Sample records for valent transition metals

  1. Two-State Reactivity in Low-Valent Iron-Mediated C-H Activation and the Implications for Other First-Row Transition Metals.

    PubMed

    Sun, Yihua; Tang, Hao; Chen, Kejuan; Hu, Lianrui; Yao, Jiannian; Shaik, Sason; Chen, Hui

    2016-03-23

    C-H bond activation/functionalization promoted by low-valent iron complexes has recently emerged as a promising approach for the utilization of earth-abundant first-row transition metals to carry out this difficult transformation. Herein we use extensive density functional theory and high-level ab initio coupled cluster calculations to shed light on the mechanism of these intriguing reactions. Our key mechanistic discovery for C-H arylation reactions reveals a two-state reactivity (TSR) scenario in which the low-spin Fe(II) singlet state, which is initially an excited state, crosses over the high-spin ground state and promotes C-H bond cleavage. Subsequently, aryl transmetalation occurs, followed by oxidation of Fe(II) to Fe(III) in a single-electron transfer (SET) step in which dichloroalkane serves as an oxidant, thus promoting the final C-C coupling and finalizing the C-H functionalization. Regeneration of the Fe(II) catalyst for the next round of C-H activation involves SET oxidation of the Fe(I) species generated after the C-C bond coupling. The ligand sphere of iron is found to play a crucial role in the TSR mechanism by stabilization of the reactive low-spin state that mediates the C-H activation. This is the first time that the successful TSR concept conceived for high-valent iron chemistry is shown to successfully rationalize the reactivity for a reaction promoted by low-valent iron complexes. A comparative study involving other divalent middle and late first-row transition metals implicates iron as the optimum metal in this TSR mechanism for C-H activation. It is predicted that stabilization of low-spin Mn(II) using an appropriate ligand sphere should produce another promising candidate for efficient C-H bond activation. This new TSR scenario therefore emerges as a new strategy for using low-valent first-row transition metals for C-H activation reactions.

  2. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  3. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  4. Laser Flash Photolysis Generation of High-Valent Transition Metal-Oxo Species: Insights from Kinetic Studies in Real Time

    PubMed Central

    Zhang, Rui; Newcomb, Martin

    2010-01-01

    Conspectus High-valent transition metal-oxo species are active oxidizing species in many metal-catalyzed oxidation reactions in both Nature and the laboratory. In homogeneous catalytic oxidations, a transition metal catalyst is oxidized to a metal-oxo species by a sacrificial oxidant, and the activated transition metal-oxo intermediate oxidizes substrates. Mechanistic studies of these oxidizing species can provide insights for understanding commercially important catalytic oxidations and the oxidants in cytochrome P450 enzymes. In many cases, however, the transition metal oxidants are so reactive that they do not accumulate to detectable levels in mixing experiments, which have millisecond mixing times, and successful generation and direct spectroscopic characterization of these highly reactive transients remain a considerable challenge. Our strategy for understanding homogeneous catalysis intermediates employs photochemical generation of the transients with spectroscopic detection on time-scales as short as nanoseconds and direct kinetic studies of their reactions with substrates by laser flash photolysis (LFP) methods. This Account describes studies of high-valent manganese- and iron-oxo intermediates. Irradiation of porphyrin-manganese(III) nitrates and chlorates or corrole-manganese(IV) chlorates resulted in homolytic cleavage of the O-X bonds in the ligands, whereas irradiation of porphyrin-manganese(III) perchlorates resulted in heterolytic cleavage of O-Cl bonds to give porphyrin-manganese(V)-oxo cations. Similar reactions of corrole- and porphyrin-iron(IV) complexes gave highly reactive transients that were tentatively identified as macrocyclic ligand-iron(V)-oxo species. Kinetic studies demonstrated high reactivity of the manganese(V)-oxo species, and even higher reactivities of the putative iron(V)-oxo transients. For example, second-order rate constants for oxidations of cis-cyclooctene at room temperature were 6 × 103 M−1 s−1 for a corrole

  5. Mixed valent metals

    NASA Astrophysics Data System (ADS)

    Riseborough, P. S.; Lawrence, J. M.

    2016-08-01

    We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger’s theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach’s diagram, the Anderson lattice model, the Slave-Boson method, etc.

  6. Mixed valent metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riseborough, P. S.; Lawrence, Jon M.

    Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less

  7. Mixed valent metals

    DOE PAGES

    Riseborough, P. S.; Lawrence, Jon M.

    2016-07-04

    Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less

  8. A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope

    PubMed Central

    Lee, Byeongchan; Lee, Geun Woo

    2016-01-01

    Liquid-liquid transitions under high pressure are found in many elemental materials, but the transitions are known to be associated with either sp-valent materials or f-valent rare-earth elements, in which the maximum or a negative slope in the melting line is readily suggestive of the transition. Here we find a liquid-liquid transition with a positive melting slope in transition metal Ti from structural, electronic, and thermodynamic studies using ab-initio molecular dynamics calculations, showing diffusion anomaly, but no density anomaly. The origin of the transition in liquid Ti is a pressure-induced increase of local structures containing very short bonds with directionality in electronic configurations. This behavior appears to be characteristic of the early transition metals. In contrast, the late transition metal liquid Ni does not show the L-L transition with pressure. This result suggests that the possibility of the L-L transition decreases from early to late transition metals as electronic structures of late transition metals barely have a Jahn-Teller effect and bond directionality. Our results generalize that a phase transition in disordered materials is found with any valence band regardless of the sign of the melting slope, but related to the symmetry of electronic structures of constituent elements. PMID:27762334

  9. Aerosol reduction/expansion synthesis (A-RES) for zero valent metal particles

    DOEpatents

    Leseman, Zayd; Luhrs, Claudia; Phillips, Jonathan; Soliman, Haytham

    2016-04-12

    Various embodiments provide methods of forming zero valent metal particles using an aerosol-reductive/expansion synthesis (A-RES) process. In one embodiment, an aerosol stream including metal precursor compound(s) and chemical agent(s) that produces reducing gases upon thermal decomposition can be introduced into a heated inert atmosphere of a RES reactor to form zero valent metal particles corresponding to metals used for the metal precursor compound(s).

  10. Laser flash photolysis generation of high-valent transition metal-oxo species: insights from kinetic studies in real time.

    PubMed

    Zhang, Rui; Newcomb, Martin

    2008-03-01

    High-valenttransition metal-oxo species are active oxidizing species in many metal-catalyzed oxidation reactions in both Nature and the laboratory. In homogeneous catalytic oxidations, a transition metal catalyst is oxidized to a metal-oxo species by a sacrificial oxidant, and the activated transition metal-oxo intermediate oxidizes substrates. Mechanistic studies of these oxidizing species can provide insights for understanding commercially important catalytic oxidations and the oxidants in cytochrome P450 enzymes. In many cases, however, the transition metal oxidants are so reactive that they do not accumulate to detectable levels in mixing experiments, which have millisecond mixing times, and successful generation and direct spectroscopic characterization of these highly reactive transients remain a considerable challenge. Our strategy for understanding homogeneous catalysis intermediates employs photochemical generation of the transients with spectroscopic detection on time scales as short as nanoseconds and direct kinetic studies of their reactions with substrates by laser flash photolysis (LFP) methods. This Account describes studies of high-valent manganese- and iron-oxo intermediates. Irradiation of porphyrin-manganese(III) nitrates and chlorates or corrole-manganese(IV) chlorates resulted in homolytic cleavage of the O-X bonds in the ligands, whereas irradiation of porphyrin-manganese(III) perchlorates resulted in heterolytic cleavage of O-Cl bonds to give porphyrin-manganese(V)-oxo cations. Similar reactions of corrole- and porphyrin-iron(IV) complexes gave highly reactive transients that were tentatively identified as macrocyclic ligand-iron(V)-oxo species. Kinetic studies demonstrated high reactivity of the manganese(V)-oxo species, and even higher reactivities of the putative iron(V)-oxo transients. For example, second-order rate constants for oxidations of cis-cyclooctene at room temperature were 6 x 10(3) M(-1) s(-1) for a corrole-iron(V)-oxo species

  11. Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, J.A., E-mail: mtp09jd@sheffield.ac.uk; Freeman, C.L.; Harding, J.H.

    Interatomic potentials recently developed for the modelling of BaTiO{sub 3} have been used to explore the stabilisation of the hexagonal polymorph of BaTiO{sub 3} by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti{submore » 2} sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni{sup 2+} and Fe{sup 3+} ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti{sub 2}/O{sub 1} cluster and (b) Ti{sub 2}/O{sub 2} cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions.« less

  12. Zero-Valent Metallic Treatment System and Its Application for Removal and Remediation of Polychlorinated Biphenyls (Pcbs)

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline W. (Inventor); Brooks, Kathleen B. (Inventor)

    2012-01-01

    PCBs are removed from contaminated media using a treatment system including zero-valent metal particles and an organic hydrogen donating solvent. The treatment system may include a weak acid in order to eliminate the need for a coating of catalytic noble metal on the zero-valent metal particles. If catalyzed zero-valent metal particles are used, the treatment system may include an organic hydrogen donating solvent that is a non-water solvent. The treatment system may be provided as a "paste-like" system that is preferably applied to natural media and ex-situ structures to eliminate PCBs.

  13. USING ZERO-VALENT METAL NANOPARTICLES TO REMEDIATE ORGANIC CONTAMINANTS

    EPA Science Inventory

    The transport of organic contaminants down the soil profile constitutes a serious threat to the quality of ground water. Zero-valent metals are considered innocuous abiotic agents capable of mediating decontamination processes in terrestrial systems. In this investigation, ze...

  14. Insights into Metal Oxide and Zero-Valent Metal Nanocrystal Formation on Multiwalled Carbon Nanotube Surfaces during Sol-Gel Process.

    PubMed

    Das, Dipesh; Sabaraya, Indu V; Sabo-Attwood, Tara; Saleh, Navid B

    2018-06-05

    Carbon nanotubes are hybridized with metal crystals to impart multifunctionality into the nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-valent and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique brings in significant advantages and is a viable technique for such synthesis. This study probes the efficacy of sol-gel process and aims to identify underlying mechanisms of crystal formation. Standard electron potential (SEP) is used as a guiding parameter to choose the metal species; i.e., highly negative SEP (e.g., Zn) with oxide crystal tendency, highly positive SEP (e.g., Ag) with zero-valent crystal-tendency, and intermediate range SEP (e.g., Cu) to probe the oxidation tendency in crystal formation are chosen. Transmission electron microscopy and X-ray diffraction are used to evaluate the synthesized NHs. Results indicate that SEP can be a reliable guide for the resulting crystalline phase of a certain metal species, particularly when the magnitude of this parameter is relatively high. However, for intermediate range SEP-metals, mix phase crystals can be expected. For example, Cu will form Cu₂O and zero-valent Cu crystals, unless the synthesis is performed in a reducing environment.

  15. Effect of humic acid and transition metal ions on the debromination of decabromodiphenyl by nano zero-valent iron: kinetics and mechanisms

    NASA Astrophysics Data System (ADS)

    Tan, Lei; Liang, Bin; Fang, Zhanqiang; Xie, Yingying; Tsang, Eric Pokeung

    2014-12-01

    E-waste sites are one of the main sources of the pollutant decabromodiphenyl ether (BDE209); contaminated farmland and water bodies urgently need to be remediated. As a potential in situ remediation technology, nano zero-valent iron (nZVI) technology effectively removes PBDEs. However, the humic acid (HA) and heavy metals in the contaminated sites affect the remediation effects. In this study, we explored the influence of HA and transition metals on the removal of PBDEs by nZVI. The specific surface area and average size of the nZVI particles we prepared were 35 m2/g and 50-80 nm, respectively. The results showed that HA inhibited the removal of PBDEs; as the concentration of HA increased, its inhibitory effect intensified and the k obs decreased. However, the three metal ions (Cu2+, Co2+, and Ni2+) enhanced the removal of PBDEs. The enhancement effect was followed the order Ni2+ > Cu2+ > Co2+. As the concentration of metal ions increased, the promotion effect improved. The synergistic effect of HA and the metal ions was manifested in the combination of the inhibitory effect and the enhancement effect. The values of the first-order kinetic constants ( k obs) under the combined effect were between the values of the rate constants under the individual components. The inhibitory mechanism was the chemisorption of HA, i.e., the benzene carboxylic and phenolic hydroxyl groups in HA occupied the surfactant reactive sites of nZVI, thus inhibiting the removal of BDE209. The promotion mechanism of Cu2+, Co2+, and Ni2+ can be explained by their reduction to zero valence on the nZVI surface; furthermore, Ni2+ strongly affects the debromination and dehydrogenation of BDE209, leading to a stronger promotability than Cu2+or Co2+.

  16. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

    PubMed Central

    Kubin, Markus; Kern, Jan; Gul, Sheraz; Kroll, Thomas; Chatterjee, Ruchira; Löchel, Heike; Fuller, Franklin D.; Sierra, Raymond G.; Quevedo, Wilson; Weniger, Christian; Rehanek, Jens; Firsov, Anatoly; Laksmono, Hartawan; Weninger, Clemens; Alonso-Mori, Roberto; Nordlund, Dennis L.; Lassalle-Kaiser, Benedikt; Glownia, James M.; Krzywinski, Jacek; Moeller, Stefan; Turner, Joshua J.; Minitti, Michael P.; Dakovski, Georgi L.; Koroidov, Sergey; Kawde, Anurag; Kanady, Jacob S.; Tsui, Emily Y.; Suseno, Sandy; Han, Zhiji; Hill, Ethan; Taguchi, Taketo; Borovik, Andrew S.; Agapie, Theodor; Messinger, Johannes; Erko, Alexei; Föhlisch, Alexander; Bergmann, Uwe; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe

    2017-01-01

    X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6–15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions. PMID:28944255

  17. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

    DOE PAGES

    Kubin, Markus; Kern, Jan; Gul, Sheraz; ...

    2017-09-01

    X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. But, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexesmore » (Mn ~ 6-15 mmol/l) with no visible effects of radiation damage. We then present the first L-edge absorption spectra of the oxygen evolving complex (Mn 4 CaO 5 ) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.« less

  18. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    PubMed Central

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  19. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.

    PubMed

    Murahashi, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. (Communicated by Ryoji Noyori, M.J.A.).

  20. Removal of heavy metals using bentonite supported nano-zero valent iron particles

    NASA Astrophysics Data System (ADS)

    Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah

    2018-04-01

    This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.

  1. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2006-10-10

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  2. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-04-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  3. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2007-01-09

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  4. Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2004-06-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  5. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  6. X-ray spectroscopic characterization of Co(IV) and metal–metal interactions in Co 4O 4: Electronic structure contributions to the formation of high-valent states relevant to the oxygen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadt, Ryan G.; Hayes, Dugan; Brodsky, Casey N.

    2016-08-12

    In this paper, the formation of high-valent states is a key factor in making highly active transition metal-based catalysts of the oxygen-evolving reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which is difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co 4O 4 cubanes, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combinationmore » of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kβ RIXS) allow Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the ligand field environment and covalency of the t 2g-based redox active molecular orbital. Kβ RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co 4O 4. Guided by the data, calculations show electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co 4O 4 to CoM 3O 4 structures (M = redox-inactive metal) defines electronic structure contri-butions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E 0 over hundreds of mVs.« less

  7. Single-step treatment of 2,4-dinitrotoluene via zero-valent metal reduction and chemical oxidation.

    PubMed

    Thomas, J Mathew; Hernandez, Rafael; Kuo, Chiang-Hai

    2008-06-30

    Many nitroaromatic compounds (NACs) are considered toxic and potential carcinogens. The purpose of this study was to develop an integrated reductive/oxidative process for treating NACs contaminated waters. The process consists of the combination of zero-valent iron and an ozonation based treatment technique. Corrosion promoters are added to the contaminated water to minimize passivation of the metallic species. Water contaminated with 2,4-dinitrotoluene (DNT) was treated with the integrated process using a recirculated batch reactor. It was demonstrated that addition of corrosion promoters to the contaminated water enhances the reduction of 2,4-DNT with zero-valent iron. The addition of corrosion promoters resulted in 62% decrease in 2,4-DNT concentration to 2,4-diaminotoluene. The data shows that iron reduced the 2,4-DNT and ozone oxidized these products resulting in a 73% removal of TOC and a 96% decrease in 2,4-DNT concentration.

  8. Solid state 13C-NMR, infrared, X-ray powder diffraction and differential thermal studies of the homologous series of some mono-valent metal (Li, Na, K, Ag) n-alkanoates: A comparative study

    NASA Astrophysics Data System (ADS)

    Nelson, Peter N.; Ellis, Henry A.; White, Nicole A. S.

    2015-06-01

    A comparative study of the molecular packing, lattice structures and phase behaviors of the homologous series of some mono-valent metal carboxylates (Li, Na, K and Ag) is carried out via solid state FT-infrared and 13C-NMR spectroscopes, X-rays powder diffraction, density measurements, differential scanning calorimetry, polarizing light microscopy and variable temperature infrared spectroscopy. It is proposed that, for lithium, sodium and potassium carboxylates, metal-carboxyl coordination is via asymmetric chelating bidentate bonding with extensive intermolecular interactions to form tetrahedral metal centers, irrespective of chain length. However, for silver n-alkanoates, carboxyl moieties are bound to silver ions via syn-syn type bridging bidentate coordination to form dimeric units held together by extensive head group inter-molecular interactions. Furthermore, the fully extended hydrocarbon chains which are crystallized in the all-trans conformation are tilted at ca. 30°, 27°, 15° and 31° with respect to a normal to the metal plane, for lithium, sodium, silver and potassium carboxylates, respectively. All compounds are packed as lamellar bilayer structures, however, lithium compounds are crystallized in a triclinic crystal system whilst silver, sodium and potassium n-alkanoates are all monoclinic with possible P1 bravais lattice. Odd-even alternation observed in various physical features is associated with different inter-planar spacing between closely packed layers in the bilayer which are not in the same plane; a phenomenon controlled by lattice packing symmetry requirements. All compounds, except silver carboxylates, show partially reversibly first order pre-melting transitions; the number of which increases with increasing chain length. These transitions are associated, for the most part, with lamellar collapse followed by increased gauche-trans isomerism in the methylene group assembly, irrespective of chain length. It is proposed that the absence of

  9. Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation.

    PubMed

    Li, Lingyun; Hu, Jiwei; Shi, Xuedan; Fan, Mingyi; Luo, Jin; Wei, Xionghui

    2016-09-01

    Engineered nanoscale zero-valent metals (NZVMs) representing the forefront of technologies have been considered as promising materials for environmental remediation and antimicrobial effect, due to their high reducibility and strong adsorption capability. This review is focused on the methodology for synthesis of bare NZVMs, supported NZVMs, modified NZVMs, and bimetallic systems with both traditional and green methods. Recent studies have demonstrated that self-assembly methods can play an important role for obtaining ordered, controllable, and tunable NZVMs. In addition to common characterization methods, the state-of-the-art methods have been developed to obtain the properties of NZVMs (e.g., granularity, size distribution, specific surface area, shape, crystal form, and chemical bond) with the resolution down to subnanometer scale. These methods include spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM), electron energy-loss spectroscopy (EELS), and near edge X-ray absorption fine structure (NEXAFS). A growing body of experimental data has proven that nanoscale zero-valent iron (NZVI) is highly effective and versatile. This article discusses the applications of NZVMs to treatment of heavy metals, halogenated organic compounds, polycyclic aromatic hydrocarbons, nutrients, radioelements, and microorganisms, using both ex situ and in situ methods. Furthermore, this paper briefly describes the ecotoxicological effects for NZVMs and the research prospects related to their synthesis, modification, characterization, and applications.

  10. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide

    PubMed Central

    Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping

    2017-01-01

    Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T′-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications. PMID:28230105

  11. Aerosol synthesis of nano and micro-scale zero valent metal particles from oxide precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Jonathan; Luhrs, Claudia; Lesman, Zayd

    2010-01-01

    In this work a novel aerosol method, derived form the batch Reduction/Expansion Synthesis (RES) method, for production of nano / micro-scale metal particles from oxides and hydroxides is presented. In the Aerosol-RES (A-RES) method, an aerosol, consisting of a physical mixture of urea and metal oxide or hydroxides, is passed through a heated oven (1000 C) with a residence time of the order of 1 second, producing pure (zero valent) metal particles. It appears that the process is flexible regarding metal or alloy identity, allows control of particle size and can be readily scaled to very large throughput. Current workmore » is focused on creating nanoparticles of metal and metal alloy using this method. Although this is primarily a report on observations, some key elements of the chemistry are clear. In particular, the reducing species produced by urea decomposition are the primary agents responsible for reduction of oxides and hydroxides to metal. It is also likely that the rapid expansion that takes place when solid/liquid urea decomposes to form gas species influences the final morphology of the particles.« less

  12. Crystalline Coordination Networks of Zero-Valent Metal Centers: Formation of a 3-Dimensional Ni(0) Framework with m-Terphenyl Diisocyanides.

    PubMed

    Agnew, Douglas W; DiMucci, Ida M; Arroyave, Alejandra; Gembicky, Milan; Moore, Curtis E; MacMillan, Samantha N; Rheingold, Arnold L; Lancaster, Kyle M; Figueroa, Joshua S

    2017-12-06

    A permanently porous, three-dimensional metal-organic material formed from zero-valent metal nodes is presented. Combination of ditopic m-terphenyl diisocyanide, [CNAr Mes2 ] 2 , and the d 10 Ni(0) precursor Ni(COD) 2 , produces a porous metal-organic material featuring tetrahedral [Ni(CNAr Mes2 ) 4 ] n structural sites. X-ray absorption spectroscopy provides firm evidence for the presence of Ni(0) centers, whereas gas-sorption and thermogravimetric analysis reveal the characteristics of a robust network with a microdomain N 2 -adsorption profile.

  13. Synthesis and structures of metal chalcogenide precursors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  14. Metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  15. Application of Emulsified Zero-Valent Iron to Marine Environments

    NASA Technical Reports Server (NTRS)

    Brooks, Kathleen B.; Quinn, Jacqueline W.; Clausen, Christian A.; Geiger, Cherie L.

    2005-01-01

    Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the contaminant's potential bioaccumulation in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water run-off. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. However, the application to marine environments is only just being explored. This paper discusses the potential use of EZVI in brackish and saltwater environments, with supporting laboratory data detailed. Laboratory studies were performed in 2005 to establish the effectiveness of EZVI to degrade trichloroethylene (TCE) in saltwater. Headspace vials were setup to determine the kinetic rate of TCE degradation using EZVI in seawater. The reaction vials were analyzed by Gas Chromatographic/Flame Ionization Detection (GC/FID) for ethene production after a 48 day period using a GC/FID Purge and Trap system. Analytical results showed that EZVI was very effective at degrading TCE. The reaction by-products (ethene, acetylene and ethane) were produced at 71% of the rate in seawater as in the fresh water controls. Additionally, iron within the EZVI particles was protected from oxidation of the corrosive seawater, allowing EZVI to perform in an environment where zero-valent iron alone could not compete. Laboratory studies were also performed to establish the effectiveness of emulsified zero-valent metal (EZVM) to remove dissolved-phase cadmium and lead found in seawater. EZVM is comprised of a combination of magnesium and iron metal surrounded by the

  16. Solid state ¹³C-NMR, infrared, X-ray powder diffraction and differential thermal studies of the homologous series of some mono-valent metal (Li, Na, K, Ag) n-alkanoates: a comparative study.

    PubMed

    Nelson, Peter N; Ellis, Henry A; White, Nicole A S

    2015-06-15

    A comparative study of the molecular packing, lattice structures and phase behaviors of the homologous series of some mono-valent metal carboxylates (Li, Na, K and Ag) is carried out via solid state FT-infrared and (13)C-NMR spectroscopes, X-rays powder diffraction, density measurements, differential scanning calorimetry, polarizing light microscopy and variable temperature infrared spectroscopy. It is proposed that, for lithium, sodium and potassium carboxylates, metal-carboxyl coordination is via asymmetric chelating bidentate bonding with extensive intermolecular interactions to form tetrahedral metal centers, irrespective of chain length. However, for silver n-alkanoates, carboxyl moieties are bound to silver ions via syn-syn type bridging bidentate coordination to form dimeric units held together by extensive head group inter-molecular interactions. Furthermore, the fully extended hydrocarbon chains which are crystallized in the all-trans conformation are tilted at ca. 30°, 27°, 15° and 31° with respect to a normal to the metal plane, for lithium, sodium, silver and potassium carboxylates, respectively. All compounds are packed as lamellar bilayer structures, however, lithium compounds are crystallized in a triclinic crystal system whilst silver, sodium and potassium n-alkanoates are all monoclinic with possible P1 bravais lattice. Odd-even alternation observed in various physical features is associated with different inter-planar spacing between closely packed layers in the bilayer which are not in the same plane; a phenomenon controlled by lattice packing symmetry requirements. All compounds, except silver carboxylates, show partially reversibly first order pre-melting transitions; the number of which increases with increasing chain length. These transitions are associated, for the most part, with lamellar collapse followed by increased gauche-trans isomerism in the methylene group assembly, irrespective of chain length. It is proposed that the absence

  17. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    DTIC Science & Technology

    2010-09-01

    Significant laboratory and field research has demonstrated that zero-valent metals will reductively dehalogenate dissolved chlorinated solvents such as...Eekert, Servé W. M. Kengen, Gosse Schraa, and Alfons J. M. Stams. 1999. Anaerobic Microbial Reductive Dehalogenation of Chlorinated Ethenes...and T. Holdsworth. 2005. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron. Environmental Science Technology, vol 39

  18. Application of Emulsified Zero-Valent Iron to Marine Environments

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W.; Brooks, Kathleen B.; Geiger, Cherie L.; Clausen, Christian A.; Milum, Kristen M.

    2006-01-01

    Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the potential of the contaminant to bioaccumulate in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water runoff. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. Emulsified Zero-Valent Metal (EZVM) using metals such as iron and/or magnesium have been shown in the laboratory and on the bench scale to be effective at removing metals contamination in freshwater environments. The application to marine environments, however, is only just being explored. This paper discusses. the potential use of EZVI or EZVM in brackish and saltwater environments, with supporting laboratory data detailing its effectiveness on trichloroethylene, lead, copper, nickel and cadmium.

  19. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer.

    PubMed

    Frank, Patrick; Szilagyi, Robert K; Gramlich, Volker; Hsu, Hua-Fen; Hedman, Britt; Hodgson, Keith O

    2017-02-06

    Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II (itao)(SO 4 )(H 2 O) 0,1 ] (M = Co, Ni, Cu) and [Cu(Me 6 tren)(SO 4 )] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal-sulfur bond, while the XAS preedge of [Zn(itao)(SO 4 )] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4 )] but not of [Cu(Me 6 tren)(SO 4 )] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II (SO 4 )(H 2 O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5-2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal-absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which

  20. Simultaneous quantification of iodine and high valent metals via ICP-MS under acidic conditions in complex matrices.

    PubMed

    Brix, Kristina; Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-05-15

    The determination of iodine as a main fission product (especially the isotopes I-129 and I-131) of stored HLW in a disposal beside its distribution as a natural ingredient of many different products like milk, food and seawater is a matter of particular interest. The simultaneous ICP-MS determination of iodine as iodide together with other elements (especially higher valent metal ions) relevant for HLW is analytically very problematic. A reliable ICP-MS quantification of iodide must be performed at neutral or alkaline conditions in contrast to the analysis of metal ions which are determined in acidic pH ranges. Herein, we present a method to solve this problem by changing the iodine speciation resulting in an ICP-MS determination of iodide as iodate. The oxidation from iodide to iodate with sodium hypochlorite at room temperature is a fast and convenient method with flexible reaction time, from one hour up to three days, thus eliminating the disadvantages of quantifying iodine species via ICP-MS. In the analysed concentration range of iodine (0.1-100µgL -1 ) we obtain likely quantitative recovery rates for iodine between 91% and 102% as well as relatively low RSD values (0.3-4.0%). As an additional result, it is possible to measure different other element species in parallel together with the generated iodate, even high valent metals (europium and uranium beside caesium) at recovery rates in the same order of magnitude (93-104%). In addition, the oxidation process operates above pH 7 thus offering a wide pH range for sample preparation. Even analytes in complex matrices, like 5M saline (NaCl) solution or artificial cement pore water (ACW) can be quantified with this robust sample preparation method. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Metal–insulator transition in a transition metal dichalcogenide: Dependence on metal contacts

    NASA Astrophysics Data System (ADS)

    Shimazu, Y.; Arai, K.; Iwabuchi, T.

    2018-03-01

    Transition metal dichalcogenides are promising layered materials for realizing novel nanoelectronic and nano-optoelectronic devices. Molybdenum disulfide (MoS2), a typical transition metal dichalcogenide, has been extensively investigated due to the presence of a sizable band gap, which enables the use of MoS2 as a channel material in field-effect transistors (FET). The gate-voltage-tunable metal–insulator transition and superconductivity using MoS2 have been demonstrated in previous studies. These interesting phenomena can be considered as quantum phase transitions in two-dimensional systems. In this study, we observed that the transport properties of thin MoS2 flakes in FET geometry significantly depend on metal contacts. On comparing Ti/Au with Al contacts, it was found that the threshold voltages for FET switching and metal–insulator transition were considerably lower for the device with Al contacts. This result indicated the significant influence of the Al contacts on the properties of MoS2 devices.

  2. Impact of the Valence Charge of Transition Metals on the Cobalt- and Rhodium-Catalyzed Synthesis of Indenamines, Indenols, and Isoquinolinium Salts: A Catalytic Cycle Involving MIII/MV [M = Co, Rh] for [4+2] Annulation.

    PubMed

    Chiou, Mong-Feng; Jayakumar, Jayachandran; Cheng, Chien-Hong; Chuang, Shih-Ching

    2018-06-13

    Reaction mechanisms for the synthesis of indenamines, indenols, and isoquinolinium salts through cobalt- and rhodium-catalysis were investigated using density functional theory calculations. We found that the valence charge of transition metals dramatically influences the reaction pathways. Catalytic reactions involving lower-oxidation-state transition metals (M I /M III , M = Co and Rh) generally favor a [3+2] cyclization pathway, whereas those involving higher oxidation states (M III /M V ) proceed through a [4+2] cyclization pathway. A catalytic cycle with novel M III /M V as a crucial species was successfully revealed for isoquinolinium salts synthesis, which highly valent M V was not only encountered in the [RhCp*]-catalysis but also in the [CoCp*]-catalysis.

  3. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application.

    PubMed

    Li, Shaolin; Wang, Wei; Liang, Feipeng; Zhang, Wei-Xian

    2017-01-15

    Treatment of wastewater containing heavy metals requires considerations on simultaneous removal of different ions, system reliability and quick separation of reaction products. In this work, we demonstrate that nanoscale zero-valent iron (nZVI) is an ideal reagent for removing heavy metals from wastewater. Batch experiments show that nZVI is able to perform simultaneous removal of different heavy metals and arsenic; reactive nZVI in uniform dispersion brings rapid changes in solution E h , enabling a facile way for reaction regulation. Microscope characterizations and settling experiments suggest that nZVI serves as solid seeds that facilitate products separation. A treatment process consisting of E h -controlled nZVI reaction, gravitational separation and nZVI recirculation is then demonstrated. Long-term (>12 months) operation shows that the process achieves >99.5% removal of As, Cu and a number of other toxic elements. The E h -controlled reaction system sustains a highly-reducing condition in reactor and reduces nZVI dosage. The process produces effluent of stable quality that meets local discharge guidelines. The gravitational separator shows high efficacy of nZVI recovery and the recirculation improves nZVI material efficiency, resulting in extraordinarily high removal capacities ((245mg As+226 mg-Cu)/g-nZVI). The work provides proof that nanomaterials can offer truly green and cost-effective solutions for wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Molecular precursor routes to transition metal sulfides

    NASA Astrophysics Data System (ADS)

    Dinnage, Christopher Walker

    This thesis is primarily concerned with the synthesis of homoleptic early transition meta thiolates and the subsequent preparation of bulk and thin-film metal disulfides from these compounds. Chapter 1 gives an introduction into the properties, preparation procedures and uses of bulk and thin-film transition metal disulfides as well as giving an overview of early transition metal thiolates synthesied so far in the literature (for titanium, zirconium, tantalum and niobium). Chapter 2 is concerned with the synthesis of a number of ionic and neutral transition metal thiolates. The main synthetic methodologies discussed in this chapter include substitution reactions of transition metal amides and alkyls with thiols, salt metathesis reactions of transition metal chlorides with alkali metal thiolates or with a base / thiol and the use of Grignard reagents. Chapter 3 discusses the preparation of bulk transition metal disulfides using the thiolates prepared in the previous chapter via a thio "sol-gel" route. The preparation of a range of bulk metal and mixed-metal disulfides using transition metal chlorides and hexamethyldisilathiane is also discussed in this chapter. Finally, chapter 4 is concerned with the attempted preparation of thin-films of some transition metal disulfides. Decomposition studies of some of the thiolates prepared in chapter 2 are discussed using thermal gravimetric analysis. Vapour-phase deposition studies are also explored in order to test the potential of the transition metal thiolates as precursors to the disulfides. Experiments using low-pressure chemical vapour deposition and aerosol-assisted chemical vapour deposition are also described.

  5. Mixed-valent dicobalt and iron-cobalt complexes with high-spin configurations and short metal-metal bonds.

    PubMed

    Zall, Christopher M; Clouston, Laura J; Young, Victor G; Ding, Keying; Kim, Hyun Jung; Zherebetskyy, Danylo; Chen, Yu-Sheng; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C

    2013-08-19

    Cobalt-cobalt and iron-cobalt bonds are investigated in coordination complexes with formally mixed-valent [M2](3+) cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co2(DPhF)3, which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L(Ph)), the isolation of a dicobalt homobimetallic and an iron-cobalt heterobimetallic are demonstrated. The new [Co2](3+) and [FeCo](3+) cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal-metal bond distances of 2.29 Å for Co-Co and 2.18 Å for Fe-Co; the latter is the shortest distance for an iron-cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoL(Ph) is more precisely described as (Fe0.94(1)Co0.06(1))(Co0.95(1)Fe0.05(1))L(Ph). The iron-cobalt heterobimetallic has been further characterized by Mössbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe2(DPhF)3. On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M2](3+) cores are fully delocalized.

  6. Microwave-assisted synthesis of transition metal phosphide

    DOEpatents

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  7. Pressure-Induced Charge-Order Melting and Reentrant Charge Carrier Localization in the Mixed-Valent Pb 3Rh 7O 15

    DOE PAGES

    Li, Yan; Sun, Zhao; Cai, Jia -Wei; ...

    2017-07-01

    Here, the mixed-valent Pbmore » $${}_{3}$$Rh $${}_{7}$$O$${}_{15}$$ undergoes a Verwey-type transition at $${T}_{{\\rm{v}}}\\approx 180$$ K, below which the development of Rh$${}^{3+}$$ /Rh$${}^{4+}$$ charge order induces an abrupt conductor-to-insulator transition in resistivity. Here we investigate the effect of pressure on the Verwey-type transition of Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ by measuring its electrical resistivity under hydrostatic pressures up to 8 GPa with a cubic anvil cell apparatus. We find that the application of high pressure can suppress the Verwey-type transition around 3 GPa, above which a metallic state is realized at temperatures below ~70 K, suggesting the melting of charge order by pressure. Interestingly, the low-temperature metallic region shrinks gradually upon further increasing pressure and disappears completely at P > 7 GPa, which indicates that the charge carriers in Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ undergo a reentrant localization under higher pressures. We have constructed a temperature-pressure phase diagram for Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ and compared to that of Fe$${}_{3}$$O$${}_{4}$$, showing an archetype Verwey transition.« less

  8. Hybrid zero valent iron (ZVI)/H2O2 oxidation process for landfill leachate treatment with novel nanosize metallic calcium/iron composite.

    PubMed

    Lee, Son Dong; Mallampati, Srinivasa Reddy; Lee, Byoung Ho

    2017-04-01

    A novel nanosize metallic calcium/iron dispersed reagent was synthesized and tested as coagulant/catalyst in a hybrid zero valent iron (ZVI)/H 2 O 2 oxidation process to treat leachate. Two different types of leachates, one from municipal solid waste (MSW) tipping hall (MSWIL) and second from an MSW landfill site (MSWLL), were collected and characterized. The morphology, elemental composition, and mineral phases of the nano-Ca/CaO and nano-Fe/Ca/CaO were characterized by scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS) and x-ray powder diffraction (XRD) analysis. The coagulation process with 2.5 g L -1 nano-Ca/CaO attained 64.0, 56.0, and 20.7% removal of color, chemical oxygen demand (COD), and total suspended solids (TSS) in MSWLL. With only 1.0 g L -1 of nano-Fe/Ca/CaO, relatively high color, COD and TSS removal was achieved in MSWLL at 67.5, 60.2, and 37.7%, respectively. The heavy metal removal efficiency reached 91-99% after treatment with nano-Fe/Ca/CaO in both leachate samples. The coupling process, using 1.0 g L -1 of nano-Fe/Ca/CaO and 20 mM H 2 O 2 doses, achieved enhancement removal of color, COD, and TSS, up to 95%, 96%, and 66%, respectively, without initial pH control. After this treatment, the color, COD, TSS, and heavy metals were significantly decreased, fitting the Korean discharge regulation limit. A hybrid coupled zero valent iron (ZVI)/H 2 O 2 oxidation process with novel nanosized metallic calcium/iron dispersed reagent proved to be a suitable treatment for dealing with leachate samples. Conventional treatments (biological or physicochemical) are not sufficient anymore to reach the level of purification needed to fully reduce the negative impact of landfill leachates on the environment. This implies that new treatment alternatives species must be proposed. A coupled zero valent iron (ZVI)/H 2 O 2 oxidation process proved to be a suitable treatment for dealing with leachate samples. Coagulation with nFe/Ca/CaO allows 91

  9. Donor/acceptor coupling in mixed-valent dinuclear iron polypyridyl complexes: experimental and theoretical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, C.M.; Derr, D.L.; Ferrere, S.

    1996-06-05

    Coupling between donor and acceptor orbitals for optically-induced intervalence electron transfer processes has been considered for a series of rigid mixed-valent dinuclear tris(2,2`-bipyridine)iron complexes. Each of the four complexes considered ontains three saturated bridges which link the two tris(2,2`-bipyridine)iron moieties. The bridging linkages are -CH{sub 2}CH{sub 2}-, -CH{sub 2}CH{sub 2}CH{sub 2}-, -CH{sub 2}OCH{sub 2}-. Despite differences in the composition of the bridges X-ray diffraction and/or molecular dynamics calculations show that the metal-metal separation and relative bipyridine orientations among all four complexes are nearly identical. Consequently, the only factor which differs significantly among these complexes and which might affect the donor-acceptormore » coupling in the mixed-valent forms is their connectivity. Theses complexes thus provide a unique opportunity to focus on potential superexchange coupling in the absence of ambiguities introduced by other structural and energetic considerations. Theories developed by Mulliken and Hush have been applied to intervalence charge-transfer transitions in order to obtain values of the coupling matrix elements, H{sub 12}. Configuration interaction calculations were also carried out for each of the [Fe{sub 2}(L){sub 3}]{sub 5+} complexes to provide theoretical values of H{sub 12} and the effective donor/acceptor separation distances (r{sub DA}). Experimental and theoretical results for H{sub 12} are in excellent agreement. 31 refs., 3 figs., 4 tabs.« less

  10. Spin-Polarization-Induced Preedge Transitions in the Sulfur K-Edge XAS Spectra of Open-Shell Transition-Metal Sulfates: Spectroscopic Validation of σ-Bond Electron Transfer

    DOE PAGES

    Frank, Patrick; Szilagyi, Robert K.; Gramlich, Volker; ...

    2017-01-09

    Sulfur K-edge X-ray absorption spectroscopy (XAS) spectra of the monodentate sulfate complexes [M II(itao)(SO 4)(H 2O) 0,1] (M = Co, Ni, Cu) and [Cu(Me 6tren)(SO 4)] exhibit well-defined preedge transitions at 2479.4, 2479.9, 2478.4, and 2477.7 eV, respectively, despite having no direct metal–sulfur bond, while the XAS preedge of [Zn(itao)(SO 4)] is featureless. The sulfur K-edge XAS of [Cu(itao)(SO 4)] but not of [Cu(Me 6tren)(SO 4)] uniquely exhibits a weak transition at 2472.1 eV, an extraordinary 8.7 eV below the first inflection of the rising K-edge. Preedge transitions also appear in the sulfur K-edge XAS of crystalline [M II(SO 4)(Hmore » 2O)] (M = Fe, Co, Ni, and Cu, but not Zn) and in sulfates of higher-valent early transition metals. Ground-state density functional theory (DFT) and time-dependent DFT (TDDFT) calculations show that charge transfer from coordinated sulfate to paramagnetic late transition metals produces spin polarization that differentially mixes the spin-up (α) and spin-down (β) spin orbitals of the sulfate ligand, inducing negative spin density at the sulfate sulfur. Ground-state DFT calculations show that sulfur 3p character then mixes into metal 4s and 4p valence orbitals and various combinations of ligand antibonding orbitals, producing measurable sulfur XAS transitions. TDDFT calculations confirm the presence of XAS preedge features 0.5–2 eV below the rising sulfur K-edge energy. The 2472.1 eV feature arises when orbitals at lower energy than the frontier occupied orbitals with S 3p character mix with the copper(II) electron hole. Transmission of spin polarization and thus of radical character through several bonds between the sulfur and electron hole provides a new mechanism for the counterintuitive appearance of preedge transitions in the XAS spectra of transition-metal oxoanion ligands in the absence of any direct metal–absorber bond. The 2472.1 eV transition is evidence for further radicalization from copper(II), which

  11. In situ removal of arsenic from groundwater by using permeable reactive barriers of organic matter/limestone/zero-valent iron mixtures.

    PubMed

    Gibert, O; de Pablo, J; Cortina, J-L; Ayora, C

    2010-08-01

    In this study, two mixtures of municipal compost, limestone and, optionally, zero-valent iron were assessed in two column experiments on acid mine treatment. The effluent solution was systematically analysed throughout the experiment and precipitates from both columns were withdrawn for scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry analysis and, from the column containing zero-valent iron, solid digestion and sequential extraction analysis. The results showed that waters were cleaned of arsenic, metals and acidity, but chemical and morphological analysis suggested that metal removal was not due predominantly to biogenic sulphide generation but to pH increase, i.e. metal (oxy)hydroxide and carbonate precipitation. Retained arsenic and metal removal were clearly associated to co-precipitation with and/or sorption on iron and aluminum (oxy)hydroxides. An improvement on the arsenic removal efficiency was achieved when the filling mixture contained zero-valent iron. Values of arsenic concentrations were then always below 10 microg/L.

  12. Transition Metal Compounds Towards Holography

    PubMed Central

    Dieckmann, Volker; Eicke, Sebastian; Springfeld, Kristin; Imlau, Mirco

    2012-01-01

    We have successfully proposed the application of transition metal compounds in holographic recording media. Such compounds feature an ultra-fast light-induced linkage isomerization of the transition-metal–ligand bond with switching times in the sub-picosecond regime and lifetimes from microseconds up to hours at room temperature. This article highlights the photofunctionality of two of the most promising transition metal compounds and the photophysical mechanisms that are underlying the hologram recording. We present the latest progress with respect to the key measures of holographic media assembled from transition metal compounds, the molecular embedding in a dielectric matrix and their impressive potential for modern holographic applications. PMID:28817028

  13. Method for dry etching of transition metals

    DOEpatents

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  14. Unexpected Formation of Early Late Heterobimetallic Complexes from Transition Metal Frustrated Lewis Pairs.

    PubMed

    Chapman, Andy M; Flynn, Stephanie R; Wass, Duncan F

    2016-02-01

    Reaction of transition metal "frustrated" Lewis pair compounds of the type [Cp2Zr(Me)(OC(CF3)2CH2P(t)Bu2)] with the low valent platinum species [Pt(norbornene)3] leads to the unexpected formation of a heterobimetallic species [Cp2Zr{ Pt(Me)}(OC(CF3)2CH2 P(t)Bu2)]. Single crystal X-ray analysis reveals an unusual T-shaped geometry at the platinum center, with a relevant C-Pt-P angle of 163.3(3)°. Treatment of this compound with PMe3 yields [Pt(PMe3)4] and regenerates the zirconium precursor. Treatment with [(Et2O)2H][B(C6F5)4] protonates off the methyl ligand to give an ether adduct at platinum. Analogous observations are made with titanium-platinum species. We propose the chemistry is best rationalized as a formal insertion of Pt(0) into a Zr-C or Ti-Cl bond.

  15. Nitrogen activation of carbon-encapsulated zero-valent iron nanoparticles and influence of the activation temperature on heavy metals removal

    NASA Astrophysics Data System (ADS)

    Bonaiti, Stefania; Calderon, Blanca; Collina, Elena; Lasagni, Marina; Mezzanotte, Valeria; Aracil, Ignacio; Fullana, Andrés

    2017-05-01

    Nanoparticles of zero-valent iron (nZVI) represent a promising agent for environmental remediation. This is due to their core-shell structure which presents the characteristics of both metallic and oxidised iron, leading to sorption and reductive precipitation of metal ions. Nevertheless, nZVI application presents some limitations regarding their rapid oxidation and aggregation in the media which leads to the delivery of the ions after some hours (the “aging effect”). To address these issues, modifications of nZVI structure and synthesis methods have been developed in the last years. The aging problem was solved by using nZVI encapsulated inside carbon spheres (CE-nZVI), synthetized through Hydrothermal Carbonization (HTC). Results showed high heavy metals removal percentage. Furthermore, CE-nZVI were activated with nitrogen in order to increase the metallic iron content. The aim of this study was to test CE-nZVI post-treated with nitrogen at different temperatures in heavy metals removal, demonstrating that the influence of the temperature was negligible in nanoparticles removal efficiency.

  16. Transition Metals and Virulence in Bacteria.

    PubMed

    Palmer, Lauren D; Skaar, Eric P

    2016-11-23

    Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. In response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface.

  17. Method for dry etching of transition metals

    DOEpatents

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  18. Transition Metals and Virulence in Bacteria

    PubMed Central

    Palmer, Lauren D.; Skaar, Eric P.

    2016-01-01

    Transition metals are required trace elements for all forms of life. Due to their unique inorganic and redox properties, transition metals serve as cofactors for enzymes and other proteins. In bacterial pathogenesis, the vertebrate host represents a rich source of nutrient metals, and bacteria have evolved diverse metal acquisition strategies. Host metal homeostasis changes dramatically in response to bacterial infections, including production of metal sequestering proteins and the bombardment of bacteria with toxic levels of metals. Presumably, in response, bacteria have evolved systems to subvert metal sequestration and toxicity. The coevolution of hosts and their bacterial pathogens in the battle for metals has uncovered emerging paradigms in social microbiology, rapid evolution, host specificity, and metal homeostasis across domains. This review focuses on recent advances and open questions in our understanding of the complex role of transition metals at the host-pathogen interface. PMID:27617971

  19. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater.

    PubMed

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-25

    The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+)) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Crystalline Coordination Networks of Zero-Valent Metal Centers: Formation of a 3-Dimensional Ni(0) Framework with m-Terphenyl Diisocyanides

    DOE PAGES

    Agnew, Douglas W.; DiMucci, Ida M.; Arroyave, Alejandra; ...

    2017-11-13

    A permanently porous, three-dimensional metal–organic material formed from zero-valent metal nodes is presented. Combination of ditopic m-terphenyl diisocyanide, [CNAr Mes2] 2, and the d 10 Ni(0) precursor Ni(COD) 2, produces a porous metal–organic material featuring tetrahedral [Ni(CNAr Mes2) 4] n structural sites. X-ray absorption spectroscopy provides firm evidence for the presence of Ni(0) centers, whereas gas-sorption and thermogravimetric analysis reveal the characteristics of a robust network with a microdomain N 2-adsorption profile.

  1. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    NASA Astrophysics Data System (ADS)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  2. REDUCTION OF AZO DYES WITH ZERO-VALENT IRON. (R827117)

    EPA Science Inventory

    The reduction of azo dyes by zero-valent iron metal (Fe0) at pH 7.0 in 10 mM HEPES buffer was studied in aqueous, anaerobic batch systems. Orange II was reduced by cleavage of the azo linkage, as evidenced by the production of sulfanilic acid (a substituted ani...

  3. Toxic metal immobilization in contaminated sediment using bentonite- and kaolinite-supported nano zero-valent iron

    NASA Astrophysics Data System (ADS)

    Tomašević, D. D.; Kozma, G.; Kerkez, Dj. V.; Dalmacija, B. D.; Dalmacija, M. B.; Bečelić-Tomin, M. R.; Kukovecz, Á.; Kónya, Z.; Rončević, S.

    2014-08-01

    The objective of this study was to investigate the possibility of using supported nanoscale zero-valent iron with bentonite and kaolinite for immobilization of As, Pb and Zn in contaminated sediment from the Nadela river basin (Serbia). Assessment of the sediment quality based on the pseudo-total metal content (As, Pb and Zn) according to the corresponding Serbian standards shows its severe contamination, such that it requires disposal in special reservoirs and, if possible, remediation. A microwave-assisted sequential extraction procedure was employed to assess potential metal mobility and risk to the aquatic environment. According to these results, As showed lower risk to the environment than Pb and Zn, which both represent higher risk to the environment. The contaminated sediment, irrespective of the different speciation of the treated metals, was subjected to the same treatment. Semi-dynamic leaching test, based on leachability index and effective diffusion coefficients, was conducted for As-, Pb- and Zn-contaminated sediments in order to assess the long-term leaching behaviour. In order to simulate "worst case" leaching conditions, the test was modified using acetic and humic acid solution as leachants instead of deionized water. A diffusion-based model was used to elucidate the controlling leaching mechanisms; in the majority of samples, the controlling leaching mechanism appeared to be diffusion. Three different single-step leaching tests were applied to evaluate the extraction potential of examined metals. Generally, the test results indicated that the treated sediment is safe for disposal and could even be considered for "controlled utilization".

  4. Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101 (Cr) modified zero valent iron nano-particles.

    PubMed

    Zhou, Qingxiang; Lei, Man; Wu, Yalin; Yuan, Yongyong

    2017-03-03

    Metal-organic framework material has been paid more attention because of its good physical and chemical properties. Nanoscale zero valent iron is also in the center of concern recently. Combination of their merits will give impressive results. Present study firstly synthesized a new magnetic nanomaterial nano-scale zero valent iron-functionalized metal-organic framworks MIL-101 (Fe@MIL-101) by co-precipitation method. The morphology and structure of the as-prepared Fe@MIL-101 were characterized by transmission electron microscopy and X-ray diffraction, etc. The experimental results showed that Fe@MIL-101 earned good adsorption ability to polycyclic aromatic hydrocarbons. The limits of detection of developed magnetic solid phase extraction were all below 0.064μgL -1 and precision can be expressed as relative standard deviation (RSD, %) and which was better than 4.4% (n=6). The real water analysis indicated that the spiked recoveries were satisfied, and Fe@MIL-101 earned excellent reusability. All these demonstrated that Fe@MIL-101 exhibited excellent adsorption capability to polycyclic aromatic hydrocarbons and would be a good adsorbent for development of new monitoring methods for environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Atomically thin transition metal layers: Atomic layer stabilization and metal-semiconductor transition

    NASA Astrophysics Data System (ADS)

    Hwang, Jeongwoon; Oh, Young Jun; Kim, Jiyoung; Sung, Myung Mo; Cho, Kyeongjae

    2018-04-01

    We have performed first-principle calculations to explore the possibility of synthesizing atomically thin transition metal (TM) layers. Buckled structures as well as planar structures of elemental 2D TM layers result in significantly higher formation energies compared with sp-bonded elemental 2D materials with similar structures, such as silicene and phosphorene. It is shown that the TM layers can be stabilized by surface passivation with HS, C6H5S2, or O, and O passivation is most effective. The surface oxygen passivation can improve stability leading to thermodynamically stable TM monolayers except Au, which is the most non-reactive metal element. Such stabilized TM monolayers also show an electronic structure transition from metallic state of free-standing TM layer to semiconducting O-passivated Mo and W monolayers with band gaps of 0.20-1.38 eV.

  6. Health and Economic Impact of Switching from a 4-Valent to a 9-Valent HPV Vaccination Program in the United States.

    PubMed

    Brisson, Marc; Laprise, Jean-François; Chesson, Harrell W; Drolet, Mélanie; Malagón, Talía; Boily, Marie-Claude; Markowitz, Lauri E

    2016-01-01

    Randomized clinical trials have shown the 9-valent human papillomavirus (HPV) vaccine to be highly effective against types 31/33/45/52/58 compared with the 4-valent. Evidence on the added health and economic benefit of the 9-valent is required for policy decisions. We compare population-level effectiveness and cost-effectiveness of 9- and 4-valent HPV vaccination in the United States. We used a multitype individual-based transmission-dynamic model of HPV infection and disease (anogenital warts and cervical, anogenital, and oropharyngeal cancers), 3% discount rate, and societal perspective. The model was calibrated to sexual behavior and epidemiologic data from the United States. In our base-case, we assumed 95% vaccine-type efficacy, lifelong protection, and a cost/dose of $145 and $158 for the 4- and 9-valent vaccine, respectively. Predictions are presented using the mean (80% uncertainty interval [UI] = 10(th)-90(th) percentiles) of simulations. Under base-case assumptions, the 4-valent gender-neutral vaccination program is estimated to cost $5500 (80% UI = 2400-9400) and $7300 (80% UI = 4300-11 000)/quality-adjusted life-year (QALY) gained with and without cross-protection, respectively. Switching to a 9-valent gender-neutral program is estimated to be cost-saving irrespective of cross-protection assumptions. Finally, the incremental cost/QALY gained of switching to a 9-valent gender-neutral program (vs 9-valent girls/4-valent boys) is estimated to be $140 200 (80% UI = 4200->1 million) and $31 100 (80% UI = 2100->1 million) with and without cross-protection, respectively. Results are robust to assumptions about HPV natural history, screening methods, duration of protection, and healthcare costs. Switching to a 9-valent gender-neutral HPV vaccination program is likely to be cost-saving if the additional cost/dose of the 9-valent is less than $13. Giving females the 9-valent vaccine provides the majority of benefits of a gender-neutral strategy. © The Author

  7. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types ofmore » systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.« less

  8. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Rapid Hydrogen and Oxygen Atom Transfer by a High-Valent Nickel-Oxygen Species.

    PubMed

    Corona, Teresa; Draksharapu, Apparao; Padamati, Sandeep K; Gamba, Ilaria; Martin-Diaconescu, Vlad; Acuña-Parés, Ferran; Browne, Wesley R; Company, Anna

    2016-10-05

    Terminal high-valent metal-oxygen species are key reaction intermediates in the catalytic cycle of both enzymes (e.g., oxygenases) and synthetic oxidation catalysts. While tremendous efforts have been directed toward the characterization of the biologically relevant terminal manganese-oxygen and iron-oxygen species, the corresponding analogues based on late-transition metals such as cobalt, nickel or copper are relatively scarce. This scarcity is in part related to the "Oxo Wall" concept, which predicts that late transition metals cannot support a terminal oxido ligand in a tetragonal environment. Here, the nickel(II) complex (1) of the tetradentate macrocyclic ligand bearing a 2,6-pyridinedicarboxamidate unit is shown to be an effective catalyst in the chlorination and oxidation of C-H bonds with sodium hypochlorite as terminal oxidant in the presence of acetic acid (AcOH). Insight into the active species responsible for the observed reactivity was gained through the study of the reaction of 1 with ClO - at low temperature by UV-vis absorption, resonance Raman, EPR, ESI-MS, and XAS analyses. DFT calculations aided the assignment of the trapped chromophoric species (3) as a nickel-hypochlorite species. Despite the fact that the formal oxidation state of the nickel in 3 is +4, experimental and computational analysis indicate that 3 is best formulated as a Ni III complex with one unpaired electron delocalized in the ligands surrounding the metal center. Most remarkably, 3 reacts rapidly with a range of substrates including those with strong aliphatic C-H bonds, indicating the direct involvement of 3 in the oxidation/chlorination reactions observed in the 1/ClO - /AcOH catalytic system.

  10. Mixed-Valent Dicobalt and Iron-Cobalt Complexes with High-Spin Configurations and Short Metal-Metal Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zall, Christopher M.; Clouston, Laura J.; Young, Jr., Victor G.

    2013-09-23

    Cobalt–cobalt and iron–cobalt bonds are investigated in coordination complexes with formally mixed-valent [M 2] 3+ cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co 2(DPhF) 3, which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L Ph), the isolation of a dicobalt homobimetallic and an iron–cobalt heterobimetallic aremore » demonstrated. The new [Co 2] 3+ and [FeCo] 3+ cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal–metal bond distances of 2.29 Å for Co–Co and 2.18 Å for Fe–Co; the latter is the shortest distance for an iron–cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoL Ph is more precisely described as (Fe 0.94(1)Co 0.06(1))(Co 0.95(1)Fe 0.05(1))L Ph. The iron–cobalt heterobimetallic has been further characterized by Mössbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe 2(DPhF) 3. On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M 2] 3+ cores are fully delocalized.« less

  11. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi.

    1983-08-16

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.

  12. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi

    1983-01-01

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  13. Nucleic acid-functionalized transition metal nanosheets for biosensing applications

    PubMed Central

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-01-01

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. PMID:27020066

  14. Mesoporous Transition Metal Oxides for Supercapacitors.

    PubMed

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-10-14

    Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  15. Mass fractionation processes of transition metal isotopes

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  16. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations.

    PubMed

    Sarkar, Biprajit; Patra, Srikanta; Fiedler, Jan; Sunoj, Raghavan B; Janardanan, Deepa; Lahiri, Goutam Kumar; Kaim, Wolfgang

    2008-03-19

    Electron-rich Ru(acac)2 (acac- = 2,4-pentanedionato) binds to the pi electron-deficient bis-chelate ligands L, L = 2,2'-azobispyridine (abpy) or azobis(5-chloropyrimidine) (abcp), with considerable transfer of negative charge. The compounds studied, (abpy)Ru(acac)2 (1), meso-(mu-abpy)[Ru(acac)2]2 (2), rac-(mu-abpy)[Ru(acac)2]2 (3), and (mu-abcp)[Ru(acac)2]2 (4), were calculated by DFT to assess the degree of this metal-to-ligand electron shift. The calculated and experimental structures of 2 and 3 both yield about 1.35 A for the length of the central N-N bond which suggests a monoanion character of the bridging ligand. The NBO analysis confirms this interpretation, and TD-DFT calculations reproduce the observed intense long-wavelength absorptions. While mononuclear 1 is calculated with a lower net ruthenium-to-abpy charge shift as illustrated by the computed 1.30 A for d(N-N), compound 4 with the stronger pi accepting abcp bridge is calculated with a slightly lengthened N-N distance relative to that of 2. The formulation of the dinuclear systems with monoanionic bridging ligands implies an obviously valence-averaged Ru(III)Ru(II) mixed-valent state for the neutral molecules. Mixed valency in conjunction with an anion radical bridging ligand had been discussed before in the discussion of MLCT excited states of symmetrically dinuclear coordination compounds. Whereas 1 still exhibits a conventional electrochemical and spectroelectrochemical behavior with metal centered oxidation and two ligand-based one-electron reduction waves, the two one-electron oxidation and two one-electron reduction processes for each of the dinuclear compounds Ru2.5(L*-)Ru2.5 reveal more unusual features via EPR and UV-vis-NIR spectroelectrochemistry. In spite of intense near-infrared absorptions, the EPR results show that the first reduction leads to Ru(II)(L*-)Ru(II) species, with an increased metal contribution for system 4*-. The second reduction to Ru(II)(L2-)Ru(II) causes the

  17. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.

    PubMed

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-03-15

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Quantifying ligand effects in high-oxidation-state metal catalysis

    NASA Astrophysics Data System (ADS)

    Billow, Brennan S.; McDaniel, Tanner J.; Odom, Aaron L.

    2017-09-01

    Catalysis by high-valent metals such as titanium(IV) impacts our lives daily through reactions like olefin polymerization. In any catalysis, optimization involves a careful choice of not just the metal but also the ancillary ligands. Because these choices dramatically impact the electronic structure of the system and, in turn, catalyst performance, new tools for catalyst development are needed. Understanding ancillary ligand effects is arguably one of the most critical aspects of catalyst optimization and, while parameters for phosphines have been used for decades with low-valent systems, a comparable system does not exist for high-valent metals. A new electronic parameter for ligand donation, derived from experiments on a high-valent chromium species, is now available. Here, we show that the new parameters enable quantitative determination of ancillary ligand effects on catalysis rate and, in some cases, even provide mechanistic information. Analysing reactions in this way can be used to design better catalyst architectures and paves the way for the use of such parameters in a host of high-valent processes.

  19. Charge Transfer Exciton in Halogen-Bridged Mixed-Valent Pt and Pd Complexes: Analysis Based on the Peierls-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Wada, Yoshiki; Mitani, Tadaoki; Yamashita, Masahiro; Koda, Takao

    1985-08-01

    Polarized reflection and luminescence have been measured for the single crystals of [MA2][MX2A2](ClO4)4 (M=Pt, Pd, X=Cl, Br, I and A=ethylenediamine, cyclohexanediamine). The strong absorption bands due to the charge-transfer (CT) exciton transitions between the mixed-valent metal ions have been investigated in detail in the visible or infrared energy regions. The dependence of the CT excitation energies on the species M and X is shown to be consistent with the prediction by the Peierls-Hubbard model which incorporates the effect of the electron-electron correlation on inter-metal sites. The oscillator strength of the CT excitons are observed to be enhanced by substituting heavier halogen ions. This enhancement is interpreted by a halogen-linked super-transfer mechanism. The unusually large values of the oscillator strength can be qualitatively explained in terms of the trimer CT model.

  20. Electrical Conductivity in Transition Metals

    ERIC Educational Resources Information Center

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  1. Mesoporous Transition Metal Oxides for Supercapacitors

    PubMed Central

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088

  2. Manipulating Light with Transition Metal Clusters, Organic Dyes, and Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogut, Serdar

    The primary goals of our research program is to develop and apply state-of-the-art first-principles methods to predict electronic and optical properties of three systems of significant scientific and technological interest: transition metal clusters, organic dyes, and metal-organic frameworks. These systems offer great opportunities to manipulate light for a wide ranging list of energy-related scientific problems and applications. During this grant period, we focused our investigations on the development, implementation, and benchmarking of many-body Green’s function methods (GW approximation and the Bethe-Salpeter equation) to examine excited-state properties of transition metal/transition-metal-oxide clusters and organic molecules that comprise the building blocks of dyesmore » and metal-organic frameworks.« less

  3. Cryptic Role of Zero-Valent Sulfur in Metal and Metalloid Geochemistry in Euxinic Waters

    NASA Astrophysics Data System (ADS)

    Helz, G. R.

    2014-12-01

    Natural waters that are isolated from the atmosphere in confined aquifers, euxinic basins and sediment pore waters often become sulfidic. These waters are conventionally described simply as reducing environments. But because nature does not constrain their exposure to reducing equivalents (e.g. from organic matter) and oxidizing equivalents (e.g. from Fe,Mn oxides), these reducing environments in fact vary cryptically in their redox characteristics. The implications for trace metal and metalloid cycles are only beginning to be explored. The activity of zero-valent sulfur (aS0), a virtual thermodynamic property, is a potentially useful index for describing this variation. At a particular temperature and ionic strength, aS0 can be quantified from knowledge of pH and the total S(0) to total S(-II) ratio. Although data are incomplete, the deep waters of the Black Sea (aS0 ca. 0.3) appear to be more reducing than the deep waters of the Cariaco Basin (aS0 ca. 0.5) even though both are perennially sulfidic. An apparent manifestation is a greater preponderance of greigite relative to mackinawite in the Cariaco Basin. Interestingly, greigite is stable relative to mackinawite in both basins but predominates only at the higher aS0. Values of aS0 in sulfidic natural waters span the range over which Hg-polysulfide complexes gain predominance over Hg sulfide complexes. Competition between these ligands is thought to influence biological methylation, mercury's route into aquatic and human food chains. In sulfidic deep ground waters, the redox state and consequent mobility of As, a global human hazard, will depend on aS0. At intermediate sulfide concentrations, higher aS0 favors more highly charged and thus less mobile As(V) species relative to As(III) species despite the overall reducing characteristics of such waters. Helz, G.R. (2014) Activity of zero-valent sulfur in sulfidic natural waters. Geochem. Trans. In press.

  4. High-Valent Organometallic Copper and Palladium in Catalysis

    PubMed Central

    Hickman, Amanda J.; Sanford, Melanie S.

    2015-01-01

    Preface Copper and palladium catalysts are critically important for numerous commercial chemical processes. Improvements in the activity, selectivity, and scope of these catalysts have the potential to dramatically reduce the environmental impact and increase the sustainability of chemical reactions. One rapidly emerging strategy to achieve these goals is to exploit “high-valent” copper and palladium intermediates in catalysis. This review describes exciting recent advances involving both the fundamental chemistry and the applications of these high-valent metal complexes in numerous synthetically useful catalytic transformations. PMID:22498623

  5. LABORATORY EVALUATION OF ZERO-VALENT IRON TO TREAT WATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    This study examines the applicability and limitations of granular zero-valent iron for the treatment of water impacted by mine wastes. Rates of acid neutralization and of metal (Cu, Cd, Ni, Zn, Hg, Al, and Mn) and metalloid (As) uptake were determined in batch systems using simu...

  6. Spectroscopic studies of transition-metal ions in molten alkali-metal carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, V.A.; Maciejewski, M.L.

    This paper presents the results of electronic absorption and /sup 13/C-NMR measurements on molten alkali metal formates and acetates and on solutions of selected 3d transition metal ions therein. These studies provide a unique opportunity to explore (1) the highly ordered nature of alkali carboxylates, (2) the ligand field properties of acetate and formate ions, and (3) the coordination chemistry of the 3d transition metals in molten carboxylates. 1 figure, 2 tables.

  7. Porous metals from sintering of nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappillino, Patrick J.; Robinson, David B.

    A method including encapsulating or capping metallic nanoparticles by a dendrimer or a polymer with binding sites for metal particless or metal ions dispersed in a fluid; modifying the fluid to disrupt the interaction of the dendrimer or polymer with the particles; and subsequently or concomitantly sintering or partially consolidating the zero valent metal. A method including introducing a first metal salt and a second metal salt into a dendrimer or a polymer with binding sites for metals or metal ions; reducing a metal ion of the first metal salt to a zero valent first metal and a metal ionmore » of the second metal salt to a zero valend second metal; disrupting an interaction between the dendrimer or the polymer and the first metal and the second metal; and sintering or partially consolidating the first metal and the second metal.« less

  8. Environmentally relevant metal and transition metal ions enhance Fc epsilon RI-mediated mast cell activation.

    PubMed Central

    Walczak-Drzewiecka, Aurelia; Wyczólkowska, Janina; Dastych, Jaroslaw

    2003-01-01

    Upon contact with allergen, sensitized mast cells release highly active proinflammatory mediators. Allergen-mediated mast cell activation is an important mechanism in the pathogenesis of atopic asthma. Asthmatic patients are especially susceptible to air pollution. Epidemiologic studies found a positive correlation between severity of symptoms among asthmatic patients and the level of particulate matter (PM) in the air. Among the constituents of PM are metals and transition metals, which could mediate some of its adverse effects on human health. We sought to determine the effect of metal and transition metal ions on allergen-mediated mast cell activation. We observed that several metal and transition metal ions activated mast cells and enhanced allergen-mediated mast cell activation. Thus, Al(3+), Cd(2+), and Sr(2+) induced release of granule-associated N-acetyl-ss-d-hexosaminidase, and Al(3+) and Ni(2+) enhanced antigen-mediated release. Metal and transition metal ions also induced significant secretion of interleukin (IL)-4 and increased antigen-mediated IL-4 secretion in mast cells. These effects of metal and transition metal ions on mast cells were observed at concentrations that do not result in direct cytotoxicity and might be relevant for environmental exposure. Thus, metals and transition metals could increase the level of allergen-mediated mast cell activation, which might be one of the mechanisms mediating exacerbation of allergen-driven asthma symptoms by air pollution. PMID:12727598

  9. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2017-12-09

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  10. Transition Metal Switchable Mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  11. Understanding topological phase transition in monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha-Jun; Chang, K. J.

    2016-03-01

    Despite considerable interest in layered transition metal dichalcogenides (TMDs), such as M X2 with M =(Mo ,W ) and X =(S ,Se ,Te ) , the physical origin of their topological nature is still poorly understood. In the conventional view of topological phase transition (TPT), the nontrivial topology of electron bands in TMDs is caused by the band inversion between metal d - and chalcogen p -orbital bands where the former is pulled down below the latter. Here, we show that, in TMDs, the TPT is entirely different from the conventional speculation. In particular, M S2 and M S e2 exhibits the opposite behavior of TPT such that the chalcogen p -orbital band moves down below the metal d -orbital band. More interestingly, in M T e2 , the band inversion occurs between the metal d -orbital bands. Our findings cast doubts on the common view of TPT and provide clear guidelines for understanding the topological nature in new topological materials to be discovered.

  12. Compositional dependence of elastic moduli for transition-metal oxide spinels

    NASA Astrophysics Data System (ADS)

    Reichmann, H. J.; Jacobsen, S. D.; Boffa Ballaran, T.

    2012-12-01

    Spinel phases (AB2O4) are common non-silicate oxides in the Earth's crust and upper mantle. A characteristic of this mineral group is the ability to host a wide range of transition metals. Here we summarize the influence of transition metals (Fe, Zn, and Mn) on the pressure dependence of elastic moduli of related spinels (magnetite, gahnite, and franklinite) using GHz-ultrasonic interferometry. Measurements were carried out up to 10 GPa in diamond-anvil cells using hydrostatic pressure media. Transition metals with unfilled 3d orbitals strongly influence the elastic properties of spinels. Franklinite (Zn,Mn)Fe2O4 and magnetite Fe3O4 with transition metals on both A and B cation sites exhibit pressure-induced mode softening of C44, whereas C44 of gahnite(ZnAl2O4) and spinel (MgAl2O4) exhibit positive pressure derivatives of the shear moduli. Spinels with two transition elements tend to undergo phase changes at a lower pressure than those with none or only one transition metal. Along the Mn-Zn solid solution, the variation of moduli with composition is non-linear, and a mid-range franklinite composition studied here shows a minimum in C44 compared with either end-member: MnFe2O 4 or ZnFe2O4. In general, the linear variation of sound velocity with density (Birch's Law) is followed by spinels, however spinels containing only one or no transition metals follow a distinct slope from those containing transition metals on both A and B sites. The Cauchy relation, 0.5(C12 - C44) = P is fulfilled by spinels with only one or no transition metals, suggesting that that Coulomb interactions dominate. Spinels with two transition metals fail to meet the Cauchy relation, indicating strong directional dependence and covalent character of bonding. The bonding character of transition metals is crucial to understanding the elastic behavior of natural and synthetic spinel solid solutions containing transition metals.

  13. First-row transition metal hydrogenation and hydrosilylation catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trovitch, Ryan J.; Mukhopadhyay, Tufan K.; Pal, Raja

    Transition metal compounds, and specifically transition metal compounds having a tetradentate and/or pentadentate supporting ligand are described, together with methods for the preparation thereof and the use of such compounds as hydrogenation and/or hydrosilylation catalysts.

  14. Intercalation of Transition Metals into Stacked Benzene Rings: A Model Study of the Intercalation of Transition Metals into Bilayered Graphene.

    PubMed

    Youn, Il Seung; Kim, Dong Young; Singh, N Jiten; Park, Sung Woo; Youn, Jihee; Kim, Kwang S

    2012-01-10

    Structures of neutral metal-dibenzene complexes, M(C6H6)2 (M = Sc-Zn), are investigated by using Møller-Plesset second order perturbation theory (MP2). The benzene molecules change their conformation and shape upon complexation with the transition metals. We find two types of structures: (i) stacked forms for early transition metal complexes and (ii) distorted forms for late transition metal ones. The benzene molecules and the metal atom are bound together by δ bonds which originate from the interaction of π-MOs and d orbitals. The binding energy shows a maximum for Cr(C6H6)2, which obeys the 18-electron rule. It is noticeable that Mn(C6H6)2, a 19-electron complex, manages to have a stacked structure with an excess electron delocalized. For other late transition metal complexes having more than 19 electrons, the benzene molecules are bent or stray away from each other to reduce the electron density around a metal atom. For the early transition metals, the M(C6H6) complexes are found to be more weakly bound than M(C6H6)2. This is because the M(C6H6) complexes do not have enough electrons to satisfy the 18-electron rule, and so the M(C6H6)2 complexes generally tend to have tighter binding with a shorter benzene-metal length than the M(C6H6) complexes, which is quite unusual. The present results could provide a possible explanation of why on the Ni surface graphene tends to grow in a few layers, while on the Cu surface the weak interaction between the copper surface and graphene allows for the formation of a single layer of graphene, in agreement with chemical vapor deposition experiments.

  15. Charge disproportionation and the pressure-induced insulator–metal transition in cubic perovskite PbCrO3

    PubMed Central

    Cheng, Jinguang; Kweon, K. E.; Larregola, S. A.; Ding, Yang; Shirako, Y.; Marshall, L. G.; Li, Z.-Y.; Li, X.; dos Santos, António M.; Suchomel, M. R.; Matsubayashi, K.; Uwatoko, Y.; Hwang, G. S.; Goodenough, John B.; Zhou, J.-S.

    2015-01-01

    The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr4+ → 2Cr3+ + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations. PMID:25624483

  16. Charge disproportionation and the pressure-induced insulator–metal transition in cubic perovskite PbCrO 3

    DOE PAGES

    Cheng, Jinguang; Kweon, K. E.; Larregola, S. A.; ...

    2015-01-26

    The perovskite PbCrO 3 is an antiferromagnetic insulator. But, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. Our report shows a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. Furthermore, we argue that a charge disproportionation 3Cr 4+more » → 2Cr 3+ + Cr 6+ in association with the 6s-p hybridization on the Pb 2+ is responsible for the insulating ground state of PbCrO 3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT + U) calculations.« less

  17. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2017-12-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  18. Transition Metal Switchable Mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  19. A Transition to Metallic Hydrogen: Evidence of the Plasma Phase Transition

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T =0 K to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K in a diamond anvil cell using pulsed laser heating of the sample. We present evidence in two forms: a plateau in the heating curves (average laser power vs temperature) characteristic of a first-order phase transition with latent heat, and changes in transmittance and reflectance characteristic of a metal for temperatures above the plateau temperature. For thick films the reflectance saturates at ~0.5. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition. The NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H supported this research.

  20. Electronic doping of transition metal oxide perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammarata, Antonio, E-mail: cammaant@fel.cvut.cz; Rondinelli, James M.

    2016-05-23

    CaFeO{sub 3} is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO{sub 3}. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  1. Recovery of precious metals from low-grade automobile shredder residue: A novel approach for the recovery of nanozero-valent copper particles.

    PubMed

    Singh, Jiwan; Lee, Byeong-Kyu

    2016-02-01

    The presence of precious metals (PMs) in low-grade automobile shredder residue (ASR) makes it attractive for recycling. This study investigated the leaching and recovery characteristics of two PMs (Cu and Ag) and two heavy metals (Mn and Co) from ASR. The effects of H2O2, leaching temperature, liquid to solid (L/S) ratio, and particle size on metal leaching were determined in an aqueous solution of 0.5M nitric acid. The metal leaching rate was increased with increasing nitric acid concentration, amount of H2O2, L/S ratio and temperature. The leaching kinetics was analyzed by using a second-order reaction model. In the analysis of leaching kinetics, the metal leaching data were well fitted (R(2)⩾0.99) with the second-order reaction model. The activation energy (kJ/mol) for metal leaching was 39.6 for Cu, 17.1 for Ag, 17.3 for Mn and 29.2 for Co. Metal recovery was carried out by fractional precipitation with the addition of advanced Fenton's regent. Metal recovery efficiency was increased to 99.95% for Cu, 99.8% for Mn, 90.0% for Ag and 96.46% for Co with the advanced Fenton's regent. In particular, a novel finding of the PM recovery is that Cu can also be recovered directly from the leachate of ASR in the form of zero-valent copper (ZVC) nanoparticles (NPs). Hydrometallurgical recovery of the metals from ASR using nitric acid is highly efficient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Transition metals in superheat melts

    NASA Technical Reports Server (NTRS)

    Jakes, Petr; Wolfbauer, Michael-Patrick

    1993-01-01

    A series of experiments with silicate melts doped with transition element oxides was carried out at atmospheric pressures of inert gas at temperatures exceeding liquidus. As predicted from the shape of fO2 buffer curves in T-fO2 diagrams the reducing conditions for a particular oxide-metal pair can be achieved through the T increase if the released oxygen is continuously removed. Experimental studies suggest that transition metals such as Cr or V behave as siderophile elements at temperatures exceeding liquidus temperatures if the system is not buffered by the presence of other oxide of more siderophile element. For example the presence of FeO prevents the reduction of Cr2O3. The sequence of decreasing siderophility of transition elements at superheat conditions (Mo, Ni, Fe, Cr) matches the decreasing degree of depletion of siderophile elements in mantle rocks as compared to chondrites.

  3. Phase stability of transition metals and alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.

    1997-06-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloymore » systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results.« less

  4. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  5. cis-2,2'-Bipyrimidine-bridged polynuclear complex: a stairway-like mixed-valent {Fe(4)} cluster.

    PubMed

    Alborés, Pablo; Rentschler, Eva

    2010-10-04

    We report the first example of a polynuclear discrete coordination compound exhibiting only bpym bridges and containing a first-row d transition metal. A smooth self-assembly one-pot synthetic route, starting from simply FeCl(2) and FeCl(3) hydrates, allowed us to prepare a tetranuclear Fe(4) cluster with a stairway-like structure and the formula cis-{[(H(2)O)Cl(3)Fe(III)-μ(bpym)Fe(II)Cl(2)]}(2)-μ(bpym) (1) . All spectroscopic data suggest that complex 1 is a valence-localized mixed-valent Fe(II)-Fe(III) cluster with typical Mössbauer lines for both sites, which do not change with temperature. Reflectance spectroscopy did not allow one to distinguish an intervalence charge-transfer band. However, time-dependent density functional theory (DFT) calculations predict a weak high-energy Fe(II) → Fe(III) transition. Regarding the magnetic properties, the high-spin Fe(II) and Fe(III) ions interact in a weakly antiferromagnetic way with isotropic J constants of only a few wavenumbers as derived from direct-current susceptibility and magnetization data. Broken-symmetry DFT calculations support these observations.

  6. Electroforming and Switching in Oxides of Transition Metals: The Role of Metal Insulator Transition in the Switching Mechanism

    NASA Astrophysics Data System (ADS)

    Chudnovskii, F. A.; Odynets, L. L.; Pergament, A. L.; Stefanovich, G. B.

    1996-02-01

    Electroforming and switching effects in sandwich structures based on anodic films of transition metal oxides (V, Nb, Ti, Fe, Ta, W, Zr, Hf, Mo) have been studied. After being electroformed, some materials exhibited current-controlled negative resistance with S-shapedV-Icharacteristics. For V, Fe, Ti, and Nb oxides, the temperature dependences of the threshold voltage have been measured. As the temperature increased,Vthdecreased to zero at a critical temperatureT0, which depended on the film material. Comparison of theT0values with the temperatures of metal-insulator phase transition for some compounds (Tt= 120 K for Fe3O4, 340 K for VO2, ∼500 K for Ti2O3, and 1070 K for NbO2) showed that switching was related to the transition in the applied electric field. Channels consisting of the above-mentioned lower oxides were formed in the initial anodic films during the electroforming. The possibility of formation of these oxides with a metal-insulator transition was confirmed by thermodynamic calculations.

  7. Semiconducting transition metal oxides.

    PubMed

    Lany, Stephan

    2015-07-22

    Open shell transition metal oxides are usually described as Mott or charge transfer insulators, which are often viewed as being disparate from semiconductors. Based on the premise that the presence of a correlated gap and semiconductivity are not mutually exclusive, this work reviews electronic structure calculations on the binary 3d oxides, so to distill trends and design principles for semiconducting transition metal oxides. This class of materials possesses the potential for discovery, design, and development of novel functional semiconducting compounds, e.g. for energy applications. In order to place the 3d orbitals and the sp bands into an integrated picture, band structure calculations should treat both contributions on the same footing and, at the same time, account fully for electron correlation in the 3d shell. Fundamentally, this is a rather daunting task for electronic structure calculations, but quasi-particle energy calculations in GW approximation offer a viable approach for band structure predictions in these materials. Compared to conventional semiconductors, the inherent multivalent nature of transition metal cations is more likely to cause undesirable localization of electron or hole carriers. Therefore, a quantitative prediction of the carrier self-trapping energy is essential for the assessing the semiconducting properties and to determine whether the transport mechanism is a band-like large-polaron conduction or a small-polaron hopping conduction. An overview is given for the binary 3d oxides on how the hybridization between the 3d crystal field symmetries with the O-p orbitals of the ligands affects the effective masses and the likelihood of electron and hole self-trapping, identifying those situations where small masses and band-like conduction are more likely to be expected. The review concludes with an illustration of the implications of the increased electronic complexity of transition metal cations on the defect physics and doping, using

  8. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts

    DOE PAGES

    Hunt, Sean T.; Milina, Maria; Alba-Rubio, Ana C.; ...

    2016-05-20

    Here, we demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti 0.1W 0.9C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading,more » enhance the activity, and increase the stability of noble metal catalysts.« less

  9. Transition-Metal Decorated Aluminum Nanocrystals.

    PubMed

    Swearer, Dayne F; Leary, Rowan K; Newell, Ryan; Yazdi, Sadegh; Robatjazi, Hossein; Zhang, Yue; Renard, David; Nordlander, Peter; Midgley, Paul A; Halas, Naomi J; Ringe, Emilie

    2017-10-24

    Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.

  10. Pressure induced structural phase transition in IB transition metal nitrides compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soni, Shubhangi; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk; Jain, A.

    2015-06-24

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbormore » ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.« less

  11. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  12. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  13. Ferroelectric control of metal-insulator transition

    NASA Astrophysics Data System (ADS)

    He, Xu; Jin, Kui-juan; Ge, Chen; Ma, Zhong-shui; Yang, Guo-zhen

    2016-03-01

    We propose a method of controlling the metal-insulator transition of one perovskite material at its interface with another ferroelectric material based on first principle calculations. The operating principle is that the rotation of oxygen octahedra tuned by the ferroelectric polarization can modulate the superexchange interaction in this perovskite. We designed a tri-color superlattice of (BiFeO3)N/LaNiO3/LaTiO3, in which the BiFeO3 layers are ferroelectric, the LaNiO3 layer is the layer of which the electronic structure is to be tuned, and LaTiO3 layer is inserted to enhance the inversion asymmetry. By reversing the ferroelectric polarization in this structure, there is a metal-insulator transition of the LaNiO3 layer because of the changes of crystal field splitting of the Ni eg orbitals and the bandwidth of the Ni in-plane eg orbital. It is highly expected that a metal-transition can be realized by designing the structures at the interfaces for more materials.

  14. Trends in Ionization Energy of Transition-Metal Elements

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2005-01-01

    A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…

  15. Harnessing the metal-insulator transition for tunable metamaterials

    NASA Astrophysics Data System (ADS)

    Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Bingham, Nicholas S.; Suess, Ryan J.; Mathews, Scott A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2017-08-01

    The control of light-matter interaction through the use of subwavelength structures known as metamaterials has facilitated the ability to control electromagnetic radiation in ways not previously achievable. A plethora of passive metamaterials as well as examples of active or tunable metamaterials have been realized in recent years. However, the development of tunable metamaterials is still met with challenges due to lack of materials choices. To this end, materials that exhibit a metal-insulator transition are being explored as the active element for future metamaterials because of their characteristic abrupt change in electrical conductivity across their phase transition. The fast switching times (▵t < 100 fs) and a change in resistivity of four orders or more make vanadium dioxide (VO2) an ideal candidate for active metamaterials. It is known that the properties associated with thin film metal-insulator transition materials are strongly dependent on the growth conditions. For this work, we have studied how growth conditions (such as gas partial pressure) influence the metalinsulator transition in VO2 thin films made by pulsed laser deposition. In addition, strain engineering during the growth process has been investigated as a method to tune the metal-insulator transition temperature. Examples of both the optical and electrical transient dynamics facilitating the metal-insulator transition will be presented together with specific examples of thin film metamaterial devices.

  16. Maximum-valence radii of transition metals

    PubMed Central

    Pauling, Linus

    1975-01-01

    In many of their compounds the transition metals have covalence 9, forming nine bonds with use of nine hybrid spd bond orbitals. A set of maximum-valence single-bond radii is formulated for use in these compounds. These radii are in reasonably good agreement with observed bond lengths. Quadruple bonds between two transition metal atoms are about 50 pm (iron-group atoms) or 55 pm (palladium and platinum-group atoms) shorter than single bonds. This amount of shortening corresponds to four bent single bonds with the best set of bond angles, 79.24° and 128.8°. PMID:16578730

  17. Impurities in Antiferromagnetic Transition-Metal Oxides - Symmetry and Optical Transitions

    NASA Astrophysics Data System (ADS)

    Petersen, John Emil, III

    The study of antiferromagnetic transition-metal oxides is an extremely active area in the physical sciences, where condensed matter physics, inorganic chemistry, and materials science blend together. The sheer number of potential commercial applications is staggering, but much of the fundamental science remains unexplained. This is not due to a lack of effort, however, as theorists have been struggling to understand these materials for decades - particularly the character of the band edges and first optical transitions. The difficulty lies in the strong correlation or Coloumb attraction between the electrons in the anisotropic d orbitals, which conventional band theory cannot describe adequately. The correlation problem is approached here by the well-accepted method of adding a Hubbard potential energy term to the ground state Hamiltonian, calculated within Density Functional Theory. The frequency-dependent complex dielectric function is calculated within the Independent Particle Approximation, and optical transitions are evaluated in multiple different ways. Peaks in the imaginary part of the dielectric function are compared energetically to orbitally decomposed density of states calculations. Optical transitions are typically analyzed in terms of atomic orbitals, which, strictly speaking, gives misleading results. Here, however, from the calculated data, two alternative interpretations are analyzed for each material studied. The first employs rigorous group theoretical analysis to determine allowed electric-dipole transitions, taking into account both orbital hybridization and crystal symmetry. The second interpretation is that of metal cation site hopping. In this interpretation, carriers hop from the x2 - y2 d orbital of one metal cation lattice site to the next metal cation site which is antiferromagnetically aligned. At times, thoughout this work, one interpretation is favorable to the other. Which interpretation is most valid depends on the material

  18. Origin of Transitions between Metallic and Insulating States in Simple Metals

    DOE PAGES

    Naumov, Ivan I.; Hemley, Russell J.

    2015-04-17

    Unifying principles that underlie recently discovered transitions between metallic and insulating states in elemental solids under pressure are developed. Using group theory arguments and first principles calculations, we show that the electronic properties of the phases involved in these transitions are controlled by symmetry principles not previously recognized. The valence bands in these systems are described by simple and composite band representations constructed from localized Wannier functions centered on points unoccupied by atoms, and which are not necessarily all symmetrical. The character of the Wannier functions is closely related to the degree of s-p(-d) hybridization and reflects multi-center chemical bondingmore » in these insulating states. The conditions under which an insulating state is allowed for structures having an integer number of atoms per primitive unit cell as well as re-entrant (i.e., metal-insulator-metal) transition sequences are detailed, resulting in predictions of novel behavior such as phases having three-dimensional Dirac-like points. The general principles developed are tested and applied to the alkali and alkaline earth metals, including elements where high-pressure insulating phases have been identified or reported (e.g., Li, Na, and Ca).« less

  19. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    PubMed

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    DOEpatents

    Striebel, Kathryn A.; Wen, Shi-Jie

    2000-01-01

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

  1. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, Nenad M.; Chen, Jian

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

  2. Ligand field splittings in core level transitions for transition metal (TM) oxides: Tanabe-Sugano diagrams and (TM) dangling bonds in vacated O-atom defects

    NASA Astrophysics Data System (ADS)

    Lucovsky, Gerry; Wu, Kun; Pappas, Brian; Whitten, Jerry

    2013-04-01

    Defect states in the forbidden band-gap below the conduction band edge are active as electron traps in nano-grain high-) transition metal (TM) oxides with thickness >0.3 nm, e.g., ZrO2 and HfO2. These oxides have received considerable attention as gate-dielectrics in complementary metal oxide semiconductor (CMOS) devices, and more recently are emerging as candidates for charge storage and memory devices. To provide a theoretical basis for device functionality, ab-initio many-electron theory is combined with X-ray absorption spectroscopy (XAS) to study O K edge and TM core level transitions. These studies identify ligand field splittings (ΔLF) for defect state features,. When compared with those obtained from O-atom and TM-atom core spectroscopic transitions, this provides direct information about defect state sun-nm bonding arrangements. comparisons are made for (i) elemental TiO2 and Ti2O3 with different formal ionic charges, Ti4+ and Ti3+ and for (ii) Magneli Phase alloys, TinO2n-1, n is an integer 9>=n>3, and (TiO2)x(HfO2)1-x alloys. The alloys display multi-valent behavior from (i) different ionic-charge states, (ii} local bond-strain, and (iii) metallic hopping transport. The intrinsic bonding defects in TM oxides are identified as pairs of singly occupied dangling bonds. For 6-fold coordinated Ti-oxides defect excited states in 2nd derivative O K pre-edge spectra are essentially the same as single Ti-atom d2 transitions in Tanabe-Sugano (T-S) diagrams. O-vacated site defects in 8-fold coordinated ZrO2 and HfO2 are described by d8 T-S diagrams. T-S defect state ordering and splittings are functions of the coordination and symmetry of vacated site bordering TM atoms. ΔLF values from the analysis of T-S diagrams indicate medium range order (MRO) extending to 3rd and 4th nearest-neighbor (NN) TM-atoms. Values are different for 6-fold Ti, and 8-fold ZrO2 and HfO2, and scale inversely with differences in respective formal ionic radii. O-vacated site bonding

  3. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  4. Metal-Insulator Transition in W-doped VO2 Nanowires

    NASA Astrophysics Data System (ADS)

    Long, Gen; Parry, James; Whittaker, Luisa; Banerjee, Sarbajit; Zeng, Hao

    2010-03-01

    We report a systematic study of the metal-insulator transition in W-doped VO2 nanowires. Magnetic susceptibility were measured for a bulk amount of VO2 nanowire powder. The susceptibility shows a sharp drop with decreasing temperature corresponding to the metal-insulator transition. The transition shows large temperature hysteresis for cooling and heating. With increasing doping concentration, the transition temperatures decreases systematically from 320 K to 275K. Charge transport measurements on the same nanowires showed similar behavior. XRD and TEM measurements were taken to further determine the structure of the materials in study.

  5. Luminescent molecular rods - transition-metal alkynyl complexes.

    PubMed

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugatedπ-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only throughσ-bonding but also viaπ-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with goodσ-donor,π-donor andπ-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes.

  6. Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors

    DOE PAGES

    Gao, Jian; Kim, Young Duck; Liang, Liangbo; ...

    2016-09-20

    Semiconductor impurity doping has enabled an entire generation of technology. The emergence of alternative semiconductor material systems, such as transition metal dichalcogenides (TMDCs), requires the development of scalable doping strategies. We report an unprecedented one-pot synthesis for transition-metal substitution in large-area, synthetic monolayer TMDCs. Electron microscopy, optical and electronic transport characterization and ab initio calculations indicate that our doping strategy preserves the attractive qualities of TMDC monolayers, including semiconducting transport and strong direct-gap luminescence. These results are expected to encourage exploration of transition-metal substitution in two-dimensional systems, potentially enabling next-generation optoelectronic technology in the atomically-thin regime.

  7. Preparation and magnetic properties of phthalocyanine-based carbon materials containing transition metals

    NASA Astrophysics Data System (ADS)

    Honda, Z.; Sato, S.; Hagiwara, M.; Kida, T.; Sakai, M.; Fukuda, T.; Kamata, N.

    2016-07-01

    A simple method for the preparation of bulk quantities of magnetic carbon materials, which contain uniformly dispersed transition metals (M = Fe, Co, Ni, and Cu) as the magnetic components, is presented. By using highly chlorinated metal phthalocyanine as the building block and potassium as the coupling reagent, phthalocyanine-based carbon materials (PBCMs) containing transition metals were obtained. Our experiments demonstrate the structure of these PBCMs consists of transition metals embedded in graphitic carbon that includes a square planar MN4 magnetic core and the Fe and Co-PBCM possess spontaneous magnetization at room temperature. In addition, carbon-coated transition metal particles were obtained by the Wurtz-type reaction with excess amount of potassium coupling agent. The large transition metal surface area and magnetization of these M-PBCMs are useful for spintronic and catalytic applications.

  8. Stable isotopes of transition and post-transition metals as tracers in environmental studies

    USGS Publications Warehouse

    Bullen, Thomas D.; Baskaran, Mark

    2011-01-01

    The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.

  9. Cascade morphology transition in bcc metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Selby, A.; Juslin, Niklas

    2015-06-10

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent,more » $b$, in the defect production curve as a function of cascade energy ($$N_F$$$ \\sim$$$E_{MD}^b$$). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, $$\\mu$$, between the high- and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of $$\\mu$$ as a function of displacement threshold energy, $$E_d$$, is presented for bcc metals.« less

  10. Cascade morphology transition in bcc metals

    DOE PAGES

    Setyawan, Wahyu; Selby, Aaron P.; Juslin, Niklas; ...

    2015-05-18

    Energetic atom collisions in solids induce shockwaves with complex morphologies. In this paper, we establish the existence of a morphological transition in such cascades. The order parameter of the morphology is defined as the exponent, b, in the defect production curve as a function of cascade energy (N-F similar to E-MD(b)). Response of different bcc metals can be compared in a consistent energy domain when the energy is normalized by the transition energy, mu, between the high-and the low-energy regime. Using Cr, Fe, Mo and W data, an empirical formula of mu as a function of displacement threshold energy, E-d,more » is presented for bcc metals.« less

  11. Trion formation dynamics in monolayer transition metal dichalcogenides

    DOE PAGES

    Singh, Akashay; Moody, Galan; Schaibley, John R.; ...

    2016-01-05

    Here, we report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides, specifically molybdenum diselenide (MoSe 2), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transition, trions are generated on a picosecond time scale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ~50%. This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in transition metal dichalcogenides.

  12. Novel photoinduced phase transitions in transition metal oxides and diluted magnetic semiconductors.

    PubMed

    Mizokawa, Takashi

    2012-10-23

    Some transition metal oxides have frustrated electronic states under multiphase competition due to strongly correlated d electrons with spin, charge, and orbital degrees of freedom and exhibit drastic responses to external stimuli such as optical excitation. Here, we present photoemission studies on Pr0.55(Ca1 - ySry)0.45MnO3 (y = 0.25), SrTiO3, and Ti1 - xCoxO2 (x = 0.05, 0.10) under laser illumination and discuss electronic structural changes induced by optical excitation in these strongly correlated oxides. We discuss the novel photoinduced phase transitions in these transition metal oxides and diluted magnetic semiconductors on the basis of polaronic pictures such as orbital, ferromagnetic, and ferroelectric polarons.

  13. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    DOEpatents

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  14. Transition-metal-ion-mediated polymerization of dopamine: mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticle-graphene hybrids.

    PubMed

    Yang, Liping; Kong, Junhua; Zhou, Dan; Ang, Jia Ming; Phua, Si Lei; Yee, Wu Aik; Liu, Hai; Huang, Yizhong; Lu, Xuehong

    2014-06-16

    Inspired by the high transition-metal-ion content in mussel glues, and the cross-linking and mechanical reinforcement effects of some transition-metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni(2+)-dopamine system to investigate the polymerization mechanism. The results show that the Ni(2+) ions could accelerate the assembly of dopamine oligomers in the polymerization process. Spectroscopic and electron microscopic studies reveal that the Ni(2+) ions are chelated with polydopamine (PDA) units, forming homogeneous Ni(2+)-PDA complexes. This facile one-pot approach is utilized to construct transition-metal-ion-PDA complex thin coatings on graphene oxide, which can be carbonized to produce robust hybrid nanosheets with well-dispersed metallic nickel/metallic cobalt/manganese(II) oxide nanoparticles embedded in PDA-derived thin graphitic carbon layers. The nickel-graphene hybrid prepared by using this approach shows good catalytic properties and recyclability for the reduction of p-nitrophenol. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOEpatents

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  16. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.

    PubMed

    Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong

    2017-06-01

    Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L -1 . The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (k sa ) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn 2+ to ZnCl 3 - and ZnCl 4 2- ; from CrO 4 2- to CaCrO 4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Quantum spin liquids and the metal-insulator transition in doped semiconductors.

    PubMed

    Potter, Andrew C; Barkeshli, Maissam; McGreevy, John; Senthil, T

    2012-08-17

    We describe a new possible route to the metal-insulator transition in doped semiconductors such as Si:P or Si:B. We explore the possibility that the loss of metallic transport occurs through Mott localization of electrons into a quantum spin liquid state with diffusive charge neutral "spinon" excitations. Such a quantum spin liquid state can appear as an intermediate phase between the metal and the Anderson-Mott insulator. An immediate testable consequence is the presence of metallic thermal conductivity at low temperature in the electrical insulator near the metal-insulator transition. Further, we show that though the transition is second order, the zero temperature residual electrical conductivity will jump as the transition is approached from the metallic side. However, the electrical conductivity will have a nonmonotonic temperature dependence that may complicate the extrapolation to zero temperature. Signatures in other experiments and some comparisons with existing data are made.

  18. Thermodynamic Hydricity of Transition Metal Hydrides

    DOE PAGES

    Wiedner, Eric S.; Chambers, Matthew B.; Pitman, Catherine L.; ...

    2016-08-02

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bondbreaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H -). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H 2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H 2more » in the presence of a base, and the potential-pK a method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Finally, methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO 2, and the production and oxidation of hydrogen.« less

  19. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  20. Modeling σ-Bond Activations by Nickel(0) Beyond Common Approximations: How Accurately Can We Describe Closed-Shell Oxidative Addition Reactions Mediated by Low-Valent Late 3d Transition Metal?

    PubMed

    Hu, Lianrui; Chen, Kejuan; Chen, Hui

    2017-10-10

    Accurate modelings of reactions involving 3d transition metals (TMs) are very challenging to both ab initio and DFT approaches. To gain more knowledge in this field, we herein explored typical σ-bond activations of H-H, C-H, C-Cl, and C-C bonds promoted by nickel(0), a low-valent late 3d TM. For the key parameters of activation energy (ΔE ‡ ) and reaction energy (ΔE R ) for these reactions, various issues related to the computational accuracy were systematically investigated. From the scrutiny of convergence issue with one-electron basis set, augmented (A) basis functions are found to be important, and the CCSD(T)/CBS level with complete basis set (CBS) limit extrapolation based on augmented double-ζ and triple-ζ basis pair (ADZ and ATZ), which produces deviations below 1 kcal/mol from the reference, is recommended for larger systems. As an alternative, the explicitly correlated F12 method can accelerate the basis set convergence further, especially after its CBS extrapolations. Thus, the CCSD(T)-F12/CBS(ADZ-ATZ) level with computational cost comparable to the conventional CCSD(T)/CBS(ADZ-ATZ) level, is found to reach the accuracy of the conventional CCSD(T)/A5Z level, which produces deviations below 0.5 kcal/mol from the reference, and is also highly recommendable. Scalar relativistic effects and 3s3p core-valence correlation are non-negligible for achieving chemical accuracy of around 1 kcal/mol. From the scrutiny of convergence issue with the N-electron basis set, in comparison with the reference CCSDTQ result, CCSD(T) is found to be able to calculate ΔE ‡ quite accurately, which is not true for the ΔE R calculations. Using highest-level CCSD(T) results of ΔE ‡ in this work as references, we tested 18 DFT methods and found that PBE0 and CAM-B3LYP are among the three best performing functionals, irrespective of DFT empirical dispersion correction. With empirical dispersion correction included, ωB97XD is also recommendable due to its improved

  1. The stability and fate of synthesized zero-valent iron nanoparticles in freshwater microcosm system.

    PubMed

    Kumar, Deepak; Parashar, Abhinav; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2017-07-01

    Zero-valent iron nanoparticles are used for the degradation of organic compounds and the immobilization of metals and metalloids. The lack of information on the effect of nZVI in freshwater system necessitated the risk assessment of zero-valent iron nanoparticles in lake water environment. The present study deals with the stability and fate of synthesized zero-valent iron nanoparticles in the upper and lower layers of freshwater microcosm system at a concentration of 1000 mg L -1 . The study was divided into two different exposure periods: short-term exposure, up to 24 h after the introduction of nanoparticles, and long-term exposure period up to 180 days (4416 h). Aggregation kinetics of nZVI in freshwater microcosm was studied by measuring the mean hydrodynamic size of the nanoparticles with respect to time. A gradual increase in the particle size with time was observed up to 14 h. The algal population and total chlorophyll content declined for the short exposure period, i.e., 2-24 h, while in the case of longer exposure period, i.e., 24 h to 180 days (4416 h), a gradual increase of both the algal population and total chlorophyll was noted. Five different physico-chemical parameters such as pH, temperature, conductivity, salinity, and total dissolved solids were recorded for 180 days (6 calendar months). The study suggested that the nanoscale zero-valent iron did not exhibit significant toxicity at an exposure concentration of 1000 mg L -1 on the resident algal population in the microcosm system over the longer exposure period tested.

  2. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles.

    PubMed

    Huang, Pengpeng; Ye, Zhengfang; Xie, Wuming; Chen, Qi; Li, Jing; Xu, Zhencheng; Yao, Maosheng

    2013-08-01

    Much work is devoted to heavy metal sorption, reduction and relevant mechanisms by nanoscale zero valent iron (nZVI) particle, but fewer studies utilize its magnetic properties in aqueous metal removals. Here, we have investigated the use of nZVI particles both electrosprayed (E-nZVI) and non-electrosprayed (NE-nZVI) with different concentration levels (0.186-1.86 mg/mL) in removing aqueous Cd(II), Cr(IV), and Pb(II) through the magnetic separation means. The effects of the reaction time (5-20 min) and magnetic treatment time (1-30 min) on relevant magnetic removal efficiencies were studied. Metal ion concentration was analyzed using inductively coupled plasma (ICP), and the magnetically obtained metal-nZVI mixtures were further analyzed using X-ray photoelectron spectroscopy (XPS). Results showed that the magnetic removal efficiencies of heavy metals varied with the metal species, nZVI loading, reaction and magnetic separation time. In most cases, use of 1.5 mg/mL E-nZVI or NE-nZVI resulted in removal efficiencies of more than 80% for Pb(II), Cd(II), and Cr(IV). Increasing the magnetic treatment time from 1 to 20 min was shown to lead to ≈ 20% increase in Pb(II) removal efficiency, but no improvements for Cd(II) and Cr(IV). In contrast, increasing the reaction time decreased the Pb(II) removal efficiency, yet no effects observed for Cd(II) and Cr(IV). In general, 1 min reaction and 5 min magnetic treatment were found sufficient to achieve considerable heavy metal removals. For comparable efficiencies, use of magnetic method could significantly reduce nZVI loading. XPS analysis results indicated that atomic percentages of O 1s, Fe 2p, Cd 3d, Pb 4f and Cr 2p varied with metal exposures. Different from Cd(II) and Cr(IV), aqueous iron ions might be possibly present when treating Pb(II). This study demonstrated a rapid heavy metal removal method using the magnetic property of nZVI particles, while contributing to understanding of the relevant removal mechanisms

  3. Density functional plus dynamical mean-field theory of the metal-insulator transition in early transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Ai, Xinyuan; Millis, Andrew J.; Marianetti, Chris A.

    2014-09-01

    The combination of density functional theory and single-site dynamical mean-field theory, using both Hartree and full continuous-time quantum Monte Carlo impurity solvers, is used to study the metal-insulator phase diagram of perovskite transition-metal oxides of the form ABO3 with a rare-earth ion A =Sr, La, Y and transition metal B =Ti, V, Cr. The correlated subspace is constructed from atomiclike d orbitals defined using maximally localized Wannier functions derived from the full p-d manifold; for comparison, results obtained using a projector method are also given. Paramagnetic DFT + DMFT computations using full charge self-consistency along with the standard "fully localized limit" (FLL) double counting are shown to incorrectly predict that LaTiO3, YTiO3, LaVO3, and SrMnO3 are metals. A more general examination of the dependence of physical properties on the mean p-d energy splitting, the occupancy of the correlated d states, the double-counting correction, and the lattice structure demonstrates the importance of charge-transfer physics even in the early transition-metal oxides and elucidates the factors underlying the failure of the standard approximations. If the double counting is chosen to produce a p-d splitting consistent with experimental spectra, single-site dynamical mean-field theory provides a reasonable account of the materials properties. The relation of the results to those obtained from "d-only" models in which the correlation problem is based on the frontier orbital p-d antibonding bands is determined. It is found that if an effective interaction U is properly chosen the d-only model provides a good account of the physics of the d1 and d2 materials.

  4. Theory of quantum metal to superconductor transitions in highly conducting systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure whichmore » is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.« less

  5. On the thermodynamics of phase transitions in metal hydrides

    NASA Astrophysics Data System (ADS)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  6. A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides.

    PubMed

    Jothi, Palani R; Yubuta, Kunio; Fokwa, Boniface P T

    2018-04-01

    Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl 2 , the volatility and recrystallization of SnCl 2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo 2 B, α-MoB, MoB 2 , Mo 2 B 4 ). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hydroxyapatite substituted by transition metals: experiment and theory.

    PubMed

    Zilm, M E; Chen, L; Sharma, V; McDannald, A; Jain, M; Ramprasad, R; Wei, M

    2016-06-28

    Bioceramics are versatile materials for hard tissue engineering. Hydroxyapatite (HA) is a widely studied biomaterial for bone grafting and tissue engineering applications. The crystal structure of HA allows for a wide range of substitutions, which allows for tailoring materials properties. Transition metals and lanthanides are of interest since substitution in HA can result in magnetic properties. In this study, experimental results were compared to theoretical calculations of HA substituted with a transition metal. Calculation of a 10 atomic percent substitution of a transition metal ion Mn(2+), Fe(2+), and Co(2+) substituted HA samples lead to magnetic moments of 5, 4, and 3 Bohr magnetons, respectively. Hydroxyapatite substituted by transition metals (MHA) was fabricated through an ion exchange procedure and characterized with X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), X-ray photoelectron spectroscopy, and vibrating sample magnetometer, and results were compared to theoretical calculations. All the substitutions resulted in phase-pure M(2+)HA with lattice parameters and FTIR spectra in good agreement with calculations. Magnetic measurements revealed that the substitution of Mn(2+) has the greatest effect on the magnetic properties of HA followed by the substitution of Fe(2+) and then Co(2+). The present work underlines the power of synergistic theoretical-experimental work in guiding the rational design of materials.

  8. Hot carrier dynamics in plasmonic transition metal nitrides

    NASA Astrophysics Data System (ADS)

    Habib, Adela; Florio, Fred; Sundararaman, Ravishankar

    2018-06-01

    Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.

  9. Metal-metal bond lengths in complexes of transition metals.

    PubMed

    Pauling, L

    1976-12-01

    In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths.

  10. Synthesis of Oxides Containing Transition Metals

    DTIC Science & Technology

    1990-07-09

    metal oxide single crystals by the electrolysis of molten salts containing mixtures of the appropriate oxides. Andreiux and Bozon (33-34) were able to...examples of unusual transition metal oxides which can be prepared (usually as single crystals) by electrolysis of fused salts . Summary The methods of...ferrites with the composition MFe 204 involved the thermal decomposition of oxalate (3) or pyridinate salts (1). The synthesis of ferrites from mixed

  11. New chemistry of transition metal oxyhydrides

    PubMed Central

    Kobayashi, Yoji; Hernandez, Olivier; Tassel, Cédric; Kageyama, Hiroshi

    2017-01-01

    Abstract In this review we describe recent advances in transition metal oxyhydride chemistry obtained by topochemical routes, such as low temperature reduction with metal hydrides, or high-pressure solid-state reactions. Besides the crystal chemistry, magnetic and transport properties of the bulk powder and epitaxial thin film samples, the remarkable lability of the hydride anion is particularly highlighted as a new strategy to discover unprecedented mixed anion materials. PMID:29383042

  12. Transition metal doped (X = V, Cr) CdS monolayer: A DFT study

    NASA Astrophysics Data System (ADS)

    Deb, Jyotirmoy; Paul, Debolina; Sarkar, Utpal

    2018-05-01

    In this work based on density functional theory approach with generalized gradient approximation we have investigated the effect doping and co-doping of transition metal atoms in CdS monolayer sheet. On the basis cohesive energy, we have determined the stability of all the transition metal doped systems. CdS monolayer is of nonmagnetic character but the insertion of transition metal atoms introduces the spontaneous spin polarization which results in a significant value of magnetic moment. The band structure analysis reveals that three different types of conducting nature such as spin-select-half-semiconductor, half metallic and metallic nature with total spin polarization has also been observed. The versatile conducting nature of the transition metal doped CdS monolayer predicts the possibility of using these systems in spintronics mainly as a spin filter and also to form metal-semiconductor interface etc. at nanoscale level.

  13. Peruvian perovskite Between Transition-metal to PGM/PlatinumGroupMetal Catalytic Fusion

    NASA Astrophysics Data System (ADS)

    Maksoed, Wh-

    2016-11-01

    Strongly correlated electronic materials made of simple building blocks, such as a transition-metal ion in an octahedral oxygen cage forming a perovskite structure- Dagotto & Tokura for examples are the high-temperature superconductivity & the CMR/Colossal Magnetoresistance . Helium-4 denotes from LC Case,ScD: "Catalytic Fusion of Deuterium into Helium-4"- 1998 dealt with gaseous D2- "contacted with a supported metallic catalyst at superatmospheric pressure". The catalyst is a platinum-group metal, at about 0.5% - 1% by weight, on activated C. Accompanies Stephen J Geier, 2010 quotes "transition metal complexes", the Energy thus produced is enormous, and because the deuterium is very cheap in the form of heavy water (less than US 1/g), the fuel cost is very low (<<1 %/KwH). "The oceans contain enough deuterium to satisfy the Earth's energy needs for many millions of year" to keep "maria"/Latin name of seas &Deuteronomy to be eternally preserves. Heartfelt Gratitudes to HE. Mr. Prof. Ir. HANDOJO.

  14. Covalence of atoms in the heavier transition metals*

    PubMed Central

    Pauling, Linus

    1977-01-01

    The observed magnetic properties of the heavier transition metals permit them to have larger metallic valences than their iron-group congeners. With 0.72 metallic orbital, as found for the iron-group metals, the maximum metallic valence and minimum interatomic distance would occur for 8.28 transargononic electrons. The curves of observed interatomic distances for the close-packed metals of the second and third long periods have minima at this point, supporting the assignment of high valences to these metals. Values of the single-bond radii corresponding to these valences are calculated. PMID:16592407

  15. Hydrogen and dihydrogen bonding of transition metal hydrides

    NASA Astrophysics Data System (ADS)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  16. Costs and cost-effectiveness of 9-valent human papillomavirus (HPV) vaccination in two East African countries.

    PubMed

    Kiatpongsan, Sorapop; Kim, Jane J

    2014-01-01

    Current prophylactic vaccines against human papillomavirus (HPV) target two of the most oncogenic types, HPV-16 and -18, which contribute to roughly 70% of cervical cancers worldwide. Second-generation HPV vaccines include a 9-valent vaccine, which targets five additional oncogenic HPV types (i.e., 31, 33, 45, 52, and 58) that contribute to another 15-30% of cervical cancer cases. The objective of this study was to determine a range of vaccine costs for which the 9-valent vaccine would be cost-effective in comparison to the current vaccines in two less developed countries (i.e., Kenya and Uganda). The analysis was performed using a natural history disease simulation model of HPV and cervical cancer. The mathematical model simulates individual women from an early age and tracks health events and resource use as they transition through clinically-relevant health states over their lifetime. Epidemiological data on HPV prevalence and cancer incidence were used to adapt the model to Kenya and Uganda. Health benefit, or effectiveness, from HPV vaccination was measured in terms of life expectancy, and costs were measured in international dollars (I$). The incremental cost of the 9-valent vaccine included the added cost of the vaccine counterbalanced by costs averted from additional cancer cases prevented. All future costs and health benefits were discounted at an annual rate of 3% in the base case analysis. We conducted sensitivity analyses to investigate how infection with multiple HPV types, unidentifiable HPV types in cancer cases, and cross-protection against non-vaccine types could affect the potential cost range of the 9-valent vaccine. In the base case analysis in Kenya, we found that vaccination with the 9-valent vaccine was very cost-effective (i.e., had an incremental cost-effectiveness ratio below per-capita GDP), compared to the current vaccines provided the added cost of the 9-valent vaccine did not exceed I$9.7 per vaccinated girl. To be considered very cost

  17. Costs and Cost-Effectiveness of 9-Valent Human Papillomavirus (HPV) Vaccination in Two East African Countries

    PubMed Central

    Kiatpongsan, Sorapop; Kim, Jane J.

    2014-01-01

    Background Current prophylactic vaccines against human papillomavirus (HPV) target two of the most oncogenic types, HPV-16 and -18, which contribute to roughly 70% of cervical cancers worldwide. Second-generation HPV vaccines include a 9-valent vaccine, which targets five additional oncogenic HPV types (i.e., 31, 33, 45, 52, and 58) that contribute to another 15–30% of cervical cancer cases. The objective of this study was to determine a range of vaccine costs for which the 9-valent vaccine would be cost-effective in comparison to the current vaccines in two less developed countries (i.e., Kenya and Uganda). Methods and Findings The analysis was performed using a natural history disease simulation model of HPV and cervical cancer. The mathematical model simulates individual women from an early age and tracks health events and resource use as they transition through clinically-relevant health states over their lifetime. Epidemiological data on HPV prevalence and cancer incidence were used to adapt the model to Kenya and Uganda. Health benefit, or effectiveness, from HPV vaccination was measured in terms of life expectancy, and costs were measured in international dollars (I$). The incremental cost of the 9-valent vaccine included the added cost of the vaccine counterbalanced by costs averted from additional cancer cases prevented. All future costs and health benefits were discounted at an annual rate of 3% in the base case analysis. We conducted sensitivity analyses to investigate how infection with multiple HPV types, unidentifiable HPV types in cancer cases, and cross-protection against non-vaccine types could affect the potential cost range of the 9-valent vaccine. In the base case analysis in Kenya, we found that vaccination with the 9-valent vaccine was very cost-effective (i.e., had an incremental cost-effectiveness ratio below per-capita GDP), compared to the current vaccines provided the added cost of the 9-valent vaccine did not exceed I$9.7 per

  18. Role of phonons in the metal-insulator phase transition.

    NASA Technical Reports Server (NTRS)

    Langer, W. D.

    1972-01-01

    Review, for the transition series oxides, of the Mattis and Lander model, which is one of electrons interacting with lattice vibrations (electron and phonon interaction). The model displays superconducting, insulating, and metallic phases. Its basic properties evolve from a finite crystallographic distortion associated with a dominant phonon mode and the splitting of the Brillouin zone into two subzones, a property of simple cubic and body centered cubic lattices. The order of the metal-insulator phase transition is examined. The basic model has a second-order phase transition and the effects of additional mechanisms on the model are calculated. The way in which these mechanisms affect the magnetically ordered transition series oxides as described by the Hubbard model is discussed.

  19. The Electronic Structure of Transition Metal Coated Fullerenes

    NASA Astrophysics Data System (ADS)

    Patton, David C.; Pederson, Mark R.; Kaxiras, Efthimios

    1998-03-01

    Clusters composed of fullerene molecules with an outer shell of transition metal atoms in the composition C_60M_62 (M being a transition metal) have been produced with laser vaporisation techniques(F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I.M.L. Billas, and T. P. Martin, Z. Phys D 40), 351 (1997).. We have studied several of these very large systems with a parallel version of the all-electron NRLMOL cluster code. Optimized geometries of the metal encased fullerenes C_60Ti_62 and C_60V_62 are presented along with their HOMO-LUMO gaps, electron affinities, ionization energies, and cohesive energies. We compare the stability of these clusters to relaxed met-car structures (e.g. Ti_8C_12) and to relaxed rocksalt metal-carbide fragments (TiC)n with n=8 and 32. In addition to metal-coated fullerenes we consider the possibility of a trilayered structure consisting of a small shell of metal atoms enclosed by a metal coated fullerene. The nature of bonding in these systems is analyzed by studying the electronic charge distributions.

  20. An Alternative Approach to the Teaching of Systematic Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Hathaway, Brian

    1979-01-01

    Presents an alternative approach to teaching Systematic Transition Metal Chemistry with the transition metal chemistry skeleton features of interest. The "skeleton" is intended as a guide to predicting the chemistry of a selected compound. (Author/SA)

  1. EFFECTS OF NATURAL ORGANIC MATTER, ANTHROPOGENIC SURFACTANTS, AND MODEL QUINONES ON THE REDUCTION OF CONTAMINANTS BY ZERO-VALENT IRON. (R827117)

    EPA Science Inventory

    Recent studies of contaminant reduction by zero-valent iron metal (Fe0) have highlighted the role of iron oxides at the metal–water interface and the effect that sorption has at the oxide–water interface on contaminant reduction kinetics. The results s...

  2. Metal-insulator and charge ordering transitions in oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Sujay Kumar

    Strongly correlated oxides are a class of materials wherein interplay of various degrees of freedom results in novel electronic and magnetic phenomena. Vanadium oxides are widely studied correlated materials that exhibit metal-insulator transitions (MIT) in a wide temperature range from 70 K to 380 K. In this Thesis, results from electrical transport measurements on vanadium dioxide (VO2) and vanadium oxide bronze (MxV 2O5) (where M: alkali, alkaline earth, and transition metal cations) are presented and discussed. Although the MIT in VO2 has been studied for more than 50 years, the microscopic origin of the transition is still debated since a slew of external parameters such as light, voltage, and strain are found to significantly alter the transition. Furthermore, recent works on electrically driven switching in VO2 have shown that the role of Joule heating to be a major cause as opposed to electric field. We explore the mechanisms behind the electrically driven switching in single crystalline nanobeams of VO2 through DC and AC transport measurements. The harmonic analysis of the AC measurement data shows that non-uniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. Surprisingly, field assisted emission mechanisms such as Poole-Frenkel effect is found to be absent and the role of percolation is also identified in the electrically driven transition. This Thesis also provides a new insight into the mechanisms behind the electrolyte gating induced resistance modulation and the suppression of MIT in VO2. We show that the metallic phase of VO2 induced by electrolyte gating is due to an electrochemical process and can be both reversible and irreversible under different conditions. The kinetics of the redox processes increase with temperature; a complete suppression of the transition and the stabilization of the metallic phase are achievable by gating in the rutile metallic phase

  3. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Cocker, T. L.; Titova, L. V.; Fourmaux, S.; Holloway, G.; Bandulet, H.-C.; Brassard, D.; Kieffer, J.-C.; El Khakani, M. A.; Hegmann, F. A.

    2012-04-01

    We use time-resolved terahertz spectroscopy to probe the ultrafast dynamics of the insulator-metal phase transition induced by femtosecond laser pulses in a nanogranular vanadium dioxide (VO2) film. Based on the observed thresholds for characteristic transient terahertz dynamics, a phase diagram of critical pump fluence versus temperature for the insulator-metal phase transition in VO2 is established for the first time over a broad range of temperatures down to 17 K. We find that both Mott and Peierls mechanisms are present in the insulating state and that the photoinduced transition is nonthermal. We propose a critical-threshold model for the ultrafast photoinduced transition based on a critical density of electrons and a critical density of coherently excited phonons necessary for the structural transition to the metallic state. As a result, evidence is found at low temperatures for an intermediate metallic state wherein the Mott state is melted but the Peierls distortion remains intact, consistent with recent theoretical predictions. Finally, the observed terahertz conductivity dynamics above the photoinduced transition threshold reveal nucleation and growth of metallic nanodomains over picosecond time scales.

  4. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis

    USGS Publications Warehouse

    Lewan, M.D.; Kotarba, M.J.; Wieclaw, D.; Piestrzynski, A.

    2008-01-01

    Transition metals in source rocks have been advocated as catalysts in determining extent, composition, and timing of natural gas generation (Mango, F. D. (1996) Transition metal catalysis in the generation of natural gas. Org. Geochem.24, 977–984). This controversial hypothesis may have important implications concerning gas generation in unconventional shale-gas accumulations. Although experiments have been conducted to test the metal-catalysis hypothesis, their approach and results remain equivocal in evaluating natural assemblages of transition metals and organic matter in shale. The Permian Kupferschiefer of Poland offers an excellent opportunity to test the hypothesis with immature to marginally mature shale rich in both transition metals and organic matter. Twelve subsurface samples containing similar Type-II kerogen with different amounts and types of transition metals were subjected to hydrous pyrolysis at 330° and 355 °C for 72 h. The gases generated in these experiments were quantitatively collected and analyzed for molecular composition and stable isotopes. Expelled immiscible oils, reacted waters, and spent rock were also quantitatively collected. The results show that transition metals have no effect on methane yields or enrichment. δ13C values of generated methane, ethane, propane and butanes show no systematic changes with increasing transition metals. The potential for transition metals to enhance gas generation and oil cracking was examined by looking at the ratio of the generated hydrocarbon gases to generated expelled immiscible oil (i.e., GOR), which showed no systematic change with increasing transition metals. Assuming maximum yields at 355 °C for 72 h and first-order reaction rates, pseudo-rate constants for methane generation at 330 °C were calculated. These rate constants showed no increase with increasing transition metals. The lack of a significant catalytic effect of transition metals on the extent, composition, and timing of

  5. Metal-metal bond lengths in complexes of transition metals*

    PubMed Central

    Pauling, Linus

    1976-01-01

    In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths. PMID:16592368

  6. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  7. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications.

    PubMed

    Sanpo, Noppakun; Berndt, Christopher C; Wen, Cuie; Wang, James

    2013-03-01

    Transition metals of copper, zinc, chromium and nickel were substituted into cobalt ferrite nanoparticles via a sol-gel route using citric acid as a chelating agent. The microstructure and elemental composition were characterized using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. Phase analysis of transition metal-substituted cobalt ferrite nanoparticles was performed via X-ray diffraction. Surface wettability was measured using the water contact angle technique. The surface roughness of all nanoparticles was measured using profilometry. Moreover, thermogravimetric analysis and differential scanning calorimetry were performed to determine the temperature at which the decomposition and oxidation of the chelating agents took place. Results indicated that the substitution of transition metals influences strongly the microstructure, crystal structure and antibacterial property of the cobalt ferrite nanoparticles. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Isolated low-valent nickel

    NASA Astrophysics Data System (ADS)

    Mul, Guido

    2018-02-01

    Electrochemical conversion of CO2 to fuels is an attractive pathway to store electrical energy in chemical form. Isolated, low-valent Ni species in nitrogen-doped graphene are now demonstrated to selectively convert CO2 to CO electrochemically with high intrinsic activity and stability.

  9. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  10. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    DOEpatents

    Iyer, Vivekanantan S [Delft, NL; Vollhardt, K Peter C. [Oakland, CA

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  11. On the Automaticity of the Evaluative Priming Effect in the Valent/Non-Valent Categorization Task

    PubMed Central

    Spruyt, Adriaan; Tibboel, Helen

    2015-01-01

    It has previously been argued (a) that automatic evaluative stimulus processing is critically dependent upon feature-specific attention allocation and (b) that evaluative priming effects can arise in the absence of dimensional overlap between the prime set and the response set. In line with both claims, research conducted at our lab revealed that the evaluative priming effect replicates in the valent/non-valent categorization task. This research was criticized, however, because non-automatic, strategic processes may have contributed to the emergence of this effect. We now report the results of a replication study in which the operation of non-automatic, strategic processes was controlled for. A clear-cut evaluative priming effect emerged, thus supporting initial claims concerning feature-specific attention allocation and dimensional overlap. PMID:25803444

  12. On the automaticity of the evaluative priming effect in the valent/non-valent categorization task.

    PubMed

    Spruyt, Adriaan; Tibboel, Helen

    2015-01-01

    It has previously been argued (a) that automatic evaluative stimulus processing is critically dependent upon feature-specific attention allocation and (b) that evaluative priming effects can arise in the absence of dimensional overlap between the prime set and the response set. In line with both claims, research conducted at our lab revealed that the evaluative priming effect replicates in the valent/non-valent categorization task. This research was criticized, however, because non-automatic, strategic processes may have contributed to the emergence of this effect. We now report the results of a replication study in which the operation of non-automatic, strategic processes was controlled for. A clear-cut evaluative priming effect emerged, thus supporting initial claims concerning feature-specific attention allocation and dimensional overlap.

  13. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    PubMed

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-12-14

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed.

  14. Ultrafast photo-induced dynamics across the metal-insulator transition of VO2

    NASA Astrophysics Data System (ADS)

    Wang, Siming; Ramírez, Juan Gabriel; Jeffet, Jonathan; Bar-Ad, Shimshon; Huppert, Dan; Schuller, Ivan K.

    2017-04-01

    The transient reflectivity of VO2 films across the metal-insulator transition clearly shows that with low-fluence excitation, when insulating domains are dominant, energy transfer from the optically excited electrons to the lattice is not instantaneous, but precedes the superheating-driven expansion of the metallic domains. This implies that the phase transition in the coexistence regime is lattice-, not electronically-driven, at weak laser excitation. The superheated phonons provide the latent heat required for the propagation of the optically-induced phase transition. For VO2 this transition path is significantly different from what has been reported in the strong-excitation regime. We also observe a slow-down of the superheating-driven expansion of the metallic domains around the metal-insulator transition, which is possibly due to the competition among several co-existing phases, or an emergent critical-like behavior.

  15. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  16. Sulfur-Modified Zero-Valent Iron for Remediation Applications at DOE Sites - 13600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogwell, Thomas W.; Santina, Pete

    2013-07-01

    Many DOE remediation sites have chemicals of concern that are compounds in higher oxidation states, which make them both more mobile and more toxic. The chemical reduction of these compounds both prevents the migration of these chemicals and in some cases reduces the toxicity. It has also been shown that zero-valent iron is a very effective substance to use in reducing oxygenated compounds in various treatment processes. These have included the treatment of halogenated hydrocarbons in the form volatile organic compounds used as solvents and pesticides. Zero-valent iron has also been used to reduce various oxidized metals such as chromium,more » arsenic, and mercury in order to immobilize them, decrease their toxicity, and prevent further transport. In addition, it has been used to immobilize or break down other non-metallic species such as selenium compounds and nitrates. Of particular interest at several DOE remediation sites is the fact that zero-valent iron is very effective in immobilizing several radioactive metals which are mobile in their oxidized states. These include both technetium and uranium. The main difficulty in using zero-valent iron has been its tendency to become inactive after relatively short periods of time. While it is advantageous to have the zero-valent iron particles as porous as possible in order to provide maximum surface area for reactions to take place, these pores can become clogged when the iron is oxidized. This is due to the fact that ferric oxide has a greater volume for a given mass than metallic iron. When the surfaces of the iron particles oxidize to ferric oxide, the pores become narrower and will eventually shut. In order to minimize the degradation of the chemical activity of the iron due to this process, a modification of zero-valent iron has been developed which prevents or slows this process, which decreases its effectiveness. It is called sulfur-modified iron, and it has been produced in high purity for applications in

  17. Pure electronic metal-insulator transition at the interface of complex oxides

    DOE PAGES

    Meyers, D.; Liu, Jian; Freeland, J. W.; ...

    2016-06-21

    We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as amore » powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.« less

  18. Hund's rule in superatoms with transition metal impurities.

    PubMed

    Medel, Victor M; Reveles, Jose Ulises; Khanna, Shiv N; Chauhan, Vikas; Sen, Prasenjit; Castleman, A Welford

    2011-06-21

    The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund's rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMg(n) clusters where TM is a 3d atom. The clusters exhibit Hund's filling, opening the pathway to superatoms with magnetic shells.

  19. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  20. Critical behavior at a dynamic vortex insulator-to-metal transition

    DOE PAGES

    Poccia, Nicola; Baturina, Tatyana I.; Coneri, Francesco; ...

    2015-09-10

    An array of superconducting islands placed on a normal metal film offers a tunable realization of nanopatterned superconductivity. This system enables elucidating open questions concerning the nature of competing vortex states and phase transitions between them. A square array creates the egg crate potential in which magnetic field-induced vortices are frozen into a vortex insulator. We observe a vortex insulator-to-vortex metal transition driven by the applied electric current and determine critical exponents strikingly coinciding with those for thermodynamic liquid-gas transition. Lastly, our findings offer a comprehensive description of dynamic critical behavior and establish a deep connection between equilibrium and nonequilibriummore » phase transitions.« less

  1. Critical behavior at a dynamic vortex insulator-to-metal transition.

    PubMed

    Poccia, Nicola; Baturina, Tatyana I; Coneri, Francesco; Molenaar, Cor G; Wang, X Renshaw; Bianconi, Ginestra; Brinkman, Alexander; Hilgenkamp, Hans; Golubov, Alexander A; Vinokur, Valerii M

    2015-09-11

    An array of superconducting islands placed on a normal metal film offers a tunable realization of nanopatterned superconductivity. This system enables investigation of the nature of competing vortex states and phase transitions between them. A square array creates the eggcrate potential in which magnetic field-induced vortices are frozen into a vortex insulator. We observed a vortex insulator-vortex metal transition driven by the applied electric current and determined critical exponents that coincided with those for thermodynamic liquid-gas transition. Our findings offer a comprehensive description of dynamic critical behavior and establish a deep connection between equilibrium and nonequilibrium phase transitions. Copyright © 2015, American Association for the Advancement of Science.

  2. Hall effect at a tunable metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Teizer, W.; Hellman, F.; Dynes, R. C.

    2003-03-01

    Using a rotating magnetic field, the Hall effect in three-dimensional amorphous GdxSi1-x has been measured in the critical regime of the metal-insulator transition for a constant total magnetic field. The Hall coefficient R0 is negative, indicating electronlike conductivity, with a magnitude that increases with decreasing conductivity. R0 diverges at the metal-insulator transition, and displays critical behavior with exponent -1 [R0˜(H-HC)-1]. This dependence is interpreted as a linear decrease in the density of mobile carriers n˜R-10˜H-HC, indicative of the dominant influence of interaction effects.

  3. Effect of nanoscale zero-valent iron and magnetite (Fe3O4) on the fate of metals during anaerobic digestion of sludge.

    PubMed

    Suanon, Fidèle; Sun, Qian; Mama, Daouda; Li, Jiangwei; Dimon, Biaou; Yu, Chang-Ping

    2016-01-01

    Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas renewable energy. In this study, two different iron nanoparticles [nanoscale zero-valent iron (nZVI) and magnetite (Fe3O4)] were used in the mesophilic AD processes (37 ± 1 °C) to improve biogas production. In addition, changes of heavy metal (Cd, Co, Cu, Zn, Ni and Cr) speciation during AD of sludge with and without iron nanoparticles have been investigated. Concentrations of metals in the initial sludge were as follows: 63.1, 73.4, 1102.2, 2060.3, 483.9 and 604.1 mg kg(-1) (dry sludge basis) for Cd, Co, Cu, Zn, Ni and Cr, respectively. Sequential fractionation showed that metals were predominantly bonded to organic matter and carbonates in the initial sludge. Compared with AD without iron nanoparticles, the application of iron nanoparticles (at dose of 0.5% in this study) showed positive impact not only on biogas production, but also on improvement of metals stabilization in the digestate. Metals were found concentrated in Fe-Mn bound and residual fractions and little was accumulated in the liquid digestate and most mobile fractions of solid digestate (water soluble, exchangeable and carbonates bound). Therefore, iron nanoparticles when properly used, could improve not only biogas yield, but also regulate and control the mobilization of metals during AD process. However, our study also observed that iron nanoparticles could promote the immobilization of phosphorus within the sludge during AD, and more research is needed to fully address the mechanism behind this phenomenon and the impact on future phosphorus reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Covalent bonds against magnetism in transition metal compounds

    PubMed Central

    Streltsov, Sergey V.; Khomskii, Daniel I.

    2016-01-01

    Magnetism in transition metal compounds is usually considered starting from a description of isolated ions, as exact as possible, and treating their (exchange) interaction at a later stage. We show that this standard approach may break down in many cases, especially in 4d and 5d compounds. We argue that there is an important intersite effect—an orbital-selective formation of covalent metal–metal bonds that leads to an “exclusion” of corresponding electrons from the magnetic subsystem, and thus strongly affects magnetic properties of the system. This effect is especially prominent for noninteger electron number, when it results in suppression of the famous double exchange, the main mechanism of ferromagnetism in transition metal compounds. We study this mechanism analytically and numerically and show that it explains magnetic properties of not only several 4d–5d materials, including Nb2O2F3 and Ba5AlIr2O11, but can also be operative in 3d transition metal oxides, e.g., in CrO2 under pressure. We also discuss the role of spin–orbit coupling on the competition between covalency and magnetism. Our results demonstrate that strong intersite coupling may invalidate the standard single-site starting point for considering magnetism, and can lead to a qualitatively new behavior. PMID:27601669

  5. Electrocatalysis using transition metal carbide and oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  6. Ultrafast photophysics of transition metal complexes.

    PubMed

    Chergui, Majed

    2015-03-17

    The properties of transition metal complexes are interesting not only for their potential applications in solar energy conversion, OLEDs, molecular electronics, biology, photochemistry, etc. but also for their fascinating photophysical properties that call for a rethinking of fundamental concepts. With the advent of ultrafast spectroscopy over 25 years ago and, more particularly, with improvements in the past 10-15 years, a new area of study was opened that has led to insightful observations of the intramolecular relaxation processes such as internal conversion (IC), intersystem crossing (ISC), and intramolecular vibrational redistribution (IVR). Indeed, ultrafast optical spectroscopic tools, such as fluorescence up-conversion, show that in many cases, intramolecular relaxation processes can be extremely fast and even shorter than time scales of vibrations. In addition, more and more examples are appearing showing that ultrafast ISC rates do not scale with the magnitude of the metal spin-orbit coupling constant, that is, that there is no heavy-atom effect on ultrafast time scales. It appears that the structural dynamics of the system and the density of states play a crucial role therein. While optical spectroscopy delivers an insightful picture of electronic relaxation processes involving valence orbitals, the photophysics of metal complexes involves excitations that may be centered on the metal (called metal-centered or MC) or the ligand (called ligand-centered or LC) or involve a transition from one to the other or vice versa (called MLCT or LMCT). These excitations call for an element-specific probe of the photophysics, which is achieved by X-ray absorption spectroscopy. In this case, transitions from core orbitals to valence orbitals or higher allow probing the electronic structure changes induced by the optical excitation of the valence orbitals, while also delivering information about the geometrical rearrangement of the neighbor atoms around the atom of

  7. Transition-metal impurities in semiconductors and heterojunction band lineups

    NASA Astrophysics Data System (ADS)

    Langer, Jerzy M.; Delerue, C.; Lannoo, M.; Heinrich, Helmut

    1988-10-01

    The validity of a recent proposal that transition-metal impurity levels in semiconductors may serve as a reference in band alignment in semiconductor heterojunctions is positively verified by using the most recent data on band offsets in the following lattice-matched heterojunctions: Ga1-xAlxAs/GaAs, In1-xGaxAsyP1-y/InP, In1-xGaxP/GaAs, and Cd1-xHgxTe/CdTe. The alignment procedure is justified theoretically by showing that transition-metal energy levels are effectively pinned to the average dangling-bond energy level, which serves as the reference level for the heterojunction band alignment. Experimental and theoretical arguments showing that an increasingly popular notion on transition-metal energy-level pinning to the vacuum level is unjustified and must be abandoned in favor of the internal-reference rule proposed recently [J. M. Langer and H. Heinrich, Phys. Rev. Lett. 55, 1414 (1985)] are presented.

  8. Degradation of bis-p-nitrophenyl phosphate using zero-valent iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Valle-Orta, Maiby; Díaz, David; Zumeta Dubé, Inti; Ortiz Quiñonez, José Luis; Saldivar Guerrero, Rubén

    2017-06-01

    Phosphate esters are employed in some agrochemical formulations and have long life time in the Environment. They are neurotoxic to mammals and it is very difficult to hydrolyze them. It is easy to find papers in the literature dealing with transition metal complexes used in the hydrolysis processes of organophosphorous compounds. However, there are few reports related with degradation of phosphate esters with inorganic nanoparticles. In this work bis-4-nitrophenyl phosphate (BNPP) was used as an agrochemical agent model. The BNPP interaction with zero-valent iron nanoparticles (ZVI NPs), in aqueous media, was searched. The concentration of BNPP was 1000 times higher than the ZVI NPs concentration. The average size of the used iron nanoparticles was 10.2 ± 3.2 nm. The BNPP degradation process was monitored by means of UV-visible method. Initially, the BNPP hydrolysis happens through the P-O bonds breaking-off under the action of the ZVI NPs. Subsequently, the nitro groups were reduced to amine groups. The overall process takes place in 10 minutes. The reaction products were identified employing standard substances in adequate concentrations. The iron by-products were isolated and characterized by X-RD. These iron derivatives were identified as magnetite (Fe3O4) and/or maghemite (γ-Fe2O3) and lepidocrocite (γ-FeOOH). A suggested BNPP degradation mechanism will be discussed.

  9. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give

  10. Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Transition Metal Complexes

    ERIC Educational Resources Information Center

    Bo¨rgel, Jonas; Campbell, Michael G.; Ritter, Tobias

    2016-01-01

    The presentation of d-orbital splitting diagrams for square planar transition metal complexes in textbooks and educational materials is often inconsistent and therefore confusing for students. Here we provide a concise summary of the key features of orbital splitting diagrams for square planar complexes, which we propose may be used as an updated…

  11. 2D transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Manzeli, Sajedeh; Ovchinnikov, Dmitry; Pasquier, Diego; Yazyev, Oleg V.; Kis, Andras

    2017-08-01

    Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin-orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.

  12. Attention please: evaluative priming effects in a valent/non-valent categorisation task (reply to Werner & Rothermund, 2013).

    PubMed

    Spruyt, Adriaan

    2014-04-01

    It has previously been argued (a) that automatic evaluative stimulus processing is dependent upon feature-specific attention allocation (FSAA) and (b) that evaluative priming effects can arise in the absence of dimensional overlap between the prime set and the response set. In opposition to these claims, Werner and Rothermund (2013) recently reported that they were unable to replicate the evaluative priming effect in a valent/non-valent categorisation task. In this manuscript, I report the results of a conceptual replication of the studies by Werner and Rothermund (2013). A clear-cut evaluative priming effect was found, thus supporting the initial claims about FSAA and dimensional overlap. An explanation for these divergent findings is discussed.

  13. Electronic structure of negative charge transfer CaFeO3 across the metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Rogge, Paul C.; Chandrasena, Ravini U.; Cammarata, Antonio; Green, Robert J.; Shafer, Padraic; Lefler, Benjamin M.; Huon, Amanda; Arab, Arian; Arenholz, Elke; Lee, Ho Nyung; Lee, Tien-Lin; Nemšák, Slavomír; Rondinelli, James M.; Gray, Alexander X.; May, Steven J.

    2018-01-01

    We investigated the metal-insulator transition for epitaxial thin films of the perovskite CaFeO3, a material with a significant oxygen ligand hole contribution to its electronic structure. We find that biaxial tensile and compressive strain suppress the metal-insulator transition temperature. By combining hard x-ray photoelectron spectroscopy, soft x-ray absorption spectroscopy, and density functional calculations, we resolve the element-specific changes to the electronic structure across the metal-insulator transition. We demonstrate that the Fe sites undergo no observable spectroscopic change between the metallic and insulating states, whereas the O electronic configuration undergoes significant changes. This strongly supports the bond-disproportionation model of the metal-insulator transition for CaFeO3 and highlights the importance of ligand holes in its electronic structure. By sensitively measuring the ligand hole density, however, we find that it increases by ˜5 -10 % in the insulating state, which we ascribe to a further localization of electron charge on the Fe sites. These results provide detailed insight into the metal-insulator transition of negative charge transfer compounds and should prove instructive for understanding metal-insulator transitions in other late transition metal compounds such as the nickelates.

  14. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes.

    PubMed

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  15. Luminescent low-valent rhenium complexes with 1,2-bis(dialkylphosphino)ethane ligands. synthesis and X-ray crystallographic, electrochemical, and spectroscopic characterization.

    PubMed

    Messersmith, Stephania J; Kirschbaum, Kristin; Kirchhoff, Jon R

    2010-04-19

    A series of low-valent rhenium phosphine complexes with the general formula [Re(dmpe)(3-x)(depe)(x)](2+/+) (x = 0-3), where dmpe is 1,2-bis(dimethylphosphino)ethane and depe is 1,2-bis(diethylphosphino)ethane, were synthesized and characterized. The reaction of [Re(benzil)(PPh(3))Cl(3)] with the appropriate phosphine yielded the homoleptic tris complexes [Re(dmpe)(3)](+) and [Re(depe)(3)](2+), while the mixed-ligand complexes [Re(dmpe)(2)(depe)](+) and [Re(dmpe)(depe)(2)](2+) were prepared from [Re(dmpe)(2)Cl(2)](+) and [Re(depe)(2)Cl(2)](+), respectively. The oxidation state of the final product strongly depends on the donating properties of the ligand. Each complex, however, exhibits a diffusion-controlled, reversible one-electron transfer between Re(I) and Re(II) with formal reduction potentials, E degrees ', ranging from -0.09 to -0.28 V versus a ferrocene external standard. Subsequent oxidation to Re(III) was found to be chemically irreversible. UV-vis and luminescence spectroelectrochemical techniques were used to study the spectral properties of the Re(I) and Re(II) forms. The Re(II) complexes are red in color and exhibit absorption features from 350 to 600 nm; the lowest-energy transition was assigned as a sigma(P) to dpi(Re) ligand-to-metal charge-transfer (LMCT) transition. Excitation into the lowest-energy absorption band revealed rare examples of luminescent (Phi approximately 0.07) LMCT excited states from d(5) transition-metal complexes in a room temperature solution. Structural characterization of salts of both oxidation states of [Re(dmpe)(2)(depe)](2+/+) was also performed.

  16. Shear Viscosity Coefficient of 5d Liquid Transition Metals

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.

    2011-07-01

    In the present paper we have calculated shear viscosity coefficient (η) of 5 d liquid transition metals. To calculate effective pair potential ν(r) and pair distribution function g(r) we have used our own newly constructed model potential and Percus- Yevick hard sphere (PYHS) structure factor S(q) respectively. We have also investigated the effect of different correction function like Hartree (H), Taylor (T) and Sarkar et al. (S) on shear viscosity coefficient (η). Our newly constructed model potential successfully explains the shear viscosity coefficient (η) of 5 d liquid transition metals.

  17. Thermal conductivity switch: Optimal semiconductor/metal melting transition

    NASA Astrophysics Data System (ADS)

    Kim, Kwangnam; Kaviany, Massoud

    2016-10-01

    Scrutinizing distinct solid/liquid (s /l ) and solid/solid (s /s ) phase transitions (passive transitions) for large change in bulk (and homogenous) thermal conductivity, we find the s /l semiconductor/metal (S/M) transition produces the largest dimensionless thermal conductivity switch (TCS) figure of merit ZTCS (change in thermal conductivity divided by smaller conductivity). At melting temperature, the solid phonon and liquid molecular thermal conductivities are comparable and generally small, so the TCS requires localized electron solid and delocalized electron liquid states. For cyclic phase reversibility, the congruent phase transition (no change in composition) is as important as the thermal transport. We identify X Sb and X As (X =Al , Cd, Ga, In, Zn) and describe atomic-structural metrics for large ZTCS, then show the superiority of S/M phonon- to electron-dominated transport melting transition. We use existing experimental results and theoretical and ab initio calculations of the related properties for both phases (including the Kubo-Greenwood and Bridgman formulations of liquid conductivities). The 5 p orbital of Sb contributes to the semiconductor behavior in the solid-phase band gap and upon disorder and bond-length changes in the liquid phase this changes to metallic, creating the large contrast in thermal conductivity. The charge density distribution, electronic localization function, and electron density of states are used to mark this S/M transition. For optimal TCS, we examine the elemental selection from the transition, basic, and semimetals and semiconductor groups. For CdSb, addition of residual Ag suppresses the bipolar conductivity and its ZTCS is over 7, and for Zn3Sb2 it is expected to be over 14, based on the structure and transport properties of the better-known β -Zn4Sb3 . This is the highest ZTCS identified. In addition to the metallic melting, the high ZTCS is due to the electron-poor nature of II-V semiconductors, leading to the

  18. Weyl Semimetal to Metal Phase Transitions Driven by Quasiperiodic Potentials

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Wilson, Justin H.; Huse, David A.; Gopalakrishnan, Sarang

    2018-05-01

    We explore the stability of three-dimensional Weyl and Dirac semimetals subject to quasiperiodic potentials. We present numerical evidence that the semimetal is stable for weak quasiperiodic potentials, despite being unstable for weak random potentials. As the quasiperiodic potential strength increases, the semimetal transitions to a metal, then to an "inverted" semimetal, and then finally to a metal again. The semimetal and metal are distinguished by the density of states at the Weyl point, as well as by level statistics, transport, and the momentum-space structure of eigenstates near the Weyl point. The critical properties of the transitions in quasiperiodic systems differ from those in random systems: we do not find a clear critical scaling regime in energy; instead, at the quasiperiodic transitions, the density of states appears to jump abruptly (and discontinuously to within our resolution).

  19. Ultrathin and Atomically Flat Transition-Metal Oxide: Promising Building Blocks for Metal-Insulator Electronics.

    PubMed

    Cui, Qingsong; Sakhdari, Maryam; Chamlagain, Bhim; Chuang, Hsun-Jen; Liu, Yi; Cheng, Mark Ming-Cheng; Zhou, Zhixian; Chen, Pai-Yen

    2016-12-21

    We present a new and viable template-assisted thermal synthesis method for preparing amorphous ultrathin transition-metal oxides (TMOs) such as TiO 2 and Ta 2 O 5 , which are converted from crystalline two-dimensional (2D) transition-metal dichalcogenides (TMDs) down to a few atomic layers. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM) were used to characterize the chemical composition and bonding, surface morphology, and atomic structure of these ultrathin amorphous materials to validate the effectiveness of our synthesis approach. Furthermore, we have fabricated metal-insulator-metal (MIM) diodes using the TiO 2 and Ta 2 O 5 as ultrathin insulating layers with low potential barrier heights. Our MIM diodes show a clear transition from direct tunneling to Fowler-Nordheim tunneling, which was not observed in previously reported MIM diodes with TiO 2 or Ta 2 O 5 as the insulating layer. We attribute the improved performance of our MIM diodes to the excellent flatness and low pinhole/defect densities in our TMO insulting layers converted from 2D TMDs, which enable the low-threshold and controllable electron tunneling transport. We envision that it is possible to use the ultrathin TMOs converted from 2D TMDs as the insulating layer of a wide variety of metal-insulator and field-effect electronic devices for various applications ranging from microwave mixing, parametric conversion, infrared photodetection, emissive energy harvesting, to ultrafast electronic switching.

  20. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertrand, Guy

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry”more » since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH 3 and NH 2NH 2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH 3- and NH 2NH 2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require high temperatures and long reaction times. To address

  1. Synthetic Fabrication of Nanoscale MoS2-Based Transition Metal Sulfides

    PubMed Central

    Wang, Shutao; An, Changhua; Yuan, Jikang

    2010-01-01

    Transition metal sulfides are scientifically and technologically important materials. This review summarizes recent progress on the synthetic fabrication of transition metal sulfides nanocrystals with controlled shape, size, and surface functionality. Special attention is paid to the case of MoS2 nanoparticles, where organic (surfactant, polymer), inorganic (support, promoter, doping) compounds and intercalation chemistry are applied.

  2. DEMONSTRATION BULLETIN: METAL-ENHANCED ABIOTIC DEGRADATION TECHNOLOGY - ENVIROMETAL TECHNOLOGIES, INC.

    EPA Science Inventory

    EnviroMetal Technologies, Inc. (ETI), of Guelph, ON, Canada, has developed the metal-enhanced abiotic degradation technology to treat halogenated volatile organic compounds (VOC) in water. A reactive, zero-valent, granular iron medium causes reductive dehalogenation of VOCs yield...

  3. Ionothermal syntheses of three transition-metal-containing polyoxotungstate hybrids exhibiting the photocatalytic and electrocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, W.-L.; Chen, B.-W.; Tan, H.-Q.

    2010-02-15

    Employing the ionothermal synthesis approach, three new transition-metal-containing polyoxotungstate hybrids: [Dmim]{sub 2}Na{sub 3}[SiW{sub 11}O{sub 39}Fe(H{sub 2}O)].H{sub 2}O (Dmim=1,3-Dimethylimidazole) (1), [Emim]{sub 9}Na{sub 8}[(SiW{sub 9}O{sub 34}){sub 3}{l_brace}Fe{sub 3}(mu{sub 2}-OH){sub 2}(mu{sub 3}-O){r_brace}{sub 3}(WO{sub 4})].0.5H{sub 2}O (Emim=1-Ethyl-3-meth-ylimidazole) (2) and [Dmim]2[HMim]Na{sub 6}[(AsW{sub 9}O{sub 33}){sub 2}{l_brace}Mn{sup III}(H{sub 2}O){r_brace}{sub 3}].3H{sub 2}O (Dmim=1,3-Dimethylimidazole; Mim=1-Methylimidazole) (3) have been synthesized in 1-ethyl-3-methyl imidazolium bromide ([Emim]Br) ionic liquids (ILs). Compound 1 possesses a 3-D open framework constructed from the mono-iron{sup III}-substituted alpha-Keggin-type anion and the organic cations [Dmim]+ through the hydrogen bond interactions. Compound 2 contains a [{l_brace}Fe{sup III}{sub 3}(mu{sub 2}-OH){sub 2}(mu{sub 3}-O){r_brace}{sub 3}(mu{sub 4}-WO{sub 4})] cluster surrounded by three [SiW{submore » 9}O{sub 34}]{sup 10-} ligands, eight sodium cations and nine dissociative [Emim]{sup +} cations around the polyoxoanion. The polyoxoanion of 3 consists of a high-valent trinuclear-manganese (III)-substituted sandwiching polyoxoanion based on the [alpha-AsW{sub 9}O{sub 33}]{sup 9-} units. All the compounds are characterized by elemental analyses, IR, UV-vis spectra, TG-DTA and XRD analyses. The XPS and EPR spectra of Mn{sup III} in 3 were studied. The photocatalytic and electrocatalytic properties, as well as the stabilities of 1-3 were also investigated. - Graphical abstract: Three new transition-metal-containing polyoxotungstate hybrids were synthesized successfully under the ionothermal condition, which proves that the ionothermal synthesis is a suitable synthetic method for different kinds of polyoxometalates.« less

  4. Adjustable metal-semiconductor transition of FeS thin films by thermal annealing

    NASA Astrophysics Data System (ADS)

    Fu, Ganhua; Polity, Angelika; Volbers, Niklas; Meyer, Bruno K.; Mogwitz, Boris; Janek, Jürgen

    2006-12-01

    FeS polycrystalline thin films were prepared on float glass at 500°C by radio-frequency reactive sputtering. The influence of vacuum annealing on the metal-semiconductor transition of FeS films was investigated. It has been found that with the increase of the annealing temperature from 360to600°C, the metal-semiconductor transition temperature of FeS films first decreases and then increases, associated with first a reduction and then an enhancement of hysteresis width. The thermal stress is considered to give rise to the abnormal change of the metal-semiconductor transition of the FeS film during annealing.

  5. Hund’s rule in superatoms with transition metal impurities

    PubMed Central

    Medel, Victor M.; Reveles, Jose Ulises; Khanna, Shiv N.; Chauhan, Vikas; Sen, Prasenjit; Castleman, A. Welford

    2011-01-01

    The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund’s rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMgn clusters where TM is a 3d atom. The clusters exhibit Hund’s filling, opening the pathway to superatoms with magnetic shells. PMID:21646542

  6. Metal Insulator transition in Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Jovaini, Azita; Fujita, Shigeji; Suzuki, Akira; Godoy, Salvador

    2012-02-01

    MAR12-2011-000262 Abstract Submitted for the MAR12 Meeting of The American Physical Society Sorting Category: 03.9 (T) On the metal-insulator-transition in vanadium dioxide AZITA JOVAINI, SHIGEJI FUJITA, University at Buffalo, SALVADOR GODOY, UNAM, AKIRA SUZUKI, Tokyo University of Science --- Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity _/ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop. Prefer Oral Session X Prefer .

  7. Pressure-driven insulator-metal transition in cubic phase UO2

    NASA Astrophysics Data System (ADS)

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-01

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ∼45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure. Simultaneously, the so-called “Zhang-Rice state”, which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.

  8. Visualization of a stable intermediate phase in photoinduced metal-to-insulator transition in manganites

    NASA Astrophysics Data System (ADS)

    Lin, Hanxuan; Liu, Hao; Bai, Yu; Miao, Tian; Yu, Yang; Zhu, Yinyan; Chen, Hongyan; Kou, Yunfang; Niu, Jiebin; Wang, Wenbin; Yin, Lifeng; Shen, Jian

    First order metal-insulator transition, accounting for various intriguing phenomena, is one of the most important phase transitions in condensed matter systems. Aside from the initial and final states, i.e. the metallic and insulating phases, no stable intermediate phase has been experimentally identified in such first order phase transition, though some transient phases do exist at the ultrafast time scale. Here, using our unique low-temperature, high-field magnetic force microscopy with photoexcitation, we directly observed a stable intermediate phase emerging and mediating the photoinduced first order metal-insulator transition in manganites. This phase is characteristic of low net magnetization and high resistivity. Our observations unveil the microscopic details of the photoinduced metal-insulator transition in manganites, which may be insightful to study first order metal-insulator transition in other condensed matter systems. This work was supported by National Key Research Program of China (2016YFA0300702), National Basic Research Program of China (973 Program) under the Grant No. 2013CB932901 and 2014CB921104; National Natural Science Foundation of China (11274071, 11504053).

  9. Metal-insulator transition in NiS2-xSex

    NASA Astrophysics Data System (ADS)

    Kuneš, J.; Baldassarre, L.; Schächner, B.; Rabia, K.; Kuntscher, C. A.; Korotin, Dm. M.; Anisimov, V. I.; McLeod, J. A.; Kurmaev, E. Z.; Moewes, A.

    2010-01-01

    The origin of the gap in NiS2 as well as the pressure- and doping-induced metal-insulator transition in the NiS2-xSex solid solutions are investigated both theoretically using the first-principles band structures combined with the dynamical mean-field approximation for the electronic correlations and experimentally by means of infrared and x-ray absorption spectroscopies. The bonding-antibonding splitting in the S-S (Se-Se) dimer is identified as the main parameter controlling the size of the charge gap. The implications for the metal-insulator transition driven by pressure and Se doping are discussed.

  10. Understanding Metal-Insulator transitions in ultra-thin films of LaNiO3

    NASA Astrophysics Data System (ADS)

    Ravichandran, Jayakanth; King, Philip D. C.; Schlom, Darrell G.; Shen, Kyle M.; Kim, Philip

    2014-03-01

    LaNiO3 (LNO) is a bulk paramagnetic metal and a member of the family of RENiO3 Nickelates (RE = Rare Earth Metals), which is on the verge of the metal-insulator transition. Ultra-thin films of LNO has been studied extensively in the past and due to its sensitivity to disorder, the true nature of the metal-insulator transition in these films have been hard to decipher. We grow high quality ultra-thin films of LNO using reactive molecular beam epitaxy (MBE) and use a combination of ionic liquid gating and magneto-transport measurements to understand the nature and tunability of metal-insulator transition as a function of thickness for LNO. The underlying mechanisms for the transition are discussed in the framework of standard transport models. These results are discussed in the light of other Mott insulators such as Sr2IrO4, where we have performed similar measurements around the insulating state.

  11. Transition-Metal-Free Alkynylation of Aryl Chlorides

    PubMed Central

    Truong, Thanh; Daugulis, Olafs

    2011-01-01

    Two sets of conditions have been developed for a base-mediated, transition-metal-free alkynylation of aryl chlorides that proceeds via benzyne intermediates. The first set of conditions involves the use of TMPLi base in a pentane/THF mixture at 25 °C. The second set involves use of a metal alkoxide base in dioxane at elevated temperature. Reasonable functional group tolerance has been observed. Fluoro, trifluoromethyl, silyl, cyano, and alcohol functionalities are compatible with the reaction conditions. PMID:21786825

  12. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A [Davis, CA; Woolman, Joseph N [Davis, CA; Petrovic, John J [Los Alamos, NM

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  13. High Pressure Synthesis of Transition Metal Carbonyls.

    ERIC Educational Resources Information Center

    Hagen, A. P.; And Others

    1979-01-01

    Presents an experiment which uses readily available starting materials and inexpensive equipment for synthesis of transition metal carbonyls at 1000 atm and which is intended to give students experience in techniques used in research and industry. Safety precautions are emphasized. (Author/SA)

  14. Synthesis and (spectro)electrochemistry of mixed-valent diferrocenyl-dihydrothiopyran derivatives.

    PubMed

    Kowalski, Konrad; Karpowicz, Rafał; Mlostoń, Grzegorz; Miesel, Dominique; Hildebrandt, Alexander; Lang, Heinrich; Czerwieniec, Rafał; Therrien, Bruno

    2015-04-07

    Three novel diferrocenyl complexes were prepared and characterised. 2,2-Diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran (1, sulphide) was accessible by the hetero-Diels-Alder reaction of diferrocenyl thioketone with 2,3-dimethyl-1,3-butadiene. Stepwise oxidation of 1 gave the respective oxides 2,2-diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran-1-oxide (2, sulfoxide) and 2,2-diferrocenyl-4,5-dimethyl-3,6-dihydro-2H-thiopyran-1,1-dioxide (3, sulfone), respectively. The molecular structures of 1 and 3 in the solid state were determined by single crystal X-ray crystallography. The oxidation of sulphide 1 to sulfone 3, plays only a minor role on the overall structure of the two compounds. Electrochemical (cyclic voltammetry (= CV), square wave voltammetry (= SWV)) and spectroelectrochemical (in situ UV-Vis/NIR spectroscopy) studies were carried out. The CV and SWV measurements showed that an increase of the sulphur atom oxidation from -2 in 1 to +2 in 3 causes an anodic shift of the ferrocenyl-based oxidation potentials of about 100 mV. The electrochemical oxidation of 1-3 generates mixed-valent cations 1(+)-3(+). These monooxidised species display low-energy electronic absorption bands between 1000 and 3000 nm assigned to IVCT (= Inter-Valence Charge Transfer) electronic transitions. Accordingly, the mixed-valent cations 1(+)-3(+) are classified as weakly coupled class II systems according to Robin and Day.

  15. A Review on the Synthesis and Applications of Mesostructured Transition Metal Phosphates

    PubMed Central

    Lin, Ronghe; Ding, Yunjie

    2013-01-01

    Considerable efforts have been devoted to extending the range of the elemental composition of mesoporous materials since the pioneering work of the M41S family of ordered mesoporous silica by Mobil researchers. The synthesis of transition metal-containing mesostructured materials with large surface area and high porosity has drawn great attention for its potential applications in acid and redox catalysis, photocatalysis, proton conducting devices, environmental restoration and so on. Thus, various transition metals-containing mesoporous materials, including transition metal-substituted mesoporous silicates, mesostructured transition metal oxides and transition metal phosphates (TMP), have been documented in the literature. Among these, mesostructured TMP materials are less studied, but possess some unique features, partly because of the easy and facile functionalization of PO4 and/or P–OH groups, rendering them interesting functional materials. This review first introduced the general synthesis strategies for manufacturing mesostructured TMP materials, as well as advantages and disadvantages of the respective method; then, we surveyed the ongoing developments of fabrication and application of the TMP materials in three groups on the basis of their components and application fields. Future perspectives on existing problems related to the present synthesis routes and further modifying of the functional groups for the purpose of tailoring special physical-chemical properties to meet wide application requirements were also provided in the last part. PMID:28809304

  16. Immunogenicity of a combined schedule of 7-valent pneumococcal conjugate vaccine followed by a 23-valent polysaccharide vaccine in adult recipients of heart or lung transplants.

    PubMed

    Gattringer, R; Winkler, H; Roedler, S; Jaksch, P; Herkner, H; Burgmann, H

    2011-10-01

    A combined schedule of 7-valent pneumococcal conjugate vaccine (PCV7) followed by 23-valent pneumococcal polysaccharide vaccine (PPV23) was evaluated retrospectively in 26 adult recipients of heart or lung transplants. PCV7 was immunogenic in these patients but there appeared to be no benefit from the additional PPV23 dose. © 2011 John Wiley & Sons A/S.

  17. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition

    NASA Astrophysics Data System (ADS)

    Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun

    2016-02-01

    Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological

  18. Pressure-induced metal-insulator transitions in chalcogenide NiS2-xSex

    NASA Astrophysics Data System (ADS)

    Hussain, Tayyaba; Oh, Myeong-jun; Nauman, Muhammad; Jo, Younjung; Han, Garam; Kim, Changyoung; Kang, Woun

    2018-05-01

    We report the temperature-dependent resistivity ρ(T) of chalcogenide NiS2-xSex (x = 0.1) using hydrostatic pressure as a control parameter in the temperature range of 4-300 K. The insulating behavior of ρ(T) survives at low temperatures in the pressure regime below 7.5 kbar, whereas a clear insulator-to-metallic transition is observed above 7.5 kbar. Two types of magnetic transitions, from the paramagnetic (PM) to the antiferromagnetic (AFM) state and from the AFM state to the weak ferromagnetic (WF) state, were evaluated and confirmed by magnetization measurement. According to the temperature-pressure phase diagram, the WF phase survives up to 7.5 kbar, and the transition temperature of the WF transition decreases as the pressure increases, whereas the metal-insulator transition temperature increases up to 9.4 kbar. We analyzed the metallic behavior and proposed Fermi-liquid behavior of NiS1.9Se0.1.

  19. Pseudopotentials for quantum Monte Carlo studies of transition metal oxides

    DOE PAGES

    Krogel, Jaron T.; Santana Palacio, Juan A.; Reboredo, Fernando A.

    2016-02-22

    Quantum Monte Carlo (QMC) calculations of transition metal oxides are partially limited by the availability of high-quality pseudopotentials that are both accurate in QMC and compatible with major plane-wave electronic structure codes. We have generated a set of neon-core pseudopotentials with small cutoff radii for the early transition metal elements Sc to Zn within the local density approximation of density functional theory. The pseudopotentials have been directly tested for accuracy within QMC by calculating the first through fourth ionization potentials of the isolated transition metal (M) atoms and the binding curve of each M-O dimer. We find the ionization potentialsmore » to be accurate to 0.16(1) eV, on average, relative to experiment. The equilibrium bond lengths of the dimers are within 0.5(1)% of experimental values, on average, and the binding energies are also typically accurate to 0.18(3) eV. The level of accuracy we find for atoms and dimers is comparable to what has recently been observed for bulk metals and oxides using the same pseudopotentials. Our QMC pseudopotential results compare well with the findings of previous QMC studies and benchmark quantum chemical calculations.« less

  20. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1984-01-01

    Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.

  1. Pressure-driven insulator-metal transition in cubic phase UO 2

    DOE PAGES

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-21

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ~45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure.more » Simultaneously, the so-called "Zhang-Rice state", which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.« less

  2. Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field

    NASA Astrophysics Data System (ADS)

    Dubovskii, L. B.

    2018-05-01

    The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.

  3. Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films

    DOE PAGES

    Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; ...

    2017-07-31

    Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering bymore » largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2–), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.« less

  4. Altered transition metal homeostasis in Niemann-Pick disease, Type C1

    PubMed Central

    Hung, Ya Hui; Faux, Noel G.; Killilea, David W.; Yanjanin, Nicole; Firnkes, Sally; Volitakis, Irene; Ganio, George; Walterfang, Mark; Hastings, Caroline; Porter, Forbes D.; Ory, Daniel S.; Bush, Ashley I.

    2014-01-01

    The loss of NPC1 protein function is the predominant cause of Niemann-Pick type C1 disease (NP-C1), a systemic and neurodegenerative disorder characterized by late-endosomal/lysosomal accumulation of cholesterol and other lipids. Limited evidence from post-mortem human tissues, an Npc1−/− mouse model, and cell culture studies also suggest failure of metal homeostasis in NP-C1. To investigate these findings, we performed a comprehensive transition metal analysis of cerebrospinal fluid (CSF), plasma and tissue samples from human NP-C1 patients and an Npc1−/− mouse model. NPC1 deficiency in the Npc1−/− mouse model resulted in a perturbation of transition metal homeostasis in the plasma and key organs (brain, liver, spleen, heart, lungs, and kidneys). Analysis of human patient CSF, plasma and post-mortem brain tissues also indicated disrupted metal homeostasis. There was a disparity in the direction of metal changes between the human and the Npc1−/− mouse samples, which may reflect species-specific metal metabolism. Nevertheless, common to both species is brain zinc accumulation. Furthermore, treatment with the glucosylceramide synthase inhibitor miglustat, the only drug shown in a controlled clinical trial to have some efficacy for NP-C1, did not correct the alterations in CSF and plasma transition metal and ceruloplasmin (CP) metabolism in NP-C1 patients. These findings highlight the importance of NPC1 function in metal homeostasis, and indicate that metal-targeting therapy may be of value as a treatment for NP-C. PMID:24343124

  5. Vibrational energy transfer dynamics in ruthenium polypyridine transition metal complexes.

    PubMed

    Fedoseeva, Marina; Delor, Milan; Parker, Simon C; Sazanovich, Igor V; Towrie, Michael; Parker, Anthony W; Weinstein, Julia A

    2015-01-21

    Understanding the dynamics of the initial stages of vibrational energy transfer in transition metal complexes is a challenging fundamental question which is also of crucial importance for many applications, such as improving the performance of solar devices or photocatalysis. The present study investigates vibrational energy transport in the ground and the electronic excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2, a close relative of the efficient "N3" dye used in dye-sensitized solar cells. Using the emerging technique of ultrafast two-dimensional infrared spectroscopy, we show that, similarly to other transition-metal complexes, the central Ru heavy atom acts as a "bottleneck" making the energy transfer from small ligands with high energy vibrational stretching frequencies less favorable and thereby affecting the efficiency of vibrational energy flow in the complex. Comparison of the vibrational relaxation times in the electronic ground and excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2 shows that it is dramatically faster in the latter. We propose to explain this observation by the intramolecular electrostatic interactions between the thiocyanate group and partially oxidised Ru metal center, which increase the degree of vibrational coupling between CN and Ru-N modes in the excited state thus reducing structural and thermodynamic barriers that slow down vibrational relaxation and energy transport in the electronic ground state. As a very similar behavior was earlier observed in another transition-metal complex, Re(4,4'-(COOEt)2-2,2'-bpy)(CO)3Cl, we suggest that this effect in vibrational energy dynamics might be common for transition-metal complexes with heavy central atoms.

  6. Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke.

    PubMed

    Pourrezaei, Parastoo; Alpatova, Alla; Khosravi, Kambiz; Drzewicz, Przemysław; Chen, Yuan; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2014-06-15

    The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of NAs in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the NAs removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the NAs removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox(®) bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Edge Delamination of Monolayer Transition Metal Dichalcogenides.

    PubMed

    Ly, Thuc Hue; Yun, Seok Joon; Thi, Quoc Huy; Zhao, Jiong

    2017-07-25

    Delamination of thin films from the supportive substrates is a critical issue within the thin film industry. The emergent two-dimensional, atomic layered materials, including transition metal dichalcogenides, are highly flexible; thus buckles and wrinkles can be easily generated and play vital roles in the corresponding physical properties. Here we introduce one kind of patterned buckling behavior caused by the delamination from a substrate initiated at the edges of the chemical vapor deposition synthesized monolayer transition metal dichalcogenides, led by thermal expansion mismatch. The atomic force microscopy and optical characterizations clearly showed the puckered structures associated with the strain, whereas the transmission electron microscopy revealed the special sawtooth-shaped edges, which break the geometrical symmetry for the buckling behavior of hexagonal samples. The condition of the edge delamination is in accordance with the fracture behavior of thin film interfaces. This edge delamination and buckling process is universal for most ultrathin two-dimensional materials, which requires more attention in various future applications.

  8. Band gap tuning in transition metal oxides by site-specific substitution

    DOEpatents

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  9. X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iota, V; Park, J; Baer, B

    2003-11-18

    The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at highmore » pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d-band occupancy

  10. Transition-metal phosphors with cyclometalating ligands: fundamentals and applications.

    PubMed

    Chi, Yun; Chou, Pi-Tai

    2010-02-01

    One goal of this critical review is to provide advanced methodologies for systematic preparation of transition-metal based phosphors that show latent applications in the field of organic light emitting diodes (OLEDs). We are therefore reviewing various types of cyclometalating chelates for which the favorable metal-chelate bonding interaction, on the one hand, makes the resulting phosphorescent complexes highly emissive in both fluid and solid states at room temperature. On the other hand, fine adjustment of ligand-centered pi-pi* electronic transitions allows tuning of emission wavelength across the whole visible spectrum. The cyclometalating chelates are then classified according to types of cyclometalating groups, i.e. either aromatic C-H or azolic N-H fragment, and the adjacent donor fragment involved in the formation of metallacycles; the latter is an N-containing heterocycle, N-heterocyclic (NHC) carbene fragment or even diphenylphosphino group. These cyclometalating ligands are capable to react with heavy transition-metal elements, namely: Ru(II), Os(II), Ir(III) and Pt(II), to afford a variety of highly emissive phosphors, for which the photophysical properties as a function of chelate or metal characteristics are systematically discussed. Using Ir(III) complexes as examples, the C--N chelates possessing both C-H site and N-heterocyclic donor group are essential for obtaining phosphors with emission ranging from sky-blue to saturated red, while the N--N chelates such as 2-pyridyl-C-linked azolates are found useful for serving as true-blue chromophores due to their increased ligand-centered pi-pi* energy gap. Lastly, the remaining NHC carbene and benzyl phosphine chelates are highly desirable to serve as ancillary chelates in localizing the electronic transition between the metal and remaining lower energy chromophoric chelates. As for the potential opto-electronic applications, many of them exhibit remarkable performance data, which are convincing to pave a

  11. Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires

    DOE PAGES

    Lin, Junhao; Zhang, Yuyang; Zhou, Wu; ...

    2016-01-18

    Metallic transition-metal chalcogenide (TMC) nanowires are an important building block for 2D electronics that may be fabricated within semiconducting transition-metal dichalcogenide (TMDC) monolayers. Tuning the geometric structure and electronic properties of such nanowires is a promising way to pattern diverse functional channels for wiring multiple units inside a 2D electronic circuit. Nevertheless, few experimental investigations have been reported exploring the structural and compositional tunability of these nanowires, due to difficulties in manipulating the structure and chemical composition of an individual nanowire. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we report that TMCmore » nanowires have substantial intrinsic structural flexibility and their chemical composition can be manipulated.« less

  12. Photoinduced metal-to-insulator transition in a manganite thin film.

    PubMed

    Takubo, N; Onishi, I; Takubo, K; Mizokawa, T; Miyano, K

    2008-10-24

    A persistent photoinduced metal-to-insulator transition has been confirmed in a manganite thin film, Pr_(0.55)(Ca_(0.75)Sr_(0.25))_(0.45)MnO3, near a multicritical point by monitoring with transport measurements and x-ray photoemission spectroscopy. Together with the previously reported reverse effect, the photoinduced insulator-to-metal transition, it is found that the relative stability of the metallic and insulating phases interchanges around 80 K in the middle of a very wide hysteresis loop, which is a manifestation of the large potential barrier due to the long-range elastic energy. It is shown that photons are much more effective in overcoming the barrier via the electronically excited intermediate states than via the heat mode.

  13. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    DOEpatents

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  14. Spin decoherence of InAs surface electrons by transition metal ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Soghomonian, V.; Heremans, J. J.

    2018-04-01

    Spin interactions between a two-dimensional electron system at the InAs surface and transition metal ions, Fe3 +, Co2 +, and Ni2 +, deposited on the InAs surface, are probed by antilocalization measurements. The spin-dependent quantum interference phenomena underlying the quantum transport phenomenon of antilocalization render the technique sensitive to the spin states of the transition metal ions on the surface. The experiments yield data on the magnitude and temperature dependence of the electrons' inelastic scattering rates, spin-orbit scattering rates, and magnetic spin-flip rates as influenced by Fe3 +, Co2 +, and Ni2 +. A high magnetic spin-flip rate is shown to mask the effects of spin-orbit interaction, while the spin-flip rate is shown to scale with the effective magnetic moment of the surface species. The spin-flip rates and their dependence on temperature yield information about the spin states of the transition metal ions at the surface, and in the case of Co2 + suggest either a spin transition or formation of a spin-glass system.

  15. Janus monolayers of transition metal dichalcogenides.

    PubMed

    Lu, Ang-Yu; Zhu, Hanyu; Xiao, Jun; Chuu, Chih-Piao; Han, Yimo; Chiu, Ming-Hui; Cheng, Chia-Chin; Yang, Chih-Wen; Wei, Kung-Hwa; Yang, Yiming; Wang, Yuan; Sokaras, Dimosthenis; Nordlund, Dennis; Yang, Peidong; Muller, David A; Chou, Mei-Yin; Zhang, Xiang; Li, Lain-Jong

    2017-08-01

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS 2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  16. Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties.

    PubMed

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat

    2016-09-30

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been widely used from nanodevices to energy harvesting/storage because of their tunable physical and chemical properties. In this work, we systematically investigate the effects of hydrogenation on the structural, electronic, magnetic, and catalytic properties of 33 TMDs based on first-principles calculations. We find that the stable phases of TMD monolayers can transit from 1T to 2H phase or vice versa upon the hydrogenation. We show that the hydrogenation can switch their magnetic and electronic states accompanying with the phase transition. The hydrogenation can tune the magnetic states of TMDs among non-, ferro, para-, and antiferro-magnetism and their electronic states among semiconductor, metal, and half-metal. We further show that, out of 33 TMD monolayers, 2H-TiS 2 has impressive catalytic ability comparable to Pt in hydrogen evolution reaction in a wide range of hydrogen coverages. Our findings would shed the light on the multi-functional applications of TMDs.

  17. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marking, Gregory Allen

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf 10Ta 3S 3 was found to crystallize in a new-structure type similar to the knownmore » gamma brasses. This structure is unique in that it is the only reported "stuffed" gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo Kα X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co 2Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.« less

  18. Phase-field model of insulator-to-metal transition in VO2 under an electric field

    NASA Astrophysics Data System (ADS)

    Shi, Yin; Chen, Long-Qing

    2018-05-01

    The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.

  19. First-principles simulations of transition metal ions in silicon as potential quantum bits

    NASA Astrophysics Data System (ADS)

    Ma, He; Seo, Hosung; Galli, Giulia

    Optically active spin defects in semiconductors have gained increasing attention in recent years for use as potential solid-state quantum bits (or qubits). Examples include the nitrogen-vacancy center in diamond, transition metal impurities, and rare earth ions. In this talk, we present first-principles theoretical results on group 6 transition metal ion (Chromium, Molybdenum and Tungsten) impurities in silicon, and we investigate their potential use as qubits. We used density functional theory (DFT) to calculate defect formation energies and we found that transition metal ions have lower formation energies at interstitial than substitutional sites. We also computed the electronic structure of the defects with particular attention to the position of the defect energy levels with respect to the silicon band edges. Based on our results, we will discuss the possibility of implementing qubits in silicon using group 6 transition metal ions. This work is supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.

  20. Role of thermal heating on the voltage induced insulator-metal transition in VO2.

    PubMed

    Zimmers, A; Aigouy, L; Mortier, M; Sharoni, A; Wang, Siming; West, K G; Ramirez, J G; Schuller, Ivan K

    2013-02-01

    We show that the main mechanism for the dc voltage or dc current induced insulator-metal transition in vanadium dioxide VO(2) is due to local Joule heating and not a purely electronic effect. This "tour de force" experiment was accomplished by using the fluorescence spectra of rare-earth doped micron sized particles as local temperature sensors. As the insulator-metal transition is induced by a dc voltage or dc current, the local temperature reaches the transition temperature indicating that Joule heating plays a predominant role. This has critical implications for the understanding of the dc voltage or dc current induced insulator-metal transition and has a direct impact on applications which use dc voltage or dc current to externally drive the transition.

  1. Flexible metallic seal for transition duct in turbine system

    DOEpatents

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2014-04-22

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

  2. Planar heterostructures of single-layer transition metal dichalcogenides: Composite structures, Schottky junctions, tunneling barriers, and half metals

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Kılıç, ćetin; Ciraci, S.

    2017-02-01

    Planar composite structures formed from the stripes of transition metal dichalcogenides joined commensurately along their zigzag or armchair edges can attain different states in a two-dimensional (2D), single-layer, such as a half metal, 2D or one-dimensional (1D) nonmagnetic metal and semiconductor. Widening of stripes induces metal-insulator transition through the confinements of electronic states to adjacent stripes, that results in the metal-semiconductor junction with a well-defined band lineup. Linear bending of the band edges of the semiconductor to form a Schottky barrier at the boundary between the metal and semiconductor is revealed. Unexpectedly, strictly 1D metallic states develop in a 2D system along the boundaries between stripes, which pins the Fermi level. Through the δ doping of a narrow metallic stripe one attains a nanowire in the 2D semiconducting sheet or narrow band semiconductor. A diverse combination of constituent stripes in either periodically repeating or finite-size heterostructures can acquire critical fundamental features and offer device capacities, such as Schottky junctions, nanocapacitors, resonant tunneling double barriers, and spin valves. These predictions are obtained from first-principles calculations performed in the framework of density functional theory.

  3. First-order metal-insulator transitions in vanadates from first principles

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Rabe, Karin

    2013-03-01

    Materials that exhibit first-order metal-insulator transitions, with the accompanying abrupt change in the conductivity, have potential applications as switches in future electronic devices. Identification of materials and exploration of the atomic-scale mechanisms for switching between the two electronic states is a focus of current research. In this work, we search for first-order metal-insulator transitions in transition metal compounds, with a particular focus on d1 and d2 systems, by using first principles calculations to screen for an alternative low-energy state having not only a electronic character opposite to that of the ground state, but a distinct structure and/or magnetic ordering which would permit switching by an applied field or stress. We will present the results of our investigation of the perovskite compounds SrVO3, LaVO3, CaVO3, YVO3, LaTiO3 and related layered phase, including superlattices and Ruddlesden-Popper phases. While the pure compounds do not satisfy the search criteria, the layered phases show promising results.

  4. Stabilization of Lithium Transition Metal Silicates in the Olivine Structure

    DOE PAGES

    Sun, Xiaoqi; Tripathi, Rajesh; Popov, Guerman; ...

    2017-07-28

    While olivine LiFePO 4 shows amongst the best electrochemical properties of Li-ion positive electrodes with respect to rate behavior owing to facile Li + migration pathways in the framework, replacing the [PO 4] 3- polyanion with a silicate [SO 4] 4- moitie in olivine is desirable. This would allow additional balancing alkali content and hence electron transfer, and increase the capacity. We demonstrate the first stabilization of a lithium transition-metal silicate (as a pure silicate) in the olivine structure type. Using LiInSiO 4 and LiScSiO 4 as the parent materials, transition metal (Mn, Fe, Co) substitutions on the In/Sc sitemore » were investigated by computational modelling via atomic scale simulation. Transition metal substitution was found to be only favourable for Co, a finding confirmed by the successful solid state synthesis of olivine LixInyCo 2-x-ySiO 4. Finally, the stabilization of the structure was achieved by entropy provided by cation disorder.« less

  5. First observation of a negative elastic constant in intermediate valent TmSe

    NASA Astrophysics Data System (ADS)

    Boppart, H.; Treindl, A.; Wachter, P.; Roth, S.

    1980-08-01

    The sound velocities v L, v T 1 and v T 2 have been measured at 15 MHz on Tm 3+0.87Se and Tm 2.8+0.99Se between 300 K and 4.2 K and the elastic constants c ij have been derived. In intermediate valent Tm 2.8+0.99Se c 12 turned out to be negative. This sign is interpreted as being typical for intermediate valent compounds. Also for the first time experimental evidence is given for crystal field effects in Tm 3+0.87Se. Strong elastic nonlinearities are observed in intermediate valent Tm 2.8+0.99Se with uniaxial pressure.

  6. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  7. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  8. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers.

    PubMed

    Li, Wenbin; Li, Ju

    2016-02-24

    Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T'. The low-symmetry 1T' phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T' phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV per chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Monolayers of transition metal dichalcogenides with 1T' structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics.

  9. Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling.

    PubMed

    Vilardi, Giorgio; Mpouras, Thanasis; Dermatas, Dimitris; Verdone, Nicola; Polydera, Angeliki; Di Palma, Luca

    2018-06-01

    Carbon Nanotubes (CNTs) and nano Zero-Valent Iron (nZVI) particles, as well as two nanocomposites based on these novel nanomaterials, were employed as nano-adsorbents for the removal of hexavalent chromium, selenium and cobalt, from aqueous solutions. Nanomaterials characterization included the determination of their point of zero charge and particle size distribution. CNTs were further analyzed using scanning electron microscopy, thermogravimetric analysis and Raman spectroscopy to determine their morphology and structural properties. Batch experiments were carried out to investigate the removal efficiency and the possible competitive interactions among metal ions. Adsorption was found to be the main removal mechanism, except for Cr(VI) treatment by nZVI, where reduction was the predominant mechanism. The removal efficiency was estimated in decreasing order as CNTs-nZVI > nZVI > CNTs > CNTs-nZVI* independently upon the tested heavy metal. In the case of competitive adsorption, Cr(VI) exhibited the highest affinity for every adsorbent. The preferable Cr(VI) removal was also observed using binary systems of the tested metals by means of the CNTs-nZVI nanocomposite. Single species adsorption was better described by the non-linear Sips model, whilst competitive adsorption followed the modified Langmuir model. The CNTs-nZVI nanocomposite was tested for its reusability, and showed high adsorption efficiency (the q max values decreased less than 50% with respect to the first use) even after three cycles of use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Strain-induced metal-insulator transitions in d1 perovskites within DFT+DMFT

    NASA Astrophysics Data System (ADS)

    Dymkowski, Krzysztof; Ederer, Claude

    2014-03-01

    We present results of combined density functional theory plus dynamical mean-field theory (DFT+DMFT) calculations, assessing the effect of epitaxial strain on the electronic properties of the Mott insulator LaTiO3 and the correlated metal SrVO3. In particular, we take into account the effect of strain on the collective tilts and rotations of the oxygen octahedra in the orthorhombically distorted Pbnm perovskite structure of LaTiO3. We find that LaTiO3 undergoes an insulator-to-metal transition under a compressive strain of about - 2 %, consistent with recent experimental observations. We show that this transition is driven mainly by strain-induced changes in the crystal-field splitting between the Ti t2 g orbitals, which in turn are related to changes in the octahedral tilt distortion. We compare this with the case of SrVO3, without octahedral tilts, where we find a metal-to-insulator transition under tensile epitaxial strain. Similar to LaTiO3, this metal-insulator transition is linked to the strain-induced change in the crystal-field splitting within the t2 g orbitals.

  11. Recent advances in transition metal-catalyzed N -atom transfer reactions of azides

    PubMed Central

    Driver, Tom G.

    2011-01-01

    Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243

  12. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering.

    PubMed

    Voiry, Damien; Goswami, Anandarup; Kappera, Rajesh; e Silva, Cecilia de Carvalho Castro; Kaplan, Daniel; Fujita, Takeshi; Chen, Mingwei; Asefa, Tewodros; Chhowalla, Manish

    2015-01-01

    Chemical functionalization of low-dimensional materials such as nanotubes, nanowires and graphene leads to profound changes in their properties and is essential for solubilizing them in common solvents. Covalent attachment of functional groups is generally achieved at defect sites, which facilitate electron transfer. Here, we describe a simple and general method for covalent functionalization of two-dimensional transition metal dichalcogenide nanosheets (MoS₂, WS₂ and MoSe₂), which does not rely on defect engineering. The functionalization reaction is instead facilitated by electron transfer between the electron-rich metallic 1T phase and an organohalide reactant, resulting in functional groups that are covalently attached to the chalcogen atoms of the transition metal dichalcogenide. The attachment of functional groups leads to dramatic changes in the optoelectronic properties of the material. For example, we show that it renders the metallic 1T phase semiconducting, and gives it strong and tunable photoluminescence and gate modulation in field-effect transistors.

  13. Structure, bonding, and catalytic activity of monodisperse, transition-metal-substituted CeO2 nanoparticles.

    PubMed

    Elias, Joseph S; Risch, Marcel; Giordano, Livia; Mansour, Azzam N; Shao-Horn, Yang

    2014-12-10

    We present a simple and generalizable synthetic route toward phase-pure, monodisperse transition-metal-substituted ceria nanoparticles (M0.1Ce0.9O2-x, M = Mn, Fe, Co, Ni, Cu). The solution-based pyrolysis of a series of heterobimetallic Schiff base complexes ensures a rigorous control of the size, morphology and composition of 3 nm M0.1Ce0.9O2-x crystallites for CO oxidation catalysis and other applications. X-ray absorption spectroscopy confirms the dispersion of aliovalent (M(3+) and M(2+)) transition metal ions into the ceria matrix without the formation of any bulk transition metal oxide phases, while steady-state CO oxidation catalysis reveals an order of magnitude increase in catalytic activity with copper substitution. Density functional calculations of model slabs of these compounds confirm the stabilization of M(3+) and M(2+) in the lattice of CeO2. These results highlight the role of the host CeO2 lattice in stabilizing high oxidation states of aliovalent transition metal dopants that ordinarily would be intractable, such as Cu(3+), as well as demonstrating a rational approach to catalyst design. The current work demonstrates, for the first time, a generalizable approach for the preparation of transition-metal-substituted CeO2 for a broad range of transition metals with unparalleled synthetic control and illustrates that Cu(3+) is implicated in the mechanism for CO oxidation on CuO-CeO2 catalysts.

  14. Polyelectrolyte Properties in Mono and Multi-Valent Ionic Media: Brushes and Complex Coacervates

    NASA Astrophysics Data System (ADS)

    Farina, Robert M.

    Materials composed of polyelectrolytes have unique and interesting physical properties resulting primarily from their charged monomer segments. Polyelectrolytes, which exist in many different biological and industrial forms, have also been shown to be highly responsive to external environmental changes. Here, two specific polyelectrolyte systems, brushes and complex coacervates, are discussed in regards to how their properties can be tailored by adjusting the surrounding ionic environment with mono and multi-valent ions. End-tethered polyelectrolyte brushes, which constitute an interesting and substantial portion of polyelectrolyte applications, are well known for their ability to provide excellent lubrication and low friction when coated onto surfaces (e.g. articular cartilage and medical devices), as well as for their ability to stabilize colloidal particles in solution (e.g. paint and cosmetic materials). These properties have been extensively studied with brushes in pure mono-valent ionic media. However, polyelectrolyte brush interactions with multi-valent ions in solution are much less understood, although highly relevant considering mono and multi-valent counterions are present in most applications. Even at very low concentrations of multi-valent ions in solution, dramatic polyelectrolyte brush physical property changes can occur, resulting in collapsed chains which also adhere to one another via multi-valent bridging. Here, the strong polyelectrolyte poly(sodium styrene sulfonate) was studied using the Surface Forces Apparatus (SFA) and electrochemistry in order to investigate brush height and intermolecular interactions between two brushes as a function of multi-valent counterion population inside a brush. Complex coacervates are formed when polyanions and polycations are mixed together in proper conditions of an aqueous solution. This mixing results in a phase separation of a polymer-rich, coacervate phase composed of a chain network held together via

  15. The Electrochemical Synthesis of Transition-Metal Acetylacetonates

    ERIC Educational Resources Information Center

    Long, S. R.; Browning, S. R.; Lagowski, J. J.

    2008-01-01

    The electrochemical synthesis of transition-metal acetylacetonates described here can form the basis of assisting in the transformation of an entry-level laboratory course into a research-like environment where all members of a class are working on the same problem, but where each member has a personal responsibility for the synthesis and…

  16. Designing Superhard Materials by Incorporating Boron Into Heavy Transition Metals

    NASA Astrophysics Data System (ADS)

    Liang, Yongcheng; Li, Anhu; Zhao, Jianzhi; Zhang, Wenqing

    First-principles calculations on the incompressibility, elasticity and hardness of the Os, OsB2, Re, and ReB2 materials have systematically been performed by the plane-wave basis pseudopotential method. Transition metals Os and Re, which have high bulk modulus but low hardness, can be converted into hard materials by combining them with small B atoms. Moreover, electronic and structural mechanisms of ReB2 and OsB2 are analyzed in detail and compared. It is shown that incorporating small B atoms into heavy transition metals should be a valid pathway to obtain new superhard materials.

  17. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    NASA Astrophysics Data System (ADS)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  18. Stabilization of fullerene-like boron cages by transition metal encapsulation

    NASA Astrophysics Data System (ADS)

    Lv, Jian; Wang, Yanchao; Zhang, Lijun; Lin, Haiqing; Zhao, Jijun; Ma, Yanming

    2015-06-01

    The stabilization of fullerene-like boron (B) cages in the free-standing form has been long sought after and a challenging problem. Studies that have been carried out for more than a decade have confirmed that the planar or quasi-planar polymorphs are energetically favored ground states over a wide range of small and medium-sized B clusters. Recently, the breakthroughs represented by Nat. Chem., 2014, 6, 727 established that the transition from planar/quasi-planar to cage-like Bn clusters occurs around n = ~38-40, paving the way for understanding the intriguing chemistry of B-fullerene. We herein demonstrate that the transition demarcation, n, can be significantly reduced with the help of transition metal encapsulation. We explore via extensive first-principles swarm-intelligence based structure searches the free energy landscapes of B24 clusters doped by a series of transition metals and find that the low-lying energy regime is generally dominated by cage-like isomers. This is in sharp contrast to that of bare B24 clusters, where the quasi-planar and rather irregular polyhedrons are prevalent. Most strikingly, a highly symmetric B cage with D3h symmetry is discovered in the case of Mo or W encapsulation. The endohedral D3h cages exhibit robust thermodynamic, dynamic and chemical stabilities, which can be rationalized in terms of their unique electronic structure of an 18-electron closed-shell configuration. Our results indicate that transition metal encapsulation is a feasible route for stabilizing medium-sized B cages, offering a useful roadmap for the discovery of more B fullerene analogues as building blocks of nanomaterials.The stabilization of fullerene-like boron (B) cages in the free-standing form has been long sought after and a challenging problem. Studies that have been carried out for more than a decade have confirmed that the planar or quasi-planar polymorphs are energetically favored ground states over a wide range of small and medium-sized B clusters

  19. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOEpatents

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  20. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  1. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  2. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  3. Electronic band structure of 4d and 5d transition metal trichalcogenides

    NASA Astrophysics Data System (ADS)

    Sugita, Yusuke; Miyake, Takashi; Motome, Yukitoshi

    2018-05-01

    Transition metal trichalcogenides (TMTs), a family of van der Waals materials, have gained increasing interests from the discovery of magnetism in few-layer forms. Although TMTs with 3d transition metal elements have been studied extensively, much less is explored for the 4d and 5d cases, where the interesting interplay between electron correlations and the relativistic spin-orbit coupling is expected. Using ab initio calculations, we here investigate the electronic property of TMTs with 4d and 5d transition metal elements. We show that the band structures exhibit multiple node-like features near the Fermi level. These are the remnant of multiple Dirac cones that were recently discovered in the monolayer cases. Our results indicate that the peculiar two-dimensional multiple Dirac cones are concealed even in the layered bulk systems.

  4. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers

    DOE PAGES

    Li, Wenbin; Li, Ju

    2016-02-24

    Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T'. The low-symmetry 1T' phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T' phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV permore » chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Furthermore, monolayers of transition metal dichalcogenides with 1T' structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics.« less

  5. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  6. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, William F.; Page, Ralph H.; DeLoach, Laura D.; Payne, Stephen A.

    1996-01-01

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.

  7. Engineering of Transition Metal Catalysts Confined in Zeolites

    PubMed Central

    2018-01-01

    Transition metal–zeolite composites are versatile catalytic materials for a wide range of industrial and lab-scale processes. Significant advances in fabrication and characterization of well-defined metal centers confined in zeolite matrixes have greatly expanded the library of available materials and, accordingly, their catalytic utility. In this review, we summarize recent developments in the field from the perspective of materials chemistry, focusing on synthesis, postsynthesis modification, (operando) spectroscopy characterization, and computational modeling of transition metal–zeolite catalysts. PMID:29861546

  8. Spin doping using transition metal phthalocyanine molecules

    PubMed Central

    Atxabal, A.; Ribeiro, M.; Parui, S.; Urreta, L.; Sagasta, E.; Sun, X.; Llopis, R.; Casanova, F.; Hueso, L. E.

    2016-01-01

    Molecular spins have become key enablers for exploring magnetic interactions, quantum information processes and many-body effects in metals. Metal-organic molecules, in particular, let the spin state of the core metal ion to be modified according to its organic environment, allowing localized magnetic moments to emerge as functional entities with radically different properties from its simple atomic counterparts. Here, using and preserving the integrity of transition metal phthalocyanine high-spin complexes, we demonstrate the magnetic doping of gold thin films, effectively creating a new ground state. We demonstrate it by electrical transport measurements that are sensitive to the scattering of itinerant electrons with magnetic impurities, such as Kondo effect and weak antilocalization. Our work expands in a simple and powerful way the classes of materials that can be used as magnetic dopants, opening a new channel to couple the wide range of molecular properties with spin phenomena at a functional scale. PMID:27941810

  9. Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Eldik, R. van

    1995-01-01

    The transition metal-catalyzed oxidation of sulfur(IV) oxides has been known for more than 100 years. There is a significant lack of information on the actual role of the transition metal-catalyzed reactions, and much of the earlier work was performed without a detailed knowledge of the chemical system. For this reason attention is focused on the role of transition metal ions in the oxidation of sulfur(IV) oxides in terms of the coordination chemistry involved, as well as the stability and chemical behavior of the various participating species. The oxidation process of sulfur(IV) oxides plays an important role in atmospheric chemistry (e.g.more » acid rain formation) as well as industrial processes (e.g. desulfurization of plume gases and ore). The present report deals with the mechanism of the transition metal-catalyzed oxidation of sulfur(IV) oxides with the aim to discuss this in terms of atmospheric and chemical processes. In addition, the authors would like to emphasize the key role of oxygen in these processes. 1,076 refs.« less

  10. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  11. Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors.

    PubMed

    Li, Hua-Min; Lee, Dae-Yeong; Choi, Min Sup; Qu, Deshun; Liu, Xiaochi; Ra, Chang-Ho; Yoo, Won Jong

    2014-02-10

    A gate-controlled metal-semiconductor barrier modulation and its effect on carrier transport were investigated in two-dimensional (2D) transition metal dichalcogenide (TMDC) field effect transistors (FETs). A strong photoresponse was observed in both unipolar MoS2 and ambipolar WSe2 FETs (i) at the high drain voltage due to a high electric field along the channel for separating photo-excited charge carriers and (ii) at the certain gate voltage due to the optimized barriers for the collection of photo-excited charge carriers at metal contacts. The effective barrier height between Ti/Au and TMDCs was estimated by a low temperature measurement. An ohmic contact behavior and drain-induced barrier lowering (DIBL) were clearly observed in MoS2 FET. In contrast, a Schottky-to-ohmic contact transition was observed in WSe2 FET as the gate voltage increases, due to the change of majority carrier transport from holes to electrons. The gate-dependent barrier modulation effectively controls the carrier transport, demonstrating its great potential in 2D TMDCs for electronic and optoelectronic applications.

  12. Single-layer transition metal sulfide catalysts

    DOEpatents

    Thoma, Steven G [Albuquerque, NM

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  13. Orientation-adjusted anomalous insulator-metal transition in NdNiO3/LaMnO3 bilayers

    NASA Astrophysics Data System (ADS)

    Pan, S. Y.; Shi, L.; Zhao, J. Y.; Zhou, S. M.; Xu, X. M.

    2018-04-01

    NdNiO3/LaMnO3 (NNO/LMO) bilayers were epitaxially grown on SrTiO3 (STO) substrates with different orientations by the polymer-assisted deposition technique. A well crystallization quality of the bilayers is confirmed by X-ray diffraction. Two consecutive transitions, an anomalous insulator-metal transition at ˜100 K followed by the typical metal-insulator transition at ˜171 K, are observed in the (001)-oriented NNO/LMO/STO bilayer. The anomalous insulator-metal transition temperature increases to 142 K for the (111)-oriented NNO/LMO/STO bilayer. Meanwhile, the magnetic properties of the NNO/LMO bilayers show an obvious difference with [100] and [111] orientations. Considering the different strain directions and the related oxygen octahedral distortion/rotation, it is suggested that the magnetic changes and the low-temperature anomalous insulator-metal transition in the NNO/LMO bilayers are attributed to the strong interlayer exchange coupling and charge transfer adjusted by the substrate orientation, which can be an effective technique to tune the properties of transition-metal oxide films.

  14. Semiconductor-to-metal transition in rutile TiO 2 induced by tensile strain

    DOE PAGES

    Benson, Eric E.; Miller, Elisa M.; Nanayakkara, Sanjini U.; ...

    2017-02-10

    Here, we report the first observation of a reversible, degenerate doping of titanium dioxide with strain, which is referred to as a semiconductor-to-metal transition. Application of tensile strain to a ~50 nm film of rutile TiO 2 thermally grown on a superelastic nitinol (NiTi intermetallic) substrate causes reversible degenerate doping as evidenced by electrochemistry, X-ray photoelectron spectroscopy (XPS), and conducting atomic force microscopy (CAFM). Cyclic voltammetry and impedance measurements show behavior characteristic of a highly doped n-type semiconductor for unstrained TiO 2 transitioning to metallic behavior under tensile strain. The transition reverses when strain is removed. Valence band XPS spectramore » show that samples strained to 5% exhibit metallic-like intensity near the Fermi level. Strain also induces a distinct transition in CAFM current-voltage curves from rectifying (typical of an n-type semiconductor) to ohmic (metal-like) behavior. We propose that strain raises the energy distribution of oxygen vacancies ( n-type dopants) near the conduction band and causes an increase in carrier concentration. As the carrier concentration is increased, the width of the depletion region is reduced, which then permits electron tunneling through the space charge barrier resulting in the observed metallic behavior.« less

  15. Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia

    PubMed Central

    González-Guerrero, Manuel; Escudero, Viviana; Saéz, Ángela; Tejada-Jiménez, Manuel

    2016-01-01

    Transition metals such as iron, copper, zinc, or molybdenum are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or directly deliver transition elements to cortical cells. Other, instead of providing metals, can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant–microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia. PMID:27524990

  16. New insight into enhanced superconductivity in metals near the metal-insulator transition.

    PubMed

    Osofsky, M S; Soulen, R J; Claassen, J H; Trotter, G; Kim, H; Horwitz, J S

    2001-11-05

    We have studied the transport properties of disordered WSi films near the metal/insulator transition (MIT) and we have also reviewed the data for several other disordered materials near their MIT. In all cases, we found the presence of enhanced superconductivity. We constructed a superconductivity "phase diagram" (i.e., T(c) versus sigma) for each system, which reveals a striking correlation: In all cases, T(c) values are significantly enhanced only for samples whose conductivities lie within a narrow range on the metallic side of, and moderately near, the MIT. We present a heuristic model to explain this phenomenon.

  17. Voltage-induced Metal-Insulator Transitions in Perovskite Oxide Thin Films Doped with Strongly Correlelated Electrons

    NASA Astrophysics Data System (ADS)

    Wang, Yudi; Gil Kim, Soo; Chen, I.-Wei

    2007-03-01

    We have observed a reversible metal-insulator transition in perovskite oxide thin films that can be controlled by charge trapping pumped by a bipolar voltage bias. In the as-fabricated state, the thin film is metallic with a very low resistance comparable to that of the metallic bottom electrode, showing decreasing resistance with decreasing temperature. This metallic state switches to a high-resistance state after applying a voltage bias: such state is non-ohmic showing a negative temperature dependence of resistance. Switching at essentially the same voltage bias was observed down to 2K. The metal-insulator transition is attributed to charge trapping that disorders the energy of correlated electron states in the conduction band. By increasing the amount of charge trapped, which increases the disorder relative to the band width, increasingly more insulating states with a stronger temperature dependence of resistivity are accessed. This metal-insulator transition provides a platform to engineer new nonvolatile memory that does not require heat (as in phase transition) or dielectric breakdown (as in most other oxide resistance devices).

  18. Thermal properties of zirconium diboride -- transition metal boride solid solutions

    NASA Astrophysics Data System (ADS)

    McClane, Devon Lee

    This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.

  19. Correlation-driven insulator-metal transition in near-ideal vanadium dioxide films

    DOE PAGES

    Gray, A. X.; Jeong, J.; Aetukuri, N. P.; ...

    2016-03-18

    We use polarization- and temperature-dependent x-ray absorption spectroscopy, in combination with photoelectron microscopy, x-ray diffraction, and electronic transport measurements, to study the driving force behind the insulator-metal transition in VO 2. We show that both the collapse of the insulating gap and the concomitant change in crystal symmetry in homogeneously strained single-crystalline VO 2 films are preceded by the purely electronic softening of Coulomb correlations within V-V singlet dimers. Furthermore, this process starts 7 K (±0.3 K) below the transition temperature, as conventionally defined by electronic transport and x-ray diffraction measurements, and sets the energy scale for driving the near-room-temperaturemore » insulator-metal transition in this technologically promising material.« less

  20. Magnetic fluctuations driven insulator-to-metal transition in Ca(Ir(1-x)Rux)O3.

    PubMed

    Gunasekera, J; Harriger, L; Dahal, A; Heitmann, T; Vignale, G; Singh, D K

    2015-12-09

    Magnetic fluctuations in transition metal oxides are a subject of intensive research because of the key role they are expected to play in the transition from the Mott insulator to the unconventional metallic phase of these materials, and also as drivers of superconductivity. Despite much effort, a clear link between magnetic fluctuations and the insulator-to-metal transition has not yet been established. Here we report the discovery of a compelling link between magnetic fluctuations and the insulator-to-metal transition in Ca(Ir1-xRux)O3 perovskites as a function of the substitution coefficient x. We show that when the material turns from insulator to metal, at a critical value of x ~ 0.3, magnetic fluctuations tend to change their character from antiferromagnetic, a Mott insulator phase, to ferromagnetic, an itinerant electron state with Hund's orbital coupling. These results are expected to have wide-ranging implications for our understanding of the unconventional properties of strongly correlated electrons systems.

  1. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    NASA Technical Reports Server (NTRS)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  2. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  3. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  4. Importance of electronegativity differences and surface structure in molecular dissociation reactions at transition metal surfaces.

    PubMed

    Crawford, Paul; Hu, P

    2006-12-14

    The dissociative adsorption of N2 has been studied at both monatomic steps and flat regions on the surfaces of the 4d transition metals from Zr to Pd. Using density functional theory (DFT) calculations, we have determined and analyzed the trends in both straight reactivity and structure sensitivity across the periodic table. With regards to reactivity, we find that the trend in activation energy (Ea) is determined mainly by a charge transfer from the surface metal atoms to the N atoms during transition state formation, namely, the degree of ionicity of the N-surface bond at the transition state. Indeed, we find that the strength of the metal-N bond at the transition state (and therefore the trend in Ea) can be predicted by the difference in Mulliken electronegativity between the metal and N. Structure sensitivity is analyzed in terms of geometric and electronic effects. We find that the lowering of Ea due to steps is more pronounced on the right-hand side of the periodic table. It is found that for the early transition metals the geometric and electronic effects work in opposition when going from terrace to step active site. In the case of the late 4d metals, however, these effects work in combination, producing a more marked reduction in Ea.

  5. Delayed Ionization in Transition Metal Carbon Clusters

    NASA Astrophysics Data System (ADS)

    Kooi, S. E.; Castleman, A. W., Jr.

    1997-03-01

    Mass spectrometric studies of several single and binary transition metal carbon cluster systems, produced in a laser vaporization source, reveal several species that undergo delayed ionization. Pulsed extraction and blocking electric fields, in a time-of-flight mass spectrometer, allow the study of delayed ionization over a time window after excitation with a pulsed laser. In systems where metallocarbohedrenes (Met-Cars) are produced, the Met-Cars are the dominate delayed species. Delayed ionization of binary metal Met-Cars Ti_xM_yC_12 (M=Zr,Nb,Y; x+y=8) is dependent on the ratio of the two metals. Delayed behavior is investigated over a range of photoionization wavelengths and fluences. In order to determine the degree to which the delayed ionization is thermionic in character, the experimental data have been compared to Klots's model for thermionic emission from small particles.

  6. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    DOEpatents

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  7. Blending Non-Group-3 Transition Metal and Rare-Earth Metal into a C80 Fullerene Cage with D5h Symmetry.

    PubMed

    Wei, Tao; Jin, Fei; Guan, Runnan; Huang, Jing; Chen, Muqing; Li, Qunxiang; Yang, Shangfeng

    2018-02-11

    Rare-earth metals have been mostly entrapped into fullerene cages to form endohedral clusterfullerenes, whereas non-Group-3 transition metals that can form clusterfullerenes are limited to titanium (Ti) and vanadium (V), and both are exclusively entrapped within an I h -C 80 cage. Non-Group-3 transition-metal-containing endohedral fullerenes based on a C 80 cage with D 5h symmetry, V x Sc 3-x N@D 5h -C 80 (x=1, 2), have now been synthesized, which exhibit two variable cluster compositions. The molecular structure of VSc 2 N@D 5h -C 80 was unambiguously determined by X-ray crystallography. According to a comparative study with the reported Ti- and V-containing clusterfullerenes based on a I h -C 80 cage and the analogous D 5h -C 80 -based metal nitride clusterfullerenes containing rare-earth metals only, the decisive role of the non-Group-3 transition metal on the formation of the corresponding D 5h -C 80 -based clusterfullerenes is unraveled. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Conductivity Dynamics of the Metal to Insulator Transition in EuNiO3/LANiO3 Superlattices

    DTIC Science & Technology

    2016-02-07

    lead to emergent phenomena with the insulator -to- insulator transition (IMT) being one of the most enigmatic from fundamental and applied perspectives...2015 Approved for Public Release; Distribution Unlimited Final Report: Conductivity Dynamics of the Metal to Insulator Transition in EuNiO3/LANiO3...Conductivity Dynamics of the Metal to Insulator Transition in EuNiO3/LANiO3 Superlattices Report Title In numerous transition metal oxides (TMO

  9. Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Li, Xiang; Chen, Hong; Xiao, Naidong; Wang, Dongbo

    2014-10-10

    An efficient and green strategy, i.e. adding nano zero-valent iron into anaerobic fermentation systems to remarkably stimulate the accumulation of short-chain fatty acids from waste activated sludge via accelerating the solubilization and hydrolysis processes has been developed. In the presence of nano zero-valent iron, not only the short-chain fatty acids production was significantly improved, but also the fermentation time for maximal short-chain fatty acids was shortened compared with those in the absence of nano zero-valent iron. Mechanism investigations showed that the solubilization of sludge, hydrolysis of solubilized substances and acidification of hydrolyzed products were all enhanced by addition of nano zero-valent iron. Also, the general microbial activity of anaerobes and relative activities of key enzymes with hydrolysis and acidification of organic matters were improved than those in the control. 454 high-throughput pyrosequencing analysis suggested that the abundance of bacteria responsible for waste activated sludge hydrolysis and short-chain fatty acids production was greatly enhanced due to nano zero-valent iron addition. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Remediation of contaminated soils by enhanced nanoscale zero valent iron.

    PubMed

    Jiang, Danni; Zeng, Guangming; Huang, Danlian; Chen, Ming; Zhang, Chen; Huang, Chao; Wan, Jia

    2018-05-01

    The use of nanoscale zero valent iron (nZVI) for in situ remediation of soil contamination caused by heavy metals and organic pollutants has drawn great concern, primarily owing to its potential for excellent activity, low cost and low toxicity. This reviews considers recent advances in our understanding of the role of nZVI and enhanced nZVI strategy in the remediation of heavy metals and persistent organic contaminants polluted soil. The performance, the migration and transformation of nZVI affected by the soil physical and chemical conditions are summarized. However, the addition of nZVI inevitably disturbs the soil ecosystem, thus the impacts of nZVI on soil organisms are discussed. In order to further investigate the remediation effect of nZVI, physical, chemical and biological method combination with nZVI was developed to enhance the performance of nZVI. From a high efficient and environmentally friendly perspective, biological method enhanced nZVI technology will be future research needs. Possible improvement of nZVI-based materials and potential areas for further applications in soil remediation are also proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Trends in hydrogen chemisorption on transition metals

    NASA Astrophysics Data System (ADS)

    Muscat, J. P.

    1981-10-01

    A systematic study of H adsorption on the close-packed surfaces of the transition metals in the 3d and 4d series is presented. The effect of the TM d band on the chemisorption bond is investigated, by embedding a cluster of TM muffin tins at the surface of an effective jellium-like medium. It is found that the broad and incomplete H/jellium resonance is narrowed, shifted down and made to contain more electrons as a result of hybridization with the TM d states. These effects are larger in the case of the 4d metals, thus indicating a greater participation in the chemisorption bond of the d electrons for these metals than for the 3d metals. Calculation of one-electron energy differences on going from the H on jellium system to that of H on the TM cluster are presented. Trends for the one-electron energy differences are compared to trends in experimental chemisorption energy. H adsorption in the three-fold hollow site with no secondlayer TM atom below the H site is favoured for the hcp metals, while no discernible preference between the two hollow sites is recorded for the fcc metals, with the exception of Rh where the site with no second-layer TM atom below is preferred.

  12. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    DOEpatents

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2017-02-28

    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  13. [Spectroscopic studies on transition metal ions in colored diamonds].

    PubMed

    Meng, Yu-Fei; Peng, Ming-Sheng

    2004-07-01

    Transition metals like nickel, cobalt and iron have been often used as solvent catalysts in high pressure high temperature (HPHT) synthesis of diamond, and nickel and cobalt ions have been found in diamond lattice. Available studies indicated that nickel and cobalt ions could enter the lattice as interstitial or substitutional impurities and form complexes with nitrogen. Polarized microscopy, SEM-EDS, EPR, PL and FTIR have been used in this study to investigate six fancy color natural and synthetic diamonds in order to determine the spectroscopic characteristics and the existing forms of transition metal ions in colored diamond lattice. Cobalt-related optical centers were first found in natural chameleon diamonds, and some new nickel and cobalt-related optical and EPR centers have also been detected in these diamond samples.

  14. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of

  15. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    PubMed Central

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-01-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films. PMID:26975328

  16. Kinetics of self-interstitial migration in bcc and fcc transition metals

    NASA Astrophysics Data System (ADS)

    Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.

    2018-03-01

    Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.

  17. Stabilization of fullerene-like boron cages by transition metal encapsulation.

    PubMed

    Lv, Jian; Wang, Yanchao; Zhang, Lijun; Lin, Haiqing; Zhao, Jijun; Ma, Yanming

    2015-06-21

    The stabilization of fullerene-like boron (B) cages in the free-standing form has been long sought after and a challenging problem. Studies that have been carried out for more than a decade have confirmed that the planar or quasi-planar polymorphs are energetically favored ground states over a wide range of small and medium-sized B clusters. Recently, the breakthroughs represented by Nat. Chem., 2014, 6, 727 established that the transition from planar/quasi-planar to cage-like Bn clusters occurs around n = ∼38-40, paving the way for understanding the intriguing chemistry of B-fullerene. We herein demonstrate that the transition demarcation, n, can be significantly reduced with the help of transition metal encapsulation. We explore via extensive first-principles swarm-intelligence based structure searches the free energy landscapes of B24 clusters doped by a series of transition metals and find that the low-lying energy regime is generally dominated by cage-like isomers. This is in sharp contrast to that of bare B24 clusters, where the quasi-planar and rather irregular polyhedrons are prevalent. Most strikingly, a highly symmetric B cage with D3h symmetry is discovered in the case of Mo or W encapsulation. The endohedral D3h cages exhibit robust thermodynamic, dynamic and chemical stabilities, which can be rationalized in terms of their unique electronic structure of an 18-electron closed-shell configuration. Our results indicate that transition metal encapsulation is a feasible route for stabilizing medium-sized B cages, offering a useful roadmap for the discovery of more B fullerene analogues as building blocks of nanomaterials.

  18. Synchrotron speciation data for zero-valent iron nanoparticles

    EPA Pesticide Factsheets

    This data set encompasses a complete analysis of synchrotron speciation data for 5 iron nanoparticle samples (P1, P2, P3, S1, S2, and metallic iron) to include linear combination fitting results (Table 6 and Figure 9) and ab-initio extended x-ray absorption fine structure spectroscopy fitting (Figure 10 and Table 7).Table 6: Linear combination fitting of the XAS data for the 5 commercial nZVI/ZVI products tested. Species proportions are presented as percentages. Goodness of fit is indicated by the chi^2 value.Figure 9: Normalised Fe K-edge k3-weighted EXAFS of the 5 commercial nZVI/ZVIproducts tested. Dotted lines show the best 4-component linear combination fit ofreference spectra.Figure 10: Fourier transformed radial distribution functions (RDFs) of the five samplesand an iron metal foil. The black lines in Fig. 10 represent the sample data and the reddotted curves represent the non-linear fitting results of the EXAFS data.Table 7: Coordination parameters of Fe in the samples.This dataset is associated with the following publication:Chekli, L., B. Bayatsarmadi, R. Sekine, B. Sarkar, A. Maoz Shen, K. Scheckel , W. Skinner, R. Naidu, H. Shon, E. Lombi, and E. Donner. Analytical Characterisation of Nanoscale Zero-Valent Iron: A Methodological Review. Richard P. Baldwin ANALYTICA CHIMICA ACTA. Elsevier Science Ltd, New York, NY, USA, 903: 13-35, (2016).

  19. Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy

    NASA Astrophysics Data System (ADS)

    Aetukuri, Nagaphani B.; Gray, Alexander X.; Drouard, Marc; Cossale, Matteo; Gao, Li; Reid, Alexander H.; Kukreja, Roopali; Ohldag, Hendrik; Jenkins, Catherine A.; Arenholz, Elke; Roche, Kevin P.; Dürr, Hermann A.; Samant, Mahesh G.; Parkin, Stuart S. P.

    2013-10-01

    External control of the conductivity of correlated oxides is one of the most promising schemes for realizing energy-efficient electronic devices. Vanadium dioxide (VO2), an archetypal correlated oxide compound, undergoes a temperature-driven metal-insulator transition near room temperature with a concomitant change in crystal symmetry. Here, we show that the metal-insulator transition temperature of thin VO2(001) films can be changed continuously from ~285 to ~345K by varying the thickness of the RuO2 buffer layer (resulting in different epitaxial strains). Using strain-, polarization- and temperature-dependent X-ray absorption spectroscopy, in combination with X-ray diffraction and electronic transport measurements, we demonstrate that the transition temperature and the structural distortion across the transition depend on the orbital occupancy in the metallic state. Our findings open up the possibility of controlling the conductivity in atomically thin VO2 layers by manipulating the orbital occupancy by, for example, heterostructural engineering.

  20. Evaluating DFT for Transition Metals and Binaries: Developing the V/DM-17 Test Set

    NASA Astrophysics Data System (ADS)

    Decolvenaere, Elizabeth; Mattsson, Ann

    We have developed the V-DM/17 test set to evaluate the experimental accuracy of DFT calculations of transition metals. When simulation and experiment disagree, the disconnect in length-scales and temperatures makes determining ``who is right'' difficult. However, methods to evaluate the experimental accuracy of functionals in the context of solid-state materials science, especially for transition metals, is lacking. As DFT undergoes a shift from a descriptive to a predictive tool, these issues of verification are becoming increasingly important. With undertakings like the Materials Project leading the way in high-throughput predictions and discoveries, the development of a one-size-fits-most approach to verification is critical. Our test set evaluates 26 transition metal elements and 80 transition metal alloys across three physical observables: lattice constants, elastic coefficients, and formation energy of alloys. Whether or not the formation energy can be reproduced measures whether the relevant physics are captured in a calculation. This is especially important question in transition metals, where active d-electrons can thwart commonly used techniques. In testing the V/DM-17 test set, we offer new views into the performance of existing functionals. Sandia National Labs is a multi-mission laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Status in calculating electronic excited states in transition metal oxides from first principles.

    PubMed

    Bendavid, Leah Isseroff; Carter, Emily Ann

    2014-01-01

    Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green's functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe-Salpeter equation (BSE), which introduces an electron-hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.

  2. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time.

    PubMed

    Vítková, Martina; Rákosová, Simona; Michálková, Zuzana; Komárek, Michael

    2017-01-15

    Nano zero-valent iron (nZVI) is currently investigated as a stabilising amendment for contaminated soils. The effect of pH (4-8) and time (48 and 192 h) on the behaviour of nZVI-treated Pb-Zn and As-contaminated soil samples was assessed. Additionally, soil leachates were subsequently used to study the direct interaction between soil solution components and nZVI particles in terms of mineralogical changes and contaminant retention. A typical U-shaped leaching trend as a function of pH was observed for Cd, Pb and Zn, while As was released predominantly under alkaline conditions. Oxidising conditions prevailed, so pH was the key controlling parameter rather than redox conditions. Generally, longer contact time resulted in increased soluble concentrations of metal(loid)s. However, the stabilisation effect of nZVI was only observed after the direct soil leachate-nZVI interactions, showing enhanced redox and sorption processes for the studied metals. A significant decrease of dissolved As concentrations was observed for both experimental soils, but with different efficiencies depending on neutralisation capacity, organic matter content or solid fractionation of As related to the origin of the soils. Scorodite (FeAsO 4 ·2H 2 O) was predicted as a potential solubility-controlling mineral phase for As. Sorption of metal(loid)s onto secondary Fe- and Al-(oxyhydr)oxides (predicted to precipitate at pH > 5) represents an important scavenger mechanism. Moreover, transmission electron microscopy confirmed the retention of Zn and Pb under near-neutral and alkaline conditions by newly formed Fe oxides or aluminosilicates. This study shows that the efficiency of nZVI application strongly depends not only on soil pH-Eh conditions and contaminant type, but also on the presence of organic matter and other compounds such as Al/Fe/Mn oxyhydroxides and clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. First-principles studies on 3d transition metal atom adsorbed twin graphene

    NASA Astrophysics Data System (ADS)

    Li, Lele; Zhang, Hong; Cheng, Xinlu; Miyamoto, Yoshiyuki

    2018-05-01

    Twin graphene is a new two-dimensional semiconducting carbon allotrope which is proposed recently. The structural, magnetic and electronic properties are investigated for 3d transition metal (TM) atom adsorbed twin graphene by means of GGA+U calculations. The results show most of single 3d transition metal atom except Zn can make twin graphene magnetization. The adsorption of single TM atom can also make the twin graphene systems turn to half metal (V adsorption), half-semiconductor (Fe adsorption) or metal (Sc, Cr, Mn, Co and Cu adsorption). The semiconducting nature still exists for Ti, Ni and Zn adsorption. All the 3d TM adatoms belong to n-type doping for transferring charge to the neighboring C atoms and have strong covalent bond with these C atoms. The influence of Hubbard U value on half-metallic V adsorbed system is also considered. As the U increases, the system can gradually transform from metal to half metal and metal. The effect of the coverage is investigated for two TM atoms (Sc-Fe) adsorption, too. We can know TM atoms adsorbed twin graphene have potentials to be spintronic device and nanomagnets from the results.

  4. Covalency and the metal-insulator transition in titanate and vanadate perovskites

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Millis, Andrew J.; Marianetti, Chris A.

    2014-04-01

    A combination of density functional and dynamical mean-field theory is applied to the perovskites SrVO3, LaTiO3, and LaVO3. We show that DFT + DMFT in conjunction with the standard fully localized-limit (FLL) double-counting predicts that LaTiO3 and LaVO3 are metals even though experimentally they are correlation-driven ("Mott") insulators. In addition, the FLL double counting implies a splitting between oxygen p and transition metal d levels, which differs from experiment. Introducing into the theory an ad hoc double counting correction, which reproduces the experimentally measured insulating gap leads also to a p-d splitting consistent with experiment if the on-site interaction U is chosen in a relatively narrow range (˜6±1 eV). The results indicate that these early transition metal oxides will serve as critical test for the formulation of a general ab initio theory of correlated electron metals.

  5. Metal insulator transitions in perovskite SrIrO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Abhijit; Jeong, Yoon Hee, E-mail: yhj@postech.ac.kr; Kim, Ki-Seok

    Understanding of metal insulator transitions in a strongly correlated system, driven by Anderson localization (disorder) and/or Mott localization (correlation), is a long standing problem in condensed matter physics. The prevailing fundamental question would be how these two mechanisms contrive to accomplish emergent anomalous behaviors. Here, we have grown high quality perovskite SrIrO{sub 3} thin films, containing a strong spin orbit coupled 5d element Ir, on various substrates such as GdScO{sub 3} (110), DyScO{sub 3} (110), SrTiO{sub 3} (001), and NdGaO{sub 3} (110) with increasing lattice mismatch, in order to carry out a systematic study on the transport properties. We foundmore » that metal insulator transitions can be induced in this system; by either reducing thickness (on best lattice matched substrate) or changing degree of lattice strain (by lattice mismatch between film and substrates) of films. Surprisingly these two pathways seek two distinct types of metal insulator transitions; the former falls into disorder driven Anderson type whereas the latter turns out to be of unconventional Mott-Anderson type with the interplay of disorder and correlation. More interestingly, in the metallic phases of SrIrO{sub 3}, unusual non-Fermi liquid characteristics emerge in resistivity as Δρ ∝ T{sup ε} with ε evolving from 4/5 to 1 to 3/2 with increasing lattice strain. We discuss theoretical implications of these phenomena to shed light on the metal insulator transitions.« less

  6. Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization.

    PubMed

    Heuss-Aßbichler, Soraya; John, Melanie; Klapper, Daniel; Bläß, Ulrich W; Kochetov, Gennadii

    2016-10-01

    Recently the focus of interest changed from merely purification of the waste water to recover heavy metals. With the slightly modified ferritization process presented here it is possible to decrease initial Cu(2+) concentrations up to 10 g/l to values <0.3 mg/l. The recovery rates of copper of all experiments are in the rage of 99.98 to almost 100%. Copper can be precipitated as oxide or zero valent metal (almost) free of hydroxide. All precipitates are exclusively of nanoparticle size. The phase assemblage depends strongly on experimental conditions as e.g. reaction temperature, pH-value, initial concentration and ageing time and condition. Three different options were developed depending on the reaction conditions. Option 1.) copper incorporation into the ferrite structure ((Cu,Fe)Fe2O4) and/or precipitation as cuprite (Cu2O) and zero-valent copper, option 2.) copper incorporation into the ferrite structure and/or precipitation as cuprite and/or tenorite (CuO) and option 3.) copper precipitation as tenorite. Ferrite is formed by the oxidation of GR in alkaline solution without additional oxygen supply. The chemistry reaches from pure magnetite up to 45% copper ferrite component. First experiments with wastewater from electroplating industry confirm the results obtained from synthetic solutions. In all cases the volume of the precipitates is extremely low compared to typical wastewater treatment by hydroxide precipitation. Therefore, pollution and further dissipation of copper can be avoided using this simple and economic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Quantum Griffiths singularity of superconductor-metal transition in Ga thin films.

    PubMed

    Xing, Ying; Zhang, Hui-Min; Fu, Hai-Long; Liu, Haiwen; Sun, Yi; Peng, Jun-Ping; Wang, Fa; Lin, Xi; Ma, Xu-Cun; Xue, Qi-Kun; Wang, Jian; Xie, X C

    2015-10-30

    The Griffiths singularity in a phase transition, caused by disorder effects, was predicted more than 40 years ago. Its signature, the divergence of the dynamical critical exponent, is challenging to observe experimentally. We report the experimental observation of the quantum Griffiths singularity in a two-dimensional superconducting system. We measured the transport properties of atomically thin gallium films and found that the films undergo superconductor-metal transitions with increasing magnetic field. Approaching the zero-temperature quantum critical point, we observed divergence of the dynamical critical exponent, which is consistent with the Griffiths singularity behavior. We interpret the observed superconductor-metal quantum phase transition as the infinite-randomness critical point, where the properties of the system are controlled by rare large superconducting regions. Copyright © 2015, American Association for the Advancement of Science.

  8. Preparation of Metal Nanowire Decorated Carbon Allotropes

    NASA Technical Reports Server (NTRS)

    Southward, Robin E. (Inventor); Ghose, Sayata (Inventor); Connell, John W. (Inventor); Delozier, Donavon Mark (Inventor); Smith, Joseph G. (Inventor); Watson, Kent A. (Inventor)

    2014-01-01

    In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.

  9. Preparation of Metal Nanowire Decorated Carbon Allotropes

    NASA Technical Reports Server (NTRS)

    Smith, Jr., Joseph G. (Inventor); Ghose, Sayata (Inventor); Connell, John W. (Inventor); Southward, Robin E. (Inventor); Delozier, Donavon Mark (Inventor); Watson, Kent A. (Inventor)

    2016-01-01

    In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.

  10. Impurity effects in transition metal silicides

    NASA Technical Reports Server (NTRS)

    Lien, C.-D.; Nicolet, M.-A.

    1984-01-01

    Impurities can affect the properties of silicides directly by virtue of their presence. Impurities can also influence the processes by which silicides are formed. The effect of impurities on the reaction of transition metal films with a silicon substrate induced by thermal annealing are well documented. The interpretation of these results is discussed. It is shown that impurity redistribution is a major factor in determining how significant the effect of an impurity is. Redistribution observed for dopant impurities is also discussed.

  11. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.

    PubMed

    Xie, Junfeng; Xie, Yi

    2016-03-07

    Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Large orbital polarization in a metallic square-planar nickelate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junjie; Botana, A. S.; Freeland, J. W.

    High temperature cuprate superconductivity remains a defining problem in condensed matter physics.1,2 Among myriad approaches to addressing this problem has been the study of alternative transition metal oxides3,4 with similar structures and 3d electron count that are suggested as proxies for cuprate physics. Here, we report one such alternative: the low-valent, quasi-two-dimensional trilayer nickelates, R4Ni3O8 (R=La and Pr). By combining x-ray absorption spectroscopy and density functional theory calculations, we find that these compounds exhibit a low-spin configuration and significant orbital polarization of the unoccupied eg states with pronounced dx2-y2 character near the Fermi energy. Notably, a charge-ordered stripe phase, previouslymore » reported for La4Ni3O8,5 collapses in favor of a metallic ground state when substituting La with Pr, offering entrée to a region of 3d electron count important to hole-doped high-Tc cuprates but in the absence of quenched disorder.« less

  13. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A

    2016-05-05

    This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    PubMed Central

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-01-01

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides. PMID:26088416

  15. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE PAGES

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; ...

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe 2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe 2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS 2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSemore » 2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  16. Local structural aspects of metal-metal transition in IrTe2 from x-ray PDF

    NASA Astrophysics Data System (ADS)

    Yu, Runze; Abeykoon, Milinda; Zhou, Haidong; Yin, Weiguo; Bozin, Emil S.

    Evolution of local atomic structure across the metal-metal transition in IrTe2 is explored by pair distribution function (PDF) analysis of x-ray total scattering data over 80 K transition, in agreement with electronic transport measurements, indicative of a strong tie between the lattice and electronic configurations. Bond valence methodology applied to structural parameters further indicates significant bond charge disproportionation in association with the transition. Work at Brookhaven National Laboratory was supported by US DOE, Office of Science, Office of Basic Energy Sciences (DOE-BES) under Contract No. DE-SC0012704.

  17. Transition-Metal-Controlled Inorganic Ligand-Supported Non-Precious Metal Catalysts for the Aerobic Oxidation of Amines to Imines.

    PubMed

    Yu, Han; Zhai, Yongyan; Dai, Guoyong; Ru, Shi; Han, Sheng; Wei, Yongge

    2017-10-09

    Most state-of-art transition-metal catalysts usually require organic ligands, which are essential for controlling the reactivity and selectivity of reactions catalyzed by transition metals. However, organic ligands often suffer from severe problems including cost, toxicity, air/moisture sensitivity, and being commercially unavailable. Herein, we show a simple, mild, and efficient aerobic oxidation procedure of amines using inorganic ligand-supported non-precious metal catalysts 1, (NH 4 ) n [MMo 6 O 18 (OH) 6 ] (M=Cu 2+ ; Fe 3+ ; Co 3+ ; Ni 2+ ; Zn 2+ , n=3 or 4), synthesized by a simple one-step method in water at 100 °C, demonstrating that the catalytic activity and selectivity can be significantly improved by changing the central metal atom. In the presence of these catalysts, the catalytic oxidation of primary and secondary amines, as well as the coupling of alcohols and amines, can smoothly proceed to afford various imines with O 2 (1 atm) as the sole oxidant. In particular, the catalysts 1 have transition-metal ion core, and the planar arrangement of the six Mo VI centers at their highest oxidation states around the central heterometal can greatly enhance the Lewis acidity of catalytically active sites, and also enable the electrons in the center to delocalize onto the six edge-sharing MO 6 units, in the same way as ligands in traditional organometallic complexes. The versatility of this methodology maybe opens a path to catalytic oxidation through inorganic ligand-coordinated metal catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tailoring transition-metal hydroxides and oxides by photon-induced reactions

    DOE PAGES

    Niu, Kai -Yang; Fang, Liang; Ye, Rong; ...

    2016-10-18

    Controlled synthesis of transition-metal hydroxides and oxides with earth-abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition-metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni 2+, Mn 2+, and Co 2+ ion-containing aqueous solution undergoes photo-induced reactions and produces hollow metal-oxide nanospheres (Ni 0.18Mn 0.45Co 0.37O x) or core–shell metal hydroxide nanoflowers ([Ni 0.15Mnmore » 0.15Co 0.7(OH) 2](NO 3) 0.2•H 2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo-induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. As a result, the study of photon-induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.« less

  19. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cellmore » technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.« less

  20. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, Bartley B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cellmore » technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF 2, ThO 2, YDT(0.85ThO 2-0.15YO 1.5), and LDT(0.85ThO 2- 0.15LaO 1.5) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.« less

  1. Contaminant Removal From Natural Resources

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Quinn, Jacqueline W. (Inventor); Geiger, Cheri L. (Inventor); Reinhart, Debra (Inventor); Fillpek, Laura B. (Inventor); Coon, Christina (Inventor); Devor, Robert (Inventor)

    2006-01-01

    A zero-valent metal emulsion containing zero-valent metal particles is used to remediate contaminated natural resources, such as groundwater and soil. In a preferred embodiment, the zero-valent metal emulsion removes heavy metals, such as lead (pb), from contaminated natural resources. In another preferred embodiment, the zero-valent metal emulsion is a bimetallic emulsion containing zero-valent metal particles doped with a catalytic metal to remediate halogenated aromatic compounds, such as polychlorinated biphenyls (PCBs), from natural resources.

  2. Layered transition metal dichalcogenide electrochemistry: journey across the periodic table.

    PubMed

    Chia, Xinyi; Pumera, Martin

    2018-06-08

    Studies on layered transition metal dichalcogenides (TMDs), in particular for Group VIB TMDs like MoS2 and WS2, have long reached a crescendo in the realms of electrochemical applications initiated by their remarkable catalytic and electronic properties. One area that garnered considerable attention is the fervent pursuit of layered TMDs as electrocatalysts for hydrogen evolution reaction (HER), driven by global efforts towards reducing carbon footprint and attaining hydrogen economy. This Tutorial Review captures the essence of electrochemistry of different classes of layered TMDs and metal chalcogenides across the period table and showcases their tuneable electrochemical and HER catalytic attributes that are governed by the elemental composition, structure and anisotropy. Of interest to the assiduously studied Group VIB TMDs, we describe the role of elemental constituents and material purity in aspects of surface composition and structure, on their electrochemistry. Across families of layered TMDs in the periodic table, we highlight the apparent trends in their electrochemical and electrocatalytic properties through diligent comparison. Inevitably, these trends vary according to the type of chalcogen or transition metal that constitutes the eventual TMD. Beyond layered TMDs, we discuss the electrochemistry and recent progress in HER electrocatalysis of other layered metal chalcogenides that are overshadowed by the success of Group VIB TMDs. At the pinnacle of the emergent applications of layered TMDs, it is prudent to demystify the intrinsic electrochemical behaviour that originates from the participation of the elemental constitution of transition metal or chalcogen. Moreover, knowledge of the catalytic and electronic properties of the various TMD families and emerging trends across the period or down the group is of paramount importance when introducing or refining their prospective uses. The annotations in this Tutorial Review are envisioned to promote

  3. Soldering of Carbon Materials Using Transition Metal Rich Alloys.

    PubMed

    Burda, Marek; Lekawa-Raus, Agnieszka; Gruszczyk, Andrzej; Koziol, Krzysztof K K

    2015-08-25

    Joining of carbon materials via soldering has not been possible up to now due to lack of wetting of carbons by metals at standard soldering temperatures. This issue has been a severely restricting factor for many potential electrical/electronic and mechanical applications of nanostructured and conventional carbon materials. Here we demonstrate the formation of alloys that enable soldering of these structures. By addition of several percent (2.5-5%) of transition metal such as chromium or nickel to a standard lead-free soldering tin based alloy we obtained a solder that can be applied using a commercial soldering iron at typical soldering temperatures of approximately 350 °C and at ambient conditions. The use of this solder enables the formation of mechanically strong and electrically conductive joints between carbon materials and, when supported by a simple two-step technique, can successfully bond carbon structures to any metal terminal. It has been shown using optical and scanning electron microscope images as well as X-ray diffraction patterns and energy dispersive X-ray mapping that the successful formation of carbon-solder bonds is possible, first, thanks to the uniform nonreactive dispersion of transition metals in the tin-based matrix. Further, during the soldering process, these free elements diffuse into the carbon-alloy border with no formation of brazing-like carbides, which would damage the surface of the carbon materials.

  4. Investigation of metal-dithiolate fold angle effects: implications for molybdenum and tungsten enzymes.

    PubMed

    Joshi, Hemant K; Cooney, J Jon A; Inscore, Frank E; Gruhn, Nadine E; Lichtenberger, Dennis L; Enemark, John H

    2003-04-01

    Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the interactions between the sulfur pi-orbitals of arene dithiolates and high-valent transition metals as minimum molecular models of the active site features of pyranopterin MoW enzymes. The compounds (Tp*)MoO(bdt) (compound 1), Cp(2)Mo(bdt) (compound 2), and Cp(2)Ti(bdt) (compound 3) [where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, bdt is 1,2-benzenedithiolate, and Cp is eta(5)- cyclopentadienyl] provide access to three different electronic configurations of the metal, formally d(1), d(2), and d(0), respectively. The gas-phase photoelectron spectra show that ionizations from occupied metal and sulfur based valence orbitals are more clearly observed in compounds 2 and 3 than in compound 1. The observed ionization energies and characters compare very well with those calculated by density functional theory. A "dithiolate-folding-effect" involving an interaction of the metal in-plane and sulfur-pi orbitals is proposed to be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes.

  5. Transition metal ion capture using functional mesoporous carbon made with 1,10-phenanthroline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Yantasee, Wassana; Shin, Yongsoon

    2009-11-01

    Functional mesoporous carbon has been built using 1,10-phenanthroline as the fundamental building block, resulting in a nanoporous, high surface area sorbent capable of selectively binding transition metal ions. This material had a specific surface area of 870 m2/g, an average pore size of about 30Å, and contained as much as 8.2 weight percent N. Under acidic conditions, where the 1,10-phenanthroline ligand is protonated, this material was found to be an effective anion exchange material for transition metal anions like PdCl4-2 and H2VO4-1. 1,10-phenanthroline functionalized mesoporous carbon (“Phen-FMC”) was found to have a high affinity for Cu(II), even down to amore » pH of 1. At pHs above 5, Phen-FMC was found to bind a variety of transition metal cations (e.g. Co(II), Ni(II), Zn(II), etc.) from filtered ground water, river water and seawater. Phen-FMC displayed rapid sorption kinetics with Co(II) in filtered river water, reaching equilibrium in less than an hour, and easily lowering the [Co(II)] to sub-ppb levels. Phen-FMC was found to be more effective for transition metal ion capture than ion exchange resin or activated carbon.« less

  6. Magnetic fluctuations driven insulator-to-metal transition in Ca(Ir1−xRux)O3

    PubMed Central

    Gunasekera, J.; Harriger, L.; Dahal, A.; Heitmann, T.; Vignale, G.; Singh, D. K.

    2015-01-01

    Magnetic fluctuations in transition metal oxides are a subject of intensive research because of the key role they are expected to play in the transition from the Mott insulator to the unconventional metallic phase of these materials, and also as drivers of superconductivity. Despite much effort, a clear link between magnetic fluctuations and the insulator-to-metal transition has not yet been established. Here we report the discovery of a compelling link between magnetic fluctuations and the insulator-to-metal transition in Ca(Ir1−xRux)O3 perovskites as a function of the substitution coefficient x. We show that when the material turns from insulator to metal, at a critical value of x ~ 0.3, magnetic fluctuations tend to change their character from antiferromagnetic, a Mott insulator phase, to ferromagnetic, an itinerant electron state with Hund’s orbital coupling. These results are expected to have wide-ranging implications for our understanding of the unconventional properties of strongly correlated electrons systems. PMID:26647965

  7. Control of interlayer physics in 2H transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Kuang-Chung; Stanev, Teodor K.; Valencia, Daniel; Charles, James; Henning, Alex; Sangwan, Vinod K.; Lahiri, Aritra; Mejia, Daniel; Sarangapani, Prasad; Povolotskyi, Michael; Afzalian, Aryan; Maassen, Jesse; Klimeck, Gerhard; Hersam, Mark C.; Lauhon, Lincoln J.; Stern, Nathaniel P.; Kubis, Tillmann

    2017-12-01

    It is assessed in detail both experimentally and theoretically how the interlayer coupling of transition metal dichalcogenides controls the electronic properties of the respective devices. Gated transition metal dichalcogenide structures show electrons and holes to either localize in individual monolayers, or delocalize beyond multiple layers—depending on the balance between spin-orbit interaction and interlayer hopping. This balance depends on the layer thickness, momentum space symmetry points, and applied gate fields. The design range of this balance, the effective Fermi levels, and all relevant effective masses is analyzed in great detail. A good quantitative agreement of predictions and measurements of the quantum confined Stark effect in gated MoS2 systems unveils intralayer excitons as the major source for the observed photoluminescence.

  8. Mechanical properties of 4d transition metals in molten state

    NASA Astrophysics Data System (ADS)

    Singh, Deobrat; Sonvane, Yogesh; Thakor, P. B.

    2016-05-01

    Mechanical properties of 4d transition metals in molten state have been studied in the present study. We have calculated mechanical properties such as isothermal bulk modulus (B), modulus of rigidity (G), Young's modulus (Y) and Hardness have also been calculated from the elastic part of the Phonon dispersion curve (PDC). To describe the structural information, we have used different structure factor S(q) using Percus-Yevick hard sphere (PYHS) reference systems along with our newly constructed parameter free model potential.To see the influence of exchange and correlation effect on the above said properties of 3d liquid transition metals, we have used Sarkar et al (S)local field correction functions. Present results have been found good in agreement with available experimental data.

  9. Elucidation of Proton-Assisted Fluxionality in Transition-Metal Oxide Clusters

    NASA Astrophysics Data System (ADS)

    Ramabhadran, Raghunath O.; Mayhall, Nicholas J.; Becher, Edwin L. Becher, Iii; Chowdhury, Arefin; Raghavachari, Krishnan

    2012-06-01

    The phenomenon of fluxionality in the reactions of transition-metal oxide clusters provides many opportunities in various industrial and catalytic processes. We present an electronic structure investigation of the fluxionality pathways when anionic W3O6- and Mo3O6- clusters react with three small molecules - water, ammonia and hydrogen sulfide. The presentation features a detailed understanding of (a) how the fluxionality pathway occurs and (b) the various factors that affect the fluxionality pathway - such as the metal, different spin-states and the nature of the non-metal in the reacting small molecule.

  10. Origin of the Counterintuitive Dynamic Charge in the Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Pike, Nicholas; van Troeye, Benoit; Dewandre, Antoine; Gonze, Xavier; Verstraete, Matthieu

    Our recent first-principles calculations of the electronic and vibrational properties of the hexagonal transition-metal dichalcogenides reveal that their Born effective charges display a counterintuitive sign when compared to most other materials or transition-metal dichalcogenides with trigonal symmetry. We determine the origin of this counterintuitive sign by calculating the electronic, vibrational, and optical properties of these systems. We show that the sign of the Born effective charge is directly related to the electric field response of the electronic density, and, in turn, to the bonding characteristics of the material.There is a filled anti-bonding molecular orbital at the Fermi level, which is localized on the transition-metal atom and corresponds to a form of solid state π back-bonding in these material. We propose a method of determining if other materials display a similar counterintuitive sign, based on their bonding characteristics, and propose experiments which could measure the sign of the Born effective charge using different spectroscopies. The authors acknowledge the Belgian Fonds National de la Recherche Scientifique FNRS under PDR T.1077.15-1/7, a FRIA Grant, ULg, and from the Communauté Française de Belgique (ARC AIMED 15/19-09).

  11. Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.

    PubMed

    Cui, Qiannan; Zhao, Hui

    2015-04-28

    Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.

  12. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions.

    PubMed

    Li, Jie; Chen, Changlun; Zhang, Rui; Wang, Xiangke

    2015-06-01

    Nanoscale zero-valent iron particles supported on reduced graphene oxides (NZVI/rGOs) from spent graphene oxide (GO)-bound iron ions were developed by using a hydrogen/argon plasma reduction method to improve the reactivity and stability of NZVI. The NZVI/rGOs exhibited excellent water treatment performance with excellent removal capacities of 187.16 and 396.37 mg g(-1) for chromium and lead, respectively. Moreover, the NZVI/rGOs could be regenerated by plasma treatment and maintained high removal ability after four cycles. X-ray photoelectron spectroscopy analysis results implied that the removal mechanisms could be attributed to adsorption/precipitation, reduction, or both. Such multiple removal mechanisms by the NZVI/rGOs were attributed to the reduction ability of the NZVI particles and the role of dispersing and stabilizing abilities of the rGOs. The results indicated that the NZVI/rGOs prepared by a hydrogen/argon plasma reduction method might be an effective composite for heavy-metal-ion removal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    PubMed

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  14. Designer Shape Anisotropy on Transition-Metal-Dichalcogenide Nanosheets.

    PubMed

    Martella, Christian; Mennucci, Carlo; Lamperti, Alessio; Cappelluti, Emmanuele; de Mongeot, Francesco Buatier; Molle, Alessandro

    2018-03-01

    MoS 2 and generally speaking, the wide family of transition-metal dichalcogenides represents a solid nanotechnology platform on which to engineer a wealth of new and outperforming applications involving 2D materials. An even richer flexibility can be gained by extrinsically inducing an in-plane shape anisotropy of the nanosheets. Here, the synthesis of anisotropic MoS 2 nanosheets is proposed as a prototypical example in this respect starting from a highly conformal chemical vapor deposition on prepatterend substrates and aiming at the more general purpose of tailoring anisotropy of 2D nanosheets by design. This is envisioned to be a suitable configuration for strain engineering as far as strain can be spatially redistributed in morphologically different regions. With a similar approach, both the optical and electronic properties of the 2D transition-metal dichalcogenides can be tailored over macroscopic sample areas in a self-organized fashion, thus paving the way for new applications in the field of optical metasurfaces, light harvesting, and catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mott metal-insulator transition in the doped Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Kurdestany, Jamshid Moradi; Satpathy, S.

    2017-08-01

    Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.

  16. Marrying Excitons and Plasmons in Monolayer Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Van Tuan, Dinh; Scharf, Benedikt; Žutić, Igor; Dery, Hanan

    2017-10-01

    Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors, and doped semiconductors are often driven by long-wavelength Coulomb interactions. However, in crystals whose Fermi surface is comprised of disconnected pockets in the Brillouin zone, collective electron excitations can also attain a shortwave component when electrons transition between these pockets. In this work, we show that the band structure of monolayer transition-metal dichalcogenides gives rise to an intriguing mechanism through which shortwave plasmons are paired up with excitons. The coupling elucidates the origin for the optical sideband that is observed repeatedly in monolayers of WSe2 and WS2 but not understood. The theory makes it clear why exciton-plasmon coupling has the right conditions to manifest itself distinctly only in the optical spectra of electron-doped tungsten-based monolayers.

  17. Metal-semiconductor phase transition of order arrays of VO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Lopez, Rene; Suh, Jae; Feldman, Leonard; Haglund, Richard

    2004-03-01

    The study of solid-state phase transitions at nanometer length scales provides new insights into the effects of material size on the mechanisms of structural transformations. Such research also opens the door to new applications, either because materials properties are modified as a function of particle size, or because the nanoparticles interact with a surrounding matrix material, or with each other. In this paper, we describe the formation of vanadium dioxide nanoparticles in silicon substrates by pulsed laser deposition of ion beam lithographically selected sites and thermal processing. We observe the collective behavior of 50 nm diameter VO2 oblate nanoparticles, 10 nm high, and ordered in square arrays with arbitrary lattice constant. The metal-semiconductor-transition of the VO2 precipitates shows different features in each lattice spacing substrate. The materials are characterized by electron microscopy, x-ray diffraction, Rutherford backscattering. The features of the phase transition are studied via infrared optical spectroscopy. Of particular interest are the enhanced scattering and the surface plasmon resonance when the particles reach the metallic state. This resonance amplifies the optical contrast in the range of near-infrared optical communication wavelengths and it is altered by the particle-particle coupling as in the case of noble metals. In addition the VO2 nanoparticles exhibit sharp transitions with up to 50 K of hysteresis, one of the largest values ever reported for this transition. The optical properties of the VO2 nanoarrays are correlated with the size of the precipitates and their inter-particle distance. Nonlinear and ultra fast optical measurements have shown that the transition is the fastest known solid-solid transformation. The VO2 nanoparticles show the same bulk property, transforming in times shorter than 150 fs. This makes them remarkable candidates for ultrafast optical and electronic switching applications.

  18. Theoretical Investigation of Phonon Dispersion Relation of 3d Liquid Transition Metals

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Sonvane, Y. A.; Gajjar, P. N.; Jani, A. R.

    2011-12-01

    The phonon dispersion relations of 3d liquid transition metals have been obtained in the present study. We have used Hubbard and Beeby (HB) method to generate phonon dispersion relation of liquid metals. To describe the structural information, the structure factor S(q) due to the Percus-Yevick hard sphere (PYHS) reference systems is used along with our newly constructed parameter free model potential. The influence of exchange and correlation effect on the phonon dispersion relation of 3d liquid transition metals is examined explicitly, which reflects the varying effects of screening. We have used different local field correction functions like Hartree (H), Taylor (T) and Sarkar et al (S). Present results have found good in agreement with available experimental data.

  19. Generalized scaling relationships on transition metals: Influence of adsorbate-coadsorbate interactions

    NASA Astrophysics Data System (ADS)

    Majumdar, Paulami; Greeley, Jeffrey

    2018-04-01

    Linear scaling relations of adsorbate energies across a range of catalytic surfaces have emerged as a central interpretive paradigm in heterogeneous catalysis. They are, however, typically developed for low adsorbate coverages which are not always representative of realistic heterogeneous catalytic environments. Herein, we present generalized linear scaling relations on transition metals that explicitly consider adsorbate-coadsorbate interactions at variable coverages. The slopes of these scaling relations do not follow the simple bond counting principles that govern scaling on transition metals at lower coverages. The deviations from bond counting are explained using a pairwise interaction model wherein the interaction parameter determines the slope of the scaling relationship on a given metal at variable coadsorbate coverages, and the slope across different metals at fixed coadsorbate coverage is approximated by adding a coverage-dependent correction to the standard bond counting contribution. The analysis provides a compact explanation for coverage-dependent deviations from bond counting in scaling relationships and suggests a useful strategy for incorporation of coverage effects into catalytic trends studies.

  20. Properties of binary transition-metal arsenides (TAs)

    NASA Astrophysics Data System (ADS)

    Saparov, Bayrammurad; Mitchell, Jonathan E.; Sefat, Athena S.

    2012-08-01

    We present thermodynamic and transport properties of transition-metal (T) arsenides, TAs, with T = Sc to Ni (3d), Zr, Nb, Ru (4d), Hf and Ta (5d). Characterization of these binaries is carried out with powder x-ray diffraction, temperature- and field-dependent magnetization and resistivity, temperature-dependent heat capacity, Seebeck coefficient, and thermal conductivity. All binaries show metallic behavior except TaAs and RuAs. TaAs, NbAs, ScAs and ZrAs are diamagnetic, while CoAs, VAs, TiAs, NiAs and RuAs show approximately Pauli paramagnetic behavior. FeAs and CrAs undergo antiferromagnetic ordering below TN ≈ 71 K and TN ≈ 260 K, respectively. MnAs is a ferromagnet below TC ≈ 317 K and undergoes hexagonal-orthorhombic-hexagonal transitions at TS ≈ 317 K and 384 K, respectively. For TAs, Seebeck coefficients vary between + 40 and - 40 μV K-1 in the 2-300 K range, whereas thermal conductivity values stay below 18 W m-1 K-1. The Sommerfeld coefficients γ are less than 10 mJ K-2 mol-1. At room temperature with application of 8 T magnetic field, large positive magnetoresistance is found for TaAs (˜25%), MnAs (˜90%) and NbAs (˜75%).

  1. Postfabrication annealing effects on insulator-metal transitions in VO2 thin-film devices.

    PubMed

    Rathi, Servin; Lee, In-yeal; Park, Jin-Hyung; Kim, Bong-Jun; Kim, Hyun-Tak; Kim, Gil-Ho

    2014-11-26

    In order to investigate the metal-insulator transition characteristics of VO2 devices annealed in reducing atmosphere after device fabrication at various temperature, electrical, chemical, and thermal characteristics are measured and analyzed. It is found that the sheet resistance and the insulator-metal transition point, induced by both voltage and thermal, decrease when the devices are annealed from 200 to 500 °C. The V 2p3/2 peak variation in X-ray photoelectron spectroscopy (XPS) characterization verifies the reduction of thin-films. A decrease of the transition temperature from voltage hysteresis measurements further endorse the reducing effects of the annealing on VO2 thin-film.

  2. HIGH-PRESSURE PHYSICS. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium.

    PubMed

    Knudson, M D; Desjarlais, M P; Becker, A; Lemke, R W; Cochrane, K R; Savage, M E; Bliss, D E; Mattsson, T R; Redmer, R

    2015-06-26

    Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets. Copyright © 2015, American Association for the Advancement of Science.

  3. First-order metal-insulator transition not accompanied by the structural phase transition observed in VO2-based devices

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Tak; Chae, Byung-Gyu; Kim, Bong-Jun; Lee, Yong-Wook; Yun, Sun-Jin; Kang, Kwang-Yong

    2006-03-01

    An abrupt first-order metal-insulator transition (MIT) is observed during the application of a switching pulse voltage to VO2-based two-terminal devices. When the abrupt MIT occurs, the structural phase transition (SPT) is investigated by a micro- Raman spectroscopy and a micro-XRD. The result shows that the MIT is not accompanied with the structural phase transition (SPT); the abrupt MIT is prior to the SPT. Moreover, any switching pulse over a threshold voltage of 7.1 V for the MIT enabled the device material to transform efficiently from an insulator to a metal. The measured delay time from the source switching pulse to an induced MIT pulse is an order of 20 nsec which is much less than a delay time of about one msec deduced by thermal model. This indicates that the first-order MIT does not occur due to thermal. We think this MIT is the Mott transition. (Reference: New J. Phys. 6 (1994) 52 (www.njp.org), Appl. Phys. Lett. 86 (2005) 242101, Physica B 369 (2005. December) xxxx)

  4. Positive ions of the first- and second-row transition metal hydrides

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1987-01-01

    Theoretical dissociation energies for the first- and second-row transition metal hydride positive ions are critically compared against recent experimental values obtained from ion beam reactive scattering methods. Theoretical spectroscopic parameters and dipole moments are presented for the ground and several low-lying excited states. The calculations employ large Gaussian basis sets and account for electron correlation using the single-reference single- and double-excitation configuration interaction and coupled-pair-functional methods. The Darwin and mass-velocity contributions to the relativistic energy are included in the all-electron calculations on the first-row systems using first-order perturbation theory, and in the second-row systems using the Hay and Wadt relativistic effective core potentials. The theoretical D(0) values for the second-row transition metal hydride positive ions should provide a critical measure of the experimental values, which are not as refined as many of those in the first transition row.

  5. Nonequilibrium Phase Precursors during a Photoexcited Insulator-to-Metal Transition in V2O3

    NASA Astrophysics Data System (ADS)

    Singer, Andrej; Ramirez, Juan Gabriel; Valmianski, Ilya; Cela, Devin; Hua, Nelson; Kukreja, Roopali; Wingert, James; Kovalchuk, Olesya; Glownia, James M.; Sikorski, Marcin; Chollet, Matthieu; Holt, Martin; Schuller, Ivan K.; Shpyrko, Oleg G.

    2018-05-01

    Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V2O3 . Despite the ultrafast increase in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale twin domains govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the nonequilibrium structural phases play during electronic phase transitions in correlated electrons systems.

  6. Impact of 13-valent pneumococcal conjugate vaccine on pneumococcal meningitis in children.

    PubMed

    Ruiz-Contreras, Jesus; Picazo, Juan; Casado-Flores, Juan; Baquero-Artigao, Fernando; Hernández-Sampelayo, Teresa; Otheo, Enrique; Méndez, Cristina; Del Amo, María; Balseiro, César

    2017-08-16

    To evaluate the impact of 13-valent pneumococcal conjugate vaccine on pneumococcal meningitis in children. Children younger than 15years of age attending 27 hospitals in the Region of Madrid with confirmed pneumococcal meningitis were identified in a prospective surveillance study, from 2007 to 2015. Clinical data, neurological sequelae, pneumococcal vaccination status, serotyping and antibiotic susceptibility were recorded. One hundred and four cases of pneumococcal meningitis were identified, 63 during the period of routine 7-valent pneumococcal conjugate vaccine immunisation (May 2007-April 2010) and 41 during the period of 13-valent pneumococcal conjugate vaccine immunisation (May 2010-April 2015). When both periods were compared, a 62% (95% CI: 45-75%) decrease in the incidence of pneumococcal meningitis was observed, from 2.19 cases per 100,000 inhabitants in the PCV7 period to 0.81 per 100,000 inhabitants in the PCV13 period (p=0.0001), mainly due to an 83% (95% CI: 30-96%) reduction in cases caused by serotype 19A. Isolates not susceptible to cefotaxime (MIC>0.5μg/L) decreased from 27% to 8%, (p=0.02). Mean patient ages rose from 28.7months to 38.5months (p<0.05). Case fatality rate across both periods was 5%. An unfavourable outcome (death or neurological sequelae) occurred in 27% of patients, while the rate was similar in both periods. There was no increase in meningitis caused by pneumococcal serotypes not included in 13-valent pneumococcal conjugate vaccine throughout the years of the study. Immunisation with 13-valent pneumococcal conjugate vaccine has reduced the rate of pneumococcal meningitis in children less than 15years, with a near-elimination of cefotaxime-resistant isolates, but morbidity has remained unchanged. A shift of pneumococcal meningitis towards slightly higher age groups was also observed. Copyright © 2017. Published by Elsevier Ltd.

  7. Mott insulator-to-metal transition in yttrium-doped CaIrO₃.

    PubMed

    Gunasekera, J; Chen, Y; Kremenak, J W; Miceli, P F; Singh, D K

    2015-02-11

    We report on the study of insulator-to-metal transition in post-perovskite compound CaIrO3. It is discovered that a gradual chemical substitution of calcium by yttrium leads to the onset of strong metallic behavior in this compound. This observation is in stark contrast to BaIrO3, which preserves its Mott insulating behavior despite excess of the charge carriers due to yttrium doping. Magnetic measurements reveal that both compounds tend to exhibit magnetic character irrespective of the chemical substitution of Ca or Ba. We analyze these unusual observations in light of recent researches that suggest that CaIrO3 does not necessarily possess j = 1/2 ground state due to structural distortion. The insulator-to-metal transition in CaIrO3 will spur new researches to explore more exotic ground state, including superconductivity, in post-perovskite Mott insulators.

  8. Recent Progress on Transition Metal Catalyst Separation and Recycling in ATRP.

    PubMed

    Ding, Mingqiang; Jiang, Xiaowu; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2015-10-01

    Atom transfer radical polymerization (ATRP) is a versatile and robust tool to synthesize a wide spectrum of monomers with various designable structures. However, it usually needs large amounts of transition metal as the catalyst to mediate the equilibrium between the dormant and propagating species. Unfortunately, the catalyst residue may contaminate or color the resultant polymers, which limits its application, especially in biomedical and electronic materials. How to efficiently and economically remove or reduce the catalyst residue from its products is a challenging and encouraging task. Herein, recent advances in catalyst separation and recycling are highlighted with a focus on (1) highly active ppm level transition metal or metal free catalyzed ATRP; (2) post-purification method; (3) various soluble, insoluble, immobilized/soluble, and reversible supported catalyst systems; and (4) liquid-liquid biphasic catalyzed systems, especially thermo-regulated catalysis systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. [Economic evaluation of an infant immunization program in Mexico, based on 13-valent pneumococcal conjugated vaccines].

    PubMed

    Muciño-Ortega, Emilio; Mould-Quevedo, Joaquín Federico; Farkouh, Raymond; Strutton, David

    2011-01-01

    Vaccination is an effective intervention for reduce child morbidity and mortality associated to pneumococcus. The availability of new anti-pneumococcal vaccines makes it necessary to evaluate its potential impact on public health and costs related to their implementation. The aim of this study was to estimate the cost-effectiveness and cost-utility of immunization strategies based on pneumococcal conjugated vaccines (PCV's) currently available in Mexico from a third payer perspective. A decision tree model was developed to assess both, economic and health impact, of anti-pneumococcal vaccination in children <2 years (lifetime time horizon, discount rate: 5% annual). Comparators were: no-vaccination (reference) and strategies based on 7, 10 and 13-valent PCV's. Effectiveness measures were: child deaths avoided, life-years gained (LYG) and quality adjusted life years (QALY's) gained. Effectiveness, utility, local epidemiology and cost of treating pneumococcal diseases were extracted from published sources. Univariate sensitivity analysis were performed. Immunization dominates no-vaccination: strategy based on 13-valent vaccine prevented 16.205 deaths, gained 331.230 LY's and 332.006 QALY's and saved US$1.307/child vaccinated. Strategies based on 7 and 10-valent PCV's prevented 13.806 and 5.589 deaths, gained 282.193 and 114.251 LY's, 282.969 and 114.972 QALY's and saved US$1.084 and US$731/child vaccinated, respectively. These results were robust to variations in herd immunity and lower immunogenicity of 10-valent vaccine. In Mexico, immunization strategies based on 7, 10 and 13-valent PCV's would be cost-saving interventions, however, health outcomes and savings of the strategy based on 13-valent vaccine are greater than those estimated for 7 and 10-valent PCV's. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukatskaya, Maria R.; Kota, Sankalp; Lin, Zifeng

    In this study, the use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improvedmore » ion accessibility to redox-active sites. A macroporous Ti 3C 2T x MXene film delivered up to 210 F g –1 at scan rates of 10 V s –1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ~1,500 F cm –3 reaching the previously unmatched volumetric performance of RuO 2.« less

  11. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides

    NASA Astrophysics Data System (ADS)

    Lukatskaya, Maria R.; Kota, Sankalp; Lin, Zifeng; Zhao, Meng-Qiang; Shpigel, Netanel; Levi, Mikhael D.; Halim, Joseph; Taberna, Pierre-Louis; Barsoum, Michel W.; Simon, Patrice; Gogotsi, Yury

    2017-08-01

    The use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti3C2Tx MXene film delivered up to 210 F g-1 at scan rates of 10 V s-1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ˜1,500 F cm-3 reaching the previously unmatched volumetric performance of RuO2.

  12. Multiple Dirac cones and topological magnetism in honeycomb-monolayer transition metal trichalcogenides

    NASA Astrophysics Data System (ADS)

    Sugita, Yusuke; Miyake, Takashi; Motome, Yukitoshi

    2018-01-01

    The discovery of monolayer graphene has initiated two fertile fields in condensed matter physics: Dirac semimetals and atomically thin layered materials. When these trends meet again in transition metal compounds, which possess spin and orbital degrees of freedom and strong electron correlations, more exotic phenomena are expected to emerge in the cross section of topological states of matter and Mott physics. Here, we show by using ab initio calculations that a monolayer form of transition metal trichalcogenides (TMTs), which has a honeycomb network of 4 d and 5 d transition metal cations, may exhibit multiple Dirac cones in the electronic structure of the half-filled eg orbitals. The Dirac cones are gapped by the spin-orbit coupling under the trigonal lattice distortion and, hence, can be tuned by tensile strain. Furthermore, we show that electron correlations and carrier doping turn the multiple Dirac semimetal into a topological ferromagnet with high Chern number. Our findings indicate that the honeycomb-monolayer TMTs provide a good playground for correlated Dirac electrons and topologically nontrivial magnetism.

  13. Superconductor-Metal-Insulator transition in two dimensional Ta thin Films

    NASA Astrophysics Data System (ADS)

    Park, Sun-Gyu; Kim, Eunseong

    2013-03-01

    Superconductor-insulator transition has been induced by tuning film thickness or magnetic field. Recent electrical transport measurements of MoGe, Bi, Ta thin films revealed an interesting intermediate metallic phase which intervened superconducting and insulating phases at certain range of magnetic field. Especially, Ta thin films show the characteristic IV behavior at each phase and the disorder tuned intermediate metallic phase [Y. Li, C. L. Vicente, and J. Yoon, Physical Review B 81, 020505 (2010)]. This unexpected metallic phase can be interpreted as a consequence of vortex motion or contribution of fermionic quasiparticles. In this presentation, we report the scaling behavior during the transitions in Ta thin film as well as the transport measurements in various phases. Critical exponents v and z are obtained in samples with wide ranges of disorder. These results reveal new universality class appears when disorder exceeds a critical value. Dynamical exponent z of Superconducting sample is found to be 1, which is consistent with theoretical prediction of unity. z in a metallic sample is suddenly increased to be approximately 2.5. This critical exponent is much larger than the value found in other system and theoretical prediction. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  14. Measurement of a solid-state triple point at the metal-insulator transition in VO2.

    PubMed

    Park, Jae Hyung; Coy, Jim M; Kasirga, T Serkan; Huang, Chunming; Fei, Zaiyao; Hunter, Scott; Cobden, David H

    2013-08-22

    First-order phase transitions in solids are notoriously challenging to study. The combination of change in unit cell shape, long range of elastic distortion and flow of latent heat leads to large energy barriers resulting in domain structure, hysteresis and cracking. The situation is worse near a triple point, where more than two phases are involved. The well-known metal-insulator transition in vanadium dioxide, a popular candidate for ultrafast optical and electrical switching applications, is a case in point. Even though VO2 is one of the simplest strongly correlated materials, experimental difficulties posed by the first-order nature of the metal-insulator transition as well as the involvement of at least two competing insulating phases have led to persistent controversy about its nature. Here we show that studying single-crystal VO2 nanobeams in a purpose-built nanomechanical strain apparatus allows investigation of this prototypical phase transition with unprecedented control and precision. Our results include the striking finding that the triple point of the metallic phase and two insulating phases is at the transition temperature, Ttr = Tc, which we determine to be 65.0 ± 0.1 °C. The findings have profound implications for the mechanism of the metal-insulator transition in VO2, but they also demonstrate the importance of this approach for mastering phase transitions in many other strongly correlated materials, such as manganites and iron-based superconductors.

  15. Ab initio theory of noble gas atoms in bcc transition metals.

    PubMed

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  16. Transition-metal prion protein attachment: Competition with copper

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  17. Metal insulator transition in nickel substituted FeSi

    NASA Astrophysics Data System (ADS)

    Krishnan, M.; Mishra, Ashish; Singh, Durgesh; Venkatesh, R.; Gangrade, Mohan; Ganesan, V.

    2018-04-01

    Resistivity of Fe1-xNixSi has been reported. Metal Insulator transition (MIT) is observed in Nickel (Ni) substituted FeSi for x in the range from 2 to 4 percentage. Two Band Model has been employed in order to calculate activation energy and to predict how band structure renormalized with substitution of nickel in FeSi. At sufficient level of nickel concentration an impurity band forms around Fermi level and contributes to the conduction heavily at low temperatures. Concentration around x = 0.04, displays metallic property below ˜ 70 K and is quantitatively similar to systems like Fe1-xTxSi (T = Co, Mn). Metallic component thus derived from Ni substituted FeSi seems to have an unconventional temperature dependence that may be attributed to the onset of departures from Fermi liquid picture.

  18. Efficient reductive elimination of bromate in water using zero-valent zinc prepared by acid-washing treatments.

    PubMed

    Lin, Kun-Yi Andrew; Lin, Chu-Hung; Lin, Jia-Yin

    2017-10-15

    Although zero valent zinc (ZVZ) is a strong reductant, studies using ZVZ for bromate reduction are rare. In this study, ZVZ is prepared by acid-washing zinc powder with HCl and used to reduce bromate. The effect of acid-washing on the morphology of zinc powder is also examined. Zinc powder inefficiently reduces bromate, but ZVZ obtained by acid-washing zinc powder eliminates bromate and converts it to bromide. A higher dose of ZVZ enhances elimination efficiency perhaps because the formation of a passivation layer of zinc oxide could be scattered on the large surface of ZVZ. Elevated temperature also substantially improves both elimination efficiency and kinetics. The effect of pH is shown to have the most significant impact on the bromate elimination; elimination efficiency and kinetics are tremendously bolstered at pH = 3, whereas the elimination of bromate is completely suppressed under alkaline conditions. ZVZ can reduce bromate to bromide even in the presence of other anions and also be reused multiple times. Thus, ZVZ can be easily prepared and used to efficiently reduce bromate to bromide. The findings presented here are essential to the design and implementation of bromate elimination in water using zero-valent metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Transition-Metal-Catalyzed Selective Cage B-H Functionalization of o-Carboranes.

    PubMed

    Quan, Yangjian; Qiu, Zaozao; Xie, Zuowei

    2018-02-26

    Carboranes are a class of carbon-boron molecular clusters with unusual thermal and chemical stabilities. They have been proved as very useful building blocks in supramolecular design, optoelectronics, nanomaterials, boron neutron capture therapy agents and organometallic/coordination chemistry. Thus, the functionalization of o-carboranes has received growing interests. Over the past decades, most of the works in this area have been focused on cage carbon functionalization as the weakly acidic cage C-H proton can be readily deprotonated by strong bases. In sharp contrast, selective cage B-H activation/functionalization among chemically very similar ten B-H vertices is very challenging. Considering the differences in electron density of ten cage B-H bonds in o-carborane and the nature of transition metal complexes, we have tackled this selectivity issue by means of organometallic chemistry. Our strategy is as follows: using electron-rich transition metal catalysts for the functionalization of the most electron-deficient B(3,6)-H vertices (bonded to both cage CH vertices); using electron-deficient transition-metal catalysts for the functionalization of relatively electron-rich B(8,9,10,12)-H vertices (with no bonding to both cage CH vertices); and using the combination of directing groups and electrophilic transition metal catalysts for the functionalization of B(4,5,7,11)-H vertices (bonded to only one cage CH vertex). Successful applications of such a strategy result in the preparation of a large variety of cage B-functionalized carboranes in a regioselective and catalytic manner, which are inaccessible by other means. It is believed that as this field progresses, other cage B-functionalized carboranes are expected to be synthesized, and the results detailed in this concept article will further these efforts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Strain-induced insulator-to-metal transition in LaTiO3 within DFT + DMFT

    NASA Astrophysics Data System (ADS)

    Dymkowski, Krzysztof; Ederer, Claude

    2014-04-01

    We present results of combined density functional theory plus dynamical mean-field theory (DFT + DMFT) calculations, which show that the Mott insulator LaTiO3 undergoes an insulator-to-metal transition under compressive epitaxial strain of about -2%. This transition is driven by strain-induced changes in the crystal-field splitting between the Ti t2g orbitals, which in turn are intimately related to the collective tilts and rotations of the oxygen octahedra in the orthorhombically distorted Pbnm perovskite structure. An accurate treatment of the underlying crystal structure is therefore crucial for a correct description of the observed metal-insulator transition. Our theoretical results are consistent with recent experimental observations and demonstrate that metallic behavior in heterostructures of otherwise insulating materials can emerge also from mechanisms other than genuine interface effects.

  1. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strongmore » intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.« less

  2. All-optical materials design of chiral edge modes in transition-metal dichalcogenides

    PubMed Central

    Claassen, Martin; Jia, Chunjing; Moritz, Brian; Devereaux, Thomas P.

    2016-01-01

    Monolayer transition-metal dichalcogenides are novel materials which at low energies constitute a condensed-matter realization of massive relativistic fermions in two dimensions. Here, we show that this picture breaks for optical pumping—instead, the added complexity of a realistic materials description leads to a new mechanism to optically induce topologically protected chiral edge modes, facilitating optically switchable conduction channels that are insensitive to disorder. In contrast to graphene and previously discussed toy models, the underlying mechanism relies on the intrinsic three-band nature of transition-metal dichalcogenide monolayers near the band edges. Photo-induced band inversions scale linearly in applied pump field and exhibit transitions from one to two chiral edge modes on sweeping from red to blue detuning. We develop an ab initio strategy to understand non-equilibrium Floquet–Bloch bands and topological transitions, and illustrate for WS2 that control of chiral edge modes can be dictated solely from symmetry principles and is not qualitatively sensitive to microscopic materials details. PMID:27721504

  3. The transition to the metallic state in low density hydrogen

    DOE PAGES

    McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; ...

    2015-11-18

    Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transitionmore » order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r s = 2.27(3)a 0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.« less

  4. Covalency in transition-metal oxides within all-electron dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Haule, Kristjan; Birol, Turan; Kotliar, Gabriel

    2014-08-01

    A combination of dynamical mean field theory and density functional theory, as implemented by Haule et al. [Phys. Rev. B 81, 195107 (2010), 10.1103/PhysRevB.81.195107], is applied to both the early and late transition metal oxides. For a fixed value of the local Coulomb repulsion, without fine tuning, we obtain the main features of these series, such as the metallic character of SrVO3 and the insulating gaps of LaVO3,LaTiO3, and La2CO4, which are in good agreement with experiment. This study highlights the importance of local physics and high energy hybridization in the screening of the Hubbard interaction and how different low energy behaviors can emerge from the unified treatment of the transition metal series.

  5. Role of cooperative structural distortions in the metal--insulator transitions of perovskite ferrates

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Rondinelli, James

    2012-02-01

    Transition-metal oxides within the perovskite crystal family exhibit strong electron--electron correlation effects that coexist with complex structural distortions, leading to metal-insulator (MI) transitions. Using first-principles density functional calculations, we investigate the effects of cooperative octahedral rotations and dilations/contractions on the charge-ordering MI-transition in CaFeO3. By calculating the evolution in the lattice phonons, which describe the different octahedral distortions present in the low-symmetry monoclinic phase of CaFeO3 with increasing electron correlation, we show that the MI-transition results from a complex interplay between these modes and correlation effects. We combine this study with group theoretical tools to disentangle the electron--lattice interactions by computing the evolution in the low-energy electronic band structure with the lattice phonons, demonstrating the MI-transition in CaFeO3 proceeds through a symmetry-lowering transition driven by a cooperative three-dimensional octahedral dilation/contraction pattern. Finally, we suggest a possible route by which to control the charge ordering by fine-tuning the electron--lattice coupling.

  6. Bioinspired catalytic generation of high-valent cobalt-oxo species by the axially coordinated CoPc on pyridine-functionalized MWCNTs for the elimination of organic contaminants

    NASA Astrophysics Data System (ADS)

    Li, Nan; Wang, Ying; Wu, Chenren; Lu, Wangyang; Pei, Kemei; Chen, Wenxing

    2018-03-01

    Enzymes have always been a source of inspiration for the design and improvement of catalysts. Many examples are occurring in heme/non-heme metalloenzymes with the generation of active high-valent metal-oxo intermediates that are controlled by the surrounding amino acids/protein and axial residue ligands, facilitating the efficient oxidation of substrates in biochemical processes. Here, the high-valent cobalt-oxo species have been formed during the heterolysis of H2O2 activated by the bioinspired catalyst, axially coordinated cobalt phthalocyanine (CoPc) on pyridine-functionalized multi-walled carbon nanotubes (MWCNTs-Py), characterized by ultraviolet-visible and X-ray photoelectron spectroscopy. Formation process of the active cobalt-oxo species has been further confirmed by electrospray ionization mass spectrometry analysis and the results from the density functional theory (B3LYP/6-311G) calculations. Such high-valent cobalt-oxo species exhibit high reactivity and enough persistence for the oxidation of the target substrate, C.I. Acid Red 1. The oxidation products are nearly biodegradable small molecules identified by ultra-performance liquid chromatography/high-definition mass spectrometry. This strategy provides a foundation on developing efficient and persistent catalytic system, in particular oxidation processes based on the complex catalysts with N4 macrocycle structures.

  7. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  8. The Reactivity of Transition Metal-Silicon Compounds

    DTIC Science & Technology

    1988-08-08

    light, and appear to follow both thermal and photochemical pathways. Compounds 9 and 10 are efficient acetylene polymerization catalysts . The scandium...containing both silicon and an early-transition- metal, Previously this field was quite undeveloped, therefore we surveyed a number ( approaches to...15- C5Me5)Ta(SiMe 3)C13 ," J Arnold and T D Tilley, J Am Chem Soc, 107, 6409 (1985) "Tetrahedral Lewis Base Adducts of an Acyl. Preparation and X-ray

  9. Metal-Insulator Transition in Epitaxial Pyrochlore Iridates Bi2Ir2O7 thin Films

    NASA Astrophysics Data System (ADS)

    Chu, Jiun-Haw; Liu, Jian; Yi, Di; Rayan-Serrao, C.; Suresha, S.; Marti, Xavi; Riggs, Scott; Shapiro, Max; Ian, Fisher; Ramesh, R.

    2013-03-01

    Recently there is a surge of interest in searching for topological order in correlated electronic systems such as transition metal oxides. The strong spin-orbit interaction of 5d electrons and the geometric frustration in the crystal lattice make the pyrochlore iridate(A2Ir2O7) an ideal candidate to achieve this goal. Pioneering experiments on bulk polycrystalline and single crystal samples revealed a temperature dependent metal-insulator transition coupled to a long range magnetic order, and the transition temperature can be tuned by either A-site ionic radius or an external pressure. In this talk we present our efforts to understand and control the metal-insulator transition and the underlying electronic structure of pyrochlore iridates via epitaxial Bi2Ir2O7 thin films. Bulk Bi2Ir2O7 is located at the metallic side of the phase diagram. However as the film's thickness decreases the transport evolves from a metallic to a strongly localized character. Resonant X-ray spectroscopy suggests that the density of states near Fermi level is dominated by the Ir Je ff =1/2 states. Intriguingly, the magnetoresistance shows a linear field dependence over a wide range of fields at low temperatures, which is possibly consistent with the existence of Dirac nodes.

  10. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides

    DOE PAGES

    McGuire, Michael A.

    2017-04-27

    Materials composed of two dimensional layers bonded to one another through weak van der Waals interactions often exhibit strongly anisotropic behaviors and can be cleaved into very thin specimens and sometimes into monolayer crystals. Interest in such materials is driven by the study of low dimensional physics and the design of functional heterostructures. Binary compounds with the compositions MX 2 and MX 3 where M is a metal cation and X is a halogen anion often form such structures. Magnetism can be incorporated by choosing a transition metal with a partially filled d-shell for M, enabling ferroic responses for enhancedmore » functionality. Here we give a brief overview of binary transition metal dihalides and trihalides, summarizing their crystallographic properties and long-range-ordered magnetic structures, focusing on those materials with layered crystal structures and partially filled d-shells required for combining low dimensionality and cleavability with magnetism.« less

  11. Understanding the Effect of Cation Disorder on the Voltage Profile of Lithium Transition-Metal Oxides

    DOE PAGES

    Abdellahi, Aziz; Urban, Alexander; Dacek, Stephen; ...

    2016-07-13

    Cation disorder is a phenomenon that is becoming increasingly important for the design of high-energy lithium transition metal oxide cathodes (LiMO 2) for Li-ion batteries. Disordered Li-excess rocksalts have recently been shown to achieve high reversible capacity, while in operando cation disorder has been observed in a large class of ordered compounds. The voltage slope (dV/dx u )is a critical quantity for the design of cation-disordered rocksalts, as it controls the Li capacity accessible at voltages below the stability limit of the electrolyte (~4.5-4.7 V). In this study, we develop a lattice model based on first principles to understand andmore » quantify the voltage slope of cation-disordered LiMO 2. We show that cation disorder increases the voltage slope of Li transition metal oxides by creating a statistical distribution of transition metal environments around Li sites, as well as by allowing Li occupation of highvoltage tetrahedral sites. We further demonstrate that the voltage slope increase upon disorder is generally smaller for highvoltage transition metals than for low-voltage transition metals due to a more effective screening of Li-M interactions by oxygen electrons. Short-range order in practical disordered compounds is found to further mitigate the voltage slope increase upon disorder. In conclusion, our analysis shows that the additional high-voltage tetrahedral capacity induced by disorder is smaller in Liexcess compounds than in stoichiometric LiMO 2 compounds.« less

  12. Coherent forward scattering as a signature of Anderson metal-insulator transitions

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjib; Miniatura, Christian; Cherroret, Nicolas; Delande, Dominique

    2017-04-01

    We show that the coherent forward scattering (CFS) interference peak amplitude sharply jumps from zero to a finite value upon crossing a metal-insulator transition. Extensive numerical simulations reveal that the CFS peak contrast obeys the one-parameter scaling hypothesis and gives access to the critical exponents of the transition. We also discover that the critical CFS peak directly controls the spectral compressibility at the transition where eigenfunctions are multifractal, and we demonstrate the universality of this property with respect to various types of disorder.

  13. Transition Metal Intercalators as Anticancer Agents—Recent Advances

    PubMed Central

    Deo, Krishant M.; Pages, Benjamin J.; Ang, Dale L.; Gordon, Christopher P.; Aldrich-Wright, Janice R.

    2016-01-01

    The diverse anticancer utility of cisplatin has stimulated significant interest in the development of additional platinum-based therapies, resulting in several analogues receiving clinical approval worldwide. However, due to structural and mechanistic similarities, the effectiveness of platinum-based therapies is countered by severe side-effects, narrow spectrum of activity and the development of resistance. Nonetheless, metal complexes offer unique characteristics and exceptional versatility, with the ability to alter their pharmacology through facile modifications of geometry and coordination number. This has prompted the search for metal-based complexes with distinctly different structural motifs and non-covalent modes of binding with a primary aim of circumventing current clinical limitations. This review discusses recent advances in platinum and other transition metal-based complexes with mechanisms of action involving intercalation. This mode of DNA binding is distinct from cisplatin and its derivatives. The metals focused on in this review include Pt, Ru and Cu along with examples of Au, Ni, Zn and Fe complexes; these complexes are capable of DNA intercalation and are highly biologically active. PMID:27809241

  14. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes

    NASA Astrophysics Data System (ADS)

    Oliveira, Vytor; Cremer, Dieter

    2017-08-01

    Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.

  15. Orange peel + nanostructured zero-valent-iron composite for the removal of hexavalent chromium in water

    NASA Astrophysics Data System (ADS)

    Olea-Mejía, O.; Cabral-Prieto, A.; Salcedo-Castillo, U.; López-Tellez, G.; Olea-Cardoso, O.; López-Castañares, R.

    2017-11-01

    In this work we used the Pulsed Plasma in Liquid technique to synthesize zero-valent iron nanostructures. We used a DC Power Source to produce such plasma on water and methanol. The obtained particles were characterized by TEM to determine their shape and size and Mossbauer Spectroscopy to investigate the chemical state of the iron present. We found that 80% of the particles produced in water are composed of metallic iron and when methanol is used 97% of the particles are metallic iron. Once the Fe colloid was formed, orange skin was impregnated with these nanostructures for the removal of in water solution. The Cr(VI) removal experiments were done in a batch system in the presence of the composites at an inicial concentration of 50 ppm of Cr(VI). When using the iron nanostructures supported on the orange peel, the percentage of removal is 100% in the case of nanostructures formed in water and 96% when obtained in methanol.

  16. Extended self-similarity in the two-dimensional metal-insulator transition

    NASA Astrophysics Data System (ADS)

    Moriconi, L.

    2003-09-01

    We show that extended self-similarity, a scaling phenomenon first observed in classical turbulent flows, holds for a two-dimensional metal-insulator transition that belongs to the universality class of random Dirac fermions. Deviations from multifractality, which in turbulence are due to the dominance of diffusive processes at small scales, appear in the condensed-matter context as a large-scale, finite-size effect related to the imposition of an infrared cutoff in the field theory formulation. We propose a phenomenological interpretation of extended self-similarity in the metal-insulator transition within the framework of the random β-model description of multifractal sets. As a natural step, our discussion is bridged to the analysis of strange attractors, where crossovers between multifractal and nonmultifractal regimes are found and extended self-similarity turns out to be verified as well.

  17. Shape and symmetry of heptacoordinate transition-metal complexes: structural trends.

    PubMed

    Casanova, David; Alemany, Pere; Bofill, Josep M; Alvarez, Santiago

    2003-03-17

    The stereochemistries of heptacoordinate transition-metal complexes are analyzed by using continuous symmetry and shape measures of their coordination spheres. The distribution of heptacoordination through the transition-metal series is presented based on structural database searches including organometallic and Werner-type molecular complexes, metalloproteins, and extended solids. The most common polyhedron seems to be the pentagonal bipyramid, while different preferences are found for specific families of compounds, as in the complexes with three or four carbonyl or phosphine ligands, which prefer the capped octahedron or the capped trigonal prism rather than the pentagonal bipyramid. The symmetry maps for heptacoordination are presented and shown to be helpful for detecting stereochemical trends. The maximal symmetry interconversion pathways between the three most common polyhedra are defined in terms of symmetry constants and a large number of experimental structures are seen to fall along those paths.

  18. Ultrafast exciton relaxation in monolayer transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thilagam, A., E-mail: thilaphys@gmail.com

    2016-04-28

    We examine a mechanism by which excitons undergo ultrafast relaxation in common monolayer transition metal dichalcogenides. It is shown that at densities ≈1 × 10{sup 11 }cm{sup −2} and temperatures ≤60 K, excitons in well known monolayers (MoS{sub 2}, MoSe{sub 2}, WS{sub 2}, and WSe{sub 2}) exist as point-like structureless electron-hole quasi-particles. We evaluate the average rate of exciton energy relaxation due to acoustic phonons via the deformation potential and the piezoelectric coupling mechanisms and examine the effect of spreading of the excitonic wavefunction into the region perpendicular to the monolayer plane. Our results show that the exciton relaxation rate is enhanced with increasemore » in the exciton temperature, while it is decreased with increase in the lattice temperature. Good agreements with available experimental data are obtained when the calculations are extrapolated to room temperatures. A unified approach taking into account the deformation potential and piezoelectric coupling mechanisms shows that exciton relaxation induced by phonons is as significant as defect assisted scattering and trapping of excitons by surface states in monolayer transition metal dichalcogenides.« less

  19. Photoluminescence response of colloidal quantum dots on VO2 film across metal to insulator transition

    PubMed Central

    2014-01-01

    We have proposed a method to probe metal to insulator transition in VO2 measuring photoluminescence response of colloidal quantum dots deposited on the VO2 film. In addition to linear luminescence intensity decrease with temperature that is well known for quantum dots, temperature ranges with enhanced photoluminescence changes have been found during phase transition in the oxide. Corresponding temperature derived from luminescence dependence on temperature closely correlates with that from resistance measurement during heating. The supporting reflectance data point out that photoluminescence response mimics a reflectance change in VO2 across metal to insulator transition. Time-resolved photoluminescence study did not reveal any significant change of luminescence lifetime of deposited quantum dots under metal to insulator transition. It is a strong argument in favor of the proposed explanation based on the reflectance data. PACS 71.30. + h; 73.21.La; 78.47.jd PMID:25404877

  20. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    NASA Technical Reports Server (NTRS)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  1. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    DOE PAGES

    Donev, E. U.; Suh, J. Y.; Lopez, R.; ...

    2008-01-01

    We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model.more » The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.« less

  2. Dynamical conductivity at the dirty superconductor-metal quantum phase transition.

    PubMed

    Del Maestro, Adrian; Rosenow, Bernd; Hoyos, José A; Vojta, Thomas

    2010-10-01

    We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments.

  3. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation.

    PubMed

    Li, Pan; Song, Yuan; Wang, Shuai; Tao, Zheng; Yu, Shuili; Liu, Yanan

    2015-01-01

    The rate of reduction reactions of zero-valent metal nanoparticles is restricted by their agglomeration. Hydrodynamic cavitation was used to overcome the disadvantage in this study. Experiments for decolorization of methyl orange azo dye by zero-valent copper nanoparticles were carried out in aqueous solution with and without hydrodynamic cavitation. The results showed that hydrodynamic cavitation greatly accelerated the decolorization rate of methyl orange. The size of nanoparticles was decreased after hydrodynamic cavitation treatment. The effects of important operating parameters such as discharge pressure, initial solution pH, and copper nanoparticle concentration on the degradation rates were studied. It was observed that there was an optimum discharge pressure to get best decolorization performance. Lower solution pH were favorable for the decolorization. The pseudo-first-order kinetic constant for the degradation of methyl orange increased linearly with the copper dose. UV-vis spectroscopic and Fourier transform infrared (FT-IR) analyses confirmed that many degradation intermediates were formed. The results indicated hydroxyl radicals played a key role in the decolorization process. Therefore, the enhancement of decolorization by hydrodynamic cavitation could due to the deagglomeration of nanoparticles as well as the oxidation by the in situ generated hydroxyl radicals. These findings greatly increase the potential of the Cu(0)/hydrodynamic cavitation technique for use in the field of treatment of wastewater containing hazardous materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Metal-Insulator Transition in Nanoparticle Solids: Insights from Kinetic Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Luman; Vörös, Márton; Zimanyi, Gergely T.

    Progress has been rapid in increasing the efficiency of energy conversion in nanoparticles. However, extraction of the photo-generated charge carriers remains challenging. Encouragingly, the charge mobility has been improved recently by driving nanoparticle (NP) films across the metal-insulator transition (MIT). To simulate MIT in NP films, we developed a hierarchical Kinetic Monte Carlo transport model. Electrons transfer between neighboring NPs via activated hopping when the NP energies differ by more than an overlap energy, but transfer by a non-activated quantum delocalization, if the NP energies are closer than the overlap energy. As the overlap energy increases, emerging percolating clusters supportmore » a metallic transport across the entire film. We simulated the evolution of the temperature-dependent electron mobility. We analyzed our data in terms of two candidate models of the MIT: (a) as a Quantum Critical Transition, signaled by an effective gap going to zero; and (b) as a Quantum Percolation Transition, where a sample-spanning metallic percolation path is formed as the fraction of the hopping bonds in the transport paths is going to zero. We found that the Quantum Percolation Transition theory provides a better description of the MIT. We also observed an anomalously low gap region next to the MIT. We discuss the relevance of our results in the light of recent experimental measurements.« less

  5. Metal-Insulator Transition in Nanoparticle Solids: Insights from Kinetic Monte Carlo Simulations

    DOE PAGES

    Qu, Luman; Vörös, Márton; Zimanyi, Gergely T.

    2017-08-01

    Progress has been rapid in increasing the efficiency of energy conversion in nanoparticles. However, extraction of the photo-generated charge carriers remains challenging. Encouragingly, the charge mobility has been improved recently by driving nanoparticle (NP) films across the metal-insulator transition (MIT). To simulate MIT in NP films, we developed a hierarchical Kinetic Monte Carlo transport model. Electrons transfer between neighboring NPs via activated hopping when the NP energies differ by more than an overlap energy, but transfer by a non-activated quantum delocalization, if the NP energies are closer than the overlap energy. As the overlap energy increases, emerging percolating clusters supportmore » a metallic transport across the entire film. We simulated the evolution of the temperature-dependent electron mobility. We analyzed our data in terms of two candidate models of the MIT: (a) as a Quantum Critical Transition, signaled by an effective gap going to zero; and (b) as a Quantum Percolation Transition, where a sample-spanning metallic percolation path is formed as the fraction of the hopping bonds in the transport paths is going to zero. We found that the Quantum Percolation Transition theory provides a better description of the MIT. We also observed an anomalously low gap region next to the MIT. We discuss the relevance of our results in the light of recent experimental measurements.« less

  6. Stable singlet carbenes as mimics for transition metal centers

    PubMed Central

    Martin, David; Soleilhavoup, Michele

    2011-01-01

    This perspective summarizes recent results, which demonstrate that stable carbenes can activate small molecules (CO, H2, NH3 and P4) and stabilize highly reactive intermediates (main group elements in the zero oxidation state and paramagnetic species). These two tasks were previously exclusive for transition metal complexes. PMID:21743834

  7. Layered transition metal carboxylates: synthesis, structural aspects and observation of multi-step magnetic transition through phase diagram.

    PubMed

    Sen, Rupam; Mal, Dasarath; Lopes, Armandina M L; Brandão, Paula; Araújo, João P; Lin, Zhi

    2013-10-01

    Two new layered transition metal carboxylate frameworks, [Co3(L)2(H2O)6]·2H2O () and [Ni3(L)2(H2O)6]·2H2O () (L = tartronate anion or hydroxymalonic acid), have been synthesized and characterized by X-ray single crystal analysis. Both compounds have similar 2D structures. In both compounds there are two types of metal centers where one center is doubly bridged by the alkoxy oxygen atoms through μ2-O bridging to form a 1D infinite chain parallel to the crystallographic b-axis with the corners shared between the metal polyhedra. Magnetic susceptibility measurements revealed the existence of antiferromagnetic short range correlations between Co(Ni) intra-chain metal centers (with exchange constants JCo = -22.6 and JNi = -35.4 K). At low temperatures, long range order is observed in both compounds at Néel temperatures of 11 (for ) and 16 (for ) K, revealing that other exchange interactions, rather than the intra-chain ones, play a role in these systems. Whereas compound has an antiferromagnetic ground state, compound exhibits a ferromagnetic component, probably due to spin canting. Isothermal magnetization data unveiled a rich phase diagram with three metamagnetic phase transitions below 8 K in compound .

  8. ZERO-VALENT IRON FOR HIGH-LEVEL ARSENITE REMOVAL

    EPA Science Inventory

    This study conducted by flow through column systems was aimed at investigating the feasibility of using zero-valent iron for arsenic remediation in groundwater. A high concentration arsenic solution (50 mg l-1) was prepared by using sodium arsenite (arsenic (III)) to simulate gr...

  9. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    PubMed Central

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.

    2015-01-01

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidising reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are sparse, meaning there is a dearth in the understanding of such oxidants. In this study, a monoanionic NiII-bicarbonate complex was found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (~95%). Electronic absorption, electronic paramagnetic resonance and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = ½), square planar NiIII-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-ditertbutylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. PMID:25612563

  10. Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.

    PubMed

    Guha, Saumyen; Bhargava, Puja

    2005-01-01

    Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.

  11. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1987-01-01

    The results of ab-initio calculations are reported for (1) small transition metal clusters and (2) potential energy surfaces for chemical reactions important in hydrogen combustion and high temperature air chemistry.

  12. Light-induced metal-insulator transition in a switchable mirror.

    PubMed

    Hoekstra, A F; Roy, A S; Rosenbaum, T F; Griessen, R; Wijngaarden, R J; Koeman, N J

    2001-06-04

    Rare earth hydride films can be converted reversibly from metallic mirrors to insulating windows simply by changing the surrounding hydrogen gas pressure at room temperature. At low temperatures, in situ doping is not possible in this way as hydrogen cannot diffuse. However, our finding of persistent photoconductivity under ultraviolet illumination offers an attractive possibility to tune yttrium hydride through the T = 0 metal-insulator transition. Conductivity and Hall measurements are used to determine critical exponents. The unusually large value for the product of the static and dynamical critical exponents appears to signify the important role played by electron-electron interactions.

  13. A study of low-dimensional quaternary mixed-transition metal chalcogenides

    NASA Astrophysics Data System (ADS)

    Oledzka, Magdalena Agata

    New quaternary alkali metal mixed-transition metal sulfides: ACuMSsb2 (A = K, Rb, Cs; M = Mn, Fe, Co) and KCosb{2-x}Cusb{x}Ssb2 (0.5 ≤ x ≤ 1.5) were prepared by CSsb2/Nsb2 sulfurization of a mixture of oxide or sulfide and carbonate precursors of the corresponding metals. All of the phases form in the tetragonal ThCrsb2Sisb2-type structure in space group I4/mmm. The ACoCuSsb2 phases are semiconducting, with room temperature resistivities rhosbRT˜ 10sp{-2}Omega {*}cm;\\ KCosb{0.5}CUsb{1.5}Ssb2 is metallic with a metal-to-nonmetal transition at ˜120 K. Seebeck measurements indicate that the majority of charge carriers are holes. The temperature dependence of magnetic susceptibility shows an anomalous transition to the ferromagnetic state in the ACoCuSsb2 phases. The electrical and magnetic properties of the new quaternary phases are compared to those of ternary ACosb2Ssb2 (A = K, Rb, Cs). The quaternary sulfides ACuFeSsb2 show semiconducting behavior. Magnetic susceptibility data indicate the presence of localized magnetic moment arising from the di- and trivalent iron ions. The semiconducting properties observed in this system are in contrast to the metallic behavior predicted by theoretical calculations. Investigations of the electrical properties of the sulfides ACuMnSsb2 revealed semiconducting behavior with a broad anomaly at ≈70 K. In the temperature range 100-300 K, the molar magnetic susceptibility of all the samples shows a weak maximum consistent with localized antiferromagnetic exchange of isolated two-dimensional manganese cluster nets. The divergence of the FC and ZFC molar susceptibilities at low temperatures, for all the samples, suggests spin-glass-type behavior with a well defined freezing temperature of ≈35 K. Single phase polycrystalline quaternary selenides ACuMnSesb2 (A = K, Rb, Cs) were prepared for the first time by the reduction of the mixture containing corresponding alkali metal carbonates, copper oxide, manganese and selenium

  14. Light-induced catalytic and cytotoxic properties of phosphorescent transition metal compounds with a d8 electronic configuration.

    PubMed

    To, Wai-Pong; Zou, Taotao; Sun, Raymond Wai-Yin; Che, Chi-Ming

    2013-07-28

    Transition metal compounds are well documented to have diverse applications such as in catalysis, light-emitting materials and therapeutics. In the areas of photocatalysis and photodynamic therapy, metal compounds of heavy transition metals are highly sought after because they can give rise to triplet excited states upon photoexcitation. The long lifetimes (more than 1 μs) of the triplet states of transition metal compounds allow for bimolecular reactions/processes such as energy transfer and/or electron transfer to occur. Reactions of triplet excited states of luminescent metal compounds with oxygen in cells may generate reactive oxygen species and/or induce damage to DNA, leading to cell death. This article recaps the recent findings on photochemical and phototoxic properties of luminescent platinum(II) and gold(III) compounds both from the literature and experimental results from our group.

  15. Unravelling the switching mechanisms in electric field induced insulator-metal transitions in VO2 nanobeams

    NASA Astrophysics Data System (ADS)

    Rathi, Servin; Park, Jin-Hyung; Lee, In-yeal; Baik, Jeong Min; Yi, Kyung Soo; Kim, Gil-Ho

    2014-07-01

    We studied insulator-metal transitions in VO2 nanobeams for both abrupt and gradual changes in applied electric fields. Based on the observations, the Poole-Frenkel effect explained the abrupt transition, while the gradual case is found to be dominated by the Joule heating phenomenon. We also carried out power model and finite element method based simulations which supported the Joule heating phenomena for gradual transition. An in-principle demonstration of the Poole-Frenkel effect, performed using a square voltage pulse of 1 µs duration, further confirms the proposed insulator-metal transition mechanism with a switching time in the order of 100 ns. Finally, conductivity variations introduced via rapid thermal annealing at various temperatures validate the roles of both Joule heating and Poole-Frenkel mechanisms in the transitions.

  16. Transition metal catalysis in the generation of petroleum and natural gas. Progress report, [1992--1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mango, F.

    1993-08-01

    A new hypothesis is introduced for the generation of petroleum and natural gas. The transition metals, activated under the reducing conditions of diagenesis, are proposed as catalysts in the generation of light hydrocarbons. The objective of this proposal is to test that hypothesis. Transition metals (Ni, V, Ti, Co, Fe), in kerogen, porphyrins, and as pure compounds, will be tested under catagenic conditions for catalytic activity in the conversion of normal paraffins and hydrogen into light hydrocarbons. If the hypothesis is correct, kerogenous transition metals should become catalytically active under the reducing conditions of diagenesis and catalyze the conversion ofmore » paraffins into the light hydrocarbons seen in petroleum. Moreover, the C{sub 1}-C{sub 4} hydrocarbons generated catalytically should be similar in molecular and isotopic compositions to natural gas.« less

  17. Tuning metal-insulator transitions in epitaxial V2O3 thin films

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Einar B.; Shayestehaminzadeh, Seyedmohammad; Arnalds, Unnar B.

    2018-04-01

    We present a study of the synthesis of epitaxial V2O3 films on c-plane Al2O3 substrates by reactive dc-magnetron sputtering. The results reveal a temperature window, at substantially lower values than previously reported, wherein epitaxial films can be obtained when deposited on [0001] oriented surfaces. The films display a metal-insulator transition with a change in the resistance of up to four orders of magnitude, strongly dependent on the O2 partial pressure during deposition. While the electronic properties of the films show sensitivity to the amount of O2 present during deposition of the films, their crystallographic structure and surface morphology of atomically flat terraced structures with up to micrometer dimensions are maintained. The transition temperature, as well as the scale of the metal-insulator transition, is correlated with the stoichiometry and local strain in the films controllable by the deposition parameters.

  18. First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

    NASA Astrophysics Data System (ADS)

    Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.

    2000-08-01

    Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase.

  19. Structural variation in transition-metal bispidine compounds.

    PubMed

    Comba, Peter; Kerscher, Marion; Merz, Michael; Müller, Vera; Pritzkow, Hans; Remenyi, Rainer; Schiek, Wolfgang; Xiong, Yun

    2002-12-16

    The experimentally determined molecular structures of 40 transition metal complexes with the tetradentate bispyridine-substituted bispidone ligand, 2,4-bis(2-pyridine)-3,7-diazabicyclo[3.3.1]nonane-9-one [M(bisp)XYZ]n+; M = CrIII, MnII, FeII, CoII, CuII, CuI, ZnII; X, Y, Z = mono- or bidentate co-ligands; penta-, hexa- or heptacoordinate complexes) are characterized in detail, supported by force-field and DFT calculations. While the bispidine ligand is very rigid (N3...N7 distance = 2.933 +/- 0.025 A), it tolerates a large range of metal-donor bond lengths (2.07 A < sigma(M-N)/4 < 2.35 A). Of particular interest is the ratio of the bond lengths between the metal center and the two tertiary amine donors (0.84 A < M-N3/M-N7 < 1.05 A) and the fact that, in terms of this ratio there seem to be two clusters with M-N3 < M-N7 and M-N3 > or = M-N7. Calculations indicate that the two structural types are close to degenerate, and the structural form therefore depends on the metal ion, the number and type of co-ligands, as well as structural variations of the bispidine ligand backbone. Tuning of the structures is of importance since the structurally differing complexes have very different stabilities and reactivities.

  20. Ultrafast Transient Absorption Spectroscopy of Polymer-Based Organophotoredox Catalysts Mimicking Transition-Metal Complexes

    NASA Astrophysics Data System (ADS)

    Jamhawi, Abdelqader; Paul, Anam C.; Smith, Justin D.; Handa, Sachin; Liu, Jinjun

    2017-06-01

    Transition-metal complexes of rare earth metals including ruthenium and iridium are most commonly employed as visible-light photocatalysts. Despite their highly important and broad applications, they have many disadvantages including high cost associated with low abundance in earth crust, potential toxicity, requirement of specialized ligands for desired activity, and difficulty in recycling of metal contents as well as associated ligands. Polymer-based organophotoredox catalysts are promising alternatives and possess unique advantages such as easier synthesis from inexpensive starting material, longer excited state life time, broad range of activity, sustainability, and recyclability. In this research talk, time-resolved photoluminescence and femtosecond transient absorption (TA) spectroscopy measurements of three novel polymer-based organophotoredox catalysts will be presented. By our synthetic team, their catalytic activity has been proven in some highly valuable chemical transformations, that otherwise require transition metal complexes. Time-resolved spectroscopic investigations have demonstrated that photoinduced processes in these catalysts are similar to the transition metal complexes. Especially, intramolecular vibrational relaxation, internal conversion, and intersystem crossing from the S1 state to the T1 state all occur on a sub-picosecond timescale. The long lifetime of the T1 state ( 2-3 microsecond) renders these polymers potent oxidizing and reducing agents. A spectroscopic and kinetic model has been developed for global fitting of TA spectra in both the frequency and time domains. Implication of the current ultrafast spectroscopy studies of these novel molecules to their roles in photocatalysis will be discussed.

  1. Axially engineered metal-insulator phase transition by graded doping VO2 nanowires.

    PubMed

    Lee, Sangwook; Cheng, Chun; Guo, Hua; Hippalgaonkar, Kedar; Wang, Kevin; Suh, Joonki; Liu, Kai; Wu, Junqiao

    2013-03-27

    The abrupt first-order metal-insulator phase transition in single-crystal vanadium dioxide nanowires (NWs) is engineered to be a gradual transition by axially grading the doping level of tungsten. We also demonstrate the potential of these NWs for thermal sensing and actuation applications. At room temperature, the graded-doped NWs show metal phase on the tips and insulator phase near the center of the NW, and the metal phase grows progressively toward the center when the temperature rises. As such, each individual NW acts as a microthermometer that can be simply read out with an optical microscope. The NW resistance decreases gradually with the temperature rise, eventually reaching 2 orders of magnitude drop, in stark contrast to the abrupt resistance change in undoped VO2 wires. This novel phase transition yields an extremely high temperature coefficient of resistivity ~10%/K, simultaneously with a very low resistivity down to 0.001 Ω·cm, making these NWs promising infrared sensing materials for uncooled microbolometers. Lastly, they form bimorph thermal actuators that bend with an unusually high curvature, ~900 m(-1)·K(-1) over a wide temperature range (35-80 °C), significantly broadening the response temperature range of previous VO2 bimorph actuators. Given that the phase transition responds to a diverse range of stimuli-heat, electric current, strain, focused light, and electric field-the graded-doped NWs may find wide applications in thermo-opto-electro-mechanical sensing and energy conversion.

  2. Manipulation of a Schlenk Line: Preparation of Tetrahydrofuran Complexes of Transition-Metal Chlorides

    ERIC Educational Resources Information Center

    Davis, Craig M.; Curran, Kelly A.

    2007-01-01

    Before taking an inorganic laboratory course few students have experience handling air-sensitive materials using Schlenk techniques. This exercise introduces them to techniques they will employ in later syntheses. The procedure involves the formation of anhydrous tetrahydrofuran complexes of transition-metal chlorides from metal-chloride hydrates;…

  3. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    DOE PAGES

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; ...

    2016-02-24

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M 3C 2 and M 4C 3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX] nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M' 2M"C 2 and M' 2M" 2C 3 – where M' and M" are two different earlymore » transition metals, such as Mo, Cr, Ta, Nb, V, and Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo 2TiC 2 and Mo 2Ti 2C 3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC] nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti 3C 2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo 2TiC 2T x exhibits semiconductor-like transport behavior, while Ti 3C 2T x is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less

  4. Dynamical conductivity at the dirty superconductor-metal quantum phase transition

    NASA Astrophysics Data System (ADS)

    Hoyos, J. A.; Del Maestro, Adrian; Rosenow, Bernd; Vojta, Thomas

    2011-03-01

    We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments. Financial support: Fapesp, CNPq, NSF, and Research Corporation.

  5. Stabilization of biosolids with nanoscale zero-valent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    Li, Xiao-qin; Brown, Derick G.; Zhang, Wei-xian

    2007-04-01

    Biosolids are the treated organic residuals, also known as sludge, that are generated from domestic wastewater treatment plants. According to the USEPA, over 7 millions tons (dry weight) of biosolids are generated every year in the US by more than the 16,000 wastewater treatment plants and a large portion of these biosolids is disposed on land. Nuisance odors, the potential of pathogen transmission, and presence of toxic and persistent organic chemicals and metals in biosolids have for the most part limited the use of land applications. This paper presents zero-valent iron nanoparticles (1-100 nm) for the treatment and stabilization of biosolids. Iron nanoparticles have been shown to form stable and nonvolatile surface complexes with malodorous sulfur compounds such as hydrogen sulfide and methyl sulfides, degrade persistent organic pollutants such as PCBs and chlorinated pesticides, and sequestrate toxic metal ions such as mercury and lead. The end products from the nanoparticle reactions are iron oxides and oxyhydroxides, similar to the ubiquitous iron minerals in the environment. Due to the large surface area and high surface reactivity, only a relatively low dose (<0.1% wt) of iron nanoparticles is needed for effective biosolids stabilization. The iron nanoparticle technology may thus offer an economically and environmentally sustainable and unique solution to one of the most vexing environmental problems.

  6. Magnetic states, correlation effects and metal-insulator transition in FCC lattice

    NASA Astrophysics Data System (ADS)

    Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu

    2016-12-01

    The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.

  7. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy.

    PubMed

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-24

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  8. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    PubMed Central

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  9. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  10. Anderson metal-insulator transitions with classical magnetic impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Daniel; Kettemann, Stefan

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local densitymore » of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].« less

  11. Colloquium: Excitons in atomically thin transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chernikov, Alexey; Glazov, Mikhail M.; Heinz, Tony F.; Marie, Xavier; Amand, Thierry; Urbaszek, Bernhard

    2018-04-01

    Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal dichalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weak dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. Here recent progress in understanding of the excitonic properties in monolayer TMDs is reviewed and future challenges are laid out. Discussed are the consequences of the strong direct and exchange Coulomb interaction, exciton light-matter coupling, and influence of finite carrier and electron-hole pair densities on the exciton properties in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.

  12. Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.

    2018-05-01

    The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).

  13. Transition-Metal Oxide (111) Bilayers

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoshi; Xiao, Di

    2018-04-01

    Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics, mainly focusing on van der Waals compounds, such as graphene, chalcogenides, and halides. In this article, we review our theoretical study on perovskite transition-metal oxides (TMOs) as an alternative system to realize such exotic phenomena. We demonstrate that novel quantum Hall effects and related phenomena associated with the honeycomb structure could be artificially designed by such TMOs by growing their heterostructures along the [111] crystallographic axis. One of the important predictions is that such TMO heterostructures could support two-dimensional topological insulating states. The strong correlation effects inherent to TM d electrons further enrich the behavior.

  14. Intrinsic exciton-state mixing and nonlinear optical properties in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Glazov, M. M.; Golub, L. E.; Wang, G.; Marie, X.; Amand, T.; Urbaszek, B.

    2017-01-01

    Optical properties of transition metal dichalcogenides monolayers are controlled by Wannier-Mott excitons forming a series of 1 s ,2 s ,2 p ,... hydrogen-like states. We develop the theory of the excited excitonic states energy spectrum fine structure. We predict that p - and s -shell excitons are mixed due to the specific D3 h point symmetry of the transition metal dichalcogenide monolayers. Hence, both s - and p -shell excitons are active in both single- and two-photon processes, providing an efficient mechanism of second harmonic generation. The corresponding contribution to the nonlinear susceptibility is calculated.

  15. Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping

    NASA Astrophysics Data System (ADS)

    Didukh, L.; Skorenkyy, Yu.; Dovhopyaty, Yu.; Hankevych, V.

    2000-03-01

    In the present paper, we propose a doubly orbitally degenerate narrow-band model with correlated hopping. The peculiarity of the model is taking into account the matrix element of electron-electron interaction, which describes intersite hoppings of electrons. In particular, this leads to the concentration dependence of the effective hopping integral. The cases of the strong and weak Hund's coupling are considered. By means of a generalized mean-field approximation the single-particle Green function and quasiparticle energy spectrum are calculated. Metal-insulator transition is studied in the model at different integer values of the electron concentration. With the help of the obtained energy spectrum, we find energy gap width and criteria of metal-insulator transition.

  16. New trends in the optical and electronic applications of polymers containing transition-metal complexes.

    PubMed

    Liu, Shu-Juan; Chen, Yang; Xu, Wen-Juan; Zhao, Qiang; Huang, Wei

    2012-04-13

    Polymers containing transition-metal complexes exhibit excellent optical and electronic properties, which are different from those of polymers with a pure organic skeleton and combine the advantages of both polymers and metal complexes. Hence, research about this class of polymers has attracted more and more interest in recent years. Up to now, a number of novel polymers containing transition-metal complexes have been exploited, and significant advances in their optical and electronic applications have been achieved. In this article, we summarize some new research trends in the applications of this important class of optoelectronic polymers, such as chemo/biosensors, electronic memory devices and photovoltaic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Metal to insulator transition in Sb doped SnO2 monocrystalline nanowires thin films

    NASA Astrophysics Data System (ADS)

    Costa, I. M.; Bernardo, E. P.; Marangoni, B. S.; Leite, E. R.; Chiquito, A. J.

    2016-12-01

    We report on the growth and transport properties of single crystalline Sb doped SnO2 wires grown from chemical vapour deposition. While undoped samples presented semiconducting behaviour, doped ones clearly undergo a transition from an insulating state ( d R /d T <0 ) to a metallic one ( d R /d T >0 ) around 130 -150 K depending on the doping level. Data analysis in the framework of the metal-to-insulator transition theories allowed us to investigate the underlying physics: electron-electron and electron-phonon interactions were identified as the scattering mechanisms present in the metallic phase, while the conduction mechanism of the semiconducting phase (undoped sample) was characterized by thermal activation and variable range hopping mechanisms.

  18. Diverse Reactivity of ECp* (E = Al, Ga) toward Low-Coordinate Transition Metal Amides [TM(N(SiMe3)2)2] (TM = Fe, Co, Zn): Insertion, Cp* Transfer, and Orthometalation.

    PubMed

    Weßing, Jana; Göbel, Christoph; Weber, Birgit; Gemel, Christian; Fischer, Roland A

    2017-03-20

    The reactivity of the carbenoid group 13 metal ligands ECp* (E = Al, Ga) toward low valent transition metal complexes [TM(btsa) 2 ] (TM = Fe, Co, Zn; btsa = bis(trimethylsilyl)amide) was investigated, revealing entirely different reaction patterns for E = Al and Ga. Treatment of [Co(btsa) 2 ] with AlCp* yields [Cp*Co(μ-H)(Al(κ 2 -(CH 2 SiMe 2 )NSiMe 3 )(btsa))] (1) featuring an unusual heterometallic bicyclic structure that results from the insertion of AlCp* into the TM-N bond with concomitant ligand rearrangement including C-H activation at one amide ligand. For [Fe(btsa) 2 ], complete ligand exchange gives FeCp* 2 , irrespective of the employed stoichiometric ratio of the reactants. In contrast, treatment of [TM(btsa) 2 ] (TM = Fe, Co) with GaCp* forms the 1:1 and 1:2 adducts [(GaCp*)Co(btsa) 2 ] (2) and [(GaCp*) 2 Fe(btsa) 2 ] (3), respectively. The tendency of AlCp* to undergo Cp* transfer to the TM center appears to be dependent on the nature of the TM center: For [Zn(btsa) 2 ], no Cp* transfer is observed on reaction with AlCp*; instead, the insertion product [Zn(Al(η 2 -Cp*)(btsa)) 2 ] (4) is formed. In the reaction of [Co(btsa) 2 ] with the trivalent [Cp*AlH 2 ], transfer of the amide ligands without further ligand rearrangement is observed, leading to [Co(μ-H) 4 (Al(η 2 -Cp*)(btsa)) 2 ] (5).

  19. Comparison of characteristics of montmorillonite supported nano zero valent iron (M-nZVI) and nano zero valent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    How, Ho Kuok; Wan Zuhairi W., Y.

    2015-09-01

    In this study, synthesized montmorillonite supported nano zero valent iron (M-nZVI) and nano zero valent iron (nZVI) are compared physically and chemically. The samples were prepared using chemical reduction method that includes sodium borohydride and ethanol. Due to the tendency of nZVI to aggregate, montmorillonite is used as a supporting material. TEM and FESEM images show that the M-nZVI has decreased the aggregation by dispersing the particles on the surface of montmorillonite whereas images of nZVI show chain-like particle due to aggregation. Both images also show particles synthesized are nanoparticles. With less aggregation, the surface area of the M-nZVI is greater than nZVI which is 45.46 m2/g and 10.49 m2/g respectively. XRD patterns have shown Fe0 are synthesized and small amount of iron oxides are produced. M-nZVI has the capability in reducing aggregation which might lead to the increase in reactivity of the particles thus enhancing the performance of nZVI.

  20. Optical and Excitonic Properties of Atomically Thin Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Berkelbach, Timothy C.; Reichman, David R.

    2018-03-01

    Starting with the isolation of a single sheet of graphene, the study of layered materials has been one of the most active areas of condensed matter physics, chemistry, and materials science. Single-layer transition-metal dichalcogenides are direct-gap semiconducting analogs of graphene that exhibit novel electronic and optical properties. These features provide exciting opportunities for the discovery of both new fundamental physical phenomena as well as innovative device platforms. Here, we review the progress associated with the creation and use of a simple microscopic framework for describing the optical and excitonic behavior of few-layer transition-metal dichalcogenides, which is based on symmetry, band structure, and the effective interactions between charge carriers in these materials. This approach provides an often quantitative account of experiments that probe the physics associated with strong electron–hole interactions in these quasi two-dimensional systems and has been successfully employed by many groups to both describe and predict emergent excitonic behavior in these layered semiconducting systems.

  1. Control of plasmonic nanoantennas by reversible metal-insulator transition

    PubMed Central

    Abate, Yohannes; Marvel, Robert E.; Ziegler, Jed I.; Gamage, Sampath; Javani, Mohammad H.; Stockman, Mark I.; Haglund, Richard F.

    2015-01-01

    We demonstrate dynamic reversible switching of VO2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. These unique features open up promising novel applications in active nanophotonics. PMID:26358623

  2. Magneto-optical spectra of transition metal dichalcogenides: A comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Yen-Hung; Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan; Chiu, Chih-Wei

    2014-12-01

    Following our previous work [Ho et al., Phys. Rev. B 89, 155316 (2014)], we systematically calculate the magneto-optical properties of various transition metal dichalcogenide monolayers. The intrinsic spin-orbit coupling gives rise to the spin-split electronic states, while a perpendicular magnetic field further induces a valley splitting. In magneto-optical spectra with linearly polarized light, spectral features are spin and valley-polarized. Compounds are different from one another in terms of transition energies and appearance of twin peaks. Our numerical results can serve as a guide for future experimental identification.

  3. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.; Lincoln, Lanny P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  4. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  5. Valence-bond theory of compounds of transition metals

    PubMed Central

    Pauling, Linus

    1975-01-01

    An equation relating the strength (bondforming power) of an spd hybrid bond orbital to the angles it makes with other bond orbitals is formulated and applied in the discussion of the structures of transition-metal carbonyls and other substances by the valence-bond method. The rather simple theory gives results that agree well with those obtained by the complicated and laborious calculation of sets of orthogonal hybrid bond orbitals with maximum strength. PMID:16592279

  6. Interconfigurational energies in transition-metal atoms using gradient-corrected density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutzler, F.W.; Painter, G.S.

    1991-03-15

    The rapid variation of charge and spin densities in atoms and molecules provides a severe test for local-density-functional theory and for the use of gradient corrections. In the study reported in this paper, we use the Langreth, Mehl, and Hu (LMH) functional and the generalized gradient approximation (GGA) of Perdew and Yue to calculate {ital s}-{ital d} transition energies, 4{ital s} ionization energies, and 3{ital d} ionization energies for the 3{ital d} transition-metal atoms. These calculations are compared with results from the local-density functional of Vosko, Wilk, and Nusair. By comparison with experimental energies, we find that the gradient functionalsmore » are only marginally more successful than the local-density approximation in calculating energy differences between states in transition-metal atoms. The GGA approximation is somewhat better than the LMH functional for most of the atoms studied, although there are several exceptions.« less

  7. Anti-ferromagnetic/ferromagnetic transition in half-metallic Co9Se8 nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Jai; Kumar, Pushpendra

    2015-09-01

    The size, shape and defects of the half-metallic Co9Se8 nanoparticles (NPs) play a crucial role in the magnetic transition at the local magnetic regime at low temperatures. A general, non-injection, one-pot reaction route without toxic reagents, such as TOPO/TOPSe, surfactant and/or chelating agent, were used to synthesize gram scale of well-dispersed, high-quality Co9Se8 NPs. The calculated mean crystallite size of the NPs was ∼10 nm, which is consistent with the transmission electron microscope data. This study reveals an unusual anti-ferromagnetic/ferromagnetic transition with some super-paramagnetic character in the low temperature region of Co9Se8 NPs. These investigations are expected not only to help the observed phenomenon, but also help in identifying new half-metallic magnetic NPs for spintronics devices. The outcome provides better understanding of the occurrence of superparamagnetism at low temperatures in the nano-regime, for half-metallic systems.

  8. Dimensionality-driven insulator–metal transition in A-site excess non-stoichiometric perovskites

    PubMed Central

    Wang, Zhongchang; Okude, Masaki; Saito, Mitsuhiro; Tsukimoto, Susumu; Ohtomo, Akira; Tsukada, Masaru; Kawasaki, Masashi; Ikuhara, Yuichi

    2010-01-01

    Coaxing correlated materials to the proximity of the insulator–metal transition region, where electronic wavefunctions transform from localized to itinerant, is currently the subject of intensive research because of the hopes it raises for technological applications and also for its fundamental scientific significance. In general, this tuning is achieved by either chemical doping to introduce charge carriers, or external stimuli to lower the ratio of Coulomb repulsion to bandwidth. In this study, we combine experiment and theory to show that the transition from well-localized insulating states to metallicity in a Ruddlesden-Popper series, La0.5Srn+1−0.5TinO3n+1, is driven by intercalating an intrinsically insulating SrTiO3 unit, in structural terms, by dimensionality n. This unconventional strategy, which can be understood upon a complex interplay between electron–phonon coupling and electron correlations, opens up a new avenue to obtain metallicity or even superconductivity in oxide superlattices that are normally expected to be insulators. PMID:21045824

  9. Characterization and reactivity of a terminal nickel(III)-oxygen adduct.

    PubMed

    Pirovano, Paolo; Farquhar, Erik R; Swart, Marcel; Fitzpatrick, Anthony J; Morgan, Grace G; McDonald, Aidan R

    2015-02-23

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni(II)-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = 1/2), square planar Ni(III)-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. First-Principles Study of Electronic Structure and Hydrogen Adsorption of 3d Transition Metal Exposed Paddle Wheel Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bak, J. H.; Le, V. D.; Kang, J.

    2012-04-05

    Open-site paddle wheels, comprised of two transition metals bridged with four carboxylate ions, have been widely used for constructing metal-organic frameworks with large surface area and high binding energy sites. Using first-principles density functional theory calculations, we have investigated atomic and electronic structures of various 3d transition metal paddle wheels before and after metal exposure and their hydrogen adsorption properties at open metal sites. Notably, the hydrogen adsorption is impeded by covalent metal-metal bonds in early transition metal paddle wheels from Sc to Cr and by the strong ferromagnetic coupling of diatomic Mn and Fe in the paddle wheel configurations.more » A significantly enhanced H{sub 2} adsorption is predicted in the nonmagnetic Co{sub 2} and Zn{sub 2} paddle wheel with the binding energy of {approx}0.2 eV per H{sub 2}. We also propose the use of two-dimensional Co{sub 2} and Zn{sub 2} paddle wheel frameworks that could have strongly adsorbed dihydrogen up to 1.35 wt % for noncryogenic hydrogen storage applications.« less

  11. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.

    PubMed

    Nilsson, M; Andreas, L; Lagerkvist, A

    2016-05-01

    About 85% of the ashes produced in Sweden originated from the incineration of municipal solid waste and biofuel. The rest comes from the thermal treatment of recycled wood, peat, charcoal and others. About 68% of all ashes annually produced in Sweden are used for constructions on landfills, mainly slopes, roads and embankments, and only 3% for construction of roads and working surfaces outside the landfills (SCB, 2013). Since waste bottom ash (BA) often has similar properties to crushed bedrock or gravel, it could be used for road constructions to a larger extent. However, the leaching of e.g. Cr, Cu, Mo, Pb and Zn can cause a threat to the surrounding environment if the material is used as it is. Carbonation is a commonly used pre-treatment method, yet it is not always sufficient. As leaching from aged ash is often controlled by adsorption to iron oxides, increasing the number of Fe oxide sorption sites can be a way to control the leaching of several critical elements. The importance of iron oxides as sorption sites for metals is known from both mineralogical studies of bottom ash and from the remediation of contaminated soil, where iron is used as an amendment. In this study, zero valent iron (Fe(0)) was added prior to accelerated carbonation in order to increase the number of adsorption sites for metals and thereby reduce leaching. Batch, column and pHstat leaching tests were performed and the leaching behaviour was evaluated with multivariate data analysis. It showed that leaching changed distinctly after the tested treatments, in particular after the combined treatment. Especially, the leaching of Cr and Cu clearly decreased as a result of accelerated carbonation. The combination of accelerated carbonation with Fe(0) addition reduced the leaching of Cr and Cu even further and reduced also the leaching of Mo, Zn, Pb and Cd compared to untreated BA. Compared with only accelerated carbonation, the Fe(0) addition significantly reduced the leaching of Cr, Cu and Mo

  12. Adhesion and friction of transition metals in contact with nonmetallic hard materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.

  13. Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Christian

    2013-01-01

    simpler and cheaper than previously used methods for producing hydrogenation catalysts. Preferably, the hydrogenation catalyst is a bimetallic particle formed from a zero-valent iron or zero-valent magnesium particle coated with palladium that is impregnated onto a high-surface-area graphite support. The zero-valent metal particles should be microscale or nanoscale zero-valent magnesium or zero-valent iron particles. Other zero-valent metal particles and combinations may be used. Additionally, the base material may be selected from a variety of minerals including, but not limited to, alumina and zeolites. The catalytic metal is preferably selected from the group consisting of noble metals and transition metals, preferably palladium. The mechanical milling process includes milling the base material with a catalytic metal impregnated into a high-surface-area support to form the hydrogenation catalyst. In a preferred mechanical milling process, a zero-valent metal particle is provided as the base material, preferably having a particle size of less than about 10 microns, preferably 0.1 to 10 microns or smaller, prior to milling. The catalytic metal is supported on a conductive carbon support structure prior to milling. For example, palladium may be impregnated on a graphite support. Other support structures such as semiconductive metal oxides may also be used.

  14. Using Dopants to Tune Oxygen Vacancy Formation in Transition Metal Oxide Resistive Memory.

    PubMed

    Jiang, Hao; Stewart, Derek A

    2017-05-17

    Introducing dopants is an important way to tailor and improve electronic properties of transition metal oxides used as high-k dielectric thin films and resistance switching layers in leading memory technologies, such as dynamic and resistive random access memory (ReRAM). Ta 2 O 5 has recently received increasing interest because Ta 2 O 5 -based ReRAM demonstrates high switching speed, long endurance, and low operating voltage. However, advances in optimizing device characteristics with dopants have been hindered by limited and contradictory experiments in this field. We report on a systematic study on how various metal dopants affect oxygen vacancy formation in crystalline and amorphous Ta 2 O 5 from first principles. We find that isoelectronic dopants and weak n-type dopants have little impact on neutral vacancy formation energy and that p-type dopants can lower the formation energy significantly by introducing holes into the system. In contrast, n-type dopants have a deleterious effect and actually increase the formation energy for charged oxygen vacancies. Given the similar doping trend reported for other binary transition metal oxides, this doping trend should be universally valid for typical binary transition metal oxides. Based on this guideline, we propose that p-type dopants (Al, Hf, Zr, and Ti) can lower the forming/set voltage and improve retention properties of Ta 2 O 5 ReRAM.

  15. Upper critical fields and superconducting transition temperatures of some zirconium-base amorphous transition-metal alloys

    NASA Astrophysics Data System (ADS)

    Karkut, M. G.; Hake, R. R.

    1983-08-01

    Superconducting upper critical fields Hc2(T), transition temperatures Tc and normal-state electrical resistivities ρn have been measured in the amorphous transition-metal alloy series Zr1-xCox, Zr1-xNix, (Zr1-xTix)0.78Ni0.22, and (Zr1-xNbx)0.78Ni0.22. Structural integrity of these melt-spun alloys is indicated by x-ray, density, bend-ductility, normal-state electrical resistivity, superconducting transition width, and mixed-state flux-pinning measurements. The specimens display Tc=2.1-3.8 K, ρn=159-190 μΩ cm, and |(dHc2dT)Tc|=28-36 kG/K. These imply electron mean free paths l~2-6 Å, zero-temperature Ginzburg-Landau coherence distances ξG0~50-70 Å, penetration depths λG0~(7-10)×103 Å, and extremely high dirtiness parameters ξ0l~300-1300. All alloys display Hc2(T) curves with negative curvature and (with two exceptions) fair agreement with the standard dirty-limit theory of Werthamer, Helfand, Hohenberg, and Maki (WHHM) for physically reasonable values of spin-orbit-coupling induced, electron-spin-flip scattering time τso. This is in contrast to the anomalously elevated Hc2(T) behavior which is nearly linear in T that is observed by some, and the unphysically low-τso fits to WHHM theory obtained by others, for various amorphous alloys. Current ideas that such anomalies may be due to alloy inhomogeneity are supported by present results on two specimens for which relatively low-τso fits of Hc2(T) to WHHM theory are coupled with superconductive evidence for inhomogeneity: relatively broad transitions at Tc and Hc2 current-density-dependent transitions at Hc2 and (in one specimen) a J-dependent, high-H (>Hc2), resistive "beak effect." In the Zr1-xCox and Zr1-xNix series, Tc decreases linearly with x (and with unfilled-shell average electron-to-atom ratio < ea > in the range 5.05<=< ea ><=6.40 in fair agreement with previous results for these systems and contrary to the Tc vs < ea > behavior of both amorphous and crystalline transition-metal alloys formed

  16. Cohesion and coordination effects on transition metal surface energies

    NASA Astrophysics Data System (ADS)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  17. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    PubMed

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation

    PubMed Central

    Wang, Wei; Jiang, Bo; Xiong, Weiyi; Sun, He; Lin, Zheshuai; Hu, Liwen; Tu, Jiguo; Hou, Jungang; Zhu, Hongmin; Jiao, Shuqiang

    2013-01-01

    Due to their small footprint and flexible siting, rechargeable batteries are attractive for energy storage systems. A super-valent battery based on aluminium ion intercalation and deintercalation is proposed in this work with VO2 as cathode and high-purity Al foil as anode. First-principles calculations are also employed to theoretically investigate the crystal structure change and the insertion-extraction mechanism of Al ions in the super-valent battery. Long cycle life, low cost and good capacity are achieved in this battery system. At the current density of 50 mAg−1, the discharge capacity remains 116 mAhg−1 after 100 cycles. Comparing to monovalent Li-ion battery, the super-valent battery has the potential to deliver more charges and gain higher specific capacity. PMID:24287676

  19. Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Opra, Denis P.; Gnedenkov, Sergey V.; Sokolov, Alexander A.; Minaev, Alexander N.; Kuryavyi, Valery G.; Sinebryukhov, Sergey L.

    2017-09-01

    At all times, energy storage is one of the greatest scientific challenge. Recently, Li-ion batteries are under special attention due to high working voltage, long cycle life, low self-discharge, reliability, no-memory effect. However, commercial LIBs usage in medium- and large-scale energy storage are limited by the capacity of lithiated metal oxide cathode and unsafety of graphite anode at high-rate charge. In this way, new electrode materials with higher electrochemical performance should be designed to satisfy a requirement in both energy and power. As it known, nanostructured transition metal oxides are promising electrode materials because of their elevated specific capacity and high potential vs. Li/Li+. In this work, the perspective of an original facile technique of pulsed high-voltage plasma discharge in synthesis of nanostructured transition metal oxides as electrodes for lithium-ion batteries has been demonstrated.

  20. Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, Craig M.; Barry, Matthew C.; Wei, Zheng

    A series of mixed-valent, heterometallic (mixed-transition metal) diketonates that can be utilized as prospective volatile single-source precursors for the low-temperature preparation of M xM' 3–xO 4 spinel oxide materials is reported. Three iron–cobalt complexes with Fe/Co ratios of 1:1, 1:2, and 2:1 were synthesized by several methods using both solid-state and solution reactions. On the basis of nearly quantitative reaction yields, elemental analyses, and comparison of metal–oxygen bonds with those in homometallic analogues, heterometallic compounds were formulated as [Fe III(acac) 3][Co II(hfac) 2] (1), [Co II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2] (2), and [Fe II(hfac) 2][Fe III(acac) 3][Co II(hfac) 2]more » (3). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated CoII/FeII centers chelated by two hexafluoroacetylacetonate (hfac) ligands maintain bridging interactions with oxygen atoms of acetylacetonate (acac) groups that chelate the neighboring Fe III metal ion. Preliminary assignment of Fe and Co positions/oxidation states in 1–3 drawn from X-ray structural investigation was corroborated by a number of complementary techniques. Single-crystal resonant synchrotron diffraction and neutron diffraction experiments unambiguously confirmed the location of Fe and Co sites in the molecules of dinuclear (1) and trinuclear (2) complexes, respectively. Direct analysis in real time mass spectrometry revealed the presence of Fe III- and Co II-based fragments in the gas phase upon evaporation of precursors 1 and 2 as well as of Fe III, Fe II, and Co II species for complex 3. Theoretical investigation of two possible “valent isomers”, [Fe III(acac) 3][Co II(hfac) 2] (1) and [Co III(acac) 3][Fe II(hfac) 2] (1'), provided an additional support for the metal site/oxidation state assignment giving a preference of 6.48 kcal/mol for the experimentally observed molecule 1. Magnetic susceptibility measurements data are in agreement

  1. Pre-combustion CO2 capture by transition metal ions embedded in phthalocyanine sheets

    NASA Astrophysics Data System (ADS)

    Lü, Kun; Zhou, Jian; Zhou, Le; Chen, X. S.; Chan, Siew Hwa; Sun, Qiang

    2012-06-01

    Transition metal (TM) embedded two-dimensional phthalocyanine (Pc) sheets have been recently synthesized in experiments [M. Abel, S. Clair, O. Ourdjini, M. Mossoyan, and L. Porte, J. Am. Chem. Soc. 133, 1203 (2010)], 10.1021/ja108628r, where the transition metal ions are uniformly distributed in porous structures, providing the possibility of capturing gas molecules. Using first principles and grand canonical Monte Carlo simulations, TMPc sheets (TM = Sc, Ti, and Fe) are studied for pre-combustion CO2 capture by considering the adsorptions of H2/CO2 gas mixtures. It is found that ScPc sheet shows a good selectivity for CO2, and the excess uptake capacity of single-component CO2 on ScPc sheet at 298 K and 50 bar is found to be 2949 mg/g, larger than that of any other reported porous materials. Furthermore, electrostatic potential and natural bond orbital analyses are performed to reveal the underlying interaction mechanisms, showing that electrostatic interactions as well as the donation and back donation of electrons between the transition metal ions and the CO2 molecules play a key role in the capture.

  2. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan Balasubramanian

    2009-07-18

    This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus ourmore » studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our

  3. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    NASA Astrophysics Data System (ADS)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  4. DFT-GGA errors in NO chemisorption energies on (111) transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Mason, Sara E.

    2014-03-01

    We investigate whether well-known DFT-GGA errors in predicting the chemisorption energy (Echem) of CO on transition metal surfaces manifest in analogous NO chemisorption systems. While widely investigated in the case of CO/metal, analogous DFT-GGA errors have long been claimed to be absent in NO/metal chemisorption. Here, we provide theoretical evidence of systematic enhanced back-donation in NO/metal chemisorption at the DFT-GGA level. We use electronic structure analysis to show that the partially filled molecular NO 2π* orbital rehybridizes with the transition metal d-band to form new bonding and anti-bonding states. We relate the back-donation charge transfer associated with chemisorption to the promotion of an electron from the 5σ orbital to the 2π* orbital in the gas-phase NO G2Σ- ← X2Π excitation. We establish linear relationships between Echem and ΔEG ← X and formulate an Echem correction scheme in the style of Mason et al. [Physical Review B 69, 161401(R)]. We apply the NO Echem correction method to the (111) surfaces of Pt, Pd, Rh, and Ir, with NO chemisorption modeled at a coverage of 0.25 ML. We note that the slope of Echemvs. ΔEG ← X and the dipole moment depend strongly on adsorption site for each metal, and we construct an approximate correction scheme which we test using NO/Pt(100) chemisorption.

  5. DDT, DDD, AND DDE DECHLORINATION BY ZERO-VALENT IRON

    EPA Science Inventory

    Traditionally, destruction of DDT [1,1,1-trichIoro-2,2-bis(p-chlorophenyl)ethane] for environmental remediation required high-energy processes such as incineration. Here, the capability of powdered zero-valent iron to dechlorinate DDT and related compounds at room tempera...

  6. REMOVAL OF HIGH-LEVEL ARSENIC BY ZERO-VALENT IRON

    EPA Science Inventory

    The objectives of this study were to conduct batch and column studies to (i) assess the effectiveness of zero-valent iron for arsenic remediation in groundwater, (ii) determine removal mechanisms of arsenic, and (iii) evaluate implications of these processes with regard to the st...

  7. Novel Transition Metal Compounds with Promising Thermoelectric Properties

    NASA Technical Reports Server (NTRS)

    Caillat, T.; Borshchevsky, A.; Fleurial, J. -P.

    1993-01-01

    Progress in the search for new high temperature thermoelectric materials at the Jet Propulsion Laboratory is reviewed. Novel transition metal compounds were selected as potential new high performance thermoelectric materials and criteria of selection are presented and discussed. Samples of these new compounds were prepared at JPL by a variety of techniques. Encouraging experimental results obtained on several of these compounds are reported and show that they have the potential to be the next generation of thermoelectric materials.

  8. The important role of water in growth of monolayer transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Kastl, Christoph; Chen, Christopher T.; Kuykendall, Tevye; Shevitski, Brian; Darlington, Thomas P.; Borys, Nicholas J.; Krayev, Andrey; Schuck, P. James; Aloni, Shaul; Schwartzberg, Adam M.

    2017-06-01

    2D transition metal dichalcogenides (TMDs) are commonly grown by chemical vapor deposition using transition metal oxides as solid precursors. Despite the widespread use of this technique, challenges in reproducibility, coverage, and material quality are pervasive, suggestive of unknown and uncontrolled process parameters. In this communication, we demonstrate the impact of water vapor on this growth process. Our results show a direct correlation between gas phase water content and the morphology of TMD films. In particular, we show that the presence of water enhances volatilization, and therefore the vapor transport of tungsten and molybdenum oxide. Surprisingly, we find that water not only plays an important role in volatilization but is also compatible with TMD growth. In fact, carefully controlled humidity can consistently produce high quality, luminescent materials.

  9. Transition-Metal Oxide (111) Bilayers

    DOE PAGES

    Okamoto, Satoshi; Xiao, Di

    2018-04-15

    Correlated electron systems on a honeycomb lattice have emerged as a fertile playground to explore exotic electronic phenomena. Theoretical and experimental work has appeared to realize novel behavior, including quantum Hall effects and valleytronics, mainly focusing on van der Waals compounds, such as graphene, chalcogenides, and halides. Here in this paper, we review our theoretical study on perovskite transition-metal oxides (TMOs) as an alternative system to realize such exotic phenomena. We demonstrate that novel quantum Hall effects and related phenomena associated with the honeycomb structure could be artificially designed by such TMOs by growing their heterostructures along the [111] crystallographicmore » axis. One of the important predictions is that such TMO heterostructures could support two-dimensional topological insulating states. The strong correlation effects inherent to TM d electrons further enrich the behavior.« less

  10. Stabilization of Small Boron Cage by Transition Metal Encapsulation

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Lv, Jian; Wang, Yanchao; Ma, Yanming

    2015-03-01

    The discovery of chemically stable fullerene-like structures formed by elements other than carbon has been long-standing desired. On this aspect significant efforts have centered around boron, only one electron deficient compared with carbon. However, during the past decade a large number of experimental and theoretical studies have established that small boron clusters are either planar/quasi-planar or forming double-ring tubular structures. Until recently, two all-boron fullerenes have been independently discovered: B38 proposed by our structure searching calculations and B40 observed in a joint experimental and theoretical study. Here we extend our work to the even smaller boron clusters and propose an effective routine to stabilize them by transition metal encapsulation. By combining swarm-intelligence structure searching and first-principles calculations, we have systematically investigated the energy landscapes of transition-metal-doped MB24 clusters (M = Ti, Zr, Hf, Cr, Mo, W, Fe, Ru and Os). Two stable symmetric endohedral boron cages, MoB24 and WB24 are identified. The stability of them can be rationalized in terms of their unique 18-electron closed-shell electronic structures. Funded by Recruitment Program of Global Experts of China and China Postdoctoral Science Foundation.

  11. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides

    NASA Astrophysics Data System (ADS)

    Shen, Shaohua; Chen, Xiaobo; Ren, Feng; Kronawitter, Coleman X.; Mao, Samuel S.; Guo, Liejin

    2011-12-01

    A series of Pt-loaded MS/ZnIn2S4 (MS = transition-metal sulfide: Ag2S, SnS, CoS, CuS, NiS, and MnS) photocatalysts was investigated to show various photocatalytic activities depending on different transition-metal sulfides. Thereinto, CoS, NiS, or MnS-loading lowered down the photocatalytic activity of ZnIn2S4, while Ag2S, SnS, or CuS loading enhanced the photocatalytic activity. After loading 1.0 wt.% CuS together with 1.0 wt.% Pt on ZnIn2S4, the activity for H2 evolution was increased by up to 1.6 times, compared to the ZnIn2S4 only loaded with 1.0 wt.% Pt. Here, transition-metal sulfides such as CuS, together with Pt, acted as the dual co-catalysts for the improved photocatalytic performance. This study indicated that the application of transition-metal sulfides as effective co-catalysts opened up a new way to design and prepare high-efficiency and low-cost photocatalysts for solar-hydrogen conversion.

  12. Sharp Transition from Nonmetallic Au246 to Metallic Au279 with Nascent Surface Plasmon Resonance.

    PubMed

    Higaki, Tatsuya; Zhou, Meng; Lambright, Kelly J; Kirschbaum, Kristin; Sfeir, Matthew Y; Jin, Rongchao

    2018-05-02

    The optical properties of metal nanoparticles have attracted wide interest. Recent progress in controlling nanoparticles with atomic precision (often called nanoclusters) provide new opportunities for investigating many fundamental questions, such as the transition from excitonic to plasmonic state, which is a central question in metal nanoparticle research because it provides insights into the origin of surface plasmon resonance (SPR) as well as the formation of metallic bond. However, this question still remains elusive because of the extreme difficulty in preparing atomically precise nanoparticles larger than 2 nm. Here we report the synthesis and optical properties of an atomically precise Au 279 (SR) 84 nanocluster. Femtosecond transient absorption spectroscopic analysis reveals that the Au 279 nanocluster shows a laser power dependence in its excited state lifetime, indicating metallic state of the particle, in contrast with the nonmetallic electronic structure of the Au 246 (SR) 80 nanocluster. Steady-state absorption spectra reveal that the nascent plasmon band of Au 279 at 506 nm shows no peak shift even down to 60 K, consistent with plasmon behavior. The sharp transition from nonmetallic Au 246 to metallic Au 279 is surprising and will stimulate future theoretical work on the transition and many other relevant issues.

  13. VO2 microcrystals as an advanced smart window material at semiconductor to metal transition

    NASA Astrophysics Data System (ADS)

    Basu, Raktima; Magudapathy, P.; Sardar, Manas; Pandian, Ramanathaswamy; Dhara, Sandip

    2017-11-01

    Textured VO2(0 1 1) microcrystals are grown in the monoclinic, M1 phase which undergoes a reversible first order semiconductor to metal transition (SMT) accompanied by a structural phase transition to rutile tetragonal, R phase. Around the phase transition, VO2 also experiences noticeable change in its optical and electrical properties. A change in color of the VO2 micro crystals from white to cyan around the transition temperature is observed, which is further understood by absorption of red light using temperature dependent ultraviolet-visible spectroscopic analysis and photoluminescence studies. The absorption of light in the red region is explained by the optical transition between Hubbard states, confirming the electronic correlation as the driving force for SMT in VO2. The thermochromism in VO2 has been studied for smart window applications so far in the IR region, which supports the opening of the band gap in semiconducting phase; whereas there is hardly any report in the management of visible light. The filtering of blue light along with reflection of infrared above the semiconductor to metal transition temperature make VO2 applicable as advanced smart windows for overall heat management of a closure.

  14. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    PubMed Central

    Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; Di Falco, A.; Faccio, D.

    2016-01-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270

  15. Ultrafast far-infrared studies of vanadates &mdash Multiple routes for an insulator to metal transition

    NASA Astrophysics Data System (ADS)

    Liu, Mengkun

    The metal insulator transition in vanadates has been studied for decades and yet new discoveries still spring up revealing new physics, especially among two of the most studied members: Vanadium sesquioxide (V20 3) and Vanadium dioxide (VO2). Although subtleties abound, both of the materials have first order insulator to metal phase transitions that are considered to be related to strong electron-electron (e-e) correlation. Further, ultrafast spectroscopy of strongly correlated materials has generated great interest in the field given the potential to dynamically distinguish the difference between electronic (spin) response versus lattice responses due to the associated characteristic energy and time scales. In this thesis, I mainly focus on utilizing ultrafast optical and THz spectroscopy to study phase transition dynamics in high quality V20 3 and VO2 thin films epitaxially grown on different substrates. The main findings of the thesis are: (1) Despite the fact that the insulator to metal transition (IMT) in V203 is electron-correlation driven, lattice distortion plays an important role. Coherent oscillations in the far-infrared conductivity are observed resulting from coherent acoustic phonon modulation of the bandwidth W. The same order of lattice distortion induces less of an effect on the electron transport in VO2 in comparison to V203. This is directly related to the difference in latent heat of the phase transitions in VO2 and V203. (2) It is possible for the IMT to occur with very little structural change in epitaxial strained VO2 films, like in the case of Cr doped or strained V203. However, in V02, this necessitates a large strain which is only possible by clamping to a substrate with larger c axis parameter through epitaxial growth. This is demonstrated for VO 2 films on TiO2 substrates. (3) Initiating an ultrafast photo-induced insulator-to-metal transition (IMT) is not only possible with above bandgap excitation, but also possible with high-field far

  16. Photodissociation Spectroscopy of Anionic Transition Metal Complexes

    NASA Astrophysics Data System (ADS)

    Kaufman, Sydney Hamilton

    Transition metal complexes play an important role in many aspects of chemistry; whether in supporting biological functions, as catalysts for organic reactions, in the environment, or in industry. This thesis is comprised of gas-phase spectroscopic studies of four transition metal species with implications for many different chemical applications. Most knowledge of the target molecules in this thesis are derived from studies in the condensed phase, where the chemical environment can change molecular properties. As a result, it is difficult to gain an understanding of the intrinsic properties in solution as well as a molecular-level picture of chemical reactions that take place where many oxidation states, molecular species, and solvent interactions occur. By isolating one particular species in the gas phase, we are able to observe how each species interacts with light independent of perturbing effects of solvent and counter ions. In this thesis, we perform spectroscopic experiments on mass-selected ions in the gas phase, where we are able to gain information on intrinsic molecular properties without the influence of a condensed phase chemical environment. We employ photodissociation spectroscopy, where we mass-select a particular ionic species from solution and irradiate that molecular ion with the output of a tunable laser in the ultraviolet and visible regions. By monitoring the fragments produced, we can obtain an electronic absorption spectrum of the isolated species as well as gain insight into the photochemistry of the ions under study from the fragmentation pathways observed. We combine this method with solution absorption spectra as well as electronic structure calculations.

  17. Control of plasmonic nanoantennas by reversible metal-insulator transition

    DOE PAGES

    Abate, Yohannes; Marvel, Robert E.; Ziegler, Jed I.; ...

    2015-09-11

    We demonstrate dynamic reversible switching of VO 2 insulator-to-metal transition (IMT) locally on the scale of 15 nm or less and control of nanoantennas, observed for the first time in the near-field. Using polarization-selective near-field imaging techniques, we simultaneously monitor the IMT in VO 2 and the change of plasmons on gold infrared nanoantennas. Structured nanodomains of the metallic VO 2 locally and reversibly transform infrared plasmonic dipole nanoantennas to monopole nanoantennas. Fundamentally, the IMT in VO 2 can be triggered on femtosecond timescale to allow ultrafast nanoscale control of optical phenomena. In conclusion, these unique features open up promisingmore » novel applications in active nanophotonics.« less

  18. Transition metal redox switches for reversible "on/off" and "slow/fast" single-molecule magnet behaviour in dysprosium and erbium bis-diamidoferrocene complexes.

    PubMed

    Dickie, Courtney M; Laughlin, Alexander L; Wofford, Joshua D; Bhuvanesh, Nattamai S; Nippe, Michael

    2017-12-01

    Single-molecule magnets (SMMs) are considered viable candidates for next-generation data storage and quantum computing. Systems featuring switchability of their magnetization dynamics are particularly interesting with respect to accessing more complex logic gates and device architectures. Here we show that transition metal based redox events can be exploited to enable reversible switchability of slow magnetic relaxation of magnetically anisotropic lanthanide ions. Specifically, we report anionic homoleptic bis-diamidoferrocene complexes of Dy 3+ (oblate) and Er 3+ (prolate) which can be reversibly oxidized by one electron to yield their respective charge neutral redox partners (Dy: [1] - , 1 ; Er: [2] - , 2 ). Importantly, compounds 1 and 2 are thermally stable which allowed for detailed studies of their magnetization dynamics. We show that the Dy 3+ [1] - / 1 system can function as an "on"/"off" or a "slow"/"fast" redox switchable SMM system in the absence or presence of applied dc fields, respectively. The Er 3+ based [2] - / 2 system features "on"/"off" switchability of SMM properties in the presence of applied fields. Results from electrochemical investigations, UV-vis-NIR spectroscopy, and 57 Fe Mössbauer spectroscopy indicate the presence of significant electronic communication between the mixed-valent Fe ions in 1 and 2 in both solution and solid state. This comparative evaluation of redox-switchable magnetization dynamics in low coordinate lanthanide complexes may be used as a potential blueprint toward the development of future switchable magnetic materials.

  19. Effect of Zero-Valent Iron on Removal of Escherichia coli O157:H7 from Agricultural Waters

    USDA-ARS?s Scientific Manuscript database

    A novel water filtration system using zero-valent iron (ZVI) is being investigated as a simple and inexpensive approach to reducing E. coli O157:H7 in water for both pre- and post-harvest processes. Purpose: This study was initiated to determine the effectiveness of zero-valent iron in the removal ...

  20. Colloquium: Excitons in atomically thin transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gang; Chernikov, Alexey; Glazov, Mikhail M.

    Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal dichalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weakmore » dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. In this article, recent progress in understanding of the excitonic properties in monolayer TMDs is reviewed and future challenges are laid out. Discussed are the consequences of the strong direct and exchange Coulomb interaction, exciton light-matter coupling, and influence of finite carrier and electron-hole pair densities on the exciton properties in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.« less

  1. Colloquium: Excitons in atomically thin transition metal dichalcogenides

    DOE PAGES

    Wang, Gang; Chernikov, Alexey; Glazov, Mikhail M.; ...

    2018-04-04

    Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal dichalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weakmore » dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. In this article, recent progress in understanding of the excitonic properties in monolayer TMDs is reviewed and future challenges are laid out. Discussed are the consequences of the strong direct and exchange Coulomb interaction, exciton light-matter coupling, and influence of finite carrier and electron-hole pair densities on the exciton properties in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.« less

  2. An Exploration and Optimization of the Metal Insulator Transition in Vanadium Dioxide Thin Films

    DTIC Science & Technology

    2009-12-02

    Executive summary Vanadium dioxide ( VO2 ) is an archetypal strongly correlated oxide and could offer many opportunities for new paradigms of information...experimental understanding of the metal-insulator transition in VO2 and explored the various ways to control the transition temperature and hysteresis...Beyond attempts to understand the strong correlation phenomena in VO2 , we hope to demonstrate a phase transition switch based on the electrically

  3. Transition Metal Chelator Induces Progesterone Production in Mouse Cumulus-Oocyte Complexes and Corpora Lutea.

    PubMed

    Tian, X; Anthony, K; Diaz, Francisco J

    2017-04-01

    Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.

  4. Electric-Field-Driven Dual Vacancies Evolution in Ultrathin Nanosheets Realizing Reversible Semiconductor to Half-Metal Transition.

    PubMed

    Lyu, Mengjie; Liu, Youwen; Zhi, Yuduo; Xiao, Chong; Gu, Bingchuan; Hua, Xuemin; Fan, Shaojuan; Lin, Yue; Bai, Wei; Tong, Wei; Zou, Youming; Pan, Bicai; Ye, Bangjiao; Xie, Yi

    2015-12-02

    Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics.

  5. Isomorphic introduction of d(0) transition metals to mesoporous silica

    NASA Astrophysics Data System (ADS)

    Morey, Mark Sanson

    1998-12-01

    Early transition metals (Ti, V, Zr, Mo, W) have been incorporated in the mesoporous silicate system by hydrothermal and post-synthesis treatments. The materials were studied by diffraction, adsorption and spectroscopic techniques and were found to have catalytic, halogenation activity toward organic substrates at neutral pH. Intense interest has been shown in the new class of silica-based, mesoporous materials due to their high potential for catalytic applications. Their synthesis occurs via a cooperative self-assembly of surfactant/silicate pairs to form numerous, extended network structures upon silicate condensation based on liquid crystal phases of surfactant/water systems. Surfactant micelle removal by calcination generates a well defined pore system with a narrow pore size distribution. Of these phases, the cubic MCM-48 form possesses a high surface area (1200-1500msp2/g), a 3-D array of pores, and a large pore diameter (20-100A) so that selectivity for large (>10A kinetic diameter) molecules is possible. For this work, the MCM-48 phase was chosen since its branched, bi-continuous pore array would be less likely to clog during use than a one dimensional array. Two techniques for transition metal incorporation are compared consisting of hydrothermal and post-synthesis treatment. A brief description of an attempt to synthesize mesoporous molybdena will be included. The first approach consists of combining various metal and Si precursors in the starting gel, while exploring a broad region of the multi-component phase diagram. The second pathway involves grafting metal species on a pure silica, MCM-48 support by anchoring them to surface silanols using reactive metal alkoxides. Bulk structural characterization by X-ray powder diffraction and nitrogen adsorption shows that the pore structure is maintained after incorporation of metal species by both methods. Spectroscopic methods (FTIR/RAMAN and UV/VIS) are used to gain insight into the local metal

  6. Nature of the transition between a ferromagnetic metal and a spin-glass insulator in pyrochlore molybdates.

    PubMed

    Hanasaki, N; Watanabe, K; Ohtsuka, T; Kézsmárki, I; Iguchi, S; Miyasaka, S; Tokura, Y

    2007-08-24

    The metal-insulator transition has been investigated for pyrochlore molybdates R(2)Mo(2)O(7) with nonmagnetic rare-earth ions R. The dynamical scaling analysis of ac susceptibility reveals that the geometrical frustration causes the atomic spin-glass state. The reentrant spin-glass phase exists below the ferromagnetic transition. The electronic specific heat is enhanced as compared to the band calculation result, perhaps due to the orbital fluctuation in the half-metallic ferromagnetic state. The large specific heat is rather reduced upon the transition, likely because the short-range antiferromagnetic fluctuation shrinks the Fermi surface.

  7. Adsorption of magnetic transition metals on borophene: an ab initio study

    NASA Astrophysics Data System (ADS)

    Tomar, Shalini; Rastogi, Priyank; Bhadoria, Bhagirath Singh; Bhowmick, Somnath; Chauhan, Yogesh Singh; Agarwal, Amit

    2018-03-01

    We explore the doping strategy for adsorbing different metallic 3d transition-metal atoms (Fe, Co and Ni) on two different polymorphs of borophene monolayer: 2-Pmmn and 8-Pmmn borophene. Both have energy dispersion, with 2-Pmmn borophene being metallic in nature, and 8-Pmmn borophene being semi-metallic with a tilted Dirac cone like dispersion. Using density functional theory based calculations, we find the most suitable adsorption site for each adatom, and calculate the binding energy, binding energy per atom, charge transfer, density of states and magnetic moment of the resulting borophene-adatom system. We show that Ni is the most effective for electron doping for both the polymorphs. Additionally Fe is the most suitable to magnetically dope 8-Pmmn borophene, while Co is the best for magnetically doping 2-Pmmn borophene.

  8. Supramolecular control of transition metal complexes in water by a hydrophobic cavity: a bio-inspired strategy.

    PubMed

    Bistri, Olivia; Reinaud, Olivia

    2015-03-14

    Supramolecular chemistry in water is a very challenging research area. In biology, water is the universal solvent where transition metal ions play major roles in molecular recognition and catalysis. In enzymes, it participates in substrate binding and/or activation in the heart of a pocket defined by the folded protein. The association of a hydrophobic cavity with a transition metal ion is thus a very appealing strategy for controlling the metal ion properties in the very competitive water solvent. Various systems based on intrinsically water-soluble macrocyclic structures such as cyclodextrins, cucurbituryls, and metallo-cages have been reported. Others use calixarenes and resorcinarenes functionalized with hydrophilic substituents. One approach for connecting a metal complex to these cavities is to graft a ligand for metal ion binding at their edge. Early work with cyclodextrins has shown Michaelis-Menten like catalysis displaying enhanced kinetics and substrate-selectivity. Remarkable examples of regio- and stereo-selective transformation of substrates have been reported as well. Dynamic two-phase systems for transition metal catalysis have also been developed. They rely on either water-transfer of the metal complex through ligand embedment or synergistic coordination of a metal ion and substrate hosting. Another strategy consists in using metallo-cages, which provide a well-defined hydrophobic space, to stabilize metal complexes in water. When the cages can host simultaneously a substrate and a reactive metal complex, size- and regio-selective catalysis was obtained. Finally, construction of a polydentate coordination site closely interlocked with a calixarene or resorcinarene macrocycle has been shown to be a very fruitful strategy for obtaining metal complexes with remarkable hosting properties. For each of these systems, the synergism resulting from the biomimetic association of a hydrophobic cavity and a metal ion is discussed within the objective of

  9. Low temperature synthesis of transition metal oxides containing surfactant ions

    NASA Astrophysics Data System (ADS)

    Janauer, Gerald Gilbert

    1998-11-01

    Recently there has been much interest in reacting vanadium oxides hydrothermally with cationic surfactants to form novel layered compounds. A series of new transition metal oxides, however, has also been formed at or near room temperature in open containers. Synthesis, characterization, and proposed mechanisms of formation are the focus of this work. Low temperature reactions of vanadium pentoxide and ammonium transition metallates with long chain amine surfactants, such as dodecyltrimethylammonium bromide yielded interesting new products many of which are layered phases. DTAsb4\\ Hsb2Vsb{10}Osb{28}. 8Hsb2O, a layered highly crystalline phase, is the first such phase for which a single crystal X-ray structure has been determined. The unit cell for this material was found to be triclinic with space group P1-, cell parameters a=9.8945(3)A, b=11.5962(1)A, c=21.9238(2)A, alpha=95.153(2)sp°,\\ beta=93.778(1)sp°, and gamma=101.360(1)sp°. Additionally, a novel tungsten, a molybdenum and a dichromate phase will be discussed. Both the tungsten and the dichromate materials were indexed from their powder diffraction patterns yielding monoclinic unit cells. The tungsten material was found to have a=50.56(4)A, b=54.41(4)A, c=13.12(1)A, and beta=99.21sp°. The dichromate compound was determined to have a=26.757(5)A, b=10.458(2)A, c=14.829(3)A and beta=98.01(1)sp°. Interlayer spacings for the lamellar dichromate and molybdenum phases were d001 = 28.7 A, and d001 = 22.9 A. The synthesis, characterization, composition, and structure of these transition metal oxide-surfactant materials will be discussed.

  10. Analytical Characterisation of Nanoscale Zero-Valent Iron: A Methodological Review

    EPA Science Inventory

    Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their te...

  11. All-optical materials design of chiral edge modes in transition-metal dichalcogenides

    DOE PAGES

    Claassen, Martin; Jia, Chunjing; Moritz, Brian; ...

    2016-10-10

    Monolayer transition-metal dichalcogenides are novel materials which at low energies constitute a condensed-matter realization of massive relativistic fermions in two dimensions. Here, we show that this picture breaks for optical pumping—instead, the added complexity of a realistic materials description leads to a new mechanism to optically induce topologically protected chiral edge modes, facilitating optically switchable conduction channels that are insensitive to disorder. In contrast to graphene and previously discussed toy models, the underlying mechanism relies on the intrinsic three-band nature of transition-metal dichalcogenide monolayers near the band edges. Photo-induced band inversions scale linearly in applied pump field and exhibit transitionsmore » from one to two chiral edge modes on sweeping from red to blue detuning. As a result, we develop an ab initio strategy to understand non-equilibrium Floquet–Bloch bands and topological transitions, and illustrate for WS 2 that control of chiral edge modes can be dictated solely from symmetry principles and is not qualitatively sensitive to microscopic materials details.« less

  12. Synthesis of a metal oxide with a room-temperature photoreversible phase transition.

    PubMed

    Ohkoshi, Shin-Ichi; Tsunobuchi, Yoshihide; Matsuda, Tomoyuki; Hashimoto, Kazuhito; Namai, Asuka; Hakoe, Fumiyoshi; Tokoro, Hiroko

    2010-07-01

    Photoinduced phase-transition materials, such as chalcogenides, spin-crossover complexes, photochromic organic compounds and charge-transfer materials, are of interest because of their application to optical data storage. Here we report a photoreversible metal-semiconductor phase transition at room temperature with a unique phase of Ti(3)O(5), lambda-Ti(3)O(5). lambda-Ti(3)O(5) nanocrystals are made by the combination of reverse-micelle and sol-gel techniques. Thermodynamic analysis suggests that the photoinduced phase transition originates from a particular state of lambda-Ti(3)O(5) trapped at a thermodynamic local energy minimum. Light irradiation causes reversible switching between this trapped state (lambda-Ti(3)O(5)) and the other energy-minimum state (beta-Ti(3)O(5)), both of which are persistent phases. This is the first demonstration of a photorewritable phenomenon at room temperature in a metal oxide. lambda-Ti(3)O(5) satisfies the operation conditions required for a practical optical storage system (operational temperature, writing data by short wavelength light and the appropriate threshold laser power).

  13. Scalable salt-templated synthesis of two-dimensional transition metal oxides

    PubMed Central

    Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; Jiao, Liying; Zhou, Jun; Tang, Jiang; Gogotsi, Yury

    2016-01-01

    Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide. Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300 F cm−3 in an Al2(SO4)3 electrolyte). The synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications. PMID:27103200

  14. Effects of Normal Metal Features on Superconducting Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Wakeham, N. A.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Smith, S. J.; Wassell, E. J.; Yoon, W.

    2018-04-01

    In transition-edge sensors (TESs), the addition of normal metal stripes on top of the superconducting bilayer, perpendicular to the current direction, is known to globally alter the sensitivity of the resistance R to changes in temperature T and current I. Here, we describe measurements of the dependence of the TES current on magnetic field B, bath temperature and voltage bias in devices with various numbers of stripes. We show that the normal metal features have a profound effect on the appearance of localized regions of very large (T/R) dR/dT . We associate this with changes in the current distribution and corresponding changes in the oscillatory pattern of I(B). 140 μm TESs with no stripes are found to have a relatively smooth resistive transition and sufficiently low noise that the measured energy resolution is 1.6 eV for X-rays of 1.5 keV. The predicted energy resolution at 6 keV is better than 2 eV, once the heat capacity is optimized for these higher energies.

  15. TREATMENT OF GROUND WATER WITH ZERO VALENT IRON (ZVI)

    EPA Science Inventory

    A presentation on the use of zero valent iron (ZVI) for groundwater remediation at the Memphis Defense Depot Site in Memphis, TN, will be given at a public meeting in Memphis on February 24. The presentation is being given in response to a request by a citizen's group associated...

  16. Lattice vibrations and electronic transitions in the rare-earth metals: yttrium, gadolinium and lutetium.

    PubMed

    Olijnyk, Helmut

    2005-01-12

    Lattice vibrations in high-pressure phases of Y, Gd and Lu were studied by Raman spectroscopy. The observed phonon frequencies decrease towards the transitions to the dhcp and fcc phases. There is evidence that the entire structural sequence [Formula: see text] under pressure for the individual regular rare-earth metals and along the lanthanide series at ambient pressure involve softening of certain acoustic and optical phonon modes and of the elastic shear modulus C(44). Comparison is made to transitions between close-packed lattices in other metals, and possible correlations to s-d electron transfer are discussed.

  17. Electronic excitation-induced semiconductor-to-metal transition in monolayer MoTe2

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Tominaga, J.

    2016-09-01

    Reversible polymorphism of monolayer transition-metal dichalcogenides (TMDC) has currently attracted much attention from both academic and applied perspectives. Of special interest is MoTe2, where the stable semiconducting 2 H and metastable (semi)metallic 1 T' phases have a rather small energy difference implying the low-energy cost of such a transition. In this work, using first-principles calculations, we demonstrate that there exists a previously unknown phase of MoTe2, namely a distorted trigonal prismatic phase with alternating shorter and longer bonds and bond angles, that is formed in the electronically excited state due to population inversion. This phase, which is unstable and decays to the ground 2 H state after cessation of the excitation, is metallic and can act to lower the energy barrier on the way to the metastable 1 T' phase. Our findings indicate that there exists a previously unexplored route of ultrafast local and selective band-structure control in monolayer TMDC using electronic excitation, which will significantly broaden the application spectrum of these materials.

  18. Quantum metallicity on the high-field side of the superconductor-insulator transition.

    PubMed

    Baturina, T I; Strunk, C; Baklanov, M R; Satta, A

    2007-03-23

    We investigate ultrathin superconducting TiN films, which are very close to the localization threshold. Perpendicular magnetic field drives the films from the superconducting to an insulating state, with very high resistance. Further increase of the magnetic field leads to an exponential decay of the resistance towards a finite value. In the limit of low temperatures, the saturation value can be very accurately extrapolated to the universal quantum resistance h/e2. Our analysis suggests that at high magnetic fields a new ground state, distinct from the normal metallic state occurring above the superconducting transition temperature, is formed. A comparison with other studies on different materials indicates that the quantum metallic phase following the magnetic-field-induced insulating phase is a generic property of systems close to the disorder-driven superconductor-insulator transition.

  19. Layered transition metal carboxylates: efficient reusable heterogeneous catalyst for epoxidation of olefins.

    PubMed

    Sen, Rupam; Bhunia, Susmita; Mal, Dasarath; Koner, Subratanath; Miyashita, Yoshitaro; Okamoto, Ken-Ichi

    2009-12-01

    Layered metal carboxylates [M(malonato)(H(2)O)(2)](n) (M = Ni(II) and Mn(II)) that have a claylike structure have been synthesized hydrothermally and characterized. The interlayer separation in these layered carboxylates is comparable to that of the intercalation distance of the naturally occurring clay materials or layered double hydroxides (LDHs). In this study, we have demonstrated that, instead of intercalating the metal complex into layers of the clay or LDH, layered transition metal carboxylates, [M(malonato)(H(2)O)(2)](n), as such can be used as a recyclable heterogeneous catalyst in olefin epoxidation reaction. Metal carboxylates [M(malonato)(H(2)O)(2)](n) exhibit excellent catalytic performance in olefin epoxidation reaction.

  20. Pressure induced structural, electronic topological, and semiconductor to metal transition in AgBiSe2

    NASA Astrophysics Data System (ADS)

    Rajaji, V.; Malavi, Pallavi S.; Yamijala, Sharma S. R. K. C.; Sorb, Y. A.; Dutta, Utpal; Guin, Satya N.; Joseph, B.; Pati, Swapan K.; Karmakar, S.; Biswas, Kanishka; Narayana, Chandrabhas

    2016-10-01

    We report the effect of strong spin orbit coupling inducing electronic topological and semiconductor to metal transitions on the thermoelectric material AgBiSe2 at high pressures. The synchrotron X-ray diffraction and the Raman scattering measurement provide evidence for a pressure induced structural transition from hexagonal (α-AgBiSe2) to rhombohedral (β-AgBiSe2) at a relatively very low pressure of around 0.7 GPa. The sudden drop in the electrical resistivity and clear anomalous changes in the Raman line width of the A1g and Eg(1) modes around 2.8 GPa was observed suggesting a pressure induced electronic topological transition. On further increasing the pressure, anomalous pressure dependence of phonon (A1g and Eg(1)) frequencies and line widths along with the observed temperature dependent electrical resistivity show a pressure induced semiconductor to metal transition above 7.0 GPa in β-AgBiSe2. First principles theoretical calculations reveal that the metallic character of β-AgBiSe2 is induced mainly due to redistributions of the density of states (p orbitals of Bi and Se) near to the Fermi level. Based on its pressure induced multiple electronic transitions, we propose that AgBiSe2 is a potential candidate for the good thermoelectric performance and pressure switches at high pressure.

  1. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics

    NASA Astrophysics Data System (ADS)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-01

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.

  2. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics.

    PubMed

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-06

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.

  3. Mesoscopic Metal-Insulator Transition at Ferroelastic Domain Walls in VO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Keith M; Kalinin, Sergei V; Kolmakov, Andrei

    2010-01-01

    The novel phenomena induced by symmetry breaking at homointerfaces between ferroic variants in ferroelectric and ferroelastic materials have attracted recently much attention. Using variable temperature scanning microwave microscopy, we demonstrate the mesoscopic strain-induced metal-insulator phase transitions in the vicinity of ferroelastic domain walls in the semiconductive VO2 that nucleated at temperatures as much as 10-12 C below bulk transition, resulting in the formation of conductive channels in the material. Density functional theory is used to rationalize the process low activation energy. This behavior, linked to the strain inhomogeneity inherent in ferroelastic materials, can strongly affect interpretation of phase-transition studies inmore » VO2 and similar materials with symmetry-lowering transitions, and can also be used to enable new generations of electronic devices though strain engineering of conductive and semiconductive regions.« less

  4. Complex transition metal hydrides: linear correlation of countercation electronegativity versus T-D bond lengths.

    PubMed

    Humphries, T D; Sheppard, D A; Buckley, C E

    2015-06-30

    For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides.

  5. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy

    PubMed Central

    Jager, Marieke F.; Ott, Christian; Kraus, Peter M.; Kaplan, Christopher J.; Pouse, Winston; Marvel, Robert E.; Haglund, Richard F.; Neumark, Daniel M.; Leone, Stephen R.

    2017-01-01

    Coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M2,3 edge is used to track the insulator-to-metal phase transition in VO2. This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase, and measures the phase-transition dynamics in the insulating phase. An understanding of the VO2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V3+/d2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott–Hubbard-type mechanism is favored, as the observed timescales and d2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. The findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials. PMID:28827356

  6. Temperature dependence of laser induced insulator-metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Wang, Siming; Bar-Ad, Shimshon; Ramirez, Juan Gabriel; Huppert, Dan; Schuller, Ivan K.

    2013-03-01

    We performed optical pump-probe experiments on VO2 thin films with low laser fluence at temperatures ranging across the insulator-metal transition (IMT). At room temperature, the reflectivity of VO2 increases in the first 400-500 fs when pumped by 150 fs laser pulses. An exponential decay of the reflectivity is observed in the following 1 ps. Interestingly, as the temperature approaches the transition temperature (340 K), the reflectivity shows a second increase on an 80 ps time scale following the exponential decay, indicating an IMT. We propose that the decay of the reflectivity is due to electron-phonon thermalization, which raises the phonon temperature and causes a superheating of the lattice. This process provides the latent heat and induces the IMT on the 80 ps time scale. The coexistence of the insulating and metallic phases is observed in the reflectivity measurements for temperatures above 340 K. This work is supported by the Air Force Office of Scientific Research No. FA9550-12-1-0381.

  7. Metal oxidation states in biological water splitting.

    PubMed

    Krewald, Vera; Retegan, Marius; Cox, Nicholas; Messinger, Johannes; Lubitz, Wolfgang; DeBeer, Serena; Neese, Frank; Pantazis, Dimitrios A

    2015-03-01

    A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II. Understanding the nature and order of oxidation events that occur during the catalytic cycle of five S i states ( i = 0-4) is of fundamental importance both for the natural system and for artificial water oxidation catalysts. Despite the widespread adoption of the so-called "high-valent scheme"-where, for example, the Mn oxidation states in the S 2 state are assigned as III, IV, IV, IV-the competing "low-valent scheme" that differs by a total of two metal unpaired electrons ( i.e. III, III, III, IV in the S 2 state) is favored by several recent studies for the biological catalyst. The question of the correct oxidation state assignment is addressed here by a detailed computational comparison of the two schemes using a common structural platform and theoretical approach. Models based on crystallographic constraints were constructed for all conceivable oxidation state assignments in the four (semi)stable S states of the oxygen evolving complex, sampling various protonation levels and patterns to ensure comprehensive coverage. The models are evaluated with respect to their geometric, energetic, electronic, and spectroscopic properties against available experimental EXAFS, XFEL-XRD, EPR, ENDOR and Mn K pre-edge XANES data. New 2.5 K 55 Mn ENDOR data of the S 2 state are also reported. Our results conclusively show that the entire S state phenomenology can only be accommodated within the high-valent scheme by adopting a single motif and protonation pattern that progresses smoothly from S 0 (III, III, III, IV) to S 3 (IV, IV, IV, IV), satisfying all experimental constraints and reproducing all observables. By contrast, it was impossible to construct a consistent cycle based on the low-valent scheme for all S states. Instead, the low-valent models developed here may provide new insight into the over-reduced S

  8. Sequential aldol condensation-transition metal-catalyzed addition reactions of aldehydes, methyl ketones, and arylboronic acids.

    PubMed

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-04-15

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1'-spirobiindane-7,7'-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. © 2011 American Chemical Society

  9. Polarization and resistive switching behavior of ferroelectric tunnel junctions with transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Li, Tao; Lipatov, Alexey; Sharma, Pankaj; Lee, Hyungwoo; Eom, Chang-Beom; Sinitskii, Alexander; Gruverman, Alexei; Alexei Gruverman Team; Alexander Sinitskii Team; Chang-Beom Eom Team

    Transition metal dichalcogenides (TMDs) are emerging 2-dimensional (2D) materials of the MX2 type, where M is a transition metal atom (Mo, W, Ti, Sn, Zr, etc.) and X is a chalcogen atom (S, Se, or Te.). Comparing to graphene, TMDs have a sizable band gap and can be metal, half-metal, semiconductor or superconductor. Their band structures can be tuned by external bias voltage, mechanical force, or light illumination. Their rich physical properties make TMDs potential candidates for a variety of applications in nanoelectronics and optoelectronics. Ferroelectric tunnel junctions (FTJs) are actively studied as a next-generation of non-volatile memory elements. An FTJ comprises a ferroelectric tunnel barrier sandwiched between two electrodes. In this work, we investigate the resistive switching behavior of MoS2/BaTiO3-based FTJs. The ON/OFF ratio can be modulated via electric or mechanical control of the switched polarization fraction opening a possibility of tunable electroresistance effect. Effect of optical illumination on the polarization reversal dynamics has been observed and analyzed based on the polarization-induced modulation of the MoS2 layered electronic properties.

  10. Semiconductor-metal transition of Se in Ru-Se Catalyst Nanoparticles

    NASA Astrophysics Data System (ADS)

    Babu, P. K.; Lewera, Adam; Oldfield, Eric; Wieckowski, Andrzej

    2009-03-01

    Ru-Se composite nanoparticles are promising catalysts for the oxygen reduction reaction (ORR) in fuel cells. Though the role of Se in enhancing the chemical stability of Ru nanoparticles is well established, the microscopic nature of Ru-Se interaction was not clearly understood. We carried out a combined investigation of ^77Se NMR and XPS on Ru-Se nanoparticles and our results indicate that Se, a semiconductor in elemental form, becomes metallic when interacting with Ru. ^77Se spin-lattice relaxation rates are found to be proportional to T, the well-known Korringa behavior characteristic of metals. The NMR results are supported by the XPS binding energy shifts which suggest that a possible Ru->Se charge transfer could be responsible for the semiconductor->metal transition of Se which also makes Ru less susceptible to oxidation during ORR.

  11. Size versus electronic factors in transition metal carbide and TCP phase stability

    NASA Astrophysics Data System (ADS)

    Pettifor, D. G.; Seiser, B.; Margine, E. R.; Kolmogorov, A. N.; Drautz, R.

    2013-09-01

    The contributions of atomic size and electronic factors to the structural stability of transition metal carbides and topologically close-packed (TCP) phases are investigated. The hard-sphere model that has been used by Cottrell to rationalize the occurrence of the octahedral and trigonal local coordination polyhedra within the transition metal carbides is shown to have limitations in TiC since density functional theory (DFT) predicts that the second most metastable phase closest to the B1 (NaCl) ground state takes the B? (BN) structure type with 5-atom local coordination polyhedra with very short Ti-C bond lengths. The importance of electronic factors in the TCP phases is demonstrated by DFT predictions that the A15, ? and ? phases are stabilized between groups VI and VII of the elemental transition metals, whereas the ? and Laves phases are destabilized. The origin of this difference is related to the bimodal shape parameter of the electronic density of states by using the bond-order potential expansion of the structural energy within a canonical tight-binding model. The importance of the size factor in the TCP phases is illustrated by the DFT heats of formation for the binary systems Mo-Re, Mo-Ru, Nb-Re and Nb-Ru which show that the ? and Laves phases become more and more stable compared to A15, ? and ? as the size factor increases from Mo-Re through to Nb-Ru.

  12. Convergence of quasiparticle self-consistent G W calculations of transition-metal monoxides

    NASA Astrophysics Data System (ADS)

    Das, Suvadip; Coulter, John E.; Manousakis, Efstratios

    2015-03-01

    Finding an accurate ab initio approach for calculating the electronic properties of transition-metal oxides has been a problem for several decades. In this paper, we investigate the electronic structure of the transition-metal monoxides MnO, CoO, and NiO in their undistorted rocksalt structure within a fully iterated quasiparticle self-consistent G W (QPsc G W ) scheme. We study the convergence of the QPsc G W method, i.e., how the quasiparticle energy eigenvalues and wave functions converge as a function of the QPsc G W iterations, and we compare the converged outputs obtained from different starting wave functions. We find that the convergence is slow and that a one-shot G0W0 calculation does not significantly improve the initial eigenvalues and states. It is important to notice that in some cases the "path" to convergence may go through energy band reordering which cannot be captured by the simple initial unperturbed Hamiltonian. When we reach a fully iterated solution, the converged density of states, band gaps, and magnetic moments of these oxides are found to be only weakly dependent on the choice of the starting wave functions and in reasonably good agreement with the experiment. Finally, this approach provides a clear picture of the interplay between the various orbitals near the Fermi level of these simple transition-metal monoxides. The results of these accurate ab initio calculations can provide input for models aiming at describing the low-energy physics in these materials.

  13. Metal-Insulator Transition Revisited for Cold Atoms in Non-Abelian Gauge Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satija, Indubala I.; National Institute of Standards and Technology, Gaithersburg, Maryland 20899; Dakin, Daniel C.

    2006-11-24

    We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. For Abelian gauges, such transitions occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum. Other key characteristics of the non-Abelian case includemore » the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta.« less

  14. First-order metal-insulator transitions in the extended Hubbard model due to self-consistent screening of the effective interaction

    NASA Astrophysics Data System (ADS)

    Schüler, M.; van Loon, E. G. C. P.; Katsnelson, M. I.; Wehling, T. O.

    2018-04-01

    While the Hubbard model is the standard model to study Mott metal-insulator transitions, it is still unclear to what extent it can describe metal-insulator transitions in real solids, where nonlocal Coulomb interactions are always present. By using a variational principle, we clarify this issue for short- and long-range nonlocal Coulomb interactions for half-filled systems on bipartite lattices. We find that repulsive nonlocal interactions generally stabilize the Fermi-liquid regime. The metal-insulator phase boundary is shifted to larger interaction strengths to leading order linearly with nonlocal interactions. Importantly, nonlocal interactions can raise the order of the metal-insulator transition. We present a detailed analysis of how the dimension and geometry of the lattice as well as the temperature determine the critical nonlocal interaction leading to a first-order transition: for systems in more than two dimensions with nonzero density of states at the Fermi energy the critical nonlocal interaction is arbitrarily small; otherwise, it is finite.

  15. Interaction between transition metals and phenylalanine: a combined experimental and computational study.

    PubMed

    Elius Hossain, Md; Mahmudul Hasan, Md; Halim, M E; Ehsan, M Q; Halim, Mohammad A

    2015-03-05

    Some transition metal complexes of phenylalanine of general formula [M(C9H10NO2)2]; where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) are prepared in aqueous medium and characterized by spectroscopic, thermo-gravimetric (TG) and magnetic susceptibility analysis. Density functional theory (DFT) has been employed calculating the equilibrium geometries and vibrational frequencies of those complexes at B3LYP level of theory using 6-31G(d) and SDD basis sets. In addition, frontier molecular orbital and time-dependent density functional theory (TD-DFT) calculations are performed with CAM-B3LYP/6-31+G(d,p) and B3LYP/SDD level of theories. Thermo-gravimetric analysis confirms the composition of the complexes by comparing the experimental and calculated data for C, H, N and metals. Experimental and computed IR results predict a significant change in vibrational frequencies of metal-phenylalanine complexes compared to free ligand. DFT calculation confirms that Mn, Co, Ni and Cu complexes form square planar structure whereas Zn adopts distorted tetrahedral geometry. The metal-oxygen bonds in the optimized geometry of all complexes are shorter compared to the metal-nitrogen bonds which is consistent with a previous study. Cation-binding energy, enthalpy and Gibbs free energy indicates that these complexes are thermodynamically stable. UV-vis and TD-DFT studies reveal that these complexes demonstrate representative metal-to-ligand charge transfer (MLCT) and d-d transitions bands. TG analysis and IR spectra of the metal complexes strongly support the absence of water in crystallization. Magnetic susceptibility data of the complexes exhibits that all except Zn(II) complex are high spin paramagnetic. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr(6+) and Cd(2+) from aqueous solution.

    PubMed

    Kong, Xiangke; Han, Zhantao; Zhang, Wei; Song, Le; Li, Hui

    2016-03-15

    Zeolite-supported microscale zero-valent iron (Z-mZVI) was synthesized and used to remove heavy metal cation (Cd(2+)) and anion (Cr(6+)) from aqueous solution. Transmission electron microscope (TEM) confirmed that mZVI (100-200 nm) has been successfully loaded and efficiently dispersed on zeolite. Atomic absorption Spectroscopy (AAS) revealed the amount of stabilized mZVI was about 1.3 wt.%. The synthesized Z-mZVI has much higher reduction ability and adsorption capacity for Cr(6+) and Cd(2+) compared to bare nanoscale zero-valent iron (nZVI) and zeolite. Above 77% Cr(6+) and 99% Cd(2+) were removed by Z-mZVI, while only 45% Cr(6+) and 9% Cd(2+) were removed by the same amount iron of nZVI, and 1% Cr(6+) and 39% Cd(2+) were removed by zeolite alone with an initial concentration of 20 mg/L Cr(6+) and 200 mg/L Cd(2+). The removal of Cr(6+) by Z-mZVI follows the pseudo first-order kinetics model, and X-ray photoelectron spectroscopy (XPS) analysis confirmed that Cr(6+) was reduced to Cr(3+) and immobilized on the surface of Z-mZVI. The removal mechanisms for Cr(6+) include reduction, adsorption of Cr(3+) hydroxides and/or mixed Fe(3+)/Cr(3+) (oxy)hydroxides. The pseudo-second-order kinetic model indicated that chemical sorption might be rate-limiting in the sorption of Cd(2+) by Z-mZVI. This synthesized Z-mZVI has shown the potential as an efficient and promising reactive material for removing various heavy metals from wastewater or polluted groundwater. Copyright © 2015. Published by Elsevier Ltd.

  17. Enhancement of yield strength in zirconium metal through high-pressure induced structural phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Yusheng; Zhang, Jianzhong

    2007-11-01

    We report here a high-pressure phase-transition induced strengthening in ultrapure zirconium metal. The determined yield strength shows more than sixfold abrupt increase at the transition pressure of Pc=6GPa, from σyα≈180MPa in the low-pressure phase of α-Zr to σyω≈1180MPa in the high-pressure phase of ω-Zr. The observed enhancement provides an alternate route for material strengthening and is the most significant among the known strengthening techniques for metals. Our findings support the theoretical simulations of the substantial covalent bonding and "rougher" corrugation of slip planes for dislocations in the ω-phase of zirconium.

  18. Lattice vibrations and electronic transitions in the rare-earth metals: yttrium, gadolinium and lutetium

    NASA Astrophysics Data System (ADS)

    Olijnyk, Helmut

    2005-01-01

    Lattice vibrations in high-pressure phases of Y, Gd and Lu were studied by Raman spectroscopy. The observed phonon frequencies decrease towards the transitions to the dhcp and fcc phases. There is evidence that the entire structural sequence {\\mathrm {hcp \\to Sm\\mbox {-}type \\to dhcp \\to fcc}} under pressure for the individual regular rare-earth metals and along the lanthanide series at ambient pressure involve softening of certain acoustic and optical phonon modes and of the elastic shear modulus C44. Comparison is made to transitions between close-packed lattices in other metals, and possible correlations to s-d electron transfer are discussed.

  19. Pressure-induced structural phase transition in transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt): a DFT study

    NASA Astrophysics Data System (ADS)

    Manikandan, M.; Rajeswarapalanichamy, R.; Iyakutti, K.

    2018-03-01

    First-principles calculations based on density functional theory was performed to analyse the structural stability of transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt). It is observed that zinc-blende phase is the most stable one for these carbides. Pressure-induced structural phase transition from zinc blende to NiAs phase is predicted at the pressures of 248.5 GPa, 127 GPa and 142 GPa for OsC, IrC and PtC, respectively. The electronic structure reveals that RuC exhibits a semiconducting behaviour with an energy gap of 0.7056 eV. The high bulk modulus values of these carbides indicate that these metal carbides are super hard materials. The high B/G value predicts that the carbides are ductile in their most stable phase.

  20. Canonical Schottky barrier heights of transition metal dichalcogenide monolayers in contact with a metal

    NASA Astrophysics Data System (ADS)

    Szcześniak, Dominik; Hoehn, Ross D.; Kais, Sabre

    2018-05-01

    The transition metal dichalcogenide (M X2 , where M =Mo , W and X =S , Se, Te) monolayers are of high interest for semiconducting applications at the nanoscale level; this interest is due to both their direct band gaps and high charge mobilities. In this regard, an in-depth understating of the related Schottky barrier heights, associated with the incorporation of M X2 sheets into novel low-dimensional metal-semiconductor junctions, is of crucial importance. Herein, we generate and provide analysis of the Schottky barrier heights behavior to account for the metal-induced gap states concept as its explanation. In particular, the present investigations concentrate on the estimation of the charge neutrality levels directly by employing the primary theoretical model, i.e., the cell-averaged Green's function formalism combined with the complex band structure technique. The results presented herein place charge neutrality levels in the vicinity of the midgap; this is in agreement with previous reports and analogous to the behavior of three-dimensional semiconductors. The calculated canonical Schottky barrier heights are also found to be in agreement with other computational and experimental values in cases where the difference between electronegativities of the semiconductor and metal contact is small. Moreover, the influence of the spin-orbit effects is herein considered and supports that Schottky barrier heights have metal-induced gap state-derived character, regardless whether spin-orbit coupling interactions are considered. The results presented within this report constitute a direct and vital verification of the importance of metal-induced gap states in explaining the behavior of observed Schottky barrier heights at M X2 -metal junctions.