Sample records for valeri gorkunov mihhail

  1. Meet EPA Scientist Valerie Zartarian, Ph.D.

    EPA Pesticide Factsheets

    Senior exposure scientist and research environmental engineer Valerie Zartarian, Ph.D. helps build computer models and other tools that advance our understanding of how people interact with chemicals.

  2. 78 FR 59099 - Agency Information Collection (VA Loan Electronic Reporting Interface (VALERI) System) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... Information and Regulatory Affairs, Office of Management and Budget, Attn: VA Desk Officer; 725 17th St. NW....'' SUPPLEMENTARY INFORMATION: Title: VA Loan Electronic Reporting Interface (VALERI) System. OMB Control Number... information submitted through the VALERI system to perform supplemental servicing, determination on...

  3. The Pragmatic Idealist: Valerie Gross--Howard County Library, Columbia, MD

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    In the two years since Valerie Gross became director of the Howard County Library (HCL), it has won the county's Community Organization of the Year award, its Accessibility Award, and its Chamber of Commerce's Non-Profit Business of the Year ACE award for contributions to education, economic development, and quality of life. And for the first…

  4. All Together Now: Valerie Allen--U.S. Department of Energy

    ERIC Educational Resources Information Center

    Library Journal, 2005

    2005-01-01

    When Valerie Allen decided she did not want to be a Montessori teacher any longer, she began work on her MLIS. Immediately she learned concepts she could apply to her new job as information specialist for the Department of Energy's (DOE) Office of Scientific and Technical Information (OSTI) at Oak Ridge National Laboratory, TN. While the LIS…

  5. Ellen Ochoa and Valeri Tokarev prepare for Node 1/Unity ingress

    NASA Image and Video Library

    2017-04-20

    S96-E-5002 (29 MAY 1999) --- With the aid of a lamp, cosmonaut Valery Tokarev and astronaut Ellen Ochoa participate in the activation of SPACEHAB on Flight Day 2. The photo was recorded with an electronic still camera (ESC) at 07:18:06 GMT, May 29, 1999.

  6. 75 FR 33898 - Agency Information Collection (VA Loan Electronic Reporting Interface (VALERI) System) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0021] Agency Information Collection (VA Loan Electronic Reporting Interface (VALERI) System) Activity Under OMB Review AGENCY: Veterans Benefits... Administration (VBA), Department of Veterans Affairs, will submit the collection of information abstracted below...

  7. 78 FR 36642 - Proposed Information Collection (VA Loan Electronic Reporting Interface (VALERI) System) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0021] Proposed Information Collection (VA Loan Electronic Reporting Interface (VALERI) System) Activity: Comment Request AGENCY: Veterans... techniques or the use of other forms of information technology. Title: VA Loan Electronic Reporting Interface...

  8. Expedition 5 Crew Interviews: Valery Korzun, Commander

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 5 Commander Valery Kozun is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission and what his responsibilities will be as commander, what the crew exchange will be like (the Expedition 5 crew will replace the Expedition 4 crew on the International Space Station (ISS)), the daily life on an extended stay mission, the loading operations that will take place, the experiments he will be conducting on board, and the planned extravehicular activities (EVAs) scheduled for the mission. Kozun discusses the EVAs in greater detail and explains the significance of the Mobile Base System and the Crew Equipment Translation Aid (CETA) cart for the ISS. He also explains at some length the science experiments which will be conducted on board by the Expedition 5 crew members. Korzun also touches on how his previous space experience on Mir (including dealing with a very serious fire) will benefit the Expedition 5 mission.

  9. Valeri Tokarev and Julie Payette replace battery chargers in the FGB/Zarya module

    NASA Image and Video Library

    2017-04-20

    S96-E-5086 (31 May 1999) --- Astronaut Julie Payette and cosmonaut Valery I. Tokarev, mission specialists, are in the process of replacing all 18 of the battery charge/discharge units that support Zarya's six nickel-cadmium batteries. Known by the Russian acronym, "MIRTs," the batteries are thought to have been responsible for voltage problems first detected in January of this year, as Zarya, docked to Unity, orbited Earth. The photo was taken with an electronic still camera (ESC) at 03:15:38 GMT, May 31, 1999.

  10. Tamara Jernigan, Valeri Tokarev and Julie Payette pose for photo in Node 1/Unity module

    NASA Image and Video Library

    2017-04-20

    S96-E-5078 (31 May 1999) --- Flight Day 5 activity called for some of Discovery's crew members to work in the Unity node, part of the International Space Station (ISS). From the left are astronauts Tamara Jernigan and Julie Payette, along with cosmonaut Valery I. Tokarev. Payette represents the Canadian Space Agency (CSA) and Tokarev is with the Russian Space Agency (RSA). The photo was taken at 01:50:38, May 31, 1999.

  11. Redefining the Poet as Healer: Valerie Gillies's Collaborative Role in the Edinburgh Marie Curie Hospice Quiet Room Project.

    PubMed

    Severin, Laura

    2015-01-01

    This article examines the poetic contribution of Valerie Gillies, Edinburgh Makar (or poet of the city) from 2005-2008, to the Edinburgh Marie Curie Hospice Quiet Room, a new contemplation space for patients, families, and staff. In collaboration with others, Gillies created a transitional space for the Quiet Room, centered on the display of her sonnet, "A Place Apart." This space functions to comfort visitors to the Quiet Room by relocating them in their surroundings and offering the solace provided by nature and history. With this project, her first as Edinburgh Makar, Gillies redefines the role of the poet as healer and advocates for newer forms of palliative care that focus on patients' spiritual and emotional, as well as physical, wellbeing.

  12. CALL FOR PAPERS: Special cluster in Biomedical Optics: honouring Professor Valery Tuchin, Saratov University

    NASA Astrophysics Data System (ADS)

    Wang, Ruikang K.; Priezzhev, Alexander; Fantini, Sergio

    2004-07-01

    To honour Professor Valery Tuchin, one of the pioneers in biomedical optics, Journal of Physics D: Applied Physics invites manuscript submissions on topics in biomedical optics, for publication in a Special section in May 2005. Papers may cover a variety of topics related to photon propagation in turbid media, spectroscopy and imaging. This Special cluster will reflect the diversity, breadth and impact of Professor Tuchin's contributions to the field of biomedical optics over the course of his distinguished career. Biomedical optics is a recently emerged discipline providing a broad variety of optical techniques and instruments for diagnostic, therapeutic and basic science applications. Together with contributions from other pioneers in the field, Professor Tuchin's work on fundamental and experimental aspects in tissue optics contributed enormously to the formation of this exciting field. Although general submissions in biomedical optics are invited, the Special cluster Editors especially encourage submissions in areas that are explicitly or implicitly influenced by Professor Tuchin's contributions to the field of biomedical optics. Manuscripts submitted to this Special cluster of Journal of Physics D: Applied Physics will be refereed according to the normal criteria and procedures of the journal, in accordance with the following schedule: Deadline for receipt of contributed papers: 31 November 2004 Deadline for acceptance and completion of refereeing process: 28 February 2005 Publication of special issue: May 2005 Please submit your manuscript electronically to jphysd@iop.org or via the Web site at www.iop.org/Journals. Otherwise, please send a copy of your typescript, a set of original figures and a cover letter to: The Publishing Administrator, Journal of Physics D: Applied Physics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, United Kingdom. Further information on how to submit may be obtained upon request by e-mailing the

  13. KENNEDY SPACE CENTER, FLA. - Valerie Cassanto is one of the scientists recovering experiments found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto is one of the scientists recovering experiments found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  14. KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., works on an experiment found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., works on an experiment found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  15. KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., works on an experiment found during the search for Columbia debris. Mike Casasanto, also with ITA, looks on. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., works on an experiment found during the search for Columbia debris. Mike Casasanto, also with ITA, looks on. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  16. 78 FR 52230 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ...: [email protected] . For information relating to the Charting Group, contact Valerie S. Watson...) 427-5155; Email: valerie.s.watson@faa.gov . SUPPLEMENTARY INFORMATION: Pursuant to Sec. 10(a)(2) of... if time permits. Issued in Washington, DC, on August 15, 2013. Valerie S. Watson, Co-Chair...

  17. KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., and Bob McLean, from the Southwest Texas State University, work on an experiment found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., and Bob McLean, from the Southwest Texas State University, work on an experiment found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  18. KENNEDY SPACE CENTER, FLA. - Valerie Cassanto (foreground), Instrumentation Technology Associates, Inc., examines one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto (foreground), Instrumentation Technology Associates, Inc., examines one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  19. KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., examines closely the container containing one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., examines closely the container containing one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  20. 78 FR 12415 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Valerie S. Watson, FAA, National Aeronautical Navigation Products (AeroNav Products), Quality Assurance.... Issued in Washington, DC, on February 19, 2013. Valerie S. Watson, Co-Chair, Aeronautical Charting Forum...

  1. KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, Instrumentation Technology Associates, Inc., studies one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, Instrumentation Technology Associates, Inc., studies one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

  2. KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University, and Valerie Cassanto, Instrumentation Technology Associates, Inc., study one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University, and Valerie Cassanto, Instrumentation Technology Associates, Inc., study one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  3. KENNEDY SPACE CENTER, FLA. - From left, Valerie Cassanto, Instrumentation Technology Associates, Inc., and Dr. Dennis Morrison, NASA Johnson Space Center, analyze one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - From left, Valerie Cassanto, Instrumentation Technology Associates, Inc., and Dr. Dennis Morrison, NASA Johnson Space Center, analyze one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  4. 77 FR 28869 - Notice of Commission Staff Attendance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Company. For more information, contact Valerie Martin, Office of Energy Market Regulation, Federal Energy Regulatory Commission at (202) 502- 6139 or Valerie.Martin@ferc.gov . Dated: May 10, 2012. Kimberly D. Bose...

  5. KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  6. 77 FR 2744 - Announcement of Funding Awards for the Rural Innovation Fund Program for Fiscal Year 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... awards made available by HUD. FOR FURTHER INFORMATION CONTACT: Valerie Piper, Deputy Assistant Secretary.... Dated: January 11, 2012. Valerie Piper, Deputy Assistant Secretary for Economic Development. Appendix A... Steele. Grantee Address: P.O. Box 1996, Pine Ridge, SD 57770-000. Telephone Number: (605) 867-1018. Email...

  7. Bioterrorism Countermeasure Development: Issues in Patents and Homeland Security

    DTIC Science & Technology

    2006-11-27

    314.108(a) 62 See Upjohn Co. v. Kessler, 938 F. Supp. 439 (W.D. Mich. 1996). 63 See Valerie Junod , “Drug Marketing Exclusivity Under United...the competitor’s application. See Valerie Junod , Drug Marketing Exclusivity Under United States and European Union Law, 59 FOOD & DRUG L.J., 2004, 479

  8. KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., and Bob McLean, from the Southwest Texas State University, transfer to a new container material from one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., and Bob McLean, from the Southwest Texas State University, transfer to a new container material from one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  9. Bioterrorism Countermeasure Development: Issues in Patents and Homeland Security

    DTIC Science & Technology

    2005-05-06

    314.108(a) 62 See Upjohn Co. v. Kessler, 938 F. Supp. 439 (W.D. Mich. 1996). 63 See Valerie Junod , “Drug Marketing Exclusivity Under United States...Valerie Junod , Drug Marketing Exclusivity Under United States and European Union Law, 59 FOOD & DRUG L.J., 2004, 479. 99 S. 975 at § 331(e

  10. The Learning Principal[R]. Volume 4, Number 7

    ERIC Educational Resources Information Center

    von Frank, Valerie, Ed.

    2009-01-01

    "The Learning Principal" is an eight-page newsletter published eight times a year. It focuses on the important and unique work of school principals. This issue includes: (1) A Learning Community Is Built on Trust (Valerie von Frank); (2) School Leadership: Q & A: Turnaround Doesn't Have to Take Years, Just Solid Leadership (Valerie von Frank); (3)…

  11. Personal Academic Strategies for Success (PASS) Tool Administrator’s User Manual

    DTIC Science & Technology

    2013-12-01

    Personal Academic Strategies for Success (PASS) Tool Administrator’s User Manual by Jim H. Hewson, Valerie J. Rice, and Petra Alfred ARL...SR-275 December 2013 Personal Academic Strategies for Success (PASS) Tool Administrator’s User Manual Jim H. Hewson Career Management...Associates ( CMA ) Valerie J. Rice and Petra Alfred Human Research and Engineering Directorate, ARL

  12. KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., analyze one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., analyze one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

  13. KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

  14. Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives

    DTIC Science & Technology

    2013-02-01

    DTRA-TR-12-65 Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives ...Manipulation of Molecular Quantum Wavepackets with Ultrashort Laser Pulses for Non-destructive Detection of Volatile Explosives HDTRA1-09-1-0021 Valery...destructive detection of volatile explosives . Moshe Shapiro1, Valery Milner1 and Jun Ye2 1University of British Columbia, Vancouver, Canada 2JILA

  15. Effectiveness of United StatesLed Economic Sanctions as a Counterproliferation Tool Against Irans Nuclear Weapons Program

    DTIC Science & Technology

    2015-12-01

    www.nytimes.com/2015/07/15/world/middleeast/iran-nuclear-deal-is- reached-after-long-negotiations.html. 70 Valerie Lincy and Simon Chin, “How to...procuring steel and other materials used in the manufacturing of missile propellants. Lastly, in the United Kingdom case, the State Department...97 Valerie Lincy and Gary Milhollin, “Iran’s Nuclear Timetable,” Wisconsin Project on Nuclear Arms Control, June 17, 2015, http

  16. Forgetting the Lessons of Vietnam: Army Force Structure Changes as a Result of Reduced Budgets

    DTIC Science & Technology

    2016-02-16

    9. 34 Ibid. 35 Ibid. 36 Valerie J. Lofland, “Somalia: U.S. Intervention and Operation Restore Hope” in Case Studies in Policy Making...and Miranda A. Carlton-Carew, 34-67. Washington : The Center for Strategic and International Studies, 2006. 23 Lofland, Valerie J. “Somalia...Szayna, Thomas S., Kevin F. McCarthy, Jerry M. Sollinger, Linda J. Demaine, Jefferson P. Marquis, Brett Steele . The Civil-Military Gap in the

  17. KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dr. Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

    NASA Image and Video Library

    2003-05-07

    KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dr. Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

  18. A Scalable Fabrication Process for Liquid Crystal Based Uncooled Thermal Imagers

    DTIC Science & Technology

    2016-02-12

    ll.mit.edu). Phillip Bos, Valerie Finnemeyer, Colin McGinty and Douglas Bryant are with the Liquid Crystal Institute at Kent State University, Kent...Crystal-Based Uncooled Thermal Imagers Shaun Berry, Carl Bozler, Robert Reich, Harry Clark Jr., Phillip Bos, Valerie Finnemeyer, Colin McGinty...was aligned to the die features on the wafer with appropriate weight added (Fig. 5b). We used stainless steel bars to apply the weight to the block

  19. Temporal Changes in Rat Liver Gene Expression after Acute Cadmium and Chromium Exposure

    DTIC Science & Technology

    2015-05-19

    William E. Dennis3, Valerie C. Minarchick4, Stephen S. Leonard4, David A. Jackson3, Jonathan D. Stallings3, John A. Lewis3* 1 ORISE Postdoctoral Fellow...pharmaceutical, industrial processes or environmental contamination. Cr is extensively used for stainless steel production, PLOSONE | DOI:10.1371/journal.pone...Michael Madejczyk; Christine Baer; William Dennis; Valerie Minarchick; Stephen Leonard 5d. PROJECT NUMBER 5e. TASK NUMBER X1 5f. WORK UNIT NUMBER

  20. An Analysis of Army Rapid Acquisition

    DTIC Science & Technology

    2015-09-01

    1990s, many businesses and government agencies have used the KVA theory, developed by Thomas J. Housel and Valery Kanevsky,5 to improve processes...Before the Senate Committee on Armed Services, Senate (2014) (Witness Statement of HON Frank Kendall, USD AT&L). 5 Thomas J. Housel and Valery ...War Outbreak: A Study in Unpreparedness,” Military History Online, August 22, 2010. 3 Ibid. 4 Peter Lane, “ Steele for Bodies: Ammunition Readiness

  1. Exploring the variability in how educators attend to science classroom interactions

    NASA Astrophysics Data System (ADS)

    Gillespie, Colleen Elizabeth

    Many researchers assert educators must develop a shared instructional vision in order for schools to be effective. While this research tends to focus on educators' alignment around goals of science classrooms, I argue that we can't assume that educators agree on what they see when they look at science classrooms. In this dissertation, I explore the variability in what teachers and leaders notice in science classroom episodes and how they reason about what they notice. I ground my studies in real classroom practice: a videotaped lesson in the first study and a live classroom observation in the second. In Chapter 2, I discuss the importance of grounding discussions about teaching and learning in classroom artifacts, a commitment that motivates my dissertation: educators may have a shared vision when discussing teaching and learning in the abstract but disagree about whether that vision is being realized in a classroom. I then describe and analyze the video clip I used in my interviews, highlighting moments that I consider to be good teaching and learning. In Chapter 3, I present my first study, in which I showed this episode to 15 different science teachers, science instructional leaders, and principals. I found that participants attended to many different features in the episode, which led to significant disagreement about what is happening in the episode. Additionally, I found that these differences in attention corresponded to differences in how participants were framing the activity of watching the clip. In Chapter 4, I explore the attentional variability of one science instructional leader, Valerie, in multiple contexts. In addition to interviewing Valerie about the videotaped lesson, I also observed Valerie engage in an "observation cycle" with a teacher. Even though Valerie is quite skilled at attending to student thinking in some contexts, I found that Valerie's attention is strongly context-dependent and gets pulled away from students' scientific thinking

  2. 78 FR 7438 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ..., 6701 Rockledge Drive, Bethesda, MD 20892, (Telephone Conference Call). Contact Person: Lisa Steele, Ph..., CA 90405. Contact Person: Valerie Durrant, Ph.D., Scientific Review Officer, Center for Scientific...

  3. 77 FR 13683 - Government/Industry Aeronautical Charting Forum Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    .... Watson, FAA, National Aeronautical Navigation Products (AeroNav Products), Quality Assurance & Regulatory..., on February 28, 2012. Valerie S. Watson, Co-Chair, Aeronautical Charting Forum. [FR Doc. 2012-5293...

  4. 78 FR 16856 - FDIC Advisory Committee on Community Banking; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... viewing, a high speed Internet connection is recommended. The Community Banking meeting videos are made... Insurance Corporation. Valerie J. Best, Assistant Executive Secretary. [FR Doc. 2013-06272 Filed 3-18-13; 8...

  5. Korzun checks the Rasteniya-2 plant growth experiment in the SM during Expedition Five

    NASA Image and Video Library

    2002-11-08

    ISS005-E-20302 (8 November 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, checks a plant growth experiment in the Zvezda Service Module on the International Space Station (ISS). Korzun represents Rosaviakosmos.

  6. Physicochemical, digestibility and structural characteristics of starch isolated from banana cultivars.

    PubMed

    Agama-Acevedo, Edith; Nuñez-Santiago, Maria C; Alvarez-Ramirez, José; Bello-Pérez, Luis A

    2015-06-25

    Banana starches from diverse varieties (Macho, Morado, Valery and Enano Gigante) were studied in their physicochemical, structural and digestibility features. X-ray diffraction indicated that the banana starches present a B-type crystallinity pattern, with slight difference in the crystallinity level. Macho and Enano Gigante starches showed the highest pasting temperatures (79 and 78°C, respectively), whilst Valery and Morado varieties presented a slight breakdown and higher setback than the formers. Morado starch presented the highest solubility value and Valery starch the lowest one. The swelling pattern of the banana starches was in agreement with their pasting profile. All banana starches showed a shear-thinning profile. The resistant starch (RS) fraction was the main fraction in the uncooked banana starches. Morado variety showed the highest amount of slowly digestible starch (SDS) and the lowest RS content reported until now in banana starches. Banana starch cooked samples presented an important amount of SDS and RS. Molecular weight and gyration radius of the four banana starches ranged between 2.88-3.14×10(8)g/mol and 286-302nm, respectively. The chain-length distributions of banana amylopectin showed that B1 chains (DP 13-24) is the main fraction, and an important amount of long chains (DP≥37) are present. The information generated from this study can be useful to determine banana varieties for starch isolation with specific functionality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Tokarev assembles the RadioSkaf antenna during Expedition 12

    NASA Image and Video Library

    2006-01-24

    ISS012-E-17050 (24 Jan. 2006) --- Cosmonaut Valery I. Tokarev, Expedition 12 flight engineer representing Russia's Federal Space Agency, assembles the antenna kit for the Radioskaf (SuitSat) payload in the Zvezda Service Module on the International Space Station.

  8. Expedition 5 and STS-112 CDRs poses for portrait in Destiny module

    NASA Image and Video Library

    2002-10-13

    STS112-329-015 (13 October 2002) --- Cosmonaut Valery G. Korzun (left), Expedition Five mission commander, and astronaut Jeffrey S. Ashby, STS-112 mission commander, exchange greetings in the Destiny laboratory on the International Space Station (ISS). Korzun represents Rosaviakosmos.

  9. Educational Restructuring and the Community Education Process.

    ERIC Educational Resources Information Center

    Decker, Larry E., Ed.; Romney, Valerie A., Ed.

    This document explores the application of the community education process to restructuring activities at both the state and local level. The monograph contains the following papers: "In the Forefront of Restructuring" (Larry Decker, Valerie Romney); "Building Learning Communities: Realities of Educational Restructuring" (Larry…

  10. 76 FR 33284 - Agency Information Collection Activities, Proposed Collection Renewals; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ...: Office of Information and Regulatory Affairs, Office of Management and Budget, New Executive Office... insured depository institution to continue functioning on the day following failure; support the FDIC's... Deposit Insurance Corporation. Valerie J. Best, Assistant Executive Secretary. [FR Doc. 2011-14099 Filed 6...

  11. Expedition 5 and STS-112 Commanders in-flight portrait

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17455 (13 October 2002) --- Cosmonaut Valery G. Korzun (left), Expedition Five mission commander, and astronaut Jeffrey S. Ashby, STS-112 mission commander, pose for a photo in the Destiny laboratory on the International Space Station (ISS). Korzun represents Rosaviakosmos.

  12. English Teaching at Lilydale High.

    ERIC Educational Resources Information Center

    Mayer, Valerie; Matcott, Mark; Lyons, Janet; Flessa, Demi; Hayman, Anna; Hough, Peter

    2002-01-01

    Presents six narratives from teachers including: "VCE English at Lilydale High School" (Valerie Mayer); "Should 'I' Be Their Teacher" (Mark Matcott); "Teaching Poetry to Year 7 English Students" (Janet Lyons); "Creative Art Therapy and Mandalas" (Demi Flessa); "Would the 'Real' Teacher Please Stand…

  13. Characterization of unpaved road condition through the use of remote sensing project - phase II, deliverable 8-D: final report.

    DOT National Transportation Integrated Search

    2016-03-07

    Building on the success of developing a UAV based unpaved road assessment system in Phase I, the project team was awarded a Phase II project by the USDOT to focus on outreach and implementation. The project team added Valerie Lefler of Integrated Glo...

  14. Red Blood Cell Volume, Plasma Volume and Total Blood Volume in Healthy Elderly Men and Women Aged 64 to 100

    DTIC Science & Technology

    1992-05-06

    Robert Valeri, Linda E. Pivacek, Hiliary Siebens, and Mark D. Altschule ». PERFORMING ORGANIZATION NAME AND AOORESS Naval Blood Research Laboratory...Gibson JG, Peacock WC, Seligman AM, Sack T: Circulating red cell volume measured simultaneously by the radioactive iron and dye methods. J Clin

  15. Survey of the Mutagenicity of Surface Water, Sediments, and Drinking Water from the Penobscot Indian Nation.

    EPA Science Inventory

    Survey of the Mutagenicity of Surface Water, Sediments, andDrinking Water from the Penobscot Indian NationSarah H. Warren, Larry D. Claxton,1, Thomas J. Hughes,*, Adam Swank,Janet Diliberto, Valerie Marshall, Daniel H. Kusnierz, Robert Hillger, David M. DeMariniNational Health a...

  16. The Economic Consequences of Investing in Shipbuilding: Case Studies in the United States and Sweden

    DTIC Science & Technology

    2015-01-01

    aluminum-welding rather than steel -welding expertise. Indeed, most new Austal hires, we were told, lacked any shipbuilding experience. Many lacked any...of November 29, 2014: http://www.oanda.com/currency/historical-rates/ Owyang, Michael T., Valerie A. Ramey, and Sarah Zubairy, “Are Government

  17. 75 FR 12723 - Notice of Meeting of the National Organic Standards Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... CONTACT: Valerie Frances, Executive Director, NOSB, National Organic Program (NOP), (202) 720-3252, or... currently has six subcommittees working on various aspects of the organic program. The committees are... 357 substances for inclusion on the National List of Allowed and Prohibited Substances. The Department...

  18. United States Naval Academy Summary of Research, Academic Departments 1989 - 1990

    DTIC Science & Technology

    1989-12-01

    Ronda R., Assistant Professor, "Comment on ’ Plutarch on Young Children,’ by Valerie HAGAN, Kenneth J., Professor, "The English Influ- French...34 International Plutarch Society, American ence on American Naval Strategy," Trident Society, Philological Association Annual Meeting, Baltimore, Naval Reserve

  19. Technology and Higher Education: Report from the Front.

    ERIC Educational Resources Information Center

    Mayor, Mara; And Others

    1987-01-01

    Includes two reports on the current integration of technology in postsecondary education. Mara Mayor and Peter Dirr discuss the relationship between technology and access and quality. Valerie Crane presents study results on how students use and evaluate telecourses compared to on-campus courses. (DMM)

  20. Electronic Portfolios. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Barrett, Helen C., Ed.

    This document contains the following papers on electronic portfolios from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "What Is the Perceived Value of Creating Electronic Portfolios to Teacher Credential Candidates?" (Valerie Amber and Brenda Czech); (2) "Development and Use of…

  1. Literacy, Community, and Youth Acts of Place-Making

    ERIC Educational Resources Information Center

    Kinloch, Valerie

    2009-01-01

    Valerie Kinloch describes how the literacy narratives around place-making by Phillip, an African American teenager who resides in this historic community, demonstrate complexities of confronting power, struggle, and identity within an out-of-school community that is rapidly becoming gentrified. (Contains 3 notes.)

  2. A Brief Note on Evidence-Centered Design as a Mechanism for Assessment Development and Evaluation

    ERIC Educational Resources Information Center

    Bond, Lloyd

    2014-01-01

    Lloyd Bond comments here on the Focus article in this issue of "Measurement: Interdisciplinary Research and Perspectives". The Focus article is entitled: "How Task Features Impact Evidence from Assessments Embedded in Simulations and Games" (Russell G. Almond, Yoon Jeon Kim, Gertrudes Velasquez, and Valerie J. Shute). Bond…

  3. The Impact of Bulgarian Membership in NATO and the EU on the Development of the Bulgarian Armed Forces

    DTIC Science & Technology

    2007-03-14

    Todor Zhivkov from power. Along with this change, socio-economic development and political initiatives were implemented and a new beginning in...33 Ibid, 2. 34 Valeri Ratchev, Velizar Shalamanov, and Todor Tagarev, “ Reshaping Bulgarian Armed Forces for the 21st Century,” available from http

  4. Key Themes in Intercultural Communication Pedagogy

    ERIC Educational Resources Information Center

    Woodin, Jane

    2010-01-01

    The seminar, organised by Jane Woodin, Gibson Ferguson, Valerie Hobbs and Lesley Walker (School of Modern Languages & Linguistics and School of English, University of Sheffield), aimed to bring together those working in intercultural communication (IC) pedagogy largely--though not exclusively--in the higher education sector. It drew…

  5. Supported Employment Handbook: A Customer-Driven Approach for Persons with Significant Disabilities.

    ERIC Educational Resources Information Center

    Brooke, Valerie, Ed.; And Others

    This manual provides training information for implementing supported employment by using a customer-driven approach. Chapter 1, "Supported Employment: A Customer-Driven Approach" (Valerie Brooke and others), describes current best practices, a new customer-driven approach to supported employment, and the role of the employment specialist. Chapter…

  6. 75 FR 60778 - Announcement of Funding Awards for Fiscal Year 2010 Historically Black Colleges and Universities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ..., and Grant Amount Region IV 1. Winston-Salem State University, Ms. Valerie Howard, Winston Salem State... Awards for Fiscal Year 2010 Historically Black Colleges and Universities Program AGENCY: Office of the... Historically Black Colleges and Universities Program. The purpose of this document is to announce the names...

  7. Game-Based Assessments: A Promising Way to Create Idiographic Perspectives

    ERIC Educational Resources Information Center

    Walker, A. Adrienne; Engelhard, George, Jr.

    2014-01-01

    "Game-Based Assessments: A Promising Way to Create Idiographic Perspectives" (Adrienne Walker and George Englehard) comments on: "How Task Features Impact Evidence from Assessments Embedded in Simulations and Games" by Russell G. Almond, Yoon Jeon Kim, Gertrudes Velasquez, and Valerie J. Shute. Here, Walker and Englehard write…

  8. Estrogens are essential for male pubertal periosteal bone expansion.

    PubMed

    Bouillon, Roger; Bex, Marie; Vanderschueren, Dirk; Boonen, Steven

    2004-12-01

    The skeletal response to estrogen therapy was studied in a 17-yr-old boy with congenital aromatase deficiency. As expected, estrogen therapy (1 mg estradiol valeriate/d from age 17 until 20 yr) normalized total and free testosterone and reduced the rate of bone remodeling. Dual-energy x-ray absorptiometry-assessed areal bone mineral density (BMD) of the lumbar spine and femoral neck increased significantly (by 23% and 14%, respectively), but peripheral quantitative computed tomography at the ultradistal radius revealed no gain of either trabecular or cortical volumetric BMD. The increase in areal BMD was thus driven by an increase in bone size. Indeed, longitudinal bone growth (height, +8.5%) and especially cross-sectional area of the radius (+46%) and cortical thickness (+12%), as measured by peripheral quantitative computed tomography, increased markedly during estrogen treatment. These findings demonstrate that androgens alone are insufficient, whereas estrogens are essential for the process of pubertal periosteal bone expansion typically associated with the male bone phenotype.

  9. Navy LX(R) Amphibious Ship Program: Background and Issues for Congress

    DTIC Science & Technology

    2016-05-27

    and LHA-8 to NASSCO, Ingalls,” USNI News, July 10, 2015; Valerie Insinna, “Navy Quietly Issues RFP for LHA-8, TAO(X),” (continued...) Navy LX(R...to two bidders—Huntington Ingalls Industries’ Ingalls Shipbuilding (HII/Ingalls) and General Dynamics’ National Steel and Shipbuilding Company—on

  10. Expedition Five Crewmembers during Water Survival Training at SCTF

    NASA Image and Video Library

    2001-07-12

    JSC2001-01922 (12 July 2001) --- Cosmonaut Valeri G. Korzun, Expedition Five mission commander, assisted by Johnson Engineering diver Gabriel Meyer, simulates a parachute drop into water during an emergency bailout training session in the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC). Korzun represents Rosaviakosmos.

  11. WA1 Antenna assembly cables and connector

    NASA Image and Video Library

    2002-08-06

    ISS005-E-08721 (6 August 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, holds one of the two amateur radio antennas in the Unity node on the International Space Station (ISS). The antennas will be installed during a spacewalk scheduled for August 22, 2002. Korzun represents Rosaviakosmos.

  12. Assessing System Architectures: The Canonical Decomposition Fuzzy Comparative Methodology

    DTIC Science & Technology

    2011-01-01

    me. Thank you to my sisters, Vanessa and Valerie, for their support and for putting up with me while we were growing up. Finally and most...Antenna Handbook Theory, Applications, and Deign. New York: Van Nostrand Reinhold. 85 Maier, M. W. and E. Rechtin. 2002. The Art of Systems

  13. Celebrating the Faces of Literacy. The Twenty-Fourth Yearbook: A Peer Reviewed Publication of the College Reading Association, 2002. [Papers from the College Reading Association Conference, 2001].

    ERIC Educational Resources Information Center

    Linder, Patricia E., Ed.; Sampson, Mary Beth, Ed.; Dugan, Jo Ann R., Ed.; Brancato, Barrie, Ed.

    The College Reading Association believes and values literacy education for all as one way to protect people's freedoms. This 24th Yearbook celebrates the varied "faces" of literacy. The yearbook contains the following special articles: (Presidential Address) "What Is Johnny Reading? A Research Update" (Maria Valerie Gold);…

  14. The Process of Designing Task Features

    ERIC Educational Resources Information Center

    Bauer, Malcolm

    2014-01-01

    Malcolm Bauer, from Education Testing Services, provides his comments on the Focus article in this issue of "Measurement" entitled : "How Task Features Impact Evidence from Assessments Embedded in Simulations and Games" (Russell G. Almond, Yoon Jeon Kim, Gertrudes Velasquez, Valerie J. Shute). Bauer begins his remarks by noting…

  15. The Ethics of Interpretation: The Signifying Chain from Field to Analysis

    ERIC Educational Resources Information Center

    Lapping, Claudia

    2008-01-01

    This paper attempts to describe the relationship between the embodied practice of fieldwork and the written articulation of this experience. Starting from Valerie Hey's conceptualization of "rapport" as form of "intersubjective synergy", a moment of recognition of similarity within difference--similar in structure to Laclau and Moufffe's…

  16. Expedition Five crew perform maintenance on the TVIS

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17412 (13 October 2002) --- Cosmonaut Valery G. Korzun (left), Expedition Five mission commander, and astronaut Peggy A. Whitson, Expedition Five flight engineer, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Korzun represents Rosaviakosmos.

  17. Tools for Schools. Volume 12, Number 4, May-June 2009

    ERIC Educational Resources Information Center

    von Frank, Valerie, Ed.

    2009-01-01

    This newsletter is published four times a year. It offers articles on school improvement, organizational planning, training, and managing change. This issue contains: (1) Link Up & Learn: Use Technology to Create a Personal Learning Network to Connect with Experts and Mentors Everywhere (Valerie von Frank); (2) NSDC Tool: Get Connected with…

  18. Groundbreakers: Successful Careers of Indian Women Today.

    ERIC Educational Resources Information Center

    Adams, Nicole

    2002-01-01

    Three successful American Indian women--film maker and businesswoman Valerie Red-Horse, Cherokee law professor and appeals court justice Stacey Leeds, and prolific artist Virginia Stroud--discuss their careers, emphasizing the importance of retaining cultural values, the struggles of being a racial and gender pioneer in their field, and the…

  19. Teachers Teaching Teachers (T3)[TM]. Volume 4, Number 8

    ERIC Educational Resources Information Center

    von Frank, Valerie, Ed.

    2009-01-01

    "Teachers Teaching Teachers" ("T3") focuses on coaches' roles in the professional development of teachers. Each issue also explores the challenges and rewards that teacher leaders encounter. This issue includes: (1) Tackling Behavior from All Sides (Valerie von Frank); (2) Tools: Effective Behavior Support Self-Assessment Survey; (3) Lessons from…

  20. The Oral History of Evaluation: The Professional Development of Robert Stake

    ERIC Educational Resources Information Center

    Miller, Robin Lin; King, Jean A.; Mark, Melvin M.; Caracelli, Valerie

    2016-01-01

    Over the past 14 years, AEA's Oral History Project Team (Robin Lin Miller, Jean A. King, Valerie Caracelli, and Melvin M. Mark) has conducted interviews with individuals who have made signal contributions to evaluation theory and practice, tracing their professional development and contextualizing their work within the social and political…

  1. STS-91: Flight Crew Meets with Family and Friends at Launch Complex 39A

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The crew (Commander Charles J. Precourt, Pilot Dominic L. Pudwill Gorie, Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet L. Kavandi and Valery Victorovitch Ryumin) take time from their busy schedule to chat with friends and family, at a distance. They also pose for group and single pictures.

  2. Strange Imports: Working-Class Appalachian Women in the Composition Classroom

    ERIC Educational Resources Information Center

    Fedukovich, Casie

    2009-01-01

    Valerie Miner muses in "Writing and Teaching with Class:" "I've always carried that Miner suspicion that laboring with words is not real work . . . Should I be doing something useful?" (1993, 74). If working-class academics face uneasy negotiations between their disciplines and their home cultures, which may include deployment…

  3. Teachers Teaching Teachers (T3)[TM]. Volume 4, Number 6

    ERIC Educational Resources Information Center

    von Frank, Valerie, Ed.

    2009-01-01

    "Teachers Teaching Teachers" ("T3") focuses on coaches' roles in the professional development of teachers. Each issue also explores the challenges and rewards that teacher leaders encounter. This issue includes: (1) Values and Clarity Build Classroom Language (Valerie von Frank); (2) Tools: Identifying and Clarifying Beliefs about Learning; (3)…

  4. STS-81 Cmdr and MS Ivins with Mir 22 Cmdr review transfer checklists

    NASA Image and Video Library

    1997-02-21

    STS081-357-020 (12-22 Jan. 1997) --- Astronaut Marsha S. Ivins, STS-81 mission specialist, compares notes with cosmonaut Valeri G. Korzun, Mir-22 mission commander. The two were involved with the transfer of supplies from the Space Shuttle Atlantis to Russia's Mir Space Station, during the docking mission.

  5. Crossing Boundaries: Collaborative Solutions to Urban Problems. Selected Proceedings of the National Conference on Urban Issues (1st, Buffalo, New York, November 11-13, 1994).

    ERIC Educational Resources Information Center

    Koritz, Douglas, Ed.; And Others

    Selected papers are presented from a national conference on urban issues. They are: (1) "Collaboration as a Social Process: Inter-Institutional Cooperation and Educational Change" (Charles F. Underwood and Hardy T. Frye); (2) "Mobilizing the Village To Educate the Child" (Valerie Maholmes); (3) "Pathways to Teaching: An Urban Teacher Licensure…

  6. Valerie & Walter's Best Books for Children: A Lively, Opinionated Guide.

    ERIC Educational Resources Information Center

    Lewis, Valerie V.; Mayes, Walter M.

    This comprehensive guide is based on the premise that books and reading are an essential part of every child's development. The guide lists and describes more than 2000 books for children from birth to age 14; from stories that babies can literally chew on, to the best choices for bridging the critical gap between listening and reading, to the…

  7. 78 FR 37214 - Notice of Commission Staff Attendance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... Power Company et al. Docket No. ER13-913, Ohio Valley Electric Corporation. Docket No. ER13-897....L.C., et al. Docket No. ER12-1178, PJM Interconnection, L.L.C. Docket No. ER12-2399, PJM...-107, South Carolina Electric & Gas Company. For more information, contact Valerie Martin, Office of...

  8. 78 FR 32386 - Notice of Commission Staff Attendance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... address matters at issue in the following proceedings: Docket No. ER13-908, Alabama Power Company et al....C., et al. Docket No. ER12-1178, PJM Interconnection, L.L.C. Docket No. ER12-2399, PJM.... Docket No. ER13-107, South Carolina Electric & Gas Company For more information, contact Valerie Martin...

  9. Commentary: Reflecting on and Navigating Projects in Humanization

    ERIC Educational Resources Information Center

    Lee, Carol D.

    2017-01-01

    Timothy San Pedro and Valerie Kinloch are among a powerful cohort of scholars who are pushing the ontological boundaries surrounding how we think about the conduct of educational research. A longstanding tension in the history of educational research has been conceptualizations of the goal of such work as discovering foundational principles about…

  10. Teachers Teaching Teachers (T3)[TM]. Volume 4, Number 7

    ERIC Educational Resources Information Center

    von Frank, Valerie, Ed.

    2009-01-01

    "Teachers Teaching Teachers" ("T3") focuses on coaches' roles in the professional development of teachers. Each issue also explores the challenges and rewards that teacher leaders encounter. This issue includes: (1) Learning Cycle Spins Individuals into a Team (Valerie von Frank); (2) NSDC Tool: The Professional Teaching and Learning Cycle; (3)…

  11. Whitson receives haircut from Korzun in Zvezda

    NASA Image and Video Library

    2002-10-01

    ISS005-E-18072 (October 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, cuts astronaut Peggy A. Whitson’s hair in the Zvezda Service Module on the International Space Station (ISS). Whitson, flight engineer, holds a vacuum device the crew has fashioned to garner freshly cut hair, which is floating freely.

  12. Whitson receives haircut from Korzun in Zvezda

    NASA Image and Video Library

    2002-10-01

    ISS005-E-18071 (October 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, cuts astronaut Peggy A. Whitson’s hair in the Zvezda Service Module on the International Space Station (ISS). Whitson, flight engineer, holds a vacuum device the crew has fashioned to garner freshly cut hair, which is floating freely.

  13. Expedition Five crew is ready to leave KSC for Houston

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The Expedition Five crew are ready to leave KSC for Houston. From left are Science Officer Peggy Whitson, Commander Valery Korzun and Flight Engineer Sergei Treschev. The three returned to Earth on Endeavour Dec. 7, with the STS-113 crew, after six months on the International Space Station.

  14. KSC-03PD-1450

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto is one of the scientists recovering experiments found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  15. MS Ivins shares chocolates with Mir 22 crew

    NASA Image and Video Library

    1997-02-26

    STS081-369-020 (12-22 Jan. 1997) --- Astronaut Marsha S. Ivins and two Mir-22 crewmembers stray from the conventional food fare as they open a box of chocolates on Russia's Mir Space Station's Base Block Module. Cosmonauts Aleksandr Y. Kaleri (left), flight engineer, and Valeri G. Korzun, share the treats.

  16. Essays on Strategy. 11

    DTIC Science & Technology

    1994-04-01

    Many Little Wars Make a Big One." Also, Lois B. McHugh , "Yugoslavia: Refugee Assistance," Congressional Research Service Report for Congress, No. 93...of all Russian oil reaching the West is handled this way, as is one-half of the nickel .28 General Valery Krasnovsky of the Russian Security Ministry

  17. The Oral History of Evaluation: The Professional Development of Thomas D. Cook

    ERIC Educational Resources Information Center

    Mark, Melvin M.; Caracelli, Valerie; McNall, Miles A.; Miller, Robin Lin

    2018-01-01

    Since 2003, the Oral History Project Team has conducted interviews with individuals who have made particularly noteworthy contributions to the theory and practice of evaluation. In 2013, Mel Mark, Valerie Caracelli, and Miles McNall sat with Thomas Cook in Washington, D.C., during the American Evaluation Association (AEA) annual conference. The…

  18. Expedition Five crew perform maintenance on the TVIS

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17402 (13 October 2002) --- Cosmonauts Valery G. Korzun (left), Expedition Five mission commander, Sergei Y. Treschev and astronaut Peggy A. Whitson, Expedition Five flight engineers, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Korzun and Treschev represent Rosaviakosmos.

  19. Expedition Five crew perform maintenance on the TVIS

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17390 (13 October 2002) --- Cosmonauts Valery G. Korzun (left), Expedition Five mission commander, Sergei Y. Treschev and astronaut Peggy A. Whitson, Expedition Five flight engineers, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Korzun and Treschev represent Rosaviakosmos.

  20. Expedition Five crew perform maintenance on the TVIS

    NASA Image and Video Library

    2002-10-13

    ISS005-E-17392 (13 October 2002) --- Cosmonauts Valery G. Korzun (left), Expedition Five mission commander, Sergei Y. Treschev and astronaut Peggy A. Whitson, Expedition Five flight engineers, perform maintenance on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module on the International Space Station (ISS). Korzun and Treschev represent Rosaviakosmos.

  1. "Bad Talk" Made Good: Language Variety in Four Caribbean British Children's Poets

    ERIC Educational Resources Information Center

    Lockwood, Michael

    2014-01-01

    This article looks at how four British-based poets born in the Caribbean exploit the rich language repertoire available to them in their work for children and young people. Following initial consideration of questions of definition and terminology, poetry collections by James Berry, John Agard, Grace Nichols and Valerie Bloom are discussed, with a…

  2. KSC-03PD-1453

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., works on an experiment found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  3. ACHP | News | ACHP Issue Spotlight: Transmission Lines in the West

    Science.gov Websites

    Nations NEW YORK - Office of Native American Affairs Director Valerie Hauser participated August 18, 2014 resulted from the agency's many years of involvement with Indian tribes and Native Hawaiians in Section 106 places throughout the U.S. and has been working with its preservation partners for many years to improve

  4. Demonstration of a Robust Sensor System for Remote Condition Monitoring of Heat-Distribution System Manholes

    DTIC Science & Technology

    2016-02-01

    15 Figure 16.Temperature sensor wires routed into galvanized steel piping...The technical monitors were Daniel J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF). The work was performed...or result in severe corrosion of steel HDS components, and must be corrected immediately to avoid costly collateral impacts on energy costs or HDS

  5. Navy John Lewis (TAO-205) Class Oiler Shipbuilding Program: Background and Issues for Congress

    DTIC Science & Technology

    2016-01-08

    to two bidders—Ingalls Shipbuilding of Huntington Ingalls Industries (HII/Ingalls) and National Steel and Shipbuilding Company of General Dynamics...4 Valerie Insinna, “Navy to Name Next Generation Oilers for Civil Rights Icons,” Defense Daily, January...programs. Contracts for Trade Studies On July 3, 2013, the Navy awarded three shipbuilding firms—General Dynamics’ National Steel and Shipbuilding

  6. Military and Veterans Disability System. Pilot Has Achieved Some Goals, but Further Planning and Monitoring Needed

    DTIC Science & Technology

    2010-12-01

    Member Subcommittee on Defense Committee on Appropriations House of Representatives The Honorable Chet Edwards Chairman The Honorable Zach Wamp...and Vanessa Taylor provided assistance with research methodology and data analysis. Bonnie Anderson, Rebecca Beale, Mark Bird, Brenda Farrell...Valerie Melvin, Patricia Owens, and Randall Williamson provided subject matter expertise. Susan Bernstein and Kathleen van Gelder provided writing

  7. Now I Get What It Was Really Like: Reading Historical Fiction to Understand History

    ERIC Educational Resources Information Center

    Schwab, Watts

    2005-01-01

    Encouraging students to read historical fiction can lead to greater interest in historical events and fictionalizing history enables young people to feel what it is like to be there. "The Bear that Heard Crying" by Natalie Kinsey-Warnock, "A Lion to Guard Us" by Clyde Robert and "Meet Felicity: An American Girl (Book 1)" by Valerie Tripp are some…

  8. Expedition Five crew members wave to onlookers as they leave KSC for Houston

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Expedition Five crew members wave to onlookers as they leave KSC for Houston. From left are Science Officer Peggy Whitson and Commander Valery Korzun. Not seen is Flight Engineer Sergei Treschev. The three returned to Earth Dec. 7 on Endeavour, with the STS-113 crew, after six months on the International Space Station.

  9. Taking a Closer Look at the "Grit" Narratives

    ERIC Educational Resources Information Center

    Socol, Ira

    2014-01-01

    In this article Ira Socol explores the pros and cons of Paul Tough's "How Children Succeed: Grit, Curiosity, and the Hidden Power of Character." As Tough told Valerie Strauss, "The book is about two things: first, an emerging body of research that shows the importance of so-called non-cognitive skills in children's…

  10. A Biophysico-computational Perspective of Breast Cancer Pathogenesis and Treatment Response

    DTIC Science & Technology

    2006-03-01

    of Breast Cancer Pathogenesis and Treatment Response PRINCIPAL INVESTIGATOR: Valerie M. Weaver Ph.D. CONTRACTING...burden for this collection of information is estimated to average 1 hour per response , including the time for reviewing instructions, searching existing...Biophysico-computational Perspective of Breast Cancer Pathogenesis and 5a. CONTRACT NUMBER Treatment Response 5b. GRANT NUMBER W81XWH-05-1-0330 5c

  11. STS-111 Training in VR lab with Expedition IV and V Crewmembers

    NASA Image and Video Library

    2001-10-18

    JSC2001-E-39090 (18 October 2001) --- Cosmonaut Valeri G. Korzun, Expedition Five mission commander representing Rosaviakosmos, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements.

  12. Astronauts Akers and Readdy with Mir 22 commander Korzun in Base Block

    NASA Image and Video Library

    1996-09-19

    STS79-E-5088 (19 September 1996) --- Left to right, Valeri G. Korzun, Thomas D. Akers and William F. Readdy discuss the agenda of their shared activities for the next few days, on Flight Day 4. Korzun and Readdy share common positions - that of commander - for the Mir-22 and STS-79 missions, respectively. Akers is a STS-79 mission specialist.

  13. KSC-03PD-1455

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., works on an experiment found during the search for Columbia debris. Mike Casasanto, also with ITA, looks on. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  14. Assessing and adjusting for non response in the Millennium Cohort Family Study (Open Access Publisher’s Version)

    DTIC Science & Technology

    2017-01-28

    missingness was positively correlated across variables, as evidenced by the much greater spousal response for service members complet- ing the entire survey ...Mike Battaglia1, Hope Seib McMaster2,3 and Valerie A. Stander2 Abstract Background: In conducting population-based surveys , it is important to...reporting findings. This paper examines factors contributing to second stage survey non-response during the baseline data collection for the

  15. Mission Critical STEM Partnership with the Air Force Office of Scientific Research

    DTIC Science & Technology

    2015-04-06

    Dr. Valerie Lundy-Wagner, Senior Research Associate, Community College Research Center Teachers College, Columbia University 29...composites. We were comparing our experiments vs. structural steel . Our project consisted of a 4x4 in square caste. The caste was fabricated by bonding...aluminum and stainless steel . The caste experiments varied from 3, 5, and 7 stainless steel rods embedded in the piece. We tested for tensile strength

  16. Corrosion/Degradation Monitoring Technology for Composite Materials used to Extend Building Service Life

    DTIC Science & Technology

    2014-07-01

    for patching concrete structures that have corroded reinforcing steel , but the Army largely avoids structural composite repair applications because...J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF). The work was performed by the Engineering and Materials...buildings in the Army inventory often have se- verely corroded reinforcing steel that necessitates structural upgrades for conformance to current safety

  17. STS-81 Cmdr poses for portrait with Mir 22 crew

    NASA Image and Video Library

    1997-02-26

    STS081-369-028 (12-22 Jan. 1997) --- On the eve of undocking of the Space Shuttle Atlantis and Russia's Mir Space Station, astronaut Michael A. Baker (center), STS-81 mission commander, bids farewell to cosmonauts Aleksandr Y. Kaleri (left), Mir-22 flight engineer, and Valeri G. Korzun, Mir-22 mission commander. The three are in the Base Block Module of the Mir complex.

  18. STS-79 commander at entrance to docking module

    NASA Image and Video Library

    1996-09-23

    STS79-E-5300 (23 September 1996) --- Astronaut William F. Readdy (foreground), STS-79 commander, bids farewell to Russian cosmonauts Aleksandr Y. Kaleri (left in background), Mir-22 flight engineer, and Valeri G. Korzun, Mir-22 commander, just prior to hatch closing, during Flight Day 8. The Americans and Russians will undock the Space Shuttle Atlantis and the Russia's Mir Space Station later today.

  19. Expedition 19 Docks to ISS

    NASA Image and Video Library

    2009-03-27

    Valery Grin, Deputy Head of State Commission, talks on the phone to the six crew members onboard the International Space Station from the Russian Mission Control Center, Korolev, Russia, Saturday, March 28, 2009. The Soyuz TMA-14 spacecraft docked to the International Space Station and delivered Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)

  20. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    Valerie Jarrett, senior advisor and assistant to the president for Public Engagement and Intergovernmental Affairs for the Obama administration, speaks at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Photo Credit: (NASA/Carla Cioffi)

  1. KSC-03PD-2793

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Baikonur, Kazakhstan (Left to right) Expedition 8 Soyuz Commander and Flight Engineer Alexander Kaleri, Expedition 8 Commander Michael Foale, European Space Agency Astronaut Pedro Duque of Spain and Valery Korzun, chief of Cosmonauts, arrive in Baikonur. Expedition 8 is scheduled to launch from the Baikonur Cosmodrome in Kazakhstan on Oct. 18 on board a Soyuz rocket to the International Space Station. Photo Credit: 'NASA/Bill Ingalls'

  2. KSC-03PD-1461

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto (foreground), Instrumentation Technology Associates, Inc., examines one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  3. KSC-03PD-1454

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., and Bob McLean, from the Southwest Texas State University, work on an experiment found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  4. Automated Neuropsychological Assessment Metrics (ANAM) Traumatic Brain Injury (TBI): Human Factors Assessment

    DTIC Science & Technology

    2011-07-01

    Lindsay, Cory Overby, Angela Jeter, Petra E. Alfred, Gary L. Boykin, Carita DeVilbiss, and Raymond Bateman ARL-TN-0440 July 2011...Neuropsychological Assessment Metrics (ANAM) Traumatic Brain Injury (TBI): Human Factors Assessment Valerie J. Rice, Petra E. Alfred, Gary L. Boykin...Angela Jeter*, Petra E. Alfred, Gary L. Boykin, Carita DeVilbiss, and Raymond Bateman 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  5. Corrosion Control of Central Vehicle Wash Facility Pump Components Using Alternative Alloy Coatings

    DTIC Science & Technology

    2016-07-01

    military installations are es- sential for supporting the readiness of tactical vehicles. Steel wash-rack pumps are vulnerable to accelerated...Management Command (IMCOM). The technical monitors were Daniel J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF...statement Large steel water pumps are used to pump water into the Central Vehicle Wash Facility (CVWF) for vehicle washing at Fort Polk, LA. The interior

  6. Navy LX(R) Amphibious Ship Program: Background and Issues for Congress

    DTIC Science & Technology

    2015-12-17

    combined solicitation to two bidders—Ingalls Shipbuilding of Huntington Ingalls Industries (HII/Ingalls) and National Steel and Shipbuilding Company...RFP; see, for example, Sam LaGrone, “Navy Issues RFP for Oilers and LHA-8 to NASSCO, Ingalls,” USNI News, July 10, 2015; Valerie Insinna, “Navy...amphibious assault ship so that San Diego-based General Dynamics National Steel and Shipbuilding Co. (NASSCO) and the Huntington Ingalls Industries

  7. Greeting between STS-79 commander and Mir 22 commander after docking

    NASA Image and Video Library

    1996-09-19

    STS79-E-5090 (19 September 1996) --- Cosmonaut Valeri G. Korzun, Mir-22 commander, greets his American counterpart - astronaut William F. Readdy in the tunnel connecting the Space Shuttle Atlantis to Russia's Mir Space Station, during Flight Day 4. This mission marks the fourth such reunion involving astronauts and cosmonauts during the Shuttle era and the fifth overall, going back to the historic Apollo-Soyuz Test Project (ASTP) in 1975.

  8. Inclusive Security and Peaceful Societies: Exploring the Evidence

    DTIC Science & Technology

    2016-03-01

    655 mothers to deradicalize 1,024 young men and boys , rehabilitating INCLUSIVE SECURITY AND PEACEFUL SOCIETIES PRISM 6, no. 1 FEATURES | 23 The...approaches to breaking impasses dur- ing a stalled peace process, from nonviolent sit-ins to unorthodox tactics like blocking doors or even withholding sex ...Processes,” (New York: International Peace Institute, 2015). 9 Valerie Hudson, Bonnie Ballif-Spanvill, Mary Caprioli, and Chad F. Emmett, Sex and

  9. STS-79 and Mir 22 gift exchange ceremony

    NASA Image and Video Library

    1996-09-20

    STS79-E-5180 (20 September 1996) --- The entire crews of STS-79 and Mir-22 are shown during a gift exchange ceremony aboard Russia's Mir Space Station's Base Block, during Flight Day 5. Front row, from the left, John E. Blaha, Jerome (Jay) Apt, Carl E. Walz, Thomas D. Akers, Shannon W. Lucid, William F. Readdy and Valeri G. Korzun. Back row: Terrence W. Wilcutt and Aleksandr Y. Kaleri.

  10. KSC-03PD-1456

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., examines closely the container containing one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  11. Korzun and STS-112 crewmembers in the SM during Expedition Five on the ISS

    NASA Image and Video Library

    2002-10-09

    ISS005-E-16542 (9 October 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, and the STS-112 crewmembers were photographed in the Zvezda Service Module on the International Space Station (ISS). Others pictured are astronauts Jeffrey S. Ashby, STS-112 mission commander; Pamela A. Melroy, pilot; Sandra H. Magnus, Piers J. Sellers, David A. Wolf, and cosmonaut Fyodor N. Yurchikhin, all mission specialists. Korzun and Yurchikhin represent Rosaviakosmos.

  12. Development of An Empirical Water Quality Model for Stormwater Based on Watershed Land Use in Puget Sound

    DTIC Science & Technology

    2007-03-29

    Development of An Empirical Water Quality Model for Stormwater Based on Watershed Land Use in Puget Sound Valerie I. Cullinan, Christopher W. May...Systems Center, Bremerton, WA) Introduction The Sinclair and Dyes Inlet watershed is located on the west side of Puget Sound in Kitsap County...Washington, U.S.A. (Figure 1). The Puget Sound Naval Shipyard (PSNS), U.S Environmental Protection Agency (USEPA), the Washington State Department of

  13. Mir 22 and STS-81 crew work with gyrodyne

    NASA Image and Video Library

    1997-02-04

    STS081-301-031 (12-22 Jan 1997) --- Shortly after docking of the Space Shuttle Atlantis and Russia's Mir Space Station, crew members from the respective spacecraft begin to transfer hardware from the Spacehab Double Module (DM) onto the Mir complex. Here, cosmonaut Valeri G. Korzun, Mir-22 commander, along with astronauts Michael A. Baker, commander, and Brent W. Jett, Jr., pilot, unstow a gyrodyne, device for attitude control, transfer to Mir.

  14. The United States Army Medical Department Journal. October - December 2010

    DTIC Science & Technology

    2010-12-01

    Fail, Just Ask Them 65 Carita DeVilbiss, PhD; Valerie J. Rice, PhD; Linda Laws; Petra Alfred Understanding the Leadership and Cultural Dimensions...educators prepared to affect the affective domain? Natl Forum Teach Educ J [serial online], 2006;16(3E):2005-2006. 17. Martin BL, Briggs LJ. The...J. Rice, PhD Linda Laws Petra Alfred ABSTRACT One method to discover possible reasons why individuals fail academic training is to ask them

  15. Sleep in the Military: Promoting Healthy Sleep Among U.S. Servicemembers

    DTIC Science & Technology

    2015-01-01

    Alfred, Petra E., and Valerie J. Rice, “The Relationship Between Self-Reported Hours of Sleep, Perceptions of Tiredness and Academic Performance in a...A. Martin , Anne M. Sesti, and Karen L. Spritzer, “Psychometric Properties of the Medical Outcomes Study Sleep Measure,” Sleep Medicine, Vol. 6, No. 1...Internal Medicine, Vol. 21, No. 6, 2006, pp. 547–552. Hughes, Jaime, Stella Jouldjian, Donna L. Washington, Cathy A. Alessi, and Jennifer L. Martin

  16. Navy John Lewis (TAO 205) Class Oiler Shipbuilding Program: Background and Issues for Congress

    DTIC Science & Technology

    2016-08-18

    General Dynamics’ National Steel and Shipbuilding Company (GD/NASSCO) and Huntington Ingalls Industries’ Ingalls Shipbuilding (HII/Ingalls)—on the... Valerie Insinna, “Navy to Name Next Generation Oilers for Civil Rights Icons,” Defense Daily, January 7, 2016: 4. For more on Navy ship names, see CRS...National Steel and Shipbuilding Company of General Dynamics (GD/NASSCO)—on the grounds that these are the only two shipbuilders that have the capability

  17. Fast Reacting Nano Composite Energetic Materials: Synthesis and Combustion Characterization

    DTIC Science & Technology

    2015-08-24

    mg of composite resulting in a loose powder fill estimated to be 7% of the theoretical maximum density. Once prepared, the tube was placed in a steel ...theoretical maximum density. Once prepared, the tube was placed in a steel combustion chamber and the experimental setup is schematically represented... Valery Levitas. "Effect of oxide shell growth on ano- aluminum thermite propagation rates." Combustion and Flame 159 (2012): 3448-3453. I. Liakosa

  18. Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress

    DTIC Science & Technology

    2016-05-27

    stating that Polar Star and Polar Sea “were built to take a beating. They were built with very thick special steel , so you might be able to do a...renovation on them and keep going…. I think there are certain types of steel that, if properly maintained, they can go on for an awful long time. What the...the service develop an acquisition strategy, it says. 52 Valerie Insinna, “Coast Guard to Finalize

  19. Final Environmental Assessment Addressing Implementation of the Integrated Natural Resources Management Plan for Kirtland Air Force Base

    DTIC Science & Technology

    2014-09-01

    square-foot facility to house the newly formed 498th Nuclear Systems Wing. This facility would be a two-story, steel -framed structure with...proposes to construct a 15,946-square-foot sustainment center for the Nuclear Weapons Center. This facility would be a two-story, steel -framed structure...Bob Estes Cc: Valerie Renner Cultural Resource Manager 2050 Wyoming Blvd. SE Kirtland AFB, NM 87117 B-7 Native American Tribes – IICEP

  20. KSC-03pd1452

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto and Bob McLean talk to a reporter about experiments found during the search for Columbia debris. Cassanto is with Instrumentation Technology Associates Inc. and McLean is with the Southwest Texas State University. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  1. Polarization Decay Fit for Assured Cathodic Protection of Steel Structures: Final Report on Project F12-AR03

    DTIC Science & Technology

    2016-09-01

    natural gas pipelines , water pipelines , and metallic USTs. The full and complete data sets for curve-fit development were not pro- vided to ERDC...Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-E), and Valerie D. Hines (DAIM-ODF). The work was performed by the Materials and Structures Branch...of structures being tested increases, as in the case of pipelines that run many miles or the case of when a structure’s coating quality

  2. STS-111 Training in VR lab with Expedition IV and V Crewmembers

    NASA Image and Video Library

    2001-10-18

    JSC2001-E-39082 (18 October 2001) --- Cosmonaut Valeri G. Korzun (left), Expedition Five mission commander, and astronaut Carl E. Walz, Expedition Four flight engineer, use the virtual reality lab at the Johnson Space Center (JSC) to train for their duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements. Korzun represents Rosaviakosmos.

  3. STS-81 crew present gift of oranges and grapefruit

    NASA Image and Video Library

    1997-02-20

    STS081-343-014 (12-22 Jan. 1997) --- Oranges and grapefruit brought up from Earth get a popular reception by the Mir-22 crewmembers. Left to right astronauts Peter J. K. (Jeff) Wisoff and John M. Grunsfeld, along with cosmonauts Aleksandr Y. Kaleri and Valeri G. Korzun, Mir-22 flight engineer and commander respectively, view the microgravity behavior of the seasonal gifts. Astronaut Michael A. Baker, mission commander, looks on at frame's right edge.

  4. Pulmonary Rehabilitation: Improvement with Movement.

    PubMed

    Rajagopal, Anita; Casaburi, Richard

    2016-01-15

    This article serves as a CME- available, enduring material summary of the following COPD9 USA presentations: - "Lessons Learned from Pulmonary Education Program and On Track with COPD Ongoing Health Management." Presenter : Scott Cerreta, BS, RRT - "Cultivating Memorial Funds for Pulmonary Rehabilitation" Presenter : Valerie McLeod, RRT - "Strategies for Success: Maintenance Program Best Practices" Presenter : David Vines, MHS, RRT - "Strategies for Success-Maximizing Participation and Completion Rates," Presenter : Trina M. Limberg, BS, RRT.

  5. KSC-03PD-1467

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, Instrumentation Technology Associates, Inc., studies one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

  6. KSC-03PD-1470

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University, and Valerie Cassanto, Instrumentation Technology Associates, Inc., study one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  7. KSC-03PD-1452

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto and Bob McLean talk to a reporter about experiments found during the search for Columbia debris. Cassanto is with Instrumentation Technology Associates Inc. and McLean is with the Southwest Texas State University. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  8. KSC-03PD-1462

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - From left, Valerie Cassanto, Instrumentation Technology Associates, Inc., and Dr. Dennis Morrison, NASA Johnson Space Center, analyze one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  9. The Impact of Need for Cognition and Self-Reference on Tutoring a Deductive Reasoning Skill

    DTIC Science & Technology

    2014-06-01

    The Impact of Need for Cognition and Self-Reference on Tutoring a Deductive Reasoning Skill by Anne M. Sinatra, Valerie K. Sims, and Robert A...Laboratory Aberdeen Proving Ground, MD 21005 ARL-TR-6961 June 2014 The Impact of Need for Cognition and Self-Reference on Tutoring a...REPORT TYPE Final 3. DATES COVERED (From - To) NA 4. TITLE AND SUBTITLE The Impact of Need for Cognition and Self-Reference on Tutoring a Deductive

  10. Navy LX(R) Amphibious Ship Program: Background and Issues for Congress

    DTIC Science & Technology

    2016-01-08

    and National Steel and Shipbuilding Company of General Dynamics (GD/NASSCO)—on the grounds that these are the only two shipbuilders that have the...LaGrone, “Navy Issues RFP for Oilers and LHA-8 to NASSCO, Ingalls,” USNI News, July 10, 2015; Valerie Insinna, “Navy Quietly Issues RFP for LHA-8...amphibious assault ship so that San Diego-based General Dynamics National Steel and Shipbuilding Co. (NASSCO) and the Huntington Ingalls Industries

  11. Studies in Intelligence. Volume 57, Number 4

    DTIC Science & Technology

    2013-12-01

    John McLaughlin Wayne M. Murphy James Noone Matthew J. Ouimet Valerie P. Cynthia Ryan Cathryn Thurston Jay R. Watkins Ursula M. Wilder Cindy...reminded of Seth Jones’ book, In the Graveyard of Empires: America’s War in Afghanistan, which reviews the origins of the phrase. 9 In Return of a...for Patton (Army Times Publishing Company, 1971). 9 Seth Jones, In the Graveyard of Empires: America’s War in Afghanistan (W. W. Norton, 2009). 10

  12. Enzootic Plague Reduces Black-Footed Ferret (Mustela nigripes) Survival in Montana

    DTIC Science & Technology

    2010-01-01

    al. Design and testing for a non-tagged F1-V fusion protein as vaccine antigen against bubonic and pneumonic plague . Biotechnol Prog 2005; 21:1490–1510...Enzootic Plague Reduces Black-Footed Ferret (Mustela nigripes) Survival in Montana Marc R. Matchett,1 Dean E. Biggins,2 Valerie Carlson,3,* Bradford...and prey. Epizootic plague kills both prairie dogs and ferrets and is a major factor limiting recovery of the highly endangered ferret. In addition to

  13. Crew Earth Observations (CEO) by Expedition Five Crew

    NASA Image and Video Library

    2002-09-16

    ISS005- E-15375 (22 September 2002) --- This digital still camera's picture, taken from the International Space Station (ISS) on September 22, 2002, shows the central eye of Hurricane Isidore. The eye become less defined as the hurricane stalled and weakened over the Yucatan Peninsula near Merida. Onboard the orbital outpost for the Expedition Five mission are cosmonauts Valery G. Korzun, commander, and Sergei Y. Treschev, flight engineer, both with Rosaviakosmos; and astronaut Peggy A. Whitson, flight engineer.

  14. KSC-03PD-1459

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - From left, Bob McLean, Southwest Texas State University; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  15. Demonstration of Noncorrosive, Capacitance- Based Water-Treatment Technology for Chilled-Water Cooling Systems

    DTIC Science & Technology

    2014-09-01

    monitors were Daniel J. Dunmire [OUSD(AT&L)], Bernie Rodri- guez (IMPW-FM), and Valerie D. Hines (DAIM-ODF). The work was performed by the Materials and...the electrode, a large voltage po- tential is created between the two plates of the capacitor (i.e., the electrode and the grounded steel of the...return (CWR) piping of each condenser. To install the capacitor rods, 1.5 in. mild steel thread-o-lets* were welded into a pipe elbow. Figure 5 shows

  16. STS-81 and Mir 22 crews exchange gifts in the Mir Base Block

    NASA Image and Video Library

    1997-02-21

    STS081-350-013 (12-22 Jan 1997) --- Members of Mir-22 crew show appreciation for small flash lights brought up by the STS-81 crew. Left to right, new cosmonaut guest researcher Jerry M. Linenger, cosmonauts Valeri G. Korzun, mission commander, and Aleksandr Y. Kaleri, flight engineer, along with former cosmonaut guest researcher John E. Blaha. The four are on the Base Block Module of Russia?s Mir Space Station on the eve of the Space Shuttle Atlantis and Mir undocking day.

  17. STS-111 Training in VR lab with Expedition IV and V Crewmembers

    NASA Image and Video Library

    2001-10-18

    JSC2001-E-39085 (18 October 2001) --- Cosmonaut Valeri G. Korzun (left), Expedition Five mission commander, astronaut Peggy A. Whitson, Expedition Five flight engineer, and astronaut Carl E. Walz, Expedition Four flight engineer, use the virtual reality lab at the Johnson Space Center (JSC) to train for their duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements. Korzun represents Rosaviakosmos.

  18. Inferring Adolescent Social Networks Using Partial Ego-Network Substance Use Data

    DTIC Science & Technology

    2008-05-15

    initiation among West Coast youth from age 5 to 23.” Preventive Medicine 44. Ellickson, Phyllis L. and Robert M. Bell. 1990. “Drug prevention in junior high...21:615–632. Jessor, Richard and Shirley L. Jessor. 1978. “Theory testing in longitudinal research on Marihuana use.” In Longitudinal Research on Drug...Science and Medicine 44:1861–1869. Mollison, Denis, Valerie Isham, and Bryan Grenfell. 1994. “Epidemics: models and data.” Journal of the Royal Statistics

  19. Candid views of the STS-81 and Mir 22 crews on the orbiter's middeck

    NASA Image and Video Library

    1997-01-16

    STS081-E-05498 (16 Jan. 1997) --- Supplies and equipment transfer are the topic of the day, as the Space Shuttle Atlantis and Russia's Mir Space Station respective commanders have a discussion aboard the Orbiter. Left to right are cosmonauts Valeri G. Korzun and Aleksandr Y. Kaleri, Mir-22 commander and flight engineer respectively; along with astronaut Michael A. Baker, mission commander. The photograph was recorded with an Electronic Still Camera (ESC) and later was downlinked to flight controllers in Houston, Texas.

  20. KSC-03PD-1457

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto, with Instrumentation Technology Associates, Inc., and Bob McLean, from the Southwest Texas State University, transfer to a new container material from one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.

  1. Official portrait of the ISS Expedition Five crewmembers

    NASA Image and Video Library

    2002-02-01

    ISS005-S-002 (February 2002) --- Cosmonaut Valeri G. Korzun (left), Expedition Five mission commander; astronaut Peggy A. Whitson and cosmonaut Sergei Y. Treschev, both flight engineers, attired in training versions of the shuttle launch and entry suit, pause from their training schedule for a crew portrait. The three will be launched to the International Space Station (ISS) in early spring of this year aboard the Space Shuttle Atlantis. Korzun and Treschev represent the Russian Aviation and Space Agency (Rosaviakosmos).

  2. Up Front with Valerie and Joe: Fair Game and Other Stories of Reprisal

    ERIC Educational Resources Information Center

    Beck, Bernard

    2011-01-01

    The movie "Fair Game" (Butterworth et al., 2010) is a fact-based political thriller that calls attention to a process of turning respectable members of established institutions, who are performing their roles properly, into excluded deviants. The result of this transformation may be the creation of a new group initiating its own subculture. The…

  3. STS-96 crew plays cards in the Node 1/Unity module

    NASA Image and Video Library

    2017-04-20

    S96-E-5173 (2 June 1999) --- A pre-set electronic still camera (ESC) recorded this image of the STS-96 crewmembers playing cards on a break aboard the International Space Station (ISS). From the left are cosmonaut Valery I. Tokarev, Daniel T. Barry, Tamara E. Jernigan, Rick D. Husband, Ellen Ochoa, Julie Payette and Kent V. Rominger. Tokarev represents the Russian Space Agency (RSA) and Payette represents the Canadian Space Agency (CSA). The photograph was taken at 11:13:59 GMT, June 2, 1999.

  4. KSC-03PD-1464

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

  5. KSC-03PD-1465

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

  6. KSC-03PD-1466

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida, and Valerie Cassanto, Instrumentation Technology Associates, Inc., analyze one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

  7. Mir 22 and STS-81 crew work with gyrodyne

    NASA Image and Video Library

    1997-02-04

    STS081-301-032 (12-22 Jan. 1997) --- Shortly after the docking of the Space Shuttle Atlantis and Russia's Mir Space Station, crewmembers from the respective spacecraft begin to transfer hardware from the Spacehab Double Module (DM) onto the Mir complex. In this scene, cosmonaut Valeri G. Korzun (second left) Mir-22 commander, along with astronauts Michael A. Baker (second right) commander, and Brent W. Jett, Jr., pilot, unstow a gyrodyne, a device used for attitude control, for transfer to Mir. Astronaut Marsha S. Ivins looks over a lengthy inventory of supplies to be transferred.

  8. The physician-cosmonaut tasks in stabilizing the crew members health and increasing an effectiveness of their preparation for returning to Earth

    NASA Astrophysics Data System (ADS)

    Polyakov, V. V.

    During a final 4-month stage of I-year space flight of cosmonauts Titov and Manarov, a physician, Valery Polyakov was included on a crew for the purpose of evaluating their health, correcting physical status to prepare for the spacecraft reentry and landing operations. The complex program of scientific investigations and experiments performed by a physician included an evaluation of adaptation reactions of the human body at different stages of space mission using clinicophysiological and biochemical methods; testing of alternative regimes of exercises and new countermeasures to prevent an unfavorable effect of long-term weightlessness.

  9. KSC-03PD-1469

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - From left, Barry Perlman, Pembroke Pines Charter Middle School in Florida; Valerie Cassanto, Instrumentation Technology Associates, Inc.; and Dr. Dennis Morrison, NASA Johnson Space Center, process one of the experiments carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation. The latter was sponsored by the Pembroke Pines Charter Middle School.

  10. iss012e21343

    NASA Image and Video Library

    2006-03-29

    ISS012-E-21343 (29 Mar. 2006) --- The shadow of the moon falls on Earth as seen from the International Space Station, 230 miles above the planet, during a total solar eclipse at about 4:50 a.m. CST Wednesday, March 29. This digital photo was taken by the Expedition 12 crew, Commander William McArthur and Flight Engineer Valery Tokarev, who are wrapping up a six-month mission on the complex. Visible near the shadow are portions of Cyprus in the Mediterranean Sea and the coast of Turkey.

  11. 75 FR 17832 - Proposed Information Collection (VA Loan Electronic Reporting Interface (VALERI) System) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ...The Veterans Benefits Administration (VBA), Department of Veterans Affairs (VA), is announcing an opportunity for public comment on the proposed collection of certain information by the agency. Under the Paperwork Reduction Act (PRA) of 1995, Federal agencies are required to publish notice in the Federal Register concerning each proposed collection of information, including each proposed revision of a currently approved collection, and allow 60 days for public comment in response to the notice. This notice solicits comments for information needed to oversee loan holders processing of loan guaranty homes.

  12. STS-112 Flight Day 7 Highlights

    NASA Astrophysics Data System (ADS)

    2002-10-01

    On this seventh day of STS-112 mission members of the crew (Commander Jeff Ashby; Pilot Pam Melroy; Mission Specialist Sandy Magnus, Piers Sellers, Dave Wolf, and Fyodor Yurchikhin) along with the Expedition Five crew (Commander Valery Korzun; Flight Engineer Peggy Whitson, and Sergei Treschev) are seen answering questions during the mission's press interview and photo opportunity. They answered various questions regarding the mission's objectives, the onboard science experiments, the extravehicular activities (EVAs) and the effects of living in space. Shots of the test deployment of the S1 truss radiator and Canadarm rotor joint are also shown.

  13. STS-112 Flight Day 7 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On this seventh day of STS-112 mission members of the crew (Commander Jeff Ashby; Pilot Pam Melroy; Mission Specialist Sandy Magnus, Piers Sellers, Dave Wolf, and Fyodor Yurchikhin) along with the Expedition Five crew (Commander Valery Korzun; Flight Engineer Peggy Whitson, and Sergei Treschev) are seen answering questions during the mission's press interview and photo opportunity. They answered various questions regarding the mission's objectives, the onboard science experiments, the extravehicular activities (EVAs) and the effects of living in space. Shots of the test deployment of the S1 truss radiator and Canadarm rotor joint are also shown.

  14. STS-96 Crew Training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The training for the crew members of the STS-96 Discovery Shuttle is presented. Crew members are Kent Rominger, Commander; Rick Husband, Pilot; Mission Specialists, Tamara Jernigan, Ellen Ochoa, and Daniel Barry; Julie Payette, Mission Specialist (CSA); and Valery Ivanovich Tokarev, Mission Specialist (RSA). Scenes show the crew sitting and talking about the Electrical Power System; actively taking part in virtual training in the EVA Training VR (Virtual Reality) Lab; using the Orbit Space Vision Training System; being dropped in water as a part of the Bail-Out Training Program; and taking part in the crew photo session.

  15. Commercial Biomedical Experiments

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Valerie Cassanto of ITA checks the Canadian Protein Crystallization Experiment (CAPE) carried by STS-86 to Mir in 1997. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  16. Portrait view of Whitson in Orlan suit

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09716 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, wears a Russian Orlan spacesuit as she prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.

  17. Portrait view of Whitson in Orlan suit

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09713 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, wears a Russian Orlan spacesuit as she prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.

  18. Stomatal Density and Responsiveness of Banana Fruit Stomates

    PubMed Central

    Johnson, Barbara E.; Brun, W. A.

    1966-01-01

    Determination of stomatal densities of the banana peel (Musa acuminata L. var Hort. Valery) by microscopic observations showed 30 times fewer stomates on fruit epidermis than found on the banana leaf. Observations also showed that peel stomates were not laid down in a linear pattern as on the leaf. It was demonstrated that stomatal responses occurred in banana fruit. Specific conditions of high humidity and light were necessary for stomatal opening: low humidity and darkness were necessary for closure. Responsiveness of the stomates continued for a considerable length of time after the fruit had been severed from the host. Images PMID:16656239

  19. STS-96 In-flight crew portrait in the Node 1/Unity module

    NASA Image and Video Library

    2016-08-30

    STS096-380-019 (27 May - 6 June 1999) --- The seven crew members for the STS-96 mission pose for the traditional inflight crew portrait in the hatch way of the U.S.-built Unity node for the International Space Station (ISS). From to left to right, bottom, are astronauts Daniel T. Barry, Julie Payette and Ellen Ochoa. On top are cosmonaut Valery I. Tokarev, along with astronauts Tamara E. Jernigan and Kent V. Rominger. Astronaut Rick D. Husband is between Rominger and Ochoa. Payette represents the Canadian Space Agency (CSA) and Tokarev is with the Russian Space Agency (RSA).

  20. Hatch opening and greeting after rendezvous

    NASA Image and Video Library

    1997-02-27

    STS081-373-025 (14 Jan 1997) --- Greeting between commanders - astronaut Michael A. Baker (foreground) and cosmonaut Valeri G. Korzun - just after hatch opening following the January 14, 1997, docking. Out of frame on the Space Shuttle Atlantis is astronaut Jerry M. Linenger, soon to be trading places with John E. Blaha, the current cosmonaut guest researcher, onboard Russia?s Mir Space Station since mid September 1996. Along with Baker and Linenger, other crew members now aboard Atlantis are astronauts Brent W. Jett, Jr., pilot; and mission specialists John M. Grunsfeld, Marsha S. Ivins and Peter J. K. (Jeff) Wisoff.

  1. Space Product Development (SPD)

    NASA Image and Video Library

    2003-01-12

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Valerie Cassanto of ITA checks the Canadian Protein Crystallization Experiment (CAPE) carried by STS-86 to Mir in 1997. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  2. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    Many of the moving rocks are about the size of a loaf of bread and weigh about 25 pounds. Interns Kristopher Schwebler and Valerie Fox make notes about this one. Photo credit: NASA/GSFC/Leva McIntire/LPSA intern To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  3. Joint STS-79 & Mir 22 crew in-flight portrait

    NASA Image and Video Library

    1996-09-23

    STS79-E-5289 (23 September 1996) --- Crew members of STS-79 and Mir-22 pose for final group portrait aboard Russia's Mir Space Station's Core Module before going separate ways in Earth-orbit, during Flight Day 8. Front row, left to right, are Aleksandr Y. Kaleri, Jerome (Jay) Apt, William F. Readdy and Shannon W. Lucid. On the back row are, left to right, Thomas D. Akers, Carl E. Walz, Valeri G. Korzun and Terrence W. Wilcutt. Note Blaha, the new cosmonaut researcher for Mir-22, is now wearing the uniform of that crew and Lucid's garment is uniform with the STS-79 astronauts.

  4. STS-96 FD Highlights and Crew Activities Report: Flight Day 01

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this first day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  5. Shuttle Discovery Arrives at Udvar-Hazy

    NASA Image and Video Library

    2012-04-19

    Dr. Valerie Neal, curator for the shuttle program in the Space History office at the National Air and Space Museum, attends the transfer ceremony for space shuttle Discovery, Thursday, April 19, 2012, at the Smithsonian's Steven F. Udvar-Hazy Center in Chantilly, Va. Discovery, the first orbiter retired from NASA’s shuttle fleet, which completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 148,221,675 miles will take the place of Enterprise at the center to commemorate past achievements in space and to educate and inspire future generations of explorers at the center. Photo Credit: (NASA/Carla Cioffi)

  6. Whitson after EVA 1 completed

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09719 (14 August 2002) --- Astronaut Peggy A. Whitson, Expedition Five flight engineer, photographed in her thermal undergarment prior to donning a Russian Orlan spacesuit, prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Whitson and cosmonaut Valery G. Korzun, mission commander, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts.

  7. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-08

    From left to right, Russian Space Forces cosmonaut Yuri Shargin, Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov, Expedition 10 backup Soyuz Commander Valery Tokarev and backup Expedition Commander Bill McArthur speak with officials from behind glass after having conducted a final inspection of their Soyuz TMA-5 spacecraft on Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan in preparation for their launch October 14 to the International Space Station. The Soyuz vehicle will be mated to its booster rocket October 11 in preparation for its rollout to the Central Asian launch pad October 12. Photo Credit: (NASA/Bill Ingalls)

  8. Expedition 11 and Expedition 12 on-orbit crew portrait

    NASA Image and Video Library

    2005-10-08

    ISS011-E-14191 (8 October 2005) --- The crewmembers onboard the International Space Station pose for a group photo in the Destiny laboratory following the ceremony of Changing-of-Command from Expedition 11 to Expedition 12. From the left (front row) are Russian Federal Space Agency cosmonaut Sergei K. Krikalev, Expedition 11 commander; and astronaut William S. McArthur Jr., Expedition 12 commander and NASA science officer. From the left (back row) are astronaut John L. Phillips, Expedition 11 NASA science officer and flight engineer; U.S. Spaceflight Participant Gregory Olsen; and Russian Federal Space Agency cosmonaut Valery I. Tokarev, Expedition 12 flight engineer.

  9. Installation of Radioskaf 11.2 Kit and batteries for Radioskaf (Suitsat-1) on Expedition 12

    NASA Image and Video Library

    2006-01-24

    ISS012-E-15655 (24 Jan. 2006) --- In the Unity node of the International Space Station, cosmonaut Valery I. Tokarev, Expedition 12 flight engineer representing Russia's Federal Space Agency, puts finishing touches on an old Russian Orlan spacesuit that will be released by hand from the space station during a spacewalk Feb. 3, 2006. Outfitted with a special radio transmitter and other gear, the spacesuit comprises a Russian experiment called SuitSat. It will fly free from the station as a satellite in orbit for several weeks of scientific research and radio tracking, including communications by amateur radio operators. Eventually, it will enter the atmosphere and be destroyed.

  10. KSC-98pc492

    NASA Image and Video Library

    1998-04-17

    KENNEDY SPACE CENTER, FLA. -- STS-90 Pilot Scott Altman is assisted during suit-up activities by Lockheed Suit Technician Valerie McNeil from Johnson Space Center in KSC's Operations and Checkout Building. Altman and the rest of the STS-90 crew will shortly depart for Launch Pad 39B, where the Space Shuttle Columbia awaits a second liftoff attempt at 2:19 p.m. EDT. His first trip into space, Altman is participating in a life sciences research flight that will focus on the most complex and least understood part of the human body the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body

  11. STS-91 Flight Day 1 Highlights and Crew Activities Report

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this first day of the STS-91 mission, the flight crew, Cmdr. Charles J. Precourt, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Franklin R. Chang-Diaz, Janet Lynn Kavandi, Wendy B. Lawrence, Valery Victorovitch Ryumin and Andrew S. W. Thomas, can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  12. Korzun after EVA 1 completed

    NASA Image and Video Library

    2002-08-14

    ISS005-E-09725 (14 August 2002) --- Cosmonaut Valery G. Korzun, Expedition Five mission commander, attired in his thermal undergarment prior to donning a Russian Orlan spacesuit, prepares for an upcoming session of extravehicular activity (EVA) from the Pirs docking compartment on the International Space Station (ISS). The spacewalk is scheduled for August 16, 2002, which will be the 42nd spacewalk at the station and the 17th based out of the station. Korzun and astronaut Peggy A. Whitson, flight engineer, will install six debris panels on the Zvezda Service Module. The panels are designed to shield Zvezda from potential space debris impacts. Korzun, who represents Rosaviakosmos, is also scheduled for a spacewalk on August 22, 2002.

  13. STS-81 Flight Day 8

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On this eighth day of the STS-81 mission, the flight crew, Cmdr. Michael A. Baker, Pilot Brent W. Jett, Mission Specialists, John M. Grunsfeld, Marsha S. Ivins, Peter J.K. Wisoff, and John Blaha, bid farewell to Jerry Linenger and cosmonauts of Mir. Prior to hatch closure, the astronauts and cosmonauts conduct a formal farewell ceremony in the Mir Core Module. They then field questions from Russian and U.S. reporters in a joint news conference. Commander Mike Baker, Pilot Brent Jett and Mission Specialists Jeff Wisoff, John Grunsfeld, Marsha Ivins and John Blaha say goodbye to Mir 22 Commander Valery Korzun, Flight Engineer Alexander Kaleri and the newest Mir crewmember, astronaut Jerry Linenger. The hatches on the two spacecraft are closed.

  14. Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callan, Curtis G.; Gubser, Steven S.; Marlow, Daniel R.

    The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased),more » Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.« less

  15. International Program and Local Organizing Committees

    NASA Astrophysics Data System (ADS)

    2012-12-01

    International Program Committee Dionisio Bermejo (Spain) Roman Ciurylo (Poland) Elisabeth Dalimier (France) Alexander Devdariani (Russia) Milan S Dimitrijevic (Serbia) Robert Gamache (USA) Marco A Gigosos (Spain) Motoshi Goto (Japan) Magnus Gustafsson (Sweden) Jean-Michel Hartmann (France) Carlos Iglesias (USA) John Kielkopf (USA) John C Lewis (Canada) Valery Lisitsa (Russia) Eugene Oks (USA) Christian G Parigger (USA) Gillian Peach (UK) Adriana Predoi-Cross (Canada) Roland Stamm (Germany) Local Organizing Committee Nikolay G Skvortsov (Chair, St Petersburg State University) Evgenii B Aleksandrov (Ioffe Physico-Technical Institute, St Petersburg) Vadim A Alekseev (Scientific Secretary, St Petersburg State University) Sergey F Boureiko (St.Petersburg State University) Yury N Gnedin (Pulkovo Observatory, St Petersburg) Alexander Z Devdariani (Deputy Chair, St Petersburg State University) Alexander P Kouzov (Deputy Chair, St Petersburg State University) Nikolay A Timofeev (St Petersburg State University)

  16. STS-96 FD Highlights and Crew Activities Report: Flight Day 05

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this fifth day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing logistics transfer activities within the Discovery/International Space Station orbiting complex. The crew transfers supplies, equipment, and water. Payette and Tokarev perform maintenance activities on the storage batteries in the Zarya module. Barry and Tokarev install acoustic insulation around some of the fans inside Zarya. Jernigan and Husband install shelving in 2 soft stowage racks. Husband and Barry troubleshoot and perform maintenance activities on the Early Communications System. At the end of the workday, Rominger, Jernigan, and Barry discussed the progress of the mission with NBC's "Today," CBS "This Morning," and CNN.

  17. STS-96 FD Highlights and Crew Activities Report: Flight Day 04

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this fourth day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing final preparations for their space walk. Views of the crew helping Barry and Jernigan suit up for their mission is also presented. Ochoa uses the robot arm to maneuver Jernigan up to the space station module. During the space walk Barry and Jernigan move two cranes, and three bags containing handrails and tools to the outside of the Unity module. They also install a thermal cover on a Unity trunnion pin, inspect peeling paint on Zarya and one of the two Early Communications System antennas on Unity.

  18. KSC-143fr8

    NASA Image and Video Library

    1998-02-13

    Technicians assist in moving the alpha-magnetic spectrometer (AMS-1) from its protective shipping case in KSC’s Multi Payload Processing Facility (MPPF). The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery

  19. KSC-99pp0641

    NASA Image and Video Library

    1999-06-07

    At the Cape Canaveral Air Station Skid Strip, STS-96 crew members and their families board a plane to return to the Johnson Space Center in Houston, Texas. From left are the son, Ivan, and wife, Irina, of Mission Specialist Valery Ivanovich Tokarev (carrying a duffel bag); and Mission Specialist Ellen Ochoa, holding her son, Wilson Miles-Ochoa. Other crew members also returning are Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.) and Julie Payette (with the Canadian Space Agency). After a successful 10-day mission to the International Space Station aboard Space Shuttle Discovery, the crew landed June 6 at 2:02:43 a.m. EDT, in the 11th night landing at KSC

  20. KSC-02pd0709

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- The Expedition 5 crew poses during suitup prior to going to the launch pad for a simulated countdown. From left are astronaut Sergei Treschev, astronaut Peggy Whitson and Commander Valeri Korzun. Treschev and Korzun are with the Russian Space Agency. The simulation is part of STS-111 Terminal Countdown Demonstration Test activities, which also includes the mission crew Commander Kenneth Cockrell, Pilot Paul Lockhart and Mission Specialists Franklin Chang-Diaz and Philippe Perrin, with the French Space Agency. The payload on the mission to the International Space Station includes the Mobile Base System, an Orbital Replacement Unit and Multi-Purpose Logistics Module Leonardo. The Expedition 5 crew is traveling on Endeavour to replace the Expedition 4 crew on the Station. Launch of Endeavour is scheduled for May 30, 2002.

  1. The SPACEHAB double module is moved into the payload changeout room at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This fish-eye view shows the SPACEHAB Double module being moved into the payload changeout room at Launch Pad 39B before being transferred to Space Shuttle Discovery's payload bay for mission STS-96. The second flight supporting construction of the International Space Station, STS-96 is a logistics and resupply mission, carrying more than 5,000 pounds of supplies, a Russian- built crane and a U.S.-built crane, plus experiments such as STARSHINE, which was developed by and for students. Comprising the crew are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. Liftoff is scheduled for May 20 at 9:32 a.m. EDT.

  2. KSC-98pc688

    NASA Image and Video Library

    1998-06-02

    KENNEDY SPACE CENTER, Fla. -- Some of Florida's natural foliage stands silent sentinel to the lift off of the Space Shuttle Discovery from Launch Pad 39A at 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as a STS-91 crew member after living more than four months aboard Mir

  3. STS-91 Launch of Discovery from Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Some of Florida's natural foliage stands silent sentinel to the lift off of the Space Shuttle Discovery from Launch Pad 39A at 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir.

  4. KSC-146fr3

    NASA Image and Video Library

    1998-02-13

    Technicians observe the alpha-magnetic spectrometer (AMS-1) after it was removed from its protective shipping case in KSC’s Multi Payload Processing Facility (MPPF). The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery

  5. KSC-147fr11

    NASA Image and Video Library

    1998-02-13

    A technician observes the alpha-magnetic spectrometer (AMS-1) after it was removed from its protective shipping case in KSC’s Multi Payload Processing Facility (MPPF). The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery

  6. Joint in-flight portrait of the STS-81 and Mir 22 crew on Mir

    NASA Image and Video Library

    1997-02-26

    STS081-369-003 (12-22 Jan. 1997) --- Traditional inflight crew portrait of the combined Mir-22 and STS-81 crews in the Base Block Module aboard Russia's Mir Space Station. Front row: left to right, Michael A. Baker, commander; John M. Grunsfeld, mission specialist; and cosmonaut Aleksandr Y. Kaleri, Mir-22 flight engineer. Middle row: cosmonaut Valeri G. Korzun, Mir-22 commander; Marsha S. Ivins, mission specialist; and John E. Blaha, former cosmonaut guest researcher. Back row: Jerry M. Linenger, cosmonaut guest researcher; Peter J. K. (Jeff) Wisoff, mission specialist; and Brent W. Jett, Jr., pilot. Linenger is seen in a Russian jump suit, and Blaha now wears a Space Shuttle inflight garment as the two exchanged cosmonaut guest researcher roles on January 14, 1997, following the docking of the Atlantis and the Mir complex.

  7. KSC-03PD-1399

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto holds a piece of the Commercial ITA Biomedical Experiments payload that was carried on mission STS-107 and recently recovered. She is the daughter of John Cassanto of ITA, who is part of a recovery team transferring experiments to alternate containers. One of the experiments was the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.

  8. KSC-03PD-1400

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto holds a piece of the Commercial ITA Biomedical Experiments payload that was carried on mission STS-107 and recently recovered. She is the daughter of John Cassanto of ITA, who is part of a recovery team transferring experiments to alternate containers. One of the experiments was the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.

  9. KSC-03PD-1398

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA and his daughter Valerie stand next to the table holding the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.

  10. KSC-03pd1398

    NASA Image and Video Library

    2003-05-05

    KENNEDY SPACE CENTER, FLA. - John Cassanto of ITA and his daughter Valerie stand next to the table holding the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS) experiment that was carried on mission STS-107 as part of the Commercial ITA Biomedical Experiments payload. He is part of a recovery team transferring experiments to alternate containers. GOBBSS was a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.

  11. KSC-03pd1400

    NASA Image and Video Library

    2003-05-05

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto holds a piece of the Commercial ITA Biomedical Experiments payload that was carried on mission STS-107 and recently recovered. She is the daughter of John Cassanto of ITA, who is part of a recovery team transferring experiments to alternate containers. One of the experiments was the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.

  12. KSC-03pd1399

    NASA Image and Video Library

    2003-05-05

    KENNEDY SPACE CENTER, FLA. - Valerie Cassanto holds a piece of the Commercial ITA Biomedical Experiments payload that was carried on mission STS-107 and recently recovered. She is the daughter of John Cassanto of ITA, who is part of a recovery team transferring experiments to alternate containers. One of the experiments was the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), a Planetary Society-sponsored astrobiology experiment developed by the Israeli Aerospace Medical Institute and the Johnson Space Center Astrobiology Center, with joint participation of an Israeli and a Palestinian student. The recovery team also includes Eran Schenker of the Israeli Aerospace Medical Institute; David Warmflash of JSC, and Louis Friedman, executive director of the Planetary Society. The GOBBSS material will be sent to JSC where the science team will analyze the samples, studying the effects of spaceflight on bacterial growth.

  13. [Mythology and the medicinal plants of antiquity].

    PubMed

    Fabre, André-Julien

    2003-01-01

    In any civilization, nature is closely bound to the world of divinities. This is clearly seen in the Mediterranean world of Antiquity in every reference to the medicinal plants. Our aim, in this study, was to demonstrate the link between mythology and medicine. Through several centuries of medicinal practice, appears a therapeutic knowledge close to become a science. In spite of many gaps, errors and illusions thus emerges a first attempt to master the art of healing. Is it possible to speculate on a new type of drug research guided from ancient texts? Ethnopharmacology investigating medicinal traditions of the world has already obtained in this field some spectacular findings. At the moment, it would be difficult to predict the future of archeopharmacology but as Paul Valery said: "Present is nothing else than a future nutriment for the past".

  14. STS-91 AMS-01 payload moved from MPPF to SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The alpha-magnetic spectrometer (AMS-1) is lifted in KSC's MultiPayload Processing Facility in preparation for a move to the Space Station Processing Facility via the Payload Environmental Transportation System. The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery.

  15. KSC-02pd0706

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-111 Mission Specialist Philippe Perrin, with the French Space Agency, looks over the payload installed in Endeavour's payload bay. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include payload familiarization and a simulated launch countdown. The crew also comprises Commander Kenneth Cockrell, Pilot Paul Lockhart and Mission Specialist Franklin Chang-Diaz. The payload on mission STS-111 to the International Space Station includes the Mobile Base System, an Orbital Replacement Unit and Multi-Purpose Logistics Module Leonardo. Traveling on Endeavour is also the Expedition 5 crew - Commander Valeri Korzun, Peggy Whitson and Sergei Treschev -- who will replace the Expedition 4 crew on the Station. Korzun and Treschev are with the Russian Space Agency. Launch of Endeavour is scheduled for May 30, 2002

  16. KSC-02pd0707

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-111 Mission Specialists Philippe Perrin, with the French Space Agency, and Franklin Chang-Diaz pause during their checkout of the payload installed in Endeavour's payload bay. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include payload familiarization and a simulated launch countdown. The crew also comprises Commander Kenneth Cockrell and Pilot Paul Lockhart. The payload on the mission to the International Space Station includes the Mobile Base System, an Orbital Replacement Unit and Multi-Purpose Logistics Module Leonardo. Traveling on Endeavour is also the Expedition 5 crew - Commander Valeri Korzun, Peggy Whitson and Sergei Treschev -- who will replace the Expedition 4 crew on the Station. Korzun and Treschev are with the Russian Space Agency. Launch of Endeavour is scheduled for May 30, 2002.

  17. STS-96 Mission Highlights. Part 2

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this second part of a three-part video mission-highlights set, on-orbit spacecrew activities performed on the STS-96 Space Shuttle Orbiter Discovery and the International Space Station are reviewed. The flight crew consists of Kent V. Rominger, Commander; Rick D. Husband, Pilot; and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette (Canadian), and Valery Ivanovich Tokarev (Russian). The primary goals of this mission were to work on logistics and resupply the International Space Station. This second part in the mission series features video from Flight Day 4-7 (FD 4-7). FD 4 of STS-96 presents astronauts Tammy Jernigan and Dan Barry completing the second longest space walk in shuttle history. Footage includes Jernigan and Barry transferring and installing two cranes from the shuttle's payload bay to locations on the outside of the station. The astronauts enter the International Space Station delivering supplies and prepare the outpost to receive its first resident crew, scheduled to arrive in early 2000 on FD 5. The video also captures the crew involved in logistics transfer activities within the Discovery/ISS orbiting complex. FD 6 includes footage of Valery Tokarev and Canadian astronaut Julie Payette charging out the final six battery recharge controller units for two of Zarya's power-producing batteries and all crew members' involvement in logistics transfer activities from the SPACEHAB module to designated locations in the International Space Station. With the transfer work of FD 6 all but complete, the astronauts conduct some additional work, installing parts of a wireless strain gauge system that will help engineers track the effects of adding modules to the station throughout its assembly. Moving the few remaining items from Discovery to the ISS, then closing a series of hatches within the station's modules leading back to the shuttle are the primary activities contained in FD 7. Final coverage features Discovery

  18. STS-96 FD Highlights and Crew Activities Report: Flight Day 06

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On this sixth day of the STS-96 Discovery mission, the flight crew, Commander Kent V. Rominger, Pilot Rick D. Husband, and Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev are seen performing logistics transfer activities within the Discovery/International Space Station orbiting complex. Ochoa, Jernigan, Husband and Barry devote a significant part of their day to the transfer of bags of different sizes and shapes from the SPACEHAB module in Discovery's cargo bay to resting places inside the International Space Station. Payette and Tokarev complete the maintenance on the storage batteries. Barry and Tokarev complete installation of the remaining sound mufflers over the fans in Zarya. Barry then measures the sound levels at different positions inside the module. Rominger and Tokarev conduct a news conference with Russian reporters from the Mission Control Center in Moscow.

  19. KSC-98pc376

    NASA Image and Video Library

    1998-03-18

    KENNEDY SPACE CENTER, FLA. -- The alpha-magnetic spectrometer (AMS-1) is lifted in KSC’s MultiPayload Processing Facility in preparation for a move to the Space Station Processing Facility via the Payload Environmental Transportation System. The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery

  20. KSC-98pc375

    NASA Image and Video Library

    1998-03-18

    KENNEDY SPACE CENTER, FLA. -- The alpha-magnetic spectrometer (AMS-1) is lifted in KSC’s MultiPayload Processing Facility in preparation for a move to the Space Station Processing Facility via the Payload Environmental Transportation System. The STS-91 payload arrived at KSC in January and is scheduled to be flown on the 9th and final Mir docking mission, scheduled for launch in May. The objectives of the AMS-1 investigation are to search for anti-matter and dark matter in space and to study astrophysics. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. After docking with the Russian Space Station Mir, Mission Specialist Andrew Thomas, Ph.D., will join the STS-91 crew and return to Earth aboard Discovery

  1. KSC-98pc684

    NASA Image and Video Library

    1998-06-02

    KENNEDY SPACE CENTER, Fla. -- The Space Coast's natural foliage frames the Space Shuttle Discovery and the reflection of the intense heat and light of its liftoff from Launch Pad 39A at 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir

  2. KSC-98pc683

    NASA Image and Video Library

    1998-06-02

    KENNEDY SPACE CENTER, Fla. -- Tree branches frame the Space Shuttle Discovery as it lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2 on its way to the Mir space station. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir

  3. STS-91 Launch of Discovery from Launch Pad 39-A

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Searing the early evening sky with its near sun-like rocket exhaust, the Space Shuttle Discovery lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2 on its way to the Mir space station. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as a STS-91 crew member after living more than four months aboard Mir.

  4. MS Lucid places samples in the TEHOF aboard the Spektr module

    NASA Image and Video Library

    1997-03-26

    STS079-S-082 (16-26 Sept. 1996) --- Cosmonaut guest researcher Shannon W. Lucid and Valeri G. Korzun, her Mir-22 commander, are pictured on the Spektr Module aboard Russia's Earth-orbiting Mir Space Station. Korzun was the third of four commanders that Lucid served with during her record-setting 188 consecutive days in space. Later, Lucid returned to Earth with her fourth commander-astronaut William F. Readdy-and five other NASA astronauts to complete the STS-79 mission. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the space shuttle Atlantis and the various Mir modules. A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  5. KSC-98pc641

    NASA Image and Video Library

    1998-05-26

    Technicians supervise the closure of Discovery's payload bay doors from the Payload Changout Room at Launch Pad 39A as preparations for the STS-91 launch continue. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  6. KSC-98pc640

    NASA Image and Video Library

    1998-05-26

    Technicians supervise the closure of Discovery's payload bay doors from the Payload Changout Room at Launch Pad 39A as preparations for the STS-91 launch continue. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  7. Review Symposium; Dancing on the Ceiling: A Study of Women Managers in Education, by Valerie Hall. London: Paul Chapman, 1996.

    ERIC Educational Resources Information Center

    Hall, Valerie; Gronn, Peter; Jenkin, Mazda; Power, Sally; Reynolds, Cecilia

    1999-01-01

    Hall and four colleagues review "Dancing on the Ceiling: A Study of Women Managers in Education" (Paul Chapman, 1996). Reviewers agree that Hall's profiles of six British elementary and secondary women headteachers should improve readers' understanding of female managers' development and their preference for "soft,"…

  8. STS-111 Flight Day 09 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 flight crew consists of Kenneth D. Cockrell, Commander, Paul S. Lockhart, Pilot, Franklin R. Chang-Diaz, Mission Specialist, Philippe Perrin, (CNES), Mission Specialist, Valery G. Korzun, (RSA), ISS Up, Peggy A. Whitson, ISS Up , Sergei Y. Treschev (RSC), ISS Up, Yuri I. Onufriyenko (RSA), ISS Down, Carl E. Walz, and Daniel W. Bursch (ISS) Down. The main goal on this ninth day of flight STS-111, is to replace the wrist roll joint of the Robotic Arm on the International Space Station. Live footage of the wrist roll joint replacement is presented. Paul Lockhart is the spacewalk coordinator for this mission. Franklin Chang-Diaz and Philippe Perrin, are responsible for replacing the wrist roll joint and performing maintenance activities. The spacewalk to repair this joint occurs outside the Space Station's Quest Airlock. The wrist roll joint was replaced successfully. The spacewalk took approximately 7 hours and 17 minutes to complete.

  9. [Activities of Colorado University

    NASA Technical Reports Server (NTRS)

    Snow, Theodore P.; Bierbaum, Veronica

    2003-01-01

    During the report period we completed several studies and embarked on a new set of laboratory experiments. We also hired a new post-doctoral Research Associate, Momir Stepanovic, who has gradually assumed leadership in the laboratory work. The other person involved has been graduate student Brian Eichelberger, who will complete his Ph.D. based on this work by late spring of this year. We have also continued to collaborate with our previous postdoctoral Research Associate, Valery Le Page, through a consulting arrangement. In the following sections we summarize work that has been completed and either in print, in press, or in final stages of preparation for publication; current work being carried out in the laboratory; and plans for the coming year. Work completed in 2002: 1. Modeling the physical and chemical states of PAHs in the diffuse interstellar medium. 2. Hydrogenation and charge states of polycyclic aromatic hydrocarbons in diffuse clouds. 3. Laboratory studies of chemical reactions involving carbon chain anions.

  10. KSC-97pc782

    NASA Image and Video Library

    1997-05-11

    STS-84 Mission Specialist Elena V. Kondakova, a cosmonaut with the Russian Space Agency, and her husband, Valery Ryumin, greet press represenatives and other well wishers after her arrival at KSC’s Shuttle Landing Facility. Ryumin is director of the Mir-Shuttle program for RSC Energia in Russia. This will be Kondakova’s first flight on a U.S. Space Shuttle, but her second trip into space. She spent 169 days in space as flight engineer of the 17th main mission on Mir from October 1994 to March 1995. STS-84 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. During the docking, STS-84 Mission Specialist C. Michael Foale will transfer to the Russian space station to become a member of the Mir 23 crew, replacing U.S. astronaut Jerry M. Linenger, who will return to Earth on Atlantis. Foale is scheduled to remain on Mir about four months until his replacement arrives on STS-86 in September

  11. STS-96 Crew Training, Mission Animation, Crew Interviews, STARSHINE, Discovery Rollout and Repair of Hail Damage

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Live footage shows the crewmembers of STS-96, Commander Kent V. Rominger, Pilot Rick D. Husband, Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette and Valery Ivanovich Tokarev during various training activities. Scenes include astronaut suit-up, EVA training in the Virtual Reality Lab, Orbiter space vision training, bailout training, and crew photo session. Footage also shows individual crew interviews, repair activities to the external fuel tank, and Discovery's return to the launch pad. The engineers are seen sanding, bending, and painting the foam used in repairing the tank. An animation of the deployment of the STARSHINE satellite, International Space Station, and the STS-96 Mission is presented. Footage shows the students from Edgar Allen Poe Middle School sanding, polishing, and inspecting the mirrors for the STARSHINE satellite. Live footage also includes students from St. Michael the Archangel School wearing bunny suits and entering the clean room at Goddard Space Flight Center.

  12. STS-96 M.S. Payette and Pilot Husband try on gas masks as part of a TCDT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Launch Pad 39B, STS-96 Mission Specialist Julie Payette, with the Canadian Space Agency, and Pilot Rick Douglas Husband practice putting on oxygen gas masks as part of Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress traiing, simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Ellen Ochoa (Ph.D.) and Valery Ivanovich Tokarev, with the Russian Space Agency. Scheduled for liftoff on May 20 at 9:32 a.m., STS- 96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- led experiment.

  13. STS-96 M.S. Tokarev tries gas mask as part of a TCDT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-96 Mission Specialist Valery Ivanovich Tokarev, with the Russian Space Agency, tries on an oxygen gas mask during Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39B. The TCDT provides the crew with simulated countdown exercises, emergency egress training and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Ellen Ochoa (Ph.D.) and Julie Payette, with the Canadian Space Agency. Scheduled for liftoff on May 20 at 9:32 a.m., STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment.

  14. STS-91 Mission Specialist Kavandi visits Pad 39A before launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Specialist Janet Kavandi, Ph.D., visits Launch Pad 39A from which she is scheduled to be launched aboard Space Shuttle Discovery on June 2 around 6:10 p.m. EDT. In her pocket are flowers intended as gifts for her two children whom she will be seeing shortly. STS-91 will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Franklin Chang-Diaz, Ph.D.; Wendy B. Lawrence; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.

  15. KSC-98pc732

    NASA Image and Video Library

    1998-06-02

    KENNEDY SPACE CENTER, Fla. -- Startled by the thunderous roar of the Space Shuttle Discovery’s engines as it lifts off, birds hurriedly leave the Launch Pad 39A area for a more peaceful site. Liftoff time for the 91st Shuttle launch and last Shuttle-Mir mission was 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir

  16. KSC-98pc687

    NASA Image and Video Library

    1998-06-02

    KENNEDY SPACE CENTER, Fla. -- Startled by the thunderous roar of the Space Shuttle Discovery’s engines as it lifts off, a bird hurriedly leaves the Launch Pad 39A area for a more peaceful site. Liftoff time for the 91st Shuttle launch and last Shuttle-Mir mission was 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir

  17. KSC-99pp0582

    NASA Image and Video Library

    1999-05-27

    In the Operations and Checkout Building, STS-96 Mission Specialist Valery Ivanovich Tokarev, who represents the Russian Space Agency, waves as he is assisted by a suit technician in donning his launch and entry suit during final launch preparations. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction.. Space Shuttle Discovery is due to launch today at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT

  18. Quarantine security of bananas at harvest maturity against Mediterranean and Oriental fruit flies (Diptera: Tephritidae) in Hawaii.

    PubMed

    Armstrong, J W

    2001-02-01

    Culled bananas (dwarf 'Brazilian', 'Grand Nain', 'Valery', and 'Williams') sampled from packing houses on the islands of Hawaii, Kauai, Maui, Molokai, and Oahu identified specific "faults" that were at risk from oriental fruit fly, Bactrocera dorsalis (Hendel), infestation. Faults at risk included bunches with precociously ripened bananas, or bananas with tip rot, fused fingers, or damage that compromised skin integrity to permit fruit fly oviposition into fruit flesh. No Mediterranean fruit fly, Ceratitis capitata (Wiedemann), or melon fly, B. cucurbitae (Coquillett), infestations were found in culled banana samples. Field infestation tests indicated that mature green bananas were not susceptible to fruit fly infestation for up to 1 wk past the scheduled harvest date when attached to the plant or within 24 h after harvest. Recommendations for exporting mature green bananas from Hawaii without risk of fruit fly infestation are provided. The research reported herein resulted in a USDA-APHIS protocol for exporting mature green bananas from Hawaii.

  19. STS-84 M.S. Kondakova with husband Ryumin at SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-84 Mission Specialist Elena V. Kondakova, a cosmonaut with the Russian Space Agency, and her husband, Valery Ryumin, greet press represenatives and other well wishers after her arrival at KSCs Shuttle Landing Facility. Ryumin is director of the Mir- Shuttle program for RSC Energia in Russia. This will be Kondakovas first flight on a U.S. Space Shuttle, but her second trip into space. She spent 169 days in space as flight engineer of the 17th main mission on Mir from October 1994 to March 1995. STS-84 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. During the docking, STS-84 Mission Specialist C. Michael Foale will transfer to the Russian space station to become a member of the Mir 23 crew, replacing U.S. astronaut Jerry M. Linenger, who will return to Earth on Atlantis. Foale is scheduled to remain on Mir about four months until his replacement arrives on STS-86 in September.

  20. sts111-s-008

    NASA Image and Video Library

    2002-06-05

    STS111-S-008 (5 June 2002) --- The Space Shuttle Endeavour leaves the launch pad, headed into space for mission STS-111 to the International Space Station (ISS). Liftoff occurred at 5:22:49 p.m. (EDT), June 5, 2002. The STS-111 crew includes astronauts Kenneth D. Cockrell, commander; Paul S. Lockhart, pilot, and Franklin R. Chang-Diaz and Philippe Perrin, mission specialists. Also onboard were the Expedition Five crew members including cosmonaut Valery G. Korzun, commander, along with astronaut Peggy A. Whitson and cosmonaut Sergei Y. Treschev, flight engineers. Perrin represents CNES, the French space agency, and Korzun and Treschev are with the Russian Aviation and Space Agency (Rosaviakosmos). This mission marks the 14th Shuttle flight to the International Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program.

  1. The STS-96 crew takes part in a Crew Equipment Interface Test at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 1, STS-96 Mission Specialists Daniel Barry (M.D., Ph.D.), Valery Ivanovich Tokarev and Tamara E. Jernigan (Ph.D.) look into the payload bay of the orbiter Discovery. The STS-96 crew is at KSC for a Crew Equipment Interface Test. Other crew members participating are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.) and Julie Payette, with the Canadian Space Agency. The primary payload of STS-96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B.

  2. KSC-01pp1510

    NASA Image and Video Library

    2001-08-20

    KENNEDY SPACE CENTER, Fla. -- The STS-111 crew spend time in the Space Station Processing Facility learning more about the payload they will be transporting: The Mobile Base System (MBS). Standing left to right in the back row are Expedition Five Commander Valeri Kozun, with the Russian Aviation and Space Agency; Mission Specialist Phillippe Perrin, with the French space agency CNES; Pilot Paul Lockhart; trainer Chris Hardcastle; Mission Specialist Franklin Chang-Diaz; and Commander Ken Cockrell. Flanked by trainers in the front row is (center) Peggy Whitson, another of the Expedition Five crew who will ferried to the International Space Station. The MBS will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the Truss to work sites. The Expedition Five crew will be replacing Expedition Four. Launch of Endeavour on mission STS-111 is scheduled for April 18, 2002

  3. KSC-99pp0477

    NASA Image and Video Library

    1999-04-29

    The STS-96 crew pose for a group photo after emergency egress training at Launch Pad 39B. From left are Mission Specialist Ellen Ochoa (Ph.D.); Pilot Rick Douglas Husband; Mission Specialists Julie Payette, Daniel Barry (M.D., Ph.D.), and Tamara E. Jernigan (Ph.D.); Commander Kent V. Rominger; and Mission Specialist Valery Ivanovich Tokarev. Payette is with the Canadian Space Agency, and Ivanovich Tokarev with the Russian Space Agency. Behind them is the tip of the external tank, which is 153.8 feet high. The external tank provides fuel to the three space shuttle main engines in the orbiter during liftoff and ascent. It is eventually jettisoned, entering the Earth's atmosphere, breaking up and impacting a remote ocean area. STS-96, scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  4. KSC-99pp0451

    NASA Image and Video Library

    1999-04-27

    During emergency egress training at Launch Pad 39B, members of the STS-96 crew ride inside a small armored personnel carrier. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. From left are Pilot Rick Douglas Husband; Mission Specialists Daniel Barry (partly hidden), Tamara E. Jernigan, Julie Payette, and Valery Ivanovich Tokarev; and Commander Kent V. Rominger. Not shown is Mission Specialist Ellen Ochoa. The crew are at KSC for Terminal Countdown Demonstration Test (TCDT) activities, which also include simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  5. STS-111 Flight Day 2 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 2 of STS-111, the crew of Endeavour (Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist) and the Expedition 5 crew (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer), having successfully entered orbit around the Earth, begin to maneuver towards the International Space Station (ISS), where the Expedition 5 crew will replace the Expedition 4 crew. Live video is shown of the Earth from several vantage points aboard the Shuttle. The center-line camera, which will allow Shuttle pilots to align the docking apparatus with that on the ISS, provides footage of the Earth. Chang-Diaz participates in an interview, in Spanish, conducted from the ground via radio communications, with Cockrell also appearing. Footage of the Earth includes: Daytime video of the Eastern United States with some cloud cover as Endeavour passes over the Florida panhandle, Georgia, and the Carolinas; Daytime video of Lake Michigan unobscured by cloud cover; Nighttime low-light camera video of Madrid, Spain.

  6. KSC-02pd0690

    NASA Image and Video Library

    2002-05-15

    KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at KSC, Expedition 5 member Peggy Whitson drives the M-113 armored personnel carrier, used for emergency egress training at the pad. Passengers in the vehicle are Expedition 5 Commander Valeri Korzun and George Hoggard (center), with the KSC/CCAS Fire Department, who supervises the driving. Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. The TCDT also includes a simulated launch countdown Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002

  7. Senescense

    PubMed Central

    De Leo, Pietro; Sacher, Joseph A.

    1970-01-01

    During ripening of banana (Musa sapientum L., var. Gros Michel or Valery) acid phosphatase activity increases 13-to 26-fold in the precipitate and 2- to 4-fold in the supernatant fraction of tissue homogenates. These increases are closely correlated with the onset and peak of the climacteric. The precipitate enzyme may be extracted with Triton X-100, CaCl2 or NaCl; about 80% of it is in a 500g precipitate. Studies on effect of tonicity of the grinding medium indicate that the precipitate enzyme is desorbed from membrane or cell wall surfaces, and is not released as a result of lysis of membranes. The development of acid phosphatase during aging of tissue slices is the same as in intact fruit. Short term studies of tissue slices with cycloheximide and actinomycin D indicate that the increase in activity is owed to new enzyme synthesis, which is dependent upon synthesis of RNA. The possible effects of the increase in acid phosphatase on ripening are discussed. PMID:16657436

  8. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    This group photo of the LPSA interns and trip leaders was taken at Tea Kettle Junction in Death Valley, Calif. (Standing on left side, left to right): Kristopher Schwebler, Valerie Fox, Emily Kopp, Kyle Yawn, Dan Burger, Ian Schoch, Devon Miller; (left to right, sitting) Justin Wilde, Jessica Marbourg, Maggie McAdam (a trip leader), Leva McIntire, Ann Parsons (a trip leader), Mindy Krzykowski, Emma McKinney, Cynthia Cheung (LPSA principal investigator and a trip leader), George Fercana; (standing on right side): Kynan Rilee, Gregory Romine, Clint Naquin, Gunther Kletetschka (a trip leader), Andrew Ryan, and in the very back, Brian Jackson (a trip leader). Photo credit: NASA/GSFC/ Leva McIntire/LPSA intern To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  9. STS-96 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Crew of STS-96 Discovery Shuttle, Commander Kent V. Rominger, Pilot Rick D. Husband, Mission Specialists Ellen Ochoa, Tamara E. Jernigan, Daniel T. Barry, Julie Payette, and Valery Ivanovich Tokarev, are shown narrating the mission highlights. Scenes include walk out to the transfer vehicle, and launch of the shuttle. Also presented are scenes of the start of the main engine, ignition of the solid rocket boosters, and the separation of the solid rocket boosters. Footage of Payette preparing the on-board camera equipment, while Barry and Jernigan perform routine checks of the equipment is seen. Also presented are various pictures of the shuttle in its orbit, the docking of the shuttle with the Mir International Space Station, and crewmembers during their space walk. Beautiful panoramic views of the Great Lake, Houston, and a combined view of Italy and Turkey are seen. The crew of Discovery is shown performing a juice ball experiment, tumbling, undocking, performing transfer operations, and deploying the STARSHINE educational satellite. The film ends with the reentry of the Discovery Space Shuttle into the Earth's atmosphere.

  10. The STS-96 crew takes part in a Crew Equipment Interface Test at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 1, STS-96 Commander Kent V. Rominger and Mission Specialists Ellen Ochoa (Ph.D.) and Valery Ivanovich Tokarev pose inside the orbiter Discovery. The STS-96 crew is at KSC to take part in a Crew Equipment Interface Test. Other members participating are Pilot Rick Douglas Husband and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.) and Julie Payette, who is with the Canadian Space Agency. Tokarev represents the Russian Space Agency. The primary payload of STS-96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B.

  11. STS-111 crew breakfast before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-111 crew gather for the traditional pre-launch meal before the second launch attempt aboard Space Shuttle Endeavour. Seated left to right are Mission Specialists Franklin Chang-Diaz and Philippe Perrin (CNES); the Expedition 5 crew cosmonauts Sergei Treschev (RSA) and Valeri Korzun (RSA) and astronaut Peggy Whitson; Pilot Paul Lockhart and Commander Kenneth Cockrell. In front of them is the traditional cake. This mission marks the 14th Shuttle flight to the International Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  12. STS-91 Commander Precourt talks to Cosmonauts Kondakova and Ryumin at SLF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Commander Charles Precourt (left) talks to Elena V. Kondakova and her husband, Valery Ryumin, a cosmonaut with the Russian Space Agency (RSA) and STS-91 mission specialist, at Kennedy Space Center's Shuttle Landing Facility (SLF). The STS-91 crew had just arrived at the SLF aboard T-38 jets in preparation for launch. Kondakova, also a cosmonaut with the RSA, flew with Commander Precourt as a mission specialist on STS-84 which launched on May 15, 1997. STS-91 is scheduled to be launched on June 2 on Space Shuttle Discovery with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.- Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Pilot Dominic Gorie and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; and Janet Kavandi, Ph.D. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.

  13. KSC-99pp0314

    NASA Image and Video Library

    1999-03-24

    In the Orbiter Processing Facility bay 1, STS-96 Mission Specialist Daniel Barry, M.D., Ph.D., looks at one of the foot restraints used for extravehicular activity, or space walks. The STS-96 crew is at KSC to take part in a Crew Equipment Interface Test. The other crew members are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The primary payload of STS-96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B

  14. KSC-99pp0347

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., STS-96 Mission Speciaists Daniel T. Barry (left), Julie Payette (center, with camera), and Tamara E. Jernigan (right, pointing) get a close look at one of the payloads on their upcoming mission. Other crew members are Commander Kent V. Rominger, and Mission Specialists Ellen Ochoa and Valery Ivanovich Tokarev, with the Russian Space Agency. Payette is with the Canadian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS); the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  15. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger pause during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  16. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Posing on the platform next to the SPACEHAB Logistics Double Module in the SPACEHAB Facility are the STS-96 crew (from left) Mission Specialists Dan Barry, Tamara Jernigan, Valery Tokarev of Russia, and Julie Payette; Pilot Rick Husband; Mission Specialist Ellen Ochoa; and Commander Kent Rominger. The crew is at KSC for a payload Interface Verification Test for their upcoming mission to the International Space Station. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  17. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the SPACEHAB Facility, STS-96 Mission Specialist Ellen Ochoa and Commander Kent Rominger smile for the camera during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  18. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for the upcoming mission to the International Space Station , Chris Jaskolka of Boeing points out a piece of equipment in the SPACEHAB module to STS-96 Commander Kent Rominger, Mission Specialist Ellen Ochoa and Pilot Rick Husband. Other crew members visiting KSC for the IVT are Mission Specialists Tamara Jernigan, Dan Barry, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  19. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialists Dan Barry and Tamara Jernigan discuss procedures during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  20. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, James Behling, with Boeing, talks about equipment for mission STS-96 during a payload Interface Verification Test (IVT). Watching are (from left) Mission Specialists Ellen Ochoa, Julie Payette and Dan Berry, and Pilot Rick Husband. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  1. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station, STS-96 Mission Specialists Julie Payette, Dan Barry, and Valery Tokarev of Russia, look at a Sequential Shunt Unit in the SPACEHAB Facility. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  2. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  3. KSC-99pp0452

    NASA Image and Video Library

    1999-04-27

    Capt. Steve Kelly, with Space Gateway Support, congratulates STS-96 Mission Specialist Ellen Ochoa (Ph.D.), who successfully completed training in the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Behind them (from left) are crew members Mission Specialist Valery Ivanovich Tokarev, Pilot Rick Douglas Husband and Mission Specialist Julie Payette. Holding the camera is Douglas Hamilton, a Canadian flight surgeon. Payette is with the Canadian Space Agency. Tokarev represents the Russian Space Agency. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  4. KSC-99pp0449

    NASA Image and Video Library

    1999-04-27

    STS-96 Mission Specialist Julie Payette (right) practices driving a small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. At left are Mission Specialist Valery Ivanovich Tokarev, with the Russian Space Agency, and Pilot Rick Douglas Husband. Payette is with the Canadian Space Agency. Riding on the front of the carrier is Capt. Steve Kelly, with Space Gateway Support, who is assisting the crew with their training. Other crew members are Commander Kent V. Rominger and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), and Daniel Barry (M.D., Ph.D.). Mission STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  5. KSC Small Business Expo

    NASA Image and Video Library

    2017-10-24

    A Small Business panel discussion was held during Kennedy Space Center's 27th Business Opportunities Expo held at Cruise Terminal 5 at Port Canaveral in Florida. Seated at the table, from left, are Ileana Serrano, data dissemination specialist, U.S. Census Bureau; Margot Dorfman, chief executive officer, U.S. Women's Chamber of Commerce; Valerie Muck, Small Business director; U.S. Air Force; Andrew Harold, co-founder and board chairman, Florida 8(a) Alliance; and Eduardo Ramos, senior area manager, U.S. Small Business Administration. The event featured more than 180 businesses, large and small, and government exhibitors from throughout the Space Coast and the nation. The Business Opportunities Expo is sponsored by the NASA KSC Prime Contractor Board, KSC Industry Assistance Office, 45th Space Wing and Canaveral Port Authority. Exhibitors included vendors from a variety of product and service areas, such as computer technology, engineering services, communication equipment and services, and construction and safety products, to name a few. Representatives from the 45th Space Wing, KSC prime contractors, NASA and many more agencies and organizations were on hand to provide information and answer questions.

  6. ASTRONAUT STAFFORD, THOMAS P. - PLAQUES - JSC

    NASA Image and Video Library

    1975-02-01

    S75-25823 (February 1975) --- Cosmonaut Aleksei A. Leonov (left) and astronaut Thomas P. Stafford display the Apollo Soyuz Test Project (ASTP) commemorative plaque. The two commanders, of their respective crews, are in the Apollo Command Module (CM) trainer at Building 35 at NASA's Johnson Space Center (JSC). Two plaques divided into four quarters each will be flown on the ASTP mission. The American ASTP Apollo crew will carry the four United States quarter pieces aboard Apollo; and the Soviet ASTP Soyuz 19 crew will carry the four USSR quarter sections aboard Soyuz. The eight quarter pieces will be joined together to form two complete commemorative plaques after the two spacecraft rendezvous and dock in Earth orbit. One complete plaque then will be returned to Earth by the astronauts; and the other complete plaque will be brought back by the cosmonauts. The plaque is written in both English and Russian. The Apollo crew will consist of astronauts Thomas P. Stafford, commander; Donald K. "Deke" Slayton, docking module pilot; Vance D. Brand, command module pilot. The Soyuz 19 crew will consist of cosmonauts Aleksei A. Leonov, command pilot; and Valeri N. Kubasov, flight engineer.

  7. STS-91 Mission Highlights Resource Tape

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The crew STS-91 mission, Cmdr. Charles J. Precourt, Pilot Dominic L. Pudwill Gorie and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet L. Kavandi, and Valery Victorovitch Ryumin can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. Once in orbit, there are various views of the Mir Space Station as the shuttle begins its approach and docks. After the docking the two crews open the entry hatch and greet each other. The astronauts and cosmonauts transfer supplies from the shuttle to Mir. The astronauts prepare for the reentry phase of their mission. The Shuttle separates from the Russian Space Station with a gentle push from springs in the docking mechanism that attaches it to the Space Station. The final view shows the crews' preparations for reentry and landing.

  8. STS-96 Discovery Night Landing with Drag chute

    NASA Technical Reports Server (NTRS)

    1999-01-01

    With its drag chute fully deployed, Space Shuttle Discovery lands on KSC's brightly lighted Shuttle Landing Facility runway 15, completing the 9-day, 19-hour, 13-minute and 1-second long STS-96 mission. Main gear touchdown was at 2:02:43 EDT June 6 , landing on orbit 154 of the mission. Nose gear touchdown was at 2:02:59 a.m. EDT, and the wheels stopped at 2:03:39 a.m. EDT. At the controls were Commander Kent V. Rominger and Pilot Rick D. Husband. Also onboard the orbiter were Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel S. Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The crew returned from the second flight to the International Space Station on a logistics and resupply mission. This was the 94th flight in the Space Shuttle program and the 26th for Discovery, also marking the 47th landing at KSC, the 24th in the last 25 missions, 11th at night, and the 18th consecutive landing in Florida.

  9. STS-96 Discovery night landing side view

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Beneath a bright moon, the landing of Space Shuttle Discovery at KSC's Shuttle Landing Facility runway 15 is reflected in the nearby canal. This 47th Shuttle landing at KSC completes the 9- day, 19-hour, 13-minute and 1-second long STS-96 mission. It is the 94th flight in the Space Shuttle program, the 26th for Discovery, the 11th night landing, and the 18th consecutive landing in Florida. Main gear touchdown was at 2:02:43 EDT June 6 , landing on orbit 154 of the mission. Nose gear touchdown was at 2:02:59 a.m. EDT, and the wheels stopped at 2:03:39 a.m. EDT. At the controls were Commander Kent V. Rominger and Pilot Rick D. Husband. Also onboard the orbiter were Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel S. Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The crew returned from the second flight to the International Space Station on a logistics and resupply mission.

  10. STS-96 Discovery night landing front view

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Bright lights at KSC's Shuttle Landing Facility runway 15 illuminate the landing of Space Shuttle Discovery, which completes the 9-day, 19-hour, 13-minute and 1-second long STS-96 mission. A contrail streams from the wing. Main gear touchdown was at 2:02:43 EDT June 6 , landing on orbit 154 of the mission. Nose gear touchdown was at 2:02:59 a.m. EDT, and the wheels stopped at 2:03:39 a.m. EDT. At the controls were Commander Kent V. Rominger and Pilot Rick D. Husband. Also onboard the orbiter were Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel S. Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The crew returned from the second flight to the International Space Station on a logistics and resupply mission. This was the 94th flight in the Space Shuttle program and the 26th for Discovery, also marking the 47th at KSC, the 24th in the last 25 missions, 11th at night, and the 18th consecutive landing in Florida.

  11. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are Boeing SPACEHAB Payload Operations Senior Engineer Jim Behling, STS-91 Pilot Dominic Gorie, Boeing SPACEHAB Program Principal Engineer Lynn Ashby, STS-91 Commander Charles Precourt, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  12. KSC-99pp0208

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (left to right) Mission Specialists Valery Tokarev, Julie Payette (holding a lithium hydroxide canister) and Dan Barry. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband and Mission Specialists Ellen Ochoa and Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  13. KSC-02pd0686

    NASA Image and Video Library

    2002-05-15

    KENNEDY SPACE CENTER, FLA. - During Terminal Countdown Demonstration Test activities at KSC, STS-11 Commander Kenneth Cockrell practices driving the M-113 armored personnel carrier, part of emergency egress training at the pad. Supervising in front (left) is George Hoggard, with the KSC/CCAS Fire Department, who supervises the driving. Passengers in the M-113 (behind Hoggard) are Expedition 5 crew members Valeri Korzun and Peggy Whitson. The TCDT also includes a simulated launch countdown Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. . Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002

  14. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-05

    Aboard the Space Shuttle Orbiter Endeavour, the STS-111 mission was launched on June 5, 2002 at 5:22 pm EDT from Kennedy's launch pad. On board were the STS-111 and Expedition Five crew members. Astronauts Kenneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. Landing on June 19, 2002, the 14-day STS-111 mission was the 14th Shuttle mission to visit the ISS.

  15. Artist's Concept of the Apollo-Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This artist's concept depicts the Apollo-Soyuz Test Project (ASTP), the first international docking of the U.S.'s Apollo spacecraft and the U.S.S.R.'s Soyuz spacecraft in space. The objective of the ASTP mission was to provide the basis for a standardized international system for docking of marned spacecraft. The Soyuz spacecraft, with Cosmonauts Alexei Leonov and Valeri Kubasov aboard, was launched from the Baikonur Cosmodrome near Tyuratam in the Kazakh, Soviet Socialist Republic, at 8:20 a.m. (EDT) on July 15, 1975. The Apollo spacecraft, with Astronauts Thomas Stafford, Vance Brand, and Donald Slayton aboard, was launched from Launch Complex 39B, Kennedy Space Center, Florida, at 3:50 p.m. (EDT) on July 15, 1975. The Primary objectives of the ASTP were achieved. They performed spacecraft rendezvous, docking and undocking, conducted intervehicular crew transfer, and demonstrated the interaction of U.S. and U.S.S.R. control centers and spacecraft crews. The mission marked the last use of a Saturn launch vehicle. The Marshall Space Flight Center was responsible for development and sustaining engineering of the Saturn IB launch vehicle during the mission.

  16. Apollo-Soyuz Test Project (ASTP)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This artist's concept depicts the Apollo-Soyuz Test Project (ASTP) with insets of photographs of three U.S. astronauts (Thomas Stafford, Vance Brand, and Donald Slayton) and two U.S.S.R. cosmonauts (Alexei Leonov and Valeri Kubasov). The objective of the ASTP mission was to accomplish the first docking of a standardized international system, the U.S.'s Apollo spacecraft and the U.S.S.R.'s Soyuz spacecraft, in space. The Soyuz spacecraft was launched from the Baikonur Cosmodrome near Tyuratam in the Kazakh, Soviet Socialist Republic, at 8:20 a.m. (EDT) on July 15, 1975. The Apollo spacecraft was launched from Launch Complex 39B, Kennedy Space Center, Florida, at 3:50 p.m. (EDT) on July 15, 1975. The Primary objectives of the ASTP were achieved. They performed spacecraft rendezvous, docking and undocking, conducted intervehicular crew transfer, and demonstrated the interaction of U.S. and U.S.S.R. control centers and spacecraft crews. The mission marked the last use of a Saturn launch vehicle. The Marshall Space Flight Center was responsible for development and sustaining engineering of the Saturn IB launch vehicle during the mission.

  17. STS-96 Crew Breakfast in O&C Building before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-96 crew gathers in the early morning for a snack in the Operations and Checkout Building before suiting up for launch. Space Shuttle Discovery is due to launch today at 6:49 a.m. EDT. Seated from left are Mission Specialists Daniel T. Barry and Ellen Ochoa, Pilot Rick D. Husband, Mission Commander Kent V. Rominger, and Mission Specialists Julie Payette, Valery Ivanovich Tokarev, and Tamara E. Jernigan. Tokarev represents the Russian Space Agency and Payette the Canadian Space Agency. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  18. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., STS-96 Mission Speciaists Daniel T. Barry (left), Julie Payette (center, with camera), and Tamara E. Jernigan (right, pointing) get a close look at one of the payloads on their upcoming mission. Other crew members are Commander Kent V. Rominger, and Mission Specialists Ellen Ochoa and Valery Ivanovich Tokarev, with the Russian Space Agency. Payette is with the Canadian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS); the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  19. STS-96 M.S. Dan Barry checks equipment during a CEIT

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 1, STS-96 Mission Specialist Daniel Barry, M.D., Ph.D., looks at one of the foot restraints used for extravehicular activity, or space walks. The STS-96 crew is at KSC to take part in a Crew Equipment Interface Test. The other crew members are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. The primary payload of STS- 96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B.

  20. KSC-02pd0771

    NASA Image and Video Library

    2002-05-27

    KENNEDY SPACE CENTER, FLA. -- After their arrival at the Shuttle Landing Facility, the STS-111 and Expedition 5 crews wave to spectators. From left are Mission Commander Kenneth Cockrell, Pilot Paul Lockhart and Mission Specialists Philippe Perrin and Franklin Chang-Diaz; Expedition 5 Commander Valeri Korzun, astronaut Peggy Whitson and cosmonaut Sergei Treschev. Perrin is with the French Space Agency; Korzun and Treschev are with the Russian Space Agency. The crews have arrived to prepare for launch. Expedition 5 is traveling to the International Space Station on Space Shuttle Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Known as Utilization Flight 2, STS-111 is carrying supplies and equipment to the Station. The payload includes the Multi-Purpose Logistics Module Leonardo, the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Launch is scheduled for May 30, 2002

  1. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-11

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  2. KSC-02pd0674

    NASA Image and Video Library

    2002-05-15

    KENNEDY SPACE CENTER, FLA. -- The Expedition 5 and STS-111 crews pose at the Shuttle Landing Facility after their arrival to take part in Terminal Countdown Demonstration Test (TCDT) activities for launch of mission STS-111. From left, they are the Expedition Five crew -- Commander Valeri Korzun and Sergei Treschev, both of the Russian Space Agency, and Peggy Whitson -- and the STS-111 crew -- Pilot Paul Lockhart, Commander Kenneth Cockrell, and Mission Specialists Phillipe Perrin, of the French Space Agency, and Franklin Chang-Diaz. Expedition 5 will travel on Space Shuttle Endeavour to the International Space Station as a replacement crew for Expedition 4. The TCDT is a rehearsal for launch and includes emergency egress training, familiarization with payload and a simulated launch countdown. Mission STS-111 is a utilization flight that will deliver equipment and supplies to the Station. Along with the Multi-Purpose Logisitics Module Leonardo, the payload includes the Mobile Base System, part of the Canadian Mobile Servicing System, or MSS, and an Orbital Replacement Unit, the replacement wrist/roll joint for the SSRMS (Canadarm2). Launch of Endeavour is scheduled for May 30, 2002

  3. STS-111/Endeavour/ISS UF2 Pre-Launch Activities: Launch with Playbacks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video of the preflight preparations for and launch of Space Shuttle Endeavour on STS-111 begins with a view of Endeavour on the launch pad. Additional launch pad views leading up to liftoff are interspersed with footage from the Firing Room at Kennedy Space Center, the crew's prelaunch activities, and inspection of the crew members in the White Room before boarding Endeavour. The crew is introduced by a narrator during the preflight banquet and suiting up, and a later clip shows them departing to the launch site. The crew consists of Commander Kenneth Cockrell, Pilot Paul Lockhart, Mission Specialists Philippe Perrin and Franklin Chang-Diaz, and the Expedition 5 crew of the International Space Station (ISS) (Commander Valery Korzun and Flight Engineers Peggy Whitsun and Sergei Treschev). The nozzles on Endeavour's Space Shuttle Main Engine (SSME) are swiveled before liftoff, and the launch is shown past the separation of the solid rocket boosters. After a brief clip from the Mission Control Center at Johnson Space Center, the following launch replays are shown: Beach Tracker, VAB, Pad A, Tower 1, UCS-15, Grandstand, Cocoa Beach DOAMS, Playalinda DOAMS, UCS-23, and OTV-070.

  4. The STS-96 crew takes part in a Crew Equipment Interface Test at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 1, STS-96 crew members look at the Canadian arm in the payload bay of the orbiter Discovery. Standing in a bucket controlled by a KSC worker, are (from left) Mission Specialist Tamara E. Jernigan (Ph.D), Daniel Barry (M.D., Ph.D.), and Valery Ivanovich Tokarev, who represents the Russian Space Agency. The STS-96 crew is at KSC to take part in a Crew Equipment Interface Test. The other crew members are Commander Kent V. Rominger, Pilot Rick Douglas Husband and Mission Specialists Ellen Ochoa (Ph.D.) and Julie Payette, with the Canadian Space Agency. The primary payload of STS-96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B.

  5. STS-111 crew exits O&C building on way to LC-39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The STS-111 and Expedition 5 crews hurry from the Operations and Checkout Building for a second launch attempt aboard Space Shuttle Endeavour. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  6. STS-111 crew exits the O&C Building before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-111 and Expedition 5 crews eagerly exit from the Operations and Checkout Building for launch aboard Space Shuttle Endeavour. It is the second launch attempt in six days. From front to back are Pilot Paul Lockhart and Commander Kenneth Cockrell; astronaut Peggy Whitson; Expedition 5 Commander Valeri Korzun (RSA) and cosmonaut Sergei Treschev (RSA); and Mission Specialists Philippe Perrin (CNES) and Franklin Chang-Diaz. This mission marks the 14th Shuttle flight to the Space Station and the third Shuttle mission this year. Mission STS-111 is the 18th flight of Endeavour and the 110th flight overall in NASA's Space Shuttle program. On mission STS-111, astronauts will deliver the Leonardo Multi-Purpose Logistics Module, the Mobile Base System (MBS), and the Expedition Five crew to the Space Station. During the seven days Endeavour will be docked to the Station, three spacewalks will be performed dedicated to installing MBS and the replacement wrist-roll joint on the Station's Canadarm2 robotic arm. Endeavour will also carry the Expedition 5 crew, who will replace Expedition 4 on board the Station. Expedition 4 crew members will return to Earth with the STS-111 crew. Liftoff is scheduled for 5:22 p.m. EDT from Launch Pad 39A.

  7. KSC-99pp0348

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., STS-96 Mission Specialists Tamara E. Jernigan and Daniel T. Barry take turns working with a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Technicians around the table observe. The STS-96 crew is taking part in a Crew Equipment Interface Test. Other members participating are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  8. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 crew members look over equipment during a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station. From left are Khristal Parker, with Boeing; Mission Specialist Dan Barry, Pilot Rick Husband, Mission Specialist Tamara Jernigan, and at the far right, Mission Specialist Julie Payette. An unidentified worker is in the background. Also at KSC for the IVT are Commander Kent Rominger and Mission Specialists Ellen Ochoa and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  9. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Julie Payette closes a container, part of the equipment to be carried on the SPACEHAB and mission STS-96. She and other crew members Commander Kent Rominger, Pilot Rick Husband, and Mission Speciaists Ellen Ochoa, Tamara Jernigan, Dan Barry and Valery Tokarev of Russia are at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station . Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  10. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (left) and Commander Kent Rominger (second from right) listen to Lynn Ashby (far right), with JSC, talking about the SPACEHAB equipment in front of them during a payload Interface Verification Test (IVT). In the background behind Tokarev is TTI interpreter Valentina Maydell. Other STS-96 crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Dan Barry, Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  11. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev (in foreground) of the Russian Space Agency closes a container, part of the equipment that will be in the SPACEHAB module on mission STS-96. Behind Tokarev are Pilot Rick Husband (left) and Mission Specialist Dan Barry (right). Other crew members at KSC for a payload Interface Verification Test for the upcoming mission to the International Space Station are Commander Kent Rominger and Mission Specialists Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  12. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Pilot Rick Husband and Mission Specialist Ellen Ochoa (on the left) and Mission Specialist Julie Payette (on the far right) listen to Khristal Parker (second from right), with Boeing, explain about the equipment in front of them. Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  13. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks over equipment during a payload Interface Verification Test for the upcoming mission to the International Space Station. From left are Commander Kent Rominger, Mission Specialists Tamara Jernigan and Valery Tokarev of Russia, Pilot Rick Husband, and Mission Specialists Ellen Ochoa and Julie Payette (backs to the camera). They are listening to Chris Jaskolka of Boeing talk about the equipment. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m. EDT.

  14. KSC-99pp0453

    NASA Image and Video Library

    1999-04-27

    Under the eye of Capt. Steve Kelly (left), with Space Gateway Support, Commander Kent V. Rominger gets ready to practice driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. At the rear is Douglas Hamilton, a Canadian flight surgeon. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), Julie Payette and Valery Ivanovich Tokarev. Payette represents the Canadian Space Agency and Tokarev the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  15. KSC-99pp0457

    NASA Image and Video Library

    1999-04-27

    STS-96 Mission Specialist Valery Ivanovich Tokarev practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Riding the front of the carrier is Capt. Steve Kelly (left), with Space Gateway Support, who is assisting with the training. Behind them are Pilot Rick Douglas Husband (waving), and Mission Specialists Daniel Barry (M.D., Ph.D.) and Tamara E. Jernigan (Ph.D.) (waving). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Ellen Ochoa (Ph.D.) and Julie Payette, with the Canadian Space Agency. Tokarev is with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  16. KSC-99pp0458

    NASA Image and Video Library

    1999-04-27

    While Capt. Steve Kelly, with Space Gateway Support, keeps watch from the top of the vehicle, STS-96 Pilot Rick Douglas Husband practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind them are (from left) Mission Specialist Daniel Barry (M.D., Ph.D.), Commander Kent V. Rominger and Mission Specialist Tamara E. Jernigan (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Mission Specialists Ellen Ochoa (Ph.D.), Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  17. KSC-99pp0454

    NASA Image and Video Library

    1999-04-27

    At right, STS-96 Mission Specialist Tamara E. Jernigan (Ph.D.) practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. At left is Capt. Steve Kelly, with Space Gateway Support, who is assisting with the training. At the rear of the carrier are (left) Mission Specialist Julie Payette, with the Canadian Space Agency, and Commander Kent V. Rominger (right). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Rick Douglas Husband, and Mission Specialists Ellen Ochoa (Ph.D.), Daniel Barry (M.D., Ph.D.), and Valery Ivanovich Tokarev, who is with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  18. KSC-99pp0455

    NASA Image and Video Library

    1999-04-27

    Under the guidance of Capt. Steve Kelly (left), with Space Gateway Support, STS-96 Mission Specialist Daniel Barry (right) practices driving the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. At the rear of the carrier are Pilot Rick Douglas Husband and Mission Specialists Tamara E. Jernigan (Ph.D.) and Ellen Ochoa (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Commander Kent V. Rominger and Mission Specialists Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  19. KSC-99pp0456

    NASA Image and Video Library

    1999-04-27

    Capt. Steve Kelly (left), with Space Gateway Support, explains to STS-96 Mission Specialist Valery Ivanovich Tokarev the use of the small armored personnel carrier that is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. Behind him are Commander Kent V. Rominger and Mission Specialist Ellen Ochoa (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. Other crew members taking part in the TCDT are Pilot Rick Douglas Husband and Mission Specialists Tamara E. Jernigan (Ph.D.), Daniel Barry (M.D., Ph.D.), and Julie Payette, with the Canadian Space Agency. Tokarev is with the Russian Space Agency. Mission STS-96, which is scheduled for liftoff on May 20 at 9:32 a.m., is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-led experiment

  20. KSC-02pd0691

    NASA Image and Video Library

    2002-05-15

    KENNEDY SPACE CENTER, FLA. - The STS-111 and Expedition 5 crews pose on top of the M-113 armored personnel carrier they practiced driving during emergency egress training at the pad. Standing, left to right, are Mission Commander Kenneth Cockrell, Mission Specialist Philippe Perrin, Expedition 5 member Peggy Whitson, Pilot Paul Lockhart and Mission Specialist Franklin Chang-Diaz; in front are Expedition 5 members Sergei Treschev (left) and Commander Valeri Korzun (right). The crews are taking part in Terminal Countdown Demonstration Test activities at KSC, which include a simulated launch countdown. Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost. The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002

  1. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. At far left is Boeing SPACEHAB Program Senior Engineer Ellen Styles, and around the table are, left to right, STS-91 Pilot Dominic Gorie, STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D., Boeing SPACEHAB Program Senior Engineer Chris Jazkolka, STS-91 Commander Charles Precourt, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  2. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Pilot Dominic Gorie, STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D., STS-91 Commander Charles Precourt, Boeing SPACEHAB Program Senior Engineer Shawn Hicks, Russian Interpreter Olga Belozerova, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  3. KSC-02pd1865

    NASA Image and Video Library

    2002-12-07

    KENNEDY SPACE CENTER, FLA. - STS-113 Commander James Wetherbee shakes hands with KSC Director Roy D. Bridges Jr. following landing at the Shuttle Landing Facility. From left are Kent Rominger, Deputy Director of Flight Crew Operations, Wetherbee, Dr. Daniel R. Mulville, NASA Associate Deputy Administrator, and Bridges. Commander Wetherbee earlier guided Space Shuttle Endeavour to a flawless touchdown on runway 33 at the Shuttle Landing Facility after completing the 13-day, 18-hour, 48-minute, 5.74-million mile STS-113 mission to the International Space Station. Main gear touchdown was at 2:37:12 p.m. EST, nose gear touchdown was at 2:37:23 p.m., and wheel stop was at 2:38:25 p.m. Poor weather conditions thwarted landing opportunities until a fourth day, the first time in Shuttle program history that a landing has been waved off for three consecutive days. The orbiter also carried the other members of the STS-113 crew, Pilot Paul Lockhart and Mission Specialists Michael Lopez-Alegria and John Herrington, as well as the returning Expedition Five crew, Commander Valeri Korzun, ISS Science Officer Peggy Whitson and Flight Engineer Sergei Treschev. The installation of the P1 truss on the International Space Station was accomplished during the mission.

  4. STS-111 Crew in white room during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room, Launch Pad 39A, the STS-111 and Expedition 5 crews pose in front of the entry into Space Shuttle Endeavour. From left are Expedition 5 crew member Sergei Treschev and Commander Valeri Korzun, with the Russian Space Agency; STS-111 Mission Specialist Philippe Perrin, with the French Space Agency; Commander Kenneth Cockrell and Pilot Paul Lockhart; Expedition 5 crew member Peggy Whitson; and Mission Specialist Franklin Chang-Diaz. The crews are taking part in Terminal Countdown Demonstration Test activities at the pad, which include emergency egress training and a simulated launch countdown. The mission is Utilization Flight 2, carrying supplies and equipment to the International Space Station, the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to 'inchworm' from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 5 will travel to the Station on Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002.

  5. Chemosensory Factors Influencing Alcohol Perception, Preferences, and Consumption

    PubMed Central

    Bachmanov, Alexander A.; Kiefer, Stephen W.; Molina, Juan Carlos; Tordoff, Michael G.; Duffy, Valerie B.; Bartoshuk, Linda M.; Mennella, Julie A.

    2007-01-01

    This article presents the proceedings of a symposium at the 2002 RSA/ISBRA Meeting in San Francisco, California, co-organized by Julie A. Mennella and Alexander A. Bachmanov of the Monell Chemical Senses Center. The goal of this symposium was to review the role that chemosensory factors (taste, smell, and chemical irritation) play in the perception, preference, and consumption of alcohol. The presented research focused on both humans and laboratory animals and used a variety of approaches including genetic, developmental, pharmacological, behavioral, and psychophysical studies. The presentations were as follows: (1) Introduction and overview of the chemical senses (Julie A. Mennella and Alexander A. Bachmanov); (2) Taste reactivity as a measure of alcohol palatability and its relation to alcohol consumption in rats (Stephen W. Kiefer); (3) Early learning about the sensory properties of alcohol in laboratory animals (Juan Carlos Molina); (4) Early learning about the sensory properties of alcohol in humans (Julie A. Mennella); (5) Genetic dissection of the ethanol-sweet taste relationship in mice (Alexander A. Bachmanov and Michael Tordoff); and (6) Human genetic variation in taste: connections with alcohol sensation and intake (Valerie B. Duffy and Linda M. Bartoshuk). The symposium concluded with a general discussion. PMID:12605071

  6. Bribery or benevolence?

    PubMed

    Hisel, L M; Miller, P

    2000-01-01

    This paper presents an interview from several pro-choice leaders on the topic of abortion. The interview aims to assess the appropriateness of actions taken by Cardinal Thomas Winning of the Scottish Catholic Church, founder of Prolife Initiative. The action centers on an issue concerning the father of a pregnant girl aged 12 years who approached the program asking help for her daughter to carry her pregnancy to term. The father claimed the family could not provide the basic needs for the baby and that his daughter would be devastated to have an abortion. Established in 1997, the Initiative offers girls and women an alternative to abortion. According to news accounts, teachers and social workers encouraged her to have an abortion. The Initiative agreed to give her financial support, which however, remained unclear as to what form the support had taken. Opinions concerning these issues were obtained from Alison Hadley, Brook Centers national policy coordinator in United Kingdom (UK); Jane Roe, Abortion Law Reform Association coordinator in UK; Tony O'Brien, executive director of the Family Planning Association in Ireland; Valerie Stroud, representative of We are Church in UK; and Frances Kissling, president of Catholics for a Free Choice in USA. Surprising differences in views surfaced and are discussed in this article.

  7. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Astrotech in Titusville, Fla., STS-96 Mission Specialists Tamara E. Jernigan and Daniel T. Barry take turns working with a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Technicians around the table observe. The STS-96 crew is taking part in a Crew Equipment Interface Test. Other members participating are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  8. KSC-02pd0726

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- Expedition 5 Commander Valeri Korzun (with microphone) speaks to the media before leaving KSC. Behind him (left to right) are STS-111 Commander Kenneth Cockrell and Pilot Paul Lockhart; astronaut Peggy Whitson and cosmonaut Sergei Treschev; Mission Specialists Philippe Perrin and Franklin Chang-Diaz. Korzun and Treschev are with the Russian Space Agency; Perrin is with the French Space Agency. They have been taking part in Terminal Countdown Demonstration Test activities that include emergency egress training and a simulated launch countdown. Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Mission STS-111 is known as Utilization Flight 2, carrying supplies and equipment in the Multi-Purpose Logistics Module Leonardo to the International Space Station. The payload also includes the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Launch is scheduled for May 30, 2002

  9. Spatial and temporal development of exhumation at the St. Elias syntaxis in the Yakutat-North American subduction-collision zone, SE Alaska

    NASA Astrophysics Data System (ADS)

    Falkowski, Sarah; Enkelmann, Eva; Pfänder, Jörg; Drost, Kerstin; Stübner, Konstanze; Ehlers, Todd

    2015-04-01

    Since the Mesozoic, the western North American margin has been built by the subduction-collision of several terranes. Currently, the 15-30 km thick, wedge-shaped oceanic plateau of the Yakutat microplate collides obliquely with North America at the bend of the southern Alaskan margin forming the Chugach-St. Elias Mountains. Glaciation of this orogen started 6-5 Ma and efficient glacial erosion has been reported over different timescales. Particularly rapid and deep exhumation occurs at the St. Elias syntaxis, where the plate boundary bends and the tectonic regime transitions from transpression to convergence and flat-slab subduction. This region comprises the highest topography and is almost completely covered by the Seward-Malaspina and Hubbard-Valerie glacial systems. Very young detrital zircon fission-track exhumation ages (<5 Ma, closure temperature of 250±40 °C) from glacial outwash sand led to speculations about the underlying geodynamic mechanisms and comparisons to processes occurring at the Himalayan syntaxes. The comparison of bedrock and detrital thermochronology shows that the youngest cooling ages, and hence the highest exhumation rates, only occur in low-elevation, ice-covered valleys in the St. Elias syntaxis area. We now further investigate this area concerning its spatial and temporal development. Zircon fission-track age distributions derived from 46 glacio-fluvial sand samples confine the area of rapid and deep exhumation on the resolution of catchments to an ~4800 km2 area on the North American Plate around the St. Elias syntaxis. To overcome the shortcoming of a decreased resolution of the provenance signal of sand, we present 22 new crystallization ages of cobble-sized detritus from the Seward-Malaspina Glacier. Zircon U-Th/He ages of the cobbles demonstrate that they originate from below the ice and their provenance is analyzed based on their petrographic information and zircon U/Pb data (30.8±0.8 to 277.1±7 Ma, 2σ). Furthermore, we

  10. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  11. The STS-96 crew takes part in a Crew Equipment Interface Test at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Orbiter Processing Facility bay 1, the STS-96 crew (foreground) looks into the payload bay of the orbiter Discovery. Standing in the bucket in the foreground are (left to right) Mission Specialists Daniel Barry (M.D., Ph.D.), Valery Ivanovich Tokarev, and Tamara E. Jernigan (Ph.D.), with a KSC worker at the controls of the bucket. In the background (center) pointing is Mission Specialist Julie Payette. Tokarev represents the Russian Space Agency and Payette the Canadian Space Agency. They are at KSC for a Crew Equipment Interface Test. The other crew members participating in the test are Commander Kent V. Rominger, Pilot Rick Douglas Husband and Mission Specialist Ellen Ochoa (Ph.D.). The primary payload of STS-96 is the SPACEHAB Double Module. In addition, the Space Shuttle will carry unpressurized cargo such as the external Russian cargo crane known as STRELA; the Spacehab Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the station for use during future ISS assembly missions. These cargo items will be stowed on the International Cargo Carrier, fitted inside the payload bay behind the SPACEHAB module. STS-96 is targeted for launch on May 24 from Launch Pad 39B.

  12. Intrinsic Charge Transport in Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Podzorov, Vitaly

    2005-03-01

    Organic field-effect transistors (OFETs) are essential components of modern electronics. Despite the rapid progress of organic electronics, understanding of fundamental aspects of the charge transport in organic devices is still lacking. Recently, the OFETs based on highly ordered organic crystals have been fabricated with innovative techniques that preserve the high quality of single-crystal organic surfaces. This technological progress facilitated the study of transport mechanisms in organic semiconductors [1-4]. It has been demonstrated that the intrinsic polaronic transport, not dominated by disorder, with a remarkably high mobility of ``holes'' μ = 20 cm^2/Vs can be achieved in these devices at room temperature [4]. The signatures of the intrinsic polaronic transport are the anisotropy of the carrier mobility and an increase of μ with cooling. These and other aspects of the charge transport in organic single-crystal FETs will be discussed. Co-authors are Etienne Menard, University of Illinois at Urbana Champaign; Valery Kiryukhin, Rutgers University; John Rogers, University of Illinois at Urbana Champaign; Michael Gershenson, Rutgers University. [1] V. Podzorov et al., Appl. Phys. Lett. 82, 1739 (2003); ibid. 83, 3504 (2003). [2] V. C. Sundar et al., Science 303, 1644 (2004). [3] R. W. I. de Boer et al., Phys. Stat. Sol. (a) 201, 1302 (2004). [4] V. Podzorov et al., Phys. Rev. Lett. 93, 086602 (2004).

  13. STS-112 Flight Day 10 Highlights

    NASA Astrophysics Data System (ADS)

    2002-10-01

    On Flight Day 10 of the STS-112 mission, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) on the Atlantis and the Expedition 5 crew on the International Space Station (ISS) (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) are shown exchanging farewells in the ISS's Destiny Laboratory Module following the completion of a week-long period of docked operations. The Expedition 5 crew is nearing the end of five and a half continuous months aboard the space station. Following the closing of the hatches, the Atlantis Orbiter undocks from the station, and Melroy pilots the shuttle slowly away from the ISS, and engages in a radial fly-around of the station. During the fly-around cameras aboard Atlantis shows ISS from a number of angles. ISS cameras also show Atlantis. There are several shots of each craft with a variety of background settings including the Earth, its limb, and open space. The video concludes with a live interview of Ashby, Melroy and Yurchikhin, still aboard Atlantis, conducted by a reporter on the ground. Questions range from feelings on the conclusion of the mission to the experience of being in space. The primary goal of the mission was the installation of the Integrated Truss Structure S1 on the ISS.

  14. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, the STS-96 crew looks at equipment as part of a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . From left are Mission Specialist Ellen Ochoa (behind the opened storage cover ), Commander Kent Rominger, Pilot Rick Husband (holding a lithium hydroxide canister) and Mission Specialists Dan Barry, Valery Tokarev of Russia and Julie Payette. In the background is TTI interpreter Valentina Maydell. The other crew member at KSC for the IVT is Mission Specialist Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  15. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (from left) STS-96 Mission Specialist Julie Payette, Pilot Rick Husband and Mission Specialist Ellen Ochoa learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  16. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility, (left to right) STS-96 Pilot Rick Husband and Mission Specialists Julie Payette and Ellen Ochoa work the straps on the Sequential Shunt Unit (SSU) in front of them. The STS-96 crew is at KSC for a payload Interface Verification Test (IVT) for its upcoming mission to the International Space Station . Other crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan, Dan Barry and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  17. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (second from left) and Commander Kent Rominger learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. At the far left looking on is TTI interpreter Valentina Maydell. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Ellen Ochoa, Tamara Jernigan, Dan Barry and Julie Payette. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  18. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Tamara Jernigan checks over instructions while Mission Specialist Dan Barry looks up from the Sequential Shunt Unit (SSU) in front of him to other equipment Lynn Ashby (right), with Johnson Space Center, is pointing at. Other crew members at KSC for the IVT are Commander Kent Rominger, Pilot Rick Husband, and Mission Specialists Ellen Ochoa, Julie Payette and Valery Tokarev of Russia. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  19. STS-96 crew takes part in payload Interface Verification Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the SPACEHAB Facility for a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station are (kneeling) STS-96 Mission Specialists Julie Payette and Ellen Ochoa, Pilot Rick Husband, and (standing at right) Mission Specialist Dan Barry. At the left is James Behling, with Boeing, explaining some of the equipment that will be on board STS-96. Other STS-96 crew members at KSC for the IVT are Commander Kent Rominger and Mission Specialists Tamara Jernigan and Valery Tokarev of Russia. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m.

  20. STS-111 Onboard Photo of Endeavour Docking With PMA-2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: The delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  1. STS-112 Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 10 of the STS-112 mission, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) on the Atlantis and the Expedition 5 crew on the International Space Station (ISS) (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) are shown exchanging farewells in the ISS's Destiny Laboratory Module following the completion of a week-long period of docked operations. The Expedition 5 crew is nearing the end of five and a half continuous months aboard the space station. Following the closing of the hatches, the Atlantis Orbiter undocks from the station, and Melroy pilots the shuttle slowly away from the ISS, and engages in a radial fly-around of the station. During the fly-around cameras aboard Atlantis shows ISS from a number of angles. ISS cameras also show Atlantis. There are several shots of each craft with a variety of background settings including the Earth, its limb, and open space. The video concludes with a live interview of Ashby, Melroy and Yurchikhin, still aboard Atlantis, conducted by a reporter on the ground. Questions range from feelings on the conclusion of the mission to the experience of being in space. The primary goal of the mission was the installation of the Integrated Truss Structure S1 on the ISS.

  2. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Pilot Dominic Gorie, STS-91 Commander Charles Precourt, Boeing SPACEHAB Payload Operations Senior Engineer Jim Behling, Boeing SPACEHAB Program Senior Engineer Shawn Hicks, Boeing SPACEHAB Program Specialist in Engineering Ed Saenger, STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency, Boeing SPACEHAB Program Manager in Engineering Brad Reid, and Russian Interpreter Olga Belozerova.

  3. KSC-99pd0209

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility, the STS-96 crew looks at equipment as part of a payload Interface Verification Test (IVT) for their upcoming mission to the International Space Station . From left are Mission Specialist Ellen Ochoa (behind the opened storage cover ), Commander Kent Rominger, Pilot Rick Husband (holding a lithium hydroxide canister) and Mission Specialists Dan Barry, Valery Tokarev of Russia and Julie Payette. In the background is TTI interpreter Valentina Maydell. The other crew member at KSC for the IVT is Mission Specialist Tamara Jernigan. Mission STS-96 carries the SPACEHAB Logistics Double Module, which has equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  4. AMS undergoes a final weight and balance check in the SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under the supervision of Boeing technicians, the Alpha Magnetic Spectrometer (AMS), a payload slated to fly on STS-91, is undergoing a final weight and balance check on the Launch Package Integration Stand in the Space Station Processing Facility (SSPF). Next, it will be placed in the Payload Canister and transported to Launch Complex 39A where it will be installed into Space Shuttle Discovery's payload bay. Weighing in at approximately three tons, the AMS is a major particle physics experiment that will look for cosmic antimatter originating from outside our galaxy. The data it gathers could also give clues about the mysterious 'dark matter' that may make up 90 percent or more of the universe. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, and the conclusion of Phase I of the joint U.S.-Russian International Space Station Program. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-09

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: The delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  6. Communicating exposure and health effects results to study subjects, the community and the public: strategies and challenges.

    PubMed

    Brauer, Michael; Bert Hakkinen, Pertti J; Gehan, Brenda M; Shirname-More, Lata

    2004-11-01

    The Mickey Leland National Urban Air Toxics Research Center sponsored a Symposium in August 2002 that focused on the communication of health effects results from community studies involving exposure to hazardous substances in the environment. Some of the audiences identified for presentation of study results were the study subjects, the community, and the general public. Principles and approaches to communicating findings were discussed, as were the challenges that may confront researchers in developing and implementing a communication plan. The Symposium included four sessions. The first was an overview session where Timothy McDaniels (University of British Columbia) described risk communication as a decision-aiding process. In the second session, case studies were presented by Timothy Buckley (Johns Hopkins University), Jane Hoppin (National Institute of Environmental Health Sciences), and Anne-Marie Nicol (University of British Columbia). Approaches and strategies used by different stakeholders to communicate study results was the topic for a panel discussion at the third session. Panelists included: James Collins (The Dow Chemical Company), Mary White (Agency for Toxic Substances and Disease Registry), Richard Clapp (Boston University), Valerie Zartarian (Environmental Protection Agency), Pamela Williams (Chemrisk), and Tina Bahadori (American Chemistry Council). The final session was a summary presentation on lessons learned given by Rebecca Parkin of George Washington University, in which she synthesized the preceding presentations and formulated guidelines for effective risk communication in community research studies.

  7. KSC-98pc587

    NASA Image and Video Library

    1998-05-02

    Under the supervision of Boeing technicians, the Alpha Magnetic Spectrometer (AMS), a payload slated to fly on STS-91, is undergoing a final weight and balance check on the Launch Package Integration Stand in the Space Station Processing Facility (SSPF). Next, it will be placed in the Payload Canister and transported to Launch Complex 39A where it will be installed into Space Shuttle Discovery's payload bay. Weighing in at approximately three tons, the AMS is a major particle physics experiment that will look for cosmic antimatter originating from outside our galaxy. The data it gathers could also give clues about the mysterious "dark matter" that may make up 90 percent or more of the universe. STS-91 is scheduled to be launched on June 2 with a launch window opening around 6:10 p.m. EDT. The mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, and the conclusion of Phase I of the joint U.S.-Russian International Space Station Program. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  8. KSC-99pp0201

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- In the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (left) and Commander Kent Rominger (second from right) listen to Lynn Ashby (far right), with JSC, talking about the SPACEHAB equipment in front of them during a payload Interface Verification Test (IVT). In the background behind Tokarev is TTI interpreter Valentina Maydell. Other STS-96 crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Dan Barry, Ellen Ochoa, Tamara Jernigan and Julie Payette. Mission STS-96 carries the SPACEHAB Logistics Double Module, which will have equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. It carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  9. KSC-99pd0214

    NASA Image and Video Library

    1999-02-11

    KENNEDY SPACE CENTER, FLA. -- During a payload Interface Verification Test (IVT) in the SPACEHAB Facility, STS-96 Mission Specialist Valery Tokarev of Russia (second from left) and Commander Kent Rominger learn about the Sequential Shunt Unit (SSU) in front of them from Lynn Ashby (far right), with Johnson Space Center. At the far left looking on is TTI interpreter Valentina Maydell. Other crew members at KSC for the IVT are Pilot Rick Husband and Mission Specialists Ellen Ochoa, Tamara Jernigan, Dan Barry and Julie Payette. The SSU is part of the cargo on Mission STS-96, which carries the SPACEHAB Logistics Double Module, with equipment to further outfit the International Space Station service module and equipment that can be off-loaded from the early U.S. assembly flights. The SPACEHAB carries internal logistics and resupply cargo for station outfitting, plus an external Russian cargo crane to be mounted to the exterior of the Russian station segment and used to perform space walking maintenance activities. The double module stowage provides capacity of up to 10,000 lbs. with the ability to accommodate powered payloads, four external rooftop stowage locations, four double-rack locations (two powered), up to 61 bulkhead-mounted middeck locker locations, and floor storage for large unique items and Soft Stowage. STS-96 is targeted to launch May 20 about 9:32 a.m

  10. The effect of orthology and coregulation on detecting regulatory motifs.

    PubMed

    Storms, Valerie; Claeys, Marleen; Sanchez, Aminael; De Moor, Bart; Verstuyf, Annemieke; Marchal, Kathleen

    2010-02-03

    Computational de novo discovery of transcription factor binding sites is still a challenging problem. The growing number of sequenced genomes allows integrating orthology evidence with coregulation information when searching for motifs. Moreover, the more advanced motif detection algorithms explicitly model the phylogenetic relatedness between the orthologous input sequences and thus should be well adapted towards using orthologous information. In this study, we evaluated the conditions under which complementing coregulation with orthologous information improves motif detection for the class of probabilistic motif detection algorithms with an explicit evolutionary model. We designed datasets (real and synthetic) covering different degrees of coregulation and orthologous information to test how well Phylogibbs and Phylogenetic sampler, as representatives of the motif detection algorithms with evolutionary model performed as compared to MEME, a more classical motif detection algorithm that treats orthologs independently. Under certain conditions detecting motifs in the combined coregulation-orthology space is indeed more efficient than using each space separately, but this is not always the case. Moreover, the difference in success rate between the advanced algorithms and MEME is still marginal. The success rate of motif detection depends on the complex interplay between the added information and the specificities of the applied algorithms. Insights in this relation provide information useful to both developers and users. All benchmark datasets are available at http://homes.esat.kuleuven.be/~kmarchal/Supplementary_Storms_Valerie_PlosONE.

  11. A Gap in TW Hydrae's Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Located a mere 176 light-years away, TW Hydrae is an 8-million-year-old star surrounded by a nearly face-on disk of gas and dust. Recent observations have confirmed the existence of a gap within that disk a particularly intriguing find, since gaps can sometimes signal the presence of a planet.Gaps and PlanetsNumerical simulations have shown that newly-formed planets orbiting within dusty disks can clear the gas and dust out of their paths. This process results in pressure gradients that can be seen in the density structure of the disk, in the form of visible gaps, rings, or spirals.For this reason, finding a gap in a protoplanetary disk can be an exciting discovery. Previous observations of the disk around TW Hydrae had indicated that there might be a gap present, but they were limited in their resolution; despite TW Hydraes relative nearness, attempting to observe the dim light scattered off dust particles in a disk surrounding a distant, bright star is difficult!But a team led by Valerie Rapson (Rochester Institute of Technology, Dudley Observatory) recently set out to follow up on this discovery using a powerful tool: the Gemini Planet Imager (GPI).New ObservationsComparison of the actual image of TW Hydraes disk from GPI (right) to a simulated scattered-light image from a model of a ~0.2 Jupiter-mass planet orbiting in the disk at ~21 AU (left) in two different bands (top: J, bottom: K1).[Adapted from Rapson et al. 2015]GPI is an instrument on the Gemini South Telescope in Chile. Its near-infrared imagers, equipped with extreme adaptive optics, allowed it to probe the disk from ~80 AU all the way in to ~10 AU from the central star, with an unprecedented resolution of ~1.5 AU.These observations from GPI allowed Rapson and collaborators to unambiguously confirm the presence of a gap in TW Hydraes disk. The gap lies at a distance of ~23 AU from the central star (roughly the same distance as Uranus to the Sun), and its ~5 AU wide.Modeled PossibilitiesThere are a

  12. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-01

    Huddled together in the Destiny laboratory of the International Space Station (ISS) are the Expedition Four crew (dark blue shirts), Expedition Five crew (medium blue shirts) and the STS-111 crew (green shirts). The Expedition Four crewmembers are, from front to back, Cosmonaut Ury I. Onufrienko, mission commander; and Astronauts Daniel W. Bursch and Carl E. Waltz, flight engineers. The ISS crewmembers are, from front to back, Astronauts Kerneth D. Cockrell, mission commander; Franklin R. Chang-Diaz, mission specialist; Paul S. Lockhart, pilot; and Philippe Perrin, mission specialist. Expedition Five crewmembers are, from front to back, Cosmonaut Valery G. Korzun, mission commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. The ISS recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when the Space Shuttle Orbiter Endeavour STS-111 mission visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of the Mobile Base System (MBS), which is an important part of the station's Mobile Servicing System allowing the robotic arm to travel the length of the station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  13. Expedition Crews Four and Five and STS-111 Crew Aboard the ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Huddled together in the Destiny laboratory of the International Space Station (ISS) are the Expedition Four crew (dark blue shirts), Expedition Five crew (medium blue shirts) and the STS-111 crew (green shirts). The Expedition Four crewmembers are, from front to back, Cosmonaut Ury I. Onufrienko, mission commander; and Astronauts Daniel W. Bursch and Carl E. Waltz, flight engineers. The ISS crewmembers are, from front to back, Astronauts Kerneth D. Cockrell, mission commander; Franklin R. Chang-Diaz, mission specialist; Paul S. Lockhart, pilot; and Philippe Perrin, mission specialist. Expedition Five crewmembers are, from front to back, Cosmonaut Valery G. Korzun, mission commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. The ISS recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when the Space Shuttle Orbiter Endeavour STS-111 mission visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of the Mobile Base System (MBS), which is an important part of the station's Mobile Servicing System allowing the robotic arm to travel the length of the station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  14. Association between QRS Duration and Obstructive Sleep Apnea

    PubMed Central

    Gupta, Shuchita; Cepeda-Valery, Beatriz; Romero-Corral, Abel; Shamsuzzaman, Abu; Somers, Virend K.; Pressman, Gregg S.

    2012-01-01

    Background: Both obstructive sleep apnea (OSA) and prolonged QRS duration are associated with hypertension, heart failure, and sudden cardiac death. However, possible links between QRS duration and OSA have not been explored. Methods: Cross-sectional study of 221 patients who underwent polysomnography at our center. Demographics, cardiovascular risk factors and ECG were collected to explore a relationship between OSA and QRS duration. Results: The apnea-hypopnea index (AHI) was positively correlated with QRS duration (r = 0.141, p = 0.03). Patients were divided into 3 groups: AHI < 5 (61), AHI 5-29 (104), and AHI > 30 (55). The mean QRS duration prolonged significantly as OSA worsened (AHI < 5, 85 ± 9.5; AHI 5-29, 89 ± 11.9; and AHI > 30, 95 ± 19.9 ms, p = 0.001). QRS ≥ 100 ms was present in 12.7% of patients with severe OSA compared with 0% in the rest of the sample (p < 0.0001). After adjustment for age, race, and cardiovascular risk factors, this association remained significant in women but not in men. Conclusion: QRS duration and OSA were significantly associated. Severity of OSA independently predicted prolonged QRS in women but not men. Nevertheless, prolongation of QRS duration in either sex may potentiate arrhythmic risks associated with OSA. Citation: Gupta S; Cepeda-Valery B; Romero-Corral A; Shamsuzzaman A; Somers VK; Pressman GS. Association between QRS duration and obstructive sleep apnea. J Clin Sleep Med 2012;8(6):649-654. PMID:23243398

  15. STS-111 Onboard Photo of Endeavour Docking With PMA-2

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. A portion of the Canadarm2 is visible on the right and Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  16. KSC-98pc637

    NASA Image and Video Library

    1998-05-26

    A SPACEHAB Single Module (top) and the Alpha Magnetic Spectrometer (AMS) experiment are secure in Discovery's payload bay shortly before the payload bay doors are closed for the flight of STS-91 at Launch Pad 39A. Launch is planned for June 2 with a window opening around 6:10 p.m. EDT. The single SPACEHAB module houses experiments to be performed by the astronauts and serves as a cargo carrier for items to be transferred to and from the Russian Space Station Mir. The AMS experiment is the first of a new generation of space-based experiments which will use particles, instead of light, to study the Universe and will search for both antimatter and "dark matter," as well as measure normal matter cosmic and gamma rays. STS-91 will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  17. STS-111 crew on top of Launch Pad 39-A during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at Launch Pad 39A, the Expedition 5 and STS-111 crews pose on the 295-foot level. Standing, left to right, are Pilot Paul Lockhart, and the Expedition 5 crew Peggy Whitson, Commander Valeri Korzun and Sergei Treschev. Kneeling in front are Mission Specialist Philippe Perrin, Commander Kenneth Cockrell and Mission Specialist Franklin Chang-Diaz. Korzun and Treschev are with the Russian Space Agency, and Perrin is with the French Space Agency. Seen behind the crews are the top of the orange external tank and one of the white solid rocket boosters. The TCDT includes emergency egress training at the pad and a simulated launch countdown. Mission STS-111 is known as Utilization Flight 2, carrying supplies and equipment in the Multi-Purpose Logistics Module Leonardo to the International Space Station. The payload also includes the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to 'inchworm' from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 5 will travel to the Station on Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002.

  18. STS-111 Flight Day 8 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  19. KSC-98pc639

    NASA Image and Video Library

    1998-05-26

    The Alpha Magnetic Spectrometer (AMS) experiment and four Get Away Special (GAS) payload canisters are secure in Discovery's payload bay shortly before the payload bay doors are closed for the flight of STS-91 at Launch Pad 39A. Launch is planned for June 2 with a window opening around 6:10 p.m. EDT. The AMS experiment is the first of a new generation of space-based experiments which will use particles, instead of light, to study the Universe and will search for both antimatter and "dark matter," as well as measure normal matter cosmic and gamma rays. The GAS Program, initiated to provide extremely low-cost access to space, is managed by the Shuttle Small Payloads Project at NASA's Goddard Space Flight Center. Eight GAS experiments will be conducted on STS-91. The mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir

  20. KSC-02pd1866

    NASA Image and Video Library

    2002-12-07

    KENNEDY SPACE CENTER, FLA. - Mrs. Daniel R. Mulville shakes hands with Kent V. Rominger, Deputy Director of Flight Crew Operations, on the runway of the Shuttle Landing Facility following the landing of Endeavour. Mrs. Mulville is the wife of Dr. Daniel R. Mulville, NASA Associate Deputy Administrator. In the group, from left are KSC Director Roy D. Bridges; Mrs. Mulville; Dr. Mulville (back to camera); James D. Halsell Jr., Manager of Launch Integration at KSC, Space Shuttle Program; Rominger; and STS-113 Commander James Wetherbee. Commander Wetherbee earlier guided Space Shuttle Endeavour to a flawless touchdown on runway 33 at the Shuttle Landing Facility after completing the 13-day, 18-hour, 48-minute, 5.74-million mile STS-113 mission to the International Space Station. Main gear touchdown was at 2:37:12 p.m. EST, nose gear touchdown was at 2:37:23 p.m., and wheel stop was at 2:38:25 p.m. Poor weather conditions thwarted landing opportunities until a fourth day, the first time in Shuttle program history that a landing has been waved off for three consecutive days. The orbiter also carried the other members of the STS-113 crew, Pilot Paul Lockhart and Mission Specialists Michael Lopez-Alegria and John Herrington, as well as the returning Expedition Five crew, Commander Valeri Korzun, ISS Science Officer Peggy Whitson and Flight Engineer Sergei Treschev. The installation of the P1 truss on the International Space Station was accomplished during the mission.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-09

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. A portion of the Canadarm2 is visible on the right and Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  2. STS-111 Flight Day 8 Highlights

    NASA Astrophysics Data System (ADS)

    2002-06-01

    On Flight Day 8 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), the Leonardo Multi Purpose Logistics Module (MPLM) is shown from the outside of the ISS. The MPLM, used to transport goods to the station for the Expedition 5 crew, and to return goods used by the Expedition 4 crew, is being loaded and unloaded by crewmembers. Live video from within the Destiny Laboratory Module shows Whitson and Chang-Diaz. They have just completed the second of three reboosts planned for this mission, in each of which the station will gain an additional statutory mile in altitude. Following this there is an interview conducted by ground-based reporters with some members from each of the three crews, answering various questions on their respective missions including sleeping in space and conducting experiments. Video of Earth and space tools precedes a second interview much like the first, but with the crews in their entirety. Topics discussed include the feelings of Bursch and Walz on their breaking the US record for continual days spent in space. The video ends with footage of the Southern California coastline.

  3. KSC-02pd0705

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at Launch Pad 39A, the Expedition 5 and STS-111 crews pose on the 295-foot level. Standing, left to right, are Pilot Paul Lockhart, and the Expedition 5 crew Peggy Whitson, Commander Valeri Korzun and Sergei Treschev. Kneeling in front are Mission Specialist Philippe Perrin, Commander Kenneth Cockrell and Mission Specialist Franklin Chang-Diaz. Korzun and Treschev are with the Russian Space Agency, and Perrin is with the French Space Agency. Seen behind the crews are the top of the orange external tank and one of the white solid rocket boosters. The TCDT includes emergency egress training at the pad and a simulated launch countdown. Mission STS-111 is known as Utilization Flight 2, carrying supplies and equipment in the Multi-Purpose Logistics Module Leonardo to the International Space Station. The payload also includes the Mobile Base System, which will be installed on the Mobile Transporter to complete the Canadian Mobile Servicing System, or MSS, and a replacement wrist/roll joint for Canadarm 2. The mechanical arm will then have the capability to "inchworm" from the U.S. Lab Destiny to the MSS and travel along the truss to work sites. Expedition 5 will travel to the Station on Endeavour as the replacement crew for Expedition 4, who will return to Earth aboard the orbiter. Launch is scheduled for May 30, 2002

  4. The Effect of Orthology and Coregulation on Detecting Regulatory Motifs

    PubMed Central

    Storms, Valerie; Claeys, Marleen; Sanchez, Aminael; De Moor, Bart; Verstuyf, Annemieke; Marchal, Kathleen

    2010-01-01

    Background Computational de novo discovery of transcription factor binding sites is still a challenging problem. The growing number of sequenced genomes allows integrating orthology evidence with coregulation information when searching for motifs. Moreover, the more advanced motif detection algorithms explicitly model the phylogenetic relatedness between the orthologous input sequences and thus should be well adapted towards using orthologous information. In this study, we evaluated the conditions under which complementing coregulation with orthologous information improves motif detection for the class of probabilistic motif detection algorithms with an explicit evolutionary model. Methodology We designed datasets (real and synthetic) covering different degrees of coregulation and orthologous information to test how well Phylogibbs and Phylogenetic sampler, as representatives of the motif detection algorithms with evolutionary model performed as compared to MEME, a more classical motif detection algorithm that treats orthologs independently. Results and Conclusions Under certain conditions detecting motifs in the combined coregulation-orthology space is indeed more efficient than using each space separately, but this is not always the case. Moreover, the difference in success rate between the advanced algorithms and MEME is still marginal. The success rate of motif detection depends on the complex interplay between the added information and the specificities of the applied algorithms. Insights in this relation provide information useful to both developers and users. All benchmark datasets are available at http://homes.esat.kuleuven.be/~kmarchal/Supplementary_Storms_Valerie_PlosONE. PMID:20140085

  5. Estimation of Canopy Clumping Index From MISR and MODIS Sensors Using the Normalized Difference Hotspot and Darkspot (NDHD) Method: The Influence of BRDF Models and Solar Zenith Angle

    NASA Astrophysics Data System (ADS)

    Wei, S.; Fang, H.

    2016-12-01

    The Clumping index (CI) describes the spatial distribution pattern of foliage, and is a critical parameter used to characterize the terrestrial ecosystem and model land-surface processes. Global and regional scale CI maps have been generated from POLDER, MODIS, and MISR sensors based on an empirical relationship with the normalized difference between hotspot and darkspot (NDHD) index by previous studies. However, the hotspot and darkspot values and CI values can be considerably different from different bidirectional reflectance distribution function (BRDF) models and solar zenith angles (SZA). In this study, we evaluated the effects of different configurations of BRDF models and SZA values on CI estimation using the NDHD method. CI maps estimated from MISR and MODIS were compared with reference data at the VALERI sites. Results show that for moderate to least clumped vegetation (CI > 0.5), CIs retrieved with the observational SZA agree well with field values, while SZA =0° results in underestimates, and SZA = 60° results in overestimates. For highly clumped (CI < 0.5) and sparsely vegetated areas (FCOVER<25%), the Ross-Li model with 60° SZA is recommended for CI estimation. The suitable NDHD configuration was further used to estimate a 15-year time series CI from MODIS BRDF data. The time series CI shows a reasonable seasonal trajectory, and varies consistently with the MODIS leaf area index (LAI). This study enables better usage of the NDHD method for CI estimation, and can be a useful reference for research on CI validation.

  6. STS-111 Flight Day 7 Highlights

    NASA Astrophysics Data System (ADS)

    2002-06-01

    On Flight Day 7 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), this video opens with answers to questions asked by the public via e-mail about the altitude of the space station, the length of its orbit, how astronauts differentiate between up and down in the microgravity environment, and whether they hear wind noise during the shuttle's reentry. In video footage shot from inside the Quest airlock, Perrin is shown exiting the station to perform an extravehicular activity (EVA) with Chang-Diaz. Chang-Diaz is shown, in helmet mounted camera footage, attaching cable protection booties to a fish-stringer device with multiple hooks, and Perrin is seen loosening bolts that hold the replacement unit accomodation in launch position atop the Mobile Base System (MBS). Perrin then mounts a camera atop the mast of the MBS. During this EVA, the astronauts installed the MBS on the Mobile Transporter (MT) to support the Canadarm 2 robotic arm. A camera in the Endeavour's payload bay provides footage of the Pacific Ocean, the Baja Peninsula, and Midwestern United States. Plumes from wildfires in Nevada, Idaho, Yellowstone National Park, Wyoming, and Montana are visible. The station continues over the Great Lakes and the Eastern Provinces of Canada.

  7. STS-113 Post Flight Presentation

    NASA Astrophysics Data System (ADS)

    2002-01-01

    The STS-113 post-flight presentation begins with a view of Mission Specialists Michael E. Lopez-Alegria and John B. Herrington getting suited for the space mission. The STS-113 crew consists of: Commander James D. Wetherbee, Pilot Paul Lockhart, Mission Specialists Michael Lopez-Alegria and John Herrington. Cosmonauts Valery Korzun, and Sergei Treschev, and astronaut Peggy Whitson who are all members of the expedition five crew, and Commander Kenneth Bowersox, Flight Engineers Nikolai Budarin and Donald Pettit, members of Expedition Six. The main goal of this mission is to take Expedition Six up to the International Space Station and Return Expedition Five to the Earth. The second objective is to install the P(1) Truss segment. Three hours prior to launch, the crew of Expedition Six along with James Wetherbee, Paul Lockhart, Michael Lopez-Alegria and John Herrington are shown walking to an astrovan, which takes them to the launch pad. The actual liftoff is presented. Three Extravehicular Activities (EVA)'s are performed on this mission. Michael Lopez-Alegria and John Herrington are shown performing EVA 1 and EVA 2 which include making connections between the P1 and S(0) Truss segments, and installing fluid jumpers. A panoramic view of the ISS with the Earth in the background is shown. The grand ceremony of the crew exchange is presented. The astronauts performing everyday duties such as brushing teeth, washing hair, sleeping, and eating pistachio nuts are shown. The actual landing of the Space Shuttle is presented.

  8. STS-111 Flight Day 7 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Flight Day 7 of STS-111 (Space Shuttle Endeavour crew includes: Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist; International Space Station (ISS) Expedition 5 crew includes Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer; ISS Expedition 4 crew includes: Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer), this video opens with answers to questions asked by the public via e-mail about the altitude of the space station, the length of its orbit, how astronauts differentiate between up and down in the microgravity environment, and whether they hear wind noise during the shuttle's reentry. In video footage shot from inside the Quest airlock, Perrin is shown exiting the station to perform an extravehicular activity (EVA) with Chang-Diaz. Chang-Diaz is shown, in helmet mounted camera footage, attaching cable protection booties to a fish-stringer device with multiple hooks, and Perrin is seen loosening bolts that hold the replacement unit accomodation in launch position atop the Mobile Base System (MBS). Perrin then mounts a camera atop the mast of the MBS. During this EVA, the astronauts installed the MBS on the Mobile Transporter (MT) to support the Canadarm 2 robotic arm. A camera in the Endeavour's payload bay provides footage of the Pacific Ocean, the Baja Peninsula, and Midwestern United States. Plumes from wildfires in Nevada, Idaho, Yellowstone National Park, Wyoming, and Montana are visible. The station continues over the Great Lakes and the Eastern Provinces of Canada.

  9. Physicists for Human Rights in the Former Soviet Union

    NASA Astrophysics Data System (ADS)

    Chernyak, Yuri

    2005-03-01

    In his 1940 paper `Freedom and Science' Albert Einstein emphasized that ``intellectual independence is a primary necessity for the scientific inquirer'' and that ``political liberty is also extraordinarily important for his work.'' Raised in the tradition of intellectual independence and dedicated to the scientific truth, physicists were among the first to stand up for freedom in the USSR. It was no coincidence that the founders of the first independent Human Rights Committee (1970) were physicists: Andrei Sakharov, Valery Chalidze and Andrei Tverdokhlebov. In 1973 a physicist, Alexander Voronel, founded a Moscow Sunday (refusenik) Seminar -- the first openly independent scientific body in the history of the USSR. In 1976 physicists Andrei Sakharov, Yuri Orlov and a mathematician Natan Sharansky were the leading force in founding the famous Moscow Helsinki Human Rights Watch group. This talk briefly describes the special position of physicists (often viewed as Einstein's colleagues) in Soviet society, as well as their unique role in the struggle for human rights. It describes in some detail the Moscow Sunday Seminar, and extensions thereof such as International Conferences, the Computer School and the Computer Database of Refuseniks. The Soviet government considered such truly independent organizations as a challenge to Soviet authority and tried to destroy them. The Seminar's success and its very existence owed much to the support of Western scientific organizations, who persuaded their members to attend the Seminar and visit scientist-refuseniks. The human rights struggle led by physicists contributed substantially to the demise of the Soviet system.

  10. Fifty years of Australian pediatric gastroenterology.

    PubMed

    Cameron, Don

    2009-10-01

    When the Gastroenterological Society of Australia (GESA) began 50 years ago there were very few pediatric gastroenterologists in the world. The 'Mother' of Paediatric Gastroenterology was Australian Charlotte ('Charlo') Anderson who established one of the world's first pediatric gastroenterology units in Melbourne in the early 1960s. Her earlier work in Birmingham had identified gluten as the component of wheat responsible for celiac disease and helped separate maldigestion (cystic fibrosis) and mucosal malabsorption. The first comprehensive textbook of Paediatric Gastroenterology was edited by Charlotte Anderson and Valerie Burke in 1975. Rudge Townley succeeded Charlotte Anderson in Melbourne and went on to further develop small bowel biopsy techniques making it a safe, simple, and quick procedure that led to much greater understanding of small bowel disease and ultimately the discovery of Rotavirus by Ruth Bishop et al. and subsequently to Rotavirus immunization. Australian Paediatric Gastroenterology subsequently developed rapidly with units being established in all mainland capital cities by the end of the 1970s. The Australian Society of Paediatric Gastroenterology Hepatology and Nutrition (AuSPGHAN) was established in the 1980s. Australians have contributed significantly in many areas of gastroenterology in infants, children, and adolescents including celiac disease, cystic fibrosis, liver disease, transplantation, gastrointestinal infection, allergy, indigenous health, inflammatory bowel disease, gastrointestinal motility, and the development of novel tests of gastrointestinal function and basic science. There have also been major contributions to nutrition in cystic fibrosis, end-stage liver disease, and intestinal failure. The future of Australian Paediatric Gastroenterology is in good hands.

  11. STS-111 Flight Day 5 Highlights

    NASA Astrophysics Data System (ADS)

    2002-06-01

    On Flight Day 5 of STS-111, the crew of Endeavour (Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Mission Specialist; Philippe Perrin, Mission Specialist) and the Expedition 5 crew (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) and Expedition 4 crew (Yury Onufrienko, Commander; Daniel Bursch, Flight Engineer; Carl Walz, Flight Engineer) are aboard the docked Endeavour and International Space Station (ISS). The ISS cameras show the station in orbit above the North African coast and the Mediterranean Sea, as Chang-Diaz and Perrin prepare for an EVA (extravehicular activity). The Canadarm 2 robotic arm is shown in motion in a wide-angle shot. The Quest Airlock is shown as it opens to allow the astronauts to exit the station. As orbital sunrise approaches, the astronauts are shown already engaged in their EVA activities. Chang-Diaz is shown removing the PDGF (Power and Data Grapple Fixture) from Endeavour's payload bay as Perrin prepares its installation position in the ISS's P6 truss structure; The MPLM is also visible. Following the successful detachment of the PDGF, Chang-Diaz carries it to the installation site as he is transported there by the robotic arm. The astronauts are then shown installing the PDGF, with video provided by helmet-mounted cameras. Following this task, the astronauts are shown preparing the MBS (Mobile Base System) for grappling by the robotic arm. It will be mounted to the Mobile Transporter (MT), which will traverse a railroad-like system along the truss structures of the ISS, and support astronaut activities as well as provide an eventual mobile base for the robotic arm.

  12. Beral's 1974 paper: A step towards universal prevention of cervical cancer.

    PubMed

    Franceschi, Silvia; Vaccarella, Salvatore

    2015-12-01

    In 1974, Valerie Beral published a landmark paper on the sexually transmitted origin of cervical cancer (CC) using statistics routinely available in the United Kingdom (UK). Among women born between 1902 and 1947, CC mortality rates correlated remarkably well with the incidence rates of gonorrhoea when they were 20 years old and both were highest among women born after 1940. Hence, if CC prevention and treatment had remained unchanged, the youngest generations of women would have experienced a high risk of CC death as they grew older. Fortunately, progress in CC prevention has helped avoid this scenario. The adverse consequences of the "sexual revolution" were greatly mitigated in the UK and other high-resource countries by the implementation of high quality cytology-based CC screening. An age-period-cohort analysis suggests that >30,000 cases or approximately 35% of expected CC cases may have been prevented by screening programmes in the UK between 1983 and 2007 and this percentage has been steadily increasing. In addition, the discovery of the causal role of HPV is reshaping primary and secondary prevention of CC. Cheaper HPV tests are becoming available and HPV-based primary screening may at last facilitate CC screening in low-resource countries. In the long-term, however, HPV vaccination, which has already been adopted by many countries, represents the best hope for preventing CC and overcoming socio-economic differences in CC risk within and across countries. The additional elucidation of HPV cofactors to which Beral has greatly contributed may also help control HPV infection in unvaccinated women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. List of participants at SIDE IV meeting, Tokyo, 27 November--1 December 2000

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Mark J Ablowitz, Vsevolod Adler, Mark Alber, Said Belmehdi, Marco Boiti, Claude Brezinski, R Bullough, Y M Chiang, Theodore Chihara, Peter A Clarkson, Robert Conte, Adam Doliwa, Vladimir Dorodnitsyn, Mitsuaki Eguchi, Claire Gilson, Basil Grammaticos, Valeri Gromak, Rod Halburd, Koji Hasegawa, Jarmo Hietarinta, Ryogo Hirota, Xing Biao Hu, M Idzumi, J Inoguchi, Hiroya Ishikara, Mourad Ismail, Shin Isojima, Kenichi Ito, Yoshiaki Itoh, Masashi Iwasaki, Klara Janglajew, Michio Jimbo, Nalini Joshi, Kenji Kajiwara, Saburo Kakei, Masaru Kamata, Satoshi Kamei, Rinat Kashaev, Shingo Kawai, Taeko Kimijima, K Kimura, Anatol Kirillov, Koichi Kondo, Boris Konopelchenko, Martin Kruskal, Atsuo Kuniba, Wataru Kunishima, Franklin Lambert, Serguei Leble, Decio Levi, Shigeru Maeda, Manuel Manas, Ken-Ichi Maruno, Tetsu Masuda, J Matsukidaira, Atsushi Matsumiya, Shigeki Matsutani, Yukitaka Minesaki, Mikio Murata, Micheline Musette, Atsushi Nagai, Katsuya Nakagawa, Atsushi Nakamula, Akira Nakamura, Yoshimasa Nakamura, Frank Nijhoff, J J C Nimmo, Katsuhiro Nishinari, Michitomo Nishizawa, A Nobe, Masatoshi Noumi, Yaeko Ohsaki, Yasuhiro Ohta, Kazuo Okamoto, Alexandre Orlov, Naoki Osada, Flora Pempinelli, Spiro Pyrlis, Reinout Quispel, Orlando Ragnisco, Alfred Ramani, Jean-Pierre Ramis, Andreas Ruffing, Simon Ruijsenaars, Satoru Saito, Noriko Saitoh, Hidetaka Sakai, Paulo Santini, Narimasa Sasa, Ryu Sasaki, Yoshikatsu Sasaki, Junkichi Satsuma, Sergei Sergeev, Nobuhiko Shinzawa, Evgueni Sklyanin, Juris Suris, Norio Suzuki, Yukiko Tagami, Katsuaki Takahashi, Daisuke Takahashi, Tomoyuki Takenawa, Yoshiro Takeyama, K M Tamizhmani, T Tamizhmani, Kouichi Toda, Morikatsu Toda, Tetsuji Tokihiro, Takayuki Tsuchida, Yohei Tsuchiya, Teruhisa Tsuda, Satoru Tsujimoto, Walter Van Assche, Claude Viallet, Luc Vinet, Shinsuke Watanabe, Yoshihida Watanabe, Ralph Willox, Pavel Winternitz, Yasuhiko Yamada, Yuji Yamada, Jin Yoneda, Haruo Yoshida, Katsuhiko Yoshida, Daisuke Yoshihara, Fumitaka Yura, J

  14. In vivo regeneration of red cell 2,3-diphosphoglycerate following transfusion of DPG-depleted AS-1, AS-3 and CPDA-1 red cells.

    PubMed

    Heaton, A; Keegan, T; Holme, S

    1989-01-01

    Regeneration of 2,3-diphosphoglycerate (DPG) was determined following transfusion of DPG-depleted group O red cells into group A recipients. Blood from five donors was stored in the adenine-containing solutions CPDA-1, AS-1 or AS-3 for 35 d at 4 degrees C. Post-transfusion red cell DPG and ATP were measured in separated group O red cells over a 7 d period. The studies confirmed rapid in vivo DPG regeneration with greater than or equal to 50% of the maximum level being achieved within 7 h. An average of 95% of the recipients' pre-transfusion DPG level was achieved by 72 h and by 7 d mean (+/- SEM) DPG levels relative to recipient's pre-transfusion DPG averaged 84% (+/- 13%), 92% (+/- 17%) and 84% (+/- 21%) for CPDA-1, AS-1 and AS-3 red cells, respectively. Results were comparable to those previously reported for blood stored in ACD for 15-20 d (Valeri & Hirsch, 1969; Beutler & Wood, 1969). The immediate regeneration rate, V, closely approximated first order regeneration kinetics with AS-3 red cells exhibiting double the rate of CPDA-1 red cells (P less than 0.001). AS-1 red cells exhibited an intermediate rate of regeneration which was not significantly different compared to either CPDA-1 or AS-3 (P greater than 0.05). V exhibited a significant (P less than 0.05) positive correlation with ATP levels 5-7 h post-infusion. ATP regeneration of the infused cells was rapid with a mean increase of 1.2 mumol/g Hb above post-storage levels being achieved 1 h following transfusion.

  15. Radiolytic Model for Chemical Composition of Europa's Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2004-01-01

    The overall objective of the present effort is to produce models for major and selected minor components of Europa s neutral atmosphere in 1-D versus altitude and in 2-D versus altitude and longitude or latitude. A 3-D model versus all three coordinates (alt, long, lat) will be studied but development on this is at present limited by computing facilities available to the investigation team. In this first year we have focused on 1-D modeling with Co-I Valery Shematovich s Direct Simulation Monte Carlo (DSMC) code for water group species (H2O, O2, O, OH) and on 2-D with Co-I Mau Wong's version of a similar code for O2, O, CO, CO2, and Na. Surface source rates of H2O and O2 from sputtering and radiolysis are used in the 1-D model, while observations for CO2 at the Europa surface and Na detected in a neutral cloud ejected from Europa are used, along with the O2 sputtering rate, to constrain source rates in the 2-D version. With these separate approaches we are investigating a range of processes important to eventual implementation of a comprehensive 3-D atmospheric model which could be used to understand present observations and develop science requirements for future observations, e.g. from Earth and in Europa orbit. Within the second year we expect to merge the full water group calculations into the 2-D version of the DSMC code which can then be extended to 3-D, pending availability of computing resources. Another important goal in the second year would be the inclusion of sulk and its more volatile oxides (SO, SO2).

  16. STS-111 Mission Highlights Resource Tape. Part 1 of 4; Flight Days 1 - 4

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video, Part 1 of 4, shows the activities of the STS-111 crew (Kenneth Cockrell, Commander; Paul Lockhart, Pilot; Franklin Chang-Diaz, Phillipe Perrin, Mission Specialists) during flight days 1 through 4. Also shown are the incoming Expedition 5 (Valeri Korzun, Commander; Peggy Whitson, NASA ISS Science Officer; Sergei Treschev, Flight Engineer) and outgoing Expedition 4 (Yuri Onufriyenko, Commander; Carl Walz, Daniel Bursch, Flight Engineers) crews of the ISS (International Space Station). The activities from other flight days can be seen on 'STS-111 Mission Highlights Resource Tape' Part 2 of 4 (internal ID 2002139469), 'STS-111 Mission Highlights Resource Tape' Part 3 of 4 (internal ID 2002139468), and 'STS-111 Mission Highlights Resource Tape' Part 4 of 4 (internal ID 2002139474). The primary activity of flight day 1 is the launch of Space Shuttle Endeavour. The crew is seen before the launch at a meal and suit-up, and some pre-flight procedures are shown. Perrin holds a sign with a personalized message. The astronauts communicate with Mission Control extensively after launch, and an inside view of the shuttle cabin is shown. The replays of the launch include close-ups of the nozzles at liftoff, and the fall of the solid rocket boosters and the external fuel tank. Flight day 2 shows footage of mainland Asia at night, and daytime views of the eastern United States and Lake Michigan. Flight day three shows the Endeavour orbiter approaching and docking with the ISS. After the night docking, the crews exchange greetings, and a view of the Nile river and Egypt at night is shown. On flight day 4, the MPLM (Multi-Purpose Logistics Module) Leonardo was temporarily transferred from Endeavour's payload bay to the ISS.

  17. Revisiting Lake Hämelsee: reconstructing abrupt Lateglacial climate transitions using state- of-the-art palaeoclimatological proxies

    NASA Astrophysics Data System (ADS)

    Engels, Stefan; Hoek, Wim; Lane, Christine; Sachse, Dirk; Wagner-Cremer, Friederike

    2015-04-01

    Lake Hämelsee (Germany) is one of the northernmost sites in NW Europe that has varved sediments throughout large parts of its Lateglacial and Early Holocene sediment sequence. Previous research on this site has shown its potential, in terms of chronological resolution and palaeoecological reconstructions, for reconstructing the abrupt transitions into and out of the Younger Dryas, the last cold period of the last glacial. The site was revisited during a 1-week summer school for Early Stage Researchers (2013), within the INTIMATE Example training and research project, supported by EU Cost Action ES0907. Two overlapping sediment sequences were retrieved from the centre of the lake during the summer school. These sediments have since formed the basis for follow-up research projects, which have sparked the collaboration of around 30 researchers in 12 laboratories across Europe. A chronological framework for the core has been composed from a combination of varve counting, radiocarbon dating and tephrochronology. Tephrostratigraphic correlations allow direct correlation and precise comparison of the record to marine and ice core records from the North Atlantic region, and other terrestrial European archives. Furthermore, the core is has been subjected to multiple sedimentological (e.g. XRF, loss-on-ignition), geochemical (e.g. lipid biomarkers, GDGTs) and palaeoecological (e.g. pollen, chironomids) proxy-based reconstructions of past environmental and climatic conditions. The results provide important insights into the nature of the abrupt climate transitions of the Lateglacial and Early Holocene, both locally and on a continental scale. The INTIMATE Example participants: Illaria Baneschi, Achim Brauer, Christopher Bronk Ramsey, Renee de Bruijn, Siwan Davies, Aritina Haliuc, Katalin Hubay, Gwydion Jones, Meike Müller, Johanna Menges, Josef Merkt, Tom Peters, Francien Peterse, Anneke ter Schure, Kathrin Schuetrumpf, Richard Staff, Falko Turner, Valerie van den Bos.

  18. Crustaceans from a tropical estuarine sand-mud flat, Pacific, Costa Rica, (1984-1988) revisited.

    PubMed

    Vargas-Zamora, José A; Sibaja-Cordero, Jeffrey A; Vargas-Castillo, Rita

    2012-12-01

    The availability of data sets for time periods of more than a year is scarce for tropical environments. Advances in hardware and software speed-up the re-analysis of old data sets and facilitates the description of population oscillations. Using recent taxonomic literature and software we have updated and re-analized the information on crustacean diversity and population fluctuations from a set of cores collected at a mud-sand flat in the mid upper Gulf of Nicoya estuary, Pacific coast of Costa Rica (1984-1988). A total of 112 morphological species of macroinvertebrates was found, of which 29 were crustaceans. Taxonomic problems, maily with the peracarids, prevented the identification of a group of species. The abundance patterns of the crab Pinnixa valerii, the ostracod Cyprideis pacifica, and the cumacean Coricuma nicoyensis were analized with the Generalized Additive Models of the free software R. The models evidenced a variety of population oscillations during the sampling period. These oscillations probably included perturbations induced by external factors, like the strong red tide events of 1985. In additon, early on 1984 the populations might have been at an altered state due to the inpact of El Niño 1982-83. Thus, the oscillations observed during the study period departed from the expected seasonality (dry vs rainy) pattern and are thus considered atypical for this tropical estuarine tidal-flat. Crustacean diversity and population peaks were within the range of examples found in worldwide literature. However, abundances of the cumacean C. nicoyensis, an endemic species, are the highest reported for a tropical estuary. Comparative data from tropical tidal flat crustaceans continues to be scarce. Crustaceans (total vs groups) had population changes in response to the deployment of predator exclusion cages during the dry and rainy seasons of 1985. Temporal and spatial patchiness characterized the abundances of P. valeri, C. pacifica and C. nicoyenis.

  19. U.S. high school curriculum: three phases of contemporary research and reform.

    PubMed

    Lee, Valerie E; Ready, Douglas D

    2009-01-01

    Valerie Lee and Douglas Ready explore the influences of the high school curriculum on student learning and the equitable distribution of that learning by race and socioeconomic status. They begin by tracing the historical development of the U.S. comprehensive high school and then examine the curricular reforms of the past three decades. During the first half of the twentieth century, the authors say, public high schools typically organized students into rigid curricular "tracks" based largely on students' past academic performance and future occupational and educational plans. During the middle of the century, however, high schools began to provide students with a choice among courses that varied in both content and academic rigor. Although the standards movement of the 1980s limited these curricular options somewhat, comprehensive curricula remained, with minority and low-income students less often completing college-prep courses. During the 1990s, say the authors, researchers who examined the associations between course-taking and student learning reported that students completing more advanced coursework learned more, regardless of their social or academic backgrounds. Based largely on this emerging research consensus favoring college-prep curriculum, in 1997 public high schools in Chicago began offering exclusively college-prep courses. To address the needs of the city's many low-performing ninth graders, schools added extra coursework in subjects in which their performance was deficient. A recent study of this reform, however, found that these approaches made little difference in student achievement. Lee and Ready hypothesize that "selection bias" may explain the divergent conclusions reached by the Chicago study and previous research. Earlier studies rarely considered the unmeasured characteristics of students who completed college-prep courses-characteristics such as motivation, access to academic supports, and better teachers-that are also positively

  20. Sen2-Agri country level demonstration for Ukraine

    NASA Astrophysics Data System (ADS)

    Kussul, N.; Kolotii, A.; Shelestov, A.; Lavreniuk, M. S.

    2016-12-01

    Due to launch of Sentinel-2 mission European Space Agency (ESA) started Sentinel-2 for Agriculture (Sen2-Agri) project coordinated by Universite catholique de Louvain (UCL). Ukraine is selected as one of 3 country level demonstration sites for benchmarking Sentinel-2 data due to wide range of main crops (both winter and summer), big fields and high enough climate variability over the territory [1-2]. Within this county level demonstration main objectives are following: i) Sentinel's products quality assessment and their suitability estimation for the territory of Ukraine [2]; ii) demonstration in order to convince decision makers and state authorities; iii) assessment of the personnel and facilities required to run the Sen2-Agri system and creation of Sen-2 Agri products (crop type maps and such essential climatic variable as Leaf Area Index - LAI [3]). During this project ground data were collected for crop land mapping and crop type classification along the roads within main agro-climatic zones of Ukraine. For LAI estimation we used indirect non-destructive method which is based on DHP-images and VALERI protocol. Products created with use of Sen2-Agri system deployed during project execution and results of neural-network approach utilization will be compared. References Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 9 (6), 2500-2508. Kussul, N., Skakun, S., Shelestov, A., Lavreniuk, M., Yailymov, B., & Kussul, O. (2015). Regional scale crop mapping using multi-temporal satellite imagery. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 45-52. Shelestov, A., Kolotii, A., Camacho, F., Skakun, S., Kussul, O., Lavreniuk, M., & Kostetsky, O. (2015, July). Mapping of biophysical parameters based on high

  1. STS-112 Flight Day 4 Highlights

    NASA Astrophysics Data System (ADS)

    2002-10-01

    On the fourth day of STS-112, its crew (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Mission Specialist; Piers Sellers, Mission Specialist; Sandra Magnus, Mission Specialist; Fyodor Yurchikhin, Mission Specialist) onboard Atlantis and the Expedition 5 crew (Valery Korzun, Commander; Peggy Whitson, Flight Engineer; Sergei Treschev, Flight Engineer) onboard the International Space Station (ISS) are seen preparing for the installation of the S1 truss structure. Inside the Destiny Laboratory Module, Korzun and other crewmembers are seen as they busily prepare for the work of the day. Sellers dons an oxygen mask and uses an exercise machine in order to purge the nitrogen from his bloodstream, in preparation for an extravehicular activity (EVA). Whitson uses the ISS's Canadarm 2 robotic arm to grapple the S1 truss and remove it from Atlantis' payload bay, with the assistance of Magnus. Using the robotic arm, Whitson slowly maneuvers the 15 ton truss structure into alignment with its attachment point on the starboard side of the S0 truss structure, where the carefully orchestrated mating procedures take place. There is video footage of the entire truss being rotated and positioned by the arm, and ammonia tank assembly on the structure is visible, with Earth in the background. Following the completion of the second stage capture, the robotic arm is ungrappled from truss. Sellers and Wolf are shown exiting the the Quest airlock hatch to begin their EVA. They are shown performing a variety of tasks on the now attached S1 truss structure, including work on the Crew Equipment Translation Cart (CETA), the S-band Antenna Assembly, and umbilical cables that provide power and remote operation capability to cameras. During their EVA, they are shown using a foot platform on the robotic arm. Significant portions of their activities are shown from the vantage of helmet mounted video cameras. The video closes with a final shot of the ISS and its new S1 truss.

  2. PREFACE: Preface

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Wang, Lihong V.; Tuchin, Valery V.

    2011-02-01

    Qingming LuoLihong V WangValery V TuchinConference Chairs 9th International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2010)2-5 November 2010Wuhan, China EditorsQingming Luo, Huazhong University of Science and Technology (China)Lihong V Wang , Washington University in St. Louis (USA)Valery V Tuchin, Saratov State University (Russia) Sponsored and Organized byHuazhong University of Science and Technology (China)Wuhan National Laboratory for Optoelectronics (China)Britton Chance Center for Biomedical Photonics (China) Technical Co-sponsored byIBOS-International Biomedical Optics SocietyThe Chinese Optical SocietyThe Biophysical Society of China Co-organized byKey Laboratory of Biomedical Photonics, Ministry of Education (China)Virtual Research Center of Biomedical Photonics, Ministry of Education (China)Hubei Bioinformatics and Molecular Imaging Key Laboratory (China) CONFERENCE COMMITTEES Honorary ChairsBritton Chance, University of Pennsylvania (USA)Bingkun Zhou, Tsinghua University (China) Conference ChairsQingming Luo, Huazhong University of Science and Technology (China)Lihong V Wang , Washington University in St. Louis (USA)Valery V Tuchin, Saratov State University (Russia) Advisory CommitteeSydney Brenner, The Salk Institute in La Jolla, California (USA)Howard Chen, K&L Gates (USA)Jing Cheng, Tsinghua University (China)Shu Chien, University of California, San Diego (USA)Paul Ching-Wu Chu, University of Houston (USA)Aaron Ciechanover, Technion-Israel Institute of Technology, Haifa (Israel)A Stephen Dahms, Alfred E Mann Foundation for Biomedical Engineering (USA)Da Hsuan Feng, National Cheng Kung University (Taiwan, China)Steven R Goodman, SUNY Upstate Medical University (USA)Barry Halliwell, National University of Singapore (Singapore)John Hart, The University of Texas at Dallas (USA)George Radda, Agency for Science, Technology and Research (A*STAR) (Singapore)Zihe Rao, Nankai University (China)Brian M Salzberg, University of Pennsylvania (USA

  3. PREFACE: Rusnanotech 2010 International Forum on Nanotechnology

    NASA Astrophysics Data System (ADS)

    Kazaryan, Konstantin

    2011-03-01

    Institute of Bioorganic Chemistry, Russian Academy of Sciences, Russia, Deputy Chairman of the Program CommitteeProf Alexander Aseev, AcademicianVice-president of Russian Academy of Sciences Director, A V Rzhanov-Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Sergey Bagaev, AcademicianDirector, Institute of Laser Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Alexander Gintsburg, Ademician, Russian Academy of Medical SciencesDirector Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, RussiaProf Anatoly Grigoryev, Academician, Russian Academy of Sciences, Russian Academy of Medical SciencesVice-president, Russian Academy of Medical Sciences, RussiaProf Michael Kovalchuk, RAS Corresponding MemberDirector, Kurchatov Institute Russian Scientific Center, RussiaProf Valery Lunin, AcademicianDean, Department of Chemistry, Lomonosov Moscow State University, RussiaProf Valentin Parmon, Academician, DirectorBoreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, RussiaProf Rem Petrov, AcademicianAdvisor, Russian Academy of Sciences, RussiaProf Konstantin Skryabin, AcademicianDirector, Bioinzheneriya Center, Russian Academy of Sciences, RussiaProf Vsevolod Tkachuk, Academician, Russian Academy of Sciences, Russian Academy of Medical SciencesDean, Faculty of Fundamental Medicine, Lomonosov Moscow State University, RussiaProf Vladimir Fortov, AcademicianDirector, Joint Institute for High Temperatures, Russian Academy of Sciences, RussiaProf Alexey Khokhlov, AcademicianVice Principal, Head of Innovation, Information and International Scientific Affairs Department, Lomonosov Moscow State University, RussiaProf Valery Bukhtiyarov, RAS Corresponding MemberDirector, Physicochemical Research Methods Dept., Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, RussiaProf Anatoly Dvurechensky, RAS Corresponding Member

  4. Remote Monitoring of Hypertension Diseases in Pregnancy: A Pilot Study.

    PubMed

    Lanssens, Dorien; Vandenberk, Thijs; Smeets, Christophe Jp; De Cannière, Hélène; Molenberghs, Geert; Van Moerbeke, Anne; van den Hoogen, Anne; Robijns, Tiziana; Vonck, Sharona; Staelens, Anneleen; Storms, Valerie; Thijs, Inge M; Grieten, Lars; Gyselaers, Wilfried

    2017-03-09

    interventions and as such to ever increasing medicalized antenatal care. ©Dorien Lanssens, Thijs Vandenberk, Christophe JP Smeets, Hélène De Cannière, Geert Molenberghs, Anne Van Moerbeke, Anne van den Hoogen, Tiziana Robijns, Sharona Vonck, Anneleen Staelens, Valerie Storms, Inge M Thijs, Lars Grieten, Wilfried Gyselaers. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 09.03.2017.

  5. ADHD: Is There an App for That? A Suitability Assessment of Apps for the Parents of Children and Young People With ADHD.

    PubMed

    Powell, Lauren; Parker, Jack; Harpin, Valerie

    2017-10-13

    sample. Findings suggest that these apps may not fully meet the complex needs of this parent population. Further research is required to explore the value of apps with this population and how they can be tailored to their very specific needs. ©Lauren Powell, Jack Parker, Valerie Harpin. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 13.10.2017.

  6. Special feature of kinetics of ZcE isomerization of β-N-methylaminovinyl trifluoromethyl ketone in Ar matrix exposed to UV radiation and spontaneous E ⇌ Z isomerization of α-methyl-β-N-methylaminovinyl trifluoromethyl ketone

    NASA Astrophysics Data System (ADS)

    Vdovenko, Sergey I.; Gerus, Igor I.; Pagacz-Kostrzewa, Magdalena; Wierzejewska, Maria; Zhuk, Yuri I.; Kukhar, Valery P.

    2018-06-01

    -N-methylaminovinyl trifluoromethyl ketone. Sergey I. Vdovenko, Igor I. Gerus, Magdalena Pagacz-Kostrzewa, Maria Wierzejewska, Yuri I. Zhuk and Valery P. Kukhar.

  7. PREFACE: XI Conference on Beauty, Charm, Hyperons in Hadronic Interactions BEACH

    NASA Astrophysics Data System (ADS)

    Bozzo, Marco

    2014-11-01

    This volume contains the invited and contributed papers presented at the 11th International Conference on Hyperons, Charm and Beauty Hadrons, currently known as the BEACH Conferences. The BEACH conferences cover a broad range of physics topics in the field of Hyperon and heavy-flavor physics. This conference continues the BEACH series, which began with a meeting in Strasbourg in 1995 and since then offers a biennial opportunity for both theorists and experimentalists from the high-energy physics community to discuss all aspects of flavour physics. The 11th Conference took place in the Lecture Theatre of the Physics West Building of the University of Birmingham (United Kingdom) from July 22nd to July 26th and was attended by 107 participants. All of the sessions were plenary sessions accommodating review talks and shorter contributions discussing both theory and recent experiments. At the end of the conference Valerie Gibson (Cavendish Laboratory, University of Cambridge, UK) and Sebastian Jaeger (School of Physics and Astronomy, University of Sussex, UK) summarized and put in context all the presentations of the conference giving two very interesting Summary talks. These Conference Proceedings are particularly interesting since, due to the long shutdown of the LHC in Geneva (CH), most of the data presented were from the entire data set available. This volume in fact offers an interesting panorama of the present situation and allows a comparison of the experimental data and the theory in a field that is always in continuous evolution. The conference was impeccably organized by the Local Organizing Committee chaired by Cristina Lazzeroni (Birmingham Univeristy, Birmingham, UK) that I want to thank particularly here. Many from the University Staff have contributed to the smooth running of the conference. We would like to thank the Local Scientific Secretariat for their invaluable help in making the conference a truly enjoyable and unforgettable event; a special thanks

  8. Spatial Upscaling of Long-term In Situ LAI Measurements from Global Network Sites for Validation of Remotely Sensed Products

    NASA Astrophysics Data System (ADS)

    Xu, B.; Jing, L.; Qinhuo, L.; Zeng, Y.; Yin, G.; Fan, W.; Zhao, J.

    2015-12-01

    Leaf area index (LAI) is a key parameter in terrestrial ecosystem models, and a series of global LAI products have been derived from satellite data. To effectively apply these LAI products, it is necessary to evaluate their accuracy reasonablely. The long-term LAI measurements from the global network sites are an important supplement to the product validation dataset. However, the spatial scale mismatch between the site measurement and the pixel grid hinders the utilization of these measurements in LAI product validation. In this study, a pragmatic approach based on the Bayesian linear regression between long-term LAI measurements and high-resolution images is presented for upscaling the point-scale measurements to the pixel-scale. The algorithm was evaluated using high-resolution LAI reference maps provided by the VALERI project at the Järvselja site and was implemented to upscale the long-term LAI measurements at the global network sites. Results indicate that the spatial scaling algorithm can reduce the root mean square error (RMSE) from 0.42 before upscaling to 0.21 after upscaling compared with the aggregated LAI reference maps at the pixel-scale. Meanwhile, the algorithm shows better reliability and robustness than the ordinary least square (OLS) method for upscaling some LAI measurements acquired at specific dates without high-resolution images. The upscaled LAI measurements were employed to validate three global LAI products, including MODIS, GLASS and GEOV1. Results indicate that (i) GLASS and GEOV1 show consistent temporal profiles over most sites, while MODIS exhibits temporal instability over a few forest sites. The RMSE of seasonality between products and upscaled LAI measurement is 0.25-1.72 for MODIS, 0.17-1.29 for GLASS and 0.36-1.35 for GEOV1 along with different sites. (ii) The uncertainty for products varies over different months. The lowest and highest uncertainty for MODIS are 0.67 in March and 1.53 in August, for GLASS are 0.67 in November

  9. Proceedings of the VI Serbian-Bulgarian Astronomical Conference, May 7 - 11 2008, Belgrade, Serbia

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Tsvetkov, M.; Popović, L. C.; Golev, V.

    2009-07-01

    The Sixth Serbian-Bulgarian Astronomical Conference was organized by Belgrade Astronomical Observatory, and held in Belgrade, in the building of Mathematical Faculty in Jagiceva Street, from 75th to 11th May 2008. Co-organizers were Mathematical Faculty, Astronomical Society "Rudjer Boskovic", Institute of Astronomy of the Bulgarian Academy of Sciences (BAS), Space Research Institute of BAS and Department of Astronomy of the University of Sofia. Co-chairmen of the Scientific Organizing Committee were Milan Dimitrijevic and Milcho Tsvetkov and Co-vice chairmen Luka C. Popovic and Valeri Golev. Chair of the Local Organizing Committee was Andjelka Kovacevic. The conference [was] attended by 58 participants. From Serbia were 36, from Belgrade Astronomical Observatory, Mathematical Faculty, Faculty of Sciences from Nis, Institute of Physics from Zemum, High School for pedagogues of occupational studies from Aleksinac, Faculty of Sciences from Kragujevac, Mathematical Institute of Serbian Academy of Sciences and Arts, Astronomical Society "Rudjer Boskovic" and Astronomical Society "Magellanic Cloud." From Bulgaria were present 17 colleagues: Svetlana Boeva, Ana Borisova, Momchil Dechev, Peter Duchlev, Lostadinka Koleva, Georgi Petrov, Vasil Popov, Konstatin Stavrev, Katya Ysvetkova and Milcho Tsvetkov from Institute of Astronomy of BAS, Rumen Bogdanovski and Krasmimira Ianova from Space Research Institute of BAS, Georgi R. Ivanov, Georgi Petrov and Grigor Nikolov from Department of Astronomy, Sofia University "St Kliment Ohridski,", Yavor Chapanov from Central Laboratory for Geodesy of BAS and Petya Pavlova from Technical University of Sofia, Branch Plovdiv. Besides participants from Serbia and Bulgaria the Conference [was] attended [by] Vlado Milicevic from Canada, Jan Vondrak from Czech Republic, Aytap Sezer from Turkey and Tetyana Sergeeva and Alexandr Sergeev from Ukraine. On the Conference were presented 13 invited lectures, 22 short talks and 35 posters, in total

  10. Introduction and Committees

    NASA Astrophysics Data System (ADS)

    Angelova, Maia; Zakrzewski, Wojciech; Hussin, Véronique; Piette, Bernard

    2011-03-01

    This volume contains contributions to the XXVIIIth International Colloquium on Group-Theoretical Methods in Physics, the GROUP 28 conference, which took place in Newcastle upon Tyne from 26-30 July 2010. All plenary and contributed papers have undergone an independent review; as a result of this review and the decisions of the Editorial Board most but not all of the contributions were accepted. The volume is organised as follows: it starts with notes in memory of Marcos Moshinsky, followed by contributions related to the Wigner Medal and Hermann Weyl prize. Then the invited talks at the plenary sessions and the public lecture are published followed by contributions in the parallel and poster sessions in alphabetical order. The Editors:Maia Angelova, Wojciech Zakrzewski, Véronique Hussin and Bernard Piette International Advisory Committee Michael BaakeUniversity of Bielefeld, Germany Gerald DunneUniversity of Connecticut, USA J F (Frank) GomesUNESP, Sao Paolo, Brazil Peter HanggiUniversity of Augsburg, Germany Jeffrey C LagariasUniversity of Michigan, USA Michael MackeyMcGill University, Canada Nicholas MantonCambridge University, UK Alexei MorozovITEP, Moscow, Russia Valery RubakovINR, Moscow, Russia Barry SandersUniversity of Calgary, Canada Allan SolomonOpen University, Milton Keynes, UK Christoph SchweigertUniversity of Hamburg, Germany Standing Committee Twareque AliConcordia University, Canada Luis BoyaSalamanca University, Spain Enrico CeleghiniFirenze University, Italy Vladimir DobrevBulgarian Academy of Sciences, Bulgaria Heinz-Dietrich DoebnerHonorary Member, Clausthal University, Germany Jean-Pierre GazeauChairman, Paris Diderot University, France Mo-Lin GeNankai University. China Gerald GoldinRutgers University, USA Francesco IachelloYale University, USA Joris Van der JeugtGhent University, Belgium Richard KernerPierre et Marie Curie University, France Piotr KielanowskiCINVESTAV, Mexico Alan KosteleckyIndiana University, USA Mariano del Olmo

  11. Clinical Validation of Heart Rate Apps: Mixed-Methods Evaluation Study.

    PubMed

    Vandenberk, Thijs; Stans, Jelle; Mortelmans, Christophe; Van Haelst, Ruth; Van Schelvergem, Gertjan; Pelckmans, Caroline; Smeets, Christophe Jp; Lanssens, Dorien; De Cannière, Hélène; Storms, Valerie; Thijs, Inge M; Vaes, Bert; Vandervoort, Pieter M

    2017-08-25

    (P=.92) between these intervals. Our findings suggest that the most suitable method for the validation of an HR app is a simultaneous measurement of the HR by the smartphone app and an ECG system, compared on the basis of beat-to-beat analysis. This approach could lead to more correct assessments of the accuracy of HR apps. ©Thijs Vandenberk, Jelle Stans, Gertjan Van Schelvergem, Caroline Pelckmans, Christophe JP Smeets, Dorien Lanssens, Hélène De Cannière, Valerie Storms, Inge M Thijs, Pieter M Vandervoort. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 25.08.2017.

  12. EDITORIAL: Invited review and topical lectures from the 13th International Congress on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Zagorodny, A.; Kocherga, O.

    2007-05-01

    The 13th International Congress on Plasma Physics (ICPP 2006) was organized, on behalf of the International Advisory Committee of the ICPP series, by the National Academy of Sciences of Ukraine and the Bogolyubov Institute for Theoretical Physics (BITP) and held in Kiev, Ukraine, 22 26 May 2006. The Congress Program included the topics: fundamental problems of plasma physics; fusion plasmas; plasmas in astrophysics and space physics; plasmas in applications and technologies; complex plasmas. A total of 305 delegates from 30 countries took part in the Congress. The program included 9 invited review lectures, 32 invited topical and 313 contributed papers (60 of which were selected for oral presentation). The Congress Program was the responsibility of the International Program Committee: Anatoly Zagorodny (Chairman) Bogolyubov Institute for Theoretical Physics, Ukraine Olha Kocherga (Scientific Secretary) Bogolyubov Institute for Theoretical Physics, Ukraine Boris Breizman The University of Texas at Austin, USA Iver Cairns School of Physics, University of Sydney, Australia Tatiana Davydova Institute for Nuclear Research, Ukraine Tony Donne FOM-Institute for Plasma Physics, Rijnhuizen, The Netherlands Nikolai S Erokhin Space Research Institute of RAS, Russia Xavier Garbet CEA, France Valery Godyak OSRAM SYLVANIA, USA Katsumi Ida National Institute for Fusion Science, Japan Alexander Kingsep Russian Research Centre `Kurchatov Institute', Russia E P Kruglyakov Budker Institute of Nuclear Physics, Russia Gregor Morfill Max-Planck-Institut für extraterrestrische Physik, Germany Osamu Motojima National Institute for Fusion Science, Japan Jef Ongena ERM-KMS, Brussels and EFDA-JET, UK Konstantyn Shamrai Institute for Nuclear Research, Ukraine Raghvendra Singh Institute for Plasma Research, India Konstantyn Stepanov Kharkiv Institute of Physics and Technology, Ukraine Masayoshi Tanaka National Institute for Fusion Science, Japan Nodar Tsintsadze Physics Institute, Georgia The

  13. PREFACE: Preface

    NASA Astrophysics Data System (ADS)

    Ye, Chaohui; Wang, Zhong Lin; Zhou, Bingkun

    2011-02-01

    National Laboratory for Optoelectronics (China)Junqiang Sun, Wuhan National Laboratory for Optoelectronics (China) 4. OPTOELECTRONIC SENSING AND IMAGING (OSI)Editors:Kecheng Yang, Wuhan National Laboratory for Optoelectronics (China)Pengcheng Li, Wuhan National Laboratory for Optoelectronics (China) 5. SOLAR CELLS, SOLID-STATE LIGHTING AND INFORMATION DISPLAY TECHNOLOGIES (SSID)Editors:Hiroshi Amano, Meijo University (Japan)Yibing Cheng, Monash University (Australia)Jinzhong Yu, Institute of Semiconductor, CAS (China)Changqing Chen, Wuhan National Laboratory for Optoelectronics (China)Hongwei Han, Wuhan National Laboratory for Optoelectronics (China)Guoli Tu, Wuhan National Laboratory for Optoelectronics (China) 6. TERA-HERTZ SCIENCE AND TECHNOLOGY (THST)Editors:Jianquan Yao, Tianjin University (China)Shenggang Liu, University of Electronic Science and Technology of China (China)X C Zhang, Rensselaer Polytechnic Institute (USA)Jinsong Liu, Wuhan National Laboratory for Optoelectronics (China) International Advisory Committee:Yibing Cheng, Monash University (Australia)Stephen Z D Cheng, University of Akron (USA)Min Gu, Swinburne University of Technology (Australia)Andrew B Holmes, the University of Melbourne (Australia)Chinlon Lin, Bell Laboratory (retired, USA)Xun Li, McMaster University (Canada)Shenggang Liu, University of Electronic Science and Technology of China (China)Jesper Moerk, Technical University of Denmark (Denmark)Dennis L Matthews, University of California, Davis (USA)Jiacong Shen, Jilin University (China)Ping Shum, Nanyang Technological University (Singapore)Chester C T Shu, Chinese University of Hong Kong (China)Valery V Tuchin, Saratov State University (Russia)Bruce Tromberg, University of California/Irvine (USA)Peiheng Wu, University of Nanjing (China)Alan Willner, University of Southern California (USA)Lihong Wang, Washington University in St. Louis (USA)C P Wong, Georgia Institute of Technology (USA)Jianquan Yao, Tianjin University (China)Xi Zhang

  14. Diagnosis, Prevalence, Awareness, Treatment, Prevention, and Control of Hypertension in Cameroon: Protocol for a Systematic Review and Meta-Analysis of Clinic-Based and Community-Based Studies.

    PubMed

    Kuate Defo, Barthelemy; Mbanya, Jean Claude; Tardif, Jean-Claude; Ekundayo, Olugbemiga; Perreault, Sylvie; Potvin, Louise; Cote, Robert; Kengne, Andre Pascal; Choukem, Simeon Pierre; Assah, Felix; Kingue, Samuel; Richard, Lucie; Pongou, Roland; Frohlich, Katherine; Saji, Jude; Fournier, Pierre; Sobngwi, Eugene; Ridde, Valery; Dubé, Marie-Pierre; De Denus, Simon; Mbacham, Wilfred; Lafrance, Jean-Philippe; Nsagha, Dickson Shey; Mampuya, Warner; Dzudie, Anastase; Cloutier, Lyne; Zarowsky, Christina; Tanya, Agatha; Ndom, Paul; Hatem, Marie; Rey, Evelyne; Roy, Louise; Borgès Da Silva, Roxane; Dagenais, Christian; Todem, David; Weladji, Robert; Mbanya, Dora; Emami, Elham; Njoumemi, Zakariaou; Monnais, Laurence; Dubois, Carl-Ardy

    2017-05-29

    independently search, screen, extract data, and assess the quality of selected studies using suitable tools. Selected studies will be analyzed by narrative synthesis, meta-analysis, or both, depending on the nature of the data retrieved in line with the review objectives. This review is part of an ongoing research program on disease prevention and control in the context of the dual burden of communicable and noncommunicable diseases in Africa. The first results are expected in 2017. This review will provide a comprehensive assessment of the burden of hypertension and control measures that have been designed and implemented in Cameroon. Findings will form the knowledge base relevant to stakeholders across the health system and researchers who are involved in hypertension prevention and control in the community and clinic settings in Cameroon, as a yardstick for similar African countries. PROSPERO registration number: CRD42017054950; http://www.crd.york.ac.uk/PROSPERO/ display_record.asp?ID=CRD42017054950 (Archived by WebCite at http://www.webcitation.org/6qYSjt9Jc). ©Barthelemy Kuate Defo, Jean Claude Mbanya, Jean-Claude Tardif, Olugbemiga Ekundayo, Sylvie Perreault, Louise Potvin, Robert Cote, Andre Pascal Kengne, Simeon Pierre Choukem, Felix Assah, Samuel Kingue, Lucie Richard, Roland Pongou, Katherine Frohlich, Jude Saji, Pierre Fournier, Eugene Sobngwi, Valery Ridde, Marie-Pierre Dubé, Simon De Denus, Wilfred Mbacham, Jean-Philippe Lafrance, Dickson Shey Nsagha, Warner Mampuya, Anastase Dzudie, Lyne Cloutier, Christina Zarowsky, Agatha Tanya, Paul Ndom, Marie Hatem, Evelyne Rey, Louise Roy, Roxane Borgès Da Silva, Christian Dagenais, David Todem, Robert Weladji, Dora Mbanya, Elham Emami, Zakariaou Njoumemi, Laurence Monnais, Carl-Ardy Dubois. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 29.05.2017.

  15. Prenatal Remote Monitoring of Women With Gestational Hypertensive Diseases: Cost Analysis.

    PubMed

    Lanssens, Dorien; Vandenberk, Thijs; Smeets, Christophe Jp; De Cannière, Hélène; Vonck, Sharona; Claessens, Jade; Heyrman, Yenthel; Vandijck, Dominique; Storms, Valerie; Thijs, Inge M; Grieten, Lars; Gyselaers, Wilfried

    2018-03-26

    in remote monitoring than conventional care (mean €209.22 [SD €213.32] vs mean €231.32 [SD 67.09], P=.02), but were 0.69% higher for RIZIV (mean €122.60 [SD €92.02] vs mean €121.78 [SD €20.77], P<.001). Overall HCS costs for remote monitoring were mean €4233.31 (SD €3463.31) per person and mean €4973.69 (SD €5219.00) per person for conventional care (P=.82), a reduction of €740.38 (14.89%) per person, with savings mainly for RIZIV of €848.97 per person (23.18%; mean €2797.42 [SD €2905.18] vs mean €3646.39 [SD €4878.47], P=.19). When an additional fee of €525.07 per month per pregnant woman for funding remote monitoring costs is demanded, remote monitoring is acceptable in their costs for HCS, RIZIV, and individual patients. In the current organization of Belgian health care, a remote monitoring prenatal follow-up of women with GHD is cost saving for the global health care system, mainly via savings for the insurance institution RIZIV. ©Dorien Lanssens, Thijs Vandenberk, Christophe JP Smeets, Hélène De Cannière, Sharona Vonck, Jade Claessens, Yenthel Heyrman, Dominique Vandijck, Valerie Storms, Inge M Thijs, Lars Grieten, Wilfried Gyselaers. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 26.03.2018.

  16. PREFACE: Seventh International Conference on Dissociative Recombination: Theory, Experiments and Applications

    NASA Astrophysics Data System (ADS)

    van der Zande, Wim J.

    2009-09-01

    possible by generous sponsors, whom we thank wholeheartedly: The Radboud University Nijmegen, The Institute for Molecules and Materials of the Radboud University Nijmegen, The Foundation for Fundamental Research on Matter (Stichting FOM), The Foundation PHYSICA (Stichting Physica), and The Netherlands Royal Academy of Sciences (KNAW). The organisational support by Erna Gouwens van Oss before and during the conference was essential for its success. The help of Thanja Lambrechts and Vitali Zhaunerchyk during the preparation of the proceedings is greatly appreciated. The delay in the publication of these proceedings is entirely caused by the editor. The authors of the contributions are thanked for the quality of their contributions, Wim J van der Zande, Editor Institute for Molecules and Materials, Radboud University Nijmegen, PO Box 9010, NL-6500 GL Nijmegen, The Netherlands Email: w.vanderzande@science.ru.nl Conference photograph Participants of the 7th International Conference on Dissociative Recombination: Theory, Experiments and Applications, taken in front of d'Amelander Kaap, the conference venue in Ameland, one of the Wadden Islands in the North of the Netherlands. 1. Dror Shafir21. Annemieke Petrignani41. Oumanou Motopan 2. Ioan Scheider22. Johanna Roos42. Max Berg 3. Nigel Adams23. Erna Gouwens van Oss43. Henrik Buhr 4. Hajime Tanuma24. Natalie de Ruette44. Ilya Fabrikant 5. Jonathan Tennyson25. Francois Wameu Tamo45. Claude Krantz 6. Vitali Zhaunerchyk26. Rainer Johnsen46. Michael Stenrup 7. Robert Continetti27. Viatcheslav Kokoouline47. Xavier Urbain 8. Stefan Rosén28. Hidekazu Takagi48. Evelyne Roueff 9. Erik Vigren29. Hans-Jakob Wörner49. Dirk Schwalm 10. Magdalena Kaminska30. Oskar Asvany50. Valery Ngassam 11. Chris Greene31. Lutz Lammich51. Julien Lecointre 12. Steffen Novotny32. Brandon Jordon-Thaden52. Ann Orel 13. Amy Schumak33. Wolf Diettrich Geppert53. Ihor Korolov 14. Gerard van Rooij34. Alexander Faure54. Romain Guerot 15. Wim van der Zande35. Mathias

  17. PREFACE: Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.

    2006-04-01

    each area new results from theory, simulations and experiments were presented. In addition, a special symposium was held one evening to explore the questions on high-energy-density matter generated by intense heavy ion beams and to discuss the outlook for applications to industry. As this special issue illustrates, the field remains vibrant and challenging, being driven to a great extent by new experimental tools and access to new strongly coupled conditions. This is illustrated by the inclusion of developments in the areas of warm matter, dusty plasmas, condensed matter and ultra-cold plasmas. In total, 200 participants from 17 countries attended the conference, including 42 invited speakers. The individuals giving presentations at the conference, including invited plenary and topical talks and posters, were asked to contribute to this special issue and most have done so. We trust that this special issue will accurately record the contents of the conference, and provide a valuable resource for researchers in this rapidly evolving field. We would like to thank the members of the International Advisory Board and all members of the Programme Committee for their contributions to the conference. Of course, nothing would have been possible without the dedicated efforts of the Local Organizing Committee, in particular Igor Morozov and Valery Sultanov. We wish to thank the Russian Academy of Sciences, the Institute for High Energy Densities, the Institute of Problems of Chemical Physics, the Moscow Institute of Physics and Technology, the Ministry of Education and Science of the Russian Federation, the Russian Foundation for Basic Research, the Moscow Committee of Science and Technologies, the Russian Joint Stock Company `Unified Energy System of Russia', and The International Association for the Promotion of Co-operation with Scientists from the New Independent States (NIS) of the Former Soviet Union for sponsoring this conference.

  18. Soil moisture changes in two experimental sites in Eastern Spain. Irrigation versus rainfed orchards under organic farming

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, Cesar; Vicente-Serrano, Sergio M.; Cerdà, Artemi

    2013-04-01

    data. These complementary atmospheric measurements will serve to explain the intraannual and vertical variations observed in the soil moisture content in both experimental landscapes. This kind of study is aimed to understand the soil moisture content in two different environments such as irrigated rainfed orchards in a semi-arid region. For instance, these measurements have a direct impact on water availability for crops, plant transpiration and could have practical applications to schedule irrigation. Additionally, soil water content has also implications for erosion processes. Key Words: Water, Agriculture, Irrigation, Eastern Spain, Citrus. Acknowledgements The research projects GL2008-02879/BTE and LEDDRA 243857 supported this research. References Cerdà, A. 1995. Soil moisture regime under simulated rainfall in a three years abandoned field in Southeast Spain. Physics and Chemistry of The Earth, 20 (3-4), 271-279. Cerdà, A. 1997. Seasonal Changes of the Infiltration Rates in a Typical Mediterranean Scrubland on Limestone in Southeast Spain. Journal of Hydrology, 198 (1-4) 198-209 Cerdà, A. 1998. Effect of climate on surface flow along a climatological gradient in Israel. A field rainfall simulation approach. Journal of Arid Environments, 38, 145-159. Levin, I., Assaf, R., and Bravdo, B. 1979. Soil moisture and root distribution in an apple orchard irrigated by tricklers. Plant and Soil, 52, 31-40. Schneider, G. W. And Childers, N.F. 1941. Influence of soil moisture on photosynthesis, respiration and transpiration of apples leaves. Plant Physiol., 16, 565-583. Valerie, A. and Orchard, F.J. Cook. 1983. Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 15, 447-453. Veihmeyer, F. J. and Hendrickson, A. H. 1950. Soil Moisture in Relation to Plant Growth. Annual Review of Plant Physiology, 1, 285-304.

  19. European Plate Observing System - the Arctic dimension and the Nordic collaboration

    NASA Astrophysics Data System (ADS)

    Atakan, K.; Heikkinen, P.; Juhlin, C.; Thybo, H.; Vogfjord, K.

    2012-04-01

    strong motion networks monitor seismic activity and hazard in the North Atlantic. Vigorous volcanic activity along the plate boundary in Iceland and associated hazards are monitored by the Icelandic, seismic, geodetic, meteorological and hydrological networks. Recent eruptions, like the 2010 Eyjafjallajökull eruptions have demonstrated the far-reaching hazard to aviation caused by volcanic eruptions in Iceland. The high-sensitivity seismic and geodetic networks of Sweden monitor isostatic rebound of Fennoscandia. In this context, the varied Nordic monitoring networks provide a significant contribution to the main objectives of EPOS. There are already existing links with the other ESFRI initiatives where strong Nordic participation is established, such as SIOS and EMSO. As such EPOS provides the necessary platform to collaborate and develop an important Nordic dimension in the European Research Area. There is a long tradition of collaboration at the governmental level between the Nordic countries, Norway, Sweden, Denmark, Finland and Iceland. Within the fields of research and education, the Nordic Ministries have a dedicated program, where research networks are being promoted. Recently a Nordic collaborative network in seismology, "NordQuake" (coordinated by Denmark) was established within this program. This collaboration which is now formalized and supported by the Nordic Ministries is based on a cooperation which was initiated more than 40 years ago, where annual Nordic Seminars in seismology (previously on detection seismology) was the central element. EPOS Nordic collaboration, building upon a long lasting history, has a significant potential for synergy effects in the region and therefore represents an important dimension within EPOS. Nordic EPOS Team: Lars Ottemöller (UiB), Mathilde B. Sørensen (UiB), Louise W. Bjerrum (UiB), Conrad Lindholm (Norsar), Halfdan Kjerulf (SK), Amir Kaynia (NGI), Valerie Maupin (UiO), Tor Langeland (CMR), Joerg Ebbing (NGU), John

  20. Biogeosystem technique as a base of Sustainable Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdulmalik

    2016-04-01

    the stomatal apparatus of leaf regulate the water flow through plant, transpiration rate is reduced, soil solution concentration increases, plant nutrition supply rate becomes higher than at a stage of water field capacity. The rate of plant biomass growth is highest at water thermodynamic potential of -0.2-0.4 MPa. No excessive irrigation intra-soil mass transfer, nor excessive transpiration, evaporation and seepage. New intra-soil pulse discrete paradigm of irrigation optimizes the plant organogenesis, reduces consumption of water per unit of biological product. The biological productivity increases. Fresh water saving is up to 20 times. The new sustainable world strategy of Ecosystem Maintaining Productivity is to be based on the Biogeosystem Technique, it suits well the robotic nowadays noosphere technological platform and implements the principals of Geoethics in technologies of Biosphere. Key words: Paradigm, Biogeosystem technique, intra-soil pulse discrete watering. SSS8.1 Restoration and rehabilitation of degraded lands in arid, semi-arid and Mediterranean environments Batukaev Abdulmalik A. Chechen State University, Agrotechnological Institute, Dr Sc (Agric), Professor, Director, 364907, Sheripova st., 32, Grozny, Russia, batukaevmalik@mail.ru Kalinichenko Valery P. Institute of Fertility of Soils of South Russia, Dr Sc (Biol), Professor, Director, 346493, Krivoshlikova st., 2, Persianovka, Rostov region. Russia, kalinitch@mail.ru Minkina Tatiana M., Southern Federal University, Dr Sc (Biol), Head of the Soil Science Chair, 344006, Bolshaja Sadovaja st., 105/42, Rostov-on-Don, Russia, tminkina@mail.ru Zarmaev Ali A. Agrotechnological Institute of Chechen State University, Head of the Agrotechnology Chair, Dr Sc (Agric), Professor, 364907, Sheripova st., 32, Grozny, Russia, ali5073@mail.ru Skovpen Andrey N. Don State Agrarian University, PhD, Ass. Professor of Ecology Chair, 346493, Krivoshlikova st., 2, Persianovka, Rostov region, Russia, instit03@mail

  1. Sensitivity of ocean model simulation in the coastal ocean to the resolution of the meteorological forcing

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Shapiro, Georgy; Thain, Richard

    2013-04-01

    Zatsepin , Valentina Khan, Valery Prostakishin , Tatiana Akivis , Vladimir Belokopytov , Anton Sviridov , and Vladimir Piotukh . 2011. Response of water temperature in the Black Sea to atmospheric forcing: the sensitivity study. Geophysical Research Abstracts. Vol. 13, EGU2011-933

  2. EDITORIAL: Focus on Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Morfill, G. E.; Kong, M. G.; Zimmermann, J. L.

    2009-11-01

    'Plasma Healthcare' is an emerging interdisciplinary research topic of rapidly growing importance, exploring considerable opportunities at the interface of plasma physics, chemistry and engineering with life sciences. Some of the scientific discoveries reported so far have already demonstrated clear benefits for healthcare in areas of medicine, food safety, environmental hygiene, and cosmetics. Examples include ongoing studies of prion inactivation, chronic wound treatment and plasma-mediated cancer therapy. Current research ranges from basic physical processes, plasma chemical design, to the interaction of plasmas with (i) eukaryotic (mammalian) cells; (ii) prokaryotic (bacteria) cells, viruses, spores and fungi; (iii) DNA, lipids, proteins and cell membranes; and (iv) living human, animal and plant tissues in the presence of biofluids. Of diverse interests in this new field is the need for hospital disinfection, in particular with respect to the alarming increase in bacterial resistance to antibiotics, the concomitant needs in private practices, nursing homes etc, the applications in personal hygiene—and the enticing possibility to 'design' plasmas as possible pharmaceutical products, employing ionic as well as molecular agents for medical treatment. The 'delivery' of the reactive plasma agents occurs at the gaseous level, which means that there is no need for a carrier medium and access to the treatment surface is optimal. This focus issue provides a close look at the current state of the art in Plasma Medicine with a number of forefront research articles as well as an introductory review. Focus on Plasma Medicine Contents Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination Helen C Baxter, Patricia R Richardson, Gaynor A Campbell, Valeri I Kovalev, Robert Maier, James S Barton, Anita C Jones, Greg DeLarge, Mark Casey and Robert L Baxter Inactivation factors of spore-forming bacteria using low

  3. Verochka Zingan or recollections from the Physics Department of the Moscow University

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    . Laufer, Yu. El'nitskii, Gh. Nemtoi, Yu. Oprunenko, N.N. Semenov, Varun Sahni, A.A. Starobinskii, Liusea Burca, Serge Rollet, Tatyana Davydova, Zinaida Uglichina (Khafizova), T.Filippova, V.S. Filippov, Vera Zingan (Stefanovici), B.A. Gaina, E.F. Gaina, Valeri Gaina, A. Kirnitskii, M. Kavalerchik, Margarita Kavalerchik, Mark Rainis, L.I. Sedov, D. Mangeron, S. Taltu (Coanda), Z. Sali(Chitoroaga, Kitoroage), Raisa M. Gorbachova, Maria Bulgaru, S. Pavlichenko, Nadezhda Shishkan, A.N. Matveev, N.Ya. Tyapunina, D.F. Kiselev, V.A. Petukhov, N.Ch. Krutitskaya, G.N. Medvedev, A.A. Shishkin,I.A. Shishmarev,A.G. Sveshnikov, A.B. Vasil'eva, A.G. Yagola, I.I. Ol'hovskii, V.V. Kravtsov, V.V.Petkevich, V.I. Grigor'ev, V.S. Rostovskii, V.V. Balashov, B.I. Spasskii, V.D. Krivchenkov, M.B. Menskii, V.Ya. Fainberg, V.G. Kadyshevskii, B.K. Kerimov, V.A. Matveev, I.A. Kvasnikov, D.V. Gal'tsov, V.R. Khalilov, G.A. Chizhov,I.A. Obukhov, V.N. Melnikov, A.A. Logunov, A.N. Tavkhelidze,Yu.S. Vladimirov, N.F. Florea (Floria), B.A. Lysov, V.D. Kukin, 601-academic group (1977), A.R. Khokhlov, P.L. Kapitza, S.P. Kapitza, Ion C. Inculet, Ion I. Inculet,W. Bittner, Nikolay Florea (Floria), M.M. Heraskov, N.V. Sklifosovskii, N.N. Bantysh-Kamenskii, N.D. Zelinskii, Olga Crusevan (Krushevan), Eugenia Crusevan (Krushevan),L.S. Berg, I. Buzdugan (Buzdyga),S.G. Lazo, M.K. Grebenchya (Grebencea), V.T. Kondurar (Conduraru), E.A. Grebenikov, K.F. Teodorchik, V.A. Albitzky, M.V. Nazarov, Tatiana Nazarova, V. P. Oleinikov, O.V. Bolshakov, D.M. Nikolaev, V. Afanas'ev, Olga Tatarinskaya, Yu.V. Karaganchou, B.A. Volkov, V.K. Turta, S. Varzar, C. Sochichiu, V.B. Braginsky, V.S. Fursov, L.I. Brezhnev, V.I. Sobolev (INP MSU), V.A. Smirnov (INP MSU), L.D. Landau, M.A. Leontovich, A.G. Loskutova, Yu.M. Loskutov, N.S. Akulov, V.B. Gostev, A.R. Frenkin, N.N. Kolesnikov, A. Vasil'ev, V.N. Tsytovich, Ya.A. Frenkel, N.V. Mitskievich, E.A. Grebenikov, A.N. Prokopenya, A. Einstein, L.I. Sedov, A.N. Kolmogorov, V.I. Arnold, G

  4. Obituary for Moshe Shapiro

    NASA Astrophysics Data System (ADS)

    Grant, Edward R.

    2014-04-01

    induced symmetry breaking to form chiral products from achiral precursors, and showed how to use phase-coherent laser excitation to launch directional currents in semiconductors, in the absence of bias voltage. He has also contributed to important advances in laser catalysis, quantum computing and decoherence, transition state spectroscopy, potential inversion and wavefunction imaging, the theory of strong field phenomena in atoms and molecules, quantum theory of elementary exchange reactions and foundations of quantum mechanics. His most recent research focused on the control of molecular, atomic, and photonic processes with coherent light, quantum pattern recognition, coherent chiral separation and the coherent suppression of spontaneous emission, decoherence and other decay processes. At UBC, Moshe is remembered for his perceptiveness, broad vision and collegiality. 'One day he came to a group meeting with the idea of a solar-pumped living laser,' said physics colleague, Valery Milner. 'After thinking about this for two months, we designed an experiment using a random laser cavity that produced gain with milliwatts of pumping power applied to a fluorescent protein. We have now only to get lasing with the bacterium we engineered to express this protein.' Moshe studied for his PhD guided by Professor Raphael D Levine, in theoretical chemistry at the Hebrew University, focusing on photodissociation and molecular collisions. In 1970, he moved to Harvard University as a postdoctoral fellow, where he worked in reaction dynamics with Martin Karplus, a 2013 Nobel laureate in chemistry. In 1972, Moshe joined the faculty of the Department of Chemical Physics at the Weizmann Institute. There, he served as a department chair and was named the Jacques Mimran Professor of Chemical Physics. In 2002, he was appointed to a Canada Research Chair in Quantum Control in the Department of Chemistry at UBC. He won the Willis E Lamb Medal for achievements in the Physics of Quantum Electronics

  5. Obituary: Ronald N. Bracewell, 1921-2007

    NASA Astrophysics Data System (ADS)

    Petrosian, Vahé

    2009-01-01

    Ronald N. Bracewell, Professor Emeritus (since 1991) of Electrical Engineering at Stanford University, and a true renaissance man of science, died of a heart attack on 12 August 2007 at his home. Ron Bracewell was born in Sydney, Australia, on 22 July 1921, one of the two sons of Cecil and Valerie Bracewell. He graduated from the University of Sydney in 1941 and received his doctorate degree in physics from Cambridge University in 1949. During World War II, Ron worked in the Australian National Radar Establishment, where he designed and developed microwave radar equipment. Like several other World War II radar scientists, after the war he used this experience to pioneer the new field of radio astronomy. With J. L. Pawsey, in 1955 he published the first comprehensive textbook in this field entitled, Radio Astronomy. Bracewell joined the Stanford Electrical Engineering faculty in 1955, and from 1974 on he held the first prestigious Lewis Terman professorship. He was awarded the Outstanding Service Award of the department in 1984. In 1988, he was named an officer of the Order of Australia--the Australian equivalent of Order of the British Empire. Soon after his arrival at Stanford, Bracewell designed and began building a solar spectroheliograph, consisting of thirty-two dish antennas in the form of a cross. This was completed in 1961 and provided daily maps of the Sun for more than a decade encompassing more than one solar activity cycle of eleven years. These maps were useful in predicting magnetic storms caused by solar activity and were used by NASA during the first landing on the Moon. In 1971 he started the building of a five-element radio interferometer, for observation of extragalactic radio sources, with the novel design of unequal spacing that gave the resolution of a ten-element array. Both telescopes are now dismantled. The common characteristics of these and other projects were that they were all built in-house with a limited budget, often a small fraction

  6. List of Posters

    NASA Astrophysics Data System (ADS)

    . Saturation effects in diffractive scattering at LHC By Oleg Selugin. A nonperturbative expansion method in QCD and R-related quantities By Igor Solovtsov. Z-scaling and high multiplicity particle Production in bar pp/pp & AA collisions at Tevatron and RHIC By Mikhail Tokarev. Scaling behaviour of the reactionsdd - > p↑ /3H and pd - > pd with pT at energy I-2 GeV By Yuri Uzikov. [ADS Note: Title formula can not be rendered correctly in ASCII.] CP violation, rare decays, CKM: Precision Measurements of the Mass of the Top Quark at CDF (Precision Top Mass Measurements at CDF) By Daniel Whiteson. Measurement of the Bs Oscillation at CDF By Luciano Ristori. The Bs mixing phase at LHCb By J. J. van Hunen. ATLAS preparations for precise measurements of semileptonic rare B decays By K. Toms. Hadron spectroscopy & exotics: Searches for radial excited states of charmonium in experiments using cooled antiproton beams By M. Yu. Barabanov. Retardation effects in the rotating string model By Fabien Buisseret and Claude Semay. Final results from VEPP-2M (CMD-2 and SND) By G. V. Fedotovich. Heavy Quark Physics: Prospects for B physics measurements using the CMS detector at the LHC By Andreev Valery. Heavy flavour production at HERA-B By Andrey Bogatyrev. B-Meson subleading form factors in the Heavy Quark Effective Theory (HQET) By Frederic Jugeau. Beyond the Standard Model: Monopole Decay in a Variable External Field By Andrey Zayakin. Two-Loop matching coefficients for the strong coupling in the MSSM By Mihaila Luminita. Test of lepton flavour violation at LHC By Hidaka Keisho. Looking at New Physics through 4 jets and no ET By Maity Manas. Are Preons Dyons? Naturalness of Three Generations By Das Chitta Ranjan. SUSY Dark Matter at Linear Collider By Sezen Sekmen, Mehmet Zeyrek. MSSM light Higgs boson scenario and its test at hadron colliders By Alexander Belyaev. Antiscalar Approach to Gravity and Standard Model By E. Mychelkin. GRID distributed analysis in high energy physics: PAX

  7. Obituary: John Beverley Oke, 1928-2004

    NASA Astrophysics Data System (ADS)

    Hesser, James Edward

    2004-12-01

    one of the first two photoelectric scanners ever built. His main interests at the time were the classification of the thousands of stellar spectra in the DDO archives, and studies of Cepheids using his new spectrum scanner. At a Halloween party in 1954 he met Nancy Sparling. Together they initiated a life partnership factually punctuated by their August, 1955 marriage and the arrival of their children, Christopher (1957), Kevin (1958), Jennifer (1961) and Valerie (1966). Their home was notable to all for the deep aura of familial love and joy in the pursuit of knowledge and accomplishments. In winter 1957-58 Jesse Greenstein invited Bev to join Cal Tech, where he became an Associate Professor (1958) and then Professor (1964); during the period 1970-1978 he was Hale Observatories Director. With the large telescopes at Mount Wilson and Mount Palomar, astronomy there could aspire to be the best in the world, but this required instrumentation of the highest capabilities. Bev soon began to contribute in a major way to their instrumentation excellence following examples established, among others, by Ira Bowen and Horace Babcock. His began by improving the DC amplifiers then in use; constructing a high-spectral-resolution, scanning spectrophotometer; designing vacuum Dewars for astronomical applications; creating pulse counting systems for photoelectric devices; and building the innovative 32-channel spectrum scanner for the Palomar 5-m telescope that was completed in 1968. Bev built instruments to advance astronomy and to satisfy his wide-ranging curiosity about nature. With the first single-channel spectrum scanner he built at Cal Tech he played a key role in the discovery of the redshift of 3C273. Using his multi-channel spectrometer with students and colleagues, he pursued a highly successful quest to establish accurate spectral-energy distributions for diverse classes of stars and galaxies, based upon rigorous calibration against physical standards. Through this

  8. Preface: Introductory Remarks: Linear Scaling Methods

    NASA Astrophysics Data System (ADS)

    Bowler, D. R.; Fattebert, J.-L.; Gillan, M. J.; Haynes, P. D.; Skylaris, C.-K.

    2008-07-01

    Haynes, Chris-Kriton Skylaris, Arash Mostofi and Mike Payne A miscellaneous overview of SIESTA algorithms Jose M Soler Wavelets as a basis set for electronic structure calculations and electrostatic problems Stefan Goedecker Wavelets as a basis set for linear scaling electronic structure calculationsMark Rayson O(N) Krylov subspace method for large-scale ab initio electronic structure calculations Taisuke Ozaki Linear scaling calculations with the divide-and-conquer approach and with non-orthogonal localized orbitals Weitao Yang Toward efficient wavefunction based linear scaling energy minimization Valery Weber Accurate O(N) first-principles DFT calculations using finite differences and confined orbitals Jean-Luc Fattebert Linear-scaling methods in dynamics simulations or beyond DFT and ground state properties An O(N) time-domain algorithm for TDDFT Guan Hua Chen Local correlation theory and electronic delocalization Joseph Subotnik Ab initio molecular dynamics with linear scaling: foundations and applications Eiji Tsuchida Towards a linear scaling Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics Thomas Kühne, Michele Ceriotti, Matthias Krack and Michele Parrinello Partial linear scaling for quantum Monte Carlo calculations on condensed matter Mike Gillan Exact embedding of local defects in crystals using maximally localized Wannier functions Eric Cancès Faster GW calculations in larger model structures using ultralocalized nonorthogonal Wannier functions Paolo Umari Other approaches for linear-scaling, including methods formetals Partition-of-unity finite element method for large, accurate electronic-structure calculations of metals John E Pask and Natarajan Sukumar Semiclassical approach to density functional theory Kieron Burke Ab initio transport calculations in defected carbon nanotubes using O(N) techniques Blanca Biel, F J Garcia-Vidal, A Rubio and F Flores Large-scale calculations with the tight-binding (screened) KKR method Rudolf Zeller

  9. The First 24 Years of Reverse Monte Carlo Modelling, Budapest, Hungary, 20-22 September 2012

    NASA Astrophysics Data System (ADS)

    Keen, David A.; Pusztai, László

    2013-11-01

    -ray scattering and modeling studiesL Hawelek, A Brodka, J C Dore, V Honkimaki and A Burian Local structure correlations in plastic cyclohexane—a reverse Monte Carlo studyNicholas P Funnell, Martin T Dove, Andrew L Goodwin, Simon Parsons and Matthew G Tucker Neutron powder diffraction and molecular dynamics study of superionic SrBr2S Hull, S T Norberg, S G Eriksson and C E Mohn Atomic order and cluster energetics of a 17 wt% Si-based glass versus the liquid phaseG S E Antipas, L Temleitner, K Karalis, L Pusztai and A Xenidis Total scattering analysis of cation coordination and vacancy pair distribution in Yb substituted Ō-Bi2O3G S E Antipas, L Temleitner, K Karalis, L Pusztai and A Xenidis Modification of the sampling algorithm for reverse Monte Carlo modeling with an insufficient data setSatoshi Sato and Kenji Maruyama The origin of diffuse scattering in crystalline carbon tetraiodideTemleitner and L Pusztai Silver environment and covalent network rearrangement in GeS3-Ag glassesL Rátkai, I Kaban, T Wágner, J Kolár, S Valková, Iva Voleská, B Beuneu and P Jóvári Reverse Monte Carlo study of spherical sample under non-periodic boundary conditions: the structure of Ru nanoparticles based on x-ray diffraction dataOrsolya Gereben and Valeri Petkov Total neutron scattering investigation of the structure of a cobalt gallium oxide spinel prepared by solvothermal oxidation of gallium metalHelen Y Playford, Alex C Hannon, Matthew G Tucker, Martin R Lees and Richard I Walton The structure of water in solutions containing di- and trivalent cations by empirical potential structure refinementDaniel T Bowron and Sofia Díaz Moreno The proton conducting electrolyte BaTi0.5In0.5O2.75: determination of the deuteron site and its local environmentStefan T Norberg, Seikh M H Rahman, Stephen Hull, Christopher S Knee and Sten G Eriksson Acidic properties of aqueous phosphoric acid solutions: a microscopic viewI Harsányi, L Pusztai, P Jóvári and B Beuneu Comparison of the atomic level

  10. News and Announcements

    NASA Astrophysics Data System (ADS)

    1999-07-01

    the inside of meteorites. Zare and colleague Andrew Alexander are contributors to the Journal's Viewpoints series, sponsored by the Camille and Henry Dreyfus Foundation: "Anatomy of Elementary Chemical Reactions", JCE, 1998, 75, 1105. The Welch Award in Chemistry has been given by the Welch Foundation since 1972 to honor lifetime achievements in the field. Zare will be honored and presented with a $300,000 prize and gold medallion during the Foundation's annual award banquet held in Houston in October. NEACT Conference: Chemistry of Materials and Material Science The 61st Summer Conference of NEACT, the New England Association of Chemistry Teachers, will be held from Monday, August 9, through Thursday, August 12, at Massachusetts Institute of Technology in Cambridge, MA. The four-day conference will feature an exploration of the chemistry of materials and material science and effective methods of presenting these in the classroom and laboratory. The keynote address is "Teaching Solid State Chemistry at MIT" by Ron Latanision of MIT's Department of Material Science. Other presentations include "Driving Force", James Livingston; "The Colorful Nanoworld", Moungi Bawendi; "Molecular Wire-Based Amplification in Chemical Sensors", Timothy Swager; "Putting Solids in the Foundation", Arthur Ellis, George Lisensky, and Karen Nordell; "Miracle Materials", Valerie Wilcox; "Teaching About Polymers to Chemistry Students", Richard Stein; and "Using Software in Teaching About Polymers to Chemistry Students", William Vining. There will be a selection of workshops on the conference theme as well. The conference is open to all. The program chairperson is Peter J. Nassiff, Science Department Chairperson at Burlington High School. For further information contact Nassiff at 80 Gregory Road, Framingham, MA 01701; email: pnassiff@massed.net. Call for Symposia, Papers, & Workshops: 16th BCCE The Web site for the 16th Biennial Conference on Chemical Education, July 30-August 3, 2000, at the

  11. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    fluid-fluid interface [2]. Together with Remco Tuinier, Henk has recently completed a book in this area which is to appear later this year. A major theme in Henk's research is that of phase transitions in lyotropic liquid crystals. Henk, together with Daan Frenkel and Alain Stroobants, realized in the 1980s that a smectic phase in dispersions of rod-like particles can be stable without the presence of attractive interactions, similar to nematic ordering as predicted earlier by Onsager [3]. Together with Gert-Jan Vroege he wrote a seminal review in this area [4]. Henk once said that 'one can only truly develop one colloidal model system in one's career' and in his case this must be that of gibbsite platelets. Initially Henk's group pursued another polymorph of aluminium hydroxide, boehmite, which forms rod-like particles [5], which already displayed nematic liquid crystal phases. The real breakthrough came when the same precursors treated the produced gibbsite platelets slightly differently. These reliably form a discotic nematic phase [6] and, despite the polydispersity in their diameter, a columnar phase [7]. A theme encompassing a wide range of soft matter systems is that of colloidal dynamics and phase transition kinetics. Many colloidal systems have a tendency to get stuck in metastable states, such as gels or glasses. This is a nuisance if one wishes to study phase transitions, but it is of great practical significance. Such issues feature in many of Henk's publications, and with Valerie Anderson he wrote a highly cited review in this area [8]. Henk Lekkerkerker has also invested significant effort into the promotion of synchrotron radiation studies of colloidal suspensions. He was one of the great supporters of the Dutch-Belgian beamline 'DUBBLE' project at the ESRF [9]. He attended one of the very first experiments in Grenoble in 1999, which led to a Nature publication [7]. He was strongly involved in many other experiments which followed and also has been a

  12. Relativistic Celestial Mechanics of the Solar System

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    initio within the relativistic framework presented in the other resolutions (in that regard, there still exist some difficult problems to solve), their relativistic terms are accurate enough for all the current and near-future observational techniques. At that level, the Earth rotation models are consistent with the general relativity framework recommended by the IAU and considered in this book. The chapter presents practical algorithms for implementing the recommended models. The appendices to the book contain a list of astronomical constants and the original text of the relevant IAU resolutions adopted by the IAU General Assemblies in 1997, 2000, 2006, and 2009. Numerous colleagues have contributed to this book in one way or or another. It is a pleasure for us to acknowledge the enlightening discussions which one or more of the authors had on different occasions with Victor A. Brumberg of the Institute of Applied Astronomy (St. Petersburg, Russia); Tianyi Huang and Yi Xie of Nanjing University (China); Edward B. Fomalont of the National Radio Astronomical Observatory (USA); Valeri V. Makarov, William J. Tangren, and James L. Hilton of the US Naval Observatory; Gerhard Schäfer of the Institute of Theoretical Physics (Jena, Germany); Clifford M. Will of Washington University (St. Louis, USA); Ignazio Ciufolini of the Università del Salento and INFN Sezione di Lecce (Italy); and Patrick Wallace, retired from Her Majesty's Nautical Almanac Office (UK). We also would like to thank Richard G. French of Wellesley College (Massachusetts, USA); Michael Soffel and Sergei Klioner of the Technical University of Dresden; Bahram Mashhoon of the University of Missouri-Columbia; John D. Anderson, retired from the Jet Propulsion Laboratory (USA); the late Giacomo Giampieri, also of JPL; Michael Kramer, Axel Jessner, and Norbert Wex of the Max-Planck-Institut für Radioastronomie (Bonn, Germany); Alexander F. Zakharov of the Institute of Theoretical and Experimental Physics (Moscow