-chromite-bearing samples were estimated to be in the range IW-1.9 to IW-2.8 (assuming

  5. Position dependent mass Schroedinger equation and isospectral potentials: Intertwining operator approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Midya, Bikashkali; Roy, B.; Roychoudhury, R.

    2010-02-15

    Here, we have studied first- and second-order intertwining approaches to generate isospectral partner potentials of position dependent (effective) mass Schroedinger equation. The second-order intertwiner is constructed directly by taking it as second-order linear differential operator with position dependent coefficients, and the system of equations arising from the intertwining relationship is solved for the coefficients by taking an ansatz. A complete scheme for obtaining general solution is obtained, which is valid for any arbitrary potential and mass function. The proposed technique allows us to generate isospectral potentials with the following spectral modifications: (i) to add new bound state(s), (ii) to removemore » bound state(s), and (iii) to leave the spectrum unaffected. To explain our findings with the help of an illustration, we have used point canonical transformation to obtain the general solution of the position dependent mass Schrodinger equation corresponding to a potential and mass function. It is shown that our results are consistent with the formulation of type A N-fold supersymmetry [T. Tanaka, J. Phys. A 39, 219 (2006); A. Gonzalez-Lopez and T. Tanaka, J. Phys. A 39, 3715 (2006)] for the particular cases N=1 and N=2, respectively.« less

  6. Local Bonding Influence on the Band Edge and Band Gap Formation in Quaternary Chalcopyrites.

    PubMed

    Miglio, Anna; Heinrich, Christophe P; Tremel, Wolfgang; Hautier, Geoffroy; Zeier, Wolfgang G

    2017-09-01

    Quaternary chalcopyrites have shown to exhibit tunable band gaps with changing anion composition. Inspired by these observations, the underlying structural and electronic considerations are investigated using a combination of experimentally obtained structural data, molecular orbital considerations, and density functional theory. Within the solid solution Cu 2 ZnGeS 4- x Se x , the anion bond alteration parameter changes, showing larger bond lengths for metal-selenium than for metal-sulfur bonds. The changing bonding interaction directly influences the valence and conduction band edges, which result from antibonding Cu-anion and Ge-anion interactions, respectively. The knowledge of the underlying bonding interactions at the band edges can help design properties of these quaternary chalcopyrites for photovoltaic and thermoelectric applications.

  7. Potential energy surface of cyclooctatetraene

    NASA Astrophysics Data System (ADS)

    Andrés, José L.; Castaño, Obis; Morreale, Antonio; Palmeiro, Raul; Gomperts, Roberto

    1998-01-01

    We present a theoretical study of the cyclooctatetraene (COT) molecule. Seven COT structures are located on the singlet ground state potential energy surface. Four of them, which present D2d (tub), Cs (bicyclo[4.2.0]octa-2,4,7-triene or BOT), C2h (chair) and D4 (crown) symmetries are stable species, and the other three are transition state structures showing Cs, D4h, and D8h symmetry. We discuss the symmetry of wave functions for these stationary points. Geometries, energies, and harmonic vibrational frequencies of these structures, and energy gaps between singlet-triplet states and low-lying singlets are presented. For the planar D4h and D8h structures, Jahn-Teller and tunneling effects have also been discussed. Ring inversion, bond shifting and valence isomerization reactive channels from the tub COT conformer are discussed from the point of view of the corresponding transition state structures. Where possible, in order to lend support to this theoretical information comparisons with recent transition state spectroscopy data are made.

  8. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation.

    PubMed

    Liu, Sheng; Zhong, Hong; Liu, Guangyi; Xu, Zhenghe

    2018-02-15

    Hydroxamate and sulfhydryl surfactants are effective collectors for flotation of copper minerals. The combination application of hydroxamate and sulfhydryl collectors has been proved to be an effective approach for improving the flotation recovery of non-sulfide copper minerals. A surfactant owing both hydroxamate and dithiocarbamate groups might exhibit strong affinity to non-sulfide copper minerals through double sites adsorption, rendering an enhanced hydrophobization to non-sulfide copper minerals flotation. The flotation performance of S-[(2-hydroxyamino)-2-oxoethyl]- N,N-dibutyldithiocarbamate (HABTC) to malachite, calcite and quartz were first evaluated through systematic micro-flotation experiments. HABTC's hydrophobic mechanism to malachite was further investigated and analyzed by zeta potential, Fourier transform infrared spectroscopy (FTIR), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The micro-flotation results demonstrated HABTC was an excellent collector for malachite flotation and exhibited favorable selectivity for flotation separation of malachite from quartz or calcite under pH 8.5-10.3. Zeta potential and FTIR implied that HABTC might bond with the surface copper atoms of malachite, with releasing the H + ions of its hydroxamate group into pulp. ToF-SIMS provided clear evidences that the Cu-hydroxamate and Cu-dithiocarbamate groups were formed on malachite surfaces after HABTC adsorption. XPS revealed that Cu(I)/Cu(II) mixed-valence surface complexes of HABTC anchored on malachite through formation of Cu(I)S and Cu(II)O bonds, accompanying with reduction of partial surface Cu(II) to Cu(I). The Cu(I)/Cu(II) mixed-valence double chelating character and "chair"-shape N,N-dibutyldithiocarbamate hydrophobic group, resulting in an enhanced affinity and hydrophobization of HABTC to malachite flotation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Empirical Valence Bond Simulations of the Hydride-Transfer Step in the Monoamine Oxidase A Catalyzed Metabolism of Noradrenaline.

    PubMed

    Poberžnik, Matic; Purg, Miha; Repič, Matej; Mavri, Janez; Vianello, Robert

    2016-11-10

    Monoamine oxidases (MAOs) A and B are flavoenzymes responsible for the metabolism of biogenic amines, such as dopamine, serotonin, and noradrenaline (NA), which is why they have been extensively implicated in the etiology and course of various neurodegenerative disorders and, accordingly, used as primary pharmacological targets to treat these debilitating cognitive diseases. The precise chemical mechanism through which MAOs regulate the amine concentration, which is vital for the development of novel inhibitors, is still not unambiguously determined in the literature. In this work, we present atomistic empirical valence bond simulations of the rate-limiting step of the MAO-A-catalyzed NA (norepinephrine) degradation, involving hydride transfer from the substrate α-methylene group to the flavin moiety of the flavin adenine dinucleotide prosthetic group, employing the full dimensionality and thermal fluctuations of the hydrated enzyme, with extensive configurational sampling. We show that MAO-A lowers the free energy of activation by 14.3 kcal mol -1 relative to that of the same reaction in aqueous solution, whereas the calculated activation free energy of ΔG ‡ = 20.3 ± 1.6 kcal mol -1 is found to be in reasonable agreement with the correlated experimental value of 16.5 kcal mol -1 . The results presented here strongly support the fact that both MAO-A and MAO-B isoforms function by the same hydride-transfer mechanism. We also considered a few point mutations of the "aromatic cage" tyrosine residue (Tyr444Phe, Tyr444Leu, Tyr444Trp, Tyr444His, and Tyr444Glu), and the calculated changes in the reaction barriers are in agreement with the experimental values, thus providing further support to the proposed mechanism.

  10. Molecular determinants of cadherin ideal bond formation: Conformation-dependent unbinding on a multidimensional landscape

    PubMed Central

    Manibog, Kristine; Sankar, Kannan; Kim, Sun-Ae; Zhang, Yunxiang; Jernigan, Robert L.; Sivasankar, Sanjeevi

    2016-01-01

    Classical cadherin cell–cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces. PMID:27621473

  11. Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders

    DOE PAGES

    Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko; ...

    2017-09-11

    Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less

  12. Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko

    Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less

  13. Directional Dependence of Hydrogen Bonds: a Density-based Energy Decomposition Analysis and Its Implications on Force Field Development

    PubMed Central

    Lu, Zhenyu; Zhou, Nengjie; Wu, Qin; Zhang, Yingkai

    2011-01-01

    One well-known shortcoming of widely-used biomolecular force fields is the description of the directional dependence of hydrogen bonding (HB). Here we aim to better understand the origin of this difficulty and thus provide some guidance for further force field development. Our theoretical approaches center on a novel density-based energy decomposition analysis (DEDA) method [J. Chem. Phys., 131, 164112 (2009)], in which the frozen density energy is variationally determined through constrained search. This unique and most significant feature of DEDA enables us to find that the frozen density interaction term is the key factor in determining the HB orientation, while the sum of polarization and charge-transfer components shows very little HB directional dependence. This new insight suggests that the difficulty for current non-polarizable force fields to describe the HB directional dependence is not due to the lack of explicit polarization or charge-transfer terms. Using the DEDA results as reference, we further demonstrate that the main failure coming from the atomic point charge model can be overcome largely by introducing extra charge sites or higher order multipole moments. Among all the electrostatic models explored, the smeared charge distributed multipole model (up to quadrupole), which also takes account of charge penetration effects, gives the best agreement with the corresponding DEDA results. Meanwhile, our results indicate that the van der Waals interaction term needs to be further improved to better model directional hydrogen bonding. PMID:22267958

  14. Polarization Dependent Bulk-sensitive Valence Band Photoemission Spectroscopy and Density Functional Theory Calculations: Part I. 3d Transition Metals

    NASA Astrophysics Data System (ADS)

    Ueda, Shigenori; Hamada, Ikutaro

    2017-12-01

    The X-ray polarization dependent valence band HAXPES spectra of 3d transition metals (TMs) of Ti-Zn were measured to investigate the orbital resolved electronic structures by utilizing that the fact the photoionization cross-section of the atomic orbitals strongly depends on the experimental geometry. We have calculated the HAXPES spectra, which correspond to the cross-section weighted densities of states (CSW-DOSs), where the DOSs were obtained by the density functional theory calculations, and we have determined the relative photoionization cross-sections of the 4s and 4p orbitals to the 3d orbital in the 3d TMs. The experimentally obtained bulk-sensitive 3d and 4s DOSs were good agreement with the calculated DOSs in Ti, V, Cr, and Cu. In contrast, the deviations between the experimental and calculated 3d DOSs for Mn, Fe, Co, Ni were found, suggesting that the electron correlation plays an important role in the electronic structures for these materials.

  15. Spin orbit and tetragonal crystalline field interaction in the valence band of CuInSe2-related ordered vacancy compound CuIn7Se12

    NASA Astrophysics Data System (ADS)

    Reena Philip, Rachel; Pradeep, B.; Shripathi, T.

    2005-04-01

    Thin films of the off-tie-line ordered vacancy compound CuIn7Se12 were deposited on optically flat glass substrates by multi-source co-evaporation method. The preliminary structural, compositional and morphological characterizations were done using X-ray diffraction, energy dispersive X-ray analysis and atomic force microscopy. The X-ray diffraction data were further analysed applying the Nelson-Riley method and CTB plus = experiment rule, respectively, for lattice constants (a = 5.746 Å and c = 11.78 Å) and bond length estimations (RCu-Se = 2.465 Å and RIn-Se = 2.554 Å). A detailed analysis of the optical absorption spectra of the compound, which exhibited a three-fold optical absorption structure in the fundamental gap region, yielded three characteristic direct energy gaps at 1.37, 1.48(7) and 1.72(8) eV indicative of valence band splitting, which were evaluated using Hopfield's quasi-cubic model. The 0.04 eV increase in spin-orbit splitting parameter of the compound (0.27 eV) compared to that of CuInSe2 (0.23 eV) is found to be suggestive of the smaller contribution of Cu d orbitals to hybridization (determined by the linear hybridization model) in this Cu-deficient compound. Spectral response spectra exhibit, in addition to a maximum around 1.34 ± 0.03 eV, two other defect transition peaks near 1.07 and 0.85 eV. The binding energies of Cu, In and Se in the compound were determined using X-ray photoelectron spectroscopy.

  16. Age effects in emotional prospective memory: cue valence differentially affects the prospective and retrospective component.

    PubMed

    Schnitzspahn, Katharina M; Horn, Sebastian S; Bayen, Ute J; Kliegel, Matthias

    2012-06-01

    While first studies suggested that emotional task material may enhance prospective memory performance in young and older adults, the extent and mechanisms of this effect are under debate. The authors explored possible differential effects of cue valence on the prospective and retrospective component of prospective memory in young and older adults. Forty-five young and 41 older adults performed a prospective memory task in which emotional valence of the prospective memory cue was manipulated (positive, negative, neutral). The multinomial model of event-based prospective memory was used to analyze effects of valence and age on the two prospective memory components separately. Results revealed an interaction indicating that age differences were smaller in both emotional valence conditions. For older adults positive cues improved the prospective component, while negative cues improved the retrospective component. No main effect of valence was found for younger adults on an overt accuracy measure, but model-based analyses showed that the retrospective component was enhanced in the positive compared with the negative cue condition. The study extends the literature in demonstrating that processes underlying emotional effects on prospective memory may differ depending on valence and age. PsycINFO Database Record (c) 2012 APA, all rights reserved

  17. [The biological action of chromium in relation to its valency].

    PubMed

    Vishniakov, S I; Levantovskiĭ, S A; Ryzhkova, G F

    1992-01-01

    The biological action of chromium in the human or animal organism depends on valency: normal physiological activity is displayed at the expense of CrIII, but toxic activity is more characteristic of CrVI. In the digestive tract and pulmonary tissue CrVI may restore in CrIII.

  18. Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper

    PubMed Central

    Hirn, Ulrich; Schennach, Robert

    2015-01-01

    The process of papermaking requires substantial amounts of energy and wood consumption, which contributes to larger environmental costs. In order to optimize the production of papermaking to suit its many applications in material science and engineering, a quantitative understanding of bonding forces between the individual pulp fibers is of importance. Here we show the first approach to quantify the bonding energies contributed by the individual bonding mechanisms. We calculated the impact of the following mechanisms necessary for paper formation: mechanical interlocking, interdiffusion, capillary bridges, hydrogen bonding, Van der Waals forces, and Coulomb forces on the bonding energy. Experimental results quantify the area in molecular contact necessary for bonding. Atomic force microscopy experiments derive the impact of mechanical interlocking. Capillary bridges also contribute to the bond. A model based on the crystal structure of cellulose leads to values for the chemical bonds. In contrast to general believe which favors hydrogen bonding Van der Waals bonds play the most important role according to our model. Comparison with experimentally derived bond energies support the presented model. This study characterizes bond formation between pulp fibers leading to insight that could be potentially used to optimize the papermaking process, while reducing energy and wood consumption. PMID:26000898

  19. Proactive and reactive control depends on emotional valence: a Stroop study with emotional expressions and words.

    PubMed

    Kar, Bhoomika Rastogi; Srinivasan, Narayanan; Nehabala, Yagyima; Nigam, Richa

    2018-03-01

    We examined proactive and reactive control effects in the context of task-relevant happy, sad, and angry facial expressions on a face-word Stroop task. Participants identified the emotion expressed by a face that contained a congruent or incongruent emotional word (happy/sad/angry). Proactive control effects were measured in terms of the reduction in Stroop interference (difference between incongruent and congruent trials) as a function of previous trial emotion and previous trial congruence. Reactive control effects were measured in terms of the reduction in Stroop interference as a function of current trial emotion and previous trial congruence. Previous trial negative emotions exert greater influence on proactive control than the positive emotion. Sad faces in the previous trial resulted in greater reduction in the Stroop interference for happy faces in the current trial. However, current trial angry faces showed stronger adaptation effects compared to happy faces. Thus, both proactive and reactive control mechanisms are dependent on emotional valence of task-relevant stimuli.

  20. An Investigation of the Interatomic Bonding Characteristics of a Ti - 51at.% Al Alloy by X-Ray Diffraction

    DTIC Science & Technology

    1991-06-01

    GROUP SUBGROUP X-ray Diffraction, XRD, TiAI, titanium , aluminum, bonding characteristics, titanium aluminides , Debye-Waller temperature factor...XRD Powder Particles (575X) .............. 47 viii I. INTRODUCTION Titanium aluminides are recognized for their high specific strength, particularly at...bonding characteristics of binary titanium aluminides . Upon the introduction of a third element to the system, a rearrangement of the valence

  1. Interchannel coupling effects in the valence photoionization of SF{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose, J.; Lucchese, R. R., E-mail: lucchese@mail.chem.tamu.edu; Rescigno, T. N.

    2014-05-28

    The complex Kohn and polyatomic Schwinger variational techniques have been employed to illustrate the interchannel coupling correlation effects in the valence photoionization dynamics of SF{sub 6}. Partial photoionization cross sections and asymmetry parameters of six valence subshells (1t{sub 1g}, 5t{sub 1u}, 1t{sub 2u}, 3e{sub g}, 1t{sub 2g}, 4t{sub 1u}) are discussed in the framework of several theoretical and experimental studies. The complex Kohn results are in rather good agreement with experimental results, indicative of the fact that the interchannel coupling effects alter the photoionization dynamics significantly. We find that the dominant effect of interchannel coupling is to reduce the magnitudemore » of shape resonant cross sections near the threshold and to induce resonant features in other channels to which resonances are coupled. The long-standing issue concerning ordering of the valence orbitals is addressed and confirmed 4t{sub 1u}{sup 6}1t{sub 2g}{sup 6}3e{sub g}{sup 4}(5t{sub 1u}{sup 6}+1t{sub 2u}{sup 6}) 1t{sub 1g}{sup 6} as the most likely ordering.« less

  2. Bonds with index-linked stochastic coupons in quantum finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal Ehsan

    2018-06-01

    An index-linked coupon bond is defined that pays coupons whose values are stochastic, depending on a market defined index. This is an asset class distinct from the existing coupon bonds. The index-linked coupon bond is an example of a sukuk, which is an instrument that implements one of the cornerstones of Islamic finance (Askari et al., 2012): that an investor must share in the risk of the issuer in order to earn profits from the investment. The index-linked coupon bond is defined using the mathematical framework of quantum finance (Baaquie, 2004, 2010). The coupons are stochastic, with the quantum of coupon payments depending on a publicly traded index that is chosen to reflect the primary drivers of the revenues of the issuer of the bond. The index ensures there is information symmetry - regarding the quantum of coupon being paid - between issuer and investor. The dependence of the coupon on the index is designed so that the variation of the index mirrors the changing fortunes of the issuer, with the coupon's quantum increasing for increasing values of the index and conversely, decreasing with a fall of the index.

  3. Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Vendrell, Oriol; Santra, Robin

    2015-10-01

    We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K -shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.

  4. Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion.

    PubMed

    Li, Zheng; Vendrell, Oriol; Santra, Robin

    2015-10-02

    We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.

  5. Exactly solvable Schrödinger equation with double-well potential for hydrogen bond

    NASA Astrophysics Data System (ADS)

    Sitnitsky, A. E.

    2017-05-01

    We construct a double-well potential for which the Schrödinger equation can be exactly solved via reducing to the confluent Heun's one. Thus the wave function is expressed via the confluent Heun's function. The latter is tabulated in Maple so that the obtained solution is easily treated. The potential is infinite at the boundaries of the final interval that makes it to be highly suitable for modeling hydrogen bonds (both ordinary and low-barrier ones). We exemplify theoretical results by detailed treating the hydrogen bond in KHCO3 and show their good agreement with literature experimental data.

  6. Bidirectional switch of the valence associated with a hippocampal contextual memory engram.

    PubMed

    Redondo, Roger L; Kim, Joshua; Arons, Autumn L; Ramirez, Steve; Liu, Xu; Tonegawa, Susumu

    2014-09-18

    The valence of memories is malleable because of their intrinsic reconstructive property. This property of memory has been used clinically to treat maladaptive behaviours. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here we investigated these mechanisms by applying the recently developed memory engram cell- manipulation technique. We labelled with channelrhodopsin-2 (ChR2) a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that although the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new unconditioned stimulus of an opposite valence. Our present work provides new insight into the functional neural circuits underlying the

  7. Exchange-mediated anisotropy of (ga,mn)as valence-band probed by resonant tunneling spectroscopy.

    PubMed

    Elsen, M; Jaffrès, H; Mattana, R; Tran, M; George, J-M; Miard, A; Lemaître, A

    2007-09-21

    We report on experiments and theory of resonant tunneling anisotropic magnetoresistance (TAMR) in AlAs/GaAs/AlAs quantum wells (QW) contacted by a (Ga,Mn)As ferromagnetic electrode. Such resonance effects manifest themselves by bias-dependent oscillations of the TAMR signal correlated to the successive positions of heavy (HH) and light (LH) quantized hole energy levels in GaAs QW. We have modeled the experimental data by calculating the spin-dependent resonant tunneling transmission in the frame of the 6 x 6 valence-band k.p theory. The calculations emphasize the opposite contributions of the (Ga,Mn)As HH and LH subbands near the Gamma point, unraveling the anatomy of the diluted magnetic semiconductor valence band.

  8. Nucleation-dependant chemical bonding paradigm: the effect of rare earth ions on the nucleation of urea in aqueous solution.

    PubMed

    Chen, Xiaoyan; Sun, Congting; Wu, Sixin; Xue, Dongfeng

    2017-03-29

    Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln 3+ ) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH 2 , and CN vibration bands during the urea nucleation stage. Rare earth ions such as La 3+ , Gd 3+ , and Lu 3+ can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln 3+ and urea molecules have been confirmed, which are Ln 3+ O[double bond, length as m-dash]C-N and Ln 3+ NH 2 -C. Compared with Ln 3+ NH 2 -C, Ln 3+ prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln 3+ into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln 3+ concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln 3+ , the different effects of La 3+ , Gd 3+ , and Lu 3+ on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.

  9. A classical reactive potential for molecular clusters of sulphuric acid and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, Jake L.; Kathmann, Shawn M.; Ford, Ian J.

    2015-10-12

    We present a two state empirical valence bond (EVB) potential describing interactions between sulphuric acid and water molecules and designed to model proton transfer between them within a classical dynamical framework. The potential has been developed in order to study the properties of molecular clusters of these species, which are thought to be relevant to atmospheric aerosol nucleation. The particle swarm optimisation method has been used to fit the parameters of the EVB model to density functional theory (DFT) calculations. Features of the parametrised model and DFT data are compared and found to be in satisfactory agreement. In particular, itmore » is found that a single sulphuric acid molecule will donate a proton when clustered with four water molecules at 300 K and that this threshold is temperature dependent. SMK was supported in part by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; JLS and IJF were supported by the IMPACT scheme at University College London (UCL). We acknowledge the UCL Legion High Performance Computing Facility, and associated support services together with the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. JLS thanks Dr. Gregory Schenter, Dr. Theo Kurtén and Prof. Hanna Vehkamäki for important guidance and discussions.« less

  10. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. II. Backbone-local potentials of coarse-grained O 1 →4 -bonded polyglucose chains

    NASA Astrophysics Data System (ADS)

    Lubecka, Emilia A.; Liwo, Adam

    2017-09-01

    Based on the theory of the construction of coarse-grained force fields for polymer chains described in our recent work [A. K. Sieradzan et al., J. Chem. Phys. 146, 124106 (2017)], in this work effective coarse-grained potentials, to be used in the SUGRES-1P model of polysaccharides that is being developed in our laboratory, have been determined for the O ⋯O ⋯O virtual-bond angles (θ ) and for the dihedral angles for rotation about the O ⋯O virtual bonds (γ ) of 1 → 4 -linked glucosyl polysaccharides, for all possible combinations of [α ,β ]-[d,l]-glucose. The potentials of mean force corresponding to the virtual-bond angles and the virtual-bond dihedral angles were calculated from the free-energy surfaces of [α ,β ]-[d,l]-glucose pairs, determined by umbrella-sampling molecular-dynamics simulations with the AMBER12 force field, or combinations of the surfaces of two pairs sharing the overlapping residue, respectively, by integrating the respective Boltzmann factor over the dihedral angles λ for the rotation of the sugar units about the O ⋯O virtual bonds. Analytical expressions were subsequently fitted to the potentials of mean force. The virtual-bond-torsional potentials depend on both virtual-bond-dihedral angles and virtual-bond angles. The virtual-bond-angle potentials contain a single minimum at about θ =14 0° for all pairs except β -d-[α ,β ] -l-glucose, where the global minimum is shifted to θ =150° and a secondary minimum appears at θ =90°. The torsional potentials favor small negative γ angles for the α -d-glucose and extended negative angles γ for the β -d-glucose chains, as observed in the experimental structures of starch and cellulose, respectively. It was also demonstrated that the approximate expression derived based on Kubo's cluster-cumulant theory, whose coefficients depend on the identity of the disugar units comprising a trisugar unit that defines a torsional potential, fits simultaneously all

  11. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules.

    PubMed

    Ganesan, Aravindhan; Wang, Feng; Falzon, Chantal

    2011-02-01

    Intramolecular interactions between fragments of L-phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L-phenylalanine, benzene and L-alanine are studied using density functional theory methods. While fully resolved experimental PES of L-phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e(1g) and 1a(2u) orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L-phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14-20 eV, rather than outside of this region. This study presents a competent orbital based fragments-in-molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D-PDF technique. Copyright © 2010 Wiley Periodicals, Inc.

  12. Structure and Magnetic Properties of a Mixed-Valence Heptanuclear Manganese Cluster.

    PubMed

    Abbati, Gian Luca; Cornia, Andrea; Fabretti, Antonio C.; Caneschi, Andrea; Gatteschi, Dante

    1998-07-27

    Two novel polynuclear manganese(II,III) complexes have been synthesized by exploiting controlled methanolysis. A one-pot reaction of MnCl(2), NaOMe, dibenzoylmethane (Hdbm), and O(2) in anhydrous methanol, followed by recrystallization from MeOH/CHCl(3) mixtures, afforded the alkoxomanganese complexes [Mn(7)(OMe)(12)(dbm)(6)].CHCl(3).14MeOH (2) and [Mn(2)(OMe)(2)(dbm)(4)] (3). Complex 2 crystallizes in trigonal space group R&thremacr; with a = 14.439(2) Å, alpha = 86.34(1) degrees, and Z = 1. Complex 3 crystallizes in triclinic space group P&onemacr; with a = 9.612(1) Å, b = 10.740(1) Å, c = 13.168(1) Å, alpha = 80.39(1) degrees, beta = 87.66(1) degrees, gamma = 83.57(1) degrees, and Z = 1. The solid-state structure of 2 comprises a [Mn(6)(OMe)(12)(dbm)(6)] "crown" with crystallographically imposed 6-fold symmetry plus a central manganese ion. The layered Mn/O core mimics a fragment of the manganese oxide mineral lithiophorite. Conductivity measurements confirmed the nonionic character of 2 and suggested a mixed-valence Mn(II)(3)Mn(III)(4) formulation. The metrical parameters of the core were analyzed with the aid of bond-valence sum calculations. The central ion is essentially a valence-trapped Mn(II) ion, whereas the average Mn-O distances for the manganese ions of the "crown" are consistent with the presence of two Mn(II) and four Mn(III) ions. However, (1)H NMR spectra in solution strongly support valence localization and suggest that the observed solid-state structure may be a result of static disorder effects. Magnetic susceptibility vs T and magnetization vs field data at low temperature are consistent with an S = (17)/(2) ground state. Complex 3 is a symmetric alkoxo-bridged dimer. The two high-spin Mn(III) ions are antiferromagnetically coupled with J = 0.28(4) cm(-)(1), g = 1.983(2), and D = -2.5(4) cm(-)(1).

  13. Plaquette order in a dimerized frustrated spin ladder

    NASA Astrophysics Data System (ADS)

    Shlagman, Ofer; Shimshoni, Efrat

    2014-11-01

    We study the effect of dimerization (due to, e.g., spin-Peierls instability) on the phase diagram of a frustrated antiferromagnetic spin-1/2 ladder, with weak transverse and diagonal rung coupling. Our analysis focuses on a one-dimensional version of the model (i.e., a single two-leg ladder) where we consider two forms of dimerization on the legs: columnar dimers (CDs) and staggered dimers (SDs). We examine in particular the regime of parameters (corresponding to an intermediate X X Z anisotropy) in which the leg dimerization and the rung coupling terms are equally relevant. In both the CD and SD cases, we find that the effective field theory describing the system is a self-dual sine-Gordon model, which favors ordering and the opening of a gap to excitations. The order parameter, which reflects the interplay between the leg and rung dimerization interactions, represents a crystal of 4-spin plaquettes on which longitudinal and transverse dimers are in a coherent superposition. Depending on the leg dimerization mode, these plaquettes are closed or open, however both types spontaneously break reflection symmetry across the ladder. The closed plaquettes are stable, while the open plaquette order is relatively fragile and the corresponding gap may be tuned to zero under extreme conditions. We further find that a first-order transition occurs from the plaquette order to a valence bond crystal (VBC) of dimers on the legs. This suggests that in a higher-dimensional version of this system, this variety of distinct VBC states with comparable energies leads to the formation of domains. Effectively one-dimensional gapless spinon modes on domain boundaries may account for the experimental observation of spin-liquid behavior in a physical realization of the model.

  14. High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs

    NASA Astrophysics Data System (ADS)

    Fernández-Ropero, A. J.; Porras-Vázquez, J. M.; Cabeza, A.; Slater, P. R.; Marrero-López, D.; Losilla, E. R.

    2014-03-01

    In this paper we report the successful incorporation of high valence transition metals, i.e. Cr, Mo, W, V, Nb, Ti, Zr into SrFeO3-δ perovskite materials, for potential applications as symmetric electrode materials for Solid Oxide Fuel Cells. It is observed that the doping leads to a change from an orthorhombic structure (with partial ordering of oxygen vacancies) to a cubic one (with the oxygen vacancies disordered). These electrodes are chemically compatibles with Ce0.9Gd0.1O1.95 (CGO) and La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolytes at least up to 1100 °C. Thermal annealing experiments in 5% H2-Ar at 800 °C also show the stability of the doped samples in reducing conditions, suggesting that they may be suitable for both cathode and anode applications. In contrast, reduction of undoped SrFeO3-δ leads to the observation of extra peaks indicating the formation of the brownmillerite structure with the associated oxygen vacancy ordering. The performance of these electrodes was examined on dense electrolyte pellets of CGO and LSGM in air and 5% H2-Ar. In both atmospheres an improvement in the area specific resistances (ASR) values is observed for the doped samples with respect to the parent compound. Thus, the results show that high valence transition metals can be incorporated into SrFeO3-δ-based materials and can have a beneficial effect on the electrochemical performance, making them potentially suitable for use as cathode and anode materials in symmetrical SOFC.

  15. Low-temperature wafer-level gold thermocompression bonding: modeling of flatness deviations and associated process optimization for high yield and tough bonds

    NASA Astrophysics Data System (ADS)

    Stamoulis, Konstantinos; Tsau, Christine H.; Spearing, S. Mark

    2005-01-01

    Wafer-level, thermocompression bonding is a promising technique for MEMS packaging. The quality of the bond is critically dependent on the interaction between flatness deviations, the gold film properties and the process parameters and tooling used to achieve the bonds. The effect of flatness deviations on the resulting bond is investigated in the current work. The strain energy release rate associated with the elastic deformation required to overcome wafer bow is calculated. A contact yield criterion is used to examine the pressure and temperature conditions required to flatten surface roughness asperities in order to achieve bonding over the full apparent area. The results are compared to experimental data of bond yield and toughness obtained from four-point bend delamination testing and microscopic observations of the fractured surfaces. Conclusions from the modeling and experiments indicate that wafer bow has negligible effect on determining the variability of bond quality and that the well-bonded area is increased with increasing bonding pressure. The enhanced understanding of the underlying deformation mechanisms allows for a better controlled trade-off between the bonding pressure and temperature.

  16. Low-temperature wafer-level gold thermocompression bonding: modeling of flatness deviations and associated process optimization for high yield and tough bonds

    NASA Astrophysics Data System (ADS)

    Stamoulis, Konstantinos; Tsau, Christine H.; Spearing, S. Mark

    2004-12-01

    Wafer-level, thermocompression bonding is a promising technique for MEMS packaging. The quality of the bond is critically dependent on the interaction between flatness deviations, the gold film properties and the process parameters and tooling used to achieve the bonds. The effect of flatness deviations on the resulting bond is investigated in the current work. The strain energy release rate associated with the elastic deformation required to overcome wafer bow is calculated. A contact yield criterion is used to examine the pressure and temperature conditions required to flatten surface roughness asperities in order to achieve bonding over the full apparent area. The results are compared to experimental data of bond yield and toughness obtained from four-point bend delamination testing and microscopic observations of the fractured surfaces. Conclusions from the modeling and experiments indicate that wafer bow has negligible effect on determining the variability of bond quality and that the well-bonded area is increased with increasing bonding pressure. The enhanced understanding of the underlying deformation mechanisms allows for a better controlled trade-off between the bonding pressure and temperature.

  17. Coupled-cluster based basis sets for valence correlation calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claudino, Daniel; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu; Gargano, Ricardo

    Novel basis sets are generated that target the description of valence correlation in atoms H through Ar. The new contraction coefficients are obtained according to the Atomic Natural Orbital (ANO) procedure from CCSD(T) (coupled-cluster singles and doubles with perturbative triples correction) density matrices starting from the primitive functions of Dunning et al. [J. Chem. Phys. 90, 1007 (1989); ibid. 98, 1358 (1993); ibid. 100, 2975 (1993)] (correlation consistent polarized valence X-tuple zeta, cc-pVXZ). The exponents of the primitive Gaussian functions are subject to uniform scaling in order to ensure satisfaction of the virial theorem for the corresponding atoms. These newmore » sets, named ANO-VT-XZ (Atomic Natural Orbital Virial Theorem X-tuple Zeta), have the same number of contracted functions as their cc-pVXZ counterparts in each subshell. The performance of these basis sets is assessed by the evaluation of the contraction errors in four distinct computations: correlation energies in atoms, probing the density in different regions of space via 〈r{sup n}〉 (−3 ≤ n ≤ 3) in atoms, correlation energies in diatomic molecules, and the quality of fitting potential energy curves as measured by spectroscopic constants. All energy calculations with ANO-VT-QZ have contraction errors within “chemical accuracy” of 1 kcal/mol, which is not true for cc-pVQZ, suggesting some improvement compared to the correlation consistent series of Dunning and co-workers.« less

  18. The valence-fluctuating ground state of plutonium

    DOE PAGES

    Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan; ...

    2015-07-10

    A central issue in material science is to obtain understanding of the electronic correlations that control complex materials. Such electronic correlations frequently arise because of the competition of localized and itinerant electronic degrees of freedom. Although the respective limits of well-localized or entirely itinerant ground states are well understood, the intermediate regime that controls the functional properties of complex materials continues to challenge theoretical understanding. We have used neutron spectroscopy to investigate plutonium, which is a prototypical material at the brink between bonding and nonbonding configurations. In addition, our study reveals that the ground state of plutonium is governed bymore » valence fluctuations, that is, a quantum mechanical superposition of localized and itinerant electronic configurations as recently predicted by dynamical mean field theory. Our results not only resolve the long-standing controversy between experiment and theory on plutonium’s magnetism but also suggest an improved understanding of the effects of such electronic dichotomy in complex materials.« less

  19. A functionalized surface modification with vanadium nanoparticles of various valences against implant-associated bloodstream infection.

    PubMed

    Wang, Jiaxing; Zhou, Huaijuan; Guo, Geyong; Cheng, Tao; Peng, Xiaochun; Mao, Xin; Li, Jinhua; Zhang, Xianlong

    2017-01-01

    Bloodstream infection, especially with implants involved, is an often life-threatening condition with high mortality rates, imposing a heavy burden on patients and medical systems. Herein, we firstly deposited homogeneous vanadium metal, V 2 O 3 , VO 2 , and V 2 O 5 nanofilms on quartz glass by magnetron sputtering. Using these platforms, we further investigated the potential antimicrobial efficiency of these nano-VO x films and the interactions of human erythrocytes and bacteria (methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa ) with our samples in a novel cell-bacteria coculture model. It was demonstrated that these nano-VO x precipitated favorable antibacterial activity on both bacteria, especially on S. aureus , and this effect increased with higher vanadium valence. A possible mechanism accountable for these results might be elevated levels of vanadium-induced intracellular reactive oxygen species. More importantly, based on hemolysis assays, our nano-VO x films were found to be able to kill prokaryotic cells but were not toxic to mammalian cells, holding the potential for the prevention of implant-related hematogenous infections. As far as we know, this is the first report wherein such nano-VO x films have assisted human erythrocytes to combat bacteria in a valence-dependent manner. Additionally, vanadium ions were released from these nano-VO x films in a sustained manner, and low-valence films possessed better biocompatibility with human fibroblasts. This work may provide new insights for biomedical applications of inorganic vanadium compounds and attract growing attention in this field. From the perspective of surface modification and functionalization, this study holds promise to avail the prophylaxis of bloodstream infections involving implantable biomedical devices.

  20. A functionalized surface modification with vanadium nanoparticles of various valences against implant-associated bloodstream infection

    PubMed Central

    Wang, Jiaxing; Zhou, Huaijuan; Guo, Geyong; Cheng, Tao; Peng, Xiaochun; Mao, Xin; Li, Jinhua; Zhang, Xianlong

    2017-01-01

    Bloodstream infection, especially with implants involved, is an often life-threatening condition with high mortality rates, imposing a heavy burden on patients and medical systems. Herein, we firstly deposited homogeneous vanadium metal, V2O3, VO2, and V2O5 nanofilms on quartz glass by magnetron sputtering. Using these platforms, we further investigated the potential antimicrobial efficiency of these nano-VOx films and the interactions of human erythrocytes and bacteria (methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa) with our samples in a novel cell–bacteria coculture model. It was demonstrated that these nano-VOx precipitated favorable antibacterial activity on both bacteria, especially on S. aureus, and this effect increased with higher vanadium valence. A possible mechanism accountable for these results might be elevated levels of vanadium-induced intracellular reactive oxygen species. More importantly, based on hemolysis assays, our nano-VOx films were found to be able to kill prokaryotic cells but were not toxic to mammalian cells, holding the potential for the prevention of implant-related hematogenous infections. As far as we know, this is the first report wherein such nano-VOx films have assisted human erythrocytes to combat bacteria in a valence-dependent manner. Additionally, vanadium ions were released from these nano-VOx films in a sustained manner, and low-valence films possessed better biocompatibility with human fibroblasts. This work may provide new insights for biomedical applications of inorganic vanadium compounds and attract growing attention in this field. From the perspective of surface modification and functionalization, this study holds promise to avail the prophylaxis of bloodstream infections involving implantable biomedical devices. PMID:28458535

  1. Emotional valence and physical space: limits of interaction.

    PubMed

    de la Vega, Irmgard; de Filippis, Mónica; Lachmair, Martin; Dudschig, Carolin; Kaup, Barbara

    2012-04-01

    According to the body-specificity hypothesis, people associate positive things with the side of space that corresponds to their dominant hand and negative things with the side corresponding to their nondominant hand. Our aim was to find out whether this association holds also true for a response time study using linguistic stimuli, and whether such an association is activated automatically. Four experiments explored this association using positive and negative words. In Exp. 1, right-handers made a lexical judgment by pressing a left or right key. Attention was not explicitly drawn to the valence of the stimuli. No valence-by-side interaction emerged. In Exp. 2 and 3, right-handers and left-handers made a valence judgment by pressing a left or a right key. A valence-by-side interaction emerged: For positive words, responses were faster when participants responded with their dominant hand, whereas for negative words, responses were faster for the nondominant hand. Exp. 4 required a valence judgment without stating an explicit mapping of valence and side. No valence-by-side interaction emerged. The experiments provide evidence for an association between response side and valence, which, however, does not seem to be activated automatically but rather requires a task with an explicit response mapping to occur.

  2. Emotional Valence and the Free-Energy Principle

    PubMed Central

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world. PMID:23785269

  3. Emotional valence and the free-energy principle.

    PubMed

    Joffily, Mateus; Coricelli, Giorgio

    2013-01-01

    The free-energy principle has recently been proposed as a unified Bayesian account of perception, learning and action. Despite the inextricable link between emotion and cognition, emotion has not yet been formulated under this framework. A core concept that permeates many perspectives on emotion is valence, which broadly refers to the positive and negative character of emotion or some of its aspects. In the present paper, we propose a definition of emotional valence in terms of the negative rate of change of free-energy over time. If the second time-derivative of free-energy is taken into account, the dynamics of basic forms of emotion such as happiness, unhappiness, hope, fear, disappointment and relief can be explained. In this formulation, an important function of emotional valence turns out to regulate the learning rate of the causes of sensory inputs. When sensations increasingly violate the agent's expectations, valence is negative and increases the learning rate. Conversely, when sensations increasingly fulfil the agent's expectations, valence is positive and decreases the learning rate. This dynamic interaction between emotional valence and learning rate highlights the crucial role played by emotions in biological agents' adaptation to unexpected changes in their world.

  4. A revised MRCI-algorithm coupled to an effective valence-shell Hamiltonian. II. Application to the valence excitations of butadiene

    NASA Astrophysics Data System (ADS)

    Strodel, Paul; Tavan, Paul

    2002-09-01

    In Paper I of this work we have sketched an improved MRCI algorithm and its coupling to the effective valence-shell Hamiltonian OM2. To check the quality of the resulting OM2/MRCI approach, it is applied here to the excited valence states of all-trans butadiene. As is explained by a review of previous theoretical work, proper descriptions of these states posed severe problems within correlated ab initio treatments but seemed to be trivial within simple correlated pi-electron models. We now show that an extended MRCI treatment of the correlations among all valence electrons as described by OM2 closely reproduces the experimental evidence, placing the vertical 2 1Ag excitation by about 0.2 eV below the 1 1Bu excitation. By an analysis of sigma]-[pi interactions we explain the corresponding earlier success of correlated pi-electron theory. Exploiting the enhanced capabilities of the new approach we investigate the potential surfaces. Here, OM2/MRCI is shown to predict that the 2 1Ag state is energetically lowered about four times more strongly than the 1 1Bu state upon geometry relaxation constrained to the C2h symmetry. We conclude that OM2/MRCI should be well-suited for the study of excited state surfaces of organic dye molecules.

  5. Bonding in phase change materials: concepts and misconceptions

    NASA Astrophysics Data System (ADS)

    Jones, R. O.

    2018-04-01

    Bonding concepts originating in chemistry are surveyed from a condensed matter perspective, beginning around 1850 with ‘valence’ and the word ‘bond’ itself. The analysis of chemical data in the 19th century resulted in astonishing progress in understanding the connectivity and stereochemistry of molecules, almost without input from physicists until the development of quantum mechanics in 1925 and afterwards. The valence bond method popularized by Pauling and the molecular orbital methods of Hund, Mulliken, Bloch, and Hückel play major roles in the subsequent development, as does the central part played by the kinetic energy in covalent bonding (Ruedenberg and others). ‘Metallic’ (free electron) and related approaches, including pseudopotential and density functional theories, have been remarkably successful in understanding structures and bonding in molecules and solids. We discuss these concepts in the context of phase change materials, which involve the rapid and reversible transition between amorphous and crystalline states, and note the confusion that some have caused, in particular ‘resonance’ and ‘resonant bonding’.

  6. [Emotional valence of words in schizophrenia].

    PubMed

    Jalenques, I; Enjolras, J; Izaute, M

    2013-06-01

    Emotion recognition is a domain in which deficits have been reported in schizophrenia. A number of emotion classification studies have indicated that emotion processing deficits in schizophrenia are more pronounced for negative affects. Given the difficulty of developing material suitable for the study of these emotional deficits, it would be interesting to examine whether patients suffering from schizophrenia are responsive to positively and negatively charged emotion-related words that could be used within the context of remediation strategies. The emotional perception of words was examined in a clinical experiment involving schizophrenia patients. This emotional perception was expressed by the patients in terms of the valence associated with the words. In the present study, we investigated whether schizophrenia patients would assign the same negative and positive valences to words as healthy individuals. Twenty volunteer, clinically stable, outpatients from the Psychiatric Service of the University Hospital of Clermont-Ferrand were recruited. Diagnoses were based on DSM-IV criteria. Global psychiatric symptoms were assessed using the Positive and Negative Symptoms Scale (PANSS). The patients had to evaluate the emotional valence of a set of 300 words on a 5-point scale ranging from "very unpleasant" to "very pleasant". . The collected results were compared with those obtained by Bonin et al. (2003) [13] from 97 University students. Correlational analyses of the two studies revealed that the emotional valences were highly correlated, i.e. the schizophrenia patients estimated very similar emotional valences. More precisely, it was possible to examine three separate sets of 100 words each (positive words, neutral words and negative words). The positive words that were evaluated were the more positive words from the norms collected by Bonin et al. (2003) [13], and the negative words were the more negative examples taken from these norms. The neutral words

  7. Selenoprotein K form an intermolecular diselenide bond with unusually high redox potential

    PubMed Central

    Liu, Jun; Zhang, Zhengqi; Rozovsky, Sharon

    2014-01-01

    Selenoprotein K (SelK) is a membrane protein involved in antioxidant defense, calcium regulation and the ER-associated protein degradation pathway. We found that SelK exhibits a peroxidase activity with a rate that is low but within the range of other peroxidases. Notably, SelK reduced hydrophobic substrates, such as phospholipid hydroperoxides, which damage membranes. Thus, SelK might be involved in membrane repair or related pathways. SelK was also found to contain a diselenide bond — the first intramolecular bond of that kind reported for a selenoprotein. The redox potential of SelK was −257 mV, significantly higher than that of diselenide bonds in small molecules or proteins. Consequently, SelK can be reduced by thioredoxin reductase. These finding are essential for understanding SelK activity and function. PMID:25117454

  8. Can culture influence body-specific associations between space and valence?

    PubMed

    de la Fuente, Juanma; Casasanto, Daniel; Román, Antonio; Santiago, Julio

    2015-05-01

    People implicitly associate positive ideas with their dominant side of space and negative ideas with their non-dominant side. Right-handers tend to associate "good" with "right" and "bad" with "left," but left-handers associate "bad" with "right" and "good" with "left." Whereas right-handers' implicit associations align with idioms in language and culture that link "good" with "right," left-handers' implicit associations go against them. Can cultural conventions modulate the body-specific association between valence and left-right space? Here, we compared people from Spanish and Moroccan cultures, which differ in the strength of taboos against the use of the left hand, and therefore in their preference for the right. Results showed stronger explicit associations between space and valence in Moroccan participants than in Spaniards, but they did not show any increased tendency for right-handed Moroccans to associate "good" with "right" implicitly. Despite differences in cultural conventions between Spaniards and Moroccans, we find no evidence for a cross-cultural difference in the implicit association between space and valence, which appears to depend on patterns of bodily experience. © 2014 Cognitive Science Society, Inc.

  9. Compressive and bonding strength of fly ash based geopolymer mortar

    NASA Astrophysics Data System (ADS)

    Zailani, Warid Wazien Ahmad; Abdullah, Mohd Mustafa Al Bakri; Zainol, Mohd Remy Rozainy Mohd Arif; Razak, Rafiza Abd.; Tahir, Muhammad Faheem Mohd

    2017-09-01

    Geopolymer which is produced by synthesizing aluminosilicate source materials with an alkaline activator solution promotes sustainable and excellent properties of binder. The purpose of this paper is to determine the optimum binder to sand ratio of geopolymer mortars based on mechanical properties. In order to optimize the formulation of geopolymer mortar, various binder to sand ratios (0.25, 0.33, 0.5, 1.0, 2.0, 3.0, and 4.0) are prepared. The investigation on the effect of sand inclusion to the compressive and bonding strength of geopolymer mortar is approached. The experimental results show that the bonding strength performance of geopolymer is also depends on the various binder to sand ratio, where the optimum ratio 0.5 gives a highest strength of 12.73 MPa followed by 12.35 MPa, which corresponds the ratio 1.0 for geopolymer, while the compared value of OPC bonding strength is given by 9.3 MPa. The morphological structure at the interface zone is determined by Scanning Electron Microscope (SEM) and the homogenous bonding between geopolymer and substrate can be observed. Fly ash based geopolymers reveal a new category of mortar which has high potential to be used in the field of concrete repair and rehabilitation.

  10. Multiple valence superatoms.

    PubMed

    Reveles, J U; Khanna, S N; Roach, P J; Castleman, A W

    2006-12-05

    We recently demonstrated that, in gas phase clusters containing aluminum and iodine atoms, an Al(13) cluster behaves like a halogen atom, whereas an Al(14) cluster exhibits properties analogous to an alkaline earth atom. These observations, together with our findings that Al(13)(-) is inert like a rare gas atom, have reinforced the idea that chosen clusters can exhibit chemical behaviors reminiscent of atoms in the periodic table, offering the exciting prospect of a new dimension of the periodic table formed by cluster elements, called superatoms. As the behavior of clusters can be controlled by size and composition, the superatoms offer the potential to create unique compounds with tailored properties. In this article, we provide evidence of an additional class of superatoms, namely Al(7)(-), that exhibit multiple valences, like some of the elements in the periodic table, and hence have the potential to form stable compounds when combined with other atoms. These findings support the contention that there should be no limitation in finding clusters, which mimic virtually all members of the periodic table.

  11. Sequential and prosodic design of English and Greek non-valenced news receipts.

    PubMed

    Kaimaki, Marianna

    2012-03-01

    Results arising from a prosodic and interactional study of the organization of everyday talk in English suggest that news receipts can be grouped into two categories: valenced (e.g., oh good) and non-valenced (e.g., oh really). In-depth investigation of both valenced and non-valenced news receipts shows that differences in their prosodic design do not seem to affect the sequential structure of the news informing sequence. News receipts with falling and rising pitch may have the same uptake and are treated in the same way by co-participants. A preliminary study of a Greek telephone corpus yielded the following receipts of news announcements: a malista, a(h) orea, a ne, a, oh. These are news markers composed of a standalone particle or a particle followed by an adverb or a response token (ne). Analysis of the sequential and prosodic design of Greek news announcement sequences is made to determine any interactional patterns and/or prosodic constraints. By examining the way in which co-participants display their interpretation of these turns I show that the phonological systems of contrast are different depending on the sequential environment, in much the same way that consonantal systems of contrast are not the same syllable initially and finally.

  12. Bidirectional switch of the valence associated with a hippocampal contextual memory engram

    PubMed Central

    Redondo, Roger L; Kim, Joshua; Arons, Autumn L; Ramirez, Steve; Liu, Xu; Tonegawa, Susumu

    2014-01-01

    The valence of memories is malleable because of their intrinsic reconstructive property1. This property of memory has been used clinically to treat maladaptive behaviours2. However, the neuronal mechanisms and brain circuits that enable the switching of the valence of memories remain largely unknown. Here, we investigated these mechanisms by applying the recently developed memory engram cell-labelling and -manipulation technique 3,4. We labelled, with Channelrhodopsin-2 (ChR2), a population of cells in either the dorsal dentate gyrus (DG) of the hippocampus or the basolateral complex of the amygdala (BLA) that were specifically activated during contextual fear or reward conditioning. Both groups of fear-conditioned mice displayed aversive light-dependent responses in an optogenetic place avoidance test, whereas both DG- and BLA-labelled mice that underwent reward conditioning exhibited an appetitive response in an optogenetic place preference test. Next, in an attempt to reverse the valence of memory within a subject, mice whose DG or BLA engram had initially been labelled by contextual fear or reward conditioning were subjected to a second conditioning of the opposite valence while their original DG or BLA engram was reactivated by blue light. Subsequent optogenetic place avoidance and preference tests revealed that while the DG-engram group displayed a response indicating a switch of the memory valence, the BLA-engram group did not. This switch was also evident at the cellular level by a change in functional connectivity between DG engram-bearing cells and BLA engram-bearing cells. Thus, we found that in the DG, the neurons carrying the memory engram of a given neutral context have plasticity such that the valence of a conditioned response evoked by their reactivation can be reversed by re-associating this contextual memory engram with a new US of an opposite valence. Our present work provides new insight into the functional neural circuit underlying the

  13. Formation of unprecedented actinidecarbon triple bonds in uranium methylidyne molecules

    PubMed Central

    Lyon, Jonathan T.; Hu, Han-Shi; Andrews, Lester; Li, Jun

    2007-01-01

    Chemistry of the actinide elements represents a challenging yet vital scientific frontier. Development of actinide chemistry requires fundamental understanding of the relative roles of actinide valence-region orbitals and the nature of their chemical bonding. We report here an experimental and theoretical investigation of the uranium methylidyne molecules X3UCH (X = F, Cl, Br), F2ClUCH, and F3UCF formed through reactions of laser-ablated uranium atoms and trihalomethanes or carbon tetrafluoride in excess argon. By using matrix infrared spectroscopy and relativistic quantum chemistry calculations, we have shown that these actinide complexes possess relatively strong UC triple bonds between the U 6d-5f hybrid orbitals and carbon 2s-2p orbitals. Electron-withdrawing ligands are critical in stabilizing the U(VI) oxidation state and sustaining the formation of uranium multiple bonds. These unique UC-bearing molecules are examples of the long-sought actinide-alkylidynes. This discovery opens the door to the rational synthesis of triple-bonded actinidecarbon compounds. PMID:18024591

  14. Comment on 'Parametrization of Stillinger-Weber potential based on a valence force field model: application to single-layer MoS2 and black phosphorus'.

    PubMed

    Midtvedt, Daniel; Croy, Alexander

    2016-06-10

    We compare the simplified valence-force model for single-layer black phosphorus with the original model and recent ab initio results. Using an analytic approach and numerical calculations we find that the simplified model yields Young's moduli that are smaller compared to the original model and are almost a factor of two smaller than ab initio results. Moreover, the Poisson ratios are an order of magnitude smaller than values found in the literature.

  15. Extreme-ultraviolet-initiated high-order harmonic generation in Ar+

    NASA Astrophysics Data System (ADS)

    Clarke, D. D. A.; van der Hart, H. W.; Brown, A. C.

    2018-02-01

    We employ the R matrix with time dependence method to investigate extreme-ultraviolet-initiated high-order harmonic generation (XIHHG) in Ar+. Using a combination of extreme-ultraviolet (XUV, 92 nm, 3 ×1012W cm-2 ) and time-delayed, infrared (IR, 800 nm, 3 ×1014W cm-2 ) laser pulses, we demonstrate that control over both the mechanism and timing of ionization can afford significant enhancements in the yield of plateau and subthreshold harmonics alike. The presence of the XUV pulse is also shown to alter the relative contribution of different electron emission pathways. Manifestation of the Ar+ electronic structure is found in the appearance of a pronounced Cooper minimum. Interferences among the outer-valence 3 p and inner-valence 3 s electrons are found to incur only a minor suppression of the harmonic intensities, at least for the present combination of XUV and IR laser light. Additionally, the dependence of the XIHHG efficiency on time delay is discussed and rationalized with the aid of classical trajectory simulations.

  16. Electroencephalography Based Analysis of Working Memory Load and Affective Valence in an N-back Task with Emotional Stimuli

    PubMed Central

    Grissmann, Sebastian; Faller, Josef; Scharinger, Christian; Spüler, Martin; Gerjets, Peter

    2017-01-01

    Most brain-based measures of the electroencephalogram (EEG) are used in highly controlled lab environments and only focus on narrow mental states (e.g., working memory load). However, we assume that outside the lab complex multidimensional mental states are evoked. This could potentially create interference between EEG signatures used for identification of specific mental states. In this study, we aimed to investigate more realistic conditions and therefore induced a combination of working memory load and affective valence to reveal potential interferences in EEG measures. To induce changes in working memory load and affective valence, we used a paradigm which combines an N-back task (for working memory load manipulation) with a standard method to induce affect (affective pictures taken from the International Affective Picture System (IAPS) database). Subjective ratings showed that the experimental task was successful in inducing working memory load as well as affective valence. Additionally, performance measures were analyzed and it was found that behavioral performance decreased with increasing workload as well as negative valence, showing that affective valence can have an effect on cognitive processing. These findings are supported by changes in frontal theta and parietal alpha power, parameters used for measuring of working memory load in the EEG. However, these EEG measures are influenced by the negative valence condition as well and thereby show that detection of working memory load is sensitive to affective contexts. Unexpectedly, we did not find any effects for EEG measures typically used for affective valence detection (Frontal Alpha Asymmetry (FAA)). Therefore we assume that the FAA measure might not be usable if cognitive workload is induced simultaneously. We conclude that future studies should account for potential context-specifity of EEG measures. PMID:29311875

  17. Electroencephalography Based Analysis of Working Memory Load and Affective Valence in an N-back Task with Emotional Stimuli.

    PubMed

    Grissmann, Sebastian; Faller, Josef; Scharinger, Christian; Spüler, Martin; Gerjets, Peter

    2017-01-01

    Most brain-based measures of the electroencephalogram (EEG) are used in highly controlled lab environments and only focus on narrow mental states (e.g., working memory load). However, we assume that outside the lab complex multidimensional mental states are evoked. This could potentially create interference between EEG signatures used for identification of specific mental states. In this study, we aimed to investigate more realistic conditions and therefore induced a combination of working memory load and affective valence to reveal potential interferences in EEG measures. To induce changes in working memory load and affective valence, we used a paradigm which combines an N-back task (for working memory load manipulation) with a standard method to induce affect (affective pictures taken from the International Affective Picture System (IAPS) database). Subjective ratings showed that the experimental task was successful in inducing working memory load as well as affective valence. Additionally, performance measures were analyzed and it was found that behavioral performance decreased with increasing workload as well as negative valence, showing that affective valence can have an effect on cognitive processing. These findings are supported by changes in frontal theta and parietal alpha power, parameters used for measuring of working memory load in the EEG. However, these EEG measures are influenced by the negative valence condition as well and thereby show that detection of working memory load is sensitive to affective contexts. Unexpectedly, we did not find any effects for EEG measures typically used for affective valence detection (Frontal Alpha Asymmetry (FAA)). Therefore we assume that the FAA measure might not be usable if cognitive workload is induced simultaneously. We conclude that future studies should account for potential context-specifity of EEG measures.

  18. Mössbauer study of the effect of pH on Fe valence in iron-polygalacturonate as a medicine for human anaemia

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Garg, V. K.; de Oliveira, A. C.; Klencsár, Z.; Szentmihályi, K.; Fodor, J.; May, Z.; Homonnay, Z.

    2015-02-01

    Iron-polygalacturonate complexes have been synthesized from polygalacturonic acid by applying a novel preparation method in order to develop medicine suitable for the effective iron supplementation of the human body in the case of anemia. Since the iron uptake depends on the oxidation state of iron, 57Fe Mössbauer spectroscopy was used to study the occurrence of different valence states in the iron-polygalacturonate complexes prepared under different circumstances. The Mössbauer-spectra indicated the presence of iron both in FeII and FeIII states in the investigated iron-polygalacturonate compounds, the occurrence of which varied with the preparation parameters. A correlation of the relative occurrence of iron valence states with the pH has been found. The relative occurrence of FeIII was found to increase with increasing pH. The knowledge of this correlation can help find optimum preparation conditions of iron-polygalacturonates to cure human anemia.

  19. Recognizing the Emotional Valence of Names: An ERP Study

    ERIC Educational Resources Information Center

    Wang, Lin; Zhu, Zude; Bastiaansen, Marcel; Hagoort, Peter; Yang, Yufang

    2013-01-01

    Unlike common nouns, person names refer to unique entities and generally have a referring function. We used event-related potentials to investigate the time course of identifying the emotional meaning of nouns and names. The emotional valence of names and nouns were manipulated separately. The results show early N1 effects in response to emotional…

  20. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex.

    PubMed

    Roemelt, Michael; Krewald, Vera; Pantazis, Dimitrios A

    2018-01-09

    The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.

  1. Temperature-dependent internal photoemission probe for band parameters

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Perera, A. G. Unil

    2012-11-01

    The temperature-dependent characteristic of band offsets at the heterojunction interface was studied by an internal photoemission (IPE) method. In contrast to the traditional Fowler method independent of the temperature (T), this method takes into account carrier thermalization and carrier/dopant-induced band-renormalization and band-tailing effects, and thus measures the band-offset parameter at different temperatures. Despite intensive studies in the past few decades, the T dependence of this key band parameter is still not well understood. Re-examining a p-type doped GaAs emitter/undoped AlxGa1-xAs barrier heterojunction system disclosed its previously ignored T dependency in the valence-band offset, with a variation up to ˜-10-4 eV/K in order to accommodate the difference in the T-dependent band gaps between GaAs and AlGaAs. Through determining the Fermi energy level (Ef), IPE is able to distinguish the impurity (IB) and valence bands (VB) of extrinsic semiconductors. One important example is to determine Ef of dilute magnetic semiconductors such as GaMnAs, and to understand whether it is in the IB or VB.

  2. Dependence of short and intermediate-range order on preparation in experimental and modeled pure a-Si

    DOE PAGES

    Holmstrom, Eero; Haberl, Bianca; Pakarinen, Olli H.; ...

    2016-02-20

    Variability in the short-to-intermediate range order of pure amorphous silicon prepared by different experimental and computational techniques is probed by measuring mass density, atomic coordination, bond-angle deviation, and dihedral angle deviation. It is found that there is significant variability in order parameters at these length scales in this archetypal covalently bonded, monoatomic system. This diversity strongly reflects preparation technique and thermal history in both experimental and simulated systems. Experiment and simulation do not fully quantitatively agree, partly due to differences in the way parameters are accessed. However, qualitative agreement in the trends is identified. Relaxed forms of amorphous silicon closelymore » resemble continuous random networks generated by a hybrid method of bond-switching Monte Carlo and molecular dynamics simulation. As-prepared ion implanted amorphous silicon can be adequately modeled using a structure generated from amorphization via ion bombardement using energetic recoils. Preparation methods which narrowly avoid crystallization such as experimental pressure-induced amorphization or simulated melt-quenching result in inhomogeneous structures that contain regions with significant variations in atomic ordering. Ad hoc simulated structures containing small (1 nm) diamond cubic crystal inclusions were found to possess relatively high bond-angle deviations and low dihedral angle deviations, a trend that could not be reconciled with any experimental material.« less

  3. Affective ERP Processing in a Visual Oddball Task: Arousal, Valence, and Gender

    PubMed Central

    Rozenkrants, Bella; Polich, John

    2008-01-01

    Objective To assess affective event-related brain potentials (ERPs) using visual pictures that were highly distinct on arousal level/valence category ratings and a response task. Methods Images from the International Affective Pictures System (IAPS) were selected to obtain distinct affective arousal (low, high) and valence (negative, positive) rating levels. The pictures were used as target stimuli in an oddball paradigm, with a visual pattern as the standard stimulus. Participants were instructed to press a button whenever a picture occurred and to ignore the standard. Task performance and response time did not differ across conditions. Results High-arousal compared to low-arousal stimuli produced larger amplitudes for the N2, P3, early slow wave, and late slow wave components. Valence amplitude effects were weak overall and originated primarily from the later waveform components and interactions with electrode position. Gender differences were negligible. Conclusion The findings suggest that arousal level is the primary determinant of affective oddball processing, and valence minimally influences ERP amplitude. Significance Affective processing engages selective attentional mechanisms that are primarily sensitive to the arousal properties of emotional stimuli. The application and nature of task demands are important considerations for interpreting these effects. PMID:18783987

  4. Positive valence music restores executive control over sustained attention

    PubMed Central

    Lewis, Bridget A.

    2017-01-01

    Music sometimes improves performance in sustained attention tasks. But the type of music employed in previous investigations has varied considerably, which can account for equivocal results. Progress has been hampered by lack of a systematic database of music varying in key characteristics like tempo and valence. The aims of this study were to establish a database of popular music varying along the dimensions of tempo and valence and to examine the impact of music varying along these dimensions on restoring attentional resources following performance of a sustained attention to response task (SART) vigil. Sixty-nine participants rated popular musical selections that varied in valence and tempo to establish a database of four musical types: fast tempo positive valence, fast tempo negative valence, slow tempo positive valence, and slow tempo negative valence. A second group of 89 participants performed two blocks of the SART task interspersed with either no break or a rest break consisting of 1 of the 4 types of music or silence. Presenting positive valence music (particularly of slow tempo) during an intermission between two successive blocks of the SART significantly decreased miss rates relative to negative valence music or silence. Results support an attentional restoration theory of the impact of music on sustained attention, rather than arousal theory and demonstrate a means of restoring sustained attention. Further, the results establish the validity of a music database that will facilitate further investigations of the impact of music on performance. PMID:29145395

  5. Positive valence music restores executive control over sustained attention.

    PubMed

    Baldwin, Carryl L; Lewis, Bridget A

    2017-01-01

    Music sometimes improves performance in sustained attention tasks. But the type of music employed in previous investigations has varied considerably, which can account for equivocal results. Progress has been hampered by lack of a systematic database of music varying in key characteristics like tempo and valence. The aims of this study were to establish a database of popular music varying along the dimensions of tempo and valence and to examine the impact of music varying along these dimensions on restoring attentional resources following performance of a sustained attention to response task (SART) vigil. Sixty-nine participants rated popular musical selections that varied in valence and tempo to establish a database of four musical types: fast tempo positive valence, fast tempo negative valence, slow tempo positive valence, and slow tempo negative valence. A second group of 89 participants performed two blocks of the SART task interspersed with either no break or a rest break consisting of 1 of the 4 types of music or silence. Presenting positive valence music (particularly of slow tempo) during an intermission between two successive blocks of the SART significantly decreased miss rates relative to negative valence music or silence. Results support an attentional restoration theory of the impact of music on sustained attention, rather than arousal theory and demonstrate a means of restoring sustained attention. Further, the results establish the validity of a music database that will facilitate further investigations of the impact of music on performance.

  6. The Interaction of Arousal and Valence in Affective Priming: Behavioral and Electrophysiological Evidence

    PubMed Central

    Zhang, Qin; Kong, Lingyue; Jiang, Yang

    2013-01-01

    The affective priming paradigm has been studied extensively and applied in many fields during the past two decades. Most research thus far has focused on the valence dimension. Whether emotional arousal influences affective priming remains poorly understood. The present study demonstrates how arousal impacts evaluation of affective words using reaction time and event-related potential (ERP) measures. Eighteen younger subjects evaluated pleasantness of target words after seeing affective pictures as primes. The participants’ responses were faster and/or more accurate for valence-congruent trials than for incongruent trials, particularly with high-arousal stimuli. An ERP affective priming effect (N400) also occurred mainly in high-arousing stimulus pairs. In addition, whereas valence congruency influenced both the N400 and the LPP, arousal congruency influenced only the LPP, suggesting that arousal congruency mainly modulates post-semantic processes, but valence congruency effects begin with semantic processes. Overall, our current findings indicate that the arousal level of visual images impacts both behavioral and ERP effects of affective priming. Section Cognitive and Behavioral Neuroscience PMID:22820299

  7. Effects of emotional valence and three-dimensionality of visual stimuli on brain activation: an fMRI study.

    PubMed

    Dores, A R; Almeida, I; Barbosa, F; Castelo-Branco, M; Monteiro, L; Reis, M; de Sousa, L; Caldas, A Castro

    2013-01-01

    Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed. The effect of emotional valence and visualization types and their interaction were analyzed through a 3 × 2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios' valence) and their interaction with three-dimensionality.

  8. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study.

    PubMed

    Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin

    2013-11-01

    Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Electrical properties of Si-Si interfaces obtained by room temperature covalent wafer bonding

    NASA Astrophysics Data System (ADS)

    Jung, A.; Zhang, Y.; Arroyo Rojas Dasilva, Y.; Isa, F.; von Känel, H.

    2018-02-01

    We study covalent bonds between p-doped Si wafers (resistivity ˜10 Ω cm) fabricated on a recently developed 200 mm high-vacuum system. Oxide- and void free interfaces were obtained by argon (Ar) or neon (Ne) sputtering prior to wafer bonding at room temperature. The influence of the sputter induced amorphous Si layer at the bonding interface on the electrical behavior is accessed with temperature-dependent current-voltage measurements. In as-bonded structures, charge transport is impeded by a potential barrier of 0.7 V at the interface with thermionic emission being the dominant charge transport mechanism. Current-voltage characteristics are found to be asymmetric which can tentatively be attributed to electric dipole formation at the interface as a result of the time delay between the surface preparation of the two bonding partners. Electron beam induced current measurements confirm the corresponding asymmetric double Schottky barrier like band-alignment. Moreover, we demonstrate that defect annihilation at a low temperature of 400 °C increases the electrical conductivity by up to three orders of magnitude despite the lack of recrystallization of the amorphous layer. This effect is found to be more pronounced for Ne sputtered surfaces which is attributed to the lighter atomic mass compared to Ar, inducing weaker lattice distortions during the sputtering.

  10. Priming for performance: valence of emotional primes interact with dissociable prototype learning systems.

    PubMed

    Gorlick, Marissa A; Maddox, W Todd

    2013-01-01

    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning.

  11. Priming for Performance: Valence of Emotional Primes Interact with Dissociable Prototype Learning Systems

    PubMed Central

    Gorlick, Marissa A.; Maddox, W. Todd

    2013-01-01

    Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning. PMID:23646101

  12. Thioredoxin-1 actively maintains the pseudokinase MLKL in a reduced state to suppress disulfide bond-dependent MLKL polymer formation and necroptosis.

    PubMed

    Reynoso, Eduardo; Liu, Hua; Li, Lin; Yuan, Anthony L; Chen, She; Wang, Zhigao

    2017-10-20

    Necroptosis is an immunogenic cell death program that is associated with a host of human diseases, including inflammation, infections, and cancer. Receptor-interacting protein kinase 3 (RIPK3) and its substrate mixed lineage kinase domain-like protein (MLKL) are required for necroptosis activation. Specifically, RIPK3-dependent MLKL phosphorylation promotes the assembly of disulfide bond-dependent MLKL polymers that drive the execution of necroptosis. However, how MLKL disulfide bond formation is regulated is not clear. In this study we discovered that the MLKL-modifying compound necrosulfonamide cross-links cysteine 86 of human MLKL to cysteine 32 of the thiol oxidoreductase thioredoxin-1 (Trx1). Recombinant Trx1 preferentially binds to monomeric MLKL and blocks MLKL disulfide bond formation and polymerization in vitro Inhibition of MLKL polymer formation requires the reducing activity of Trx1. Importantly, shRNA-mediated knockdown of Trx1 promotes MLKL polymerization and sensitizes cells to necroptosis. Furthermore, pharmacological inhibition of Trx1 with compound PX-12 induces necroptosis in multiple cancer cell lines. Altogether, these findings demonstrate that Trx1 is a critical regulator of necroptosis that suppresses cell death by maintaining MLKL in a reduced inactive state. Our results further suggest new directions for targeted cancer therapy in which thioredoxin inhibitors like PX-12 could potentially be used to specifically target cancers expressing high levels of MLKL or MLKL short isoforms. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. ATP-Dependent C–F Bond Cleavage Allows the Complete Degradation of 4-Fluoroaromatics without Oxygen

    PubMed Central

    Tiedt, Oliver; Mergelsberg, Mario; Boll, Kerstin; Müller, Michael; Adrian, Lorenz; Jehmlich, Nico; von Bergen, Martin

    2016-01-01

    ABSTRACT Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C–F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C–F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA) to benzoyl-coenzyme A (BzCoA) and HF, catalyzed by class I BzCoA reductase (BCR). Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA. PMID:27507824

  14. Childhood and Adolescent Predictors of Alcohol Abuse and Dependence in Young Adulthood*

    PubMed Central

    Guo, Jie; Hawkins, J. David; Hill, Karl G.; Abbott, Robert D

    2007-01-01

    Objective To provide a comprehensive examination of childhood and adolescent predictors of alcohol abuse and dependence at age 21, theoretically guided by the social development model. Method Data were taken from an ethnically diverse urban sample of 808 students [51% male), surveyed at age 10 and followed prospectively to age 21 in 1996. Potential predictors of alcohol abuse and dependence at age 21 were measured at ages 10, 14 and 16. Relationships between these predictors and alcohol abuse and dependence were examined at each age, to assess changes in their patterns of prediction over time. Results Strong bonding to school, close parental monitoring of children and clearly defined family rules for behavior, appropriate parental rewards for good behaviors, high level of refusal skills and strong belief in the moral order predicted a lower risk for alcohol abuse and dependence at age 21. Of these, strong bonding to school consistently predicted lower alcohol abuse and dependence from all three ages (10, 14 and 16). By contrast, youths who had a higher risk of alcohol abuse and dependence at age 21 engaged in more problem behaviors, had more opportunities to be involved with antisocial individuals and spent more time with and were more bonded to those individuals, viewed fewer negative consequences from antisocial behaviors and held more favorable views on alcohol use. Of these, prior problem behaviors and antisocial opportunities and involvements at ages 10, 14 and 16 consistently predicted alcohol abuse and dependence at age 21. Conclusions These important malleable predictors, identifiable as early as age 10, provide potential intervention targets for the prevention of alcohol abuse and dependence in early adulthood. PMID:11838912

  15. Autonomic nervous system reactivity within the valence-arousal affective space: Modulation by sex and age.

    PubMed

    Gomez, Patrick; von Gunten, Armin; Danuser, Brigitta

    2016-11-01

    In the present study, we examined how sex and age shape cardiovascular, electrodermal, and pupillary reactivity to picture series within the valence-arousal affective space in a sample of 176 healthy younger, middle-aged, and older men and women. Across participants, heart rate (HR) decelerated with increasing self-reported unpleasantness, whereas skin conductance level (SCL) and pupil size (PS) increased with increasing self-rated arousal. Systolic (SBP) and diastolic (DBP) blood pressure increased with increasing self-rated arousal when valence was pleasant but much less when valence was unpleasant. Compared to women, men exhibited a stronger correlation between valence and HR and an SBP response characterized by larger increases for pleasant high-arousal states and lower change scores for unpleasant low- and high-arousal and pleasant low-arousal states. Men's largest SCL change scores were for pleasant high-arousal states, whereas women's largest SCL change scores were for unpleasant high-arousal states. The arousal-PS relationship was stronger among women, in particular for unpleasant series. From younger to older age, there were decreases in the strength of the valence-HR, arousal-SCL, and arousal-PS relationships. Older adults had larger overall increases in SBP and DBP than younger adults, but the relationships with self-reported valence and arousal were not age dependent. We discuss how the observed sex and age effects may reflect sex and age differences in emotional processing and in basic autonomic nervous system functioning. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Chemical Bonding and Thermodynamics in Superconductivity and Superfluidity

    NASA Astrophysics Data System (ADS)

    Love, Peter

    2012-05-01

    Superconductivity and superfluidity are physical states that occur in a variety of chemical and physical systems. These physical states share a common type of real, or virtual, chemical bonding. Each of the systems discussed herein contain at least one real, or effective, coordinate covalent bond. This is formed from an electron pair donor species and an electron pair acceptor species. When the electronegativity difference between the electron pair donor and acceptor species is sufficiently small, the resultant coordinate covalent bond density can be substantial. If delocalized, this bond density can result in a significant increase in the electron pair orbital volume relative to that of the parent species, and an increase in the valence shell orbital entropy. In terms of the normalized Gibbs-Helmholtz equation, this results in a concomitant decrease in free energy of the delocalized electronic system. A decrease in free energy to negative values can support a boson state, and superconductivity. A clear example of these principles is the occurrence of superconductivity in the ceramic material, MgB2. These generalizations apply to superconducting elements, high temperature superconductors, superconducting alloys, and equivalently to superfluid 4He.

  17. Hemispheric processing of differently valenced and self-relevant attachment words in middle-aged married and separated individuals.

    PubMed

    Fussell, Nicola J; Rowe, Angela C; Mohr, Christine

    2012-01-01

    The reliance in experimental psychology on testing undergraduate populations with relatively little life experience, and/or ambiguously valenced stimuli with varying degrees of self-relevance, may have contributed to inconsistent findings in the literature on the valence hypothesis. To control for these potential limitations, the current study assessed lateralised lexical decisions for positive and negative attachment words in 40 middle-aged male and female participants. Self-relevance was manipulated in two ways: by testing currently married compared with previously married individuals and by assessing self-relevance ratings individually for each word. Results replicated a left hemisphere advantage for lexical decisions and a processing advantage of emotional over neutral words but did not support the valence hypothesis. Positive attachment words yielded a processing advantage over neutral words in the right hemisphere, while emotional words (irrespective of valence) yielded a processing advantage over neutral words in the left hemisphere. Both self-relevance manipulations were unrelated to lateralised performance. The role of participant sex and age in emotion processing are discussed as potential modulators of the present findings.

  18. Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquid n-hexadecane under shear.

    PubMed

    Tseng, Huan-Chang; Chang, Rong-Yeu; Wu, Jiann-Shing

    2011-01-28

    Extensive computer experiments have been conducted in order to shed light on the macroscopic shear flow behavior of liquid n-hexadecane fluid under isobaric-isothermal conditions through the nonequilibrium molecular dynamic methodology. With respect to shear rates, the accompanying variations in structural properties of the fluid span the microscopic range of understanding from the intrinsic to extrinsic characteristics. As drawn from the average value of bond length and bond angle, the distribution of dihedral angle, and the radius distribution function of intramolecular and intermolecular van der Waals distances, these intrinsic structures change with hardness, except in the situation of extreme shear rates. The shear-induced variation of thermodynamic state curve along with the shear rate studied is shown to consist of both the quasiequilibrium state plateau and the nonequilibrium-thermodynamic state slope. Significantly, the occurrence of nonequilibrium-thermodynamic state behavior is attributed to variations in molecular potential energies, which include bond stretching, bond bending, bond torsion, and intra- and intermolecular van der Waals interactions. To unfold the physical representation of extrinsic structural deformation, under the aggressive influence of a shear flow field, the molecular dimension and appearance can be directly described via the squared radius of gyration and the sphericity angle, R(g)(2) and ϕ, respectively. In addition, a specific orientational order S(x) defines the alignment of the molecules with the flow direction of the x-axis. As a result, at low shear rates, the overall molecules are slightly stretched and shaped in a manner that is increasingly ellipsoidal. Simultaneously, there is an obvious enhancement in the order. In contrast to high shear rates, the molecules spontaneously shrink themselves with a decreased value of R(g)(2), while their shape and order barely vary with an infinite value of ϕ and S(x). It is important to

  19. Composition dependence of charge and magnetic length scales in mixed valence manganite thin films

    PubMed Central

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2016-01-01

    Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La1−yPry)1−xCaxMnO3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1−xCaxMnO3 films with x = 0.33 and 0.375, across the MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties. PMID:27461993

  20. Music, emotion, and time perception: the influence of subjective emotional valence and arousal?

    PubMed Central

    Droit-Volet, Sylvie; Ramos, Danilo; Bueno, José L. O.; Bigand, Emmanuel

    2013-01-01

    The present study used a temporal bisection task with short (<2 s) and long (>2 s) stimulus durations to investigate the effect on time estimation of several musical parameters associated with emotional changes in affective valence and arousal. In order to manipulate the positive and negative valence of music, Experiments 1 and 2 contrasted the effect of musical structure with pieces played normally and backwards, which were judged to be pleasant and unpleasant, respectively. This effect of valence was combined with a subjective arousal effect by changing the tempo of the musical pieces (fast vs. slow) (Experiment 1) or their instrumentation (orchestral vs. piano pieces). The musical pieces were indeed judged more arousing with a fast than with a slow tempo and with an orchestral than with a piano timbre. In Experiment 3, affective valence was also tested by contrasting the effect of tonal (pleasant) vs. atonal (unpleasant) versions of the same musical pieces. The results showed that the effect of tempo in music, associated with a subjective arousal effect, was the major factor that produced time distortions with time being judged longer for fast than for slow tempi. When the tempo was held constant, no significant effect of timbre on the time judgment was found although the orchestral music was judged to be more arousing than the piano music. Nevertheless, emotional valence did modulate the tempo effect on time perception, the pleasant music being judged shorter than the unpleasant music. PMID:23882233

  1. Ligand-hole localization in oxides with unusual valence Fe

    PubMed Central

    Chen, Wei-Tin; Saito, Takashi; Hayashi, Naoaki; Takano, Mikio; Shimakawa, Yuichi

    2012-01-01

    Unusual high-valence states of iron are stabilized in a few oxides. A-site-ordered perovskite-structure oxides contain such iron cations and exhibit distinct electronic behaviors at low temperatures, e.g. charge disproportionation (4Fe4+ → 2Fe3+ + 2Fe5+) in CaCu3Fe4O12 and intersite charge transfer (3Cu2+ + 4Fe3.75+ → 3Cu3+ + 4Fe3+) in LaCu3Fe4O12. Here we report the synthesis of solid solutions of CaCu3Fe4O12 and LaCu3Fe4O12 and explain how the instabilities of their unusual valence states of iron are relieved. Although these behaviors look completely different from each other in simple ionic models, they can both be explained by the localization of ligand holes, which are produced by the strong hybridization of iron d and oxygen p orbitals in oxides. The localization behavior in the charge disproportionation of CaCu3Fe4O12 is regarded as charge ordering of the ligand holes, and that in the intersite charge transfer of LaCu3Fe4O12 is regarded as a Mott transition of the ligand holes. PMID:22690318

  2. Social learning modulates the lateralization of emotional valence.

    PubMed

    Shamay-Tsoory, Simone G; Lavidor, Michal; Aharon-Peretz, Judith

    2008-08-01

    Although neuropsychological studies of lateralization of emotion have emphasized valence (positive vs. negative) or type (basic vs. complex) dimensions, the interaction between the two dimensions has yet to be elucidated. The purpose of the current study was to test the hypothesis that recognition of basic emotions is processed preferentially by the right prefrontal cortex (PFC), whereas recognition of complex social emotions is processed preferentially by the left PFC. Experiment 1 assessed the ability of healthy controls and patients with right and left PFC lesions to recognize basic and complex emotions. Experiment 2 modeled the patient's data of Experiment 1 on healthy participants under lateralized displays of the emotional stimuli. Both experiments support the Type as well as the Valence Hypotheses. However, our findings indicate that the Valence Hypothesis holds for basic but less so for complex emotions. It is suggested that, since social learning overrules the basic preference of valence in the hemispheres, the processing of complex emotions in the hemispheres is less affected by valence.

  3. Affective valence signals agency within and between individuals.

    PubMed

    Chang, Yen-Ping; Algoe, Sara B; Chen, Lung Hung

    2017-03-01

    Affective valence is a core component of all emotional experiences. Building on recent evidence and theory, we reason that valence informs individuals about their agency-the mental capability of doing and intending. Expressed affect may also lead to perceptions of agency by others. Supporting the hypothesis that valence influences self- and other-perception of agency, across 5 studies, we showed that participants perceived more agency in themselves in positive versus neutral and negative personal (Study 1) and interpersonal (Study 2) events. Participants also perceived more agency in fictional characters showing positive versus negative affect, regardless of how acceptable the characters' behavior was (Studies 3 and 4). Finally, we had participants personify 24 specific emotions across the valence dimension, and found that the more positive and less negative an emotion was, the more agency participants ascribed to the "person" (Study 5). We discuss the results in terms of how valence may help with human self- and social regulation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Vanadium, sulfur, and iron valences in melt inclusions as a window into magmatic processes: A case study at Nyamuragira volcano, Africa

    NASA Astrophysics Data System (ADS)

    Head, Elisabet; Lanzirotti, Antonio; Newville, Matthew; Sutton, Stephen

    2018-04-01

    This study describes microscale sulfur (S), vanadium (V), and iron (Fe) K-edge X-ray absorption near edge structure (μ-XANES) spectroscopy measurements on olivine-hosted melt inclusions (MI) preserved in tephras (1986 and 2006) and lavas (1938 and 1948) erupted from Nyamuragira volcano (D.R. Congo, Africa). The S, V, and Fe spectroscopic data are used to constrain the evolution of oxygen fugacity (fO2) and sulfur speciation for the entrapped melts. Melt inclusions from lavas show evidence of post-entrapment crystallization and were thus reheated prior to μ-XANES analysis. The MI from tephra show no evidence of post-entrapment crystallization and were, therefore, not reheated. Sulfur, V, and Fe μ-XANES results from 1938, 1948, and 2006 eruptive materials are all similar within analytical uncertainty and provide similar average calculated melt fO2's based on XANES oxybarometry. However, olivine-hosted MI from the 1986 tephras yield significantly different S, V, and Fe XANES spectra when compared to MI from the other eruptions, with disagreement between calculated fO2's from the three valence state oxybarometers beyond the uncertainty of the calibration models. Their V μ-XANES spectra are also significantly more ordered and yield more reduced average V valence. The S μ-XANES spectra display a significantly more intense low-energy spectral resonance, which indicates differences in Fe-S bonding character, and greater variability in their measured sulfate content. These V and S spectroscopic features are best explained by crystallization of sub-micrometer magnetite and sulfide crystallites within the 1986 inclusions. The sensitivity of XANES spectroscopy to short-range order allows these crystallites to be recognized even though they are not easily detected by imaging analysis. This shows that V and S μ-XANES are potentially highly sensitive tools for identifying the presence of volumetrically minor amounts of spinel and sulfide within inclusions extracted from

  5. Evaluating the time-dependent and bond characteristics of lightweight concrete mixes for Kansas prestressed concrete bridges.

    DOT National Transportation Integrated Search

    2011-07-01

    This report details results from testing that was conducted to determine the bond and time-dependent : characteristics of two lightweight concrete mixes. The lightweight mixes were evaluated to possibly : provide a more cost-effective solution to rep...

  6. Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale.

    PubMed

    Tian, Kaiwen; Gosvami, Nitya N; Goldsby, David L; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W

    2017-02-17

    Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.

  7. Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Tian, Kaiwen; Gosvami, Nitya N.; Goldsby, David L.; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W.

    2017-02-01

    Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.

  8. Non-adiabatic behavior in the homolytic and heterolytic bond dissociation of protonated hydrazine: A guided ion beam and theoretical investigation

    NASA Astrophysics Data System (ADS)

    McNary, Christopher P.; Armentrout, P. B.

    2017-09-01

    Threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer was performed on protonated hydrazine and its perdeuterated variant. The dominant dissociation pathways observed were endothermic homolytic and heterolytic cleavages of the N-N bond. The data were analyzed using a statistical model after accounting for internal and kinetic energy distributions, multiple collisions, and kinetic shifts to obtain 0 K bond dissociation energies. Comparison with literature thermochemistry demonstrates that both channels behave non-adiabatically. Heterolytic bond cleavage yields NH2+ + NH3 products, but the NH2+ fragment is in the spin-restricted excited 1A1 state and not in the spin-forbidden ground 3B1 state, whereas homolytic bond cleavage leads to dissociation to the NH3+ + NH2 product asymptote with NH2 in its excited 2A1 state rather than the energetically favored 2B1 state. The rationale for the non-adiabatic behavior observed in the homolytic bond cleavage is revealed by detailed theoretical calculations of the relevant potential energy surfaces and the relevant occupied valence molecular orbitals. These calculations suggest that the non-adiabatic behavior results from conservation of the σ and π character of the binding and lone pair electrons on the nitrogen atoms.

  9. Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system

    NASA Astrophysics Data System (ADS)

    Juslin, N.; Erhart, P.; Träskelin, P.; Nord, J.; Henriksson, K. O. E.; Nordlund, K.; Salonen, E.; Albe, K.

    2005-12-01

    A reactive interatomic potential based on an analytical bond-order scheme is developed for the ternary system W-C-H. The model combines Brenner's hydrocarbon potential with parameter sets for W-W, W-C, and W-H interactions and is adjusted to materials properties of reference structures with different local atomic coordinations including tungsten carbide, W-H molecules, as well as H dissolved in bulk W. The potential has been tested in various scenarios, such as surface, defect, and melting properties, none of which were considered in the fitting. The intended area of application is simulations of hydrogen and hydrocarbon interactions with tungsten, which have a crucial role in fusion reactor plasma-wall interactions. Furthermore, this study shows that the angular-dependent bond-order scheme can be extended to second nearest-neighbor interactions, which are relevant in body-centered-cubic metals. Moreover, it provides a possibly general route for modeling metal carbides.

  10. Second-order reconstruction of the inflationary potential

    NASA Technical Reports Server (NTRS)

    Liddle, Andrew R.; Turner, Michael S.

    1994-01-01

    To first order in the deviation from scale invariance the inflationary potential and its first two derivatives can be expressed in terms of the spectral indices of the scalar and tensor perturbations, n and n(sub T), and their contributions to the variance of the quadrupole CBR temperature anisotropy, S and T. In addition, there is a 'consistency relation' between these quantities: n(sub T) = (-1/ 7)(T/S). We derive the second-order expressions for the inflationary potential and its first two derivatives and the first-order expression for its third derivative, in terms, of n, n(sub T), S, T, and dn/d ln gamma. We also obtain the second-order consistency relation, n(sub T) = (-1/7)(T/S)(1 + 0.11(T/S) + 0.15(n-1)). As an example we consider the exponential potential, the only known case where exact analytic solutions for the perturbation spectra exist. We reconstruct the potential via Taylor expansion (with coefficients calculated at both first and second order), and introduce the Pade approximate as a greatly improved alternative.

  11. Emotional Valence, Arousal, and Threat Ratings of 160 Chinese Words among Adolescents

    PubMed Central

    Ho, Samuel M. Y.; Mak, Christine W. Y.; Yeung, Dannii; Duan, Wenjie; Tang, Sandy; Yeung, June C.; Ching, Rita

    2015-01-01

    This study was conducted to provide ratings of valence/pleasantness, arousal/excitement, and threat/potential harm for 160 Chinese words. The emotional valence classification (positive, negative, or neutral) of all of the words corresponded to that of the equivalent English language words. More than 90% of the participants, junior high school students aged between 12 and 17 years, understood the words. The participants were from both mainland China and Hong Kong, thus the words can be applied to adolescents familiar with either simplified (e.g. in mainland China) or traditional Chinese (e.g. in Hong Kong) with a junior secondary school education or higher. We also established eight words with negative valence, high threat, and high arousal ratings to facilitate future research, especially on attentional and memory biases among individuals prone to anxiety. Thus, the new emotional word list provides a useful source of information for affective research in the Chinese language. PMID:26226604

  12. Taboo, emotionally valenced, and emotionally neutral word norms.

    PubMed

    Janschewitz, Kristin

    2008-11-01

    Although taboo words are used to study emotional memory and attention, no easily accessible normative data are available that compare taboo, emotionally valenced, and emotionally neutral words on the same scales. Frequency, inappropriateness, valence, arousal, and imageability ratings for taboo, emotionally valenced, and emotionally neutral words were made by 78 native-English-speaking college students from a large metropolitan university. The valenced set comprised both positive and negative words, and the emotionally neutral set comprised category-related and category-unrelated words. To account for influences of demand characteristics and personality factors on the ratings, frequency and inappropriateness measures were decomposed into raters' personal reactions to the words versus raters' perceptions of societal reactions to the words (personal use vs. familiarity and offensiveness vs. tabooness, respectively). Although all word sets were rated higher in familiarity and tabooness than in personal use and offensiveness, these differences were most pronounced for the taboo set. In terms of valence, the taboo set was most similar to the negative set, although it yielded higher arousal ratings than did either valenced set. Imageability for the taboo set was comparable to that of both valenced sets. The ratings of each word are presented for all participants as well as for single-sex groups. The inadequacies of the application of normative data to research that uses emotional words and the conceptualization of taboo words as a coherent category are discussed. Materials associated with this article may be accessed at the Psychonomic Society's Archive of Norms, Stimuli, and Data, www.psychonomic.org/archive.

  13. Diffusion Bonding of Silicon Carbide Ceramics using Titanium Interlayers

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, James D.

    2006-01-01

    Robust joining approaches for silicon carbide ceramics are critically needed to fabricate leak free joints with high temperature mechanical capability. In this study, titanium foils and physical vapor deposited (PVD) titanium coatings were used to form diffusion bonds between SiC ceramics using hot pressing. Silicon carbide substrate materials used for bonding include sintered SiC and two types of CVD SiC. Microscopy results show the formation of well adhered diffusion bonds. The bond strengths as determined from pull tests are on the order of several ksi, which is much higher than required for a proposed application. Microprobe results show the distribution of silicon, carbon, titanium, and other minor elements across the diffusion bond. Compositions of several phases formed in the joint region were identified. Potential issues of material compatibility and optimal bond formation will also be discussed.

  14. Bond Strength Mechanism of Fly Ash Based Geopolymer Mortars: A Review

    NASA Astrophysics Data System (ADS)

    Zailani, W. W. A.; Abdullah, M. M. A. B.; Razak, R. A.; Zainol, M. R. R. M. A.; Tahir, M. F. M.

    2017-11-01

    Geopolymer possess many excellent properties such as high compressive and bond strength, long term durability, better acid resistance and also known as a “Sustainable Material” due to its low carbon emission and low energy consumption. Thus, it is a good opportunity to develop and explore not only for cement and concrete but also as geopolymeric repair materials. This reviews showed that good bonding properties between geopolymeric repair material and concrete substrate is important in order to acquire an enhanced resistance against penetration of harmful substances and avoiding respalling of the repair material by understanding the bonding behaviour. Bond strength depends to the properties of the repair materials itself and also the surface preparations of concrete substrate.

  15. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing

    PubMed Central

    Vanommeslaeghe, K.; MacKerell, A. D.

    2012-01-01

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF’s complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/. PMID:23146088

  16. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.

    PubMed

    Vanommeslaeghe, K; MacKerell, A D

    2012-12-21

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .

  17. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  18. Catalyst-Dependent Chemoselective Formal Insertion of Diazo Compounds into C-C or C-H Bonds of 1,3-Dicarbonyl Compounds.

    PubMed

    Liu, Zhaohong; Sivaguru, Paramasivam; Zanoni, Giuseppe; Anderson, Edward A; Bi, Xihe

    2018-05-08

    A catalyst-dependent chemoselective one-carbon insertion of diazo compounds into the C-C or C-H bonds of 1,3-dicarbonyl species is reported. In the presence of silver(I) triflate, diazo insertion into the C(=O)-C bond of the 1,3-dicarbonyl substrate leads to a 1,4-dicarbonyl product containing an all-carbon α-quaternary center. This reaction constitutes the first example of an insertion of diazo-derived carbenoids into acyclic C-C bonds. When instead scandium(III) triflate was applied as the catalyst, the reaction pathway switched to formal C-H insertion, affording 2-alkylated 1,3-dicarbonyl products. Different reaction pathways are proposed to account for this powerful catalyst-dependent chemoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Orbital occupancy evolution across spin- and charge-ordering transitions in YBaFe2O5

    NASA Astrophysics Data System (ADS)

    Lindén, J.; Lindroos, F.; Karen, P.

    2017-08-01

    Thermal evolution of the Fe2+-Fe3+ valence mixing in YBaFe2O5 is investigated using Mössbauer spectroscopy. In this high-spin double-cell perovskite, the d6 and d5 Fe states differ by the single minority-spin electron which then controls all the spin- and charge-ordering transitions. Orbital occupancies can be extracted from the spectra in terms of the dxz , dz2 and either dx2-y2 (Main Article) or dxy (Supplement) populations of this electron upon conserving its angular momentum. At low temperatures, the minority-spin electrons fill up the ordered dxz orbitals of Fe2+, in agreement with the considerable orthorhombic distortion of the structure. Heating through the Verwey transition supplies 93% of the mixing entropy, at which point the predominantly mixing electron occupies mainly the dx2-y2 /dxy orbitals weakly bonding the two Fe atoms that face each other across the bases of their coordination pyramids. This might stabilize a weak coulombic checkerboard order suggested by McQueeney et alii in Phys. Rev. B 87(2013)045127. When the remaining 7% of entropy is supplied at a subsequent transition, the mixing electron couples the two Fe atoms predominantly via their dz2 orbitals. The valence mixing concerns more than 95% of the Fe atoms present in the crystalline solid; the rest is semi-quantitatively interpreted as domain walls and antiphase boundaries formed upon cooling through the Néel and Verwey-transition temperatures, respectively.

  20. Minimization of Basis Risk in Parametric Earthquake Cat Bonds

    NASA Astrophysics Data System (ADS)

    Franco, G.

    2009-12-01

    A catastrophe -cat- bond is an instrument used by insurance and reinsurance companies, by governments or by groups of nations to cede catastrophic risk to the financial markets, which are capable of supplying cover for highly destructive events, surpassing the typical capacity of traditional reinsurance contracts. Parametric cat bonds, a specific type of cat bonds, use trigger mechanisms or indices that depend on physical event parameters published by respected third parties in order to determine whether a part or the entire bond principal is to be paid for a certain event. First generation cat bonds, or cat-in-a-box bonds, display a trigger mechanism that consists of a set of geographic zones in which certain conditions need to be met by an earthquake’s magnitude and depth in order to trigger payment of the bond principal. Second generation cat bonds use an index formulation that typically consists of a sum of products of a set of weights by a polynomial function of the ground motion variables reported by a geographically distributed seismic network. These instruments are especially appealing to developing countries with incipient insurance industries wishing to cede catastrophic losses to the financial markets because the payment trigger mechanism is transparent and does not involve the parties ceding or accepting the risk, significantly reducing moral hazard. In order to be successful in the market, however, parametric cat bonds have typically been required to specify relatively simple trigger conditions. The consequence of such simplifications is the increase of basis risk. This risk represents the possibility that the trigger mechanism fails to accurately capture the actual losses of a catastrophic event, namely that it does not trigger for a highly destructive event or vice versa, that a payment of the bond principal is caused by an event that produced insignificant losses. The first case disfavors the sponsor who was seeking cover for its losses while the

  1. The site occupation and valence of Mn ions in the crystal lattice of Sr{sub 4}Al{sub 14}O{sub 25} and its deep red emission for high color-rendering white light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Lei, E-mail: shanggan2009@qq.com; Xue, Shaochan; Chen, Xiuling

    2014-12-15

    Highlights: • Different valences of Mn ions in Sr{sub 4}Al{sub 14}O{sub 25} were identified using XANES and EPR. • Red luminescence was attributed to Mn{sup 4+} occupying the center of AlO{sub 6} octahedron. • The Mn{sup 3+} incorporated in the center of AlO{sub 4} tetrahedron was non-luminescent. • The bond-valence theory was used to analyze the effective valences of cations. • A white LED device with CRI up to Ra 93.23 was packaged by using the red phosphor. - Abstract: The synthesis and component of red phosphor, Sr{sub 4}Al{sub 14}O{sub 25}: Mn, were optimized for application in white light-emitting diodes.more » The microstructure and morphology were investigated by the X-ray diffraction and scanning electron microscopy. Different valences of Mn ions in Sr{sub 4}Al{sub 14}O{sub 25} were discriminated using the electron paramagnetic resonance and X-ray absorption near-edge structure spectroscopy techniques. The bond-valence theory was used to analyze the effective valences of Sr{sup 2+} and Al{sup 3+} in Sr{sub 4}Al{sub 14}O{sub 25}. As a result, the strong covalence of Al{sup 3+} in the AlO{sub 4} tetrahedron other than in the AlO{sub 6} octahedron is disclosed. The deep red emission is attributed to Mn{sup 4+} occupying the center of AlO{sub 6} octahedron. The mechanism of energy transfer is mainly through dipole–dipole interaction, revealed by the analyses of critical distance and concentration quench. A high color rendering white LED prototype with color-rendering index up to Ra 93.23 packaged by using the red phosphor demonstrates its applicability.« less

  2. Chemical bonding and the equilibrium composition of Grignard reagents in ethereal solutions.

    PubMed

    Henriques, André M; Barbosa, André G H

    2011-11-10

    A thorough analysis of the electronic structure and thermodynamic aspects of Grignard reagents and its associated equilibrium composition in ethereal solutions is performed. Considering methylmagnesium halides containing fluorine, chlorine, and bromine, we studied the neutral, charged, and radical species associated with their chemical equilibrium in solution. The ethereal solvents considered, tetrahydrofuran (THF) and ethyl ether (Et(2)O), were modeled using the polarizable continuum model (PCM) and also by explicit coordination to the Mg atoms in a cluster. The chemical bonding of the species that constitute the Grignard reagent is analyzed in detail with generalized valence bond (GVB) wave functions. Equilibrium constants were calculated with the DFT/M06 functional and GVB wave functions, yielding similar results. According to our calculations and existing kinetic and electrochemical evidence, the species R(•), R(-), (•)MgX, and RMgX(2)(-) must be present in low concentration in the equilibrium. We conclude that depending on the halogen, a different route must be followed to produce the relevant equilibrium species in each case. Chloride and bromide must preferably follow a "radical-based" pathway, and fluoride must follow a "carbanionic-based" pathway. These different mechanisms are contrasted against the available experimental results and are proven to be consistent with the existing thermodynamic data on the Grignard reagent equilibria.

  3. Effects of Emotional Valence and Arousal on Time Perception

    PubMed Central

    Van Volkinburg, Heather; Balsam, Peter

    2016-01-01

    We examined the influence of emotional arousal and valence on estimating time intervals. A reproduction task was used in which images from the International Affective Picture System served as the stimuli to be timed. Experiment 1 assessed the effects of positive and negative valence at a moderate arousal level and Experiment 2 replicated Experiment 1 with the addition of a high arousal condition. Overestimation increased as a function of arousal during encoding of times regardless of valence. For images presented during reproduction, overestimation occurred at the moderate arousal level for positive and negative valence but underestimation occurred in the negative valence high arousal condition. The overestimation of time intervals produced by emotional arousal during encoding and during reproduction suggests that emotional stimuli affect temporal information processing in a qualitatively different way during different phases of temporal information processing. PMID:27110491

  4. Periodic trends in bond dissociation energies. A theoretical study.

    PubMed

    Mó, Otilia; Yáñez, Manuel; Eckert-Maksić, Mirjana; Maksić, Zvonimir B; Alkorta, Ibón; Elguero, José

    2005-05-19

    Bond dissociation energies (BDEs) of all possible A-X single bonds involving the first- and second-row atoms, from Li to Cl, where the free valences are saturated by hydrogens, have been estimated through the use of the G3-theory and at the B3LYP/6-311+G(3df,2pd)//B3LYP/6-31G(2df,p) DFT level of theory. BDEs exhibit a periodical behavior. The A-X (A = Li, Be, B, Na, Mg, Al, and Si) BDEs show a steady increase along the first and the second row of the periodic table as a function of the atomic number Z(X). For A-X bonds involving electronegative atoms (A = C, N, O, F, P, S, and Cl) the bond energies achieve a maximum around Z(X) = 5. The same behavior is observed when BDEs are plotted against the electronegativity chi(X) of the atom X. Thus, for A-X bonds (A = Li, Be, B, Na, Mg, Al, Si), the BDEs for a fixed A increases, grosso modo, as the electronegativity differences between X and A increase, with some exceptions, which reflect the differences in the relaxation energies of the radicals produced upon the bond cleavage. A similar trend, albeit less pronounced, is found for single A-X bonds, where A = C, N, O, F, P, S, and Cl. However, there is an additional feature embodied in the enhancement of the strength of the A-boron bonds due to the ability of boron to act as a strong electron acceptor. The trends in bond lengths and charge densities at the bond critical points are in line with the aforementioned behavior.

  5. Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture.

    PubMed

    Jain, Prashant; Ramachandran, Vasanth; Clark, Ronald J; Zhou, Hai Dong; Toby, Brian H; Dalal, Naresh S; Kroto, Harold W; Cheetham, Anthony K

    2009-09-30

    Multiferroic behavior in perovskite-related metal-organic frameworks of general formula [(CH(3))(2)NH(2)]M(HCOO)(3), where M = Mn, Fe, Co, and Ni, is reported. All four compounds exhibit paraelectric-antiferroelectric phase transition behavior in the temperature range 160-185 K (Mn: 185 K, Fe: 160 K; Co: 165 K; Ni: 180 K); this is associated with an order-disorder transition involving the hydrogen bonded dimethylammonium cations. On further cooling, the compounds become canted weak ferromagnets below 40 K. This research opens up a new class of multiferroics in which the electrical ordering is achieved by means of hydrogen bonding.

  6. C-H...Cl relevant discrepancy on structure, magnetic and electronic conductivity of two mixed-valence Cu{sup I}Cu{sup II} coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Ling; Yang Ping; School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510631

    Two mixed-valence Cu{sup I}Cu{sup II} coordination polymers [Cu{sup I}Cu{sup II}(qdiol)ClL]{sub n} (qdiol{sup 2-}=2,3-dioxyquinoxalinate, L=2,2'-bipyridine, 1; L=1,10-phenanthroline, 2) were obtained in basic ethanolic solution of CuCl{sub 2}, 1,4-dihydro-2,3-quinoxalinedione and L under the solvothermal condition. 1 and 2 are similar in composition, but differ remarkably in structure. The coordination modes of Cu{sup II}, qdiol{sup 2-} and L are identical in both complexes. But the Cu{sup I} ions are two- and three-coordinated, and the Cl{sup -} ions are terminal and bridging, in 1 and 2, respectively, which are relevant to the significantly different C-H...Cl hydrogen bonding pattern of bpy and phen. The temperaturemore » variable magnetic susceptibilities show that 1 is paramagnetic and 2 is weakly antiferromagnetic. The complex impedance spectroscopic studies indicate that both 1 and 2 are semiconductors and 2 is more conducting. - Graphical Abstract: Subtly different C-H...Cl bonding nature leads to diverse coordination modes and supramolecular networks, as well as physical properties of two Cu{sup I}Cu{sup II} coordination polymers with similar compositions. Highlights: > Two new Cu(I)-Cu(II) mixed-valence coordination polymers are obtained. > Environments of Cu(I) and Cl are different caused by C-H...Cl H-bonding. > Supramolecular networks are hence diverse. > Magnetic and semiconducting properties are influenced by the structures.« less

  7. DeltaPhage—a novel helper phage for high-valence pIX phagemid display

    PubMed Central

    Nilssen, Nicolay R.; Frigstad, Terje; Pollmann, Sylvie; Roos, Norbert; Bogen, Bjarne; Sandlie, Inger; Løset, Geir Å.

    2012-01-01

    Phage display has been instrumental in discovery of novel binding peptides and folded domains for the past two decades. We recently reported a novel pIX phagemid display system that is characterized by a strong preference for phagemid packaging combined with low display levels, two key features that support highly efficient affinity selection. However, high diversity in selected repertoires are intimately coupled to high display levels during initial selection rounds. To incorporate this additional feature into the pIX display system, we have developed a novel helper phage termed DeltaPhage that allows for high-valence display on pIX. This was obtained by inserting two amber mutations close to the pIX start codon, but after the pVII translational stop, conditionally inactivating the helper phage encoded pIX. Until now, the general notion has been that display on pIX is dependent on wild-type complementation, making high-valence display unachievable. However, we found that DeltaPhage does facilitate high-valence pIX display when used with a non-suppressor host. Here, we report a side-by-side comparison with pIII display, and we find that this novel helper phage complements existing pIX phagemid display systems to allow both low and high-valence display, making pIX display a complete and efficient alternative to existing pIII phagemid display systems. PMID:22539265

  8. DeltaPhage--a novel helper phage for high-valence pIX phagemid display.

    PubMed

    Nilssen, Nicolay R; Frigstad, Terje; Pollmann, Sylvie; Roos, Norbert; Bogen, Bjarne; Sandlie, Inger; Løset, Geir Å

    2012-09-01

    Phage display has been instrumental in discovery of novel binding peptides and folded domains for the past two decades. We recently reported a novel pIX phagemid display system that is characterized by a strong preference for phagemid packaging combined with low display levels, two key features that support highly efficient affinity selection. However, high diversity in selected repertoires are intimately coupled to high display levels during initial selection rounds. To incorporate this additional feature into the pIX display system, we have developed a novel helper phage termed DeltaPhage that allows for high-valence display on pIX. This was obtained by inserting two amber mutations close to the pIX start codon, but after the pVII translational stop, conditionally inactivating the helper phage encoded pIX. Until now, the general notion has been that display on pIX is dependent on wild-type complementation, making high-valence display unachievable. However, we found that DeltaPhage does facilitate high-valence pIX display when used with a non-suppressor host. Here, we report a side-by-side comparison with pIII display, and we find that this novel helper phage complements existing pIX phagemid display systems to allow both low and high-valence display, making pIX display a complete and efficient alternative to existing pIII phagemid display systems.

  9. Thickness dependence of La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 magnetoelectric interfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Jinling; Tra, Vu Thanh; Dong, Shuai; Trappen, Robbyn; Marcus, Matthew A.; Jenkins, Catherine; Frye, Charles; Wolfe, Evan; White, Ryan; Polisetty, Srinivas; Lin, Jiunn-Yuan; LeBeau, James M.; Chu, Ying-Hao; Holcomb, Mikel Barry

    2015-10-01

    Magnetoelectric materials have great potential to revolutionize electronic devices due to the coupling of their electric and magnetic properties. Thickness varying La0.7Sr0.3MnO3 (LSMO)/PbZr0.2Ti0.8O3 (PZT) heterostructures were built and measured in this article by valence sensitive x-ray absorption spectroscopy. The sizing effects of the heterostructures on the LSMO/PZT magnetoelectric interfaces were investigated through the behavior of Mn valence, a property associated with the LSMO magnetization. We found that Mn valence increases with both LSMO and PZT thickness. Piezoresponse force microscopy revealed a transition from monodomain to polydomain structure along the PZT thickness gradient. The ferroelectric surface charge may change with domain structure and its effects on Mn valence were simulated using a two-orbital double-exchange model. The screening of ferroelectric surface charge increases the electron charges in the interface region, and greatly changes the interfacial Mn valence, which likely plays a leading role in the interfacial magnetoelectric coupling. The LSMO thickness dependence was examined through the combination of two detection modes with drastically different attenuation depths. The different length scales of these techniques' sensitivity to the atomic valence were used to estimate the depth dependence Mn valence. A smaller interfacial Mn valence than the bulk was found by globally fitting the experimental results.

  10. A highly accurate ab initio potential energy surface for methane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter

    2016-09-14

    A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.

  11. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  12. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystalmore » structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.« less

  13. Effect of gradual ordering of Ge/Sb atoms on chemical bonding: A proposed mechanism for the formation of crystalline Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.

  14. Beta-and gamma-turns in proteins revisited: a new set of amino acid turn-type dependent positional preferences and potentials.

    PubMed

    Guruprasad, K; Rajkumar, S

    2000-06-01

    The number of beta-turns in a representative set of 426 protein three-dimensional crystal structures selected from the recent Protein Data Bank has nearly doubled and the number of gamma-turns in a representative set of 320 proteins has increased over seven times since the previous analysis. Beta-turns (7153) and gamma-turns (911) extracted from these proteins were used to derive a revised set of type-dependent amino acid positional preferences and potentials. Compared with previous results, the preference for proline, methionine and tryptophan has increased and the preference for glutamine, valine, glutamic acid and alanine has decreased for beta-turns. Certain new amino acid preferences were observed for both turn types and individual amino acids showed turn-type dependent positional preferences. The rationale for new amino acid preferences are discussed in the light of hydrogen bonds and other interactions involving the turns. Where main-chain hydrogen bonds of the type NH(i + 3) --> CO(i) were not observed for some beta-turns, other main-chain hydrogen bonds or solvent interactions were observed that possibly stabilize such beta-turns. A number of unexpected isolated beta-turns with proline at i + 2 position were also observed. The NH(i + 2) --> CO(i) hydrogen bond was observed for almost all gamma-turns. Nearly 20% classic gamma-turns and 43% inverse gamma-turns are isolated turns.

  15. The allocation of valenced concepts onto 3D space.

    PubMed

    Marmolejo-Ramos, Fernando; Tirado, Carlos; Arshamian, Edward; Vélez, Jorge Iván; Arshamian, Artin

    2018-06-01

    The valence-space metaphor research area investigates the metaphorical mapping of valenced concepts onto space. Research findings from this area indicate that positive, neutral, and negative concepts are associated with upward, midward, and downward locations, respectively, in the vertical plane. The same research area has also indicated that such concepts seem to have no preferential location on the horizontal plane. The approach-avoidance effect consists in decreasing the distance between positive stimuli and the body (i.e. approach) and increasing the distance between negative stimuli and the body (i.e. avoid). Thus, the valence-space metaphor accounts for the mapping of valenced concepts onto the vertical and horizontal planes, and the approach-avoidance effect accounts for the mapping of valenced concepts onto the "depth" plane. By using a cube conceived for the study of allocation of valenced concepts onto 3D space, we show in three studies that positive concepts are placed in upward locations and near the participants' body, negative concepts are placed in downward locations and far from the participants' body, and neutral concepts are placed in between these concepts in both planes.

  16. Ferromagnetic dinuclear mixed-valence Mn(II)/Mn(III) complexes: building blocks for the higher nuclearity complexes. structure, magnetic properties, and density functional theory calculations.

    PubMed

    Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo

    2013-02-18

    A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.

  17. Investigation of Bose-Einstein Condensates in q-Deformed Potentials with First Order Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Nutku, Ferhat; Aydıner, Ekrem

    2018-02-01

    The Gross-Pitaevskii equation, which is the governor equation of Bose-Einstein condensates, is solved by first order perturbation expansion under various q-deformed potentials. Stationary probability distributions reveal one and two soliton behavior depending on the type of the q-deformed potential. Additionally a spatial shift of the probability distribution is found for the dark soliton solution, when the q parameter is changed.

  18. Formal Valence, 3 d Occupation, and Charge Ordering Transitions

    NASA Astrophysics Data System (ADS)

    Pickett, Warren

    2014-03-01

    The metal-insulator transition (MIT), discovered by Verwey in the late 1930s, has been thought to be one of the best understood of MITs, the other ones being named after Wigner, Peierls, Mott, and Anderson. Continuing work on these transitions finds in some cases less and less charge to order, raising the fundamental question of just where the entropy is coming from, and just what is ordering. To provide insight into the mechanism of charge-ordering transitions, which conventionally are pictured as a disproportionation, I will (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new theoretical results for the rare earth nickelates (viz. YNiO3), the putative charge ordering compound AgNiO2, and the dual charge state insulator AgO, and (3) analyze cationic occupations of actual (not formal) charge, and work to reconcile the conundrums that arise. Several of the clearest cases of charge ordering transitions involve no disproportion; moreover, the experimental data used to support charge ordering can be accounted for within density functional based calculations that contain no charge transfer The challenge of modeling charge ordering transitions with model Hamiltonians will be discussed. Acknowledgment: Y. Quan, V. Pardo. Supported by NSF award DMR-1207622-0.

  19. Delamination failure of multilaminated adhesively bonded joints at low temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Seung; Chun, Min-Sung; Kim, Myung-Hyun; Lee, Jae-Myung

    2011-08-01

    A series of experimental investigations of multilaminated joints adhesively bonded by epoxy/polyurethane (PU) glue were conducted in order to examine the delamination failure characteristics under in-plane shear loading at low temperatures. In order to observe these phenomena, a series of lap-shear tests were carried out at various low temperatures (20 °C, -110 °C and -163 °C) and various adhesion areas (15 mm × 50 mm, 30 mm × 50 mm, 50 mm × 50 mm, 75 mm × 50 mm and 100 mm × 50 mm). The test results were used to investigate the delamination and material characteristics, as well as the material properties, e.g., ultimate shear stress and shear elongation. Furthermore, the dependencies of the characteristics of multilaminated adhesively bonded joints (MABJs) on temperature and adhesion area was analyzed using the stress-strain relationship, and closed form formulas that are functions of the dependent parameters are proposed.

  20. Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O(6+δ) superconductors identified by resonant elastic x-ray scattering.

    PubMed

    Achkar, A J; Sutarto, R; Mao, X; He, F; Frano, A; Blanco-Canosa, S; Le Tacon, M; Ghiringhelli, G; Braicovich, L; Minola, M; Sala, M Moretti; Mazzoli, C; Liang, Ruixing; Bonn, D A; Hardy, W N; Keimer, B; Sawatzky, G A; Hawthorn, D G

    2012-10-19

    Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the CDW order in the planes are shown to be distinct in Q as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2p to 3d(x(2)-y(2)) transition, similar to stripe-ordered 214 cuprates.

  1. Affective valence, stimulus attributes, and P300: color vs. black/white and normal vs. scrambled images.

    PubMed

    Cano, Maya E; Class, Quetzal A; Polich, John

    2009-01-01

    Pictures from the International Affective Picture System (IAPS) were selected to manipulate affective valence (unpleasant, neutral, pleasant) while keeping arousal level the same. The pictures were presented in an oddball paradigm, with a visual pattern used as the standard stimulus. Subjects pressed a button whenever a target was detected. Experiment 1 presented normal pictures in color and black/white. Control stimuli were constructed for both the color and black/white conditions by randomly rearranging 1 cm square fragments of each original picture to produce a "scrambled" image. Experiment 2 presented the same normal color pictures with large, medium, and small scrambled condition (2, 1, and 0.5 cm squares). The P300 event-related brain potential demonstrated larger amplitudes over frontal areas for positive compared to negative or neutral images for normal color pictures in both experiments. Attenuated and nonsignificant valence effects were obtained for black/white images. Scrambled stimuli in each study yielded no valence effects but demonstrated typical P300 topography that increased from frontal to parietal areas. The findings suggest that P300 amplitude is sensitive to affective picture valence in the absence of stimulus arousal differences, and that stimulus color contributes to ERP valence effects.

  2. Compensating amplitude-dependent tune-shift without driving fourth-order resonances

    NASA Astrophysics Data System (ADS)

    Ögren, J.; Ziemann, V.

    2017-10-01

    If octupoles are used in a ring to correct the amplitude-dependent tune-shift one normally tries to avoid that the octupoles drive additional resonances. Here we consider the optimum placement of octupoles that only affects the amplitude-dependent tune-shift, but does not drive fourth-order resonances. The simplest way turns out to place three equally powered octupoles with 60 ° phase advance between adjacent magnets. Using two such octupole triplets separated by a suitable phase advance cancels all fourth-order resonance driving terms and forms a double triplet we call a six-pack. Using three six-packs at places with different ratios of the beta functions allows to independently control all amplitude-dependent tune-shift terms without exciting additional fourth-order resonances in first order of the octupole excitation.

  3. Characterization of Lithium Ion Battery Materials with Valence Electron Energy-Loss Spectroscopy.

    PubMed

    Castro, Fernando C; Dravid, Vinayak P

    2018-06-01

    Cutting-edge research on materials for lithium ion batteries regularly focuses on nanoscale and atomic-scale phenomena. Electron energy-loss spectroscopy (EELS) is one of the most powerful ways of characterizing composition and aspects of the electronic structure of battery materials, particularly lithium and the transition metal mixed oxides found in the electrodes. However, the characteristic EELS signal from battery materials is challenging to analyze when there is strong overlap of spectral features, poor signal-to-background ratios, or thicker and uneven sample areas. A potential alternative or complementary approach comes from utilizing the valence EELS features (<20 eV loss) of battery materials. For example, the valence EELS features in LiCoO2 maintain higher jump ratios than the Li-K edge, most notably when spectra are collected with minimal acquisition times or from thick sample regions. EELS maps of these valence features give comparable results to the Li-K edge EELS maps of LiCoO2. With some spectral processing, the valence EELS maps more accurately highlight the morphology and distribution of LiCoO2 than the Li-K edge maps, especially in thicker sample regions. This approach is beneficial for cases where sample thickness or beam sensitivity limit EELS analysis, and could be used to minimize electron dosage and sample damage or contamination.

  4. Emotion and language: Valence and arousal affect word recognition

    PubMed Central

    Brysbaert, Marc; Warriner, Amy Beth

    2014-01-01

    Emotion influences most aspects of cognition and behavior, but emotional factors are conspicuously absent from current models of word recognition. The influence of emotion on word recognition has mostly been reported in prior studies on the automatic vigilance for negative stimuli, but the precise nature of this relationship is unclear. Various models of automatic vigilance have claimed that the effect of valence on response times is categorical, an inverted-U, or interactive with arousal. The present study used a sample of 12,658 words, and included many lexical and semantic control factors, to determine the precise nature of the effects of arousal and valence on word recognition. Converging empirical patterns observed in word-level and trial-level data from lexical decision and naming indicate that valence and arousal exert independent monotonic effects: Negative words are recognized more slowly than positive words, and arousing words are recognized more slowly than calming words. Valence explained about 2% of the variance in word recognition latencies, whereas the effect of arousal was smaller. Valence and arousal do not interact, but both interact with word frequency, such that valence and arousal exert larger effects among low-frequency words than among high-frequency words. These results necessitate a new model of affective word processing whereby the degree of negativity monotonically and independently predicts the speed of responding. This research also demonstrates that incorporating emotional factors, especially valence, improves the performance of models of word recognition. PMID:24490848

  5. Composition dependence of electronic, magnetic, transport and morphological properties of mixed valence manganite thin films

    DOE PAGES

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, Michael R.; ...

    2016-07-27

    Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La 1-yPr y) 1-xCaxMnO 3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La 0.4Pr 0.6) 1-xCaxMnO3 films with x = 0.33 and 0.375, across themore » MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties.« less

  6. σ-Hole Bond vs π-Hole Bond: A Comparison Based on Halogen Bond.

    PubMed

    Wang, Hui; Wang, Weizhou; Jin, Wei Jun

    2016-05-11

    The σ-hole and π-hole are the regions with positive surface electrostatic potential on the molecule entity; the former specifically refers to the positive region of a molecular entity along extension of the Y-Ge/P/Se/X covalent σ-bond (Y = electron-rich group; Ge/P/Se/X = Groups IV-VII), while the latter refers to the positive region in the direction perpendicular to the σ-framework of the molecular entity. The directional noncovalent interactions between the σ-hole or π-hole and the negative or electron-rich sites are named σ-hole bond or π-hole bond, respectively. The contributions from electrostatic, charge transfer, and other terms or Coulombic interaction to the σ-hole bond and π-hole bond were reviewed first followed by a brief discussion on the interplay between the σ-hole bond and the π-hole bond as well as application of the two types of noncovalent interactions in the field of anion recognition. It is expected that this review could stimulate further development of the σ-hole bond and π-hole bond in theoretical exploration and practical application in the future.

  7. Single crystal growth and structural evolution across the 1st order valence transition in (Pr1-yYy)1-xCaxCoO3-δ

    NASA Astrophysics Data System (ADS)

    Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; Freeland, J. W.; Chen, Yu-Sheng; Mitchell, J. F.; Phelan, D.

    2017-10-01

    Praseodymium-containing cobalt perovskites, such as (Pr1-yYy)1-xCaxCoO3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, TVT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr0.85Y0.15)0.7Ca0.3CoO3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at TVT. No evidence of charge ordering was revealed by the single crystal diffraction. Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at TVT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO2 grown single crystals.

  8. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  9. Electronic absorption and MCD spectra of M sub 2 (TMB) sub 4 sup 2+ , M = Rh and Ir. A valence-bond description of the upper electronic excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.C.; Miskowski, V.M.; Gray, H.B.

    1990-05-09

    Electronic absorption and magnetic circular dichroism (MCD) spectra of Rh{sub 2}(TMB){sub 4}{sup 2+} and Ir{sub 2}(TMB){sub 4}{sup 2+} are reported along with polarized single-crystal absorption spectra of (Ir{sub 2}(TMB){sub 4})(B(C{sub 6}H{sub 5}){sub 4}){sub 2} {times} CH{sub 3}C{sub 6}H{sub 5} (TMB = 2,5-diisocyano-2,5-dimethylhexane). Interpretation of the spectra is based on a valence-bond model that accommodates highly perturbed dimer transitions as well as monomer-like dimer excitations. In this model, half of the dimer electronic excited states possess ionic character; these states involve metal-to-metal charge transfer (MMCT). The most prominent of the weak features ({approximately} 430 nm) is assigned to the transition tomore » {sup 1}A{sub 1g} (a single-center d{sub z{sup 2}} {yields} p{sub z} excitation). High-energy features ({lambda} < 300 nm) in the spectra of Rh{sub 2}(TMB){sub 4}{sup 2+} and Ir{sub 2}(TMB){sub 4}{sup 2+} are assigned to MMCT arising from d{sub xzyz} {yields} p{sub z} excitations.« less

  10. Site-preference and valency for rare-earth sites in (R-Ce)2Fe14B [R =La,Nd] magnets

    NASA Astrophysics Data System (ADS)

    Alam, Aftab; Khan, Mahmud; McCallum, R. W.; Johnson, D. D.

    2013-03-01

    Rare-earth (R) permanent magnets of R2Fe14B have technological importance due to their high energy products, and they have two symmetry distinct R-sites (Wyckoff 4f and 4g) that affect chemistry and valence. Designing magnetic behavior and stability via alloying is technologically relevant to reduce critical (expensive) R-content while retaining key properties; cerium, an abundant (cheap) R-element, offers this potential. We calculate magnetic properties and Ce site preference in (R1-xCex)Fe14B [R=La,Nd] using density functional theory (DFT) methods. The Fe moments compare well with neutron scattering data - remain weakly affected by Hubbard U, but improved with spin-orbit coupling. In (La,Ce)2Fe14B, Ce alloys for 0 < x < 1 with a preference for smaller R(4f) sites, as observed, a trend we find unaffected by valence. Whereas in (Nd,Ce)2Fe14B, Ce is predicted to have limited alloying (x < 0.3) with a preference for larger R(4g) sites, resulting in weak partial ordering and segregation. Curie temperatures versus x were predicted for a typical sample processing and verified experimentally. We shall also present some initial results on the critical mixed valency of Ce in related compounds. Work at Ames Laboratory was supported by the U.S. Department of Energy, ARPA-E under the REACT program (0472-1526)

  11. Theory of Valence Transition

    NASA Astrophysics Data System (ADS)

    Misawa, S.; Takano, F.

    1981-01-01

    The valence transition phenomena occurring in rare-earth compounds are studied by using the periodic Anderson model with the electron-phonon coupling. This electron-phonon interaction G is treated in the Hartree-Fock approximation. The Coulomb repulsion U between f-electrons on the same site is taken to be ∞, and the decoupling method of Roth is used for the higher order Green function considering the mixing interaction to be small. We put the condition that the total number of electrons is a constant, and calculate the numbers of f- and d-electrons as functions of the original energy of f-electron by using the Green functions. The first order transition is shown to occur if G ≳ (1/2)W, where W is the width of the original d-band. The energy of f-electron at which the insulator and the metallic phase have the same ground state energy is calculated asɛc ≃ (1/2)(G-(1/2)W) + (2V^2/W) log |(G-W/2)/(G+W/2)|- (V^2/8W) log | (G-W/2)(G-(3/2)W) |. The magnetic susceptibilities of both phases are also calculated, but the result is not good, showing the decoupling method used here is not appropriate for the calculation of magnetic properties.

  12. Valenced cues and contexts have different effects on event-based prospective memory.

    PubMed

    Graf, Peter; Yu, Martin

    2015-01-01

    This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants' task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement.

  13. Valenced Cues and Contexts Have Different Effects on Event-Based Prospective Memory

    PubMed Central

    Graf, Peter; Yu, Martin

    2015-01-01

    This study examined the separate influence and joint influences on event-based prospective memory task performance due to the valence of cues and the valence of contexts. We manipulated the valence of cues and contexts with pictures from the International Affective Picture System. The participants, undergraduate students, showed higher performance when neutral compared to valenced pictures were used for cueing prospective memory. In addition, neutral pictures were more effective as cues when they occurred in a valenced context than in the context of neutral pictures, but the effectiveness of valenced cues did not vary across contexts that differed in valence. The finding of an interaction between cue and context valence indicates that their respective influence on event-based prospective memory task performance cannot be understood in isolation from each other. Our findings are not consistent with by the prevailing view which holds that the scope of attention is broadened and narrowed, respectively, by positively and negatively valenced stimuli. Instead, our findings are more supportive of the recent proposal that the scope of attention is determined by the motivational intensity associated with valenced stimuli. Consistent with this proposal, we speculate that the motivational intensity associated with different retrieval cues determines the scope of attention, that contexts with different valence values determine participants’ task engagement, and that prospective memory task performance is determined jointly by attention scope and task engagement. PMID:25647484

  14. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe

    NASA Astrophysics Data System (ADS)

    Martin, Jan M. L.; Sundermann, Andreas

    2001-02-01

    We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart-Dresden basis set-relativistic effective core potential combination supplemented by (2f1g) functions with exponents given in the Appendix to the present paper.

  15. Airy pulse shaping using time-dependent power-law potentials

    NASA Astrophysics Data System (ADS)

    Han, Tianwen; Chen, Hao; Qin, Chengzhi; Li, Wenwan; Wang, Bing; Lu, Peixiang

    2018-06-01

    We investigate the temporal and spectral evolutions of finite-energy Airy pulses in the presence of power-law optical potentials. The potentials are generated by the time-dependent pumped light, which propagates together with the Airy pulses in a highly nonlinear optical fiber. We show that the intrinsic acceleration of Airy pulses can be modified by an external force that stems from a linear potential, and hence unidirectional frequency shift can be realized. When a triangle potential is employed, the pulse will exhibit self-splitting both in temporal and spectral domains. Additionally, as a parabolic potential is utilized, both the temporal waveform and frequency spectrum of the Airy pulse will exchange alternately between the Airy and Gaussian profiles. By using higher-order power-law potentials, we also realize both revival and antirevival effects for the Airy pulses. The study may find wide applications in pulse reshaping and spectral-temporal imaging for both optical communication and signal processing.

  16. Water: two liquids divided by a common hydrogen bond.

    PubMed

    Soper, Alan K

    2011-12-08

    The structure of water is the subject of a long and ongoing controversy. Unlike simpler liquids, where atomic interactions are dominated by strong repulsive forces at short distances and weaker attractive (van der Waals) forces at longer distances, giving rise to local atomic coordination numbers of order 12, water has pronounced and directional hydrogen bonds which cause the dense liquid close-packed structure to open out into a disordered and dynamic network, with coordination number 4-5. Here I show that water structure can be accurately represented as a mixture of two identical, interpenetrating, molecular species separated by common hydrogen bonds. Molecules of one type can form hydrogen bonds with molecules of the other type but cannot form hydrogen bonds with molecules of the same type. These hydrogen bonds are strong along the bond but weak with respect to changes in the angle between neighboring bonds. The observed pressure and temperature dependence of water structure and thermodynamic properties follow naturally from this choice of water model, and it also gives a simple explanation of the enduring claims based on spectroscopic evidence that water is a mixture of two components. © 2011 American Chemical Society

  17. Hydrogen density of states and defects densities in a-Si:H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deane, S.C.; Powell, M.J.; Robertson, J.

    1996-12-31

    The properties of hydrogenated amorphous silicon (a-Si:H) and its devices depend fundamentally on the density of states (DOS) in the gap due to dangling bonds. It is generally believed that the density of dangling bonds is controlled by a chemical equilibrium with the weak Si-Si bonds which form the localized valence band tail states. Further details are given of a unified model of the hydrogen density of states and defect pool of a-Si:H. The model is compared to other defect models and extended to describe a-Si alloys and the creation of valence band tail states during growth.

  18. Decoding emotional valence from electroencephalographic rhythmic activity.

    PubMed

    Celikkanat, Hande; Moriya, Hiroki; Ogawa, Takeshi; Kauppi, Jukka-Pekka; Kawanabe, Motoaki; Hyvarinen, Aapo

    2017-07-01

    We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parietal sources being especially significant, and (2) even though the locations of the involved neuronal sources are consistent, subjects can display highly varying degrees of valence-related EEG activity in the sources.

  19. Predicting Trigger Bonds in Explosive Materials through Wiberg Bond Index Analysis.

    PubMed

    Harper, Lenora K; Shoaf, Ashley L; Bayse, Craig A

    2015-12-21

    Understanding the explosive decomposition pathways of high-energy-density materials (HEDMs) is important for developing compounds with improved properties. Rapid reaction rates make the detonation mechanisms of HEDMs difficult to understand, so computational tools are used to predict trigger bonds-weak bonds that break, leading to detonation. Wiberg bond indices (WBIs) have been used to compare bond densities in HEDMs to reference molecules to provide a relative scale for the bond strength to predict the activated bonds most likely to break to trigger an explosion. This analysis confirms that X-NO2 (X=N,C,O) bonds are trigger linkages in common HEDMs such as TNT, RDX and PETN, consistent with previous experimental and theoretical studies. Calculations on a small test set of substituted tetrazoles show that the assignment of the trigger bond depends upon the functionality of the material and that the relative weakening of the bond correlates with experimental impact sensitivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis, characterization, and photophysical properties of a series of supramolecular mixed-valence compounds.

    PubMed

    Pfennig, B W; Fritchman, V A; Hayman, K A

    2001-01-15

    The synthesis and characterization of 10 cyano-bridged trinuclear mixed-valence compounds of the form [(NH3)5M-NC-FeII(CN)4-CN-M'(NH3)5]n+ (M = RuIII, OsIII, CrIII, or PtIV; n = 2, 3, or 4) is reported. The electronic spectra of these supramolecular compounds exhibit a single intervalent (IT) absorption band for each nondegenerate Fe-->M/M' transition. The redox potential of the Fe(II) center is shifted more positive with the addition of each coordinated metal complex, while the redox potentials of the pendant metals vary only slightly from their dinuclear counterparts. As a result, the Fe-->M IT bands are blue-shifted from those in the corresponding dinuclear mixed-valence compounds. The energies of these IT bands show a linear correlation with the ground-state thermodynamic driving force, as predicted by classical electron transfer theory. Estimates of the degree of electronic coupling (Hab) between the metal centers using a theoretical analysis of the IT band shapes indicate that most of these values are similar to those for the corresponding dinuclear species. Notable exceptions occur for the Fe-->M IT transitions in Os-Fe-M (M = Cr or Pt). The enhanced electronic coupling in these two species can be explained as a result of excited state mixing between electron transfer and/or ligand-based charge transfer states and an intensity-borrowing mechanism. Additionally, the possibility of electronic coupling between the remote metal centers in the Ru-Fe-Ru species is discussed in order to explain the observation of two closely spaced redox waves for the degenerate Ru(III) acceptors.

  1. Efficient Unsteady Flow Visualization with High-Order Access Dependencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiencymore » of pathline computation.« less

  2. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  3. Space-valence priming with subliminal and supraliminal words.

    PubMed

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime "up" before the target "happy") than with an incongruent prime (e.g., the prime "up" before the target "sad"). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments.

  4. Space-Valence Priming with Subliminal and Supraliminal Words

    PubMed Central

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime “up” before the target “happy”) than with an incongruent prime (e.g., the prime “up” before the target “sad”). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments. PMID:23439863

  5. Chemical bonding in TiSb(2) and VSb(2): a quantum chemical and experimental study.

    PubMed

    Armbrüster, Marc; Schnelle, Walter; Schwarz, Ulrich; Grin, Yuri

    2007-08-06

    The chemical bonding in the isostructural intermetallic compounds TiSb2 and VSb2, crystallizing in the CuAl2 type, was investigated by means of quantum chemical calculations, particularly the electron localization function (ELF), as well as by Raman spectroscopy, Hall effect and conductivity measurements on oriented single crystals, and high-pressure X-ray powder diffraction. The homogeneity ranges of the compounds were determined by powder X-ray diffraction, WDXS, and DSC measurements. TiSb2 exhibits no significant homogeneity range, while VSb2 shows a small homogeneity range of approximately 0.3 at. %. According to the ELF calculations, the Sb atoms form dumbbells via a two-center two-electron bond, while the T atoms (T = Ti, V) build up chains along the crystallographic c-axis. Both building units are connected by covalent T-Sb-T three-center bonds, thus forming a three-dimensional network. The strength of the bonds involving Sb was determined by fitting a force constant model to the vibrational mode frequencies observed by polarized Raman measurements on oriented single crystals. The resulting bond order of the Sb2 dumbbells is 1, while the strength of the three-center bonds resembles a bond order of 1.5. The weak pressure dependence of the c/a ratio confirms the slightly different bonding picture in TiSb2 compared to that in CuAl2. Electrical transport measurements show the presence of free charge carriers, as well as a metal-like temperature dependence of the electrical resistivity.

  6. ROTAS: a rotamer-dependent, atomic statistical potential for assessment and prediction of protein structures.

    PubMed

    Park, Jungkap; Saitou, Kazuhiro

    2014-09-18

    Multibody potentials accounting for cooperative effects of molecular interactions have shown better accuracy than typical pairwise potentials. The main challenge in the development of such potentials is to find relevant structural features that characterize the tightly folded proteins. Also, the side-chains of residues adopt several specific, staggered conformations, known as rotamers within protein structures. Different molecular conformations result in different dipole moments and induce charge reorientations. However, until now modeling of the rotameric state of residues had not been incorporated into the development of multibody potentials for modeling non-bonded interactions in protein structures. In this study, we develop a new multibody statistical potential which can account for the influence of rotameric states on the specificity of atomic interactions. In this potential, named "rotamer-dependent atomic statistical potential" (ROTAS), the interaction between two atoms is specified by not only the distance and relative orientation but also by two state parameters concerning the rotameric state of the residues to which the interacting atoms belong. It was clearly found that the rotameric state is correlated to the specificity of atomic interactions. Such rotamer-dependencies are not limited to specific type or certain range of interactions. The performance of ROTAS was tested using 13 sets of decoys and was compared to those of existing atomic-level statistical potentials which incorporate orientation-dependent energy terms. The results show that ROTAS performs better than other competing potentials not only in native structure recognition, but also in best model selection and correlation coefficients between energy and model quality. A new multibody statistical potential, ROTAS accounting for the influence of rotameric states on the specificity of atomic interactions was developed and tested on decoy sets. The results show that ROTAS has improved ability to

  7. THE VALENCE AND METHYLATION STATE OF ARSENIC DETERMINES ITS POTENCY IN INTERACTION WITH THE MITOTIC APPARATUS

    EPA Science Inventory

    We have previously shown that the cytotoxic and genotoxic potency of arsenicals is dependent upon their valence and methylation state. Trivalent methylated arsenicals are much more potent DNA damaging agents than are their inorganic and pentavalent counterparts. Furthermore, thei...

  8. Developmental reversals in false memory: Effects of emotional valence and arousal.

    PubMed

    Brainerd, C J; Holliday, R E; Reyna, V F; Yang, Y; Toglia, M P

    2010-10-01

    Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can be manipulated factorially. False memories increased with age for unpresented semantic associates of word lists, and net accuracy (the ratio of true memory to total memory) decreased with age. These surprising developmental trends were more pronounced for negatively valenced materials than for positively valenced materials, they were more pronounced for high-arousal materials than for low-arousal materials, and developmental increases in the effects of arousal were small in comparison with developmental increases in the effects of valence. These findings have ramifications for legal applications of false memory research; materials that share the emotional hallmark of crimes (events that are negatively valenced and arousing) produced the largest age increases in false memory and the largest age declines in net accuracy. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    PubMed Central

    2017-01-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved. PMID:28595411

  10. Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials

    NASA Astrophysics Data System (ADS)

    Jäger, Benjamin; Bich, Eckard

    2017-06-01

    A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.

  11. Preparation, structure and analysis of the bonding in the molecular entity (OSO)2Li{[AlF(ORF)3]Li[Al(ORF)4]} (RF = C(CF3)3).

    PubMed

    Cameron, T Stanley; Nikiforov, Grigory B; Passmore, Jack; Rautiainen, J Mikko

    2010-03-14

    The (SO(2))(2)Li[AlF(OR(F))(3)]Li[Al(OR(F))(4)] (1) (R(F) = C(CF(3))(3)) molecular entity was obtained by thermal decomposition of Li[Al(OR(F))(4)] followed by crystallization from liquid SO(2). 1, containing two SO(2) molecules eta(1)-O coordinated to Li(+), was structurally characterized by single crystal X-ray diffraction and NMR spectroscopy in SO(2)(l). Bonding analyses of 1 (bond valency units, AIM analysis, atomic charges, bond orders) show that 1 can be either considered as a Li(OSO)(2)(+) complex stabilized by the large WCA [AlF(OR(F))(3)](-)Li(+)[Al(OR(F))(4)](-) or as consisting of 2 SO(2), 2 Li(+), [AlF(OR(F))(3)](-), and [Al(OR(F))(4)](-) joined by electrostatic interactions into the discrete molecular entity 1. The bonding between Li(+) and SO(2) molecules is shown to be almost completely attributable to monopole-induced dipole electrostatic interactions. Theoretical gas phase lithium ion affinity of SO(2) is determined to be stronger than its silver(I) ion affinity owing largely to the shorter lithium SO(2) contacts in the calculated structures that increase the electrostatic interaction.

  12. The role of disulfide bond in hyperthermophilic endocellulase.

    PubMed

    Kim, Han-Woo; Ishikawa, Kazuhiko

    2013-07-01

    The hyperthermophilic endocellulase, EGPh (glycosyl hydrolase family 5) from Pyrococcus horikoshii possesses 4 cysteine residues forming 2 disulfide bonds, as identified by structural analysis. One of the disulfide bonds is located at the proximal region of the active site in EGPh, which exhibits a distinct pattern from that of the thermophilic endocellulase EGAc (glycosyl hydrolase family 5) of Acidothermus cellulolyticus despite the structural similarity between the two endocellulases. The structural similarity between EGPh and EGAc suggests that EGPh possesses a structure suitable for changing the position of the disulfide bond corresponding to that in EGAc. Introduction of this alternative disulfide bond in EGPh, while removing the original disulfide bond, did not result in a loss of enzymatic activity but the EGPh was no longer hyperthermostable. These results suggest that the contribution of disulfide bond to hyperthermostability at temperature higher than 100 °C is restrictive, and that its impact is dependent on the specific structural environment of the hyperthermophilic proteins. The data suggest that the structural position and environment of the disulfide bond has a greater effect on high-temperature thermostability of the enzyme than on the potential energy of the dihedral angle that contributes to disulfide bond cleavage.

  13. The Time Course of the Influence of Valence and Arousal on the Implicit Processing of Affective Pictures

    PubMed Central

    Feng, Chunliang; Wang, Lili; Liu, Chao; Zhu, Xiangru; Dai, Ruina; Mai, Xiaoqin; Luo, Yue-Jia

    2012-01-01

    In the current study, we investigated the time course of the implicit processing of affective pictures with an orthogonal design of valence (negative vs. positive) by arousal (low vs. high). Previous studies with explicit tasks suggested that valence mainly modulates early event-related potential (ERP) components, whereas arousal mainly modulates late components. However, in this study with an implicit task, we observed significant interactions between valence and arousal at both early and late stages over both parietal and frontal sites, which were reflected by three different ERP components: P2a (100–200 ms), N2 (200–300 ms), and P3 (300–400 ms). Furthermore, there was also a significant main effect of arousal on P2b (200–300 ms) over parieto-occipital sites. Our results suggest that valence and arousal effects on implicit affective processing are more complicated than previous ERP studies with explicit tasks have revealed. PMID:22295062

  14. Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography

    NASA Astrophysics Data System (ADS)

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang

    2018-03-01

    Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H2+ , the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.

  15. Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography.

    PubMed

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang

    2018-03-30

    Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H_{2}^{+}, the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.

  16. High-nuclearity mixed-valence clusters and mixed-valence chains: general approach to the calculation of the energy levels and bulk magnetic properties.

    PubMed

    Clemente-Juan, J M; Borrás-Almenar, J J; Coronado, E; Palii, A V; Tsukerblat, B S

    2009-05-18

    A general approach to the problem of electron delocalization in the high-nuclearity mixed-valence (MV) clusters containing an arbitrary number of localized spins and itinerant electrons is developed. Along with the double exchange, we consider the isotropic magnetic exchange between the localized electrons as well as the Coulomb intercenter repulsion. As distinguished from the previous approaches dealing with the MV systems in which itinerant electrons are delocalized over all constituent metal sites, here, we consider a more common case of systems exhibiting partial delocalization and containing several delocalized domains. Taking full advantage of the powerful angular momentum technique, we were able to derive closed form analytical expressions for the matrix elements of the full Hamiltonian. These expressions provide an efficient tool for treating complex mixed-valence systems, because they contain only products of 6j-symbols (that appear while treating the delocalized parts) and 9j-symbols (exchange interactions in localized parts) and do not contain high-order recoupling coefficients and 3j-symbols that essentially constrained all previous theories of mixed valency. The approach developed here is accompanied by an efficient computational procedure that allows us to calculate the bulk thermodynamic properties (magnetic susceptibility, magnetization, and magnetic specific heat) of high-nuclearity MV clusters. Finally, this approach has been used to discuss the magnetic properties of the octanuclear MV cluster [Fe(8)(mu(4)-O)(4)(4-Cl-pz)(12)Cl(4)](-) and the diphthalocyanine chains [YPc(2)].CH(2)Cl(2) and [ScPc(2)].CH(2)Cl(2) composed of MV dimers interacting through the magnetic exchange and Coulomb repulsion.

  17. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table.

    PubMed

    Kaupp, Martin

    2007-01-15

    The role of radial nodes, or of their absence, in valence orbitals for chemical bonding and periodic trends is discussed from a unified viewpoint. In particular, we emphasize the special role of the absence of a radial node whenever a shell with angular quantum number l is occupied for the first time (lack of "primogenic repulsion"), as with the 1s, 2p, 3d, and 4f shells. Although the consequences of the very compact 2p shell (e.g. good isovalent hybridization, multiple bonding, high electronegativity, lone-pair repulsion, octet rule) are relatively well known, it seems that some of the aspects of the very compact 3d shell in transition-metal chemistry are less well appreciated, e.g., the often weakened and stretched bonds at equilibrium structure, the frequently colored complexes, and the importance of nondynamical electron-correlation effects in bonding. Copyright (c) 2006 Wiley Periodicals, Inc.

  18. Transition energy and potential energy curves for ionized inner-shell states of CO, O2 and N 2 calculated by several inner-shell multiconfigurational approaches.

    PubMed

    Moura, Carlos E V de; Oliveira, Ricardo R; Rocha, Alexandre B

    2013-05-01

    Potential energy curves and inner-shell ionization energies of carbon monoxide, oxygen and nitrogen molecules were calculated using several forms of the inner-shell multiconfigurational self-consistent field (IS-MCSCF) method-a recently proposed protocol to obtain specifically converged inner-shell states at this level. The particular forms of the IS-MCSCF method designated IS-GVB-PP, IS-FVBL and IS-CASSCF stand for perfect pairing generalized valence bond, full valence bond-like MCSCF and complete active space self consistent field, respectively. A comparison of these different versions of the IS-MCSCF method was carried out for the first time. The results indicate that inner-shell states are described accurately even for the simplest version of the method (IS-GVB-PP). Dynamic correlation was recovered by multireference configuration interaction or multireference perturbation theory. For molecules not having equivalent atoms, all methods led to comparable and accurate transition energies. For molecules with equivalent atoms, the most accurate results were obtained by multireference perturbation theory. Scalar relativistic effects were accounted for using the Douglas-Kroll-Hess Hamiltonian.

  19. Processing negative valence of word pairs that include a positive word.

    PubMed

    Itkes, Oksana; Mashal, Nira

    2016-09-01

    Previous research has suggested that cognitive performance is interrupted by negative relative to neutral or positive stimuli. We examined whether negative valence affects performance at the word or phrase level. Participants performed a semantic decision task on word pairs that included either a negative or a positive target word. In Experiment 1, the valence of the target word was congruent with the overall valence conveyed by the word pair (e.g., fat kid). As expected, response times were slower in the negative condition relative to the positive condition. Experiment 2 included target words that were incongruent with the overall valence of the word pair (e.g., fat salary). Response times were longer for word pairs whose overall valence was negative relative to positive, even though these word pairs included a positive word. Our findings support the Cognitive Primacy Hypothesis, according to which emotional valence is extracted after conceptual processing is complete.

  20. On the effects of basis set truncation and electron correlation in conformers of 2-hydroxy-acetamide

    NASA Astrophysics Data System (ADS)

    Szarecka, A.; Day, G.; Grout, P. J.; Wilson, S.

    Ab initio quantum chemical calculations have been used to study the differences in energy between two gas phase conformers of the 2-hydroxy-acetamide molecule that possess intramolecular hydrogen bonding. In particular, rotation around the central C-C bond has been considered as a factor determining the structure of the hydrogen bond and stabilization of the conformer. Energy calculations include full geometiy optimization using both the restricted matrix Hartree-Fock model and second-order many-body perturbation theory with a number of commonly used basis sets. The basis sets employed ranged from the minimal STO-3G set to [`]split-valence' sets up to 6-31 G. The effects of polarization functions were also studied. The results display a strong basis set dependence.

  1. Dopamine and opioid systems interact within the nucleus accumbens to maintain monogamous pair bonds

    PubMed Central

    Resendez, Shanna L; Keyes, Piper C; Day, Jeremy J; Hambro, Caely; Austin, Curtis J; Maina, Francis K; Eidson, Lori N; Porter-Stransky, Kirsten A; Nevárez, Natalie; McLean, J William; Kuhnmuench, Morgan A; Murphy, Anne Z; Mathews, Tiffany A; Aragona, Brandon J

    2016-01-01

    Prairie vole breeder pairs form monogamous pair bonds, which are maintained through the expression of selective aggression toward novel conspecifics. Here, we utilize behavioral and anatomical techniques to extend the current understanding of neural mechanisms that mediate pair bond maintenance. For both sexes, we show that pair bonding up-regulates mRNA expression for genes encoding D1-like dopamine (DA) receptors and dynorphin as well as enhances stimulated DA release within the nucleus accumbens (NAc). We next show that D1-like receptor regulation of selective aggression is mediated through downstream activation of kappa-opioid receptors (KORs) and that activation of these receptors mediates social avoidance. Finally, we also identified sex-specific alterations in KOR binding density within the NAc shell of paired males and demonstrate that this alteration contributes to the neuroprotective effect of pair bonding against drug reward. Together, these findings suggest motivational and valence processing systems interact to mediate the maintenance of social bonds. DOI: http://dx.doi.org/10.7554/eLife.15325.001 PMID:27371827

  2. On Characterization of Barium Rare-Earth Antimonates: Ordered Perovskites Suitable as Substrates for Superconducting Films

    NASA Astrophysics Data System (ADS)

    Alonso, J. A.; Cascales, C.; García Casado, P.; Rasines, I.

    1997-02-01

    The crystal structure of the ordered perovskites Ba2(RSb)O6(R=Y, Ho) is refined from neutron powder diffraction data in the space groupFmoverline3m(No. 225),Z=4, with Ba at 8(c),Rat 4(b), Sb at 4(a), oxygen at 24(e), oxygen positional parameterx=0.2636(2) forR=Y and Ho, and unit cell dimensions ofa/Å=8.4240(3) and 8.4170(2) forR=Y and Ho, respectively. Bond-valence analysis explains how the highly covalent Sb-O bonds determine the overall structure of these perovskites in whichR-O and Ba-O bonds are under compressive and tensile stresses, respectively. The magnetic susceptibility of Ba2(HoSb)O6has been measured in the temperature range 2-350 K. From ana prioriestimation of the crystal-field parameters corresponding to the point site symmetry of the rare-earth,Oh, and using the wave functions associated with the energy levels obtained, the paramagnetic susceptibility and its evolution vs temperature is simulated according to the van Vleck formalism. The observed deviation from the Curie-Weiss behavior at low temperature, very well reproduced, reflects the splitting of the ground state of this cation under the influence of the crystal field.

  3. Vivid structural colors with low angle dependence from long-range ordered photonic crystal films.

    PubMed

    Su, Xin; Xia, Hongbo; Zhang, Shufen; Tang, Bingtao; Wu, Suli

    2017-03-02

    Structural colored materials have attracted increasing attention due to their vivid color effects and non-photobleaching characteristics. However, the angle dependence of these structural colors severely restricts their practical applications, for example, in display and sensing devices. Here, a new strategy for obtaining low angle dependent structural colors is demonstrated by fabricating long-range ordered photonic crystal films. By using spheres with high refractive indices as building blocks, the angle dependence of the obtained colors has been strongly suppressed. Green, golden yellow and red structural colored films with low angle dependence were obtained by using 145 nm, 165 nm and 187 nm Cu 2 O spheres as building blocks, respectively. SEM images confirmed the long-range highly ordered arrays of the Cu 2 O photonic crystal films. Reflectance spectra and digital photographs clearly demonstrate the low angle dependence of these structural colors, which is in sharp comparison with the case of polystyrene (PS) and SiO 2 photonic crystal films. Furthermore, these structural colors are vivid with high color saturation, not only under black background, but also under white background and natural light without adding any light-absorbing agents. These low angle dependent structural colors endow Cu 2 O photonic crystal films with great potential in practical applications. Our findings may broaden the strategies for the design and fabrication of angle independent structural colored materials.

  4. Valence-dependent influence of serotonin depletion on model-based choice strategy

    PubMed Central

    Worbe, Y; Palminteri, S; Savulich, G; Daw, N D; Fernandez-Egea, E; Robbins, T W; Voon, V

    2016-01-01

    Human decision-making arises from both reflective and reflexive mechanisms, which underpin goal-directed and habitual behavioural control. Computationally, these two systems of behavioural control have been described by different learning algorithms, model-based and model-free learning, respectively. Here, we investigated the effect of diminished serotonin (5-hydroxytryptamine) neurotransmission using dietary tryptophan depletion (TD) in healthy volunteers on the performance of a two-stage decision-making task, which allows discrimination between model-free and model-based behavioural strategies. A novel version of the task was used, which not only examined choice balance for monetary reward but also for punishment (monetary loss). TD impaired goal-directed (model-based) behaviour in the reward condition, but promoted it under punishment. This effect on appetitive and aversive goal-directed behaviour is likely mediated by alteration of the average reward representation produced by TD, which is consistent with previous studies. Overall, the major implication of this study is that serotonin differentially affects goal-directed learning as a function of affective valence. These findings are relevant for a further understanding of psychiatric disorders associated with breakdown of goal-directed behavioural control such as obsessive-compulsive disorders or addictions. PMID:25869808

  5. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    NASA Astrophysics Data System (ADS)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features

  6. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids.

    PubMed

    Van Hoozen, Brian L; Petersen, Poul B

    2018-04-07

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm -1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pK A values. Dimers with large pK A differences are found to have features that can extend to frequencies below 1000 cm -1 . The relationships between mean OH/NH frequency, aqueous pK A , and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm -1 . Understanding how the vibrational

  7. Real-time observation of valence electron motion.

    PubMed

    Goulielmakis, Eleftherios; Loh, Zhi-Heng; Wirth, Adrian; Santra, Robin; Rohringer, Nina; Yakovlev, Vladislav S; Zherebtsov, Sergey; Pfeifer, Thomas; Azzeer, Abdallah M; Kling, Matthias F; Leone, Stephen R; Krausz, Ferenc

    2010-08-05

    The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.

  8. Coevolution of dependency distance, hierarchical structure and word order. Comment on "Dependency distance: a new perspective on syntactic patterns in natural languages" by Haitao Liu et al.

    NASA Astrophysics Data System (ADS)

    Jing, Yingqi

    2017-07-01

    Exploring the relationships between structural rules and their linearization constraints have been a central issue in formal syntax and linguistic typology [1]. Liu et al. give a historical overview of the investigation of dependency distance minimization (DDM) in various fields, and specify its potential connections with the graphic patterns of syntactic structure and the linear ordering of words and constituents in real sentences [2]. This comment focuses on discussing the relations between dependency distance (DD), hierarchical structure and word order, and advocates further study on the coevolution of these traits in language histories.

  9. Sex, Age, and Emotional Valence: Revealing Possible Biases in the 'Reading the Mind in the Eyes' Task.

    PubMed

    Kynast, Jana; Schroeter, Matthias L

    2018-01-01

    The 'Reading the Mind in the Eyes' test (RMET) assesses a specific socio-cognitive ability, i.e., the ability to identify mental states from gaze. The development of this ability in a lifespan perspective is of special interest. Whereas former investigations were limited mainly to childhood and adolescence, the focus has been shifted towards aging, and psychiatric and neurodegenerative diseases recently. Although the RMET is frequently applied in developmental psychology and clinical settings, stimulus characteristics have never been investigated with respect to potential effects on test performance. Here, we analyzed the RMET stimulus set with a special focus on interrelations between sex, age and emotional valence. Forty-three persons rated age and emotional valence of the RMET picture set. Differences in emotional valence and age ratings between male and female items were analyzed. The linear relation between age and emotional valence was tested over all items, and separately for male and female items. Male items were rated older and more negative than female stimuli. Regarding male RMET items, age predicted emotional valence: older age was associated with negative emotions. Contrary, age and valence were not linearly related in female pictures. All ratings were independent of rater characteristics. Our results demonstrate a strong confound between sex, age, and emotional valence in the RMET. Male items presented a greater variability in age ratings compared to female items. Age and emotional valence were negatively associated among male items, but no significant association was found among female stimuli. As personal attributes impact social information processing, our results may add a new perspective on the interpretation of previous findings on interindividual differences in RMET accuracy, particularly in the field of developmental psychology, and age-associated neuropsychiatric diseases. A revision of the RMET might be afforded to overcome confounds

  10. Determinants of Interest Rates on Corporate Bonds of Mining Enterprises

    NASA Astrophysics Data System (ADS)

    Ranosz, Robert

    2017-09-01

    This article is devoted to the determinants of interest rates on corporate bonds of mining enterprises. The study includes a comparison between the cost of foreign capital as resulting from the issue of debt instruments in different sectors of the economy in relation to the mining industry. The article also depicts the correlation between the rating scores published by the three largest rating agencies: S&P, Moody's, and Fitch. The test was based on simple statistical methods. The analysis performed indicated that there is a dependency between the factors listed and the amount of interest rates on corporate bonds of global mining enterprises. Most significant factors include the rating level and the period for which the given series of bonds was issued. Additionally, it is not without significance whether the given bond has additional options. Pursuant to the obtained results, is should be recognized that in order to reduce the interest rate on bonds, mining enterprises should pay particular attention to the rating and attempt to include additional options in issued bonds. Such additional options may comprise, for example, an ability to exchange bonds to shares or raw materials.

  11. Effects of type of value appealed to and valence of appeal on children's dental health behavior.

    PubMed

    Knapp, L G

    1991-12-01

    Examined the effects of the type of value appealed to and valence of appeal on children's intentions to engage in toothbrushing, their self-report of toothbrushing frequency, and their plaque level. 98 fifth-grade students served as the participants. Slide shows appealed to either health- or socially oriented values and also differed with respect to valence (positive vs. negative). A control group received a message that provided basic dental health information. Group comparisons revealed that children who received the negative social appeal showed a significant improvement in plaque level. Only the negative social appeal group differed significantly from the control group on the dependent measures.

  12. Explaining the effect of event valence on unrealistic optimism.

    PubMed

    Gold, Ron S; Brown, Mark G

    2009-05-01

    People typically exhibit 'unrealistic optimism' (UO): they believe they have a lower chance of experiencing negative events and a higher chance of experiencing positive events than does the average person. UO has been found to be greater for negative than positive events. This 'valence effect' has been explained in terms of motivational processes. An alternative explanation is provided by the 'numerosity model', which views the valence effect simply as a by-product of a tendency for likelihood estimates pertaining to the average member of a group to increase with the size of the group. Predictions made by the numerosity model were tested in two studies. In each, UO for a single event was assessed. In Study 1 (n = 115 students), valence was manipulated by framing the event either negatively or positively, and participants estimated their own likelihood and that of the average student at their university. In Study 2 (n = 139 students), valence was again manipulated and participants again estimated their own likelihood; additionally, group size was manipulated by having participants estimate the likelihood of the average student in a small, medium-sized, or large group. In each study, the valence effect was found, but was due to an effect on estimates of own likelihood, not the average person's likelihood. In Study 2, valence did not interact with group size. The findings contradict the numerosity model, but are in accord with the motivational explanation. Implications for health education are discussed.

  13. Valence tautomerism in synthetic models of cytochrome P450

    PubMed Central

    Das, Pradip Kumar; Samanta, Subhra; McQuarters, Ashley B.; Lehnert, Nicolai

    2016-01-01

    CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs. PMID:27302948

  14. Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel.

    PubMed

    Nozaki, Tomohiro; Ozawa, Shin-Ichiro; Harada, Hitomi; Kimura, Tomomi; Osawa, Masanori; Shimada, Ichio

    2016-11-17

    Voltage-dependent potassium (Kv) channels allow for the selective permeability of potassium ions in a membrane potential dependent manner, playing crucial roles in neurotransmission and muscle contraction. Kv channel is a tetramer, in which each subunit possesses a voltage-sensing domain (VSD) and a pore domain (PD). Although several lines of evidence indicated that membrane depolarization is sensed as the movement of helix S4 of the VSD, the detailed voltage-sensing mechanism remained elusive, due to the difficulty of structural analyses at resting potential. In this study, we conducted a comprehensive disulfide locking analysis of the VSD using 36 double Cys mutants, in order to identify the proximal residue pairs of the VSD in the presence or absence of a membrane potential. An intramolecular SS-bond was formed between 6 Cys pairs under both polarized and depolarized environment, and one pair only under depolarized environment. The multiple conformations captured by the SS-bond can be divided by two states, up and down, where S4 lies on the extracellular and intracellular sides of the membrane, respectively, with axial rotation of 180°. The transition between these two states is caused by the S4 translocation of 12 Å, enabling allosteric regulation of the gating at the PD.

  15. Exponential propagators for the Schrödinger equation with a time-dependent potential.

    PubMed

    Bader, Philipp; Blanes, Sergio; Kopylov, Nikita

    2018-06-28

    We consider the numerical integration of the Schrödinger equation with a time-dependent Hamiltonian given as the sum of the kinetic energy and a time-dependent potential. Commutator-free (CF) propagators are exponential propagators that have shown to be highly efficient for general time-dependent Hamiltonians. We propose new CF propagators that are tailored for Hamiltonians of the said structure, showing a considerably improved performance. We obtain new fourth- and sixth-order CF propagators as well as a novel sixth-order propagator that incorporates a double commutator that only depends on coordinates, so this term can be considered as cost-free. The algorithms require the computation of the action of exponentials on a vector similar to the well-known exponential midpoint propagator, and this is carried out using the Lanczos method. We illustrate the performance of the new methods on several numerical examples.

  16. Site-preference and valency for rare-earth sites in (R-Ce)2Fe14B magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Aftab; Khan, Mahmud; McCallum, R. W.

    2013-01-28

    Rare-earth (R) permanent magnets of R2Fe14B have technological importance due to their high energy products, and they have two R-sites (Wyckoff 4f and 4g, with four-fold multiplicity) that affect chemistry and valence. Designing magnetic behavior and stability via alloying is technologically relevant to reduce critical (expensive) R-content while retaining key properties; cerium, an abundant (cheap) R-element, offers this potential. We calculate magnetic properties and Ce site preference in (R1-xCex)2Fe14B [R=La,Nd] using density functional theory (DFT) methods—including a DFT+U scheme to treat localized 4f-electrons. Fe moments compare well with neutron data—almost unaffected by Hubbard U, and weakly affected by spin-orbit coupling.more » In La2Fe14B, Ce alloys for 0 ≤ x ≤ 1 and prefers smaller R(4f) sites, as observed, a trend we find unaffected by valence. Whereas, in Nd2Fe14B, Ce is predicted to have limited alloying (x ≤ 0.3) with a preference for larger R(4g) sites, resulting in weak partial ordering and segregation. The Curie temperatures versus x for (Nd,Ce) were predicted for a typical sample processing and verified experimentally.« less

  17. Teaching Valence Shell Electron Pair Repulsion (VSEPR) Theory

    ERIC Educational Resources Information Center

    Talbot, Christopher; Neo, Choo Tong

    2013-01-01

    This "Science Note" looks at the way that the shapes of simple molecules can be explained in terms of the number of electron pairs in the valence shell of the central atom. This theory is formally known as valence shell electron pair repulsion (VSEPR) theory. The article explains the preferred shape of chlorine trifluoride (ClF3),…

  18. Carbon-fluorine bond activation coupled with carbon-hydrogen bond formation alpha to iridium: kinetics, mechanism, and diastereoselectivity.

    PubMed

    Garratt, Shaun A; Hughes, Russell P; Kovacik, Ivan; Ward, Antony J; Willemsen, Stefan; Zhang, Donghui

    2005-11-09

    Reactions of iridium(fluoroalkyl)hydride complexes CpIr(PMe(3))(CF(2)R(F))Y (R(F) = F, CF(3); Y = H, D) with LutHX (Lut = 2,6-dimethylpyridine; X = Cl, I) results in C-F activation coupled with hydride migration to give CpIr(PMe(3))(CYFR(F))X as variable mixtures of diastereomers. Solution conformations and relative diastereomer configurations of the products have been determined by (19)F{(1)H}HOESY NMR to be (S(C), S(Ir))(R(C), R(Ir)) for the kinetic diastereomer and (R(C), S(Ir))(S(C), R(Ir)) for its thermodynamic counterpart. Isotope labeling experiments using LutDCl/CpIr(PMe(3))(CF(2)R(F))H and CpIr(PMe(3))(CF(2)R(F))D/LutHCl) showed that, unlike a previously studied system, H/D exchange is faster than protonation of the alpha-CF bond, giving an identical mixture of product isotopologues from both reaction mixtures. The kinetic rate law shows a first-order dependence on the concentration of iridium substrate, but a half-order dependence on that of LutHCl; this is interpreted to mean that LutHCl dissociates to give HCl as the active protic source for C-F bond activation. Detailed kinetic studies are reported, which demonstrate that lack of complete diastereoselectivity is not a function of the C-F bond activation/H migration steps but that a cationic intermediate plays a double role in loss of diastereoselectivity; the intermediate can undergo epimerization at iridium before being trapped by halide and can also catalyze the epimerization of kinetic diastereomer product to thermodynamic product. A detailed mechanism is proposed and simulations performed to fit the kinetic data.

  19. Amorphous Mixed-Valence Vanadium Oxide/Exfoliated Carbon Cloth Structure Shows a Record High Cycling Stability.

    PubMed

    Song, Yu; Liu, Tian-Yu; Yao, Bin; Kou, Tian-Yi; Feng, Dong-Yang; Liu, Xiao-Xia; Li, Yat

    2017-04-01

    Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V 4+ /V 5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lying about the valence of affective pictures: an fMRI study.

    PubMed

    Lee, Tatia M C; Lee, Tiffany M Y; Raine, Adrian; Chan, Chetwyn C H

    2010-08-25

    The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI) methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS) while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception.

  1. Developmental Reversals in False Memory: Effects of Emotional Valence and Arousal

    ERIC Educational Resources Information Center

    Brainerd, C. J.; Holliday, R. E.; Reyna, V. F.; Yang, Y.; Toglia, M. P.

    2010-01-01

    Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can…

  2. Hydrogen bond and halogen bond inside the carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  3. Hydrogen-bonded side chain liquid crystalline block copolymer: Molecular design, synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Chao, Chi-Yang

    Block copolymers can self-assemble into highly regular, microphase-separated morphologies with dimensions at nanometer length scales. Potential applications such as optical wavelength photonic crystals, templates for nanolithographic patterning, or nanochannels for biomacromolecular separation take advantage of the well-ordered, controlled size microdomains of block copolymers. Side-chain liquid crystalline block copolymers (SCLCBCPs) are drawing increasing attention since the incorporation of liquid crystallinity turns their well-organized microstructures into dynamic functional materials. As a special type of block copolymer, hydrogen-bonded SCLCBCPs are unique, compositionally tunable materials with multiple dynamic functionalities that can readily respond to thermal, electrical and mechanical fields. Hydrogen-bonded SCLCBCPs were synthesized and assembled from host poly(styrene- b-acrylic acid) diblock copolymers with narrow molecular weight distributions as proton donors and guest imidazole functionalized mesogenic moieties as proton acceptors. In these studies non-covalent hydrogen bonding is employed to connect mesogenic side groups to a block copolymer backbone, both for its dynamic character as well as for facile materials preparation. The homogeneity and configuration of the hydrogen-bonded complexes were determined by both the molecular architecture of imidazolyl side groups and the process conditions. A one-dimensional photonic crystal composed of high molecular weight hydrogen-bonded SCLCBCP, with temperature dependent optical wavelength stop bands was successfully produced. The microstructures of hydrogen-bonded complexes could be rapidly aligned in an AC electric field at temperatures below the order-disorder transition but above their glass transitions. Remarkable dipolar properties of the mesogenic groups and thermal dissociation of hydrogen bonds are key elements to fast orientation switching. Studies of a wide range of mesogen and polymer

  4. Bond lifetime and diffusion coefficient in colloids with short-range interactions.

    PubMed

    Ndong Mintsa, E; Germain, Ph; Amokrane, S

    2015-03-01

    We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.

  5. Evaluation of the effect of valence state on cerium oxide nanoparticle toxicity following intratracheal instillation in rats

    PubMed Central

    Dunnick, Katherine M.; Morris, Anna M.; Badding, Melissa A.; Barger, Mark; Stefaniak, Aleksandr B.; Sabolsky, Edward M.; Leonard, Stephen S.

    2016-01-01

    Cerium (Ce) is becoming a popular metal for use in electrochemical applications. When in the form of cerium oxide (CeO2), Ce can exist in both 3 + and 4 + valence states, acting as an ideal catalyst. Previous in vitro and in vivo evidence have demonstrated that CeO2 has either anti- or pro-oxidant properties, possibly due to the ability of the nanoparticles to transition between valence states. Therefore, we chose to chemically modify the nanoparticles to shift the valence state toward 3+. During the hydrothermal synthesis process, 10 mol% gadolinium (Gd) and 20 mol% Gd, were substituted into the lattice of the CeO2 nanoparticles forming a perfect solid solution with various A-site valence states. These two Gd-doped CeO2 nanoparticles were compared to pure CeO2 nanoparticles. Preliminary characteristics indicated that doping results in minimal size and zeta potential changes but alters valence state. Following characterization, male Sprague-Dawley rats were exposed to 0.5 or 1.0 mg/kg nanoparticles via a single intratracheal instillation. Animals were sacrificed and bronchoalveolar lavage fluid and various tissues were collected to determine the effect of valence state and oxygen vacancies on toxicity 1-, 7-, or 84-day post-exposure. Results indicate that damage, as measured by elevations in lactate dehydrogenase, occurred within 1-day post-exposure and was sustained 7-day post-exposure, but subsided to control levels 84-day post-exposure. Furthermore, no inflammatory signaling or lipid peroxidation occurred following exposure with any of the nanoparticles. Our results implicate that valence state has a minimal effect on CeO2 nanoparticle toxicity in vivo. PMID:26898289

  6. Shock temperature dependent rate law for plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq D.

    2018-04-01

    A reactive flow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 (95% TATB, 5% polymeric binder Kel-F 800) is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. Specifically, sensitivity changes to the initial explosive temperature are accounted for naturally and with a single set of parameters. The equation of state forms for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration, are carried over from the Wescott-Stewart-Davis (WSD) model [Wescott et al., J. Appl. Phys. 98, 053514 (2005) and "Modeling detonation diffraction and dead zones in PBX-9502," in Proceedings of the Thirteenth International Detonation Symposium (2006)]. This newly devised model, with Arrhenius state dependence on the shock temperature, based on the WSD equation of states, is denoted by AWSD. Modifying an existing implementation of the WSD model to the AWSD model in a hydrocode is a rather straightforward procedure.

  7. The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.

    PubMed

    Fornasini, P; Grisenti, R

    2014-10-28

    The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.

  8. Character Disposition and Behavior Type: Influences of Valence on Preschool Children's Social Judgments

    ERIC Educational Resources Information Center

    Jones, Elaine F.; Tobias, Marvin; Pauley, Danielle; Thomson, Nicole Renick; Johnson, Shawana Lewis

    2009-01-01

    The authors studied the influences of valence information on preschool children's (n = 47) moral (good or bad), liking (liked or disliked by a friend), and consequence-of-behavior (reward or punishment) judgments. The authors presented 8 scenarios describing the behavior valence, positive valence (help, share), negative valence (verbal insult,…

  9. Potential energy surfaces and reaction dynamics of polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yan-Tyng

    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogenmore » atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.« less

  10. Halogen bonding based recognition processes: a world parallel to hydrogen bonding.

    PubMed

    Metrangolo, Pierangelo; Neukirch, Hannes; Pilati, Tullio; Resnati, Giuseppe

    2005-05-01

    Halogen bonding is the noncovalent interaction between halogen atoms (Lewis acids) and neutral or anionic Lewis bases. The main features of the interaction are given, and the close similarity with the hydrogen bonding will become apparent. Some heuristic principles are presented to develop a rational crystal engineering based on halogen bonding. The focus is on halogen-bonded supramolecular architectures given by halocarbons. The potential of the interaction is shown by useful applications in the field of synthetic chemistry, material science, and bioorganic chemistry.

  11. Correlation potential of a test ion near a strongly charged plate.

    PubMed

    Lu, Bing-Sui; Xing, Xiangjun

    2014-03-01

    We analytically calculate the correlation potential of a test ion near a strongly charged plate inside a dilute m:-n electrolyte. We do this by calculating the electrostatic Green's function in the presence of a nonlinear background potential, the latter having been obtained using the nonlinear Poisson-Boltzmann theory. We consider the general case where the dielectric constants of the plate and the electrolyte are distinct. The following generic results emerge from our analyses: (1) If the distance to the plate Δz is much larger than a Gouy-Chapman length, the plate surface will behave effectively as an infinitely charged surface, and the dielectric constant of the plate effectively plays no role. (2) If Δz is larger than a Gouy-Chapman length but shorter than a Debye length, the correlation potential can be interpreted in terms of an image charge that is three times larger than the source charge. This behavior is independent of the valences of the ions. (3) The Green's function vanishes inside the plate if the surface charge density is infinitely large; hence the electrostatic potential is constant there. In this respect, a strongly charged plate behaves like a conductor plate. (4) If Δz is smaller than a Gouy-Chapman length, the correlation potential is dominated by the conventional image charge due to the dielectric discontinuity at the interface. (5) If Δz is larger than a Debye length, the leading order behavior of the correlation potential will depend on the valences of the ions in the electrolyte. Furthermore, inside an asymmetric electrolyte, the correlation potential is singly screened, i.e., it undergoes exponential decay with a decay width equal to the Debye length.

  12. Identification of Cr valence states in Cr and Nd co-doped Lu3Al5O12 laser ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Pande; Jiang, Benxue; Fan, Jintai; Mao, Xiaojian; Zhang, Long

    2017-09-01

    Cr and Nd co-doped laser ceramics, as the potential gain materials in inertial confinement fusion (ICF), have been widely investigated. And the study on valence states of chromium ions is important. The effects of sintering additives and annealing atmosphere on the valence state of chromium were studied in detail, and the results shown that the Cr valence states were demonstrated to be Cr2+ and Cr3+ ions in HIP-sintered Cr(0.2 at.%), Nd(0.8 at.%): LuAG laser ceramics. And the intensity of the near-infrared absorption band caused by Cr2+ ions was attenuated with the decreasing SiO2 concentration and increasing MgO amount. The near-infrared absorption could be eliminated by annealing in air. And the transformation of valence states of Cr ions in the Cr,Nd:LuAG ceramics were also confirmed by electron paramagnetic resonance and X-ray photoelectron spectroscopy.

  13. Pressure Dependence of the Boson Peak of Glassy Glycerol

    DOE PAGES

    Ahart, Muhtar; Aihaiti, Dilare; Hemley, Russell J.; ...

    2017-05-31

    The pressure dependence of the Boson peak (BP) of glycerol, including its behavior across the liquid-glass transition, has been studied under pressure using Raman scattering. A significant increase of the BP frequency was observed with pressure up to 11 GPa at room temperature. The pressure dependence of BP frequency ν BP is proportional to (1+P/P 0) 1/3, where P and P 0 are the pressure and a constant, respectively, the spectra are consistent with a soft potential model. The characteristic length of medium range order is close in size to a cyclic trimer of glycerol molecules, which is predicted asmore » the medium range order of a BP vibration using molecular dynamics simulations. The pressure dependence of a characteristic length of medium range order is nearly constant. The pressure induced structural changes in glycerol can be understood in terms of the shrinkage of voids with cyclic trimers remaining up to at least 11 GPa. Lastly, the pressure dependence of intermolecular O-H stretching mode indicates that the intermolecular hydrogen bond distance gradually decreases below the glass transition pressure of ~5 GPa, while it becomes nearly constant in the glassy state indicating the disappearance of the free volume in the dense glass.« less

  14. Geometry-dependent atomic multipole models for the water molecule.

    PubMed

    Loboda, O; Millot, C

    2017-10-28

    Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.

  15. Geometry-dependent atomic multipole models for the water molecule

    NASA Astrophysics Data System (ADS)

    Loboda, O.; Millot, C.

    2017-10-01

    Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.

  16. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexesmore » in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.« less

  17. Size-dependent disorder-order transformation in the synthesis of monodisperse intermetallic PdCu nanocatalysts

    DOE PAGES

    Wang, Chenyu; Chen, Dennis P.; Unocic, Raymond R.; ...

    2016-05-23

    The high performance of Pd-based intermetallic nanocatalysts has the potential to replace Pt-containing catalysts for fuel-cell reactions. Conventionally, intermetallic particles are obtained through the annealing of nanoparticles of a random alloy distribution. However, this method inevitably leads to sintering of the nanoparticles and generates polydisperse samples. Here, monodisperse PdCu nanoparticles with the ordered B2 phase were synthesized by seed-mediated co-reduction using PdCu nanoparticle seeds with a random alloy distribution (A1 phase). A time-evolution study suggests that the particles must overcome a size-dependent activation barrier for the ordering process to occur. Characterization of the as-prepared PdCu B2 nanoparticles by electron microscopymore » techniques revealed surface segregation of Pd as a thin shell over the PdCu core. The ordered nanoparticles exhibit superior activity and durability for the oxygen reduction reaction in comparison with PdCu A1 nanoparticles. This seed-mediated co-reduction strategy produced monodisperse nanoparticles ideally suited for structure–activity studies. Furthermore, the study of their growth mechanism provides insights into the size dependence of disorder–order transformations of bimetallic alloys at the nanoscale, which should enable the design of synthetic strategies toward other intermetallic systems.« less

  18. Effects of Emotion on Associative Recognition: Valence and Retention Interval Matter

    PubMed Central

    Pierce, Benton H.; Kensinger, Elizabeth A.

    2011-01-01

    In two experiments, we examined the effects of emotional valence and arousal on associative binding. Participants studied negative, positive, and neutral word pairs, followed by an associative recognition test. In Experiment 1, with a short-delayed test, accuracy for intact pairs was equivalent across valences, whereas accuracy for rearranged pairs was lower for negative than for positive and neutral pairs. In Experiment 2, we tested participants after a one-week delay and found that accuracy was greater for intact negative than for intact neutral pairs, whereas rearranged pair accuracy was equivalent across valences. These results suggest that, although negative emotional valence impairs associative binding after a short delay, it may improve binding after a longer delay. The results also suggest that valence, as well as arousal, needs to be considered when examining the effects of emotion on associative memory. PMID:21401233

  19. Sex, Age, and Emotional Valence: Revealing Possible Biases in the ‘Reading the Mind in the Eyes’ Task

    PubMed Central

    Kynast, Jana; Schroeter, Matthias L.

    2018-01-01

    The ‘Reading the Mind in the Eyes’ test (RMET) assesses a specific socio-cognitive ability, i.e., the ability to identify mental states from gaze. The development of this ability in a lifespan perspective is of special interest. Whereas former investigations were limited mainly to childhood and adolescence, the focus has been shifted towards aging, and psychiatric and neurodegenerative diseases recently. Although the RMET is frequently applied in developmental psychology and clinical settings, stimulus characteristics have never been investigated with respect to potential effects on test performance. Here, we analyzed the RMET stimulus set with a special focus on interrelations between sex, age and emotional valence. Forty-three persons rated age and emotional valence of the RMET picture set. Differences in emotional valence and age ratings between male and female items were analyzed. The linear relation between age and emotional valence was tested over all items, and separately for male and female items. Male items were rated older and more negative than female stimuli. Regarding male RMET items, age predicted emotional valence: older age was associated with negative emotions. Contrary, age and valence were not linearly related in female pictures. All ratings were independent of rater characteristics. Our results demonstrate a strong confound between sex, age, and emotional valence in the RMET. Male items presented a greater variability in age ratings compared to female items. Age and emotional valence were negatively associated among male items, but no significant association was found among female stimuli. As personal attributes impact social information processing, our results may add a new perspective on the interpretation of previous findings on interindividual differences in RMET accuracy, particularly in the field of developmental psychology, and age-associated neuropsychiatric diseases. A revision of the RMET might be afforded to overcome confounds

  20. Renormalization scheme dependence of high-order perturbative QCD predictions

    NASA Astrophysics Data System (ADS)

    Ma, Yang; Wu, Xing-Gang

    2018-02-01

    Conventionally, one adopts typical momentum flow of a physical observable as the renormalization scale for its perturbative QCD (pQCD) approximant. This simple treatment leads to renormalization scheme-and-scale ambiguities due to the renormalization scheme and scale dependence of the strong coupling and the perturbative coefficients do not exactly cancel at any fixed order. It is believed that those ambiguities will be softened by including more higher-order terms. In the paper, to show how the renormalization scheme dependence changes when more loop terms have been included, we discuss the sensitivity of pQCD prediction on the scheme parameters by using the scheme-dependent {βm ≥2}-terms. We adopt two four-loop examples, e+e-→hadrons and τ decays into hadrons, for detailed analysis. Our results show that under the conventional scale setting, by including more-and-more loop terms, the scheme dependence of the pQCD prediction cannot be reduced as efficiently as that of the scale dependence. Thus a proper scale-setting approach should be important to reduce the scheme dependence. We observe that the principle of minimum sensitivity could be such a scale-setting approach, which provides a practical way to achieve optimal scheme and scale by requiring the pQCD approximate be independent to the "unphysical" theoretical conventions.